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ABSTRACT

We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from
three independent campaigns. The planets move on nearly circular orbits with semimajor axes ab =
1.60 0.02 AU and a 2.24 0.05c =  AU, and have minimum masses (m sin i) of M 1.96 0.12b =  MJup and
M 1.76 0.18c =  MJup. Detailed N-body dynamical simulations show that the two planets have remained on
stable orbits for more than 106 years for low eccentricities and are most likely trapped in a mutual 3:5 mean motion
resonance.

Key words: planetary systems – stars: individual (HD 33844) – techniques: radial velocities

1. INTRODUCTION

Surveys for planets orbiting evolved stars more massive than
the Sun are well into their second decade. The longest-running
surveys (e.g., Sato et al. 2005; Reffert et al. 2015) have been
monitoring several hundred such stars for ∼15 years. The
combined efforts of these and other surveys have amassed
enough data to begin making quantitative statements about the
frequency and detailed properties of planetary systems beyond
solar-type main-sequence stars.

An early prediction from formation models proposed that
higher-mass stars should host higher-mass planets (Ida &
Lin 2005), a prediction that is being borne out by observation
(Bowler et al. 2010). Giant planet frequency has also been
shown to increase with host star mass (Fischer & Valenti 2005;
Bowler et al. 2010; Johnson et al. 2010), though with a drop-off
for hosts with M 2.5 3.0* > - M (Omiya et al. 2009;
Kunitomo et al. 2011; Reffert et al. 2015). Kretke et al. (2009)
proposed a mechanism to explain the efficient formation of gas
giant planets at orbital distances a  1 AU. For intermediate-
mass stars, the inner edge of the magneto-rotational instability
(MRI) dead zone lies far enough from the star to permit cores to
accrete gas rapidly and produce gas giants at a higher rate than
for solar-mass stars. An interesting consequence of their
models is that the frequency of giant planets would have little
dependence on stellar metallicity, in contrast to the well-known
planet-metallicity correlation for dwarf stars (Fischer &
Valenti 2005). However, recent results from Reffert et al.
(2015) with a sufficiently large and self-consistent sample of

intermediate-mass stars and their planets in hand, show that
planet occurrence remains positively correlated with metallicity
for these stars.
The Pan-Pacific Planet Search (PPPS—Wittenmyer et al.

2011a) was a radial velocity survey of 170 southern giant stars
using the 3.9 m Anglo-Australian Telescope (AAT) and its
UCLES high-resolution spectrograph (Diego et al. 1990). It
was originally conceived of as a southern hemisphere extension
of the Lick and Keck Observatory survey for planets orbiting
northern “retired A stars” (Johnson et al. 2006). The targets
were selected to be redder ( B V1.0 1.2( )< - < ) than the
northern hemisphere sample to select for more metal-rich stars
(Girardi et al. 2002). The PPPS operated from 2009 to 2014;
papers detailing the spectroscopic stellar parameters and new
planet detections are now in preparation (Wittenmyer et al.
2015b, 2016). This paper is organized as follows: Section 2
details the AAT and Keck observations of HD 33844 and gives
the stellar parameters. Section 3 describes the orbit-fitting
procedures and gives the parameters of the two planets in the
HD 33844 system. In Section 4 we discuss the evidence for a
planetary interpretation of the observed radial velocity varia-
tions, including dynamical stability simulations. We give our
conclusions in Section 5.

2. OBSERVATIONS AND STELLAR PROPERTIES

HD 33844 is common to the AAT, Keck, and FEROS
evolved-star surveys. Precision Doppler measurements for the
PPPS are obtained with the UCLES echelle spectrograph at the
AAT. The observing procedure is identical to that used by the
long-running Anglo-Australian Planet Search (e.g., Butler et al.
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2001; Tinney et al. 2001; Jones et al. 2010; Wittenmyer et al.
2012c); a 1 arcsec slit delivers a resolving power of R ~
45,000. Calibration of the spectrograph point-spread function is
achieved using an iodine absorption cell temperature-controlled
at 60.0±0.1oC. The iodine cell superimposes a forest of
narrow absorption lines from 5000 to 6200Å, allowing
simultaneous calibration of instrumental drifts as well as a
precise wavelength reference (Valenti et al. 1995; Butler
et al. 1996).

