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Abstract

The thesis reports a contribution to the development of parallel algorithms based
on Domain Decomposition (DD) method and Compact Local Integrated Radial
Basis Function (CLIRBF) method. This development aims to solve large scale
fluid flow problems more efficiently by using parallel high performance comput-
ing (HPC). With the help of the DD method, one big problem can be separated
into sub-problems and solved on parallel machines. In terms of numerical anal-
ysis, for each sub-problem, the overall condition number of the system matrix
is significantly reduced. This is one of the main reasons for the stability, high
accuracy and efficiency of parallel algorithms. The developed methods have been
successfully applied to solve several benchmark problems with both rectangular
and non-rectangular boundaries.

In parallel computation, there is a challenge called Distributed Termination De-
tection (DTD) problem. DTD concerns the discovery whether all processes in a
distributed system have finished their job. In a distributed system, this problem
is not a trivial problem because there is neither a global synchronised clock nor
a shared memory. Taking into account the specific requirement of parallel algo-
rithms, a new algorithm is proposed and called the Bitmap DTD. This algorithm
is designed to work with DD method for solving Partial Differential Equations
(PDEs). The Bitmap DTD algorithm is inspired by the Credit/Recovery DTD
class (or weight-throw). The distinguishing feature of this algorithm is the use of
a bitmap to carry the snapshot of the system from process to process. The pro-
posed algorithm possesses characteristics as follows. (i) It allows any process to
detect termination (symmetry); (ii) it does not require any central control agent
(decentralisation); (iii) termination detection delay is of the order of the diame-
ter of the network; and (iv) the message complexity of the proposed algorithm is
optimal.

In the first attempt, the combination of the DD method and CLIRBF based
collocation approach yields an effective parallel algorithm to solve PDEs. This
approach has enabled not only the problem to be solved separately in each sub-
domain by a Central Processing Unit (CPU) but also compact local stencils to
be independently treated. The present algorithm has achieved high throughput
in solving large scale problems. The procedure is illustrated by several numerical
examples including the benchmark lid-driven cavity flow problem.

A new parallel algorithm is developed using the Control Volume Method (CVM)
for the solution of PDEs. The goal is to develop an efficient parallel algorithm
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especially for problems with non-rectangular domains. When combined with
CLIRBF approach, the resultant method can produce high-order accuracy and
economical solution for problems with complex boundary. The algorithm is ver-
ified by solving two benchmark problems including the square lid-driven cavity
flow and the triangular lid-driven cavity flow. In both cases, the accuracy is in
great agreement with benchmark values. In terms of efficiency, the results show
that the method has a very high efficiency profile and for some specific cases a
super-linear speed-up is achieved.

Although overlapping method yields a straightforward implementation and stable
convergence, overlapping of sub-domains makes it less applicable for complex
domains. The method even generates more computing overhead for each sub-
domain as the overlapping area grows. Hence, a parallel algorithm based on
non-overlapping DD and CLIRBF has been developed for solving Navier-Stokes
equations where a CLIRBF scheme is used to solve the problem in each sub-
domain. A relaxation factor is employed for the transmission conditions at the
interface of sub-domains to ensure the convergence of the iterative method while
the Bitmap DTD algorithm is used to achieve the global termination. The parallel
algorithm is demonstrated through two fluid flow problems, namely the natural
convection in concentric annuli (Boussinesq fluids) and the lid-driven cavity flow
(viscous fluids). The results confirm the high efficiency of the present method in
comparison with a sequential algorithm. A super-linear efficiency is also observed
for a range of numbers of CPUs.

Finally, when comparing the overlapping and non-overlapping parallel algorithms,
it is found that the non-overlapping one is less stable. The numerical results show
that the non-overlapping method is not able to converge for high Reynolds num-
ber while overlapping method reaches the same convergence profile as the sequen-
tial CLIRBF method. Thus, in this research when dealing with non-Newtonian
fluids and large scale problems, the overlapping method is preferred to the non-
overlapping one. The flow of Oldroyd-B fluid through a planar contraction was
considered as a benchmark problem. In this problem, the singularity of stress at
the re-entrant corners always poses difficulty to numerical methods in obtaining
stable solutions at high Weissenberg numbers. In this work, a high resolution
simulation of the flow is obtained and the contour of streamline is shown to be
in great agreement with other results.
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Chapter 1

Introduction

In this chapter, an introduction to the thesis is presented. Firstly, the motivation,
significance and objectives of the thesis are discussed. Secondly, the fundamental
equations that govern the motion of Newtonian and non-Newtonian fluids, are
presented, followed by a review of numerical methods for fluid flow analysis.
Lastly, an outline of the thesis is given at the end of this chapter.

1.1 Motivation, significance and objectives

Treatment of realistic computational fluid dynamics (CFD) models in engineering
and science problems such as weather prediction, flooding simulation or indus-
trial design requires a large number of degrees of freedom (DoF). It is desirable
to have robust and efficient numerical methods to solve these problems within a
reasonable time frame. However, serial numerical methods are limited in prac-
tice by computer resources such as the speed of processor and memory. One of
the most promising solution to this resource limitation is parallelisation. With
the advance of high performance computing (HPC), intensive computation tasks
may be distributed to many parallel CPUs. Each CPU can communicate with
other CPUs to exchange data during the computation. There has been a consid-
erable amount of work focused on developing parallel algorithms for solving CFD
problems, for example, Tezduyar et al. (1994), Johan et al. (1992), Hou and Wu
(1997) with Finite Element method; Balls and Colella (2002) with Finite Dif-
ference method; Marshall et al. (1997), Bui (2000) with Finite Volume method;
Shirazaki and Yagawa (1999) with Free-Mesh method; Ingber et al. (2004), Singh
and Jain (2005) with mesh-free approach using Radial Basis Function (RBF)
method or element-free Galerkin method; Tran et al. (2009) with macro-micro
approach using Brownian Configuration Field - RBF. High efficiency is reported
in (Singh and Jain, 2005; Tran et al., 2009). However, most of parallel meth-
ods focused heavily on solving large-scale problems by overcoming the memory
limitation on a single computer without much attention to the question of ef-
ficiency. As a result, efficiency of these methods is usually low or disregarded.
So the motivation of the present work is to develop parallel numerical methods
with high efficiency to solve complex CFD problems. The methods presented in
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this thesis are based on Domain Decomposition methods (DDM) and Integrated
Radial Basis Function (IRBF) method, achieving the following advantages: (i)
ease of load balancing among CPUs; (ii) low message complexity thanks to the
fact that each CPU communicates with only four neighbouring CPUs; and (iii)
high scalability associated with a distributed memory parallel computing model.

In a distributed system, if a process terminates arbitrarily, other processes will
not be able to exchange data with it and the whole system might hang up for-
ever. Hence, every process has to be aware of the status of all other processes
so that it can terminate properly. This is actually an important research topic
in distributed computing called Distributed Termination Detection (DTD) (Di-
jkstra and Scholten, 1980). Although there is a number of DTD algorithms
available in the literature, it is necessary to develop a new DTD algorithm that
can be incorporated efficiently into parallel methods based on DD and IRBF.
The presently proposed DTD algorithm has four main advantages including sym-
metric detection mechanism, decentralised control, low message complexity and
optimal termination detection delay.

The developed parallel methods and DTD algorithm can be applied to solve
various CFD problems. This will give researchers a powerful and flexible tool
to deal with problems that are currently difficult to investigate because of the
limitation of computing resource. Furthermore, the DTD algorithm has a broader
range of applications as it can be used in many distributed systems other than
CFD without any major alteration.

In summary, main objectives of the thesis includes

1. Develop a DTD algorithm for an efficient and proper termination of parallel
methods;

2. Develop parallel methods based on DD method and IRBF method to solve
CFD problems;

3. Apply the developed methods to solve various CFD problems, including
flows of Newtonian and non-Newtonian fluids in both rectangular and non-
rectangular domains.

1.2 Fluid dynamics

Everyday life abounds with examples of fluid motion, ranging from blood flow
in human bodies, to industrial flows such as flow of polymers and other chem-
icals in pipes, to environmental flows such as underground water, oceanic and
atmospheric flows. Fluid dynamics is a branch of applied science that helps
understand fluid flow phenomena, particularly through mathematical modelling
where the fluid flow behaviour is governed by a set of fundamental partial dif-
ferential equations (PDEs), the constitutive equation (or equivalent description
of material property) and the boundary conditions. The fundamental govern-
ing equations are derived from three conservation laws, i.e., the conservation of
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mass, the conservation of momentum and the conservation of energy. For an
incompressible fluid, the conservation of mass is expressed by

∇ · v = 0, x ∈ Ω, (1.1)

where v is the velocity vector, x the position vector, and Ω the domain of interest.

The conservation of momentum is described as

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ + ρg, x ∈ Ω, (1.2)

where t is the time, ρ the density, σ the total stress tensor and g the force per
unit mass due to gravity (Tanner, 2000; Reddy and Gartling, 1994).

The total stress tensor is given by σ = −pI + τ , where p is the hydrostatic
pressure, I the identity tensor and τ the extra stress tensor. Eq. (1.2) can now
be rewritten as

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ∇ · τ + ρg, x ∈ Ω. (1.3)

The pressure term and gravity term can be combined into one term called modi-
fied pressure, ∇P = ∇p− ρg, and Eq. (1.3) becomes

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + ∇ · τ , x ∈ Ω. (1.4)

The mechanical behaviour of a fluid can be described by a constitutive equation.
For Newtonian fluids, the constitutive equation has the form of

τ = 2η0D, (1.5)

where η0 is the constant viscosity, and D the rate of deformation tensor, defined

as D =
1
2

(
∇vT + ∇v

)
.

For non-Newtonian fluids, many different constitutive models have been devel-
oped. Some of them are given as follows.

Upper-Convected Maxwell (UCM) model

τ + λ1
∇
τ = 2η0D, (1.6)

where λ1 is the characteristic relaxation time of the fluid and the upper-convected

derivative
∇
[] is defined as

∇
[] =

∂[]
∂t

+ v · ∇[] − (∇v)T · [] − [] · ∇v. (1.7)

Oldroyd-B model

τ + λ1
∇
τ = 2η0

(
D + λ2

∇
D

)
, (1.8)
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where λ2 is the characteristic retardation time of the fluid. Let α be the ratio
of the retardation time to the relaxation time (α = λ2/λ1). When α = 0 the
Oldroyd-B model yields the UCM one.

The extra stress tensor τ consists of two components, the solvent and polymeric
contributions.

τ = 2ηsD + τv, (1.9)

where ηs is the solvent viscosity and τv the elastic stress, which is given by

τv + λ1
∇
τv = 2ηpD, (1.10)

where ηp is the polymeric viscosity, η0 = ηs + ηp, ηs = αη0, and ηp = (1 − α)η0.

As found in Eq. (1.9) if the value of ηs is equal to zero, then τ = τv, the Oldroyd-
B model becomes UCM one (Covas et al., 1995; Phan-Thien and Tanner, 1977).

Giesekus-Leonov model

τv + λ1
∇
τv − λ1

2ηp
τvτv = 2ηpD. (1.11)

Phan-Thien Tanner (PTT) model 1

exp

(
λ1ε

ηp
tr(τv)

)
τv + λ1

∇
τv +ξλ1 (Dτv + τvD) = 2ηpD, (1.12)

where ε and ξ are the material parameters, and ‘tr’ denotes the trace operation.

Phan-Thien Tanner (PTT) model 2

(
1 +

λ1ε

ηp
tr(τv)

)
τv + λ1

∇
τv +ξλ1 (Dτv + τvD) = 2ηpD, (1.13)

where the coefficients are defined as before. For more details about PTT models,
please refer to (Phan-Thien, 1978, 1984; Tanner, 2000).

1.3 Numerical methods

In practical problems, the above governing equations can rarely be solved ana-
lytically. Instead, their solution is normally sought in the form of approximation
given by numerical methods. Common numerical methods are presented briefly
below.

1.3.1 Finite Difference method (FDM)

Finite difference method is believed to be the earliest numerical method and can
be simply derived from the Taylor expansion of a function at a set of collocation
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points (Smith, 1978). The derivatives of the function are approximated using
the nodal values of the function. The differential equation is discretised into a
system of algebraic equations whose unknowns are the nodal function values. The
method is well-known for its speed thanks to the tri-diagonal form of the system
matrix (Conte and Dames, 1958; Gupta and Manohar, 1979; Bjorstad, 1983).
However, the method has low accuracy due to the fact that the conservation is
not enforced inherently. High-order schemes have been successfully introduced
to increase the accuracy of the method, such as compact FD scheme (Lele, 1992;
Li et al., 1995), high-order FD upwind scheme (Ferreira et al., 2009), pseudo-
spectral FDM (Pilitsis and Beris, 1989). More details can be found in Mitchell
and Griffiths (1980) and Crochet et al. (1984), for example.

1.3.2 Finite Volume method (FVM)

In finite volume method, the computation domain is divided into contiguous con-
trol volumes (CV). The governing equation is integrated over the whole CV. By
applying Green formulae, the surface integration is transformed to line integra-
tion. With appropriate quadrature rule, the line integration is approximated in
terms of nodal values, i.e., a linear equation is achieved (Patankar, 1980; Huilgol
and Phan-Thien, 1997). FVM is conservative by construction (Eymard et al.,
2000). In addition, the method is suitable for many types of grid. However,
FVMs of order higher than second are more difficult to develop because FVM
requires three levels of approximation, namely interpolation, differentiation and
integration.

1.3.3 Finite Element method (FEM)

Finite element method is the favoured discretisation method in structural me-
chanics (Hughes, 1987b; Rannacher, 1999; Reddy, 2005). Thanks to the ability
to model singularities through mesh refinement, FEMs have been used in many
non-Newtonian fluid flow simulations (Yurun and Crochet, 1995; Fan et al., 1999;
Sun et al., 1999). However, the matrices of the linearised equations are not well
structured so FEM normally requires highly efficient solution methods (Pastor
et al., 1991). In addition, generating a FE mesh is a costly process and the solu-
tion has a slow convergence in high gradient regions (Pastor et al., 1991; Emdadi
et al., 2008). Galerkin FEM and mixed FEM (Baaijens, 1998) and the streamline
upwind Petrov-Galerkin (SUPG) (Brooks and Hughes, 1982; Hughes, 1987a) are
among the most popular schemes.

1.3.4 Boundary Element method (BEM)

Boundary element method is any method that solves PDEs by finding the ap-
proximate numerical solution to the equivalent boundary integral equation of
these PDEs. In BEM, only the boundary of the domain needs to be discretised.
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Hence, BEM can be more efficient than other methods in terms of computational
resources for problems where the surface-to-volume ratio is small. BEM is very
useful for problems where the physically relevant data are given not by the so-
lution in the interior of the domain but rather on the boundary (Brebbia et al.,
1984). The accuracy of the solution by BEM on the boundary is superior to those
by FEM. However, BEM is only applicable to problems, for which a Green’s func-
tion is available. Thus, problems with inhomogeneities or governed by non-linear
differential equations normally are not solved straightforwardly by BEM itself but
rather in combination with other methods. BEM normally produces fully pop-
ulated matrices. As a result, memory and computation time required by BEM
will grow as the square of the problem size (Tanner and Xue, 2002).

1.3.5 Radial Basis Function (RBF) method

Radial Basis Functions have traditionally been used to provide a continuous in-
terpolation of scattered data sets (Franke, 1982; Haykin, 1999). Details on several
well-known radial basis functions are given in Appendix A. For differential RBF
(DRBF) method, the function values are first approximated by weighted RBFs.
Such closed form can then be differentiated analytically to obtain derivatives
of the function. On the other hand, in integrated RBF (IRBF) method the
highest-order derivatives of the ODE/PDE is approximated by weighted RBFs
first. Subsequently, its lower-order derivatives and function values are obtained
through integration (Mai-Duy and Tran-Cong, 2001). RBF method is considered
as a high order method (Kansa, 1990a). Furthermore, RBF method is able to
solve problems with complex boundary. The main drawback of RBF methods is
the fact that coefficient matrices are fully populated and may be ill-conditioned.
To overcome these problems, local and compact schemes have been proposed
(Shu et al., 2003; Lee et al., 2003; Kosec and Sarler, 2008; Bourantas et al., 2010;
Mai-Duy et al., 2011). Details on RBF methods will be presented in the Chapter
2.

1.4 Outline of the Thesis

The remaining of the thesis is organised as follows.

• Chapter 2 consists of four parts describing the basic tools used in the present
research project. The first part is to present the IRBF methods including
compact local IRBF schemes. The second part is to review the DD method.
The third part is to present the parallel computation together with the
challenges to parallel performance. Finally, in the last part, the termination
detection in parallel algorithm is discussed.

• Chapter 3 presents a rigorous analysis of the new DTD algorithm (Pham-Sy
et al., 2015a). The so called Bitmap DTD is used to detect the termination
of parallel methods implemented and reported in Chapters 4, 5, 6 and 7.
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• Chapter 4 reports a parallel method achieved by combining the overlapping
DD method and the CLIRBF approach. The method is verified by problems
with available analytic solution and the benchmark problem of lid-driven
cavity flow (Pham-Sy et al., 2013).

• Chapter 5 is to develop parallel method based on local IRBF Control Vol-
ume method and overlapping DD method. The method is verified through
the simulation of the lid-driven flows in both rectangular and triangular
cavities (Pham-Sy et al., 2014).

• Chapter 6 reports a parallel method based on non-overlapping DD method
and compact local IRBF approach. The method is verified by solving two
benchmark problems, which are the lid-driven cavity flow and the natural
convection in concentric annuli (Pham-Sy et al., 2015b).

• Chapter 7 is to demonstrate the efficiency of the present parallel methods
by simulating the benchmark 4:1 planar contraction flow of Newtonian and
Oldroyd-B fluids.

• Chapter 8 gives some concluding remarks on the outcome of this research
project and some possible research developments in the future.



Chapter 2

Fundamental background

This chapter describes several basic tools, which are the background for the nu-
merical methods and their parallelisation developed in the present work. These
tools are the Radial Basis Function (RBF) based approximation methods, the Do-
main Decomposition (DD) methods together with parallel programming and the
Distributed Termination Detection (DTD) algorithms. In this dissertation, the
integrated RBF approaches (IRBF), which are considered as numerical methods
for function approximation and numerical solution of partial differential equa-
tions (PDEs), will be coupled with the DD technique in both collocation and
control volume (CV) approaches. The DD techniques help methods take advan-
tage of high performance computing (HPC) capability for the simulation of the
fluid flows problems.

2.1 Radial Basis Function method

Numerical techniques have been developed to solve ordinary differential equations
(ODEs) and PDEs arising from modelling physical phenomena, finance problems
and weather forecast problems. Among traditional techniques presented in the
previous chapter, RBF has recently emerged as a powerful tool owing to its na-
ture as a universal approximator with computational advantages over traditional
methods. Indeed, RBF based numerical methods can be implemented straightfor-
wardly and possess a very high rate of convergence (Fedoseyev et al., 2002; Cheng
et al., 2003). Furthermore, the RBF collocation methods are superior to other
classical element type methods because they remove the huge burden of the mesh
generating process. In 1990, Kansa (1990a,b) developed a meshless collocation
method for solving PDEs using multi-quadric radial basis function (MQ-RBF).
Following the Kansa’s papers, several other improvements on RBF methods have
been proposed (Sharan et al., 1997; Golberg et al., 1996; Fasshauer, 1999). The
traditional RBF based method is also called differential RBF (DRBF) due to
the fact that a function is approximated first and the function’s derivatives are
then calculated by differentiating the approximate expression for the function as
follows.
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u(x) =
n∑

i=1

wigi(x), (2.1)

∂ku(x)
∂xkj

=
n∑

i=1

w
[xj ]
i h

[k]
[xj ]i

(x), (2.2)

where xj is the j-component of x (j = 1, 2); superscript [k] denotes the order of

the derivatives of u (k = 1, 2), and h[k]
[xj ]i

(x) =
∂kgi(x)
∂xkj

.

More recently, Mai-Duy and Tran-Cong (2001) proposed the idea of the inte-
grated RBF method. Within the IRBF based methods, the highest order of the
derivatives in an ODE/PDE is approximated first and, subsequently, its lower-
order derivatives and the function itself are obtained through integration. This
method can yield very accurate solutions using a relatively small number of grid
nodes (Mai-Duy and Tran-Cong, 2003). IRBF methods can be global, local or
compact local.

Consider the Poisson’s equation in 2D.

∇2u(x) = f(x), x ∈ Ω, (2.3)

where u is the field variable; x the position vector; Ω the considered domain and
f a known function of x.

The domain of interest is discretised using a Cartesian grid. Let nx and ny be
the numbers of grid lines in the x- and y-directions, respectively. Suppose the
domain is rectangular, the total number of grid nodes will be n = nx × ny.

2.1.1 Global IRBF

Two dimensional IRBF method (2D-IRBF)

In the global 2D-IRBF method, the dependent variable u and its derivatives are
approximated using all grid nodes.

For the Poisson’s equation (2.3), the highest order derivatives of the PDE, i.e.
second order, are approximated by a weighted set of RBFs as

∂2u(x)
∂x2

j

=
n∑

i=1

w
[xj ]
i g

[xj ]
i =

n∑

i=1

w
[xj ]
i G

[2]
[xj ]i

(x), (2.4)

where xj is the j-component of x (j = 1, 2); {wi}ni=1 the set of weights and
{gi(x)}ni=1 the set of RBFs. The superscript [.] is used to indicate the associated
derivative order. The MQ-RBF is used in this work and given by

Gi(x) =
√

(x − ci)2 + a2
i ,
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where {ci}ni=1 is a set of centres and {ai}ni=1 a set of MQ-RBF widths.

To obtain first-order derivatives and field variable, Eq. (2.4) is integrated succes-
sively with respect to xj as follows.

∂u(x)
∂xj

=
n∑

i=1

w
[xj ]
i G

[1]
[xj ]i

(x) + C
[xj ]
1 (xk), k 6= j, (2.5)

u[xj ](x) =
n∑

i=1

w
[xj ]
i G

[0]
[xj ]i

(x) + xjC
[xj ]
1 (xk) + C

[xj ]
2 (xk), k 6= j, (2.6)

where G[1]
[xj ]i

(x) =
∫
G

[2]
[xj ]i

(x)dxj, G
[0]
[xj ]i

(x) =
∫
G

[1]
[xj ]i

(x)dxj, and C
[xj ]
1 (xk) and

C
[xj ]
2 (xk) are constants of integration which are functions of the variable xk, k 6= i.

Collocating equations (2.4) - (2.6) at grid points {xi}ni=1 yields

∂2ũ

∂xj
= G[2]

xj
w̃xj , (2.7)

∂ũ

∂xj
= G[1]

xj
w̃xj , (2.8)

ũxj = G[0]
xj

w̃xj , (2.9)

with

w̃xj =
(
w

[xj ]
1 , w

[xj]
2 , · · · , w[xj]

n , C
[xj]
1 , C

[xj ]
2

)T
,

ũxj =
(
u

[xj ]
1 , u

[xj]
2 , · · · , u[xj]

n

)T
,

∂kũ

∂xkj
=

(
∂ku1

∂xkj
,
∂ku2

∂xkj
, · · · , ∂

kun
∂xkj

)T
,

where u[xj ]
i = u[xj ](xi) (i = 1, 2, · · · , N); G[2],G[1]

xj
and G[0]

xj
are known matrices.

One dimensional IRBF method (1D-IRBF)

One dimensional IRBF method shares the same principle as 2D-IRBF. The only
difference is that, in 1D-IRBF the dependent variable u and its derivatives are
approximated using nodes on a single line along the directions. 1D-IRBF method
uses only nx or ny nodes, compare to n nodes of 2D-IRBF, to construct the ap-
proximation of a value at a given point. As a result, a much sparser approxima-
tion matrix is obtained. Sparse matrices generally have better condition number.
They are also less expensive to compute than dense matrices. The approxima-
tion of a PDE now consists of (i) using IRBFs to approximate the variable u and
its derivatives along a grid-line, and (ii) applying Kronecker tensor product to
construct the approximation matrix for derivatives over a 2D domain.

For example, consider an xj-gridline, which runs parallel to the xj-axis. For
simplicity, the grid nodes are numbered from left to right, started with x1 and
ended with xnj .
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The second order derivative of the PDE at an arbitrary point in the considered
line is approximated as follows.

∂2u(x)
∂x2

j

=
nj∑

i=1

wigi =
nj∑

i=1

wiGi(x). (2.10)

The first-order derivatives and field variable are then obtained as follows.

∂u

∂xj
=

nj∑

i=1

wiG
[1]
i (x) + C1, (2.11)

u =
nj∑

i=1

wiG
[0]
i (x) + C1xj + C2. (2.12)

Collocating equations (2.10) - (2.12) at grid points {xi}nji=1 yields

∂2ũ

∂xj
= G[2]w̃, (2.13)

∂ũ

∂xj
= G[1]w̃, (2.14)

ũ = G[0]w̃, (2.15)

with

w̃ =
(
w1, w2, · · · , wnj , C1, C2

)T
,

ũ =
(
u1, u2, · · · , unj

)T
,

∂kũ

∂xkj
=

(
∂ku1

∂xkj
,
∂ku2

∂xkj
, · · · , ∂

kunj
∂xkj

)T
,

where ui = u(xi) (i = 1, 2, · · · , nj); G[2],G[1] and G[0] are known matrices of size
nj × (nj + 2) as presented below.

G[k](k = 1, 2, 3) =




G
[k]
1 (x1) G

[k]
2 (x1) · · · G[k]

nj
(x1) a

[k]
1 b

[k]
1

G
[k]
1 (x2) G

[k]
2 (x2) · · · G[2]

nj
(x2) a

[k]
2 b

[k]
2

...
... . . . ...

...
...

G
[k]
1 (xnj) G

[k]
2 (xnj) · · · G[k]

nj
(xnj ) a[k]

nj
b[k]
nj



,

where

(
a

[k]
1 , a

[k]
2 , · · · , a[k]

nj

)T
=






(
0, 0, · · · , 0

)T
, k = 2

(
1, 1, · · · , 1

)T
, k = 1

(
xj1, xj2, · · · , xjnj

)T
, k = 0

and

(
b

[k]
1 , b

[k]
2 , · · · , b[k]

nj

)T
=






(
0, 0, · · · , 0

)T
, k = 1, 2

(
1, 1, · · · , 1

)T
, k = 0
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2.1.2 Local and compact local IRBF

As stated in Kansa (1990a), although the global RBF methods are proved to have
better accuracy in approximating a function, they are time-consuming and require
large storage. More importantly, when the number of collocation points increases,
the system matrix becomes ill-conditioned. To overcome these drawbacks, several
solutions have been suggested including local RBF based methods (Mai-Duy and
Tanner, 2007; Mai-Duy et al., 2011) and domain decomposition (DD) methods
(Beatson et al., 2001; Tran et al., 2009). The difference between local and global
IRBF methods is that in local methods, the approximation of a function at a grid
node involves a small number of surrounding nodes only.

However, local IRBF methods are less accurate as the approximation is based on
a set of local points rather than the whole grid. To recover the loss of accuracy,
compact schemes have been introduced (Mai-Duy et al., 2011; Hoang-Trieu et al.,
2012; Thai-Quang et al., 2012). In this work, the 2D-IRBF compact scheme
proposed in Mai-Duy et al. (2011) is employed and presented in details.

For 2D problems, a 9-point stencil scheme is applied to overcome the problem of
ill-conditioned system matrix, which is an inherent issue in the global approach.
According to this scheme, a local 9-point stencil for an arbitrary grid-point xi,j
(2 ≤ i ≤ nx − 1; 2 ≤ j ≤ ny − 1) is described as follows.




xi−1,j+1 xi,j+1 xi+1,j+1

xi−1,j xi,j xi+1,j

xi−1,j−1 xi,j−1 xi+1,j+1


 .

For simplicity, a specific local stencil is used here as



x3 x6 x9

x2 x5 x8

x1 x4 x7


 ,

Applying the 2D-IRBF procedure to this stencil leads to a system of algebraic
equations for unknown nodal values of the field variable as follows.

(
ũ
0̃

)
=

[
G[0]
x , O

G[0]
x , −G[0]

y

]

︸ ︷︷ ︸
C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (2.16)

where C is the conversion matrix, w̃x and w̃y the RBF weight vectors of length
15; ũ the vector of length 9, and 0̃ the zeros vector of length 9; O the zeros matrix
of dimension 9 × 15, and G[0]

x and G[0]
y the known matrices of dimensions 9 × 15.

Furthermore, ũ, w̃x and w̃y are given by

ũ = (u1, . . . , u9)T , (2.17)

w̃x = (wx1 , . . . , wx9, C
x
1 (y1), Cx

1 (y2), Cx
1 (y3), Cx

2 (y1), Cx
2 (y2), Cx

2 (y3))T , (2.18)

w̃y = (wy1 , . . . , wy9, C
y
1 (x1), Cy

1 (x2), C
y
1 (x3), Cy

2 (x1), Cy
2 (x2), Cy

2 (x3))T , (2.19)
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G[0]
x =




G
[0]
[x]1 (x1) · · · G

[0]
[x]9 (x1) x1 0 0 1 0 0

G
[0]
[x]1 (x2) · · · G

[0]
[x]9 (x2) 0 x2 0 0 1 0

... . . .
... 0 0 x3 0 0 1

... . . .
... x4 0 0 1 0 0

... . . .
... 0 x5 0 0 1 0

... . . .
... 0 0 x6 0 0 1

... . . .
... x7 0 0 1 0 0

... . . .
... 0 x8 0 0 1 0

G
[0]
[x]1 (x9) · · · G

[0]
[x]9 (x9) 0 0 x9 0 0 1




, (2.20)

G[0]
y =




G
[0]
[y]1 (x1) · · · G

[0]
[y]9 (x1) y1 0 0 1 0 0

G
[0]
[y]1 (x2) · · · G

[0]
[y]9 (x2) y2 0 0 1 0 0

... . . . ... y3 0 0 1 0 0

... . . . ... 0 y4 0 0 1 0

... . . . ... 0 y5 0 0 1 0

... . . . ... 0 y6 0 0 1 0

... . . . ... 0 0 y7 0 0 1

... . . . ... 0 0 y8 0 0 1
G

[0]
[y]1 (x9) · · · G

[0]
[y]9 (x9) 0 0 y9 0 0 1




, (2.21)

where G
[0]
[x]i and G

[0]
[y]i (i = 1..9) were defined in Section 2.1.1 in the x and y-

directions and xi, yi are the two components of xi. It is noted that in Eq. (2.16)

ũ = [G[0]
x ,O]

(
w̃x

w̃y

)

is obtained by collocating the field variable over a local stencil, and

0̃ = [G[0]
x ,−G[0]

y ]

(
w̃x

w̃y

)

is derived from the consistency condition
∫ ∫

∂2u

∂x2
dx

∣∣∣∣∣
xi

=
∫ ∫

∂2u

∂y2
dy

∣∣∣∣∣
xi

.

The conversion of the network-weight space into the physical space is achieved
by first inverting Eq. (2.16)

(
w̃x

w̃y

)
= C−1

(
ũ
0̃

)
. (2.22)

Then by substituting Eq. (2.22) into Eqs. (2.7) and (2.9) the first order deriva-
tives of u with respect to x and y and the function itself over a local stencil are
determined.
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2.2 Domain decomposition method

The first idea of domain decomposition (DD) method was introduced by Schwarz
(1972). In its early definition, DD is the process of splitting of the considered
domain of a problem into smaller sub-domains. In a broader view, the idea
of DD can be used in different ways. From the point of view of physics, DD
technique aims to divide the domain into regions where different physical models
may be applied. From the numerical modelling point of view, it is sometimes
helpful to use different approximation schemes in different regions. The three
most important motivations for the DD technique include

• high potential for parallelisation, some good parallel performances have
been observed;

• simplification of problems on complicated geometry; and

• superior convergence properties.

Thanks to these motivations, DD technique is applied in many numerical meth-
ods, for example in FDM (Dawson and Dupont, 1994; Balls and Colella, 2002),
FVM (Marshall et al., 1997), FEM (Marini and Quarteroni, 1989; Cowsar et al.,
1995; Becker et al., 2003) and recently in RBF methods (Beatson et al., 2001; Zhou
et al., 2003; Li and Hon, 2004; Mai-Duy and Tran-Cong, 2004; Tran et al., 2009).
DD is also widely used in molecular dynamics (MD) where simulations normally
concern the movement and interaction of hundreds of thousands of molecules.
Notable applications of DD in MD can be found in (Jabbarzadeh et al., 1997;
Koradi et al., 2000; Ilnytskyi and Wilson, 2002; Jabbarzadeh et al., 2003).

