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Propagation of gravity-capillary surface waves on a background shear flow with
a constant vorticity is studied and compared with the case when the background
flow is uniform in depth. Under the assumption that the background flow gradually
varies in the horizontal direction, the primary attention is paid to the wave blocking
phenomenon; the effect of vorticity on this phenomenon is studied in detail. The
conditions for wave blocking are obtained and categorized for different values of the
governing dimensionless parameters: Froude number, dimensionless vorticity, and
surface tension. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942116]

I. INTRODUCTION

In many cases water waves propagate in moving water which leads to the complex phenomena
of wave-current interaction. Usually, currents are nonuniform both in the vertical and horizontal
directions. Many examples of wave propagation on the background of spatially nonuniform shear
flows may be listed in conjunction with this phenomenon. Among them there are tidal currents, cur-
rents caused by wind stress, oceanic currents of different scales, currents induced by long surface or
internal waves, river flows, etc. It is well-known that the interaction of water waves with nonuniform
currents may result in either dramatic effects such as generation of freak waves18,20 or favorable
effects such as the blocking of waves by pneumatic wave-breakers.38

Due to the effect of friction at the sea bed and/or of wind stress at the free surface, the
currents often vary with the depth. The result of such vertical flow variation is the presence of
vorticity which plays an important role in the shear flow stability. The vorticity also gives rise to
existence of specific vorticity waves which may exist not only in the interface of two layers of
different vorticity, but even inside the shear flow with the continuously distributed vorticity (see,
e.g., Ref. 32). Thus, the shear-flow vorticity in combination with the intensity of a current intro-
duces an important parameter which should be taken into account in the attempts to understand the
physics of the wave-current interaction. Leaving aside numerous works on the influence of shear
flows on the stability of internal waves in a density stratified fluid, we only refer here to some
papers where the interaction of surface waves with currents has been studied in the context of our
study3–5,7–14,17,21,24,31,34,39,40,42 (there is a plethora of publications in this field too; therefore, we are
forced to restrict ourselves to those references which are most relevant to our work).

Here, we revisit the problem of wave-current interaction on a horizontally varying shear flow
following the dynamical system approach.23,30 We focus on the simplest case of a shear flow
with the linear vertical profile having a constant vorticity; the more general case will be treated
elsewhere. We show that the problem can be analyzed in terms of dimensionless parameters and
introduce the “effective” Froude number defined such that the flow vorticity is taken into account
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along with the speed of the current. In the first part of this paper we consider pure gravity waves, but
then, in the second part, we take into account the surface tension and show that, in addition to the
known dimensionless parameters characterizing the wave-current interaction, the new length and
velocity scales can be introduced in the context of the water wave theory through the balance of the
effects of vorticity and surface tension.

We show also that due to specific properties of the water-wave dispersion, potentially unsta-
ble waves with negative energy can appear on a shear flow providing nontrivial features of wave
blocking.

II. THE BLOCKING PHENOMENON OF SURFACE GRAVITY WAVES ON A CURRENT
SLOWLY VARYING IN THE HORIZONTAL DIRECTION

Let us consider one-dimensional wave propagation on a surface of moving water of finite depth
h. The velocity profile of the water flow U(z) may be a rather complicated function of depth, but
in this paper we focus on the consideration and intercomparison of two cases, (i) when the flow is
depth independent but slowly varying in x: U(x, z) = U0(x) and (ii) when it is a linear function of
depth U(x, z) = U0(x) + α(x)z. Here U0 is the water speed at the free surface, and α characterizes
the vorticity of the background flow. It is assumed that the z-axis is directed upward with zero at
the unperturbed water surface. For definiteness, we suppose that U0 > 0, i.e., we assume that the
background flow is co-directed with the axis x. A sketch of the considered flow is shown in Fig. 1.

When the shear velocity is uniform in the horizontal direction but is an arbitrary function of
z, the dispersion relation between the frequency ω and wave number k for waves of infinitesimal
amplitude can be derived in the approximate form based on the Taylor series representation (see,
e.g., Refs. 17, 34, and 37). However, recently it was found16 that in many particular cases the
dispersion relation can be presented in an explicit analytical form. Two simple cases of analytical
representation of the dispersion relation in the closed form are very well known, they are those
which have been mentioned above and shown in Fig. 1, i.e., when the velocity profile is either depth
independent or varies linearly with the depth (in the former case the flow vorticity is zero, whereas
in the latter case the flow vorticity is a constant). These two profiles were chosen for the analysis
of the vorticity influence on the wave-current interaction and comparison of results obtained will be
presented below.

Note that when the fluid velocity vanishes at the bottom (see Fig. 1), then α = U0/h, but in
general α may be an independent parameter, in particular, putting α = 0 we obtain the uniform
current without vorticity. The shear flow vorticity can be controlled in the finite depth fluid with the
help of a movable bottom, for example, using a rubber conveyor.

The dispersion relation for surface gravity waves in the linearly varying current was first
derived by Thompson and Biesel3,40 but has been re-derived in many papers both without and with
the surface tension effect (see, e.g., Refs. 7, 9, 14, 31, 42, and 43). In the latter case it can be
presented in the following explicit form in terms of the dependence of wave frequency ω on the

FIG. 1. Sketch of the fluid flow in the reference coordinate frame associated with the immovable bottom. Line 1 depicts the
velocity with the uniform profile and line 2—the velocity with the linear profile.
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wave number k of infinitesimal perturbations:

ω± = U · k
(
1 − α

2
tanh |k |h

U0|k |
)
+

(
α

2
tanh |k |h

)2
+ (g + σk2) |k | tanh |k |h, (1)

where g is the acceleration due to gravity, σ = γ/ρ is the normalised coefficient of surface tension,
and ρ is the water density. Here we assume that the physical frequency is a positive quantity
ω = 2π/T , where T is the wave period, and the wave number k may be of either sign.

The dispersion relation consists of two branches designated by upper indices plus and minus;
index plus pertains to co-current propagating waves with k > 0, and index minus to counter-current
propagating waves with k < 0. Note that the frequency may formally become negative at certain
conditions for counter-current propagating waves with k < 0. In such cases using the invariance of
the phase speed cp ≡ ω/k under the transformation ω → −ω, k → −k, the negative portion of the
dispersion curve with ω < 0 can be transferred to the domain where ω > 0 and k > 0.