We have obtained 20 AAT observations of HD 33844 since
2009 February 4 and an iodine-free template spectrum was
obtained on 2011 January 19. With V=7.29, exposure times
are typically 900–1200 s with a resulting S/N of ∼100–200 per
pixel each epoch. The data given in Table 1 span a total of 1880
days (5.5 years) and have a mean internal velocity uncertainty
of 2.1 m s−1.

HD 33844 was also observed with the High Resolution
Echelle Spectrometer (HIRES) on the 10 m Keck I telescope. A
total of 36 epochs have been obtained spanning 2190 days
(6 years). Radial velocities were computed using the iodine cell
method as described above; the data are given in Table 2 and
have a mean internal uncertainty of 1.3 m s−1.

We also include 11 radial velocity observations from the
FEROS spectrograph (Kaufer et al. 1999) on the 2.2 m
telescope at La Silla Observatory. Those data are part of the
EXPRESS (EXoPlanets aRound Evolved StarS) survey (Jones
et al. 2011, 2015) for planets orbiting evolved stars. The PPPS
and EXPRESS surveys have 37 targets in common; further
papers are in preparation detailing joint planet discoveries made
possible by the combination of the two data sets. The FEROS
data for HD 33844 are given in Table 3; they cover a span of
1108 days and have a mean internal uncertainty of 3.9 m s−1.
The typical observing time was 250 s, leading to a S/N of 200
per pixel. The spectra were reduced using a flexible pipeline for
echelle spectra (Jordan et al. 2014; R. Brahm et al. 2015, in
preparation). The radial velocities were computed using the
simultaneous calibration technique according to the method
described in Jones et al. (2013) and Jones & Jenkins (2014).

2.1. Stellar Properties

We have used our iodine-free template spectrum (R ~
60,000, S/N∼200) to derive spectroscopic stellar parameters.
In brief, the iron abundance [Fe/H] was determined from the
equivalent widths of 32 unblended Fe lines and the LTE model
atmospheres adopted in this work were interpolated from the
ODFNEW grid of ATLAS9 (Castelli & Kurucz 2004). The
effective temperature (Teff) and bolometric correction (BC)

Table 1
AAT Radial Velocities for HD 33844

BJD-2400000 Velocity (m s−1) Uncertainty (m s−1)

54867.00962 −14.89 1.63
55139.20744 −35.49 2.00
55525.14921 −2.27 1.97
55580.04370 −36.05 1.83
55601.94622 −51.59 1.79
55879.18697 4.37 2.28
55880.14794 3.28 1.75
55881.12234 −1.95 1.93
55906.00994 13.02 2.06
55968.97219 13.41 1.53
55993.93352 8.92 3.17
56051.85691 8.61 3.18
56343.96912 −1.05 2.30
56374.91336 3.36 1.82
56376.92296 3.92 1.79
56377.91375 0.00 1.44
56399.92598 16.56 2.37
56530.28448 8.68 2.28
56685.94081 −57.81 2.34
56747.87554 −64.48 2.16

Table 2
Keck Radial Velocities for HD 33844

BJD-2400000 Velocity (m s−1) Uncertainty (m s−1)

54340.13214 29.1 1.2
54400.03609 20.0 1.2
54461.88282 3.4 1.4
54718.14825 −19.7 1.3
54791.07499 −10.8 1.4
54809.92924 −1.6 1.3
54839.01997 −0.4 1.4
54846.97020 −0.7 1.5
54864.91819 4.6 1.4
54929.72286 −11.5 1.5
55079.13055 −43.3 1.3
55109.10676 −31.3 1.3
55173.05357 −22.4 1.2
55187.90328 −13.5 1.3
55197.97134 −12.3 1.4
55229.77649 0.2 1.3
55255.74938 20.3 1.3
55285.78110 47.9 1.3
55312.72317 52.1 1.4
55428.13474 9.6 1.2
55456.04501 22.6 1.2
55490.96109 12.7 1.4
55521.97151 −3.1 1.4
55546.07504 −13.0 1.4
55584.91662 −35.2 1.3
55633.81481 −58.0 1.4
55791.13774 −33.8 1.2
55810.13994 −19.4 1.1
55902.01080 9.5 1.2
55904.86470 10.1 1.4
55931.98977 9.7 1.3
55960.77092 26.9 1.3
55972.77806 10.9 1.3
56197.06671 −18.9 1.3
56319.74545 7.3 1.4
56530.11001 14.2 1.3