In particular, for solving PDEs, discretisation methods like FDM or other meth-
ods transform the problem to the solution of a system of algebraic equations.
Such system is often so big that direct factorisation is difficult or not effective.
In addition, the use of basic iterative methods, such as the conjugate gradient,
could result in slow convergence. The first advantage of DD idea is that in many
cases it is the most practicable way to solve large scale problems. Moreover,
for some problems, proper implementation of DD will significantly increase the
convergence rate of the solution. And last but not least, by replacing the origi-
nal problem by a set of sub-problems of reduced size, DD technique provides an
effective way to alleviate numerical difficulties associated with large populated
matrices such as ill-conditioning.

The original DD method proposed by Schwarz (1972) was supposed to solve classi-
cal boundary value problems (BVPs) involving harmonic functions. This is prob-
ably the earliest DD method called Schwarz alternating method. In this method,
the domain is divided into overlapping sub-domains with Dirichlet boundary con-
dition on the artificial boundary (AB). In a consecutive step, a sub-domain is
considered as a well posed BVP and is solved independently. The obtained re-
sults in this sub-domain is used to update the boundary condition of its adjacent
sub-domains. This Schwarz’s method defines a class of DD methods called over-
lapping DD methods. Overlapping DD method have the advantage of intuitive
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presentation and implementation. The value on AB of one sub-domain is obtained
directly from the value of corresponding points inside adjacent sub-domains and
thus neither interpolation nor extrapolation is needed. The Dirichlet type of
AB allows insignificant change in the solving algorithm as well as guarantees the
convergence over the interface (Quarteroni and Valli, 1999). However, the fact
that sub-domains must overlap, makes the method less applicable in irregular
domains. This method also adds an overhead of degrees of freedom (DoF) to
each sub-domain.

The second class consists of non-overlapping DD methods, which can be divided
into two sub-classes, namely the Schur complement method and the Steklov-
Poincare method. The Schur complement method or sub-structuring method
came from an approach proposed by Przemieniecki to divide a structure into
substructures with the assumption that all ABs are fixed (Gander and Tu, 2014).
By this approach, the problem firstly is divided into sub-problems with non-
overlapping ABs. Then the solutions on ABs are determined by solving a system
of equations created by the Schur complement method. After the AB solutions
are obtained, each sub-domain becomes a separate BVP which can be solved
by using a suitable numerical method. The Schur complement method has high
potential for parallelisation because once the AB solutions are obtained, all sub-
domains are totally independent. Nevertheless, obtaining AB solution is a time
consuming process that cannot be parallelised. As a result, the time efficiency of
the method is not very impressive.

Apart from Schur complement method, Steklov-Poincare method focuses on con-
structing an equivalent problem by introducing transmission conditions. The
transmission conditions are, in fact, the continuity of the function or its deriva-
tives across the ABs. Similar to the overlapping method, sub-domains become
separate BVPs which can be solved in parallel within a time step. The results
obtained from sub-domains are used to approximate the boundary condition on
ABs. It is clear that the non-overlapping method creates less DoF overhead than
the overlapping one since the overlapping area is reduced to a single point for
1D problems or a single line for 2D problems. For this method, the potential of
parallelisation is high as all sub-domains are independent within a time step.

2.2.1 Overlapping domain decomposition method

Schwarz multiplicative overlapping method

Consider a second-order PDE with boundary conditions as follows.
{

Lu = f, x ∈ Ω,
Bu = g, x ∈ ∂Ω,

(2.23)

where L is a second order differential operator; B - an operator imposed as bound-
ary conditions such as Dirichlet, Neumann or a mixture of both; u - an unknown
function; f and g - given functions; Ω and ∂Ω - the domain under consideration
and its boundary, respectively.
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An example of a 2D domain with two overlapping sub-domains is provided in Fig.
2.1. The domain Ω is divided into two sub-domains Ω1 and Ω2. Let ∂Ω1 and ∂Ω2

and Γ1, Γ2 be the real and the artificial boundaries of Ω1 and Ω2 respectively.
The boundary condition imposed on Γ1, Γ2 is of Dirichlet type.

Figure 2.1 Non-overlapping DD method with two sub-domains Ω1 and Ω2 in 2D.

The Schwarz multiplicative overlapping method is described at a step k as follows.





Luk1 = f, x ∈ Ω1

Buk1 = g, x ∈ ∂Ω1

uk1 = uk−1
2 , x ∈ Γ1

Luk2 = f, x ∈ Ω2

Buk2 = g, x ∈ ∂Ω2

uk2 = uk1, x ∈ Γ2

(2.24)

The Schwarz multiplicative method is a sequential method because the values on
ABs in each sub-domain are updated from the most recent results of its neighbour-
ing sub-domains (NSs). Indeed, as can be seen from Eq. (2.24) sub-domain Ω2 has
to wait until sub-domain Ω1 finish the computation in order to obtain the value
on the AB Γ2. Clearly, the computations on Ω1 and Ω2 cannot be performed in
parallel. To solve Eq. (2.24) in parallel a black-white colouring technique (Smith
et al., 1996) can be utilised, so that all non-adjacent sub-domains are put in the
same group marked by a colour. Normally, two groups namely black and white
will be formed. By this way, in the first half-step, operations in one group, e.g.
the white one, can be executed in parallel. In the next half-step, the other group
operations (the black one) will be executed in the same manner.

Schwarz additive overlapping method

In this method, the values on AB in each sub-domain problem at step k are
updated from the results of its NS’s in previous step k − 1. In other words, Eq.
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(2.24) is changed to 



Luk1 = f, x ∈ Ω1

Buk1 = g, x ∈ ∂Ω1

uk1 = uk−1
2 , x ∈ Γ1

Luk2 = f, x ∈ Ω2

Buk2 = g, x ∈ ∂Ω2

uk2 = uk−1
1 , x ∈ Γ2

(2.25)

As shown in Eq. (2.25) the data in each sub-domain are independent within an it-
erative step. The method is suitable for parallelisation. However, as sub-domains
do not use the newest values on the ABs, the additive method suffers from dete-
rioration of convergence rate. Fortunately, in most of the cases this deterioration
is negligible. The overlapping DD method will be used in combination with the
local and compact local IRBF schemes to develop parallel methods presented in
Chapters 4, 5, 7.

2.2.2 Non-overlapping Dirichlet-Neumann DD method

The non-overlapping DD method is based on the multi-domain formulation of a
PDE and Steklov-Poincare interface equation (Quarteroni and Valli, 1999). There
are several types of non-overlapping DD method, such as Dirichlet-Neumann
method, Neumann-Neumann method, Robin method or a method by Agoshkov
and Lebedev (1985). These methods differ from each other by the way the trans-
mission conditions over the interface are defined. In this work, the Dirichlet-
Newman method is considered as it provides a great compatibility to IRBF
method in the way boundary condition on ABs is imposed. The mathematical
background as well as the convergence analysis of the Dirichlet-Neumann method
are extensive topics, which are out of the scope of this thesis. Those information
can be found in a comprehensive book by Quarteroni and Valli (1999).

An example of non-overlapping DD method with two sub-domain and an AB is
shown in Fig. 2.2. Details of non-overlapping DD method will be presented in
Chapter 6.

2.2.3 High performance computing for large scale problems u sing
parallel DD methods

In recent decades, parallel computing has become more and more popular in the
world of numerical methods owing to its promising ability to solve large-scale
and complex practical problems. This big potential of parallel computing has
motivated researchers to investigate DD method more intensively. Because of
DD’s parallel capability, there are many attempts to apply DD technique with
RBF methods. Kansa (1990a) showed an example of using DD and multi-quadric
MQ-RBF method to solve a hyperbolic problem. He stated that by incorporating
DD into the MQ-RBF method, the problem can be solved much more efficiently.
Another implementation of DD within RBF based interpolation problem for large
scale problems by Beatson et al. (2001) also yielded a very good convergence rate.
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Figure 2.2 Non-overlapping DD method with two sub-domains Ω1 and Ω2 in 2D

Numerical results from Li and Hon (2004) indicated that the non-matching grid
based DD scheme has similar convergence rate and accuracy as the matching grid
case. A parallel DD technique for the hybrid simulation of dilute polymer solution
flows using Brownian dynamics and RBF based methods was reported in Tran
et al. (2009). The method has utilised the parallel-capable property of DD for
the solution of both stochastic differential equations (SDEs) and PDEs and thus
significantly decreased the computational time and enjoyed good convergence
rate. In this project, a HPC solution for large scale problems is proposed via the
combination of the DD technique and CLIRBF methods.

2.3 Parallel programming

Parallel computing has become a popular trend in science community. The com-
plexity of new and practical problems requires an astonishing amount of comput-
ing resources that could not be provided by a single computer. Supercomputing
systems have been introduced with many CPUs connected by a fast network.
The primary goal of parallel programming is to achieve high computational per-
formance. However, even when the parallel computers can provide the increased
speed and abundance of memory, applications may not be able to make use of all
the available resources if the underpinning algorithms are not appropriate. Un-
like hardware, software cannot be automatically scaled up to work with parallel
computers. As a result, the scalability of parallelism is an interesting topic for
software developers.

2.3.1 Development of parallel computers

The development of parallel computers can be tracked back to the second half of
the 1970s when vector computers were first introduced. Vector computers offered
higher machine performance but the lack of application compatibility and paral-
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lel algorithms made these computers less attractive to industrial customers. In
the first years of the 1980s, parallel programming environments, operating sys-
tems and applications were included in vectors computers. Performance was also
increased by improved chip technologies and the availability of shared-memory
multi-processor systems. With new chip technologies, new generation of appli-
cations was formed, leading to the adoption of parallel computing by industrial
customers. Later in 1980s, scalable parallel computing using distributed memory
started to gain attention as it solved the hardware scalability limitation of shared
memory systems. In the early 1990s, massively parallel processor (MPP) systems
came to the market and began to gain popularity. MPP systems are, in fact,
distributed memory systems with multiple nodes connected by fast networks.

2.3.2 Parallel computing architectures

From the point of view of computer architectures, parallel computing can be
divided into memory parallelism and CPUs parallelism.

Memory parallelism

One model of parallel computer is shared memory, in which there is only one big
memory and access to this memory is given by virtual address space (Fig. 2.3).
CPUs are granted an equal access to this shared memory through a high-speed
bus. This model has very low access latency and high bandwidth. However, when
two or more CPUs try to access the same memory address, the race condition
appears and may be severe. To prevent race condition, programmers need to
provide explicit block mechanisms, e.g. the critical region, where only one CPU
is allowed to be in the critical region at a time, that CPU has highest priority in
accessing the memory, other CPUs have to wait until the critical region is released
to enter. Particular attention also needs to be paid to maintain the consistency
and coherency of the memory.

Figure 2.3 Shared memory parallel computing model.
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Another model of parallel computers is distributed memory (Fig. 2.4). In this
model, each CPU has its own physical memory, i.e. local memory. The communi-
cation between CPUs is performed by message passing mechanism. Connections
between CPUs are handled by network interface cards (NIC) equipped in each
CPU. Distributed memory model suffers from high latency communication but
it is free of resource contention. Systems based on distributed memory are also
easy to assemble, maintain and scale up.

Figure 2.4 Distributed memory parallel computing model. Nic is network interface card.

Other important memory parallel architecture is vector computers. In vector
computers, data is organised in vectors, which are groups of 64 floating point
numbers. All operations are performed on vectors, hence the 64 operations are
executed in parallel. Vector computers are popular in scientific applications where
data are favourably presented in vectors. The high throughput of vector com-
puters is supported by wide memory bandwidth. Vector computers are highly
application specific. Their efficiency is high only when vector applications and
vector data are used.

CPU parallelism

Super-scalar processing

When there are two or more instructions in the stack and they are going to use
different functional units, e.g. Floating Point Unit (FPU) and Algebraic Unit
(ALU), and different register sets, e.g. Floating Point Register (FPR) and Gen-
eral Purpose Register (GPR), a super-scalar computer can execute both instruc-
tions at the same time. This type of parallelism is also called instruction-level
parallelism. The main advantage of super-scalar processing is that parallelism is
done inside CPU and no change needs to be applied to the existing code nor the
algorithm. However, it is a complex and intensive task to identify possible par-
allel instructions in pre-processing step. The efficiency of super-scalar processing
highly depends on the nature of the code, and for many cases, is not high.

Explicit parallel instructions

During the compilation, the compiler uses sub-instructions to explicitly tell the
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CPU to execute the code using different functional units and registers. The resul-
tant instructions are way longer than the original ones hence the name Very Long
Instruction Words (VLIW). The compiler is solely responsible for the parallelism.
As compiler is designed to take all advantages of a specific CPU architecture,
porting the code to other machines with different CPU architectures will likely
eliminate the parallelism and in the worst case might cause fatal runtime error.

Multi-threading

Suppose that, there are four independent instruction sets that need to be executed
and four functional units, each instruction set can be handled by one functional
unit at the same time. This model is called simultaneous multi-threading with
each instruction set is a thread.

Fine-grained multi-threading runs only one thread at a time while keeping other
thread on hold. The benefit of this is when some thread performs a slow operation,
e.g. hard drive access, it can be put on hold and give other thread a time window
to run. This type of multi-threading is also seen in single CPU computer where
the operating system schedules threads to achieve the best throughput of the
CPU.

Graphics processing unit (GPU) parallel computing

Graphics processing unit is a specialised unit that handles computation only for
computer graphics. At the beginning, the GPU is designed to work with vectors
and matrices data because images are normally stored the same way. That means
GPU is a vector computer by nature. The parallel potential of GPU has recently
been increased by adding multiple GPUs into one computer. The underlying
programming interface allows data to transfer from CPU to GPU for parallel
computation, and the result is then transferred back to the CPU. This process
is called general-purpose computing on graphics processing units (GPGPU). The
advantage of GPU over CPU is that, GPU can perform operations on graphical
data at a speed much faster than CPU. However, data on CPU must be converted
to graphical-like data before they can be processed by GPUs.

It is considerably relevant to mention the well-known Flynn’s taxonomy of par-
allel computers. Flynn (1966) categorised parallel computers based on their data
streams and instruction streams. A sequential computer has a single data stream
and single instruction stream, for that it is called SISD. A vector computer is an
example of single instruction-multiple data streams machine or SIMD. A later and
more popular variation of SIMD is simple program-multiple data (SPMD), which
covers broader range of parallel applications. Many parallel computing systems,
e.g. MPP systems, have multiple instruction streams as well as multiple data
streams. These systems form the MIMD group. The last group MISD, which
means multiple instructions, single data, can be subtly referred to as shared-
memory parallel computers. However, to exactly reflect the MISD idea, appli-
cations on these computers need to perform different actions on the same set of
data.

Parallelism today is a combination of many approaches and techniques. The most
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popular model is distributed memory clusters of nodes, in which each node is a
shared-memory multi-processor machine.

2.3.3 Decomposing programs for parallelism

There are three main steps of the development of a program for parallel computers
(i) identification; (ii) decomposition and (iii) implementation (Dongarra et al.,
2003).

Identification

The first step is to identify parts of the program that can be executed in parallel.
Based on Bernstein (1966), two parts P1 and P2 of a program can run concurrently
if none of the following holds

1. P1 writes into a location that is later read by P2 - a read-after-write race;

2. P1 reads from a location that is later written into by P2 - a write-after-read
race;

3. P1 writes into a location that is later overwritten by P2 - a write-after-write
race.

Decomposition

There are two common strategies to decompose a program for parallel computing.
The first one is to decompose a program into independent tasks so that different
CPUs can handle these tasks in parallel. This strategy is called task parallelism
or functional parallelism. Task parallelism is commonly found in multi-core ma-
chines where each core is assigned a specific task.

The other strategy is called data parallelism, which decomposes a program in a
way that the same code runs on different portions of the data. Data parallelism
is more popular in practice owing to its stable load balancing. Once the data is
divided, the load is even between CPUs until the computation is finished.

Implementation

Before writing the code, a developer needs to decide what memory model is best
suited for the problem in hand. The shared-memory model offers fast access
to global memory but requires blocking mechanism to prevent race conditions.
The distributed-memory model is blocking free since each CPU is equipped with
a local memory. However, communication between CPUs is needed to exchange
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data. In addition, synchronisation is strictly required to maintain the consistency
of the data on all CPUs.

There are several ways to implement parallel programs. The simplest way is
to create a parallel loop, in which iterations are executed in parallel instead of
sequentially. All iterations must be independent, in other words, the computation
of one iteration does not require data from other iterations. Consider following
loop

f o r i = 1 : n
a ( i ) = a ( i ) + i ;

end

Where a is an array of size n. It is clear that in each iteration the value of a(i) is
calculated using only the value of itself and the index i. Therefore, the code can
be rewritten in parallel form as bellow

p a r a l l e l f o r i = 1 : n
a ( i ) = a ( i ) + i ;

end

Actually, there is no changes in the code except the keyword for being replaced
by parallel for. In fact, it is the keyword parallel for that tells the compiler
to add special sub-instructions to the original execution code to command the
CPUs to execute the loop in parallel. Parallel loops are very handy and easy to
use. However, if those loops are not dominant in computation, the efficiency of
parallelism will be very limited.

Single program-multiple data is another approach to implement parallel pro-
grams. SPMD aims to divide the problem by data and run the same code on
these multiple data in parallel. Basically, parallel loop can also be considered a
SPMD program. As seen in the example above, the same summation operation
is performed on different elements of a. But in general, SPMD provides a more
flexible way to decompose problems into parallel parts. In SPMD, at the begin-
ning of the computation, all global data need to be replicated on every CPUs,
and at the end of an iteration, explicit communication needs to be specified to
exchange data between CPUs.

Parallel programs can also be implemented by recursive task programming. With
a tree-like data structure, every time the computation reaches a branch, a new
thread is created to handle the computation on that particular branch.

2.3.4 Challenges to parallel performance

Early models of parallel computers and applications did not seem attractive to
customers due to their low performance-to-cost ratio. There are four main factors
that affect the performance of parallel programs including scalability, communi-
cation, load balancing and irregularity (Dongarra et al., 2003).
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To measure the performance of a parallel program, the speed-up is calculated as
follows.

S(n) =
T(1)

T(n)

,

where T(n) is the computation time using n processor(s). A scalable parallel
program is the one that has S(n) ≈ n. However, due to the present of a part of
program that cannot be parallelised S(n) < n. Suppose Ts and Tp are the time
spent on sequential and parallel part respectively then the speed-up is given by
Amdahl’s Law (Amdahl, 1967)

S(n) =
Ts + Tp
Ts + Tp/n

≤ T(1)

Ts

It can be seen that the speed-up is limited by the ratio of the time of sequential
part to the time of the parallel part in that program. Suppose that 20% of the
time of sequential program is non-parallel, the maximum speed-up is 5 no matter
how many CPUs are used.

The only problem with Amdahl’s law lies in the fact that regardless of number of
CPUs is used, the maximum speed-up of a parallel algorithm is always bounded

by a factor of
1
Ts

, which is not always true. Gustafson (1988) pointed out this

controversial prediction where they were able to obtain speed-up up to 1021 using
1024 CPUs with the sequential part of the algorithm contributing 0.4% of the
total simulation time. This contradiction inspired the Gustafson-Barsis’s law. In
this law, the problem scale is considered as an important parameter. To measure
the efficiency of a parallel algorithm, the actual times run on parallel CPUs are
chosen as reference. Let T ∗

s and T ∗
p be the sequential part and parallel part of

runtime on parallel CPUs. Then a hypothetical runtime T ∗
(1) on a serial processor

is calculated as
T ∗
s +NT ∗

p

The so-called scaled speed-up becomes

S∗ =
T ∗
s +NT ∗

p

T ∗
s + T ∗

p

It is clear that with this formula, if T ∗
s is small or diminished, the speed-up grows

proportionally with the number of CPUs. Hence, scaled speed-up is particularly
useful in the estimation of the efficiency of parallel algorithms that solve large-
scale problems where it is unlikely that the computation time on a single CPU
can be determined. In addition, as the scaled speed-up suggests, the limitation
caused by the sequential part of a program can be mitigated by increasing the
amount of computation which can be carried out in parallel.

Communication is also an important issue in parallel computing, especially with
distributed memory model. It is understandable that the communication time
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should take a fraction of the computation time. However, as the scale of the pro-
gram grows, poor designed communication scheme may end up with exponential
increase of number of messages being passed.

Another big challenge to parallel computing programmers is load balancing, which
require an even distribution of load between CPUs. Bad load balancing is often
the reason for low efficiency of parallel program. As a quick example, if in a paral-
lel system one CPU takes half of the parallel work, the speed-up will never excess
2 regardless of number of CPUs used. The most common reason for poor load
balancing is the irregularity of the problem under consideration. With irregular
problems, the load is often not available before run-time, and even if the load
is available, it can change during run-time. A possible solution to this problem
is to employ a dynamic load balancing mechanism that monitors the load on all
CPUs and rebalances the loads if necessary.

2.4 Distributed Termination Detection

In distributed computing, a often encountered problem is how to detect whether
all processes are passive and the system is ready to be terminated. This problem
was discovered by Francez (1980); Dijkstra and Scholten (1980) and called as the
Distributed Termination Detection. The DTD problem might look trivial to se-
quential computing where a single process can terminate when the computation
is finished. However, in parallel computing even when all processes have finished
the computation, there may still be some messages being in transit. These mes-
sages, upon arrival, will reactivate other processes and that actually means the
computation has not finished yet. Generally, a DTD algorithm aims to detect
a system’s quiescence. Quiescence is a state, in which no process is active and
no message is in transmission. The difficulty of DTD comes from the fact that,
in distributed computing, there is no shared clock or shared memory. Thus, a
process has no way to know the status of other processes. So far, there are three
classes of DTD, including wave algorithms, parental responsibility algorithms and
credit and recovery algorithms. In this chapter, these classes are presented briefly.
More details can be found in Matocha and Camp (1998) and Raynal (2013).

The wave DTD algorithms is initially based on a token ring network topology.
A root process creates a token and sends it into the ring. The token is passed
through all other processes in the ring and comes back to the root process. The
root process then analyses the information in the token and tries to detect the
termination. As the token ring network is enclosed, the token travels the whole
network and comes back to its root in just one round. Thus, for token ring net-
work, wave algorithms are very efficient. However, as modern network topologies
have become very diverse, wave algorithms have changed to utilise the network
graphs. With this change, wave algorithm now consists of two phases. In the
first phase, many tokens are passed from the root process through a graph to all
processes in the network. In the second phase, tokens are passed back to the root
process for analysis. The wave algorithms have a major drawback: it is repetitive.
Tokens are sent out and collected from beginning until termination is detected.
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This adds a significant overhead to the main computing task. In addition, the
message complexity of wave algorithms is high. In many wave algorithms, the
message complexity is O(M × n) in the worst case, where M is the number of
basic messages, i.e. the messages of the main computation task, and n is the
number of processes in system.

In parental responsibility algorithm, a set of rules is predefined before the system
starts to operate. Basically, the process that activates other processes imme-
diately becomes a father process and the one that is activated becomes child
process. The father process is responsible for the status of its child processes.
Father process can become passive only after all of his child processes have be-
come passive. In such of a system, the root process is the first one to be active
and also the last one to be passive. Once the root process becomes passive it can
declare that the termination is detected. The number of messages sent by DTD
algorithm is minimised, only one message is sent when a process is activated or
becomes passive. However, as the algorithm suggests, there is no recovery mech-
anism. In other words, if any father process fails, the algorithm has no way to
resume.

For the credit and recovery algorithm, there is a total credit which is a number
equal to 1 in general case. The root process initially holds all credits. When an
active process activates another process, it divides its credit into two halves and
send one half to the activated process. Process that is going to become passive
will send its credit to another active process. In this way, all credits are kept in
active processes. At any time, when a process collects all credits, it can detect
the termination. In this algorithm, any node can detect termination. The last
active process needs not necessary be the first active one. However, an obvious
problem with credit and recovery algorithm is the allocation of credit. When the
number of processes increases, the value of credit will decrease very fast and over
the recognisable range of a computer. Therefore, some credits will be lost and
the system will never be able to collect enough credit to detect the termination.
Moreover, most of credit and recovery algorithms have message complexity far
beyond the optimal value O(M), where M is the number of basic messages.

In this research project, the characteristics of the credit and recovery class is con-
sidered to build up a new DTD algorithm which is used to detect the termination.
The proposed algorithm, named the Bitmap DTD, possesses some important ad-
vantages, including (i) it allows any node to detect termination, i.e. a symmetric
algorithm; (ii) it does not require any central control agent; and (iii) the message
complexity of the proposed algorithm is optimal. The algorithm will be presented
in Chapter 3.

2.5 Hardware and software specification

Most of simulations in this thesis were performed on a HPC cluster at University
of Southern Queensland (USQ). Some experiments were carried out on HPC clus-
ters at University of Queensland (UQ) and Queensland University of Technology
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(QUT) which are members of the Queensland Cyber Infrastructure Foundation.
The specifications of the USQ HPC cluster are as follows

• 30 nodes in Sun X2200 servers, each of which contains two quad-core 2.7Ghz
AMD Opteron CPU and 16Gb DDR2-667 memory.

• Total of 480Gb of RAM.

• Approximately 30Tb of global storage.

There are two standards for parallel programming, namely Parallel Virtual Ma-
chine (PVM) and Message Passing Interface (MPI). PVM was designed to work
on heterogeneous networks. Therefore, it possesses very good interoperability
between different hosts as well as powerful dynamic resource manager and pro-
cess control function. On the other hand, MPI was proposed later as a standard
for massive parallel computer vendor to implement parallel applications on their
products. MPI provides rich communication routines and an ability to specify
communication topologies. MPI also supports the design of safe parallel software
libraries. The main tool used in this thesis is the MATLAB distributed com-
puting toolbox (MDCT) and MATLAB distributed computing engine (MDCE).
In MATLAB, all low level operations are handled by message-passing routines
based on an MPI standard library (MPICH2). The use of MDCT is to create a
parallel pool on local machines. This pool allows for designing, implementing and
debugging parallel algorithms. The local parallel pool is particularly useful for
debugging where an error can be tracked back to the line of code that triggered
it. MDCE is similar to MDCT because it provides an environment to run the
same code and produce the same results. The only difference is that MDCE is
deployed on a massive distributed computing cluster. In our simulations, MDCE
is used to verify the efficiency of our parallel algorithms.
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2.6 Conclusion

Some brief reviews of the basic tools for the work of the thesis, such as RBF ap-
proximation methods, DD techniques, parallel computation and DTD algorithms,
were presented in this chapter.

The universal and effective IRBF approximation method has a high order conver-
gence rate and does not require an expensive meshing procedure associated with
other numerical methods such as FVMs and FEMs. The method is enhanced
with local and compact schemes which help make the system matrix sparse and
hence improve its condition number.

Domain decomposition technique has gained more and more attention since the
first introduction of parallel computing in the 1980’s. With the advantage of
being able to solve large scale problems and high potential for parallelisation,
DD methods have been employed to solve several problems in mechanics. The
two main classes of DD techniques are overlapping and non-overlapping ones. In
this work, both methods are considered and employed in combination with IRBF
to develop parallel algorithms to solve CFD problems.

The termination of distributed system has been a non-trivial problem in the
parallel computing community because there is no in-built mechanism in a dis-
tributed system to detect when all processes in the system have finished the
computation. There have been many efforts in designing an effective algorithm
to perform this job including wave algorithms, parental responsibility algorithms
and credit-recovery algorithm. An optimal DTD algorithm has to be able to
detect the global status of the system with a small delay and low message com-
plexity. In this work, such an algorithm, namely the Bitmap DTD, is developed
and incorporated into parallel methods. The Bitmap DTD itself is presented in
the next chapter.



Chapter 3

Bitmap distributed termination detection
algorithm with applications in parallel
domain decomposition computation

In this chapter, a new Distributed Termination Detection (DTD) technique will
be presented in detailed. The technique will be incorporated into parallel algo-
rithms developed and reported in subsequent chapters. In distributed computing,
the DTD problem concerns the discovery whether all processes in a distributed
system have finished their job. This problem is not a trivial problem since in
distributed system there is neither a global synchronised clock nor shared mem-
ory. In fact, the DTD is related to a more general problem, namely the detection
of global property of a distributed system. In this chapter, we propose a new
algorithm called Bitmap DTD. This algorithm is designed to work with domain
decomposition (DD) method in solving PDEs. The DD method adds more strict
requirements to a DTD, such as the communication must be synchronous and the
termination on individual process must be synchronised with the whole system.
The algorithm is inspired by the weight-throwing DTD (or Credit/Recovery).
However, in our algorithm, a bitmap is used to carry the snapshot of the system
from process to process. The proposed algorithm possesses the following desired
characteristics

• it allows any process to detect termination;

• it does not require any central control agent;

• the termination detection delay is low;

• the message complexity of the proposed algorithm is nearly optimal.

3.1 Introduction

Back in the 1980s, when distributed computing was first introduced the DTD
problem has been raised and investigated continuously. The pioneer in this field
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of parallel computing is Dijkstra, who proposed two methods for solving the DTD
problem (Dijkstra and Scholten, 1980; Dijkstra et al., 1983). Based on these very
first methods, two main categories of DTD, namely wave algorithm and parental
responsibility algorithm, were defined. Later on, Mattern (1989) proposed a credit
and recovery algorithm, which forms the third class. A very good taxonomy and
comparison of DTD algorithms can be found in (Matocha and Camp, 1998).

For wave algorithms, each iteration consists of two phases. In the first phase,
tokens are passed from a process, called root, to all other processes in the network.
In the second phase, the tokens are returned to the root. Based on the information
from the returned token the root can detect the termination. Wave algorithms
were proposed to work with token ring network topology, in which all processes
are connected in an enclosed ring. With this topology the algorithm is visibly
simple. The root process initiates only one token and sends it on to the ring.
After passing all the processes in the ring, the token comes back to the root in just
one round (Dijkstra and Scholten, 1980). However, the token ring topology has
become less common in practise. Instead, other network topologies, such as mesh,
star, bus, tree, line and hybrid ones are more popular. In these networks, wave
algorithms need to rely on a graph to function properly. The idea remains the
same, in the first wave, many tokens are passed from the root of the tree through
all intermediate processes and finally reach all the leaves. After that, tokens are
passed back to the root in the second wave (Huang, 1988). The biggest drawback
of wave algorithms is that it is a repetitive method, i.e. waves are sent out one
after another until termination is detected. In general, the message complexity
is O(M × n), where M is the number of basic messages and n is the number of
processes in the system.

In parental responsibility algorithms (Dijkstra and Scholten, 1980), all processes
in the system are always linked to their predecessor and/or successor by a relation-
ship called parental relationship. The predecessor is responsible for its successors
whenever it sends a message and activates successor, it also is not allowed to be-
come passive until all of its successors are passive. A successor sends a signal to
its predecessor right before it becomes passive. In this scheme, the root is the first
process that becomes active and also the last process that becomes passive and
detects the termination. Although the message complexity of these algorithms is
optimal O(M), they are asymmetric. An asymmetric algorithm requires a graph
to be constructed before it actually works. In addition, the root is the only pro-
cess that can detect the termination. If the root fails, the system will not be able
to terminate.

The third class of DTD is credit and recovery in which each active process is
assigned a portion of a predefined number of credits. This portion of credit will
be returned to another active process right before a process becomes passive.
This mechanism guarantees that no passive process holds any credit. When a
process holds all credits, termination is detected. The main drawback of this
type of DTD is the allocation of credits. As an example, in (Mattern, 1987),
the initial credit is chosen to be 1. When a process is activated, the credit is
divided into two halves and one half is sent out. By this way, with a large
number of processes, the credit will decrease tremendously and some portion of
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the credit can be lost. In (Huang, 1989), a space-efficient credit encoding scheme
was introduced. The credit is defined by a specific length and an index. This
index indicates the position of the window of that credit in a full-range credit,
which is hold by a controlling agent. Although the scheme solves the problem
related to the shortage of credit, it involves the use of a centralised controlling
agent. Hence, the algorithm will be broken if the controlling agent fails to operate.
Most of credit and recovery algorithms have optimal message complexity, which
is O(M).

The DTD algorithm presented in this chapter belongs to the third category.
However, the presented DTD uses a bitmap rather than a credit to detect the
termination. The use of bitmap makes the algorithm symmetric as all processes
will run the same code. Owing to this, any process can detect the termination.
The present algorithm requires neither a central process to monitor the state of
the system nor a spanning tree graph. The message complexity of our DTD is
optimal O(M) and the termination delay is D steps, where D is the diameter of
the network. The algorithm is presented in Section 3.3.

3.2 The DTD problem in DD method based parallel compu-
tation

Domain decomposition method is an efficient approach for solving large scale
problems in mechanics and specifically in computational fluid dynamics (CFD).
This method has been drawing more and more attention in recent decades owing
to its high potential for parallel computing. The basic idea of DD method is to
split the domain of a problem into smaller sub-domains and solve the problem in
each of these sub-domains. A parallel program based on DD method can be seen
as a distributed system, in which each process runs on a separate CPU and does
not share any data with other processes. In this system, since processes do not
directly share any data they cannot know the status of other processes. Therefore,
in order to detect whether all processes are ready to terminate, a dedicated DTD
algorithm is required.