By introducing the normalized variables, κ = kh and ω̃ = ω


h/g, we can present Eq. (1) in the
dimensionless form

ω̃± =
(
Û0 · k̂0

) (Fr |κ | −Ω tanh |κ |) +

(Ω tanh |κ |)2 + (1 + Sκ2) |κ | tanh |κ |, (2)

where Fr = U0/

gh is the Froude number, Ω = αh/(2gh) is the normalised vorticity parameter,

S = σ/
�
gh2� is the parameter which measures the strength of the capillary effect relative to the

gravity effect, and Û0 and k̂0 are the unit vectors in the direction of the flow velocity and wave
number, respectively.

Note that in some cases it may be convenient to introduce the “effective” Froude number
defined such that the flow vorticity Ω is taken into account: FΩ = (Fr −Ω)(1 +Ω2)−1/2. If the
background flow is uniform with depth (Ω = 0), then the effective Froude number reduces to the
conventional Froude number Fr defined above. If the background flow has a linear profile vanishing
at the bottom as shown in Fig. 1 (the constant vorticity flow), then Ω = Fr/2 and FΩ = Fr/


4 + Fr2.

The effect of introducing the new form of the Froude number is especially clear when we consider
the limiting case of gravity waves in shallow water; then dispersion relation (1) reduces to

ω±(k)|k→0 = ±
(
U0 −

αh
2

)
|k | + |k |

(
αh
2

)2

+ gh. (3)

In this case one can introduce the “effective” uniform velocity Ū = U0 − αh/2 and speed of long

waves c̄ =

(αh/2)2 + gh. Then the “effective” Froude number can be defined in the traditional

manner,

FΩ =
Ū
c̄
=

U0 − αh/2
(αh/2)2 + gh

=
Fr −Ω
√

1 +Ω2
. (4)

In what follows, we consider the propagation of a quasi-sinusoidal wavetrain with a fixed fre-
quency assuming that the current velocity and vorticity vary smoothly in the horizontal direction so
that the characteristic scale of current variation L is much greater than the characteristic wavelength
of the wavetrain λ = 2π/|k |. In this case, the frequency of the wave train remains constant, whereas
its wavenumber adiabatically varies in space in accordance with the flow variation. To determine
the character of the spacial variation of the carrier wavenumber we need to present dispersion
equation (2) in terms of κ[ω̃,Fr(x)] assuming that the wave frequency is fixed. Unfortunately, such a
solution cannot be presented in explicit analytical form for a fluid of arbitrary depth; however, it can
be obtained in the limiting cases of deep and shallow water when |κ | ≫ 1 or |κ | ≪ 1, respectively.
Nevertheless, some interesting features of wave motion can be derived even for an arbitrary constant
depth. Below we first discuss propagation of pure gravity waves in a spatially varying shear flow,
and then we take into account the surface tension effect.
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FIG. 2. Schematic illustration of wave blocking phenomenon for pure gravity waves (the plot is not to scale).

A. The wave blocking of gravity waves in a fluid of arbitrary depth

If a wavetrain propagates against a gradually increasing current, the group velocity of the wave-
train c̃g ≡ dω̃/dκ decreases as the wavetrain is decelerated by the current. When the current becomes
so strong that the group velocity vanishes, then the “wave blocking phenomenon” occurs (see, e.g.,
Ref. 27). There is a plethora of papers and books devoted to this phenomenon; it is not possible to
list all of them in this paper; therefore, we refer only to some of them in the text when necessary.

Figure 2 illustrates schematically the blocking phenomenon for pure gravity waves with subse-
quent generation of reflected waves at the blocking point. In the geometry considered here, the
incident wave denoted by number 2 has negative group and phase velocities; it propagates to the left
against the current. All reflected waves have positive group velocities, but their phase velocities are
different. For the first of them, denoted by 2′, the phase velocity is negative, whereas for the other
reflected waves 1 and 2′′, the phase velocities are positive.

It can be shown that the energy of one of the reflected waves is negative, whereas all other
waves possess positive energy. The general concept of negative energy waves (NEWs) has been
discussed in many publications, see, for example, Refs. 2, 6, 15, 22, 25, 26, 31, and 36. The basic
idea of this concept is that the total energy of a medium with the excited wave is less than without
the wave, whereas in the usual case of positive energy waves (PEWs) the total energy of a medium
with the wave is greater than without the wave. In Fig. 2 the positive and negative energy waves are
indicated.

As has been mentioned above, the condition for the wave blocking phenomenon is the van-
ishing of the group speed of a wavetrain. Differentiating dispersion relation (2) (with S = 0)
with respect to κ and setting dω̃/dκ = 0, we obtain the following equation for the blocking of
counter-propagating waves (κ < 0):
�
2Ω2 tanh κ + κ

� �
1 − tanh2 κ

�
+ tanh κ + 2

�
Fr −Ω

�
1 − tanh2 κ

��
Ω2 tanh2 κ + κ tanh κ = 0. (5)

The critical wave number corresponding to the blocking phenomenon follows from this tran-
scendental equation for the given values of Fr and Ω. However, this equation can be readily solved
with respect to Fr; by solving it one finds the critical Froude number Frb for which wavetrains with
carrier wavenumbers κ < κb will be blocked, where κb is the root of Eq. (5),

Frb =
1

cosh2κb


Ω −

2
�
κb + 2Ω2 tanh κb

�
+ sinh 2κb

4


tanh κb (κb +Ω2 tanh κb)

. (6)

This dependence is illustrated by Fig. 3 which shows the blocking wavenumber κb against the
corresponding Froude number Frb at different vorticity parameters Ω. In particular, the horizontal
dashed line shows that the wavetrains with |κb | > 1 can be blocked by the Froude number which is
greater than the value at the intersection with line 1, if Ω = 0, or at the intersection with line 2, if
Ω = 0.5, or at the intersection with line 3 if Ω = 1. Thus, the higher the vorticity, the higher value of
the Froude number is required to block a wavetrain with a certain wavenumber.
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FIG. 3. The dependence of the blocking wavenumber κb against the critical Froude number Frb at different vorticity
parameters Ω. Line 1—Ω= 0, line 2—Ω= 0.5, line 3—Ω= 1.