Table 3
FEROS Radial Velocities for HD 33844

BJD-2400000 Velocity (m s−1) Uncertainty (m s−1)

55457.83090 39.0 5.2
55612.57290 −55.3 3.8
56160.93800 −1.4 4.0
56230.78520 −10.3 3.9
56241.78170 −7.2 4.5
56251.83720 −23.6 2.6
56321.60110 15.8 3.7
56331.62140 24.1 3.9
56342.58360 23.9 3.5
56412.47550 8.8 4.6
56565.79190 −13.7 3.3
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were derived from the color index B−V and the estimated
metallicity using the empirical calibration of Alonso et al.
(1999, 2001). Since the color-Teff method is not extinction-free,
we corrected for reddening using E B V 0.0290( )- = (Schle-
gel et al. 1998). The stellar mass and age were estimated from
the interpolation of Yonsei-Yale (Y2) stellar evolution tracks
(Yi et al. 2003). The resulting stellar mass of M1.78 0.18 
was adopted for calculating the planet masses. Our derived
stellar parameters are given in Table 4 and are in excellent
agreement with the results of Jones et al. (2011) who found a
mass of M1.74 0.18  and a radius of 5.33±0.51 R.

3. ORBIT FITTING AND PLANETARY PARAMETERS

Early AAT data for HD 33844 exhibited a periodicity of
∼510 days, but the one-planet fit worsened with time until it
could be tentatively fit with a second planet near ∼900 days.
Preliminary analysis of the AAT and Keck data together
corroborated the two candidate periodicities. We first explored
a wide range of parameter space by fitting the two data sets
with a two-Keplerian model within a genetic algorithm (e.g.,
Horner et al. 2012; Wittenmyer et al. 2012a, 2013c). In brief,
the genetic algorithm works on principles of evolutionary
biology, producing an initially random population of planetary
system parameters and then selecting the best-fit (lowest 2c )
models for “reproduction.” The next generation is then
generated by perturbing the best-fit models (“mutation”) and
repeating the process. The two planets were allowed to take on
orbital periods in the range P : 400 600 day1 – and P : 700 12002 –
day and eccentricities e 0.3< . A total of about 107 possible
system configurations were tested in this manner. The best two-

planet solution was then used as a starting point for the
generalized least-squares program GaussFit (Jefferys
et al. 1988), which is used here to solve a Keplerian radial
velocity orbit model as in our previous work (Tinney
et al. 2011; Wittenmyer et al. 2011a, 2015c). As a further
check, we performed a Keplerian fit optimized with a simplex
algorithm using version 2.1730 of the Systemic Console
(Meschiari et al. 2009) and estimated parameter uncertainties
using the bootstrap routine therein on 100,000 synthetic data
set realizations. We added 7 m s−1 of jitter in quadrature to the
uncertainties of each of the three data sets. This jitter estimate is
derived from 37 stable stars in the PPPS (334 measurements);
their velocity distribution can be fit with a Gaussian of width

7s = m s−1. Since the planets are massive and move on orbits
relatively close to each other (such that interactions can be
expected), we also performed a dynamical fit using the Runge–
Kutta integration method within Systemic. Table 5 gives the
planetary system parameters resulting from both the Keplerian
and dynamical fits; the results are indistinguishable and hence
neither technique is clearly favored. The parameters given
represent the mean of the posterior distribution and the 68.7%
confidence interval. Using the host star mass of M1.78  in
Table 4, we derive planetary minimum masses of
1.96±0.12 MJup (HD 33844b) and 1.76±0.18 MJup (HD
33844c). The data and model fits for each planet are plotted in
Figures 1–2.