When solving CFD problems using DD method on a parallel distributed system,
it is crucial to keep the computational task in all sub-domains consistent. Within
a DD method, the values on artificial boundaries (ABs), i.e. the boundaries used
to separate sub-domains, are unknown. In overlapping DD methods, the values
on ABs are exchanged between adjacent sub-domains after one iteration. These
exchanges are done through synchronous communication supported by Message
Passing Interface (MPI).

A summary of important properties of a distributed system based on DD method
is as follows.

1. A process is considered passive if the solution of the problem being solved
has converged. Passive is a stable property, i.e. once a process reaches this
state it will remain in this state forever. A process in passive state is ready
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to terminate. However, it has to keep running to exchange with other active
processes as well as maintain the consistency of its solution with the whole
system.

2. A system is considered passive when all processes are passive and all chan-
nels are empty.

3. The computation is synchronous, i.e. in one iteration, all processes must
finish their computation task and exchange data with their neighbouring
processes before advancing to the next iteration. The communication is
synchronous, i.e. message delivery is guaranteed by MPI.

The condition 3 guarantees that all communication channels are empty after each
iteration. It is because, in synchronous communication, a process always knows
the number of messages that it expects to receive. Therefore, once the process
has received all expected messages, there will be no message in transit heading
to it.

3.3 Bitmap DTD algorithm

In this section, the Bitmap DTD algorithm is presented. As the name suggests, in
this algorithm, a bitmap is used to store the state of all processes in the system.
Before presenting algorithm, it is necessary to define some terminologies.

Bitmap: Bitmap is a group of binary bits. Each bit can have only one of two
values 0 and 1, which are equivalent to active and passive states of a process,
respectively. The length of a bitmap is equal to the number of processes in the
system. For example, for a system of 32 processes, it is sufficient to use a bitmap
of 32 bits. Then the bitmap could have any value in the range from 0 to (232 −1).

Process-Index: is a numeric index of a process in distributed system enumera-
tion. This index also defines the position of the bit, representing that process in
a bitmap (Fig. 3.1);

Stop-Code: a bitmap with all bits of 1, which means all processes are passive;

Step-To-End (STE): the number of iterations left for each process to execute
before termination.

Figure 3.1 Example of bitmap and Ready-Code for a process with Process-Index 6 in a system of 32 sub-domains
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3.3.1 The algorithm

Bitmap DTD algorithm consists of two parts: (i) Termination Detection and
(ii) Synchronous Termination. The Termination Detection part aims to detect
whether all processes in the system are passive. Once the globally passive state
is detected, the Synchronous Termination is activated to get all processes termi-
nated simultaneously at the same step.

Synchronous Termination is a very important feature in synchronous distributed
system. If one process terminates while some processes are still active, those ac-
tive processes cannot exchange information with the terminated process and thus
cannot finish their work. Consequently, the system will end up with deadlock.

The Termination Detection algorithm is expressed by a flowchart in Fig. 3.2.

Figure 3.2 Bitmap Termination Detection algorithm. Recv bitmap is the bitmap received from a neighbour

The algorithm starts by setting a zero bitmap. After each iteration of the un-
derlying computation, if a process becomes passive, the bit corresponding to its
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Process-Index will be set to 1. And then the bitmap will be exchanged with
neighbouring processes. When a process receives a bitmap from one of neigh-
bouring processes, it will update its own bitmap by a binary union of its current
bitmap and the received bitmap. The process then checks the value of its bitmap.
If its bitmap is equal to the Stop-Code, the process detects termination. Oth-
erwise, the algorithm is repeated.

When the termination is detected, the Synchronous Termination algorithm is
started. A flowchart of Simultaneous Termination is shown in Fig. 3.3.

Figure 3.3 Synchronous Termination algorithm. Recv STE is the STE received from a neighbour

In this flowchart, a STE is used to keep track of whether a process can actually
terminate. STEs are initially set to (−1) in all processes. Once the termination
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is detected on a process, its STE is set to a positive integer which is decreased by
one after each iteration or message exchange. The process will terminate when
its STE reaches zero.

In a distributed system described by the model in Section 3.2, there are two
types of message. The first type is basic message which is produced by the
underlying computation. The second type is control message which is produced
by a DTD algorithm. Generally, basic messages and control messages are packed
and handled separately. However, as a control message consists of a bitmap and
a STE (Fig. 3.4), its size is small. Small messages are expensive due to protocol
overhead so that, in Bitmap DTD algorithm, basic message and DTD message
are aggregated into a single message as seen in Fig. 3.5. This technique, namely
message combining, is commonly used in DTD implementations to reduce the
communication overhead (Mattern, 1989).

Figure 3.4 Control message format in a system of 32 processes

Figure 3.5 Combined message format in a system of 32 processes

3.3.2 Proof of correctness

Lemma 1: Given that a distributed system described in Section 3.2 has entered
a quiescent state, the Bitmap Termination Detection algorithm will detect this
state after a finite number of iterations.

Proof: As the whole system is a connected graph, there always exists at least
one path from any two processes. By unidirectional communication, information
from one process will be spread to all other processes within a finite number of
steps. In the case that all processes have become passive, their corresponding bits
in the bitmap are set to 1 and sent out to other processes. After a finite number
of iteration, some process will gather all bits 1 and obtain the Stop-Code, that
process will detect the termination. Proof ended.

To prove the correctness of Synchronous Termination algorithm, let consider the
following prerequisites, which are taken from the algorithm itself in Fig. 3.3. Let
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D be the diameter of a graph, i.e. the greatest distance between any pair of
vertices.

P 1 When a process detects the termination, its STE is set to D and this process
is called trigger process.

P 2 When a process receives a non-negative STE, if its STE is negative or if
its STE is bigger than the received STE, its STE will be replaced by the newly
received STE.

P 3 If STE of a process is positive, that STE will be decreased by 1 after each
iteration. When STE of a process is equal to 0, the process terminates.

At this point we have to prove the following lemma

Lemma 2: Given that a trigger process has detected termination, using the Syn-
chronous Termination algorithm, all processes in the system will finally terminate
exactly at the same step D.

Proof:

For the trigger process, according to P1 and P3, after termination is detected,
STE is set to D and passed from one process to another and it is decreased by 1
per iteration. Obviously, after D iterations the trigger process will terminate.

To reach the farthest process, the STE of the trigger process has to go through D
processes and after D iterations. As stated by P2 and P3, STE is decreased by one
after passing from one process to another. So when the STE of the trigger process
reaches the farthest process its value will be D − D = 0. Upon receiving this
STE, the farthest process terminates and this happens exactly after D iterations
from the detection of termination.

For an intermediate process, let assume its shortest path to the trigger process
is K. Then after K iterations, it will receive the STE equal to (D − K). After
that, following P3 this STE will be decreased by one after each iteration and
the process will terminate after (D − K) iterations. In summary, this process
terminates after (D −K) +K = D iterations from the detection of termination.

There may be cases where two or more processes detect the termination at dif-
ferent iterations and become trigger processes. Then, in an arbitrary trigger
process, according to P1, the STE is set to D, which means the process has to
execute D iterations before termination. During this period, if a message with
lower STE arrives, the STE of current process will be replaced by the new lower
STE, according to P2. By this way, the earliest trigger process will win out all
other later trigger processes and they will terminate altogether after D step since
the earliest trigger process detected the termination. Proof ended.
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Table 3.1 Comparison of various termination detection algorithms. M : the number of basic messages, n: the number of
processes, E: the number of links, k: the number of failed processes.

Algorithm
Message

Complexity
Detection
Latency Symmetry

Mattern (1987) O(M) O(1) N
Venkatesan (1989) O(M + E) N/A N

Huang (1989) O(M) O(D) N
Tseng (1995) O(M + kn+ n) O(k + 1) N

Present algorithm O(M) O(D/2) Y

3.4 Performance analysis

3.4.1 Termination detection delay

Since a distributed system is considered as a connected graph with diameter D,
the number of steps required for a bitmap of one process to spread throughout the
system is D. In the worst case, when all processes become passive simultaneously,
some intermediate processes will need about D/2 steps to gather all bitmaps and
detect the termination. Thus, the detection delay is D/2.

3.4.2 Message complexity

Chandy and Misra (1986) showed that, in a worst case, lower bound of the mes-
sage complexity of any DTD in asynchronous network is O(M), where M is the
number of basic messages. In Chandrasekaran and Venkatesan (1990), a lower
bound O(E) was proved for asynchronous DTD algorithms and O(M + E) for
general DTD algorithms, where E is the number of links in the system.

In Bitmap DTD algorithm, for an iteration, a process needs to send as much
control messages as basic messages to its neighbours. In total, the number of
control messages is equal to the number of basic messages. In other words, the
message complexity of the algorithm is O(M)

A comparison of termination detection delay and message complexity by various
credit/recovery DTD algorithms is provided in Table 3.1. It can be seen that, the
present Bitmap DTD algorithm has optimal message complexity and a very good
detection latency. This table also shows that the present algorithm is symmetric
while others are not. Symmetric algorithms are easy to implement and are more
efficient as they perform identically on all processes and do not require a spanning
tree to be constructed before hand.
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3.5 Conclusion

In this chapter, a new DTD algorithm, namely Bitmap DTD, is introduced.
The algorithm evolves from the Credit/Recovery class, but with the credit be-
ing replaced by a bitmap. The proposed algorithm has following advantages in
comparison with a typical Credit/Recovery DTD

• it is an symmetric algorithm which allows any process to detect termination;

• it is a decentralised algorithm which does not require any central control
agent as well as rooted tree or graph;

• the termination detection delay is low (D/2);

• the message complexity of the algorithm is optimal O(M).

It is noted that the Bitmap DTD method is implemented to be used with DD
method for solving fluid flow problems. Therefore, the communication topology
is required to be synchronous and message delivery is guaranteed.



Chapter 4

Compact local IRBF based parallel do-
main decomposition method for the so-
lution of PDEs

In this chapter, a parallel method based on domain decomposition (DD) tech-
nique and compact local integrated radial basis function (CLIRBF) is presented
(Pham-Sy et al., 2013). The overlapping DD method is used to separate the
problem under consideration into smaller, separated problems with actual and
artificial boundaries (ABs). The conditions on these ABs are guessed initially
and may attain the actual solution if the iterative algorithm converges. Within
each iterative step, these sub-problems are independent and solved in parallel by
a CLIRBF scheme. The present algorithm, namely parallel CLIRBF, achieves
higher throughput in solving large scale problems by, firstly, parallel processing
of sub-problems and, secondly, accelerating the convergence rate using high order
compact local scheme in each sub-problem. The procedure is illustrated with sev-
eral numerical examples, including the lid-driven cavity fluid flow problem using
Message Passing Interface supported by MATLAB.

4.1 Introduction

Radial Basis Functions (RBFs) have traditionally been used to provide a continu-
ous interpolation of scattered data sets (Franke, 1982; Kansa, 1990a). The differ-
ential RBF (DRBF) based methods have been successfully used to solve a wide
variety of differential equations. For this approach, once the field variables are
known, its derivatives can be calculated through differentiation (Kansa, 1990a;
Zerroukat et al., 1998; Tran-Canh and Tran-Cong, 2004). Another approach,
namely the integrated RBF method (IRBF), which was proposed by Mai-Duy
and Tran-Cong (2001), is based on the approximation of the highest-order deriva-
tives of the differential equations using RBF at the first step, and subsequently
its lower-order derivatives and the dependent variable itself are obtained by inte-
gration. The IRBF based methods can outperform other approximation methods
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based on the DRBF owing to its ability to produce very accurate solutions using
relatively small number of data nodes.

Although full-domain IRBF methods are highly flexible and exhibit high order
convergence rates in their basic implementation, the associated fully-populated
matrix systems can lead to poor numerical conditioning as the scale of a problem
increases (Mai-Duy et al., 2008). The problem becomes critical with increasingly
large data sets. Many techniques have been developed to reduce the effect of the
problem, including DD methods (Ingber et al., 2004; Tran et al., 2009), adaptive
selection of data centres (Ling et al., 2006), RBF preconditioners (Brown, 2005)
and RBF based compact local stencil methods (Mai-Duy et al., 2011). While a
reliable method of controlling numerical ill-conditioning and particularly compu-
tational cost, as problem scale increases, can be based on DD method, the use
of compact local approximations facilitates the solution of a differential equation
without having to deal with large systems of global equations. In this chapter, a
parallel algorithm based on compact local integrated RBF and DD techniques is
developed for the solution of boundary value problems (BVP). A large problem
is firstly decomposed into many smaller problems, each of which is analysed in
parallel, and secondly the acceleration of the convergence rate within each sub-
region using groups of CLIRBF stencils is carried out by parallel CPUs. For the
ease of presentation, in this chapter the terms sub-domain and process are used
interchangeable.

One common problem associated with distributed computing is asymmetric ter-
mination of processes over the system. This problem occurs more frequently when
dealing with asymmetric problems, in which one process may converge faster than
the others. In fact, this situation was first noticed by Francez (1980) and inde-
pendently by Dijkstra and Scholten (1980), and named Distributed Termination
Detection (DTD). In general, the goal of DTD is to detect whether a system is
in its quiescent state. Quiescence is defined as a state, in which no process is
active and no message is in transmission. As the system is distributed, there
is no shared clock or memory involved. Moreover, if the system is required to
be synchronous, the existed problem becomes more complex. In our parallel ap-
proach, DD method is used to divide the computational work among distributed
processes, or CPUs. Because the results obtained from each process must be
consistent within the whole domain, all processes must stop at the same step. In
this chapter, the Bitmap DTD algorithm presented in Chapter 3 is used owing to
some important advantages (i) it allows any process to detect termination (sym-
metry); (ii) it does not require any central control agent (decentralisation); and
(iii) the message complexity of the proposed algorithm is nearly optimal.

This chapter is organised as follows. In Section 4.2, a brief review of a CLIRBF
method is presented. The DD method as well as DTD are described in Section 4.3
and Section 4.4, respectively. Numerical examples are then discussed in Section
4.5 with a conclusion in Section 4.6.
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4.2 Review of the IRBF collocation method

Consider a second-order ODE with boundary condition as follows.

Lu = f, x ∈ Ω (4.1)
Bu = g, x ∈ ∂Ω (4.2)

where L is a second order differential operator; B - an operator imposed as bound-
ary conditions such as Dirichlet, Neumann or a mixture of both; u - an unknown
function; f and g - given functions; Ω and ∂Ω - the domain under consideration
and its boundary. For simplicity, the 1D-IRBF scheme for discretisation of ODEs
is presented.

4.2.1 1D-IRBF collocation method

The function u along an x-gridline is represented in the IRBF form (Mai-Duy
and Tran-Cong, 2001) as

d2u

dx2
=

n∑

i=1

wigi =
n∑

i=1

wiG
[2]
i , (4.3)

where {wi}ni=1 is the set of RBF weights; and {gi(x)}ni=1 the set of RBFs. In this
work, the Multi-quadric (MQ) RBF is used and given by (Haykin, 1999)

Gi(x) =
√

(x− ci)2 + a2
i ,

where {ci}ni=1 is a set of centres and {ai}ni=1 a set of MQ-RBF widths.

The corresponding first-order derivative and function are then determined through
integration as follows.

du

dx
=

n∑

i=1

wiG
[1]
i + C1, (4.4)

u =
n∑

i=1

wiG
[0]
i + C1x+ C2, (4.5)

where G[1]
i (x) =

∫
G

[2]
i (x)dx, G[0]

i (x) =
∫
G

[1]
i (x)dx and C1 and C2 are unknown

constants of integration. The superscript [.] is used to indicate the associated
derivative order.

Collocating equations (4.3) - (4.5) at grid points {xi}ni=1 yields the following set
of algebraic equations

d2ũ

dx2
= G[2]w̃, (4.6)

dũ

dx
= G[1]w̃, (4.7)

ũ = G[0]w̃, (4.8)
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where

G[2] =




G
[2]
1 (x1) G

[2]
2 (x1) · · · G[2]

n (x1) 0 0
G

[2]
1 (x2) G

[2]
2 (x2) · · · G[2]

n (x2) 0 0
...

... . . . ...
...

...
G

[2]
1 (xn) G

[2]
2 (xn) · · · G[2]

n (xn) 0 0



,

G[1] =




G
[1]
1 (x1) G

[1]
2 (x1) · · · G[1]

n (x1) 1 0
G

[1]
1 (x2) G

[1]
2 (x2) · · · G[1]

n (x2) 1 0
...

... . . . ...
...

...
G

[1]
1 (xn) G

[1]
2 (xn) · · · G[1]

n (xn) 1 0



,

G[0] =




G
[0]
1 (x1) G

[0]
2 (x1) · · · G[0]

n (x1) x1 1
G

[0]
1 (x2) G

[0]
2 (x2) · · · G[0]

n (x2) x2 1
...

... . . . ...
...

...
G

[0]
1 (xn) G

[0]
2 (xn) · · · G[0]

n (xn) xn 1



,

w̃ = (w1, w2, · · · , wn, C1, C2)
T ,

ũ = (u1, u2, · · · , un)T ,
dkũ

dxk
=

(
dku1

dxk
,
dku2

dxk
, · · · , d

kun
dxk

)T
,

where ui = u(xi) with i = 1, 2, · · · , n.

Because of the presence of integration constants of the IRBF based approxima-
tion, the system of equations (4.8) will become under-determined. In this case,
one can beneficially introduce in the algebraic equation system additional con-
straints such as nodal or derivative values. Thus, the algebraic equation system
(4.8) can be reformulated as follows.

(
ũ

h̃

)
=

[
G[0]

L̃

]
w̃ = Cw̃, (4.9)

where h̃ = L̃w̃ are additional constraints. The conversion of the network-weight
space into the physical space yields

w̃ = C−1

(
ũ

h̃

)
, (4.10)

where C−1 is the conversion matrix. By substituting equation (4.10) into equa-
tions (4.6) and (4.7), the second and first-order derivatives of u will be expressed
in terms of nodal variable values as follows.

d2u

d2x
= D2ũ + k2,

du

dx
= D1ũ + k1,

(4.11)
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where D1 and D2 are known vectors of length n; and k2 and k1 scalars determined
by h̃. Applying (4.11) at each and every collocation point on the grid-line yields

d2ũ

d2x
= D̃2ũ + k̃2,

dũ

dx
= D̃1ũ + k̃1,

(4.12)

where D̃2 and D̃1 are known matrices of dimension n × n; and k̃2 and k̃1 are
known vectors of length n.

4.2.2 Compact local IRBF methods

The 1-DIRBF approximation, presented in Section 4.2.1, is now developed into
compact local 3-point stencil to discretise differential equations, following Mai-
Duy et al. (2011).

Consider local stencils LSi = [xi−1, xi, xi+1] associated with grid point xi (2 ≤
i ≤ n− 1) in a typical global 1D Cartesian grid line. The same procedure of Eqs.
(4.3)-(4.9) is applied for each and every LSi.

In the context of the present 3-point local stencils, additional constraints are
chosen to be the imposition of the governing equation at xi−1 and xi+1. Thus,
Eq. (4.9) includes (i) a set of three equations representing nodal values of u
over the LSi and (ii) a set of two algebraic equations obtained by evaluating the
governing differential equation (4.1) at xi−1 and xi+1. Following Eqs. (4.10) -
(4.11), the governing differential equation (4.1) is discretised at xi by a weighted
combination of function values (ui−1, ui, ui+1). Eventually, a tri-diagonal system
matrix is obtained and can be solved by a proper iterative method.

4.3 Overlapping DD Method

Although the CLIRBF methods are expected to (i) enhance the computational
accuracy and convergence rate, and (ii) reduce the computational time, they
could suffer from the problem of numerical ill-condition for large scale problems.
In order to deal with this issue, a combination of the present CLIRBF approach
and DD method is used to solve differential equations.

DD method aims to split the domain under consideration into smaller sub-
domains while guaranteeing the continuity at the splitting boundary. DD meth-
ods can be grouped into two classes: (i) non-overlapping methods and (ii) over-
lapping methods (Smith et al., 1996).

For the multiplicative Schwarz overlapping method, since the values on AB of
each sub-domain are updated from the most recent results of its neighbouring
sub-domains (NSs), the sub-domains have to be solved sequentially. Thus, it has
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little potential for parallel programming. One way to make it parallelisable is by
grouping sub-domains through black-white colouring technique (Quarteroni and
Valli, 1999), so that all any two NSs have different colours. By this way, in the
first half-step only one group, for example the white one, executes simultaneously
because its sub-domains do not share any common boundary. In the next half-
step, the other group (the black one) will execute in the same manner.

For the additive Schwarz overlapping method, the values on AB of each sub-
domain at step k + 1 are updated from the results of its NS’s at step k. Since
the data of each sub-domain are independent of others during the computational
process, the approach is naturally parallel-capable and its implementation is quite
straightforward. In this chapter, the additive overlapping method is implemented
on the domain under consideration. We will present this method in more detail
below.

4.3.1 Additive Schwarz overlapping method

For illustrative purposes, the domain Ω is divided into two sub-domains Ω1 and
Ω2. Let ∂Ω1 and ∂Ω2 be the actual boundaries and Γ1, Γ2 ABs of Ω1 and Ω2

respectively (Fig. 4.1). The boundary condition imposed on this interface can be
Dirichlet-Dirichlet, Dirichlet-Neumann or otherwise.

In this work, the boundary condition imposed on the ABs Γ1,2 is Dirichlet-
Dirichlet type. As the algorithm is iterative, Eq. (4.1) is written for the sub-
domains Ω1 and Ω2 respectively at a step k as follows.





Luk1 = f, x ∈ Ω1

Buk1 = g, x ∈ ∂Ω1

uk1 = ck−1
1Ω2

, x ∈ Γ1

(4.13)

and 




Luk2 = f, x ∈ Ω2

Buk2 = g, x ∈ ∂Ω2

uk2 = ck−1
2Ω1

, x ∈ Γ2

(4.14)

where ck−1
iΩj

(i, j = {1, 2}, i 6= j) is extracted from Ωj at the step k − 1 and given
by

ck−1
iΩj

= θuk−2
iΩj

+ (1 − θ)uk−1
iΩj

; 0 ≤ θ ≤ 1

where uk−1
iΩj

(i, j = {1, 2}, i 6= j) is the value of u in Ωi obtained from the solution
in Ωj at the step k − 1 (see Fig. 4.1); θ relaxation factor which, in our case, is
chosen to be equal to 1.

One important character of parallel DD methods is shared memory. In such sys-
tems all processes have access to a shared memory and each process has to update
its own record in that memory. Because of the nature of shared memory as the
number of processes increased, memory access becomes a bottleneck of the whole
system. Another drawback of this approach is its high message complexity. Each
process has to access the share memory at least once per iteration to update its
state, which produces considerably large amount control messages in the network.
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Figure 4.1 DD with two sub-domains Ω1 and Ω2 for a 1D problem

In order to get rid of these disadvantages of shared memory, in our method, a
distributed memory is used. However, to keep all processes synchronised, each
message between processes carries a bitmap which is a snapshot of the system at
that moment. This idea will be discussed in Section 4.4.

4.3.2 Algorithm of the present procedure

The present method can now be described in a more detailed algorithm whose
flowchart is shown in Fig. 4.2 and consists of four main steps

1. Divide the analysis domain into a number of sub-domains. Guess initial
boundary condition on ABs;

2. Solve the boundary value problem in each and every sub-domain using
CLIRBF method;

3. Exchange the field variables across ABs;

4. Check for the convergence on the overlapping area.

For the case of two sub-domains, it is quite easy to determine neighbour and
corresponding AB of a sub-domain. However, with more than two sub-domains,
more effort is required as follows.

1. Enumerate sub-domains;

2. Determine the neighbours;

3. Determine real and artificial boundaries.

An example of this procedure is provided in Fig. 4.3
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Figure 4.2 Parallel DD with 2 sub-domains. ABCM - convergence measure on ABs; ABCMtol - predefined tolerance.

Figure 4.3 Enumeration in system within 4 × 3 sub-domains.
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4.4 Parallel algorithm based on DTD

In a general distributed system, any process can terminate if it has finished its
assigned task and the system is fully terminated only when all processes are termi-
nated. However, when solving a PDE using DD method based parallel algorithm,
as the result obtained from all sub-domains must be consistent, all processes are
required to terminate strictly at the same step. Clearly, if one process terminates
while some other processes are still active, those active processes cannot exchange
information with their terminated neighbours. Consequently, the system will end
up with communication errors. In the current parallel algorithm, a Bitmap DTD
method presented in Chapter 3 is employed to synchronise the computation and
detect the termination of the system.

During the DTD process, an extra amount of data called bitmap is spread
throughout the system and reflects the current state of all processes. The use
of bitmap makes the present algorithm symmetric because any process can now
detect the termination at any time. Furthermore, the algorithm requires neither
a central process nor a spanning tree/graph to monitor the state of the system.

Bitmap DTD algorithm consists of two components: (i) Termination Detection
and (ii) Synchronised Termination. The purpose of Termination Detection is to
detect whether the system is in quiescent state, i.e. all the processes are ready
to terminate. When that state is achieved, the Synchronised Termination is
activated to get all processes terminated simultaneously at the same step.

Bitmap DTD runs along with the main computation as the data and the bitmap
are combined into one message. During Termination Detection, each process
keeps a record of its current bitmap which is initially zero. When a process re-
ceives a bitmap from one of its neighbours it updates its own bitmap by doing a
binary union between its bitmap and the received bitmap. At any stage, a process
will detect termination if its bitmap consists of all bits 1. Otherwise, it contin-
ues the main computation. When the termination is detected, the Synchronous
Termination is started. In this phase, a Step-To-End (STE), i.e the number of
steps each process needs to perform the computation before terminating, is in-
troduced. Initially, all STEs are set to (−1). Once the termination is detected
by a process, its STE is set to a positive value of D which is the diameter of the
graph of the distributed system. The STE and other data are then transferred to
its neighbours. The neighbours, upon receiving a positive STE, will update their
own STE by the received STE. A positive STE is decreased by one after each
iteration. A process will terminate when its STE reaches zero. The mechanism
of Bitmap DTD algorithm is presented in details in Chapter 3.

4.5 Numerical results

The proposed parallel method based on the combination of a CLIRBF method
and parallel DD method is verified using 1D and 2D problems with different
boundary conditions. The capability and efficiency of the present method are
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then demonstrated with the simulation of the lid-driven cavity (LDC) flow of a
viscous fluid.

4.5.1 One dimensional problem

Consider the following second-order ODE.

d2u

dx2
+
du

dx
+ u = − exp(−5x) [9979 sin(100x) + 900 cos(100x)] , 0 ≤ x ≤ 1,

(4.15)
with an analytic solution u = exp(−5x) sin(100x).

This problem is solved using the present method with two different types of
boundary condition. The domain is partitioned into 2 sub-domains and a wide
range of grids (201, 303, . . . , 501) is considered.

Dirichlet boundary condition

The Dirichlet conditions are u(0) = 0 and u(1) = sin(100) exp(−5).

The results show that the present method achieves the same accuracy level as the
CLIRBF method. In fact, the relative L2 error of the present method is O(hα),
showing a convergence rate α = 4.12 while that for the CLIRBF is 4.26 (see Fig.
4.4 (bottom figure)). Figure 4.4 (top figure) depicts a comparison of the results
obtained by the present method, the CLIRBF and the analytic ones.

Dirichlet and Neumann boundary conditions

The Dirichlet condition is imposed on the left end u(0) = 0 and the Neumann

conditions on the right end
du(1)
dx

= 5 exp(−5) [20 cos(100) − sin(100)] = 0.598.

While the result described in Fig. 4.5 (top) by the present method is in very
good agreement with the analytic solution, the convergence rate displayed in Fig.
4.5 (bottom) shows that the present parallel method yields a higher accuracy in
comparison with the CLIRBF method. Generally, the 1D example shows that
the present parallel scheme based on CLIRBF and DD method can attain the
numerical accuracy of corresponding schemes using single domain.

4.5.2 Two dimensional problem

Consider the following 2D problem

∂2u

∂x2
+
∂2u

∂y2
= 4(1 − π2) sin(2πx) sinh(2y) + 16(1 − π2) cosh(4x) cos(4πy). (4.16)

This problem is solved in the analysis domain and with the Dirichlet and Dirich-
let/Neumann boundary conditions given in Fig. 4.6. A sample program code of
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Figure 4.4 Second order problem with Dirichlet boundary condition. Solutions obtained by the 3-point CLIRBF method, the
present parallel method and and the analytic solution (top figure); Relative L2 errors of the solution u against the grid density
by the 3-point CLIRBF method and the present method (bottom figure).
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Figure 4.5 Second order problem with Dirichlet-Neumann boundary condition. Solutions obtained by the 3-point CLIRBF
method, the present parallel method and and the analytic solution (top figure); Relative L2 errors of the solution u against
the grid density by the 3-point CLIRBF method and the present method (bottom figure).



4.5. Numerical results 51

the parallel algorithm for 2D problems with Dirichlet boundary conditions can
be found in Appendix B.

The analytic solution is given by u(x, y) = sin(2πx) sinh(2y) + cosh(4x) cos(4πy)
and presented in Fig. 4.7(a).

(a) (b)

Figure 4.6 2D problem. Geometry of the analysis domain with Dirichlet boundary conditions (a) and Dirichlet-Neumann
boundary conditions (b)

A range of uniform grids (71 × 71, 113 × 113, 149 × 149, 185 × 185, 237 × 237)
and CPUs (4, 9, 16, 25) are considered in the simulation. The results show
that the numerical solution by the present parallel method whose computational
parameters are given in Tables 4.1 and 4.2 is in very good agreement with the
analytic solution (see Fig. 4.7). Indeed, Fig. 4.7 presents the numerical solution of
field variable u by the present parallel method with Dirichlet-Dirichlet boundary
condition (Fig. 4.7(b)) and Dirichlet-Neumann boundary condition (Fig. 4.7(c))
using a grid of 77 × 77 collocation points and four CPUs in comparison with the
analytic solution.

The results presented in Tables 4.1 and 4.2 show that when grid density increases
the throughput of the present parallel method grows significantly. Indeed, the
computation time is reduced significantly in comparison with non-parallel com-
putation when increasing the number of collocation points to 185 × 185 as shown
in Tables 4.1-4.2. Furthermore, the parallel algorithm is really efficient for solving
large scale problems which require a large number of calculations as described in
the next example.
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Figure 4.7 2D problem. (a) - Analytic solution; (b) - Present method with Dirichlet-Dirichlet boundary condition; (c) - Present
method with Dirichlet-Neumann boundary condition.
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Table 4.1 2D problem with Dirichlet Boundary conditions. CPUs: number of CPUs;ABCMtol: the tolerance of convergence
measure on the artificial interfaces; Ni: number of iterations; Nes: error norm for the single domain CLIRBF method; Nep:
error norm for the parallel CLIRBF-DD method; Ts: sequential computation time (second); Tp: parallel computation time
(second).

Single Domain Multi Domains - Parallel computation
Grid Nes Ts CPUs ABCMtol Ni Nep Tp

77 × 77 2.963E − 6 25 4 1.E − 6 124 3.174E − 6 428
113 × 113 1.882E − 6 104 9 1.E − 6 217 1.831E − 6 744
149 × 149 1.443E − 6 383 16 1.E − 6 384 1.413E − 6 1311
185 × 185 1.268E − 6 11234 25 1.E − 6 515 1.408E − 6 1739
237 × 237 n/a n/a 25 1.E − 7 577 2.877E − 6 3873

Table 4.2 2D problem with Neumann and Dirichlet Boundary conditions. CPUs: number of CPUs; ABCMtol: the tolerance
of convergence measure on the artificial interfaces;Ni: number of iterations; Nes: error norm for the single domain CLIRBF
method; Nep : error norm for the parallel CLIRBF-DD method; Ts: sequential computation time (second); Tp: parallel
computation time (second).

Single Domain Multi Domains - Parallel computation
Grid Nes Ts CPUs ABCMtol Ni Nep Tp

77 × 77 1.523E − 6 19 4 1.E − 5 132 1.356E − 6 469
113 × 113 5.898E − 6 54 9 1.E − 6 660 3.949E − 6 2294
149 × 149 2.708E − 6 145 16 5.E − 7 1150 1.945E − 6 4039
185 × 185 1.443E − 6 16560 25 5.E − 7 921 1.129E − 6 3193
237 × 237 n/a n/a 25 1.E − 7 661 1.307E − 6 4379
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4.5.3 Lid-driven cavity fluid flow problem

The LDC flow is commonly used as a typical example to benchmark numerical
methods and therefore is also employed here to investigate the accuracy as well
as the efficiency of the present parallel scheme. The problem is defined in the
stream-function and vorticity formulation as follows.