The corresponding blocking frequency ω̃b(Frb) can be presented in parametric form if one
substitutes Eq. (6) into dispersion equation (2) with S = 0 for counter-current propagating waves,

ω̃b =

(
tanh κb −

κb

cosh2κb

) 
κb + 2Ω2 tanh κb

2


tanh κb (κb +Ω2 tanh κb)
−Ω


. (7)

The relationship between the frequency of the blocked wave and Froude number can be also
presented in terms of the parametric dependence of critical Froude number on the normalized wave
period T̃b ≡ Tb


g/h,

Frb = Fr (κb,Ω), T̃b =
2π

ω̃b(κb,Ω) , (8)

where Eqs. (6) and (7) should be used for Fr (κb,Ω) and ω̃b(κb,Ω). The dependence Frb(T̃b) is
shown in Fig. 4 for the same three values ofΩ as in Fig. 3.

In the limiting cases of deep and shallow water the corresponding dependences can be derived
explicitly (see Subsections II B and II C).

B. Gravity wave blocking in deep water

Within the framework of the deep-water approximation, |κ | ≫ 1, dispersion relation (2) for
κ < 0 can be presented as the following quadratic polynomial in κ:

FIG. 4. The dependence of critical Froude number against the wave period T̃b. Line 1—Ω= 0, line 2—Ω= 0.5, line
3—Ω= 1. Dotted lines pertain to asymptotic dependences for small periods, whereas dashed lines pertain to asymptotic
dependences for large periods.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  58.96.38.218

On: Tue, 01 Mar 2016 23:06:05



032102-6 Maïssa, Rousseaux, and Stepanyants Phys. Fluids 28, 032102 (2016)

Fr2κ2 + [2Fr (ω̃ −Ω) − 1] |κ | + ω̃(ω̃ − 2Ω) = 0. (9)

To normalise the wavenumber one can use instead of water depth h the initial value of the carrier
wave length λ0 chosen at a certain reference point x0.

As already mentioned, the condition for the wave blocking phenomenon is the vanishing of the
group speed of a wavetrain. This corresponds to the situation when the discriminant of quadratic
Eq. (9) is exactly zero, and the two roots of this equation coincide.23,30 Under this condition
dispersion relation (9) can be presented in the factorized form

(κ − κb)2 = 0, where κb = −
1 − 2Frb (ω̃b −Ω)

2Fr2
b

. (10)

The corresponding value of the frequency when the discriminant vanishes is

ω̃b =
1

4Frb
+Ω (1 + FrbΩ) . (11)

Using this equation, one can eliminate ω̃ from the expression for κb in Eq. (10) and present it in
the alternative form:

κb = Ω
2 − 1

4Fr2
b

. (12)

In the absence of vorticity, when Ω = 0, the normalized frequency, ω̃b, as per Eq. (11), mono-
tonically decreases with the Froude number. But when the vorticity parameter is non-zero, the
dependence ω̃b(Frb) formally becomes non-monotonic, attaining a minimum value at Frb = 1/2Ω.
However, the non-monotonic behavior of ω̃b(Frb) is actually just an artefact of the deep-water
approximation (|κ | ≫ 1), which is valid only when Frb ≪ 1.

Dependence (11) can also be presented in the form of a relationship between the critical Froude
number Frb and normalized wave period T̃b similar to Eq. (8), but in the explicit form

T̃b(Fr,Ω) = 8πFrb
(1 + 2ΩFrb)2

. (13)

The inverse dependence Fr(T̃b) is shown in Fig. 4 by dotted lines for the corresponding values ofΩ.
As one can see from this figure, the deep-water approximation is valid in the range of relatively

small wave periods and small Froude numbers. In the limit T̃b → 0 we have a universal linear
dependence Frb = T̃b/(8π) regardless of Ω. The linear dependence between the Froude number and
wave period for very short gravity waves blocked by a uniform current with Ω = 0 has been derived
in Refs. 23 and 30. Here we have found that for the shear flow with a linear profile (constant
vorticity flow) exactly the same linear dependence between these quantities occurs.

C. Gravity wave blocking in shallow water

For the sake of completeness, consider also another limiting case |κ | ≪ 1, κ < 0, which corre-
sponds to the shallow-water approximation. In this case dispersion relation (2) reads

ω̃ ≈ −
(
Ω +
√

1 +Ω2 − Fr
)
κ +

(
Ω +

1 + 2Ω2

2
√

1 +Ω2

)
κ3

3
+ o(κ3). (14)

From the condition of wave blocking, dω̃/dκ = 0 we obtain

κb(Frb,Ω) = −


2
√

1 +Ω2
(
Ω +
√

1 +Ω2 − Frb
)

Ω +
√

1 +Ω2
, (15)

ω̃b(Frb,Ω) = −2
3
κb(Frb,Ω)

Ω
�
3 + 4Ω2� +

�
1 + 4Ω2�√1 +Ω2 −

(
Ω +
√

1 +Ω2
)2

Frb(
Ω +
√

1 +Ω2
)2 . (16)
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In the particular case of a uniform flow,Ω = 0, these expressions reduce to

κb(Frb,0) = −


2(1 − Frb), ω̃b(Frb,0) = 2
√

2
3

(1 − Frb)3/2. (17)

The dependence ω̃b(Frb,Ω) can also be presented in the form of a relationship between the
critical Froude number and the dimensionless period T̃b of the blocked wave,

T̃b(Frb,Ω) = 3π
√

2
2

Ω +
√

1 +Ω2

(1 +Ω2)1/4
(
Ω +
√

1 +Ω2 − Frb
)3/2 and T̃b(Frb,0) = 3π

√
2

2(1 − Frb)3/2 . (18)

These dependences are shown in Fig. 4 by dashed lines for large values of T̃b, as they are only
asymptotically valid at very large wave periods (i.e., at small wave numbers |κ | ≪ 1).