4. DISCUSSION

4.1. Evidence for Orbiting Planets

Particularly for giant stars, where spots and pulsations can
induce spurious radial velocity shifts with periods of hundreds
of days, any claim of orbiting planets must be carefully
examined to rule out intrinsic stellar signals (e.g., Hatzes &
Cochran 2000; Reffert et al. 2015; Trifonov et al. 2015). For
HD 33844, the periods of the two signals (551 and 916 days)
are nowhere near the window function peaks at 384 and 8.1
days (AAT) or 30 and 364 days (Keck). Spurious periods in
observational data commonly arise at those periods due to
sampling (imposed by bright-time scheduling and the yearly
observability of a given target).
To check whether the observed velocity variations could be

due to intrinsic stellar processes, we examined the All-Sky
Automated Survey (ASAS) V band photometric data for HD
33844 (Pojmanski & Maciejewski 2004). A total of 596 epochs
were obtained from the ASAS All Star Catalog.14 We
computed the mean magnitude per epoch over the five
apertures then subjected the time series to an iterative sigma-
clipping process. We removed points more than 3s from the
grand mean then recalculated the mean and its standard
deviation. This process was performed three times, after which
511 epochs remained with a mean value of 7.28±0.02. The
generalized Lomb–Scargle periodogram (Zechmeister & Kür-
ster 2009) is shown in Figure 3 with the periods of the planets
marked as dashed lines. While there are significant periodicities
at 730 and 1250 days, there is little power near the periods of
the candidate planets (551 and 916 days).
We also checked for correlation between the radial velocities

and the equivalent width of the Hα absorption line, which has
been used as an activity indicator for giants (Hatzes et al. 2015)

Table 4
Stellar Parameters for HD 33844

Parameter Value References

Spec.Type K0 III Houk & Smith-Moore (1988)
Distance (pc) 100.9±6.5 van Leeuwen (2007)
B V( )- 1.040±0.009 Perryman et al. (1997)

E B V( )- 0.0290 L
AV 0.0903 L
Mass (M) 1.78±0.18 This work

1.74±0.18 Jones et al. (2011)
V sin i (km s−1) <1 This work

1.65 Jones et al. (2011)
[Fe/H] +0.27±0.09 This work

+0.17±0.10 Jones et al. (2011)
+0.19±0.12 Luck & Heiter (2007)

Teff (K) 4861±100 This work
4890 Jones et al. (2011)
4710 Massarotti et al. (2008)
4886 Luck & Heiter (2007)

log g 3.24±0.08 This work
3.05 Jones et al. (2011)
3.1 Massarotti et al. (2008)

vt (km s−1) 1.00±0.15 This work
1.17 Jones et al. (2011)
1.42 Luck & Heiter (2007)

Radius (R) 5.29±0.41 This work
5.33±0.51 Jones et al. (2011)

Luminosity (L) 14.1±1.8 This work
14.4 Jones et al. (2011)
12.6 Massarotti et al. (2008)

Age (Gyr) 1.88 0.48
0.76

-
+ This work

14 http://www.astrouw.edu.pl/asas
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as well as for M dwarfs (Robertson et al. 2013). The equivalent
widths were measured in a 2Å window centered on Hα to
avoid contamination by telluric lines. A generalized Lomb–
Scargle periodogram of the Hα equivalent widths from the
AAT spectra (Figure 4) shows no significant periodicities and

Table 5
HD 33844 Planetary System Parameters

Parameter Keplerian Fit Dynamical Fit

HD 33844b HD 33844c HD 33844b HD 33844c

Period (days) 551.4±7.8 916.0±29.5 547.9±6.4 924.3±32.5
Eccentricity 0.15±0.07 0.13±0.10 0.16±0.07 0.09±0.08
ω (degrees) 211±28 71±67 190±62 5±30
K (m s−1) 33.5±2.0 25.4±2.9 32.9±2.2 24.0±2.2
T0 (BJD-2400000) 54609±41 54544±164 54578±50 54356±281
m sin i (MJup) 1.96±0.12 1.75±0.18 1.92±0.11 1.68±0.16

a (AU) 1.60±0.02 2.24±0.05 1.59±0.01 2.25±0.03

rms of fit—AAT (m s−1) 5.9 9.4
rms of fit—Keck (m s−1) 7.2 7.2
rms of fit—FEROS (m s−1) 10.7 11.6
Total 2c (54 dof) 65.7 66.4