∂ω

∂t
+ (

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
) =

1
Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (4.17)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (4.18)

where ψ is the stream function, ω the vorticity, Re the Reynolds number defined

as Re =
UL

ν
, where U is the characteristic speed of the lid; L the characteristic

side of the cavity and ν the kinematic viscosity of the fluid. The geometry of the
analysis domain with the chosen coordinate system is shown in Fig. 4.8. The

velocity components by x and y-direction u and v are given by u =
∂ψ

∂y
and

v = −∂ψ

∂x
.

Figure 4.8 The LDC fluid flow problem. Geometry of the analysis domain and boundary conditions in terms of the stream
function.

The boundary conditions are given in terms of the stream function as

ψ = 0,
∂ψ

∂x
= 0 ∀(x, y) ∈ Γ2 ∪ Γ3; (4.19)

ψ = 0,
∂ψ

∂y
= 0 ∀(x, y) ∈ Γ4; (4.20)

ψ = 0,
∂ψ

∂y
= 1 ∀(x, y) ∈ Γ1. (4.21)



4.5. Numerical results 55

The problem is solved by the present parallel algorithm using the 9-point 2D
CLIRBF - DD method. Since each sub-domain is handled by a separate CPU, the
number of the sub-domain is also the number of CPUs used for the present parallel
method. After dividing the analysis domain into sub-domains, the algorithm for
solving LDC problem in each sub-domain can be described as follows.

1. Guess initial boundary condition at ABs and initial values of ω;

2. Solve the LDC problem using CLIRBF method;

(a) Solve Eq. (4.18) for ψ;

(b) Approximate the values of ω on boundaries and the convective terms;

(c) Solve Eq. (4.17) for ω;

3. Exchange the values of ψ and ω at interfaces with neighbours;

4. Calculate convergence measure in overlapping areas and check for termina-
tion condition;

If the procedure is not yet converged, replace values of ψ and ω at ABs with
those received from neighbours and go back to step 2;

5. Stop the procedure.

A range of Re = {100, 400, 1000} and uniform grids are considered in the simu-
lation. The time step ∆t is chosen in the range from 10−4 to 10−6 and based on
Re value and spatial grid size. Smaller time step is required for finer grids and/or
higher Re. The detailed results by the present parallel method are provided in
Tables 4.3 - 4.5.

Fig. 4.9 depicts profiles of the velocities u and v along the vertical and horizontal
centre-lines, respectively for several Reynolds numbers with grids of 113 × 113
collocation points (Figs 4.9(a) - 4.9(b)) and 295 × 295 collocation points (Figs
4.9(c) - 4.9(d)) using the present parallel method with 25 CPUs. Results from
the benchmark solution by Ghia et al. (1982) using a grid of 129 × 129 points are
also included for comparison.

In Fig. 4.10, the streamlines and vorticity contours of the flow are shown to be in
a very good agreement with benchmark solution by Ghia et al. (1982) and Botella
and Peyret (1998). Furthermore, secondary vortices at the bottom corners (Figs.
4.10(a), 4.10(c) and 4.10(e) using 103×103 grid points and Figs. 4.11(a), 4.11(c)
and 4.11(e) using 295×295 grid points) are well captured by the present method.
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Figure 4.9 The LDC fluid flow problem. Profiles of the u velocity along the vertical centre lines (a, c) and the v velocity along
the horizontal centre lines (b, d) by the present parallel method with several Reynolds numbers Re = {100, 400, 1000}
and two grids 103 × 103 (a, b) and 295 × 295 (c, d) in comparison with the corresponding Ghia’s results
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(a) Re = 100 (b) Re = 100

(c) Re = 400 (d) Re = 400

(e) Re = 1000 (f) Re = 1000

Figure 4.10 The LDC fluid flow problem. Streamlines (left figures) and vorticity contour (right figures) of the flow for several
Reynolds numbers Re = {100, 400, 1000} by the present parallel method using a grid of 103 × 103 of points.
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(a) Re = 100 (b) Re = 100

(c) Re = 400 (d) Re = 400

(e) Re = 1000 (f) Re = 1000

Figure 4.11 The LDC fluid flow problem. Streamlines (left figures) and vorticity contours (right figures) of the flow for several
Reynolds numbers Re = {100, 400, 1000} using a grid of 295 × 295 points.
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The efficiency of the present parallel method is considered. The general goals
are (i) to assign each process an equal amount of work by dividing the original
domain into equal size sub-domains and (ii) to reduce the communication between
processes by minimising the surface area of the sub-domains. As can be seen in
Tables 4.3 - 4.5 the throughput of the present parallel method has been greatly
improved.

In Fig. 4.12, the results show that the simulation time of the present parallel
algorithm decreases tremendously as the number of CPUs is increased. This re-
flects the scalability the algorithm. However, there are always some thresholds,
over which the increase of number of CPUs influences insignificantly on the sim-
ulation time. For example, the improvement of time efficiency of computation
is not significant anymore as the number of CPUs is more than 10 for a grid of
101 × 101 (Fig. 4.12(a)), 25 for a grid of 155 × 151 (Fig. 4.12(b)) and 32 − 35 for
a grid of 209 × 209 (Fig. 4.12(c)) and 253 × 253 (Fig. 4.12(d)).
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Figure 4.12 The LDC fluid flow problem. Simulation time versus number of CPUs for the present parallel method with
different grids.

Furthermore, the parallel method removes the ill-conditioning of the global system
matrix evidenced by a significant decrease of the condition number of the system
matrix associated with the IRBF method (see the column 3 of Table 4.6 and Fig.
4.13 (bottom figure)).

Fig. 4.14 depicts the influence of the grid density on the time efficiency of the
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Figure 4.13 The LDC fluid flow problem with Re = 100, grid 101 × 101. Top figure: Tcmp - average computation time in
one iteration. Bottom figure: CN - the condition number of the system matrix for solving ψ in each sub-domain.

present parallel algorithm. In this figure, it is observed that with higher grid
size the simulation time decreases faster for all considered Reynolds numbers.
The results confirm that the time efficiency of parallel methods will be higher for
larger numbers of collocation points, i.e., larger scale problems.

It is worth noting that the throughput of the present parallel method is very high
when solving the LDC fluid flow problem. A reason for this is the reduction of
the computation time within each sub-domain. As can be seen in Fig. 4.13 (top
figure), the average computation time in a sub-domain decreases exponentially
with respect to number of CPUs.

Indeed, although the communication time among processes is generally order of
magnitude slower than calculations within a process, due to a great number of it-
erations, the computation time for each sub-domain plays a key role in improving
the throughput of the present parallel method. One typical numerical example is
given in Table 4.6 and the extensive improvement of throughput of the present
parallel method can be explained as follows.

Let Ni be the number of iterations in the whole domain, Tcmp the average com-
putational time (seconds) in sub-domains for each iteration; Tcmm the total com-
munication time (minutes). The total parallel computation time Tp (minutes) is
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Figure 4.14 The LDC fluid flow problem. Simulation time versus number of CPUs when solving LDC using the present
parallel method with different Reynolds numbers: Re = 100 (Fig. 4.14(a)); Re = 400 (Fig. 4.14(b)); Re = 1000 (Fig.
4.14(c)).

given by

Tp =
Ni × Tcmp

60
+ Tcmm (4.22)
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Table 4.6 shows that while the number of iterations for different cases of parallel
computation is similar (approximately 3000), the average computation time Tcmp
for each iteration in sub-domains decreases quickly with respect to the problem
size in each sub-domain (Figure 4.13 (top)), resulting in a very high rate of
throughput.

Also, it is worth adding that as a result of DD, the problem size in a sub-domain
is smaller. Consequently, the complexity of the problem is greatly reduced. To
be more specific, the number of floating point operations (flops) required to do
a singular value decomposition (SVD) for a matrix (m× n) is of O(mn2). If the
size of the matrix is reduced to a half, i.e. (m × n

2
), the complexity of the SVD

operation becomes O(mn2

4
), which is a fourth of the complexity of the original

problem. Thus this can be considered as one of the main factors contributing to
the achievement of super linear speed-up of the simulation.
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Table 4.3 Parallel computation of the LDC fluid flow problem with Re = 100; CPUs: number of CPUs; ∆t: time step;
CMtol: tolerance of convergence measure at interfaces; Ni: number of iterations; Tp: parallel computation time (minutes);
CM : average convergence measure of the whole analysis domain.

grid CPUs ∆t CMtol Ni Tp CM

101 × 101 2 1.E − 5 1.E − 6 2983 346.66 3.3862E − 07
− 4 1.E − 5 1.E − 6 3039 100.48 3.2612E − 07
− 6 1.E − 5 1.E − 6 3130 49.44 3.0900E − 07
− 8 1.E − 5 1.E − 6 3127 26.32 3.1188E − 07
− 9 1.E − 5 1.E − 6 3153 23.90 2.6812E − 07
− 12 1.E − 5 1.E − 6 3141 13.69 2.7585E − 07
− 15 1.E − 5 1.E − 6 3140 10.22 2.5592E − 07
− 16 1.E − 5 1.E − 6 3142 7.96 2.5326E − 07
− 20 1.E − 5 1.E − 6 3139 5.97 2.3442E − 07
− 25 1.E − 5 1.E − 6 3128 4.54 2.2448E − 07
− 28 1.E − 5 1.E − 6 3125 3.59 2.1013E − 07
− 30 1.E − 5 1.E − 6 3123 3.10 2.1792E − 07
− 35 1.E − 5 1.E − 6 3119 2.70 2.0436E − 07
− 36 1.E − 5 1.E − 6 3118 2.61 2.0544E − 07

155 × 155 9 5.E − 6 1.E − 6 5806 190.00 2.8840E − 07
− 12 5.E − 6 1.E − 6 5822 110.39 2.8021E − 07
− 15 5.E − 6 1.E − 6 5828 74.76 2.7005E − 07
− 16 5.E − 6 1.E − 6 5837 63.17 2.5711E − 07
− 20 5.E − 6 1.E − 6 5842 41.61 2.4535E − 07
− 25 5.E − 6 1.E − 6 5837 29.23 2.3962E − 07
− 28 5.E − 6 1.E − 6 5764 25.24 2.2321E − 07
− 30 5.E − 6 1.E − 6 5820 23.00 2.1753E − 07
− 35 5.E − 6 1.E − 6 5813 18.27 2.0763E − 07
− 36 5.E − 6 1.E − 6 5732 17.94 2.1531E − 07

209 × 209 16 5.E − 6 1.E − 6 5862 190.41 3.4286E − 07
− 20 5.E − 6 1.E − 6 5968 134.30 2.8124E − 07
− 25 5.E − 6 1.E − 6 5835 89.89 3.3027E − 07
− 28 5.E − 6 1.E − 6 5823 74.26 2.6927E − 07
− 30 5.E − 6 1.E − 6 5854 61.78 3.0911E − 07
− 35 5.E − 6 1.E − 6 5820 51.69 2.7399E − 07
− 36 5.E − 6 1.E − 6 5820 45.19 2.2564E − 07

253 × 253 25 5.E − 6 1.E − 6 6715 227.97 2.9365E − 07
− 28 5.E − 6 1.E − 6 6598 190.89 2.8132E − 07
− 30 5.E − 6 1.E − 6 6673 149.42 2.6219E − 07
− 35 5.E − 6 1.E − 6 6619 115.89 2.4176E − 07
− 36 5.E − 6 1.E − 6 6537 101.33 2.5564E − 07

295 × 295 36 4.E − 6 1.E − 6 8437 313.05 2.4598E − 07
299 × 299 42 4.E − 6 1.E − 6 8485 207.59 2.0221E − 07
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Table 4.4 Parallel computation of the LDC fluid flow problem with Re = 400; CPUs: number of CPUs; ∆t: time step;
CMtol: tolerance of convergence measure at interfaces; Ni: number of iterations; Tp : parallel computation time (minutes);
CM : average convergence measure of the whole analysis domain.

grid CPUs ∆t CMtol Ni Tp CM

101 × 101 2 1.E − 5 1.E − 6 1769 199.67 3.6469E − 07
− 4 1.E − 5 1.E − 6 1809 59.51 3.4120E − 07
− 6 1.E − 5 1.E − 6 1907 30.38 3.1543E − 07
− 8 1.E − 5 1.E − 6 1943 17.09 3.0031E − 07
− 9 1.E − 5 1.E − 6 1949 15.34 2.6732E − 07
− 12 1.E − 5 1.E − 6 1980 8.55 2.6361E − 07
− 15 1.E − 5 1.E − 6 1988 6.55 2.6674E − 07
− 16 1.E − 5 1.E − 6 2044 5.06 2.5307E − 07
− 20 1.E − 5 1.E − 6 2092 3.89 2.2655E − 07
− 25 1.E − 5 1.E − 6 2163 3.10 2.0506E − 07
− 28 1.E − 5 1.E − 6 2184 2.51 2.1807E − 07
− 30 1.E − 5 1.E − 6 2199 2.26 1.9648E − 07
− 35 1.E − 5 1.E − 6 2330 2.09 1.4480E − 07
− 36 1.E − 5 1.E − 6 2359 1.86 1.3151E − 07

155 × 155 9 1.E − 5 1.E − 6 1957 117.43 2.2188E − 07
− 12 1.E − 5 1.E − 6 1978 38.02 2.0113E − 07
− 15 1.E − 5 1.E − 6 1995 25.64 1.9335E − 07
− 16 1.E − 5 1.E − 6 1993 21.82 2.1742E − 07
− 20 1.E − 5 1.E − 6 1996 14.64 2.1968E − 07
− 25 1.E − 5 1.E − 6 2047 10.41 1.8317E − 07
− 28 1.E − 5 1.E − 6 2303 10.34 1.7704E − 07
− 30 1.E − 5 1.E − 6 2292 9.23 1.7548E − 07
− 35 1.E − 5 1.E − 6 2398 7.54 1.4143E − 07
− 36 1.E − 5 1.E − 6 2577 6.54 1.0865E − 07

209 × 209 16 1.E − 5 1.E − 6 2088 68.21 3.5483E − 07
− 20 1.E − 5 1.E − 6 2192 49.50 3.5207E − 07
− 25 1.E − 5 1.E − 6 2305 35.96 4.3792E − 07
− 28 1.E − 5 1.E − 6 2245 28.56 3.1715E − 07
− 30 1.E − 5 1.E − 6 2293 25.80 3.5021E − 07
− 35 1.E − 5 1.E − 6 2453 23.16 2.6163E − 07
− 36 1.E − 5 1.E − 6 2393 18.43 2.2997E − 07

253 × 253 25 8.E − 6 1.E − 6 2814 91.87 3.4725E − 07
− 28 8.E − 6 1.E − 6 2980 75.47 4.1144E − 07
− 30 8.E − 6 1.E − 6 3015 67.91 3.6694E − 07
− 35 8.E − 6 1.E − 6 3195 58.14 2.4023E − 07
− 36 8.E − 6 1.E − 6 3236 49.99 2.7969E − 07

295 × 295 36 4.E − 6 1.E − 6 5164 171.74 2.5456E − 07
299 × 299 42 4.E − 6 1.E − 6 5333 130.06 1.9579E − 07
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Table 4.5 Parallel computation of the LDC problem with Re = 1000; CPUs: number of CPUs; ∆t: time step; CMtol:
tolerance of convergence measure at interfaces; Ni: number of iterations; Tp: parallel computation time (minutes); CM :
average convergence measure of the whole analysis domain.

grid CPUs ∆t CMtol Ni Tp CM

101 × 101 2 1.E − 06 1.E − 6 9292 972.00 2.7711E − 07
− 4 1.E − 6 1.E − 6 9146 301.05 2.9968E − 07
− 6 1.E − 6 1.E − 6 8958 246.58 3.6250E − 07
− 8 1.E − 6 1.E − 6 8789 76.40 3.9178E − 07
− 9 1.E − 6 1.E − 6 8964 68.32 3.3912E − 07
− 12 1.E − 6 1.E − 6 8936 37.71 3.1141E − 07
− 15 1.E − 6 1.E − 6 8901 29.06 2.8634E − 07
− 16 1.E − 6 1.E − 6 8866 21.68 2.4941E − 07
− 20 1.E − 6 1.E − 6 8862 16.27 2.2520E − 07
− 25 1.E − 6 1.E − 6 8881 12.11 2.1926E − 07
− 28 1.E − 6 1.E − 6 9062 9.54 1.9764E − 07
− 30 1.E − 6 1.E − 6 8685 8.54 2.4913E − 07
− 35 1.E − 6 1.E − 6 8764 7.27 2.3634E − 07
− 36 1.E − 6 1.E − 6 9326 6.71 1.5421E − 07

155 × 155 9 1.E − 6 1.E − 6 8887 290.22 3.5905E − 07
− 12 1.E − 6 1.E − 6 8973 170.57 3.2145E − 07
− 15 1.E − 6 1.E − 6 8979 137.84 3.0020E − 07
− 16 1.E − 6 1.E − 6 9018 97.69 2.6282E − 07
− 20 1.E − 6 1.E − 6 9072 79.81 2.3382E − 07
− 25 1.E − 6 1.E − 6 9094 46.22 2.1900E − 07
− 28 1.E − 6 1.E − 6 9565 43.57 1.8332E − 07
− 30 1.E − 6 1.E − 6 9171 36.38 2.2463E − 07
− 35 1.E − 6 1.E − 6 9901 29.89 1.5324E − 07
− 36 1.E − 6 1.E − 6 11704 36.81 1.2794E − 07

209 × 209 16 5.E − 6 1.E − 6 3435 203.43 1.7919E − 07
− 20 5.E − 6 1.E − 6 3738 148.03 1.6568E − 07
− 25 5.E − 6 1.E − 6 3944 107.23 1.6116E − 07
− 28 5.E − 6 1.E − 6 3890 75.06 1.6030E − 07
− 30 5.E − 6 1.E − 6 3988 69.16 1.5540E − 07
− 35 5.E − 6 1.E − 6 4118 60.20 1.3527E − 07
− 36 5.E − 6 1.E − 6 4268 54.84 1.0258E − 07

253 × 253 25 5.E − 6 1.E − 6 3798 227.09 1.5637E − 07
− 28 5.E − 6 1.E − 6 4043 160.56 1.5123E − 07
− 30 5.E − 6 1.E − 6 4042 139.30 1.4436E − 07
− 35 5.E − 6 1.E − 6 4131 124.96 1.3336E − 07
− 36 5.E − 6 1.E − 6 4486 114.92 8.8219E − 08

295 × 295 36 5.E − 6 1.E − 6 4550 271.60 2.3908E − 07
299 × 295 42 5.E − 6 1.E − 6 4849 212.26 2.0420E − 07
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Table 4.6 Parallel computation using the present method for the LDC problem with Re = 100, grid 101 × 101 and ∆t =
1.E − 5. nx × ny : grid points; CPUs: number of CPUs; CN : condition number of the system matrix; CMp: average
convergence measure of the whole analysis domain; Ni: number of iterations on the whole domain; Tcmp : computational
time for one iteration in sub-domain (seconds); Tcmm: total communication time (minutes); Tp: total parallel computation
time (minutes).

CPUs CN CMp Ni Tcmp Tcmm Tp
2 2190.99 3.3862E − 7 2983 6.891 4.06 346.66
4 1389.97 3.2612E − 7 3039 1.971 0.63 100.48
9 617.80 2.6812E − 7 3153 0.350 5.48 23.90
16 322.27 2.5326E − 7 3142 0.143 0.45 7.96
25 230.75 2.2448E − 7 3128 0.065 1.14 4.54
36 154.49 2.0544E − 7 3118 0.037 0.67 2.61
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4.6 Conclusion

In this chapter, a parallel method based on the combination of the overlapping
DD technique and CLIRBF methods has been presented. Advantages of the new
method include (i) to alleviate the ill-condition problem associated with IRBF
methods; (ii) to avoid the reduction in convergence rate caused by differentiation
and (iii) to achieve much higher throughput in solving large scale problems. The
method has been successfully verified through numerical solution of problems
with available analytic solution and the benchmark LDC fluid flow problem using
Matlab Distributed Computing Engine. While, in this chapter, point collocation
has been the mechanism for the discretisation of PDEs, the next chapter will
discuss the control volume approach.



Chapter 5

Parallel control-volume method based
on local integrated RBFs for solving fluid
flow problems

In this chapter, a high performance computing (HPC) method based on the in-
tegrated Radial Basis Function (IRBF), Control Volume method (CVM) and
Domain Decomposition (DD) method for solving Partial Differential Equations
(PDEs) is presented (Pham-Sy et al., 2014). The goal is to develop an efficient
parallel algorithm based on the local IRBF method using the control volume ap-
proach, especially for problems defined on non-rectangular domains. The results
showed that the goal is attained as the achieved parallel efficiency is high. For
the case of square lid-driven cavity (LDC) flow problem with Reynolds number
equal to 100, super-linear speed-up is also achieved. The parallel algorithm is
implemented in the MATLAB environment using Parallel Computing Toolbox
and Distributed Computing Engine.

5.1 Introduction

Integrated radial basis function method was proposed by Mai-Duy and Tran-
Cong (2001) as an alternative to the RBF interpolation of scattered data by
Kansa (1990a), which is here referred to as the differential RBF (DRBF) method.
Thanks to the integration approach, IRBF method is shown to have higher order
of accuracy than the DRBF method. The convergence rate was then boosted
by using local/compact local schemes to form tridiagonal matrix (Hoang-Trieu
et al., 2012; Chandhini and Sanyasiraju, 2007).

The IRBF method is further developed in combination with CVM (Patankar,
1980) to improve the accuracy of the solution in non-rectangular domains (Mai-
Duy and Tran-Cong, 2010). With the inherent conservation of mass, momentum
and energy over control volumes, this method has been shown to be a very ef-
fective way to deal with domains with complex boundary. In this chapter, the
CVM is employed in combination with two-dimensional (2D) IRBF to simulate
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fluid flow in the triangular LDC flow problem (Kohno and Bathe, 2006).

Since the scale of practical engineering problems is huge in terms of degrees of
freedom (DoF), modern computational mechanics has begun to embrace paral-
lel paradigms. With the help of parallelisation, the shortage of memory and
computational power is being addressed. What remains challenging is parallel
algorithms, which is the main focus of this chapter. The method being consid-
ered is a DD method, which is one of the most popular methods for solving large
scale problems (Quarteroni and Valli, 1999). The DD method is used to split
the computational domain into smaller sub-domains which are solved separately.
Originally, sub-domains are solved sequentially one after another. In order to
improve the throughput of the simulation, in this chapter, the sub-domains are
solved in parallel. The DD method being used is the Schwarz additive overlapping
DD method and the communication between parallel sub-domains are handled
by MATLAB supported Message Passing Interface (MPI).

The chapter is organised as follows. In Sections 5.2 and 5.3, a brief review of
local IRBF and CVM is presented. The DD method is described in Section 5.4.
Numerical results are then given and discussed in Section 5.5 with a conclusion
in Section 5.6.

5.2 Local methods based on integrated radial basis func-
tion

In this section, a brief review of several IRBF local approaches, including one-
dimension (1D) IRBF and two-dimension (2D) local 9-point IRBF stencils, is
provided.

5.2.1 1D-IRBF method

Consider following 2D PDE

∇2u(x) = f(x),x ∈ Ω (5.1)

where u is the field variable; x the position vector; Ω the considered domain and
f a known function of x.

By means of IRBF, the highest order derivatives of the PDE, which is second
order in this case, are approximated by a weighted set of RBFs as

∂2u(x)
∂x2

j

=
n∑

i=1

w
[xj ]
i G

[2]
[xj ]i

(x), (5.2)

where xj is the j-component of x (j = 1, 2); {wi}ni=1 the set of weights and
{G[2]

i (x)}ni=1 the set of RBFs. The multi-quadric (MQ) RBF is used in this chapter
and given by

Gi(x) =
√

(x − ci)2 + a2
i ,
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where {ci}ni=1 is a set of centres and {ai}ni=1 a set of MQ-RBF widths.

To obtain first-order derivatives and field variable, Eq. (5.2) is integrated succes-
sively with respect to xj as follows.

∂u

∂xj
=

n∑

i=1

w
[xj]
i G

[1]
[xj ]i

(x) + C1, (5.3)

u =
n∑

i=1

w
[xj ]
i G

[0]
[xj ]i

(x) + C1xj + C2, (5.4)

where G[1]
[xj ]i

(x) =
∫
G

[2]
[xj ]i

(x)dxj , G
[0]
[xj ]i

(x) =
∫
G

[1]
[xj ]i

(x)dxj and C1 and C2 are

constants of integration in the sense that Ci = Ci(xk), k 6= i.

Collocating equations (5.2) - (5.4) at grid points {xi}ni=1 yields

∂2ũ

∂xj
= G[2]

xj
w̃xj , (5.5)

∂ũ

∂xj
= G[1]

xj
w̃xj , (5.6)

ũxj = G[0]
xj

w̃xj , (5.7)

with

w̃xj =
(
w

[xj]
1 , w

[xj]
2 , · · · , w[xj]

n , C1, C2

)T
,

ũxj =
(
u

[xj]
1 , u

[xj ]
2 , · · · , u[xj ]

n

)T
,

∂kũ

∂xkj
=

(
∂ku1

∂xkj
,
∂ku2

∂xkj
, · · · , ∂

kun
∂xkj

)T
,

where ui = u(xi) (i = 1, 2, · · · , n); G[2]
[xj ]
,G[1]

[xj ]
and G[0]

[xj ]
are known matrices of size

n× (n+ 2) as presented below.

G[k]
[xj ]

=




G
[k]
[xj ]1

(x1) G
[k]
[xj ]2

(x1) · · · G
[k]
[xj ]n

(x1) a
[k]
1 b

[k]
1

G
[k]
[xj ]1

(x2) G
[k]
[xj ]2

(x2) · · · G
[2]
[xj ]n

(x2) a
[k]
2 b

[k]
2

...
...

. . .
...

...
...

G
[k]
[xj ]1

(xn) G
[k]
[xj ]2

(xn) · · · G
[k]
[xj ]n

(xn) a[k]
n b[k]

n



,

where k = [0, 1, 2] and let A[k] =
(
a

[k]
1 , a

[k]
2 , · · · , a[k]

n

)T
, B[k] =

(
b

[k]
1 , b

[k]
2 , · · · , b[k]

n

)T

then

A[k] =





(
0 · · · 0

)T
, k = 2

(
1 · · · 1

)T
, k = 1

(
xj1 · · · xjn

)T
, k = 0

and

B[k] =






(
0 · · · 0

)T
, k = 1, 2

(
1 · · · 1

)T
, k = 0
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5.2.2 2D-IRBF local stencil scheme

In this chapter, a 9-point stencil scheme is employed to overcome the problem
of ill-conditioned system matrix, which is an crucial problem in global IRBF
approach. According to this scheme, a local 9-point stencil for an arbitrary grid-
point x5 is described in (Fig. 5.1).

Figure 5.1 A 9-point local stencil.

Within this stencil, a local IRBF approximation is employed to discretise the
governing equation at x5. The local IRBF approximation, coupled with the CVM,
will be presented in the next section.

5.3 A control volume method based on 2D-IRBF

In this approach, each grid point is surrounded by a CV and the conservative
governing equations are integrated within this volume. Fig. 5.2 shows the CV
formation for a regular 2D domain. In this figure, CVs are bounded by lines
parallel to grid lines through the middle points between the reference point and
its neighbours. The figure shows the full CV for the point in the middle x5 and
half CV for the point on the left x2.

Consider the 2D Poisson equation (5.1). This equation is integrated over a CV,
and then by applying the divergence theorem to the resultant equation one gets

∮

Γs

∇u (x) · n̂dΓs =
yt∫

yb

∂u (x)
∂x

∣∣∣∣∣
r

dy −
yt∫

yb

∂u (x)
∂x

∣∣∣∣∣∣
l

dy +
xr∫

xl

∂u (x)
∂x

∣∣∣∣∣
t

dx−
xr∫

xl

∂u (x)
∂x

∣∣∣∣∣
b

dx

=
∫

Ωs

f (x)dΩs,

(5.8)
where Ωs and Γs are the CV under consideration and its surface, respectively;
n̂ the outward normal unit vector and (.)|(s), (s = l, r, t, b) depicts integrals over
the left, right, top and bottom faces of the CV respectively.
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Figure 5.2 CV formation in 2D.

Using 5-point Gaussian quadrature scheme to discretise Eq. (5.8) yields

∆y
2

5∑

j=1

αj
∂u (y (ηj))

∂x

∣∣∣∣∣
r

− ∆y
2

5∑

j=1

αj
∂u (y (ηj))

∂x

∣∣∣∣∣
l

+
∆x
2

5∑

i=1

αi
∂u (x (ηi))

∂y

∣∣∣∣∣
t

−∆x
2

5∑

i=1

αi
∂u (x (ηi))

∂y

∣∣∣∣∣
r

=
∆x∆y

4

5∑

i=1

5∑

j=1

αiαjf (x (ηi) y (ηj)) ,

(5.9)
where αk and ηk (k = i, j) are the weights and Gauss points, respectively.

The 2D local IRBF approximation scheme mentioned in Section 5.2.2 is used
to approximate the field variable and its derivatives in Eq. (5.9). Thus, in this
approach the governing equations are forced to be satisfied locally over CVs while
the boundary conditions are directly imposed using the 1D-IRBF approximant.
The procedure leads to an algebraic equation system for unknown nodal values
of the field variable as follows.

(
ũ
0̃

)
=

[
G[0]
x , O

G[0]
x , −G[0]

y

]

︸ ︷︷ ︸
C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (5.10)

where C is the conversion matrix, w̃x and w̃y the RBF weight vectors of length
15; ũ the vector of length 9, and 0̃ the zeros vector of length 9; O the zeros matrix
of dimension 9 × 15, and G[0]

x and G[0]
y the known matrices of dimensions 9 × 15.

Furthermore, ũ, w̃x and w̃y are given by

ũ = (u1, . . . , u9)T , (5.11)

w̃x = (w[x]
1 , . . . , w

[x]
9 , Cx

1 (y1), Cx
1 (y2), Cx

1 (y3), Cx
2 (y1), Cx

2 (y2), Cx
2 (y3))T , (5.12)

w̃y = (w[y]
1 , . . . , w

[y]
9 , C

y
1 (x1), C

y
1 (x2), Cy

1 (x3), Cy
2 (x1), Cy

2 (x2), Cy
2 (x3))T , (5.13)
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G[0]
x =




G
[0]
[x]1 (x1) · · · G

[0]
[x]9 (x1) x1 0 0 1 0 0

G
[0]
[x]1 (x2) · · · G

[0]
[x]9 (x2) 0 x2 0 0 1 0

... . . .
... 0 0 x3 0 0 1

... . . .
... x4 0 0 1 0 0

... . . .
... 0 x5 0 0 1 0

... . . .
... 0 0 x6 0 0 1

... . . .
... x7 0 0 1 0 0

... . . .
... 0 x8 0 0 1 0

G
[0]
[x]1 (x9) · · · G

[0]
[x]9 (x9) 0 0 x9 0 0 1




, (5.14)

G[0]
y =




G
[0]
[y]1 (x1) · · · G

[0]
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G
[0]
[y]1 (x2) · · · G

[0]
[y]9 (x2) y2 0 0 1 0 0

... . . . ... y3 0 0 1 0 0

... . . . ... 0 y4 0 0 1 0

... . . . ... 0 y5 0 0 1 0

... . . . ... 0 y6 0 0 1 0

...
. . .

... 0 0 y7 0 0 1
...

. . .
... 0 0 y8 0 0 1

G
[0]
[y]1 (x9) · · · G

[0]
[y]9 (x9) 0 0 y9 0 0 1




, (5.15)

where G
[0]
[x]i and G

[0]
[y]i (i = 1..9) were defined in Section 5.2.1 in the x and y-

directions and xi, yi are the two components of xi. It is noted that in (5.10)

ũ = [G[0]
x ,O]

(
w̃x

w̃y

)

is obtained by collocating the field variable over a local stencil, and

0̃ = [G[0]
x ,−G[0]

y ]

(
w̃x

w̃y

)

is derived from the consistency condition
∫ ∫

∂2u

∂x2
dx

∣∣∣∣∣
xi

=
∫ ∫

∂2u

∂y2
dy

∣∣∣∣∣
xi

.

The conversion of the network-weight space into the physical space is achieved
by first inverting Eq. (5.10)

(
w̃x

w̃y

)
= C−1

(
ũ
0̃

)
. (5.16)

Then by substituting Eq. (5.16) into Eqs. (5.3) and (5.4) the first order deriva-
tives of u with respect to x and y and the function itself over a local stencil are
determined.