It is clearly seen from Eq. (18) that when Frb → Fr∞ ≡ Ω +
√

1 +Ω2, then the wave period goes
to infinity, and when the Froude number exceeds Fr∞, then waves of any period are blocked, i.e., they
cannot propagate over the blocking point. The critical Froude number is equal to one for the uniform
current and increases with the vorticity parameter Ω. Physically this is quite understandable. Indeed,
the wave motion induced by a surface wave decays with the depth (see, e.g., Ref. 19). The charac-
teristic scale of decay depends on the wavelength, which, in turn, depends through the dispersion
relation on the wave period. The larger the period, the larger the characteristic vertical scale of the
wave motion. WhenΩ , 0, the current velocity linearly decreases with the water depth; therefore, its
influence on the wave gradually decreases and vanishes at the bottom. On the other hand, when the
flow vorticity is zero, Ω = 0, then the current uniformly affects a wave at any depth.

III. THE INFLUENCE OF SURFACE TENSION ON THE BLOCKING PHENOMENON

Surface tension drastically affects the blocking phenomenon in the range of relatively short
gravity-capillary waves. To demonstrate this we return to dispersion relation (2). Short-period
waves are usually associated with the deep-water approximation |κ | ≫ 1 which allows one to
replace tanh |κ | by 1 in Eq. (2). The deep-water approximation is used below where possible to
simplify the analytical treatment, but the exact formulae are used when the deep-water approxima-
tion fails.

The plots of dispersion relation (2) for the counter-current propagating waves ω̃−(κ) are shown
in Fig. 5 for several values of Froude number and fixed parameters Ω = 0 and S = 7.4 × 10−6. This
choice of parameters corresponds to uniform water flow in a reservoir of 1 m depth with surface
tension γ = 0.073 N/m. The plots remain qualitatively the same for Ω , 0 and only slightly change
quantitatively.

FIG. 5. Dimensionless frequency of upstream and downstream (line 0) propagating waves as a function of the dimensionless
wavenumber as per Eq. (2) with Ω= 0 and S = 7.4×10−6. Lines 0 and 1 pertain to Fr= 5.67×10−2, line 2—Fr= 7.0×10−2,
line 3—Fr=FrNEW ≡

4√4S, lines 4, 4′, and 4′′ pertain to Fr= 7.75×10−2.
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A. A condition for wave blocking

When the Froude number is zero or sufficiently small, the dispersion curve is monotonic as
shown by line 1 in the figure. As long as the dispersion curve is monotonic, there are no blocked
waves in the flow; they appear when the group speed turns to zero, c̃g ≡ dω̃−/dκ = 0, i.e., when
an inflection point appears on the curve ω̃− (as Fr increases further, the inflection point splits into
two extrema — one local maximum and one local minimum). This occurs when the Froude number
exceeds a certain critical value Frin(Ω,S) which can be found in the deep-water approximation from
the equation

Fr8
in + 18 S Fr4

in + 108 S2
Ω

2Fr2
in − 27 S2 = 0. (19)

When the minimal Froude number is determined from Eq. (19) for the given parameters Ω and S,
then the critical wave number and frequency which give birth to two extrema in the dispersion curve
ω̃−(κ) can be found from the following formulae:

κin(Ω,S) = −Fr2
in

3S
, ω̃in(Ω,S) = 1

6S Frcr

(
3S − Fr4

in +


9S2 − 6SFr4

in − Fr8
in/3

)
. (20)

In the case of a uniform flow,Ω = 0, all critical parameters can be written explicitly,

Frin(0,S) = 4


3S
(
2
√

3 − 3
)
, κin(0,S) = −


2
√

3 − 3
3S

, ω̃in(0,S) =
4

 (
2
√

3 − 3
)3

27S
. (21)

These non-dimensional quantities can be presented in the dimensional form for the velocity,
wave number, and frequency, respectively (cf. Ref. 30),

Uc =

√
3(

3 + 2
√

3
) 1

4


g

K
, kc =

K(
3 + 2

√
3
) 1

2
, ωc =

2π
Tc
=

√
gK(

3 + 2
√

3
) 3

4
, (22)

where K =

g/σ.

The critical Froude number monotonically increases with S, whereas the critical wave number
and frequency decrease with S. The analysis of Eqs. (19) and (20) shows that the dependences of
Frin and κin on Ω are very weak, at least for the realistically small values of the parameter S ∼ 10−5,
whereas its influence on ω̃in is small, but noticeable. In the case of clean water, the largest value of
the parameter S = 10−2 can be attained for the fluid depth h ≈ 2.7 cm. (Note that in a deep basin
with a near-surface current a gradient of the linear shear flow may be much stronger than U0/h; then
the influence of the parameterΩmay be quite noticeable.)

The typical form of the dispersion curve for Fr > Frin is shown by line 2 in Fig. 5. The local
maximum on the curve corresponds to the first blocking point, when the incoming wave train stops
and turns back with continuously increasing wave number.33,41 The higher the current speed (the
higher the Froude number), the smaller the frequency of the blocked wave train.

The local minimum on the dispersion curve corresponds to the second blocking point, when
the wave train reflected from the first blocking point travels downstream, reflects again at a certain
point and propagates upstream. Below we discuss qualitatively these transformations in more detail.
Some aspects of wave transformation at the blocking points have been studied experimentally,1,28

analytically and numerically in Ref. 41.
Let us assume that a wavetrain (the incident gravity wave) of carrier frequency ω̃0 (depicted

by dashed line in Fig. 5) propagates against a sufficiently strong current capable of blocking the
wavetrain at some point. If initially the wavetrain is propagating in the region where the dispersion
curve is monotonic, like line 1 in Fig. 5, it eventually attains the point where the dispersion curve
has a maximum (see the transition from line 1 to line 2 along the horizontal dashed line in Fig. 5).
Then it stops (because its group velocity at the maximum of the dispersion curve vanishes) and
transfers into other waves which propagate away from the blocking point. Two of these waves are
reflected. One of them is a gravity-capillary wave on the same branch of the dispersion curve ω̃−(κ),
but on the other side of the maximum of dispersion curve; its wave number is greater in absolute
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FIG. 6. Schematic illustration of one of the scenarios of blocking phenomenon for gravity-capillary waves. The incident
wave gives rise to two reflected waves and one transmitted wave.

value than the wave number of the incident wave. When this wave propagates with the stream, its
wave number increases in absolute value. The group velocity of this wave is positive and the energy
flux is co-directed with the current, whereas its phase velocity remains negative.