Figure 1. Left panel: data and Keplerian model fit for the inner planet HD 33844b, with the outer planet removed. Error bars are the quadrature sum of the internal
uncertainties and 5 m s−1 of jitter. Right panel: same, but for the outer planet HD 33844c with the inner planet removed. The total rms about the two-planet Keplerian
fit is 7.3 m s−1. AAT—blue, Keck—green, FEROS—red.

Figure 2. Two-planet Keplerian fit for the HD 33844 system. The symbols
have the same meaning as in Figure 1.

Figure 3. Generalized Lomb–Scargle periodogram of ASAS photometry for
HD 33844. A total of 511 epochs spanning 8.8 years reveal no periodicities
commensurate with the orbital periods of the planets (vertical dashed lines).
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there are no correlations with the velocities. Furthermore, the
bisector velocity spans (defined as the velocity difference
between line bisectors from the upper and lower part of an
absorption line) computed from the FEROS spectra show no
correlation with the radial velocities.

4.2. Dynamical Stability

The HD 33844 system appears to contain two super-Jupiter
planets in orbits relatively close to each other. Given their mass
and proximity, it is clearly important to consider whether the
planets are dynamically feasible. That is, could planets on such
tightly packed orbits be dynamically stable on timescales
comparable to the lifetime of the system? A first estimate of the
system’s stability can be garnered by simply assessing the
dynamical separation of the two planets, considering the
separation of their orbits compared to their mutual Hill radius.
Following Gladman (1993), we can calculate the mutual Hill
radius of the two planets as follows:

R
m m

M

a a

3 2
, 1H

1 2
1 3

1 2( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

+ +



where the symbols have their usual meaning and the subscripts
refer to the inner (1) and outer (2) planets respectively.
Following this formulism, we find that the best-fit orbits for the
two candidate planets are separated by 3.8 times their mutual
Hill radius (RH=0.167 AU). For low-eccentricity orbits
Gladman (1993) found that orbits became unstable at
separations smaller than R2 3 3.46 H~ = . The HD 33844
system is therefore close to this critical separation and as the
proposed orbits are somewhat eccentric, it is clearly important
to subject the proposed planets to further scrutiny. In contrast to
widely separated systems such as HD 121056, (where the
planets orbit at 0.4 and 3.0 AU—more than 9 mutual Hill radii
apart), for which N-body simulations were not necessary, here

we must rigorously test the HD 33844 system stability as in our
previous work (e.g., Marshall et al. 2010; Horner et al. 2013;
Wittenmyer et al. 2013a).
Most interesting are those systems (e.g., Robertson

et al. 2012a, 2012b; Wittenmyer et al. 2012b) for which the
planets prove stable and dynamically feasible across just a
small fraction of the potential orbital solutions. In these cases,
which typically feature planets moving on or close to mutually
resonant orbits, dynamical simulations serve a dual purpose.
First, they provide evidence that supports the existence of the
planets and secondly, they provide a strong additional
constraint on the potential orbits followed by those planets,
helping us to better tie down their true orbits than can be
achieved on the basis of the observations alone.
Here, we study the stability of the candidate planets orbiting

HD 33844 following a now well-established route. We created
a suite of 126,075 copies of the HD 33844 system. In each of
these cloned systems, the initial orbit of HD 33844b was the
same, located at its nominal best-fit values (Table 5). For each
system, we systematically varied the initial semimajor axis (a),
eccentricity (e), argument of periastron (ω), and mean anomaly
(M) of HD 33844c. The masses of the planets were held fixed
at their minimum values (m sin i, Table 5). We note that
changing the mass of the planets could alter the stability of the
system. This can be illustrated by examination of Equation (1):
it is immediately apparent that if the masses of the planets are
increased, so too is the size of their mutual Hill radius and
thereby the strength of their mutual interaction. However, the
effect is actually relatively small when compared with the
influence of their orbital elements. As such, in this work we
solely explore the influence of “element space” and leave the
exploration of “mass space” for future work, once the orbital
elements of the planets have been better constrained through
followup observations. Once the uncertainties in those elements
are sufficiently small, it might be possible to use “mass space”
to constrain the maximum masses of the planets and thereby