In the case of non-rectangular domains, the CV formation for interior points is
carried out in a similar way but with some extra treatments for non-rectangular
boundaries, which will be detailed in Section 5.5.2.
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5.4 Parallel domain decomposition method

Domain decomposition has been successfully used to overcome the resource lim-
itation associated with large-scale problems. Its primary objective is to split a
large problem domain into small ones called sub-domains in which the problem
can be solved more effectively in terms of memory and computing power (Quar-
teroni and Valli, 1999; Tran et al., 2009). A notable advantage of DD method
in solving numerical problems is that it helps to decrease the condition number
of system matrices in sub-domains. As a result, DD method helps to achieve
a more stable and accurate solution. Furthermore, with the advance of paral-
lel computing, DD technique finds itself very parallel capable. That potential
for parallelisation further encourages more intensive research in DD method in
recent decades.

Over the last two decades, researchers have developed parallel algorithms owing
to the simplicity of grid generation to significantly increase the throughput of
numerical solutions. For example, Singh and Jain (2005) used an Element-Free
Galerkin method with moving least-square approximant to solve fluid flow prob-
lems. They were able to achieve high efficiency, e.g. 91.27% for a 2D problem
with eight CPUs. Shirazaki and Yagawa (1999) proposed a Mesh-Free method
based parallel algorithm to solve incompressible viscous flow. They obtained a
stable solution to a model with three-million DoF. However, as the speed-up was
separated into two parts, namely the construction of system equations and the
time integration, the efficiency of the first part was very high and even super-
linear with high number of CPUs, the efficiency of the second part was not able to
scale to high number of CPUs. Indeed, the efficiency dropped from approximately
98% with 16 CPUs to around 50% with 64 CPUs. Ingber et al. (2004) combined
the method of fundamental solutions and the particular solution method to solve
the transient heat conduction problems. The approach was developed using a
Schwarz Neumann-Neumann DD based parallel scheme. Although the authors
successfully demonstrated the accuracy of parallel algorithm in comparison with
the non-parallel version, unfortunately, information regarding the efficiency of
parallelisation was not given.

This algorithm is a further development of the Schwarz Additive Overlapping
DD technique (Pham-Sy et al., 2013) using the local stencil IRBF approximants.
Here, the local stencil 2D-IRBF based CVM, which is presented in the previous
sections, is used to develop the parallel algorithm for solving fluid flow problems.

The additive overlapping DD method is a rather simple but effective method.
It also has a high potential for parallelisation as the computation in each sub-
domain is independent within a time step. In this approach, the original domain
is divided into several overlapping sub-domains. The function values on artificial
boundaries (ABs) are initially unknown and are set to zeros (initial guess). In
each iterative step, the boundary value problem is solved separately in each sub-
domain. Then the function values on the AB of one sub-domain are updated by
the solution from other sub-domains. This procedure is repeated until a desired
tolerance is achieved. Several specific details on the use of additive overlapping
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DD technique will be presented briefly in the next sections.

5.4.1 Sub-domain formation and neighbour identification

The sub-domain formation task is straightforward with a rectangular domain as
can be seen in Fig. 5.3. This formation has been reported in our previous work.
However, it is also presented here for completeness. For example, in Fig. 5.3
the original domain is decomposed into 12 sub-domains. Each sub-domain is
assigned a unique number called process-index. In this example, sub-domains are
enumerated with process-index from 1 to 12. Each sub-domain also has a 2D
index (i, j) that determines its position in the original domain. The 2D index is
used to determine neighbours of a sub-domain. In this example, the 2D index of
sub-domain 7 is (3, 2) and its neighbours are sub-domains 3, 6, 8 and 11.

Figure 5.3 Enumeration in a system of Nx ×Ny = 4 × 3 sub-domains of a rectangular domain.

For a non-rectangular domain (e.g., Fig. 5.4) the process of determining neigh-
bours is a bit more difficult because some sub-domains will lie outside the con-
sidered domain. For example, in Fig. 5.4 sub-domains 8 and 9 are outside of
the triangular domain Ω. To overcome this situation, one first needs to create a
list of 2D indices of all sub-domains in the system. Then a sub-domain has left,
right, top and bottom neighbours if processes with 2D indices (i, j−1), (i, j+ 1),
(i+ 1, j) and (i− 1, j) respectively exist in that list.

A detailed example of this process is provided in Table 5.1 with 7 sub-domains
in a triangular domain presented in Fig. 5.4.
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Figure 5.4 Enumeration in a system of 7 sub-domains of a triangular domain.

Table 5.1 Neighbour sub-domain (NB) determination for a triangular domain

labindex 2d-index left NB right NB top NB bottom NB
1 (2,1) (2,0) ∼ nil (2,2) ∼ 4 (3,1) ∼ 2 (1,1) ∼ nil
2 (3,1) (3,0) ∼ nil (3,2) ∼ 5 (4,1) ∼ nil (2,1) ∼ 1
3 (1,2) (1,1) ∼ nil (1,3) ∼ nil (2,2) ∼ 4 (0,2) ∼ nil
4 (2,2) (2,1) ∼ 1 (2,3) ∼ 6 (3,2) ∼ 5 (1,2) ∼ 3
5 (3,2) (3,1) ∼ 2 (3,3) ∼ 7 (4,2) ∼ nil (2,2) ∼ 4
6 (2,3) (2,2) ∼ 4 (2,4) ∼ nil (3,3) ∼ 7 (1,3) ∼ nil
7 (3,3) (3,2) ∼ 5 (3,4) ∼ nil (4,3) ∼ nil (2,3) ∼ 6

5.4.2 Communication and Synchronisation

In additive overlapping DD method, one of the critical tasks is the communication
between the sub-domains as the function values on the AB of one sub-domain are
obtained from the solution in its neighbouring sub-domains (NSs) in the previous
step. In the present implementation, MATLAB built-in parallel communication
method is utilised. MATLAB communication functions allow to send an array
of data to MATLAB workers in a synchronised way, which means the sender
must wait until the receiver fully receives a message. This mechanism itself
guarantees the synchronisation between sub-domains and no extra care is needed
to ensure that all sub-domains are always executing the same iterative step. More
information about MATLAB supported MPI implementation can be found in
(MATLAB, 2012).
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5.4.3 Termination

Since the parallel algorithm presented in this chapter is a Distributed Computing
Algorithm, it needs to have a termination detection process. This process has
been investigated and classified into a unique class of algorithm called Distributed
Termination Detection (DTD). In this chapter, the Bitmap DTD algorithm pre-
sented in Chapter 3 is employed. This algorithm has several advantages such as
symmetric detection, decentralised control and low termination detection delay,
and thus ideally suits the implementation of parallel algorithm in the present
work.

5.4.4 Parallelisation

The present parallel method is based on the combination of the local stencil 2D-
IRBF and CV, and the DD technique presented in the previous sections can now
be described in an overall algorithm whose flowchart is shown in Fig. 5.5. In this
flowchart, the termination condition is reached once the convergence measurement
in every sub-domain (CM) and the convergence measurement on the overlapping
area (ABCM) are bellow some predefined tolerances CMtol and ABCMtol, re-
spectively.

5.5 Numerical results

The proposed method is verified through the simulation of the lid-driven cav-
ity (LDC) fluid flow problem for two cases of rectangular and non-rectangular
domains. The efficiency of the present method is analysed.

The LDC fluid flow problem has been commonly used for verification of a numeri-
cal method owing to the availability of benchmark solutions in the literature. The
problem has also been quite popular among meshless community, e.g. Lin and
Atluri (2001) with meshless Local Petrov-Galerkin (MLPG) method; Shu et al.
(2005) with local RBF-based Differential Quadrature method; Chinchapatnam
et al. (2007) with RBF; and Kim et al. (2007) with meshfree point collocation
method. Therefore, in this chapter the LDC flow is also employed to investigate
the accuracy as well as the efficiency of the present parallel scheme.

The problem is defined in the stream-function - vorticity formulation as follows.

∂ω

∂t
+ (

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
) =

1
Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (5.17)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (5.18)

where Re is the Reynolds number, ψ the stream function; ω the vorticity and t the

time. The x− and y− velocity components are given by u =
∂ψ

∂y
and v = −∂ψ

∂x
.
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Figure 5.5 Algorithm of the parallel DD method using the local IRBF based CV approach.
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The problem is solved using the local 9-point stencil 2D-IRBF scheme as presented
in Section 5.2.2 with the time derivative being discretised using a first-order Euler
scheme and the diffusive terms being treated implicitly. The boundary condition
for ω is computed through Eq. (5.18) using 1D global IRBF as described in
Section 5.2.1.

The general procedure for solving a LDC problem is given as follows.

1. Guess the initial values of ω;

2. Solve (5.18) for ψ;

3. Approximate the values of ω on boundaries and the convective terms;

4. Solve (5.17) for ω;

5. Check convergence measure for ω.

5.5.1 Square lid-driven cavity fluid flow problem

For the square LDC fluid flow problem, the geometry of the analysis domain with
the chosen coordinate system is shown in Fig. 5.6. The boundary conditions are
given in terms of the stream-function as.

ψ = 0,
∂ψ

∂x
= 0 ∀(x, y) ∈ Γ2 ∪ Γ3; (5.19)

ψ = 0,
∂ψ

∂y
= 0 ∀(x, y) ∈ Γ4; (5.20)

ψ = 0,
∂ψ

∂y
= 1 ∀(x, y) ∈ Γ1. (5.21)

The Dirichlet boundary condition on ψ is used to solve Eq. (5.18) in step 2,
while the Neumann boundary condition on ψ is used to approximate the value of
ω on boundaries. The values of ω on boundaries, in turn, are used as boundary
conditions to solve Eq. (5.17) in step 4 above.

The iterative procedure for solving the square LDC fluid flow problem with par-
allel DD method is as follows.

1. Divide the analysis domain into a number of sub-domains. Guess initial
boundary condition on ABs;

2. Solve the fluid flow problem in each and every sub-domain as described
above;

3. Exchange the values of ψ and ω at interfaces with neighbours;

4. Calculate CM on all interfaces;
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Figure 5.6 The square LDC fluid flow problem. Geometry and boundary conditions. No slip is assumed between the fluid
and solid surfaces. The top lid is moving from left to right with a speed of 1.

5. Check for termination condition.

In this chapter, the square LDC problem is simulated for a range of Reynolds
numbers Re = {100, 400, 1000, 3200}. Figure 5.7 depicts streamlines of the flow
obtained by the present parallel method using a grid of 151 × 151 collocation
points, ∆t = 10−3, ABCMtol = 10−6, CMtol = 10−6 and β = 2, 4 sub-domains
associated with 4 CPUs for Re = 100, 400, 1000 (Figs. 5.7(a) - 5.7(c)) and 2
sub-domains for Re = 3200 (Fig.5.7(d)). The results are in very good agreement
with those presented in Ghia et al. (1982) as well as in Botella and Peyret (1998).
Similar results can be found for vorticity contours in Fig. 5.8. Furthermore,
Fig. 5.9 provides the profiles of the velocities along the vertical and horizontal
centrelines by the present method along with the benchmark values from Ghia
et al. (1982). As can be seen, the results match up very well with the benchmark
solution.

The efficiency of the present parallel method is assessed using the following cri-
teria: the number of iterations Ni, computation time Tp, speed-up S - ratio of
the computation times using one processor and multi processors and efficiency E
- the ratio of speed-up and the number of CPUs used. A fixed grid 151 × 151
is chosen to run the problem with various number of CPUs and the results are
provided in Tables 5.2 - 5.5 for different Reynolds numbers. Results described
in the left hand side of Tables 5.2 - 5.5 show that the computation time of the
present parallel method (the P-CV method) for the time-dependent square LDC
problem decrease quickly as the number of CPUs increases. An interpretation on
the significant improvement of throughput can be found in Pham-Sy et al. (2013)
for the parallel collocation method; a similar interpretation is applicable here.
Again, there are always some thresholds, called CPUopt over which the increase
of number of CPUs influences insignificantly on the efficiency based on all crite-
ria (Tp, S and E). For example, the improvement of efficiency of computation is
not significant anymore as the number of CPUs is more than 49, 64, 30 and 49
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure 5.7 The square LDC fluid flow problem. Stream-function (ψ) contours of the flow for several Reynolds numbers
Re = {100, 400, 1000, 3200} by the present parallel method using 4 sub-domains for Re = 100, 400, 1000 and 2
sub-domains for Re = 3200 with the specifications: grid 151 × 151, ∆t = 10−3, ABCMtol = 10−6, CMtol = 10−6

and β = 2.
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure 5.8 The square LDC fluid flow problem. Vorticity (ω) contours of the flow for several Reynolds numbers Re = {100,
400, 1000, 3200} by the present parallel method using 4 sub-domains for Re = {100, 400, 1000} and 2 sub-domains for
Re = 3200. The other parameters are given in Fig. 5.7.
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(c) Re = 1000
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(d) Re = 3200

Figure 5.9 The square LDC fluid flow problem. Profiles of the u velocity along the vertical centreline and the v velocity along
the horizontal centreline (solid lines) for several Reynolds numbers Re = {100, 400, 1000, 3200} by the present parallel
method in comparison with the corresponding Ghia’s results (� for u velocity and # for v velocity). The parameters of the
present method are given in Fig. 5.7.
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Table 5.2 The square LDC fluid flow problem. Comparison between parallel CV (P-CV) and parallel collocation (P-C) meth-
ods with Re = 100, grid 151 × 151, dt = 10−3,ABCMtol = 10−6, CMtol = 10−6, β = 2. CPUs: number of CPUs;
Ni: number of iterations; Tp : parallel computation time (minutes); S: speed-up; E: efficiency. The observed super-linear
speed up can be explained in terms of reduced matrix condition numbers (see main text).

P-CV method P-C method
CPUs Ni Tp S E Ni Tp S E

1 8814 132.25 1.00 100.00 8814 130.50 1.00 100.00
2 1578 127.34 1.04 51.93 1574 126.62 1.03 51.53
4 1687 63.88 2.07 51.76 1682 63.31 2.06 51.53
6 1703 42.83 3.09 51.47 1698 44.33 2.94 49.06
9 1727 27.74 4.77 52.98 1722 27.82 4.69 52.11
12 1719 17.11 7.73 64.42 1713 16.60 7.86 65.51
16 1710 10.36 12.77 79.82 1703 10.07 12.95 80.96
20 1699 7.81 16.93 84.64 1691 7.73 16.88 84.39
25 1683 6.13 21.59 86.34 1675 5.98 21.81 87.24
30 1629 4.34 30.47 101.57 1619 4.43 29.44 98.12
36 1544 3.32 39.87 110.75 1531 3.25 40.14 111.49
42 1494 2.82 46.89 111.64 1479 2.80 46.65 111.08
49 1456 2.33 56.65 115.61 1446 2.32 56.13 114.55
56 2150 2.78 47.49 84.81 2146 2.70 48.32 86.29
64 2687 2.73 48.48 75.75 2682 2.76 47.36 74.00
72 2816 2.68 49.39 68.60 2811 2.66 48.98 68.03
81 2937 2.49 53.11 65.57 2932 2.45 53.28 65.78
90 3038 2.33 56.83 63.15 3032 2.29 56.95 63.28
100 3144 2.11 62.75 62.75 3138 2.05 63.76 63.76
110 3916 2.53 52.36 47.60 3904 2.43 53.77 48.88
121 4111 2.57 51.47 42.54 4098 2.51 52.00 42.98
132 4306 2.34 56.45 42.76 4291 2.24 58.18 44.08
144 4459 2.42 54.65 37.95 4445 2.38 54.88 38.11

(Tables 5.2 - 5.5) for Re numbers 100, 400, 1000 and 3200, respectively using the
grid of 151 × 151. Furthermore, the tendency of computational efficiency can be
found similarly with the present parallel algorithm using the collocation method
(named P-C method) (right hand side of the Tables 5.2 - 5.5).

The efficiency, speed-up and simulation time of the present parallel method can
be seen visually in Figs. 5.10(a), 5.10(c) and 5.10(e). These figures also depict the
influence of the Reynolds number on the mentioned criteria of the present parallel
algorithm with respect to the number of CPUs. For example, the efficiency of the
present parallel method is higher for the lower Re. While the throughput increases
gradually with respect to the number of CPUs (Fig. 5.10(e)), the gradients of
time curves decrease as the number of CPUs is more than around 20. This is
also indicated by the efficiency curves given in Fig. 5.10(a). Similar trends of
the efficiency, speed-up and throughput are also obtained by the present parallel
algorithm using the collocation method and given in Figs. 5.10(b), 5.10(d) and
5.10(f).

It is observed that a super-linear speed-up is achieved using a range of numbers
of CPUs 30, 36, 42 and 49 with corresponding efficiencies 101%, 110%, 111% and
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Table 5.3 The square LDC fluid flow problem. Comparison between P-CV and P-C methods withRe = 400, grid 151×151.
CPUs: number of CPUs; Ni: number of iterations; Tp: parallel computation time (minutes); S: speed-up; E: efficiency.
Other parameters are given in Table 5.2.

P-CV method P-C method
CPUs Ni Tp S E Ni Tp S E

1 22122 324.98 1.00 100.00 22107 338.55 1.00 100.00
2 3347 292.51 1.11 55.55 3340 240.24 1.41 70.46
4 3469 131.45 2.47 61.81 3459 130.46 2.60 64.88
6 3606 97.93 3.32 55.31 3593 90.65 3.73 62.25
9 3757 67.73 4.80 53.31 3742 58.94 5.74 63.83
12 3786 38.32 8.48 70.66 3768 34.32 9.86 82.21
16 3845 23.77 13.67 85.45 3826 23.05 14.69 91.80
20 3844 17.67 18.39 91.96 3824 17.85 18.96 94.81
25 3955 14.06 23.12 92.46 3932 13.90 24.35 97.41
30 4162 11.29 28.78 95.94 4134 10.69 31.68 105.60
36 4550 9.86 32.97 91.59 4520 9.11 37.16 103.23
42 4619 8.24 39.46 93.95 4589 8.02 42.24 100.56
49 4699 7.05 46.12 94.12 4671 7.14 47.42 96.78
56 4953 6.32 51.43 91.84 4917 6.07 55.79 99.62
64 5265 5.22 62.23 97.23 5218 5.09 66.47 103.86
72 5405 4.86 66.86 92.86 5345 4.80 70.58 98.03
81 5540 4.53 71.71 88.53 5471 4.49 75.36 93.04
90 5763 4.27 76.12 84.57 5694 4.14 81.73 90.81
100 5832 3.80 85.50 85.50 5758 3.74 90.51 90.51
110 5808 3.43 94.89 86.26 5753 3.46 97.90 89.00
121 5978 3.60 90.29 74.62 5919 3.55 95.48 78.91
132 6154 3.22 100.87 76.42 6053 3.22 105.05 79.58
144 6286 3.32 97.79 67.91 6222 3.30 102.73 71.34
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Table 5.4 The square LDC fluid flow problem. Comparison between P-CV and P-C methods withRe = 1000, grid 151×151.
CPUs: number of CPUs; Ni: number of iterations; Tp: parallel computation time (minutes); S: speed-up; E: efficiency.
Other parameters are given in Table 5.2.

P-CV method P-C method
CPUs Ni Tp S E Ni Tp S E

1 30536 453.65 1.00 100.00 30442 400.02 1.00 100.00
2 5016 429.95 1.06 52.76 5081 407.46 0.98 49.09
4 4763 178.57 2.54 63.51 4824 179.80 2.22 55.62
6 4661 121.38 3.74 62.29 4655 119.21 3.36 55.93
9 4684 72.85 6.23 69.19 4671 79.54 5.03 55.88
12 5214 51.39 8.83 73.56 5129 51.00 7.84 65.36
16 6211 37.53 12.09 75.55 6139 38.45 10.40 65.02
20 6498 29.17 15.55 77.75 6428 28.54 14.02 70.09
25 6765 22.87 19.84 79.36 6699 22.90 17.47 69.87
30 7452 18.38 24.69 82.29 7397 18.76 21.32 71.07
36 8580 17.78 25.52 70.89 8517 17.02 23.50 65.28
42 8709 15.09 30.07 71.60 8660 15.25 26.24 62.48
49 8593 13.35 33.98 69.34 8543 13.17 30.37 61.97
56 9299 11.47 39.57 70.65 9207 11.21 35.69 63.74
64 10750 10.61 42.76 66.81 10628 10.28 38.91 60.80
72 11542 10.21 44.45 61.73 11410 10.15 39.42 54.76
81 11922 9.39 48.32 59.66 11789 9.19 43.51 53.72
90 12122 8.42 53.85 59.83 11959 8.56 46.75 51.95
100 11637 7.32 62.01 62.01 11475 7.20 55.53 55.53
110 12025 7.01 64.68 58.80 11863 7.08 56.48 51.34
121 12315 7.23 62.77 51.88 12121 7.10 56.36 46.58
132 13058 6.69 67.76 51.33 12874 6.69 59.77 45.28
144 13359 6.76 67.12 46.61 13159 6.81 58.78 40.82
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Table 5.5 The square LDC fluid flow problem. Comparison between P-CV and P-C methods withRe = 3200, grid 151×151.
CPUs: number of CPUs; Ni: number of iterations; Tp: parallel computation time (minutes); S: speed-up; E: efficiency.
Other parameters are given in Table 5.2.

P-CV method P-C method
CPUs Ni Tp S E Ni Tp S E

1 69367 1003.93 1.00 100.00 69712 999.36 1.00 100.00
2 16057 1257.83 0.80 39.91 16590 1382.11 0.72 36.15
4 17139 622.24 1.61 40.34 16500 578.98 1.73 43.15
6 17033 439.62 2.28 38.06 16755 433.14 2.31 38.45
9 17023 289.41 3.47 38.54 17386 285.37 3.50 38.91
12 15755 154.36 6.50 54.20 15437 145.97 6.85 57.05
16 16630 101.29 9.91 61.95 16835 102.68 9.73 60.83
20 17404 78.81 12.74 63.69 17283 77.67 12.87 64.33
25 16376 57.55 17.45 69.78 15759 55.19 18.11 72.43
30 15305 39.14 25.65 85.50 14071 36.78 27.17 90.56
36 19120 39.43 25.46 70.72 17046 35.32 28.29 78.59
42 16089 27.98 35.88 85.43 16799 29.59 33.77 80.40
49 17182 25.98 38.64 78.86 17667 26.87 37.19 75.90
56 22360 27.24 36.86 65.82 22660 27.31 36.60 65.35
64 26652 25.62 39.19 61.23 26790 25.65 38.96 60.87
72 27080 24.21 41.47 57.60 27573 24.45 40.88 56.77
81 28656 22.26 45.09 55.67 29246 22.39 44.64 55.11
90 31817 22.13 45.37 50.41 31127 21.51 46.46 51.62
100 32548 19.76 50.80 50.80 31885 19.68 50.77 50.77
110 33739 19.18 52.36 47.60 32418 18.82 53.11 48.28
121 26585 16.46 61.01 50.42 33365 19.68 50.78 41.97
132 34222 16.60 60.49 45.83 33334 16.86 59.27 44.90
144 35285 17.35 57.87 40.19 34716 17.44 57.29 39.79



5.5. Numerical results 88

Table 5.6 The square LDC fluid flow problem. Condition numbers CNω and CNψ in single and parallel solutions with
Re = 100 and grid = 151 × 151. CPUs: number of CPUs (sub-domains).

CPUs CNω CNψ CPUs CNω CNψ

1 2.6341 1.29E+04 49 1.1581 3.02E+02
2 1.1799 5.33E+03 56 1.1581 2.44E+02
4 1.1581 3.49E+03 64 1.1581 2.06E+02
6 1.1581 2.18E+03 72 1.1581 1.83E+02
9 1.1581 1.61E+03 81 1.1581 1.64E+02
12 1.1581 1.12E+03 90 1.1581 1.44E+02
16 1.1581 8.71E+02 100 1.1567 1.28E+02
20 1.1581 6.99E+02 110 1.1581 1.19E+02
25 1.1581 5.87E+02 121 1.1581 1.12E+02
30 1.1581 4.65E+02 132 1.1567 1.03E+02
36 1.1581 3.87E+02 144 1.1567 9.56E+01
42 1.1581 3.39E+02

115% for Re = 100 (Table 5.2). This is an exclusive behaviour and sometimes
controversial in classical parallel computing, when the speed-up is higher than the
number of CPUs used in a parallel algorithm. For these cases, the super-linear
speed-up is considered to be related to the decrease of condition number of each
sub-domain which plays a crucial role for the stability of a numerical method.
Indeed, by decomposing the domain, sub-problem in each sub-domain is not only
smaller in terms of DoF but also has smaller condition number (see Table 5.6).

The efficiency of the algorithm in large scale problems is also investigated. For
testing purposes, the fluid with Re = 1000 is simulated using very fine grids
including grid-1 401 × 401 and grid-2 601 × 601 with the following parameters
ABCMtol = 10−6, CMtol = 10−6, β = 2 and ∆t = 10−3 for grid-1 and 5 × 10−4

for grid-2.

While Fig. 5.11(a) points out a gradual increase of throughput with respect
to the number of CPUs for different scales by the present P-CV method, Fig.
5.11(b) depicts the influence of the grid density on the efficiency with respect
to the number of CPUs. Indeed, the gradient of time curves of finer grid-size is
steeper, which again indicates that the efficiency of the present parallel method
will be higher for larger scale problems.
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(a) P-CV method - efficiency
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(b) P-C method - efficiency
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(c) P-CV method - speed-up
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(d) P-C method - speed-up
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(e) P-CV method - simulation time
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(f) P-C method - simulation time

Figure 5.10 The square LDC fluid flow problem. Comparison between the parallel performance of the P-C and P-CV methods
for several Reynolds numbers (Re = 100, 400, 1000 and 3200) with a grid of 151 × 151: the efficiency, speed-up and
simulation time of the two methods as a function of the number of CPUs. Other parameters are given in Tables 5.2 - 5.5.
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Figure 5.11 The square LDC fluid flow problem. Simulation time of the P-CV method with Re = 1000 using different grids:
151 × 151, 401 × 401 and 601 × 601 as a function of the number of CPUs.
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5.5.2 Triangular lid-driven cavity fluid flow problem

The triangular LDC fluid flow problem has been proposed as a test case for the
numerical algorithm in the case of non-rectangular domain. The domain is an
equilateral triangle with the left and right sides being fixed and the top side or
the lid, moving at a constant velocity from left to right. The problem’s geometry
and boundary condition can be seen visually in Fig. 5.12.

Figure 5.12 Triangular LDC flow problem. Geometry and boundary conditions. P =
√

3, Q = 3. No slip is assumed
between the fluid and solid surfaces. The top lid is moving from left to right with a speed of 1.

It is noted that while implementing CVs with non-rectangular domains, one needs
to take extra care regarding points closed to boundary to make sure that CVs do
not intersect with each other nor with the boundary. Fig. 5.13 shows an example
of CV formation for a triangular domain.

As stated in section 5.4.1, some difficulties may arise when the present algo-
rithm is applied to problems with a non-rectangular boundary. In such cases it is
difficult to maintain even loads between sub-domains. Indeed, in the case of non-
rectangular domains, the domain decomposition is manually handled to avoid
bad load imbalance. This process might take considerable time and effort. For-
tunately, the decomposition needs to be carried out only once for all simulations.
Nevertheless, no matter how well the manual formation of sub-domains is per-
formed, it always exists a load imbalance which explains the poorer performance
of the present algorithm in the case of non-rectangular domains.

The boundary conditions are given in terms of the stream-function as

ψ = 0,
∂ψ

∂y
= 1 ∀(x, y) ∈ Γ1; (5.22)

ψ = 0,
∂ψ

∂x
= 0,

∂ψ

∂y
= 0 ∀(x, y) ∈ Γ2 ∪ Γ3, (5.23)

where the variables are defined before. The solving procedure remains the same
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Figure 5.13 CV formation in 2D.

as for the square cavity problem. However, when approximate the boundary value
for ω two following cases must be considered.

First, for boundary points that lie on both x grid-line and y grid-line the approxi-
mation can be carried out normally by using 1D-IRBF in two directions following
Eq. (5.18).

Second, for boundary points, that lie only on x grid-line or y grid-line, its approx-
imation, thus, is available only in one direction. In this case, equivalent formulas
provided by Le-Cao et al. (2009) are used as follows.

ωb = −

1 +

(
tx
ty

)2

 ∂

2ψb
∂x2

, (5.24)

for points on x-grid line and

ωb = −
[
1 +

(
ty
tx

)2
]
∂2ψb
∂y2

, (5.25)

for points on y-grid line, where tx and ty are the x- and y-components of the
unit vector tangential to the boundary.

In this chapter, a range of Reynolds numbers {100, 200, 500, 1000} is investigated.
Again, the streamline (Fig. 5.14), vorticity contours (Fig. 5.15) and velocity
profiles along central horizontal line y = 2 and vertical line x = 0 (Fig. 5.16)
by the present parallel method with 4 sub-domains agree very well with ones by
Kohno and Bathe (2006) using flow-conditioned-based finite element method.
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(a) Re = 100 (b) Re = 200

(c) Re = 500 (d) Re = 1000

Figure 5.14 The triangular LDC fluid flow problem. Stream-function (ψ) contours of the flow for several Reynolds numbers
by the present parallel method using 4 sub-domains with grid of 24697 points, ∆t = 5 × 10−4, ABCMtol = 10−6,
CMtol = 10−6 and β = 1.
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(a) Re = 100 (b) Re = 200

(c) Re = 500 (d) Re = 1000

Figure 5.15 The triangular LDC fluid flow problem. Vorticity (ω) contours of the flow for several Reynolds numbers by the
present parallel method. Other parameters are given in Fig. 5.14.

.
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(a) Re = 100
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(b) Re = 200

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

u

y

 

 

present u
Kohno and Bathe u

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

x

v

 

 

present v
Kohno and Bathe v

(c) Re = 500
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Figure 5.16 The triangular LDC fluid flow problem. Vorticity profiles along vertical line (x = 0) and horizontal line (y = 2) for
several Reynolds numbers by the present parallel method in comparison with the corresponding Kohno and Bathe’s results
(� for u velocity and # for v velocity). Other parameters of the present method are given in Fig. 5.14.
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Table 5.7 The triangular LDC fluid flow problem. Results by the present P-CV method with grid of 24697 points, ∆t = 5.E − 04, ABCMtol = 10−6, CMtol = 10−6, β = 1. CPUs: number of CPUs; Ni: number
of iterations; Tp : parallel computation time (minutes); S: speed-up; E: efficiency.

Re = 100 Re = 200 Re = 500 Re = 1000
CPUs Ni Tp S E Ni Tp S E Ni Tp S E Ni Tp S E

1 47800 848.12 1.00 100 86584 1493.69 1.00 100 72673 1313.30 1.00 100 83900 1460.14 1.00 100
2 10352 598.72 1.42 70.83 15758 966.92 1.54 77.24 14362 859.59 1.53 76.39 14173 854.31 1.71 85.46
4 11643 513.13 1.65 41.32 18926 869.66 1.72 42.94 17434 786.89 1.67 41.72 18679 830.83 1.76 43.94
7 13247 334.09 2.54 36.27 18286 443.81 3.37 48.08 18898 478.99 2.74 39.17 19413 485.07 3.01 43.00
12 12594 146.53 5.79 48.23 18908 223.26 6.69 55.75 20373 239.64 5.48 45.67 20370 245.55 5.95 49.55
17 12511 95.40 8.89 52.29 23245 177.67 8.41 49.45 22050 165.74 7.92 46.61 24900 183.87 7.94 46.71
24 13729 65.77 12.90 53.73 19644 89.86 16.62 69.26 21977 102.03 12.87 53.63 28436 131.05 11.14 46.42
31 12912 36.90 22.98 74.13 21156 63.92 23.37 75.38 26608 77.11 17.03 54.94 28122 85.33 17.11 55.20
40 12695 29.69 28.57 71.42 19745 44.97 33.21 83.03 22067 50.98 25.76 64.41 26965 61.23 23.85 59.62
49 15267 27.03 31.38 64.04 20648 35.93 41.57 84.84 34223 58.90 22.30 45.51 49217 86.22 16.93 34.56
60 13267 18.12 46.80 78.01 24210 32.38 46.13 76.88 28281 38.53 34.08 56.81 29830 40.14 36.38 60.63
71 12884 15.29 55.48 78.14 20574 24.22 61.67 86.86 26316 30.81 42.62 60.03 34076 39.57 36.90 51.98
84 15687 14.95 56.73 67.54 22934 22.05 67.75 80.65 30586 29.46 44.57 53.06 35805 33.58 43.48 51.76
97 13683 11.28 75.16 77.49 25704 21.80 68.52 70.64 28596 23.79 55.21 56.91 36386 30.63 47.67 49.14
112 14760 11.50 73.75 65.85 21280 16.76 89.14 79.59 36899 28.09 46.76 41.75 33732 26.14 55.86 49.87
127 16187 10.86 78.06 61.47 24681 16.29 91.68 72.19 32695 21.23 61.87 48.71 38666 25.30 57.71 45.44
144 14810 9.11 93.13 64.68 22833 14.17 105.41 73.20 37874 23.44 56.03 38.91 38753 23.65 61.75 42.88
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In terms of parallel efficiency, Table 5.7 gives detailed results of the parallel al-
gorithm for several Reynolds numbers and with a grid of 205 × 205 (or 24697
grid points). Visual forms can be found in Fig. 5.17. For each Reynolds num-
ber, although results showed that the simulation time decreases gradually as the
number of sub-domains (CPUs) increases (Fig. 5.17(c)), the optimum number of
CPUs (CPUopt) of the parallel method described by the efficiency for each case
is not clear (Fig. 5.17(a)). This can be explained as the influence of the DD for
a non-rectangular domain problem where the numbers of collocation points/CVs
in sub-domains are not equal, resulting in significant variation of the amount of
work to be completed from sub-domain to sub-domain. Thus, the results show
that the sub-domain formation plays an important role in parallel computation
of complex domains.
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Figure 5.17 The triangular LDC fluid flow problem. Parallel performance of the P-CV methods for several Re using a grid
of 24607 points: the efficiency, speed-up and simulation time as a function of the number of CPUs. Other parameters are
given in Table 5.7.
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5.6 Conclusion

In this chapter, we proposed a DD parallel distributed method coupled with
a local IRBF-CV approach. The proposed method is successfully implemented
to simulate the LDC flow in rectangular and non-rectangular domains. It has
been shown that results produced by the method are in excellent agreement with
the spectral benchmark solutions by Botella and Peyret (1998) and Ghia et al.
(1982) for the square domain and by Kohno and Bathe (2006) for the triangular
domain. A very important achievement of this chapter is the high time-efficiency
of the parallel algorithm including the speed-up. It is shown that the speed-up
grows steadily with the increase of the number of CPUs. This indicates excellent
scalability of the method. Moreover, a super-linear efficiency has been observed
for several cases; this phenomenon is best explained by the decrease of condition
numbers of sub-domain matrices. The parallel algorithm performs well in both
collocation and CV methods. Indeed, the trend in efficiency with increasing
number of CPUs for several Reynolds numbers is consistent with results achieved
by the collocation method reported in Chapter 4.