Another reflected gravity wave is the co-current propagating wave, which lies on the dispersion
curve ω̃+(κ) (see line 0 in Fig. 5 where it intersects with the dashed line). This wave propagates to
the right having positive group and phase velocities with gradually increasing wave number.

In addition to this, there is a pure capillary transmitted wave generated at the blocking point on
the dispersion curve ω̃−(κ). This wave propagates against the current with increasing wave number
(in absolute value) and having negative group and phase velocities.

This transformation is schematically shown in Fig. 6. All waves are of positive energy and of
the same frequency ω̃0.

B. Secondary wave blocking

The gravity wave ω̃+(κ) and capillary wave ω̃−(κ) propagate to plus and minus infinity, respec-
tively, without further reflections, whereas the fate of the reflected gravity-capillary wave ω̃−(κ) is
more complicated. When it propagates downstream, it experiences gradual change of its wavenum-
ber because the dispersion curve also adiabatically changes such that its local minimum eventually
attains the value ω̃0. At this moment the second blocking point arises. Now this gravity-capillary
wave becomes the incident wave ω̃−(κ) giving rise to two reflected waves (one of them is condition-
ally a gravity wave ω̃−(κ) and the other is a capillary wave ω̃−(κ)) and one transmitted gravity wave
ω̃+(κ) as illustrated by Fig. 7.

The gravity wave ω̃+(κ) and capillary wave ω̃−(κ) propagate again to plus and minus infinity,
respectively, without further reflections, whereas the other gravity wave ω̃−(κ) propagates against
the stream and experiences the same transformation as already described and illustrated in Fig. 6.
Then, the process of transformation of gravity-capillary and pure gravity waves on the dispersion
curve ω̃−(κ) repeats many times.

FIG. 7. Secondary transformation of reflected gravity-capillary wave ω̃−(κ) shown in the previous figure.
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Thus, in the considered case we deal with a specific kind of resonator for the wavetrain locked
in between two spatially separated blocking points 1 and 2. The wavetrain experiences energy loses
through the leaking boundaries of the resonator at each reflection.

C. Negative energy waves

When the Froude number further increases and exceeds a certain critical value

Frc(κm,Ω,S) =
(

1 + Sκ2
m +Ω

2 tanh |κm|
|κm|

)
tanh |κm|
|κm| , (23)

then the wave frequency at the minimum becomes less than ω̃−c = Ω tanh |κm|. As has been shown
in our paper,31 in this case negative energy waves (NEWs) appear in the system. The expressions
for km and Frc cannot generally be presented in analytic form, but in the deep-water approximation
the corresponding expressions will be given below. Notice that in the presence of vorticity NEWs
appear even at positive frequencies ω̃− < ω̃−c , whereas in the uniform flow with Ω = 0 the condition
for the appearing NEWs is ω̃− < 0 (cf. Refs. 35 and 36).

If the surface tension is neglected, then NEWs exist in the flow for any Fr > 0 in the range
of wavenumbers −∞ < κ < κc, where κc is the root of the transcendental equation for the given
parametersΩ and Fr,

tanh |κc |
|κc | =


1 + 4Ω2Fr2 − 1

2Ω2 . (24)

As follows from this formula, surface waves of any wavenumber become NEWs when Fr >√
1 +Ω2. In deep-water approximation Eq. (24) gives

κc = −


1 + 4Ω2Fr2 + 1
2Fr2 . (25)

When the surface tension is taken into account, then NEWs appear only when the Froude num-
ber is greater than the critical value as per Eq. (23) and they exist only in a finite range of wavenum-
bers. As mentioned above, the minimum value of critical Froude number (23) can be found in
analytic form in the deep-water approximation; the corresponding wavenumber in this case is

κm = −
1
S

3


S2Ω2Km −
1

3
3


S2Ω2Km

, (26)

where Km = 1 +


1 − (27SΩ4)−1, and the minimal Froude number is

Frc =

3


SΩ
√

Km

1 + 3 3


SΩ4K2
m


6 + 9 3SΩ4Km

(
2 3Km + 3

3√
SΩ4

)
. (27)

In the case of a uniform flow (Ω = 0) we obtain κm = 1/
√

S, Frc =
4√4S. (These quantities

in the dimensional form correspond, respectively, to the wave number kgσ =

g/σ and velocity

Ugσ =
4


4gσ obtained in Ref. 30 in the asymptotic limit when the wave period T → ∞ (ω → 0).)
It is remarkable that the threshold value of ω̃−c when NEWs appear at Frc is independent of S and
simply equal toΩ: ω̃−c(κm) = Ω.

The details of direct calculations of wave energy for surface waves on a shear flow with a
constant vorticity can be found in our paper.31

At even greater Froude numbers, Fr > Frc, the frequency ω̃− in Eq. (2) formally becomes nega-
tive (see line 4 with the dashed portion 4′ in Fig. 5). From the kinematic point of view, waves with
negative frequencies and negative wavenumbers are equivalent to waves with positive frequencies
and positive wave numbers (see line 4′′ in Fig. 5) as they have the same phase velocities.

Further increase of the Froude number leads to the decrease of the primary frequency maximum
associated with PEWs (see line 4 in Fig. 5) and increase of the secondary frequency maximum
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associated with NEWs (see line 4′′ in Fig. 5). At a certain value of Froude number Freq, the two fre-
quency maxima for PEWs propagating upstream and NEWs propagating downstream become equal
(this situation corresponds to the velocity Ub introduced in Ref. 30). At greater Froude numbers, the
local maximum on the dispersion curve 4′′ for NEWs becomes even greater than the local maximum
of dispersion curve 4 for PEWs.