Figure 4. Left panel: AAT radial velocities and their Hα equivalent widths. No correlations are evident. Right panel: generalized Lomb–Scargle periodogram of the
Hα measurements, again revealing no significant periodicities. The orbital periods of the planets are marked as vertical dashed lines.
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obtain some constraints on the inclination of the system to our
line of sight, but such calculations are beyond the scope of this
work. We do, however, note that a tentative upper limit on the
masses of the planets can be obtained using the resonance
overlap criterion (e.g., Wisdom 1980; Deck et al. 2013). This
analytic estimate sets an upper bound of ∼10 MJup for each
planet. As such, we can be fairly confident that the two bodies
are planetary in nature rather than being brown dwarfs.

Since previous studies have shown that the stability of a
system is most strongly dependent on semimajor axis and
eccentricity, we tested 41 discrete values of each of these
variables spanning the full 3s uncertainty ranges. At each of
the 1681 a−e pairs created in this way, we tested 15 unique
values of the argument of periastron and five of the mean
anomaly, distributed in each case evenly across the 1s
uncertainty ranges in these variables. This gave us a total of
126,075 unique potential orbits for HD 33844c.

We then used the Hybrid integrator within the n-body
dynamics package MERCURY (Chambers 1999) to follow the
evolution of each of the test planetary systems for a period of
100Myr. Simulations were stopped early if either of the planets
were ejected from the system (upon reaching a barycentric
distance of 5 AU, which would require significant strong
instability between the two planets). They were also halted if
either of the planets fell into the central star whose mass was set
at M1.78  or if they collided with one another. If any of these
events happened, the time of collision/ejection was recorded
and the simulation was brought to a close.

As a result of these simulations, we are able to examine the
dynamical stability of the HD 33844 system as a function of the
initial orbit on which HD 33844c was placed. Figure 5 shows
the stability of the system as a function of the initial semimajor
axis and eccentricity of that planet’s orbit. In Figure 6 we show
how the orbital solutions tested in our dynamical simulations fit
to the observed data, expressed in terms of the difference in
total 2c relative to the best fit.

It is immediately clear from Figure 5 that the proposed
orbital solution for the system lies in a region of complex
dynamical behavior with both extremely stable and unstable
solutions being possible. It is reassuring, however, to note that
broad regions of dynamical stability lie comfortably within the

1-σ uncertainties on the proposed solution, particularly toward
lower eccentricities. We note that least-squares radial velocity
fitting routines are well-known to inflate eccentricities (e.g.,
Shen & Turner 2008; O’Toole et al. 2009; Wittenmyer et al.
2013c). That stability is due to orbits in that region being
trapped in mutual 3:5 mean motion resonance with the orbit of
HD 33844b. From Table 5 the Keplerian solution gives a
period ratio of 1.661 and 1.687 for the dynamical fit. Within
their uncertainties these solutions agree with each other and are
wholly consistent with the 3:5 resonance (period ratio 1.667).
In addition to the central region of stability, orbits at smaller

semimajor axes fall into a broad region of stability that extends
across the full span of tested orbital eccentricities. This feature
is the result of the mutual 2:3 mean motion resonance between
HD 33844c and HD 33844b which is centered on 2.102 AU.
We can also see evidence of unstable resonant behavior

through the plot. Most strikingly, there is a band of unstable
solutions centered at 2.33 AU. This band is the result of the 4:7
mean motion resonance between the two planets. A further
unstable resonant region can be seen around 2.195 AU,
associated with the 5:8 resonance between the planets. Finally,
the 5:9 resonance can be found at 2.375 AU, which is likely the
cause of the sculpting of the stability of the system in that
region.
As such, we can conclude that the candidate planets orbiting