Chapter 6

Compact local integrated RBF based par-
allel non-overlapping DD approach

In previous chapters, the overlapping Domain Decomposition (DD) method has
been investigated and parallel algorithms based on this scheme have been suc-
cessfully implemented. Although overlapping DD method has the benefit of sim-
ple implementation and intuitive presentation, it is not very suitable for problem
with complex boundaries. As presented in Chapter 5, for the triangular lid-driven
cavity (LDC) fluid flow problem the efficiency sometime compares less favourably
with those of the square LDC flow problem. This was probably due to the diffi-
culty associated with load balancing in non-rectangular domains. Furthermore, a
drawback of overlapping DD method is a significant additional degrees of freedom
(DoF) produced in each and every sub-domain due to the overlapping volumes.
This chapter develops a parallel algorithm based on the non-overlapping DD tech-
nique and the compact local Integrated Radial Basis Function (CLIRBF) method
for solving Navier-Stokes equations (Pham-Sy et al., 2015b). The classical non-
overlapping Dirichlet-Neumann DD is used to divide the main problem into sub-
domains. In each sub-domain, a compact local IRBF scheme is used to solve
the incompressible Navier-Stokes equation. A relaxation factor is applied for the
transmission conditions at the interfaces between sub-domains to ensure the con-
vergence of the DD method while a termination detection algorithm is employed
to achieve the global termination. The parallel algorithm is verified through
two common problems: the LDC fluid flow and the natural convection (NC) in
concentric annuli. The results confirm the efficiency of the present method in
comparison with a sequential algorithm. Super-linear speed-up is found for a
range of numbers of CPUs. In terms of accuracy, the obtained results are in a
good agreement with benchmark results.

6.1 Introduction

Domain decomposition method was first proposed by Schwarz (1869) as a tech-
nique to solve classical boundary value problems involving harmonic functions.
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This method is called Schwarz alternating DD method. The idea is to split
a problem domain into smaller sub-domains and solve the problem in each sub-
domain separately. Boundary conditions (BCs) on the artificial boundaries (ABs)
are of Dirichlet type and are updated by the obtained values from neighbouring
sub-domains (NSs). This Schwarz DD method belongs to a group of overlapping
DD methods (Smith et al., 1996) which are characterised by the fact that adja-
cent sub-domains must overlap with each other. This fact causes difficulties in
solving problems with irregular domains and adds the overhead of DoF to each
sub-domain.

Non-overlapping DD methods belong to another group which can be categorised
into two sub-classes, namely the Schur complement method and the Steklov-
Poincare method (Quarteroni and Valli, 1999). The idea of Schur complement
method, which was proposed by Przemieniecki in 1963 and demonstrated by
Haynsworth (1968), is to divide a structure into substructures with the assump-
tion that all ABs are fixed (Gander and Tu, 2014). The actual value of field
variables on ABs is determined from the equilibrium equations of forces. The
problem is then solved separately in substructures. Although the Schur method
allows high degree of parallelisation, the cost of obtaining solutions on ABs is
huge in comparison with the benefit by the parallel calculation on substructures.
This is the biggest drawback of the method in solving large-scale problems. On
the other hand, the Steklov-Poincare method focuses on constructing an equiva-
lent problem by introducing transmission conditions. The newly formed problem
is then defined and solved separately in sub-domains. Obtained results are finally
gathered back into the original domain. This method is more economical than
the overlapping DD one because the DoF overhead is minimised (Tran et al.,
2009). It also has high potential for parallelisation where all sub-domains can
run concurrently from the beginning without causing the bottle-neck situation
as in the Schur complement method. Although the method does not originally
include parallelisation, only some small modifications are needed to make it par-
allel. More details on this method will be presented in Section 6.3 as a part of
the present work.

Integrated radial basis function has been a well known approximation method
owing to its high convergence rate (Mai-Duy and Tran-Cong, 2001). However,
its stability degrades relatively fast with respect to grid density because of the
ill-condition of the corresponding system matrix. This undesired property of
IRBF is mitigated by introducing compact local schemes. It has been shown in
Hoang-Trieu et al. (2012) that by appropriately choosing the shape parameter
β, compact scheme can achieve a very high convergence rate while maintain an
acceptable condition number of the system matrix.

In this chapter, the Steklov-Poincare non-overlapping DD approach and the
CLIRBF method are combined into one parallel algorithm. The obtained algo-
rithm is used to solve two fluid flow problems, namely the lid-driven cavity fluid
flow and natural convection in concentric annuli. The accuracy and efficiency of
the algorithm will be investigated and compared with those of the non-parallel
method as well as with benchmark results.
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6.2 Review of compact local 2D-IRBF method

6.2.1 2D-IRBF method

Consider a 2D elliptic problem
{

Lu(x) = f, x ∈ Ω
Bu(x) = g, x ∈ ∂Ω

(6.1)

where u(x) is an unknown function; x the position vector; L the second order
differential operator; B the BCs; f and g known functions of x; ∂Ω the boundary;
and Ω the considered domain.

By the 2D-IRBF discretisation approach (Mai-Duy and Tran-Cong, 2010), the
second derivatives of function u are expressed as a combination of RBFs

∂2u(x)
∂x2

j

=
n∑

i=1

wigi(x) =
n∑

i=1

wiG
[2]
i (x), (6.2)

where xj is the j-component of x (j = 1, 2); {wi}ni=1 the set of weights; and
{gi(x)}ni=1 the set of RBFs associated with n centres. In our work, the centres
are chosen to be the grid points. The Multiquadric RBF (MQ-RBF) function is
used in this work and given by

G
[2]
i (x) =

√
(x − ci)2 + a2

i ,

where {ci}ni=1 and {ai}ni=1 are MQ-RBF centres and widths, respectively. It is
noted that superscript [.] is used to denote the associated derivative order.

To obtain expressions for the first-order derivative and the function value, ex-
pression (6.2) is integrated successively with respect to xj as follows.

∂u

∂xj
=

n∑

i=1

wiG
[1]
i (x) + C1, (6.3)

u =
n∑

i=1

wiG
[0]
i (x) + C1xj + C2, (6.4)

where G[1]
i (x) =

∫
G

[2]
i (x)dxj , G

[0]
i (x) =

∫
G

[1]
i (x)dxj and C1, and C2 are con-

stants of integration in the sense that Ci = Ci(xk), k 6= j.

Collocating equations (6.2) - (6.4) at the grid points {xi}ni=1 yields

∂2ũ

∂xj
= G[2]

xj
w̃xj , (6.5)

∂ũ

∂xj
= G[1]

xj
w̃xj , (6.6)

ũ = G[0]
xj

w̃xj , (6.7)
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with

w̃xj = (w1, w2, · · · , wn, C1, C2)
T

xj
,

ũ = (u1, u2, · · · , un)T ,

∂kũ

∂xkj
=

(
∂ku1

∂xkj
,
∂ku2

∂xkj
, · · · , ∂

kun
∂xkj

)T
,

where ui = u(xi) (i = 1, 2, · · · , n); G[2]
xj
,G[1]

xj
and G[0]

xj
are known matrices. In

the above equations, the subscript xj denotes the quantity associated with the
integration process in the xj dimension.

It is worth noting that, in a 2D problem Eq. (6.4) produces two approximations
for the function u and these two approximations will be naturally forced to be
identical. In the following sections, x and y notations will be used to represent
dimensions instead of x1 and x2 and xk to represent a grid point k.

6.2.2 Compact local IRBF scheme

In local schemes, a local set of points called stencil is used for discretisation. For
2D-IRBF, a well-known 9-point stencil is shown in Fig. 6.1.

Figure 6.1 2D 9-point stencil with x5 is the point under consideration.

For this stencil, Eq. (6.5) - (6.7) is rewritten explicitly for the x-dimension as

∂2ũ

∂x
= G[2]

x w̃x, (6.8)

∂ũ

∂x
= G[1]

x w̃x, (6.9)

ũ = G[0]
x w̃x, (6.10)
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where

G[2]
x =




G
[2]
x1(x1), · · · , G

[2]
x9(x1), 0, 0, 0, 0, 0, 0

G
[2]
x1(x2), · · · , G

[2]
x9(x2), 0, 0, 0, 0, 0, 0

G
[2]
x1(x3), · · · , G

[2]
x9(x3), 0, 0, 0, 0, 0, 0

G
[2]
x1(x4), · · · , G

[2]
x9(x4), 0, 0, 0, 0, 0, 0

G
[2]
x1(x5), · · · , G

[2]
x9(x5), 0, 0, 0, 0, 0, 0

G
[2]
x1(x6), · · · , G

[2]
x9(x6), 0, 0, 0, 0, 0, 0

G
[2]
x1(x7), · · · , G

[2]
x9(x7), 0, 0, 0, 0, 0, 0

G
[2]
x1(x8), · · · , G

[2]
x9(x8), 0, 0, 0, 0, 0, 0

G
[2]
x1(x9), · · · , G

[2]
x9(x9), 0, 0, 0, 0, 0, 0




, (6.11)

G[1]
x =




G
[1]
x1(x1), · · · , G

[1]
x9(x1), 1, 0, 0, 0, 0, 0

G
[1]
x1(x2), · · · , G

[1]
x9(x2), 0, 1, 0, 0, 0, 0

G
[1]
x1(x3), · · · , G

[1]
x9(x3), 0, 0, 1, 0, 0, 0

G
[1]
x1(x4), · · · , G

[1]
x9(x4), 1, 0, 0, 0, 0, 0

G
[1]
x1(x5), · · · , G

[1]
x9(x5), 0, 1, 0, 0, 0, 0

G
[1]
x1(x6), · · · , G

[1]
x9(x6), 0, 0, 1, 0, 0, 0

G
[1]
x1(x7), · · · , G

[1]
x9(x7), 1, 0, 0, 0, 0, 0

G
[1]
x1(x8), · · · , G

[1]
x9(x8), 0, 1, 0, 0, 0, 0

G
[1]
x1(x9), · · · , G

[1]
x9(x9), 0, 0, 1, 0, 0, 0




, (6.12)

G[0]
x =




G
[0]
x1(x1), · · · , G

[0]
x9(x1), x1, 0, 0, 1, 0, 0

G
[0]
x1(x2), · · · , G

[0]
x9(x2), 0, x2, 0, 0, 1, 0

G
[0]
x1(x3), · · · , G

[0]
x9(x3), 0, 0, x3, 0, 0, 1

G
[0]
x1(x4), · · · , G

[0]
x9(x4), x1, 0, 0, 1, 0, 0

G
[0]
x1(x5), · · · , G

[0]
x9(x5), 0, x2, 0, 0, 1, 0

G
[0]
x1(x6), · · · , G

[0]
x9(x6), 0, 0, x3, 0, 0, 1

G
[0]
x1(x7), · · · , G

[0]
x9(x7), x1, 0, 0, 1, 0, 0

G
[0]
x1(x8), · · · , G

[0]
x9(x8), 0, x2, 0, 0, 1, 0

G
[0]
x1(x9), · · · , G

[0]
x9(x9), 0, 0, x3, 0, 0, 1




, (6.13)

and the y-dimension as

∂2ũ

∂y
= G[2]

y w̃y, (6.14)

∂ũ

∂y
= G[1]

y w̃y, (6.15)

ũ = G[0]
y w̃y, (6.16)
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where

G[2]
y =




G
[2]
y1(x1), · · · , G

[2]
y9(x1), 0, 0, 0, 0, 0, 0

G
[2]
y1(x2), · · · , G

[2]
y9(x2), 0, 0, 0, 0, 0, 0

G
[2]
y1(x3), · · · , G

[2]
y9(x3), 0, 0, 0, 0, 0, 0

G
[2]
y1(x4), · · · , G

[2]
y9(x4), 0, 0, 0, 0, 0, 0

G
[2]
y1(x5), · · · , G

[2]
y9(x5), 0, 0, 0, 0, 0, 0

G
[2]
y1(x6), · · · , G

[2]
y9(x6), 0, 0, 0, 0, 0, 0

G
[2]
y1(x7), · · · , G

[2]
y9(x7), 0, 0, 0, 0, 0, 0

G
[2]
y1(x8), · · · , G

[2]
y9(x8), 0, 0, 0, 0, 0, 0

G
[2]
y1(x9), · · · , G

[2]
y9(x9), 0, 0, 0, 0, 0, 0




, (6.17)

G[1]
y =




G
[1]
y1(x1), · · · , G

[1]
y9(x1), 1, 0, 0, 0, 0, 0

G
[1]
y1(x2), · · · , G

[1]
y9(x2), 1, 0, 0, 0, 0, 0

G
[1]
y1(x3), · · · , G

[1]
y9(x3), 1, 0, 0, 0, 0, 0

G
[1]
y1(x4), · · · , G

[1]
y9(x4), 0, 1, 0, 0, 0, 0

G
[1]
y1(x5), · · · , G

[1]
y9(x5), 0, 1, 0, 0, 0, 0

G
[1]
y1(x6), · · · , G

[1]
y9(x6), 0, 1, 0, 0, 0, 0

G
[1]
y1(x7), · · · , G

[1]
y9(x7), 0, 0, 1, 0, 0, 0

G
[1]
y1(x8), · · · , G

[1]
y9(x8), 0, 0, 1, 0, 0, 0

G
[1]
y1(x9), · · · , G

[1]
y9(x9), 0, 0, 1, 0, 0, 0




, (6.18)

G[0]
y =




G
[0]
y1(x1), · · · , G

[0]
y9(x1), y1, 0, 0, 1, 0, 0

G
[0]
y1(x2), · · · , G

[0]
y9(x2), y2, 0, 0, 1, 0, 0

G
[0]
y1(x3), · · · , G

[0]
y9(x3), y3, 0, 0, 1, 0, 0

G
[0]
y1(x4), · · · , G

[0]
y9(x4), 0, y1, 0, 0, 1, 0

G
[0]
y1(x5), · · · , G

[0]
y9(x5), 0, y2, 0, 0, 1, 0

G
[0]
y1(x6), · · · , G

[0]
y9(x6), 0, y3, 0, 0, 1, 0

G
[0]
y1(x7), · · · , G

[0]
y9(x7), 0, 0, y1, 0, 0, 1

G
[0]
y1(x8), · · · , G

[0]
y9(x8), 0, 0, y2, 0, 0, 1

G
[0]
y1(x9), · · · , G

[0]
y9(x9), 0, 0, y3, 0, 0, 1




. (6.19)

The conversion matrix is constructed as



ũ
0̃

k̃


 =




G[0]
x , 0

G[0]
x , −G[0]

y

Kx, Ky




︸ ︷︷ ︸
C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (6.20)

where the first sub-matrix ũ = G[0]
x w̃x is employed to collocate the function u over

the stencil; the second sub-matrix G[0]
x w̃x − G[0]

y w̃y = 0̃ is employed to enforce
nodal values of u obtained from the integration with respect to x and y to be
identical; the third sub-matrix Kxw̃x + Kyw̃y = k̃ is employed to represent values
of the PDE (6.1) at selected points, which are (x2,x4,x6,x8) in this study.
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The conversion of the network-weight space into the physical space is achieved
by inverting Eq. (6.20) as

(
w̃x

w̃y

)
= C−1




ũ
0̃

k̃


 , (6.21)

or

w̃x = Cx




ũ
0̃

k̃


 , (6.22)

w̃y = Cy




ũ
0̃

k̃


 , (6.23)

where [Cx, Cy]T = C−1.

By substituting Eqs. (6.22), (6.23) into Eqs. (6.8) - (6.10) and (6.14) - (6.16),
the derivatives of function u with respect to x and y directions over a local stencil
are now expressed in physical space.

Boundary conditions used in CLIRBF schemes

With Dirichlet BC, the governing equation yields at each grid point an algebraic
equation whose variables are the function values of points in the associated stencil.
Applying this procedure for all interior points and their associated stencils yields
a system of algebraic equations. Since the variables of the equation system at
boundary points are known as Dirichlet BC, they are subtracted from the system
and moved to the right hand side. A new system of equations can now be solved
by an iterative method.

In IRBF approach, there are two ways to impose the Neumann BC on the final
system of algebraic equations. The first one is to add expressions of Neumann
BC to the final equation system. This approach is effective with coarse grids.
However, with dense grids the condition number of system matrices is usually
high, which may cause numerical instability. The other way is to add expressions
of Neumann BCs into conversion matrices of associated stencils. Governing equa-
tions at the boundary points are then also derived and put into the final algebraic
system of equations.

Take a 9-point stencil as shown in Fig. 6.1 with Neumann BC
∂u

∂x
= e(x) applied

at the boundary nodal points {x7,x8,x9}. The conversion matrix is constructed
as 



ũ
0̃

k̃
ẽ




=




G[0]
x , O

G[0]
x , −G[0]

y

Kx, Ky

G[1]
x , O




︸ ︷︷ ︸
C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (6.24)

where e(x) is a given function, and ẽ = [e(x7), e(x8), e(x9)]T .
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Non-rectangular domains

Figure 6.2 Non-rectangular stencil

In non-rectangular domains, some points are positioned near the non-rectangular
boundary and the stencils associated with these points can be arbitrary as shown
in Fig. 6.2. The IRBF approximation for these stencils is carried out in a dual-
stencil associated with x-gridlines and y-gridlines, namely the x and y-stencils.

Take the non-rectangular stencil in Fig. 6.2 as an example, the x-stencil is the
union of grid points and boundary points generated by the intersection of x-
gridlines and the boundary

X = {x1,x2,x3,x4,x6,x7,x8,x10}.

The y-stencil is the union of grid points and boundary points generated by the
intersection of y-gridlines and the boundary

Y = {x1,x2,x3,x5,x6,x7,x9,x10}.

The x-stencil is used to approximate values of unknowns and their derivatives

with respect to x, i.e.,
∂2u

∂x2
,
∂u

∂x
and ux, while the y-stencil is used to approximate

those with respect to y, i.e.,
∂2u

∂y2
,
∂u

∂y
and uy. Note that ux is obtained in the

manner of Eq.(6.4) with xj ≡ x and uy with xj ≡ y.

To construct the conversion matrix, some sets of points are explicitly defined as
follows. 





S1 = X = {x1,x2,x3,x4,x6,x7,x8,x10}
S2 = Y \X = {x5,x9}
S3 = X ∩ Y = {x1,x2,x3,x6,x7,x10}
S4 = {x2,x7}
S5 = {x2}

where S1 is the set of all points in x-stencil; S2 the set of boundary points gener-
ated by y-gridlines crossing the non-rectangular boundary; S3 the set of common
points between x-stencil and y-stencil and S4 the set of compact points, which
are grid points lying on the cross whose centre is the reference point x5.

Suppose that a Neumann BC
∂u

∂x
= e(x) is imposed at x2 then S5 = {x2} is
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defined as the set of points with Neumann BC in x dimension. The conversion
matrix associated with this stencil is determined as follows.




ũS1

ũS2

0̃S3

k̃S4

ẽS5




=




G[0]
x , 0

O, G[0]
y

G[0]
x , −G[0]

y

Kx, Ky

G[1]
x , 0




︸ ︷︷ ︸
C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (6.25)

where the sub-matrix G[0]
x w̃x = ũS1 captures the collocation of ux at S1; G[0]

y w̃y =
ũS2 the collocation of uy at S2; G[0]

x w̃x − G[0]
y w̃y = 0̃S3 the enforcement ux = uy at

S3; Kxw̃x + Kyw̃y = k̃S4 the compact information, which represent the governing
equation at S4; and the last sub-matrix G[1]

x w̃x = ẽS5 the Neumann BC at S5.

6.3 Parallel non-overlapping DD method

The Steklov-Poincare non-overlapping DD method is used in this work and an
example with two sub-domains and one AB is shown in Fig. 6.3, in which ∂Ω =
Γ1 ∪ Γ2.

6.3.1 Non-overlapping Dirichlet-Neumann DD method

Figure 6.3 Non-overlapping DD method in 2D

The 2D problem (6.1) is rewritten with the introduction of AB Γ

{
Lu = f, x ∈ Ω,
Bu = g, x ∈ Γ1 ∪ Γ2.

(6.26)

The problem (6.26) is reformulated in an equivalent form with two sub-domains
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Ω1 with ∂Ω1 = Γ1 ∪ Γ and Ω2 with ∂Ω2 = Γ2 ∪ Γ as follows.





Lu1 = f, x ∈ Ω1

Bu1 = g, x ∈ Γ1

u1 = u2, x ∈ Γ
Lu2 = f, x ∈ Ω2

Bu2 = g, x ∈ Γ2

∂u2

∂n
=

∂u1

∂n
, x ∈ Γ

(6.27)

where subscripts 1 and 2 denote sub-domains. The two constraints u1 = u2 and
∂u2

∂n
=

∂u1

∂n
are transmission conditions for u across Γ. It is proved that the

solution of the equivalent problem (6.27) converges to the solution of the original
problem (6.26) (Quarteroni and Valli, 1999).

The non-overlapping Dirichlet-Neumann DD method can be written for step k as




Luk1 = f, x ∈ Ω1

Buk1 = g, x ∈ Γ1

uk1 = uk−1
2 , x ∈ Γ

(6.28)

and 



Luk2 = f, x ∈ Ω2

Buk2 = g, x ∈ Γ2

∂uk2
∂n

=
∂uk1
∂n

, x ∈ Γ
(6.29)

The convergence of non-overlapping Dirichlet-Neumann DD method is guaranteed
by introducing a relaxation factor θ into the transmission condition in (6.28) so
that

uk1 = θuk−1
1 + (1 − θ)uk−1

2 , x ∈ Γ

where θ ∈ [0, 1].

6.3.2 Parallel version of non-overlapping Dirichlet-Neum ann DD method

It is clear that the DD method presented above is not suitable for parallel com-
puting because the calculation in sub-domain 2 via by Eqs. (6.29) requires values
on the AB from sub-domain 1 obtained by Eqs. (6.28) in the same iteration
step. Fortunately, this data dependence can be handled so that parallel cal-
culation is applicable. There are two common approaches of parallelisation of
non-overlapping DD method.

The first approach is to use the black and white colouring technique. Within this
technique, sub-domains that have no-common AB, i.e. not adjacent, are marked
with black colour. The remaining sub-domains, which are also not adjacent, are
marked with white colour. In the first iteration, only black sub-domains are
computed in parallel, and in the next interaction only white sub-domains are
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computed in parallel and so on. Although the approach maintains the form of
the equivalent problem (6.27), it only allows at most N/2 sub-domains to run in
parallel, where N is the number of sub-domains.

For the second approach, a small modification to Eqs. (6.29) is made as follows.




Luk2 = f, x ∈ Ω2

Buk2 = g, x ∈ Γ2

∂uk2
∂n

=
∂uk−1

1

∂n
, x ∈ Γ

(6.30)

where the values of first order derivative on the AB of sub-domain 2 are ob-
tained from sub-domain 1 in previous time step. This modification allows all
sub-domains to run concurrently. This approach is employed in this work.

6.3.3 Parallel algorithm based on non-overlapping DD metho d cou-
pled with IRBF

The original domain of problem is divided into non-overlapping sub-domains. In
each sub-domain, a sub-problem with either Dirichlet or Dirichlet and Neumann
BC will be solved using the compact local IRBF approximation scheme as pre-
sented in Section 6.2. The solution is considered converged once the convergence
measures (CM) in each sub-domain as well as on all ABs reach some predefined
tolerances.

Communication and Synchronisation

The algorithm is implemented in MATLAB environment. The parallel commu-
nication is achieved by using standard send and receive functions (MATLAB,
2012). Since these operations are synchronous, the synchronisation and delivery
of messages are guaranteed.

Termination

As presented before, the algorithm stops when CMs reach given tolerances. CM
is the norm-2 of a field variable and is defined as follows.

CM =

√
n∑
i=1

(uk+1
i − uki )2

√
n∑
i=1

(uki )2

, (6.31)

where k is the iteration step and n the number collocation points.

In this method, three CMs are used to verify the convergence of the numerical
solution. CM [u] is the convergence measure of the field variable obtained by two
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successive time steps within a sub-domain. ABCM [u] is the convergence measure
of the field variable on the AB between two adjacent sub-domains. ABCM [ ∂u

∂n
]

is the convergence measure of the first derivative of field variable on the AB
between two adjacent sub-domains. The solution is considered converged if all
three following conditions are met





CM [u] < CMtol, in sub-domain
ABCM [u] < ABCM

[u]
tol , on AB

ABCM [ ∂u
∂n

] < ABCM
[ ∂u
∂n

]

tol , on AB

(6.32)

In parallel computation, each sub-domain is a part of a distributed system. A
sub-domain can terminate if there is no other adjacent sub-domain communicat-
ing with it. In this work, the Bitmap distributed termination detection (DTD)
algorithm presented in Chapter 3 is used to achieve an efficient termination. The
Bitmap algorithm allows any sub-domain to detect the termination. Furthermore,
the detection delay and the data overhead of Bitmap DTD are low and hence they
affect insignificantly on the overall performance of the parallel computation.

The algorithm

The parallel algorithm is shown in Fig. 6.4 and consists of two parts, namely a
sequential part and a parallel part.

The sequential part includes two blocks, the DD at the beginning and the collec-
tion of results at the end. The DD block is responsible for creating sub-domains
and their relative coordinates in the whole domain. The result collection block
collects data from all sub-domains and then merges them into one global solution.

In the parallel part, each sub-domain firstly needs to identify its neighbours. Then
the Navier-Stokes equations are solved using 2D Compact Local IRBF scheme.
The obtained solution is used to approximate the first order normal derivative on
ABs. Both the field variable and its normal derivative on ABs are sent to NSs.
These data are used to determine CMs and to check the convergence condition
(6.32). The last step, termination detection, is to find whether the calculation in
a current sub-domain is finished and to terminate accordingly.

6.4 Numerical examples

The efficiency of the present method is demonstrated by solving two benchmark
problems: the lid-driven cavity fluid flow and the natural convection in concentric
annuli.
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Figure 6.4 Flowchart of parallel algorithm based on non-overlapping Dirichlet-Neumann DD method

6.4.1 Lid-driven cavity fluid flow problem

In dimensionless form, the LDC fluid flow problem is described in Fig. 6.5 where
the square cavity has three fixed walls and a sliding top lid. The cavity is filled
with a viscous fluid which is driven by the lid with a velocity of 1 from left to
right.

The governing equation of the problem is given in stream-function and vorticity
formulation as follows.

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (6.33)

1
Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
=

∂ω

∂t
+ (

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
), (6.34)

where ψ is the stream-function variable, ω the vorticity variable, Re the Reynolds
number defined as

Re =
UL

ν
,
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Figure 6.5 The LDC fluid flow problem. Geometry and BCs. For parallel computing, the domain is simply divided into a
number of equal rectangular sub-domains

where U is the speed of the lid; L the side of the cavity and ν the kinematic
viscosity of the fluid.

The relationship of stream-function and vorticity with velocity components u and

v is given as follows. u =
∂ψ

∂y
; v = −∂ψ

∂x
and ω =

∂v

∂x
− ∂u

∂y
.

The BCs of the LDC problem in Fig. 6.5 are reproduced as follows.

ψ = 0,
∂ψ

∂y
= 1 ∀(x, y) ∈ Γ1; (6.35)

ψ = 0,
∂ψ

∂x
= 0 ∀(x, y) ∈ Γ2 ∪ Γ3 ∪ Γ4. (6.36)

For parallel computing, the original domain (Fig. 6.5) is simply divided to {1, 2,
4, 9, · · · , 81} equal rectangular sub-domains. Since the Dirichlet-Neumann non-
overlapping DD method is used, there is an alternation from the Dirichlet BCs
on one side of ABs to the Neumann BCs on the other side. For load balancing
purpose, the Dirichlet BCs are set on the top and right ABs and the Neumann
BCs on the bottom and left ABs in each sub-domain. In each sub-domain, the
problem is solved through the following procedure.

1. Set the rest state of unknowns ψ and ω. Guess the initial BCs on the ABs.

2. Solve Eq. (6.33) for ψ.

3. Approximate ω on the ABs and solve Eq. (6.34) for ω.

4. Exchange the Dirichlet and/or Neumann BCs over the ABs.

5. Check the termination condition (6.32). If satisfied then terminate. Other-
wise, update BCs on the ABs and go to step 2.
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Since the BCs of ω are unknown, they need to be determined in order to solve
Eq. (6.34). In this implementation, the BCs of ω are approximated from Eq.
(6.33) using the global 1D IRBF method (Mai-Duy and Tran-Cong (2001)).

The LDC fluid flow problem is investigated with several Reynolds numbers {100,
400, 600, 1000}. The contours of stream-function ψ and vorticity ω are presented
in Figs. 6.6 and 6.7 while the velocity profiles are shown in Fig. 6.8.

(a) Re = 100 (b) Re = 400

(c) Re = 600 (d) Re = 1000

Figure 6.6 The LDC fluid flow problem. Stream-function (ψ) contours of the flow for several Reynolds numbers (Re = 100,
400, 600 and 1000) by the present parallel method using 16 CPUs with the specifications: grid 151 × 151, ∆t = 10−3,

CM
[u]
tol = 10−6 , ABCM

[u]
tol

= 10−6, ABCM
[ ∂u

∂n
]

tol
= 10−6, θ = 0.45 and β = 2.

The contours of stream-function and vorticity in Figs. 6.6 and 6.7 show a great
agreement with benchmark results by Ghia et al. (1982) and by Botella and
Peyret (1998). While the velocity profiles u along the vertical centreline and v
along the horizontal centreline in Fig. 6.8 also go through corresponding values
given by Ghia et al. (1982).
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(a) Re = 100 (b) Re = 400

(c) Re = 600 (d) Re = 1000

Figure 6.7 The LDC fluid flow problem. Vorticity (ω) contours of the flow for several Reynolds numbers (Re = 100, 400,
600 and 1000) by the present parallel method using 16 CPUs. Other parameters are given in Fig. 6.6.
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(b) Re = 400
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(d) Re = 1000

Figure 6.8 The LDC fluid flow problem. Profiles of the u velocity along the vertical centreline (dashed lines) and the v velocity
along the horizontal centreline (solid lines) for several Reynolds numbers (Re = 100, 400, 600 and 1000) by the present
parallel method in comparison with the corresponding Ghia’s results (� for u velocity and # for v velocity). Parameters of
the problem are given in Fig. 6.6.
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Table 6.1 The LDC fluid flow problem. Parallel performance with grid 151 × 151, ∆t = 10−3, CM
[u]
tol = 10−6,

ABCM
[u]
tol

= 10−6, ABCM
[ ∂u

∂n
]

tol
= 10−6, θ = 0.45 and β = 2. CPUs: number of CPUs (sub-domains); Ni:

number of iterations; Tp - parallel computation time (minutes) on parallel CPUs, i = 1 for single CPU; S - speed-up; E -
efficiency.