D. The relationship between the wave period and Froude number at the blocking points

The relationship between the wave frequencies at the blocking points ω̃−
b

(i.e., at the maximum
and minimum of the dispersion curve ω̃−—see, e.g., line 2 in Fig. 5) and the Froude number Frb can be
presented in parametric form. In the deep-water approximation the formulae read (recall that κ < 0)

ω̃−b(κ,Ω,S) =
|κ | �1 − Sκ2� + 2Ω

(
Ω +

 |κ | (1 + Sκ2) +Ω2
)

2
 |κ | (1 + Sκ2) +Ω2

, (28)

Frb(κ,Ω,S) = 1 + 3Sκ2

2
 |κ | (1 + Sκ2) +Ω2

. (29)

As has been mentioned above, when ω̃−
b

becomes negative in Eq. (28), we can change the sign
of both ω̃−

b
and κ, then we obtain the NEWs branch of ω̃b(κ) with positive κ (i.e., we undertake a

jump from line 4′ to line 4′′ in Fig. 5).
In the case of a uniform flow these formulae simplify and reduce to (cf. Ref. 29)

ω̃−b(κ,0,S) =
 |κ |

2
1 − Sκ2

√
1 + Sκ2

, Frb(κ,0,S) = 1 + 3Sκ2

2
 |κ | (1 + Sκ2) . (30)

In another limiting case, when the surface tension is neglected (S = 0), Eqs. (28) and (29)
reduce to Eq. (11).

The relationship between ω̃−
b

and Frb can also be presented in terms of parametric dependence
of the critical Froude number on the normalized wave period Frb

�
T̃b

�
, where T̃b = Tb


g/h. This

dependence is plotted in Fig. 8(a) for Ω = 0 and in Fig. 8(b) for Ω = 1 (a similar dependence is
given by Eq. (8) for the case when the surface tension is neglected; it is presented in Fig. 4).

Dotted lines 1 in these figures pertain to the case of pure gravity waves without surface ten-
sion; they are the same as shown in Fig. 4 for the corresponding values of Ω. Lines 2 depict the
dependence of the critical Froude number on the wave period for the first blocking point, which
corresponds to the maximum of PEWs on the dispersion curve (see the maxima on the curves in
the left half-plane of Fig. 5). These lines asymptotically approach the corresponding dotted lines 1
when the period increases and the influence of the surface tension diminishes.

Lines 2′ depict the dependence of the critical Froude number on the wave period for the sec-
ond blocking point which corresponds to the minimum of PEWs on the dispersion curve (see the
minima on the curves in the left half-plane of Fig. 5).

Lines 2′′ depict the dependence of the critical Froude number on the wave period for the third
blocking point which corresponds to the maximum of NEWs on the dispersion curve (see, e.g., the
maximum on curve 4′′ in the right half-plane of Fig. 5).

Dashed horizontal lines 3 indicates the critical Froude number as per Eq. (21) in the case ofΩ = 0
or per Eqs. (19) and (20) in general; below these lines the blocking phenomenon is impossible in the
presence of surface tension. And dashed vertical lines 4 indicate the corresponding critical value of
the wave period; waves with shorter periods cannot be blocked at any Froude number.

Dashed horizontal lines 3′ indicate the Froude number at which the frequency of the blocked
wave ω̃−

b
vanishes (see Eq. (28) for the deep water case). In the case Ω = 0 the corresponding

value of the Froude number Frc is given after Eq. (27). When Ω , 0, the asymptotic value of the
Froude number cannot be presented by a simple formula in general, but its approximate value can
be estimated for smallΩ: Frb ≈

4√4S
�
1 +Ω 4√S/4

�
. In the dimensional variables this gives

Ugσα ≈ Ugσ

(
1 +

α

2
√

2
4


σ

g3

)
.
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FIG. 8. The critical Froude number against the normalised wave period T̃b for gravity-capillary surface waves with
S= 7.4×10−3. Frame (a) pertains to Ω= 0, and frame (b)—to Ω= 1.

E. A specific case of wave blocking

Consider now wave transformation at the blocking point when the frequency ω0 of the counter-
current propagating wavetrain is such that at the blocking point the local maximum of the dispersion
curve in the left half-plane of Fig. 5 is lower than the local maximum of the dispersion curve in the
right half-plane of that figure. This situation is depicted in Fig. 9(a).

The counter-current propagating gravity wave with a relatively small wave number in absolute
value (see dot on line 1 in Fig. 9(b)) gradually changes so that its wave number increases in absolute
value (see dots on lines 2 and 30 in Fig. 9(b)). When the wave train attains the position where the
dispersion curve has a maximum at ω̃ = ω̃0 (see lines 30 and 3a), it experiences a transformation
into the other modes. The reflected gravity-capillary wave arises on the dispersion curve 3a close
to the maximum of the curve, but on the left. This is a wave of positive energy having positive
group velocity (its energy flux directed to the right), but negative phase velocity. In the course of
propagation, its wave number increases in absolute value.

In addition to that, four other waves arise at the blocking point. One of these is a transmitted
capillary wave (see the very left dot on line 3b in Fig. 9(a)). This is a wave of positive energy having
negative group and phase velocities. In the course of propagation, its wave number increases in
absolute value. Another is the reflected gravity wave (see dot on line 0 in Fig. 9(b)). This is also
a wave of a positive energy having positive group and phase velocities. Its wave number increases
during the course of propagation as the dispersion curve 0 inclines to the right with decreasing
Froude number.

Two other waves arising at the blocking point are negative energy waves; they are shown in
Fig. 9(a) by dots on lines 3′′a and 3′′b. They have positive phase velocities, but their group velocities
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FIG. 9. The dispersion relation as per Eq. (2) with Ω= 0 and S= 7.4×10−6. Lines 0 and 1 pertain to co- and counter-
current propagating waves, respectively, when Fr= 5.67×10−2, line 2 pertains to counter-current propagating waves when
Fr= 6.67×10−2, line 30 pertains to counter-current propagating waves, line 3a to co-current propagating waves when
Fr= 8.5×10−2. Panel (b) shows the magnified fragment of panel (a). Horizontal dashed line 4 depicts the frequency ω̃0
of the initial wavetrain travelling against the current. Lines 3′′a and 3′′b are counterparts of lines 3′a and 3′b, respectively, for
positive frequencies and wavenumbers.

are opposite. The wave on the dispersion branch 3′′a has positive group velocity, and its wave num-
ber increases in the course of propagation as the local maximum of the dispersion curve decreases
in the direction of the current. And the wave on the dispersion branch 3′′b has negative group
velocity, and its wave number increases too in the course of propagation as the local maximum of
the dispersion curve increases when the wave propagates against the current.