HD 33844 are dynamically feasible but that they most likely
move on mutually resonant, low-eccentricity orbits. As a
further check, we investigated the behavior of the resonant
angles for a number of key resonances in the vicinity of the
complicated “stability terrain” around the best-fit orbit. We
found that the best-fit orbital solution is strongly influenced by
its proximity to the 3:5 resonance. In particular, we found that
the resonant angle 5 32 1 1 2f l l w w= - - + alternates
between libration and circulation in a regular manner,
completing three full cycles (one libration + one circulation)
per 500 years of integration. A similar but noisier behavior was
observed for a scenario in which the planets were located on
orbits whose periods were in 5:8 commensurability. Here the
resonant angle for the 5:8 mean motion resonance switched
chaotically between periods of libration (lasting up to 1000
years) and period of smooth, slow circulation. The influence of

Figure 5. Dynamical stability for the HD 33844 system as a function of the
initial semimajor axis and eccentricity of the outer planet. The best-fit orbit for
that planet is marked by the open square and the crosshairs show the 1σ
uncertainties. Configurations featuring eccentricities 1σ smaller than the
nominal best fit generally remained stable for more than 106 years.

Figure 6. 2c difference compared with the best fit for the 126,075 system
configurations tested in Figure 5 as a function of the initial semimajor axis and
eccentricity of HD 33844c. At each a−e location we show the minimum
value of total 2c from the 75 ω-mean anomaly combinations tested therein (54
degrees of freedom).
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resonant interaction for these solutions was unmistakable, and
given the proximity of the best-fit solution to the location of the
3:5 resonance, it seems most likely that the planets are trapped
within it (although we note that the 5:8 and 7:12 mean motion
resonances also fall within the 1σ uncertainty in semimajor
axis) together with an abundance of higher-order weaker
resonances.

5. CONCLUSIONS

We have given evidence for two super-Jovian mass planets
orbiting the metal-rich ([Fe/H] 0.27 0.09= +  ) giant, HD
33844. This result is consistent with findings from Reffert et al.
(2015) and Maldonado et al. (2013) demonstrating that metal-
rich stars with masses greater than M1.5  are more likely to
host planets. To date, relatively few systems of multiple giant
planets are known to orbit evolved stars. Figure 7 shows the 12
previously known multiple-planet systems orbiting evolved
stars (log g 4.0< ). The HD 33844 system is included as large
red circles. HD 33844 is also a multiple-Jovian planet system in
which all of the gas giants (m sin i 0.2> MJup) have low
eccentricities (e 0.2< ). Such a configuration is relatively
uncommon (Harakawa et al. 2015), with only 15 systems
known to date. Jones et al. (2015) noted that of the multiple-
planet systems known to orbit evolved stars all but one of the
host stars were first-ascent giants; HD 33844 adds to this count
as it is near the base of the red giant branch. This is relevant
because although the inner planet has a large orbital distance
(a 1.6~ AU), it might eventually be engulfed in a distant
future due to tidal interaction with the host star while the outer
planet (a 2.3~ AU) might eventually survive such a process
(e.g., Villaver & Livio 2007; Kunitomo et al. 2011; Mustill &
Villaver 2012). As a result, in a distant future this system might
evolve to a single-planet system, which is what we typically
find around post-RGB stars as suggested by Jones et al. (2015).

It has been noted by Ghezzi et al. (2010) and Sousa et al.
(2008) that there may be a correlation between the stellar
metallicity and the masses of the planets, i.e., stars hosting only
∼Neptune-mass planets tend to have lower metallicity than
stars hosting Jupiter-mass planets. In particular, Ghezzi et al.
(2010) remarked that it is possible that “metallicity plays an
important role in setting the mass of the most massive planet.”
We have checked for the possibility of additional undetected
planets using our well-established detection-limit methods
(e.g., Wittenmyer et al. 2006, 2011b, 2013b). For our data on
HD 33844, with a total residual rms of 7.3 m s−1 we can rule
out the presence of additional planets with m sin i 0.3> MJup
interior to HD 33844b at 99% confidence. To push this limit
down to the Neptune-mass regime, one must observe at higher
cadence (Wittenmyer et al. 2015a) or adopt observing strategies
specifically intended to mitigate stellar oscillation noise
(O’Toole et al. 2008; Dumusque et al. 2011).
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