Re = 100 Re = 400

CPUs Ni Tp S E i Tp S E
1 8814 132.25 1.00 100.00 22107 324.98 1.00 100.00
2 13486 91.41 1.45 72.34 28594 193.52 1.68 83.97
4 13793 42.37 3.12 78.04 30770 96.15 3.38 84.50
9 14330 18.07 7.32 81.30 31931 40.45 8.03 89.27
16 16332 8.80 15.03 93.96 33649 18.61 17.46 109.14
25 15096 5.12 25.84 103.34 37848 12.29 26.45 105.81
36 17665 4.08 32.44 90.10 34088 7.81 41.62 115.60
49 16212 2.90 45.59 93.04 37932 6.33 51.35 104.79
64 16257 2.31 57.22 89.41 33964 4.48 72.60 113.44
81 15989 1.97 67.05 82.78 38383 4.31 75.40 93.08

The efficiency of parallel method is often evaluated by the speed-up S and the
efficiency E.

S =
Ts
Tp
,

E =
S

p
,

(6.37)

where Ts is the computation time on a single CPU, Tp the computation time on
parallel CPUs, p the number of parallel CPUs.

The efficiency of the present parallel method is demonstrated using a grid of
151 × 151 with a range of CPU numbers from 1 to 81 as described in Fig. 6.9.
As can be seen in Fig. 6.9 (bottom figure), the throughput of the present parallel
method is very high. Furthermore, the speed-up grows steadily with the increase
of number of CPUs (top - left figure), this shows a good scalability of the present
parallel algorithm. It is noted that the speed-up deteriorates as the number of
CPUs exceeds a certain threshold. For example, the threshold is 64 CPUs for
Re = 400 and Re = 600; and 49 CPUs for Re = 1000. For a parallel program, the
threshold sets an upper-bound, over which the efficiency of a parallel computation
starts to decrease. In this example, it appears that the CPU threshold decreases
with increasing Re number.

The results show that the present method achieves a very high efficiency. Fur-
thermore, a super-linear speed-up is achieved with 25 CPUs for Re = 100, with
{16, 25, 36, 49, 64} CPUs for Re = 400, with {25, 36, 49, 64} CPUs for Re = 600,
and with {16, 25, 36, 49, 64} CPUs for Re = 1000 (Fig. 6.9, top - right). A
reason of the high efficiency is the insignificant increase of number of iterations in
the present parallel computation in comparison with the sequential one. Detailed
efficiency of the present parallel method is presented in Tables 6.1 and 6.2 for
Re = {100, 400} and Re = {600, 1000}, respectively.

To investigate the ratio of the communication time to the total execution time
on each CPU, the time profile of the case of 25 CPUs is recorded and provided in
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Table 6.2 The LDC fluid flow problem. Parallel performance with grid 151 × 151, ∆t = 10−3, CM
[u]
tol = 10−6,

ABCM
[u]
tol

= 10−6, ABCM
[ ∂u

∂n
]

tol
= 10−6, θ = 0.45 and β = 2. CPUs - number of CPUs (sub-domains); Ni -

number of iterations; Tp - parallel computation time (minutes) on parallel CPUs except for the case with 1 CPU which is
non-parallel; S - speed-up; E - efficiency.

Re = 600 Re = 1000

CPUs Ni Tp S E i Tp S E
1 25824 356.29 1.00 100.00 30442 453.65 1.00 100.00
2 33026 242.43 1.47 73.48 38044 261.37 1.74 86.78
4 35653 109.17 3.26 81.59 43619 130.61 3.47 86.83
9 35595 47.00 7.58 84.22 40853 50.51 8.98 99.80
16 38769 22.97 15.51 96.96 48079 27.34 16.60 103.72
25 36903 13.65 26.11 104.43 45085 14.49 31.30 125.20
36 38148 8.79 40.54 112.61 53924 11.35 39.98 111.06
49 40018 6.81 52.34 106.81 45231 7.76 58.44 119.27
64 40340 5.42 65.78 102.78 54754 6.93 65.49 102.33
81 46869 5.29 67.41 83.22 57140 6.24 72.73 89.79

Table 6.3. The obtained results show that the percentage of the communication
time in the total time ranges from 12.38% to 24.29%.

In order to have an objective comparison on the efficiency of present parallel
computation over the sequential one, a normalised computation time is defined
as the time required for each CPU to complete a computation task in an ideal
parallel program and given by

Tn =
Ts
p
. (6.38)

The efficiency E described in Eq. (6.37) can now be determined by following
formula

E =
Tn
Tp
. (6.39)

The efficiency by the present parallel method is shown in Table 6.3.

A bar graph of the efficiency of the parallel and the sequential program is also
provided in Fig. 6.10. The graph presents a quantitative comparison between
the communication time and computation time in a parallel computation as well
as between the present parallel computation using 25 CPUs and the associated
sequential one, in which super-linear efficiency is achieved.
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Table 6.3 The LDC fluid flow problem. Comparison between computation time and communication time in parallel program
and total time between parallel program and sequential program. Parallel program runs on 25 CPUs. Re is Reynolds
number, Tcmm: communication time (minute), Tcmp: computation time (minute), Tp: parallel computation time (minutes),
% Tcmm: percentage of communication time in total time, Ts: sequential computation time (minutes), Tn: normalised time,
E: efficiency

Parallel Sequential
Re Tcmm Tcmp Tp %Tcmm Ts Tn E
100 0.63 4.49 5.12 12.38 132.25 5.29 103.34
400 2.78 9.50 12.29 22.66 324.98 13.00 105.81
600 3.31 10.33 13.65 24.29 356.29 14.25 104.43
1000 2.92 11.58 14.49 20.13 453.65 18.15 125.20
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(c) Simulation time

Figure 6.9 The LDC fluid flow problem. Performance of the present parallel algorithm for several Reynolds numbers (100,
400, 600 and 1000) with a grid of 151 × 151: the efficiency, speed-up and simulation time as a function of the number of
CPUs. Other parameters are given in Tables 6.1, 6.2.
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Figure 6.10 The LDC fluid flow problem. Comparison of execution times between the sequential computation and parallel
computation using 25 CPUs
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6.4.2 Natural convection in concentric annuli

Figure 6.11 The NC problem. Geometry and BCs.

The problem of NC in concentric annuli is of significant interest to the engineer-
ing community because of its high applicability to engineering problems such as
heat distribution, reactor design, engine design etc. A viscous fluid is enclosed
in an annulus defined by an outer square cylinder and a concentric inner circular
cylinder (Fig. 6.11). The outer cool wall is kept at a constant temperature T = 0
and the inner hot wall at T = 1. Under Boussinesq approximation, the temper-
ature differential between the walls generates natural convection. The problem
was recently solved by several researchers using various non-parallel methods
(Moukalled and Acharya, 1996; Kim et al., 2008; Le-Cao et al., 2009; Hussain
and Hussein, 2010; Ngo-Cong et al., 2012).

Since the inner boundary is non-rectangular, for some numerical methods the
physical domain needs to be transformed into a rectangular computational do-
main. However, with IRBF approximation, the transformation is not necessary
and a Cartesian grid with added irregular boundary points is used as described
in Fig. 6.12.

The dimensionless governing equations for the NC problem are given by

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (6.40)

√
Pr

Ra

(
∂2ω

∂x2
+
∂2ω

∂y2

)
=

∂ω

∂t
+

(
u
∂ω

∂x
+ v

∂ω

∂y
− ∂T

∂x

)
, (6.41)

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
=

∂T

∂t
+

(
u
∂T

∂x
+ v

∂T

∂y

)
, (6.42)
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Figure 6.12 The NC problem. A sample grid of 28 × 28 points with 24 sub-domains.

where Ra is the Rayleigh number, and Pr the Prandtl number defined as

Pr =
ν

α
,

Ra =
gβ∆TL3

να
,

where ν is the kinematic viscosity, α the thermal diffusivity, g the acceleration
due to gravity, β the thermal expansion coefficient, L the characteristic length
and ∆T and the difference between wall temperature and quiescent temperature.

The problem is investigated with the following parameters

L

2R
= 2.5;

Pr = 0.71;
Ra = {104, 105, 106};

where L is the length of sides of the outer square profile; R the radius of the inner
circular profile.

BCs of the NC problem presented in Fig. 6.11 are reproduced as follows.

ψ = 0,
∂ψ

∂n
= 0, T = 0 on outer square,

ψ = 0,
∂ψ

∂n
= 0, T = 1 on inner circle.

(6.43)

Fig. 6.13 depicts one way to partition the considered domain into 24 non-
overlapping sub-domains. Each sub-domain is assigned a number from 1 to 24
called process-index. The process-index is used to position sub-domains in the
parallel system and to communicate with others.
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Figure 6.13 The NC problem. Sub-domain formation and enumeration.

Figure 6.14 The NC problem. BCs on ABs of sub-domains.

For each sub-domain, the top and left ABs are of Dirichlet type and the bottom
and right ABs are of Neumann type. A detailed example is shown in Fig. 6.14.

In each sub-domain, the solving procedure for the natural convection problem
using the present method can now be described as follows.

1. Set the initial values for ψ, ω, T . Guess the initial values of BCs on ABs.

2. Solve Eq. (6.40) for ψ.

3. Approximate u, v and solve Eq. (6.42) for T .

4. Approximate ω on boundary and solve Eq. (6.41) for ω.

5. Exchange the values of Dirichlet and/or Neumann BCs of ψ, ω and T over
ABs.
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6. Check the termination condition (6.32). If satisfied then terminate. Other-
wise, update BCs on ABs and go to step 2.

As presented in step 4 of the solving procedure, the value of ω on boundary needs
to be approximated. As can be seen in Fig. 6.12, since some boundary points on
the inner cylinder do not coincide with grid points, equivalent formulas instead
of Eq. (6.40) are used to approximate ω on ABs as follows (Le-Cao et al., 2009).

ωb = −

1 +

(
tx
ty

)2

 ∂

2ψb
∂x2

, (6.44)

for boundary points on x-grid lines and

ωb = −
[
1 +

(
ty
tx

)2
]
∂2ψb
∂y2

, (6.45)

for boundary points on y-grid lines, where tx and ty are the x- and y-components
of the unit vector tangential to the boundary, respectively. Thus, the value of ω
on the inner cylinder can be approximated in only one dimension x or y.

Figs. 6.15 - 6.16 show the stream-function (ψ), vorticity (ω) and temperature
(T ) contours and normal derivative of temperature of the NC problem for several
Rayleigh numbers (Ra = 104, 105 and 106) using 24 sub-domains. The results
by the present parallel method are in very good agreement with those by other
works cited above, using the same rheological parameters.

In order to verify the accuracy of the method, the average Nusselt numbers as-
sociated with the outer and the inner walls are calculated to compare with those
by other works.

Nu =
∮
∂T

∂n
ds. (6.46)

As presented in Table 6.4, the average Nusselt number on the hot wall by the
present method is in great agreement with other results obtained by different
non-parallel numerical methods with single domain. It is noted that the average
Nusselt number in some of the works cited are calculated for half of the domain
and thus in this work, the actual average Nusselt number needs to be divided by
2 for comparison purpose.
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Table 6.4 The NC problem. Comparison of average Nusselt numbers. Present results
are obtained by a parallel algorithm with 24 CPUs

Ra 104 105 106

Present 3.23 4.91 8.90
Ngo-Cong et al. (2012) a 3.23 4.92 8.90
Le-Cao et al. (2009) b 3.21 4.89 8.85
Hussain and Hussein (2010) c 3.40 5.13 9.39
Kim et al. (2008) d 3.41 5.14 9.39
Shu and Zhu (2002) e 3.24 4.86 8.90
Moukalled and Acharya (1996) f 3.33 5.08 9.37
a Local moving least square 1D-IRBFN
b 1D-IRBFN
c Finite volume method
d Immersed boundary method
e Differential quadrature method
f Finite volume method
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Ra = 104

Ra = 105

Ra = 106

Figure 6.15 The NC problem. Stream-function (ψ) contours (on the left) and vorticity (ω) contours (on the right) of the flow

for several Rayleigh numbers using 24 sub-domains, grid 120 × 120, ∆t = 10−4, CM
[u]
tol = 10−9,ABCM

[u]
tol

= 10−8,

ABCM
[ ∂u

∂n
]

tol
= 10−8, θ = 0.25 and β = 2.
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Figure 6.16 The NC problem. Temperature (T ) contours (on the left) and normal derivative of temperature
∂T

∂n
along the

inner circle (on the right) of the flow for several Rayleigh numbers, using 24 sub-domains, other parameters are given in Fig.
6.15.
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Table 6.5 The NC problem. Parallel performance with Ra = 104, grid 120 × 120, ∆t = 10−4, CM
[u]
tol = 10−9,

ABCM
[u]
tol

= 10−8, ABCM
[ ∂u

∂n
]

tol
= 10−8, θ = 0.25 and β = 2. CPUs: number of CPUs (sub-domains); Ni: number

of iterations; Nuo average Nusselt number on the outer square (cold wall); Nui average Nusselt number on the inner circle
(hot wall); t(m): elapsed time (minutes); S: speed-up; E: efficiency.

CPUs Ni Nuo Nui t(m) S E
1 118288 3.2253 3.2245 1635.58 1.00 100.00
2 120297 3.2253 3.2249 446.17 3.67 183.29
4 120275 3.2253 3.2249 232.23 7.04 176.08
8 125224 3.2253 3.2247 124.47 13.14 164.26
16 124170 3.2252 3.2251 51.05 32.04 200.25
24 132465 3.2253 3.2253 33.48 48.85 203.56
32 131055 3.2253 3.2247 27.62 59.21 185.02
48 130681 3.2253 3.2262 18.37 89.05 185.52
60 135502 3.2253 3.2251 15.35 106.55 177.58
72 136952 3.2254 3.2244 13.35 122.48 170.11

Table 6.6 The NC problem. Parallel performance with Ra = 105, grid 120 × 120, other parameter can be seen in Table
6.5.

CPUs Ni Nuo Nui t(m) S E
1 386141 4.9053 4.9065 4542.72 1.00 100.00
2 392906 4.9053 4.9072 1509.73 3.01 150.45
4 401923 4.9053 4.9073 764.73 5.94 148.51
8 420629 4.9047 4.9063 420.99 10.79 134.88
16 422929 4.9054 4.9069 190.56 23.84 148.99
24 448339 4.9045 4.9072 115.11 39.46 164.43
32 443774 4.9040 4.9059 90.69 50.09 156.54
48 446269 4.9047 4.9100 62.49 72.69 151.44
60 446010 4.9030 4.9060 52.31 86.84 144.73
72 445250 4.9035 4.9055 45.80 99.19 137.76

Tables 6.5 - 6.7 present numerical results of the NC problem in a concentric
annulus using the present parallel computation method with a range of number
of CPUs for three Rayleigh numbers Ra = {104, 105, 106}

It can be seen that the oscillation of the average Nusselt numbers on the outer
square and the inner circle with respect to various numbers of CPUs is insignif-
icant. For example, the maximum differences of Nusselt numbers are around
0.08%, 0.11% and 0.13% for Ra = 104, Ra = 105 and Ra = 106, respectively
(Tables 6.5 - 6.7). This confirms the stability of the present parallel computation
with different numbers of CPUs.

In this numerical example, the super-linear efficiency is observed with a whole
range of numbers of CPUs from 2 to 112 for all three considered Rayleigh numbers
(see Tables 6.5 - 6.7 column E). One reason of the super-linearity can be explained
by the reduction of condition number with the increase of number of CPUs as seen
in Tables 6.8 for both the LDC and NC problems. For example, the condition
number for the NC problem reduces from from 4563.29 down to 106.50 when
increasing the number of CPUs from 1 to 72 sub-domains with a 120 × 120 grid.
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Table 6.7 The NC problem. Parallel performance with Ra = 106 , grid 120 × 120, other parameter can be seen in Table
6.5.

CPUs Ni Nuo Nui t(m) S E
1 759280 8.8726 8.9015 9093.03 1.00 100.00
2 759000 8.8673 8.9034 2882.77 3.15 157.71
4 785182 8.8676 8.9034 1483.05 6.13 153.28
8 846039 8.8652 8.8990 833.02 10.92 136.45
16 895329 8.8686 8.9021 404.71 22.47 140.42
24 902945 8.8658 8.9043 245.91 36.98 154.07
32 902989 8.8655 8.8991 181.62 50.07 156.45
48 897475 8.8717 8.9075 126.41 71.93 149.85
60 900293 8.8668 8.9019 100.34 90.62 151.04
72 904160 8.8624 8.8956 88.91 102.28 142.05

Table 6.8 Condition number of system matrix in LDC and NC problems with respect to number of CPUs (sub-domains)

LDC grid 151 × 151 NC grid 120 × 120
CPUs CNψ CPUs CNψ

1 10724.71 1 4563.29
2 4143.51 2 4316.68
4 2680.41 4 4036.09
9 1191.68 8 883.07
16 688.34 16 346.73
25 429.04 24 251.40
36 297.15 32 230.75
49 230.75 48 122.08
64 171.32 60 93.48
81 137.00 72 106.50

The speed-up for all three Rayleigh numbers presented in Fig. 6.17 (top - right)
linearly increases with respect to the number of CPUs. As in the LDC problem,
this confirms the high scalability of the present parallel method.

The comparison of the communication time and the computation time in parallel
computing as well as the total time in the parallel program with 24 CPUs and
sequential one is given in Table 6.9. A bar graph is also provided in Fig. 6.18 for
better visualisation of these comparison.

Table 6.9 The NC flow problem. Comparison between the computation time and communication time in parallel program,
and the total time between parallel computation and sequential computation. Parallel program using 24 CPUs. Ra: Rayleigh
number, Tcmm: communication time in minutes, Tcmp : computation time in minutes, Tp : computation time (minutes) on
parallel CPUs, %Tcmm: percentage of communication time in total time, Ts: computation time (minutes) on single CPU,
Tn: normalised time (minutes), E: efficiency

Parallel Sequential
Ra Tcmm Tcmp Tp %Tcmm Ts Tn E
104 10.07 23.41 33.48 30.07 1635.58 68.15 203.56
105 42.03 73.09 115.11 36.51 4542.72 189.28 164.43
106 64.95 180.96 245.91 26.41 9093.03 378.88 154.07
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(c) Simulation time

Figure 6.17 The NC flow problem. Performance of the present parallel algorithm for several Rayleigh numbers: the efficiency,
speed-up and simulation time with respect to the number of CPUs. Other parameters are given in Table 6.5.
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Figure 6.18 The NC flow problem. Comparison of execution times between the sequential computation and parallel compu-
tation using 24 CPUs
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6.5 Conclusion and remarks

In this chapter, the non-overlapping Dirichlet-Neumann DD method coupled with
a 2D CLIRBF scheme to solve the incompressible Navier-Stokes equations has
been successfully developed. The achieved results for the LDC fluid flow and
the NC in concentric annuli are in good agreement with benchmark results. The
time efficiency is very high and super-linear efficiency is achieved with a wide
range of numbers of CPUs. This super-linearity can be partly explained by the
decrease of the condition number of the system matrix of sub-problems and by the
insignificant increase of number of iterations required for the solution to converge.
The oscillation of solutions with varying number of CPUs is small. Furthermore,
the method also shows good scalability as the speed-up grows consistently as a
function of number of CPUs with given grids.



Chapter 7

Parallel IRBF method for the numerical
simulation of viscoelastic fluid flows

In this chapter, the parallel algorithm based on the high order IRBF methods
will be further demonstrated by simulating the flow of Newtonian and viscoelastic
fluids in a 4:1 planar contraction geometry. The 4:1 planar contraction flow of
Oldroyd-B fluids at several Weissenberg numbers will be analysed. The perfor-
mance of parallel computation is evaluated with a range of numbers of CPUs.
The overall speed-up and efficiency of the method is high. The results obtained
from the simulation are comparable with other results in the literature.

7.1 The 4:1 planar contraction flows

In rheological computation, the simulation of flows of a viscoelastic fluid through
an abrupt contraction has always been considered as a benchmark problem for
numerical methods. The difficulty of this problem arises from the singularity of
stress at the re-entrant corners. At these sharp corners, the profiles of stresses
are discontinued, and that poses a great challenge for approximation methods.
The problem has attracted many researchers. For example, Marchal and Cro-
chet (1986, 1987) used FEM with Hermitian elements; Yoo and Na (1991) used
finite volume SIMPLER algorithm with non-uniform staggered grid to simulate
the flow with Weissenberg number We up to 1.04; Carew et al. (1993) imple-
mented a method with Taylor-Petrov-Galerkin algorithm to simulate the flow at
several Reynolds numbers Re; Sato and Richardson (1994) used a mixed finite
element/finite volume method with a pressure-correction scheme to simulate flow
at Re = {0.01, 0.1, 1} and We up to 2; Matallah et al. (1998) proposed the recov-
ery and stress-splitting scheme within a finite-element formulation to investigate
viscoelastic flows; Phillips and Williams (1999) applied a semi-Lagrangian finite
volume method for analysis of creeping and inertial flow. Recently, Fattal and
Kupferman (2004) proposed log-conformation tensor approach which was a good
treatment for the exponential behaviour of stresses near the re-entrant corners.
In this chapter the present parallel IRBF method based on overlapping Domain
Decomposition method is demonstrated in simulating the flows of Newtonian and
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non-Newtonian fluids through a 4:1 planar contraction.

The domain of a planar contraction problem consists of an upstream channel and
a downstream channel. The two channels are connected by a sharp re-entrant.
The contraction ratio, which is the ratio between the widths of the upstream and
downstream channels respectively, is chosen to be 4:1. The flow of fluid through
this contraction is driven by a given inlet velocity profile u. The geometry of the
problem can be seen in Fig. 7.1.

Figure 7.1 The 4:1 planar contraction geometry.

7.2 Governing equations and boundary conditions

7.2.1 Governing equations

The dimensionless equations of mass and momentum conservation are given by,
respectively,

∇ · v = 0, (7.1)
∂v

∂t
+Rev · ∇v = −∇p+ ∇ · τ + α∇2v, (7.2)

and the constitutive equation for the elastic part of the stress tensor τ for
Oldroyd-B fluid is expressed by

τ +We

(
∂τ

∂t
+ v · ∇τ − τ · ∇v − ∇vT · τ

)
= 2(1 − α)(∇v + ∇vT ), (7.3)

where α is the ratio of the retardation to relaxation times of the fluid

(
α =

λ2

λ1

)
,

and its value is taken to be 1/9. Re and We are the Reynolds number and

Weissenberg number, respectively, and given by Re =
ρUL

η
, We =

λ1U

L
, with

L is taken as half of the width of the downstream channel and U is the mean
velocity of the downstream channel.
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In a 2D Cartesian coordinate system, Eqs. (7.2)- (7.3) are presented as follows.

∂u

∂x
+

∂v

∂y
= 0, (7.4)

∂u

∂t
+ Re

(
u

∂u

∂x
+ v

∂u

∂y

)
= − ∂p

∂x
+ α

(
∂2u

∂x2
+

∂2u

∂y2

)
+

∂τxx
∂x

+
∂τxy
∂y

, (7.5)

∂v

∂t
+ Re

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ α

(
∂2v

∂x2
+

∂2v

∂y2

)
+

∂τxy
∂x

+
∂τyy
∂y

, (7.6)

τxx + W e

(
∂τxx
∂t

+ u
∂τxx
∂x

+ v
∂τxx
∂y

− 2
∂u

∂x
τxx − 2

∂u

∂y
τxy

)
= 2(1 − α)

∂u

∂x
, (7.7)

τxy + W e

(
∂τxy
∂t

+ u
∂τxy
∂x

+ v
∂τxy
∂y

− ∂v

∂x
τxx − ∂u

∂y
τyy

)
= (1 − α)

(
∂u

∂y
+

∂v

∂x

)
, (7.8)

τyy + W e

(
∂τyy
∂t

+ u
∂τyy
∂x

+ v
∂τyy
∂y

− 2
∂v

∂x
τxy − 2

∂v

∂y
τyy

)
= 2(1 − α)

∂v

∂y
. (7.9)

7.2.2 Boundary conditions

The boundary condition of the 4:1 contraction flow are described in Phillips and
Williams (1999) as follows.

At the inlet, the fully developed velocity profile is employed and the stresses are
inferred from the constitutive equation

u =
3

128
(16 − y2),

v = 0,

τxx = 2We(1 − α)

(
∂u

∂y

)2

,

τyy = 0,

τxy = (1 − α)
∂u

∂y
.

(7.10)

The non-slip boundary condition is imposed on the solid walls, and thus the
equations for stresses are simplified.

On the solid walls parallel to the x-axis

u = v =
∂v

∂x
=
∂v

∂y
=
∂u

∂x
= 0,

τxx = 2We(1 − α)

(
∂u

∂y

)2

,

τxy = (1 − α)
∂u

∂y
,

τyy = 0.

(7.11)
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On solid walls parallel to the y-axis

u = v =
∂u

∂y
=
∂v

∂y
=
∂u

∂x
= 0,

τxx = 0,

τxy = (1 − α)
∂v

∂x
,

τyy = 2We(1 − α)

(
∂v

∂x

)2

.

(7.12)

At the outlet, the value of pressure is fixed at a value of zero, and the fully
developed profile for velocity and the first derivatives with respect to the x-
direction of extra stresses are given

∂τxx
∂x

=
∂τxy
∂x

=
∂τyy
∂x

= 0. (7.13)

In some papers (Marchal and Crochet, 1986; Matallah et al., 1998) the Debo-
rah number is used instead of Weissenberg number. For comparison purpose, a
conversion between these two characteristic numbers is provided as follows.

De = 3We = λ1γ̇, (7.14)

where γ̇ is the fully developed downstream wall shear rate and γ̇ = 3 for a unit
flow rate through the downstream channel.

7.2.3 The re-entrant corners

As can be figured out from the boundary conditions Eq. (7.11)-(7.13), the extra
stresses are discontinued at the re-entrant corners. There are several ways to treat
the values of stresses at these positions. Yoo and Na (1991) adopted following
expressions

uy = (0 − uc)/∆y, (7.15)

vx = (0 − vc)/∆x,

where uc and vc are the velocity components at the closest nodes to the re-entrant
corner for u and v respectively, ∆x and ∆y being corresponding distances as
shown in Fig. 7.2.

Phillips and Williams (1999) used a similar approach which is to average the
shear stresses at two extra points taken inside the domain at some distance from
the re-entrant corners.

In this work, the stresses at the re-entrant corners are simply ignored. Because
stresses are discontinued, there will be no correct value of stresses at these corners.
It is noted that in Eqs. (7.5) and (7.6) the unknowns u, v are located inside the
domain, therefore all discrete equations for u, v will be constructed inside domain,
where the value of extra stresses is available.
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Figure 7.2 Staggered grid near the re-entrant corner

7.2.4 Projection method

In this work, the projection method is applied in the solution algorithm as follows.

Splitting Eq. (7.2) into two equations and discretising the derivative of v with
respect to time by forward difference results in

v∗ − vk

∆t
+Revk · ∇vk = ∇ · τ + α∇2v∗, (7.16)

vk+1 − v∗

∆t
= −∇p̃k+1. (7.17)

The velocity at time step k + 1 is obtained from Eq. (7.17) as follows

vk+1 = −∆t∇p̃k+1 + v∗. (7.18)

It is noted that p̃ now is a pseudo pressure, which is not the actual pressure but
a correction to the divergence-free condition.

By taking the divergence of Eq. (7.18) and enforcing ∇vk+1 = 0, the pressure
Poisson’s equation (PPE) is obtained

∇2p̃k+1 =
∇v∗

∆t
. (7.19)

7.2.5 Boundary condition for the PPE

It is clearly seen from the PPE (7.19) that the boundary condition for pressure
can be derived from the boundary condition for velocity. First of all, we have

v∗ = v(x, t) = 0, x ∈ Γ

So Eq. (7.17) will become

vk+1

∆t
= −∇p̃, x ∈ Γ (7.20)
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Then projecting (7.20) on the normal vector yields

n̂ · vk+1

∆t
= n̂ · ∇p̃k+1, x ∈ Γ

Taking into account the divergence-free condition for velocity, one gets

n̂ · ∇p̃k+1 = 0, x ∈ Γ

or
∂p̃k+1

∂n
= 0, x ∈ Γ (7.21)

This is the homogeneous Neumann boundary condition for pressure.

7.3 Review of parallel domain decomposition local IRBF ap-
proach

To simulate the planar contraction flow problem, local IRBF schemes as presented
in previous chapters are employed. The 2D local IRBF approximation scheme
with a 9-point stencil is used to approximate the field variable and its derivatives
while the boundary conditions are directly imposed using the 1D-IRBF approxi-
mation.

Consider an arbitrary interior node xa in the domain, and its associated stencil
locally numbered as




x3 x6 x9

x2 x5 x8

x1 x4 x7


 ,

where xa ≡ x5.

The procedure of collocating u on the stencil leads to an algebraic equation system
as follows. (

ũ
0̃

)
=

[
G[0]
x , O

G[0]
x , −G[0]

y

]

︸ ︷︷ ︸
C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (7.22)

where C is the conversion matrix, w̃x and w̃y the RBF weight vectors of length
15; ũ the vector of length 9, and 0̃ the zeros vector of length 9; O the zeros matrix
of dimension 9 × 15, and G[0]

x and G[0]
y the known matrices of dimensions 9 × 15.

Furthermore, ũ, w̃x and w̃y are given by

ũ = (u1, . . . , u9)T , (7.23)

w̃x = (wx1, . . . , wx9, C
x
1 (y1), Cx

1 (y2), Cx
1 (y3), Cx

2 (y1), Cx
2 (y2), Cx

2 (y3))T , (7.24)

w̃y = (wy1, . . . , wy9, C
y
1 (x1), Cy

1 (x2), Cy
1 (x3), C

y
2 (x1), Cy

2 (x2), Cy
2 (x3))T , (7.25)
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G[0]
x =




G
[0]
1,x (x1) · · · G

[0]
9,x (x1) x1 0 0 1 0 0

G
[0]
1,x (x2) · · · G

[0]
9,x (x2) 0 x2 0 0 1 0

... . . . ... 0 0 x3 0 0 1

... . . . ... x4 0 0 1 0 0

... . . . ... 0 x5 0 0 1 0

... . . . ... 0 0 x6 0 0 1

... . . . ... x7 0 0 1 0 0

... . . . ... 0 x8 0 0 1 0
G

[0]
1,x (x9) · · · G

[0]
9,x (x9) 0 0 x9 0 0 1




, (7.26)

G[0]
y =




G
[0]
1,y (x1) · · · G

[0]
9,y (x1) y1 0 0 1 0 0

G
[0]
1,y (x2) · · · G

[0]
9,y (x2) y2 0 0 1 0 0

... . . . ... y3 0 0 1 0 0

... . . . ... 0 y4 0 0 1 0

... . . . ... 0 y5 0 0 1 0

... . . . ... 0 y6 0 0 1 0

... . . . ... 0 0 y7 0 0 1

... . . . ... 0 0 y8 0 0 1
G

[0]
1,y (x9) · · · G

[0]
9,y (x9) 0 0 y9 0 0 1




, (7.27)

where G[0]
i,x and G

[0]
i,y (i = 1..9) were defined previously in the x and y-directions

and xi, yi two components of xi. It is noted that in Eq. (7.22),

ũ = [G[0]
x ,O]

(
w̃x

w̃y

)

is obtained by collocating the field variable over a local stencil, and

0̃ = [G[0]
x ,−G[0]

y ]

(
w̃x

w̃y

)

is derived from the consistency condition
∫ ∫

∂2u

∂x2
dx

∣∣∣∣∣
xi

=
∫ ∫

∂2u

∂y2
dy

∣∣∣∣∣
xi

.

The conversion of the network-weight space into the physical space is achieved
by inverting Eq. (7.22)

(
w̃x

w̃y

)
= C−1

(
ũ
0̃

)
. (7.28)

Eq. (7.28) is used to approximate the first order derivatives of u with respect to
x and y and the function itself over a local stencil. More details can be found in
previous chapters.
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7.4 Parallel implementation

In solving the contraction flow problem, parallelisation is based on the Schwarz
overlapping DD method with the first order continuity condition on artificial
boundaries (ABs). An example of sub-domain formation of the problem is pre-
sented in Fig. 7.3. In this figure the domain is divided in to 20 equal sub-domains.
These sub-domains are assigned a unique index number, called process-index,
from 1 to 20. They also overlap with their neighbouring sub-domains (NSs).

Figure 7.3 The 4:1 planar contraction flow problem. Sub-domains are overlapping even though the overlapped zones are
not shown.

All variables including the velocity, pressure and extra stresses are the object
of data transmission. After each iteration, each process needs to exchange the
updated value of the above mentioned variables with its neighbouring process.
Any process has from one to four neighbours depends on its position in the
domain. Processes use process-index to a process to determine its neighbours
and communicate with them.

For a sequential algorithm, the convergence measurement is defined as follows

CM =

√
n∑
i=1

(uk+1
i − uki )2

√
n∑
i=1

(uki )2

(7.29)

where k is the iteration step. When the CM of an iteration step reaches a
predefined tolerance CMtol, the algorithm is stopped.