Two of these four reflected waves can experience the secondary transformation at other block-
ing points. Consider first the reflected gravity-capillary wave on the dispersion branch 3a. When it
propagates downstream, the dispersion curve gradually rises up and eventually it becomes similar
to curve 2 shown in Fig. 9(a). The blocking point occurs where the minimum of the dispersion
line becomes equal to the wave frequency ω̃0. Two reflected waves arise at this point. One is a
capillary wave on the dispersion branch 3b and the other is a gravity wave on branch 30 shown
in Fig. 9(b); both are PEWs propagating to the left with negative group and phase velocities. A
transmitted gravity wave also arises on the dispersion branch 0. This wave propagates to the right
having positive energy and positive group and phase velocities. Finally, two NEWs arise on the
dispersion branches 3′′a and 3′′b.

One of the two NEWs, namely, the wave on the dispersion branch 3′′a can also experience
a secondary blocking when the maximum of the dispersion curve becomes equal to the wave fre-
quency ω̃0. Again the variety of waves appear due to transformation of the wave arriving at the
blocking point. We will not describe them in detail any more, but we only notice that the details of
the wave transformation have not been studied thus far. This remains a challenging and interesting
problem, especially when NEWs participate in the transformation. One may expect the onset of
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wave instabilities due to linkage between the positive and negative energy waves at the blocking
point (see, e.g., Refs. 35 and 36). In this paper we only present a qualitative description of possible
effects associated with wave blocking in the presence of surface tension when NEWs may appear. A
complete description of wave transformation requires further development including accounting for
nonlinear effects; this is, however, beyond the scope of the present work.

IV. THE BLOCKING PHENOMENON OF PURE CAPILLARY WAVES ON A SHEAR
CURRENT WITH CONSTANT VORTICITY

It is of interest to study the peculiarities of the blocking phenomenon for pure capillary waves.
Such a situation may arise when the gravity effect is negligible, e.g., in the state of weightlessness,
or when the effect of surface tension is made artificially very strong in comparison with the gravity
effect. Considering such a case, we put g = 0 in Eq. (1) and using now another normalisation for
the frequency ω̃ = ω


ρh3/σ, but the same normalisation for the wave number κ = kh as before, we

present the dispersion relation in dimensionless form

ω̃±(κ) = (
Û0 · k̂0

) (Fs|κ | −Ωs tanh |κ |) +

(Ωs tanh |κ |)2 + |κ |3 tanh |κ |, (31)

where Fs = U0
√

hσ is the capillary analog of the Froude number, and Ωs = (αh/2)√h/σ is the
parameter characterising the vorticity of the background flow. Dispersion curves are shown in
Fig. 10 for different values of the Froude number and vorticity parameter. Notice that the vorticity
parameter can be presented in the form Ωs = (h/lα)3/2, where lα =

34σ/ρα2 is the characteristic
length scale associated with the vorticity and surface tension.

FIG. 10. Dispersion curves as per Eq. (31). In frame (a) lines 1 and 2 pertain to the case when Fs=Ωs = 0; lines 3, 4, 4′, and
4′′ pertain to the case when Fs= 0.5 and Ωs = 0; lines 5 and 6 pertain to the case when Fs= 0.5 and Ωs =Fs/2. In frame (b)
Ωs = 1 >Ωcr ; line 1 pertains to Fs= 1.8, line 2—to Fs= 1.91; lines 3, 3′, and 3′′—to Fs= 1.95; and lines 4, 4′, and 4′′—to
Fs= 2. The dispersion branches corresponding to the co-current propagating waves are similar to lines 1, 3, and 5 in frame
(a) and are not shown here.
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Without a current, the two branches of the dispersion curve, ω̃+ and ω̃−, are symmetrical with
respect to the vertical axis as shown in Fig. 10(a) (see lines 1 and 2). In the presence of a non-vortical
current (Ωs = 0) they become non-symmetrical. Line 1 in Fig. 10(a) transfers to line 3, and line 2
splits into lines 4 and 4′′, where line 4′′ is the reflection of line 4′; it corresponds to NEWs.

In such a flow the counter-current propagating waves do not experience a blocking. The block-
ing phenomenon can occur only for co-current propagating NEWs that correspond to the portion
of the dispersion curve 4′′ which is to the left of the maximum (see, e.g., the star on line 4′′).
These waves have positive group velocities and travel in the direction where the background current
gradually decreases. Therefore the maximum of the dispersion curve 4′′ diminishes, the carrier
wavenumber slightly increases, and the wave blocking phenomenon eventually occurs at some
point. At this point one positive energy wave (the transmitted wave) appears on branch 3 and two
reflected waves appear, one on branch 4 (PEW) and another on branch 4′′ (NEW) (see dot on the
right of the maximum). Both of these waves have negative group velocity; therefore, they propagate
against the flow with gradually increasing wavenumbers.

In the presence of relatively small vorticity (Ωs < Fs/2) the qualitative character of the disper-
sion relation remains the same as described above, but the positions of minima (like in line 4′)
and maxima (like in line 4′′) shift closer to zero. When the vorticity parameter Ωs becomes equal
to Fs/2, then the minimum and maximum completely disappear (see lines 5 and 6 in Fig. 10(a)),
and the blocking phenomenon becomes impossible. Therefore, we can conclude that the effect of
vorticity prevents the blocking phenomenon. This remains true for even higher values of vorticity
until it reaches some critical value Ωcr; after that the character of the dispersion curve changes
qualitatively, as shown in Fig. 10(b) (see lines 4).

The critical value of the vorticity can be found explicitly in the long-wave approximation
(|κ | ≪ 1), when the dispersion relation for ω̃− reads

ω̃− ≈ (2Ωs − Fs)κ + 3 − 4Ω2
s

6Ωs
κ3. (32)

Finding then the extrema, we obtain after differentiation with respect to κ,

κc(Fs,Ωs) = −


2Ωs(Fs − 2Ωs)
3 − 4Ω2

s

, ω̃−c(Fs,Ωs) = 2
3
(Fs − 2Ωs)


2Ωs(Fs − 2Ωs)

3 − 4Ω2
s

, (33)

where κc and ω̃−c are the wavenumber and frequency, respectively, at the critical point.
From these formulae one can see that the critical value of Ωs in the long-wave approximation is

Ωcr =
√

3/2. In general, beyond the long-wave approximation, the critical value of Ωs can be found
from a transcendental equation which is not presented here. For Ωs > Ωcr the dispersion curves are
shown in Fig. 10(b); they are qualitatively similar to what is shown in Fig. 9.