With parallel algorithm, aside from the CM inside each sub-domain, the conver-
gence measurement on the artificial boundary (ABCM) also needs to be verified.
Hence, the algorithm is considered converged if the following conditions are sat-
isfied {

CM < CMtol, in sub-domain
ABCM < ABCMtol, on AB

(7.30)

where ABCMtol is a predefined tolerance of CM on AB.
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Since parallel processes form a distributed system, the termination of this sys-
tem requires a dedicated distributed termination detection (DTD) algorithm. In
this simulation, the Bitmap DTD (Chapter 3) is used thanks to its low message
complexity and data overhead.

In a parallel algorithm, in each sub-domain a boundary value problem is defined.
The algorithm in each sub-domain can be described as follows.

1. Guess initial values on ABs.

2. Solve the sub-domain flow problems using local IRBF method.

(a) Calculate the extra-stress in Eq. (7.7) - (7.9) using forward first order
Euler difference scheme.

(b) Solve Eq. (7.16) for intermediate value v∗ with vanishing pressure
derivative. It is worth noting that time derivative is discretised using
the forward difference scheme, the convection term and diffusion term
are treated explicitly and implicitly, respectively.

(c) Solve the PPE (7.19).

(d) Correct vk+1 using obtained value of pressure by Eq. (7.18)

3. Exchange the values of u, v, p and extra stresses with neighbouring pro-
cesses.

4. Check the convergence condition (7.30). If the procedure is not yet con-
verged, go to step 2. Otherwise, stop the procedure.

7.5 Numerical results

The efficiency of the parallel method is demonstrated by simulating the 4:1 con-
traction flow of both Newtonian and non-Newtonian fluid using several grids
(Table 7.1).

Table 7.1 Grid characteristics

Grid DoF ∆x ∆y
1 12603 0.20 0.20
2 39960 0.11 0.11
3 435603 0.02 0.02

7.5.1 The 4:1 contraction flow of Newtonian fluids

In the case of Newtonian fluid, a range of Reynolds numbers is considered {1, 100,
200, 300, 400, 500}. The streamlines for different Re numbers are depicted in Figs.
(7.4) and (7.5). It is clear that the size and intensity of the corner vortices grow
as the Reynolds number increases.
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(a) Re = 1

(b) Re = 100

(c) Re = 200

Figure 7.4 The 4:1 contraction flow of Newtonian fluids. Stream-function (ψ) contours of the flow for several Reynolds
numbers (Re = {1, 100, 200}) by the present parallel method using 20 sub-domains, grid 3, CMtol = 10−8, CMAB

tol
=

10−6, β = 2 and ∆t = 5 × 10−3 for Re = {1, 100} and 10−3 for Re = 200.
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(a) Re = 300

(b) Re = 400

(c) Re = 500

Figure 7.5 The 4:1 contraction flow of Newtonian fluids. Stream-function (ψ) contours of the flow for several Reynolds
numbers (Re = {300, 400, 500}) by the present parallel method using 20 sub-domains, grid 3 with the specifications
CMtol = 10−8, CMAB

tol
= 10−6, β = 2 and ∆t = 10−3.
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To investigate the performance of the parallel method, a range of CPUs {20, 30,
40, 50, 60} is used to simulate the flow. The detailed results are provided in
Tables (7.2) - (7.4). As the simulation is performed on a dense grid (large scale),
the result by single CPU is not available for comparison. Instead, the result with
lowest number of CPUs, which is 20 CPUs in this case, is used as a reference.
Normally, speed-up and efficiency are defined as follows.

S =
Ts
Tp
,

E =
S

p
,

(7.31)

where Ts is computation time on single CPU, Tp computation time on parallel
CPUs, p is number of parallel CPUs. However, in the case where Ts is not
available, it is symbolically calculated as

Ts = T [ref ]
p × p[ref ] (7.32)

where T [ref ]
p and p[ref ] are computation time and number of CPUs of a reference

result.

Table 7.2 The 4:1 contraction flow of Newtonian fluids. Parallel performance forRe = {1, 100} with grid 3, ∆t = 5×10−3,
CMtol = 10−8,ABCMtol = 10−6, and β = 2. p: number of CPUs;Ni: number of iterations; Tp : parallel computation
time (minutes); S: speed-up; E: efficiency. Tp with 20 CPUs is used for reference.

Re = 1 Re = 100

CPUs Ni Tp S E Ni Tp S E
20 5169 97.57 20.00 100.00 26908 506.36 20.00 100.00
30 5685 53.33 36.59 121.96 27554 260.45 38.88 129.61
40 5964 33.49 58.26 145.66 27044 165.08 61.35 153.37
50 6262 36.28 53.78 107.56 27812 133.12 76.08 152.16
60 6518 25.60 76.21 127.02 28543 108.75 93.12 155.20

Table 7.3 The 4:1 contraction flow of Newtonian fluids. Parallel performance for Re = {200, 300} with grid 3, ∆t = 10−3,
other parameters are given in Table 7.2. Tp with 20 CPUs is used for reference.

Re = 200 Re = 300

CPUs Ni Tp S E Ni Tp S E
20 131605 2367.23 20.00 100.00 144017 2610.55 20.00 100.00
30 132370 1291.95 36.65 122.15 144480 1439.14 36.28 120.93
40 133272 936.33 50.56 126.41 145348 1020.57 51.16 127.90
50 133945 990.10 47.82 95.64 146077 781.88 66.78 133.55
60 134046 571.49 82.84 138.07 145276 586.68 88.99 148.32

The visual presentation of efficiency, simulation time and speed-up of the parallel
method is given in Fig. (7.6). It is clear that the speed-up grows linearly with
the CPUs. However, as the Reynolds number gets larger this tendency begins to
deteriorate. For example, with Re = 500 when the number of CPUs reaches 60
the speed-up drops to the same value as with 40 CPUs. This behaviour suggests
that, high Reynolds numbers negatively affect not only the convergence of the
sequential program but also the efficiency of parallel program.
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Figure 7.6 The 4:1 contraction flow of Newtonian fluids. The efficiency (a), simulation time (b) and speed-up (c) of the
present parallel method. Parameters are in given in Tables 7.2- 7.4
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Table 7.4 The 4:1 contraction flow of Newtonian fluids. Parallel performance for Re = {400, 500} with grid 3, ∆t = 10−3,
other parameters are given in Table 7.2. Tp with 20 CPUs is used for reference.

Re = 400 Re = 500

CPUs Ni Tp S E Ni Tp S E
20 153723 2783.26 20.00 100.00 165370 3027.22 20.00 100.00
30 154001 2323.50 23.96 79.86 168315 1629.79 37.15 123.83
40 154732 1043.80 53.33 133.32 161257 1086.56 55.72 139.30
50 155386 802.78 69.34 138.68 183722 867.19 69.82 139.63
60 169742 667.34 83.41 139.02 161525 1060.51 57.09 95.15

7.5.2 The 4:1 contraction flow of an Oldroyd-B fluid

The contraction flow of an Oldroyd-B fluid is simulated at several Weissengberg
numbers ranging from 0.1 to 1 using several grids as presented in Table 7.1. For
example, grid 3 is used for We = {0.1, 0.2, 0.3}, grid 2 for We = {0.4, 0.5} and
grid 1 for We = {0.8, 0.9, 1}. The contours of stream-function and stresses of the
flow are shown in Figs. (7.7) - (7.18).

The contours of stream-function and extra stresses are in good agreement with
other results including those by Phillips and Williams (1999); Alves et al. (2003);
Kim et al. (2005a).

For the contraction flow of Oldroyd-B fluids, the simulation is performed using
only grids 2 and 3. The simulation time, speed-up and efficiency of the method
are provided in detail in Tables (7.5) - (7.7). Their visual presentation are also
given in Figs. (7.19). As in the case of Newtonian fluids, a good scalability of
the algorithm is also achieved as the speed-up grows linearly with the number of
CPUs. However, the quality of speed-up deteriorates somewhat as We increases.

Table 7.5 The 4:1 contraction flow of Oldroyd-B fluid. Parallel performance with grid 3, ∆t = 10−4, CMtol = 10−8,
ABCMtol = 10−6, and β = 2. Ni - number of iterations; Tp - parallel computation time (minutes); S - speed-up; E -
efficiency. Tp with 20 CPUs is used as reference.

W e = 0.1 W e = 0.2

CPUs Ni Tp S E Ni Tp S E
20 62888 2980.02 20.00 100.00 56448 2830.67 20.00 100.00
30 63310 1549.78 38.46 128.19 59316 1527.25 37.07 123.56
40 62807 1035.25 57.57 143.93 60720 1034.28 54.74 136.84
50 63443 889.35 67.02 134.03 62222 737.07 76.81 153.62
60 63310 608.83 97.89 163.15 63693 526.35 107.56 179.26
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(a) We = 0.1

(b) We = 0.2

(c) We = 0.3

Figure 7.7 The 4:1 contraction flow of Oldroyd-B fluid. Stream-function (ψ) contours of the flow for We = {0.1, 0.2, 0.3}
by the present parallel method using 20 CPUs, grid 3, ∆t = 10−3, CMtol = 10−8, ABCMtol = 10−6 and β = 2.

Table 7.6 The 4:1 contraction flow of Oldroyd-B fluid. Parallel performance with grid 3, ∆t = 10−4, CMtol = 10−8,
ABCMtol = 10−6, and β = 2. Ni - number of iterations; Tp - parallel computation time (minutes); S - speed-up; E -
efficiency. Tp with 20 CPUs is used as reference.

W e = 0.3

CPUs Ni Tp S E
20 75341 3481.00 20.00 100.00
30 80137 2057.33 33.84 112.80
40 83356 1586.35 43.89 109.72
50 89155 1207.91 57.64 115.27
60 91904 939.96 74.07 123.45
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(a) We = 0.4

(b) We = 0.5

Figure 7.8 The 4:1 contraction flow of Oldroyd-B fluid. Stream-function (ψ) contours of the flow for We = {0.4, 0.5} by
the present parallel method using 10 CPUs, grid 2, ∆t = 10−3, CMtol = 10−8, ABCMtol = 10−6 and β = 2.

Table 7.7 The 4:1 contraction flow of Oldroyd-B fluid. Parallel performance with grid 2, ∆t = 10−3, CMtol = 10−8,
CMtol = 10−6, and β = 2. Ni - number of iterations; Tp - parallel computation time (minutes) except for the case with 1
CPU which is non-parallel and Tp ≡ Ts; S - speed-up; E - efficiency.

W e = 0.4 W e = 0.5

CPUs Ni Tp S E Ni Tp S E
1 7431 203.36 1.00 100.00 9549 258.14 1.00 100.00
10 10235 66.58 3.05 30.54 23407 136.53 1.89 18.91
20 10844 12.03 16.91 84.55 20484 22.58 9.00 45.02
30 10983 7.01 29.00 96.68 19161 11.19 18.18 60.59
40 10587 4.17 48.73 121.83 23107 8.68 23.43 58.58
50 11383 3.08 65.93 131.86 26522 6.48 31.38 62.77
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(a) We = 0.8

(b) We = 0.9

(c) We = 1.0

Figure 7.9 The 4:1 contraction flow of Oldroyd-B fluid. Stream-function (ψ) contours of the flow for We = {0.8, 0.9, 1} by
the present parallel method using 1 CPU, grid 1, ∆t = 10−3, CMtol = 10−8, ABCMtol = 10−6 and β = 2.
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(a) We = 0.1

(b) We = 0.2

(c) We = 0.3

Figure 7.10 The 4:1 contraction flow of Oldroyd-B fluid. τxx contours of the flow for We = {0.1, 0.2, 0.3} with parameters
given in Fig. 7.7.
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(a) We = 0.4

(b) We = 0.5

Figure 7.11 The 4:1 contraction flow of Oldroyd-B fluid. τxx contours of the flow for We = {0.4, 0.5} with parameters
given in Fig. 7.8.
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(a) We = 0.8

(b) We = 0.9

(c) We = 1.0

Figure 7.12 The 4:1 contraction flow of Oldroyd-B fluid. τxx contours of the flow for We = {0.8, 0.9, 1} with parameters
given in Fig. 7.9.
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(a) We = 0.1

(b) We = 0.2

(c) We = 0.3

Figure 7.13 The 4:1 contraction flow of Oldroyd-B fluid. τxy contours of the flow for We = {0.1, 0.2, 0.3} with parameters
given in Fig. 7.7.



7.5. Numerical results 155

(a) We = 0.4

(b) We = 0.5

Figure 7.14 The 4:1 contraction flow of Oldroyd-B fluid. τxy contours of the flow for We = {0.4, 0.5} with parameters
given in Fig. 7.8.
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(a) We = 0.8

(b) We = 0.9

(c) We = 1.0

Figure 7.15 The 4:1 contraction flow of Oldroyd-B fluid. τxy contours of the flow for We = {0.8, 0.9, 1} with parameters
given in Fig. 7.9.
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(a) We = 0.1

(b) We = 0.2

(c) We = 0.3

Figure 7.16 The 4:1 contraction flow of Oldroyd-B fluid. τyy contours of the flow for We = {0.1, 0.2, 0.3} with parameters
given in Fig. 7.7.
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(a) We = 0.4

(b) We = 0.5

Figure 7.17 The 4:1 contraction flow of Oldroyd-B fluid. τyy contours of the flow for We = {0.4, 0.5} with parameters
given in Fig. 7.8.
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(a) We = 0.8

(b) We = 0.9

(c) We = 1.0

Figure 7.18 The 4:1 contraction flow of Oldroyd-B fluid. τyy contours of the flow for We = {0.8, 0.9, 1} with parameters
given in Fig. 7.9.
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Figure 7.19 The 4:1 contraction flow of Oldroyd-B fluid. The efficiency (a), simulation time (b) and speed-up (c) of the present
parallel method for We = {0.1, 0.2, 0.3}
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Figure 7.20 The 4:1 contraction flow of Oldroyd-B fluid. The efficiency (a), simulation time (b) and speed-up (c) of the present
parallel method for We = {0.4, 0.5}
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7.6 Conclusions

The present parallel computation based on the domain decomposition technique
and the local IRBF method is further demonstrated by solving the 4:1 planar
contraction flow of Newtonian and Oldroyd-B fluids, using three grids with scales
ranging from 12000 to 435000 DoF. Obtained results confirm that the method has
high parallel efficiency, speed-up and scalability. Especially, super-linear speed-
up is also observed for several numbers of CPUs. Furthermore, a relatively large
number of DoF and high non-linearity of the problem (Oldroyd-B fluids) indicate
that the present method is robust and suitable for solving large scale problems
on a high performance computing system.



Chapter 8

Conclusion

This chapter concludes the thesis with a brief summary of the main contributions
and achievements of present research project as well as some suggestions for future
works and extensions.

8.1 Research achievements and contributions

With the aim to create efficient parallel numerical methods for analysis of large
scale fluid flow problems, the objectives of the present research have been at-
tained through a number of achievements and publications. Key contributions
and achievements of the research are summarised as follows.

8.1.1 Research contributions

A successful development of parallel methods based on the DD and
IRBF methods

The main contribution of this research project is the development of parallel
methods based on DD and IRBF methods. Results show that the parallel methods
have the following advantages: (i) high accuracy; (ii) high convergence rate; (iii)
high efficiency with super-linear speed-up observed; (iv) high stability; (v) high
scalability; and (vi) high adaptability.

A successful development of a new DTD algorithm used in parallel
Domain Decomposition computations

Another major contribution is the development of a Bitmap DTD algorithm.
The Bitmap DTD has the following advantages: (i) symmetric algorithm; (ii)
low detection delay; (iii) low message complexity; (iv) small data overhead; and
(v) graph free.
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8.1.2 Research achievements

Details of achievements can be summarised as follows.

A successful development of the Bitmap DTD algorithm

This achievement has been presented in Chapter 3. A new DTD algorithm called
Bitmap DTD has been introduced to be used with parallel DD methods. The
algorithm is necessary for a parallel method in terms of the synchronisation and
proper global termination of processes. The new algorithm makes use of a bitmap
to carry information about the state of all processes in a distributed system. Judg-
ing by the behaviour, this Bitmap DTD is a member of Credit/Recovery DTD
class. Nevertheless, there are some advantages of Bitmap DTD in comparison
with a classic Credit/Recovery DTD as follows.

• the algorithm is symmetric, which means any process can detect the termi-
nation;

• there is no dedicated head process, which means no extra CPU required for
the head node and the algorithm is graph free;

• the termination detection delay is low;

• the algorithm has optimal message complexity O(M).

A successful development of a parallel algorithm based on overlapping
DD techniques and CLIRBF

This achievement has been presented in Chapter 4. By this method, all sub-
domain processes run in parallel and the values on artificial boundaries (ABs) are
updated after each iteration. The parallel method has the following advantages
(i) high accuracy, which is provided by the IRBF; (ii) the IRBF method is not
affected by the reduction in convergence rate caused by differentiation; (iii) the
condition number of system matrices has been significantly reduced by using
CLIRBF; and (iv) the throughput of the proposed method is high, especially in
solving large scale problems (large degrees of freedom). The method is verified
through several test problems including the benchmark lid-driven cavity flow
problem and the numerical results obtained using coarse grids are in very good
agreement with benchmark values.

A successful development of a parallel overlapping DD method coupled
with a local IRBF Control Volume approach

This achievement has been presented in chapter 5. A parallel overlapping DD
method coupled with a local IRBF Control Volume approach is presented. The
method aims to solve fluid flow problems in complex domains. In fact, the method
has been able to simulate several flows in rectangular and non-rectangular do-
mains. For the case of rectangular lid-driven cavity flow, the method produces
very accurate results in comparison with the spectral benchmark solutions by
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Botella and Peyret (1998). For the triangular lid-driven cavity flow, the results
are in great agreement with values obtained by Kohno and Bathe (2006). The
speed-up of the method is very high. Furthermore, the method is stable and
scalable by the fact that the speed-up grows steadily with respect to number of
CPUs. Super-linear speed-up is observed for several Reynolds numbers.

A successful development of a parallel non-overlapping DD method
coupled with 2D CLIRBF scheme

This achievement has been presented in Chapter 6. The non-overlapping DD
method is investigated. A parallel method based on non-overlapping Dirichlet-
Neumann DD method and 2D CLIRBF method is developed to solve the incom-
pressible Navier-Stokes equation. Two considered benchmark problems are the
lid-driven cavity flow and the natural convection in concentric annuli. The results
show a great agreement between the parallel method and benchmark results. In-
deed, for the lid-driven cavity flow problem, the efficiency has similar profile to
the one obtained by parallel local IRBF-FVM presented in Chapter 5, where an
optimal number of CPUs always exists for all Reynolds numbers. In some cases,
the super-linear efficiency obtained by this method is even higher than one by
the overlapping parallel method reported in Chapter 5.

A successful application of the present parallel method for some large
scale problems

This achievement has been presented in Chapter 7. The present parallel compu-
tation based on the domain decomposition technique and the local IRBF method
is further demonstrated by solving the 4:1 planar contraction flow of Newtonian
and Oldroyd-B fluids, using three grids with scales ranging from 12000 to 435000
DoF. Obtained results confirm that the method has high parallel efficiency, speed-
up and scalability. Especially, super-linear speed-up is also observed for several
numbers of CPUs. Furthermore, a relatively large number of DoF and high non-
linearity of the problem (Oldroyd-B fluids) indicate that the present method is
robust and suitable for solving large scale problems on a HPC system.

8.2 Possible future works

Some outstanding issues for further investigation include

• Application of the present parallel methods in solving several 3-D large
scale fluid flow problems as well as practical large scale ones. The practical
problems of our interest include weather prediction, food security and other
agricultural problems in the framework of the strategic research funding at
the University of Southern Queensland.

• Flow analysis with more realistic models of complex fluids, e.g. kinetic sus-
pesion models, using stochastic macro-micro multi-scale simulation meth-
ods.
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• Coupling the present parallel methods with specific schemes such as the
fractional step method and stabilization techniques DEVSS-G/DG (Kim
et al., 2005b) to solve more efficiently the flow of viscoelastic fluids at high
Weissenberg number.

• Further developing the present parallel methods using GPGPU HPC.
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Appendix A

Some Radial Basis Functions

Following is a small list of several common radial basis functions.

• Gaussian-RBF

hj(r, bj) = hj(‖x − cj‖, bj) = exp

(
− r2

(bj)2

)
, (A.1)

• Multiquadrics RBF (MQ-RBF)

hj(r, bj) = hj(‖x − cj‖, bj) =
√
r2 + (bj)2, (A.2)

• Inverse multiquadrics RBF (IMQ-RBF)

hj(r, bj) = hj(‖x − cj‖, bj) =
1

√
r2 + (bj)2

, (A.3)

• Thin plate splines RBF (TPS-RBF)

hj(r) = hj(‖x − cj‖) = r2s log(r), s = 1, 2, ..., (A.4)

• Compact support RBF (CS-RBF)

hj(r) = hj(‖x − cj‖) = (1 − r)l+p(r), l = 1, 2, ..., (A.5)

where s is the order of TPS-RBF; p(r) is a polynomial of Wendland CS-RBF
(Wendland, 1995,1998). While the MQ-RBF, TPS-RBF and CS-RBF exhibit
global response, i.e. they increase monotonically with increasing distance from
the centre, the Gaussian-RBF and IMQ-RBF have local response (localized func-
tion) (Haykin, 1999; Beatson and Light, 1997). RBFs are multivariate as function
of x ∈ Rd, but univariate as function of r, which should be a tremendous com-
putational advantage if the space dimension is large.



Appendix B

Program code of a parallel DD-IRBF al-
gorithm for solving 2D problems with
a known analytic solution (Chapter 4,
section 4.5.2) using 4 sub-domains

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % File parDDIRBF2D .m

3 % Author Nam.Pham -Sy@usq.edu.au

4 % Created 02/04/2014

5 % iRBF 2D-iRBF , Compac local scheme

6 % DDM overlapping

7 % Version 0.1

8 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 % Problem Analytical

10 % Domain Square

11 % GE f = 4*(1 - pi ˆ2)*sin (2*pi*x').* sinh (2*y ')

12 % +16*(1 - pi ˆ2)*cosh (4*x').* cos (4*pi*y ');

13 % Solution u = sin (2* pi*x ').* sinh (2*y ')

14 %

+cosh (4*x ').* cos (4*pi*y');

15 % BC Dirichlet

16 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 % Description

18 % The code solves an analytical problem in parallel

19 % using 4 CPUs . The original domain is divided into 4

20 % sub - domains with zero artificial boundary condition .

21 % The problem in each sub -domain is solved separately

22 % using routine CLiRBFSPMDTask. This routine is a

23 % general solver of a PDE using compact local IRBF

24 % scheme as its approximant . The value of artifical

25 % boundary from each sub - domain is updated by exchange

26 % data with its neighbour sub -domains . The termination

27 % of parallel algorithm is backed by the Bitmap DTD
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28 % algorithm . After the computation is finished the

29 % results is collected from sub - domains to a variable

30 % called uRes .

31 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 close all;

33 clear all;

34 format short e;

35 tic

36
37 % function aliases

38 f=@(x,y) 4*(1 - pi ˆ2)*sin (2*pi*x').* sinh (2*y') +16*(1 - pi

ˆ2)*cosh (4*x').* cos (4* pi*y');

39 u=@(x,y) sin (2* pi*x').* sinh (2*y')+cosh (4*x').*cos (4*pi*

y');

40 xA = -0.4; xB = 0.6; yA = -0.6; yB = 0.4; beta = 5;

41 owp = 10; % overlapping percentage

42 ddTol = 1.e-2; % domain decomp. tolerance

43 nSub = 51; % grid -size of sub -domain

44 DD = [2 2]; % DD configuration

45 nRowDD = DD (1);

46 nColDD = DD (2);

47 nSD = nRowDD*nColDD ; % number of sub -domain

48 ow = round(nSub *owp /(100*2) )*2+1; % overlapping width

49 nx = nSub *DD (2) -(DD(2) -1)*ow;

50 ny = nSub *DD (1) -(DD(1) -1)*ow;

51 x = linspace (xA , xB , nx);

52 y = linspace (yA , yB , ny);

53
54 % Open parallel pool

55 matlabpool open 4;

56
57 % Enter parallel pool

58 spmd (nSD)

59 iRow = rem(labindex -1, nRowDD )+1;

60 iCol = floor (( labindex -1)/nRowDD )+1;

61 leftNb = []; leftAB = [];

62 rightNb = []; rightAB = [];

63 topNb = []; topAB = [];

64 botNb = []; botAB = [];

65 if(iCol -1 > 0)

66 leftNb = labindex -nRowDD ; % Nb = neighbor

67 leftAB = zeros(nSub ,1);

68 end

69 if(iCol +1 <= nColDD)

70 rightNb = labindex +nRowDD;

71 rightAB = zeros(nSub ,1);

72 end

73 if(iRow -1 > 0)

74 topNb = labindex -1;
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75 topAB = zeros (1, nSub );

76 end

77 if(iRow +1 <= nRowDD )

78 botNb = labindex +1;

79 botAB = zeros (1, nSub );

80 end

81
82 xOffsetStart = (nSub -ow)*(iCol -1) +1;

83 xOffsetEnd = xOffsetStart +nSub -1;

84 yOffsetStart = (nSub -ow)*(iRow -1) +1;

85 yOffsetEnd = yOffsetStart +nSub -1;

86
87
88 % DTD init

89 maxSTE = nSDM + 1;

90 nByte = ceil (nSDM /32) ;

91 bitmap = zeros(nByte ,1);

92 stopCode = zeros(nByte ,1);

93 if(nByte >1) stopCode (1: nByte -1) = 2ˆ32 -1; end

94 stopCode (nByte) = 2ˆ( nSDM - (nByte -1) *32) - 1;

95 readyCode = zeros(nByte ,1);

96 myNByte = ceil ( labindex /32) ;

97 readyCode ( myNByte ) = 2ˆ(( labindex -( myNByte -1) *32)

-1);

98 STE = -1; % Step To End

99 leftDDCM = -inf; rightDDCM = -inf;

100 topDDCM = -inf; botDDCM = -inf;

101
102 iDD = 0; % number of iterations

103 while (1)

104 iDD = iDD +1;

105 % call CLiRBFSPMDTask to solve PDE

106 myResult = CLiRBFSPMDTask(f,u,x( xOffsetStart ),x

( xOffsetEnd ),...

107 y( yOffsetStart ),y(yOffsetEnd ),nSub ,nSub ,

beta ,leftAB ,rightAB , topABbotAB );

108 myResult = reshape (myResult ,nSub ,nSub );

109
110 % communication

111 minPosSTE = maxSTE;

112 % my left neighbor

113 if(isempty (leftNb )==0)

114 leftResult = labSendReceive(leftNb ,leftNb ,

...

115 [reshape ( myResult (: ,1: ow),ow*nSub ,1);

bitmap;STE ]);

116 lRecvBitmap = lRes (end -nByte:end -1);

117 lRecvSTE = lRes (end);

118 leftResult (end -nByte:end) = [];
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119 leftResult = reshape (leftResult ,nSub ,ow);

120
121 bitmap = bitor(bitmap , lRecvBitmap );

122 minPosSTE (lRecvSTE > 0 && lRecvSTE <

minPosSTE ) = lRecvSTE ;

123 a = norm ( myResult (: ,1: ow)-leftResult );

124 b = norm ( myResult (: ,1: ow));

125 c = norm ( leftResult );

126 leftCM = a*(b+c)/(2* b*c);

127 leftAB = leftResult (: ,1) ;

128 end

129 % my right neighbor

130 if( isempty ( rightNb )==0)

131 rightResult = labSendReceive(rightNb ,

rightNb ,...

132 [ reshape ( myResult (:,end -ow+1: end),ow*

nSub ,1);bitmap ;STE]);

133 rRecvBitmap = rRes (end -nByte:end -1);

134 rRecvSTE = rRes (end);

135 rightResult (end -nByte:end) = [];

136 rightResult = reshape (rightResult ,nSub ,ow);

137
138 bitmap = bitor(bitmap , rRecvBitmap );

139 minPosSTE (rRecvSTE > 0 && rRecvSTE <

minPosSTE ) = rRecvSTE ;

140 a = norm ( myResult (:,end -ow +1: end)-

rightResult );

141 b = norm ( myResult (:,end -ow +1: end));

142 c = norm ( rightResult );

143 rightCM = a*(b+c)/(2* b*c);

144 rightAB = rightResult (:, end);

145 end

146 % my top neighbor

147 if( isempty (topNb)==0)

148 topResult = labSendReceive(topNb ,topNb ,...

149 [ reshape ( myResult (1:ow , :),ow*nSub ,1);

bitmap;STE]);

150 tRecvBitmap = tRes (end -nByte:end -1);

151 tRecvSTE = tRes (end);

152 topResult (end -nByte:end) = [];

153 topResult = reshape (topResult ,ow ,nSub );

154
155 bitmap = bitor(bitmap , tRecvBitmap );

156 minPosSTE (tRecvSTE > 0 && tRecvSTE <

minPosSTE ) = tRecvSTE ;

157 a = norm ( myResult (1:ow , :) - topResult );

158 b = norm ( myResult (1:ow , :));

159 c = norm ( topResult );

160 topCM = a*(b+c)/(2* b*c);
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161 topAB = topResult (1, :);

162 else

163 topCM = 0;

164 topAB = [];

165 topReady = 2;

166 end

167 % my bot neighbor

168 if(isempty (botNb)==0)

169 botResult = labSendReceive(botNb ,botNb ,...

170 [reshape ( myResult (end -ow +1:end , :),ow*

nSub ,1);bitmap;STE ]);

171 bRecvBitmap = bRes (end -nByte:end -1);

172 bRecvSTE = bRes (end);

173 botResult (end -nByte:end) = [];

174 botResult = reshape (botResult ,ow ,nSub );

175
176 bitmap = bitor(bitmap , bRecvBitmap );

177 minPosSTE (bRecvSTE > 0 && bRecvSTE <

minPosSTE ) = bRecvSTE ;

178 a = norm ( myResult (end -ow +1:end , :) -

botResult );

179 b = norm ( myResult (end -ow +1:end , :));

180 c = norm ( botResult );

181 botCM = a*(b+c)/(2* b*c);

182 botAB = botResult (end , :);

183 end

184
185 % Termination Dectection

186 if(STE > 0) % in synchronised termination phase

187 if( minPosSTE < STE) % neighbor 's STE is

smaller

188 STE = minPosSTE - 1;

189 fprintf ('i = %d, Received lower

minPosSTE = %d. STE = %d\n',iDD ,

minPosSTE ,STE);

190 else

191 STE = STE - 1;

192 fprintf ('i = %d, STE = %d\n',iDD ,STE);

193 end

194 if(STE == 0)

195 break; % break while (ddm loop )

196 end

197 elseif(STE < 0) % in termination detection

phase

198 if( minPosSTE < maxSTE )% some of neighbor

has STE >0

199 STE = minPosSTE - 1;

200 fprintf ('i = %d, Received Termination

Signal. STE = %d\n',iDD ,STE);
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201 else

202 if(sum( bitand(readyCode ,bitmap ))==0 &&

leftDDCM < ddTol && rightDDCM <

ddTol ...

203 && topDDCM < ddTol && botDDCM <

ddTol && CM < CMTol)

204 bitmap = bitor(readyCode ,bitmap );

205 fprintf ('i = %d, Ready to terminate

. bitmap = %s\n',iDD ,dec2bin (

bitmap ));

206 end

207 if( bitmap == stopCode )

208 STE = ddRow + ddCol - 2;

209 fprintf ('i = %d, Termination

detected . STE = %d\n',iDD ,STE);

210 end

211 end

212 if(STE == 0)

213 break; % break while (ddm loop )

214 end

215 end

216 end

217 display (iDD);

218 end

219
220 % Collecting results

221 uRes = [];

222 for i = 1: nRowDD

223 iRow = [];

224 for j = 1: nColDD

225 iSD = i + (j -1)*nRowDD ;

226 iResult = myResult {iSD};

227 if(j== nColDD)

228 iRow = [iRow , iResult ];

229 else

230 iRow = [iRow , iResult (: ,1: end -ow)];

231 end

232 end

233 if(i == nRowDD)

234 uRes = [uRes ; iRow ];

235 else

236 uRes = [uRes ; iRow (1:end -ow ,:)];

237 end

238 end

239 elapsedTime = toc;

240 [xm , ym] = meshgrid (x, y);

241 nodes = [xm (:) ,ym(:)]';

242 uNodes = reshape (u(nodes (1, :), nodes(2, :)),ny ,nx);

243 Ne = norm (uNodes -uRes )/norm (uNodes );
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244
245 % save data

246 save ('result.dat ', 'xm', 'ym', 'ny', 'nx', 'uNodes ', '

uRes ', 'elapsedTime ');