It is interesting to note that, for a shear flow with constant vorticity, NEWs can appear even in
the absence of the blocking phenomenon when the dispersion curve is monotonic. As follows from
the analysis presented in our paper,31 the condition for existence of NEWs in the case when there is
no gravity reads

Fs > Ωs
tanh |κ |
|κ | +

κ2 tanh |κ |
(Ωs tanh |κ |)2 + |κ |3 tanh |κ |

. (34)

The frequency of the zero-energy wave is

ω̃0 =
(Ωs tanh |κ |)2

(Ωs tanh |κ |)2 + |κ |3 tanh |κ |
, (35)

where for given Fs and Ωs, κ should be determined from the solution of Eq. (34) with the two sides
set equal.

The condition for the blocking phenomenon can be readily derived from Eq. (31) using the condi-
tion c̃g ≡ dω̃2/dκ = 0. The dependence of the wave frequency ω̃− at the blocking point on the modified
Froude number, ω̃b(Fsb), can be presented in parametric form. When Ωs = 0 the formulae read
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ω̃b(κ,0) = |κ |
2


|κ |

tanh |κ |
�
tanh |κ | + |κ | �1 − tanh2 κ

��
, (36)

Fsb(κ,0) = 1
2


|κ |

tanh |κ |
�
3 tanh |κ | + |κ | �1 − tanh2 κ

��
. (37)

In the general case, whenΩs , 0, the formulae are more complicated,

ω̃b(κ,Ωs) =
�|κ | − tanh |κ | − |κ | tanh2 |κ |� �|κ |3 + 2Ω2

s tanh |κ |� + 2|κ |3 tanh |κ |
2


tanh |κ | �|κ |3 +Ω2
s tanh |κ |�

+

Ωs

�|κ | − tanh |κ | − |κ | tanh2 |κ |� , (38)

Fsb(κ,Ωs) =
�
2Ω2

s tanh |κ | + |κ |3� �1 − tanh2 |κ |� + 3κ2 tanh |κ |
2


tanh |κ | �|κ |3 +Ω2
s tanh |κ |�

+Ωs

�
1 − tanh2 |κ |� . (39)

The relationship between ω̃−
b

and Fsb can be presented in terms of the parametric dependence
of the critical Froude number on the normalized wave period Fsb

�
T̃b

�
, where T̃b = Tb


σ/h3. This

dependence is plotted in Fig. 11(a) for three values ofΩs = 0,0.5, and 1 (cf. Fig. 8).
Line 1 in this figure pertains to the case of surface capillary waves on a uniform flow with

zero vorticity Ωs = 0. Line 2 pertains to the case of surface capillary waves on a shear flow with
constant vorticity, less than the critical value Ωs = 0.5 < Ωcr . Lines 3, 3′, and 3′′ pertain to the
case of surface capillary waves on a shear flow with constant vorticity, greater than the critical

FIG. 11. The critical Froude number against the normalised wave period T̃b for capillary surface waves on a linear shear
flow. In frame (a) line 1 pertains to Ω= 0, line 2 pertains to Ω= 0.5, and lines 3, 3′, and 3′′ pertain to Ωs = 1 >Ωcr . Frame
(b) represents a magnified fragment of frame (a) where one can clearly see lines 3, 3′, and 3′′ which pertain to Ωs = 1. Line 4
in this frame shows the asymptotic value of the Froude number when T̃b(κ,Ωs)→ ∞.
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value Ωs = 1 > Ωcr . Branch 3 describes the dependence of the critical Froude number on the wave
period for the first blocking point, which corresponds to the maximum of PEWs on the dispersion
curve (see the maximum on curve 2 in Fig. 10(b)). This line asymptotically approaches 2Ωs when
T̃b → ∞.

Line 3′ depicts the dependence of the critical Froude number on the wave period for the sec-
ond blocking point which corresponds to the minimum of PEWs on the dispersion curve (see the
minimum on curve 2 in Fig. 10(b)). This line asymptotically approaches (when T̃b → ∞) dashed
horizontal line 4, where Fsb = 2 3√

Ωs. In the dimensional variables the dependence between Fsb and
Ωs reads Uασ =

3√4ασ.
Line 3′′ depicts the dependence of the critical Froude number on the wave period for the

third blocking point which corresponds to the maximum of NEWs on the dispersion curve (see the
maximum on curve 3′′ in Fig. 10).

Thus, we can see again that the effect of vorticity on surface capillary waves, to a certain extent,
is similar to the effect of gravity on gravity-capillary waves with the vorticity playing the role of an
effective gravity field. This is reflected in the qualitative similarity between Figs. 8 and 11.

V. CONCLUSION

In this paper, on the basis of the analysis of dispersion properties of surface waves, we studied
the peculiarities of the blocking phenomenon in a shear flow gradually varying in a horizontal
direction. The flow can be uniform with depth or linearly varying. In the former case, gravity waves
of any period can be blocked at a certain critical speed of the current, whereas in the latter case, the
higher the wave period, the higher surface speed is required to block the wave.

When the surface tension is taken into account, the problem becomes more complicated as
gravity-capillary waves may experience multiple reflections at separate blocking points. Such a
phenomenon has been experimentally observed and confirmed in numerical study.1,28,41 Here we
have calculated the relationships between the wave periods and Froude numbers at the blocking
points and described in detail the kinematics of the blocking phenomenon.

We have also considered (for the first time) the specific case of a blocking phenomenon which
can occur in the absence of gravity. It has been shown that in this case the effect of vorticity on sur-
face capillary waves is similar to the effect of gravity on gravity-capillary waves. The corresponding
diagrams presented in Figs. 8 and 11 look very similar to each other.

The results obtained provide good insight into the problem and may allow us to develop a
nonlinear theory of the wave blocking phenomenon, as well as to validate the predicted effects in
experiments and/or in numerical modelling.
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