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Abstract  22 

This manuscript presents a comparison of the A-stage and B-stage sludges in terms of anaerobic 23 

biodegradability and low molecular weight compounds present in the supernatant using Gas 24 

Chromatography-Mass Spectrometry (GC-MS). The GC-MS analysis of A-stage and B-stage 25 

supernatants identified respectively 43 and 19 organic compounds consisting mainly of aromatics 26 

(27.9% and 21%), alcohols (25.6% and 15%) and acids (30.2% and 15%). The methane potential 27 

was found to be 349±1 mL CH4/g VS and 238±12 mL CH4/g VS, respectively. After anaerobic 28 

digestion of these sludges, a greater proportion of aromatics (42% and 58%) and a lower 29 

proportion of acids (10% and 10%) and alcohols (16% and 10%) was observed. 30 

  31 

Keywords AB process, anaerobic biodegradability, dissolved organic compounds, Soluble 32 

Microbial Products (SMP), sewage sludge, GC-MS 33 

 34 

1. Introduction 35 

In the recent years, research efforts aiming to improve energy efficiency of wastewater treatment 36 

processes in large centralized wastewater treatment plants (WWTPs) have increased. Concerns 37 

over global warming impacts, energy sustainability, and biosolids generation are among several 38 

key drivers towards the establishment of more energy-efficient WWTPs (Chai et al., 2015). The 39 

biosolids management system is cost-intensive as it typically accounts for 25-60% of the total 40 

operational costs of conventional activated sludge (CAS)-based WWTPs (Canales et al., 1994; 41 

Verstraete & Vlaeminck, 2011). Innovative design and treatment strategies, therefore, are required 42 

to achieve more cost-effective and energy self-sufficient WWTPs by minimizing energy 43 

consumption while increasing its recovery.  44 
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 45 

An approach  towards an energy-neutral, if not -positive, wastewater treatment process is to 46 

recover the potential energy available in raw municipal wastewaters (Shizas & Bagley, 2004). A 47 

well-structured strategy deploying a two-stage process, the so-called AB process, has been 48 

suggested for the recovery of caloric energy content from sewage organics (Böhnke, 1977; 49 

Meerburg et al., 2015; Versprille et al., 1984). The first stage is an extremely high loaded 50 

biosorption stage (A-stage), which is subsequently followed by a low loaded biological stage (B-51 

stage) to ensure the removal of dissolved organics and ammonia. The A-stage treatment at the 52 

entry of WWTP allows biological concentration of sewage with minimum oxidation of organics to 53 

CO2, and consequently producing a concentrated sludge stream to be channeled to the anaerobic 54 

digester. The entrapped organics (chemical energy) can then be recovered through an efficient 55 

conversion to biogas without significant energy losses (Verstraete et al., 2009). A characteristic 56 

feature of the A-stage reactor is operation with high food to microorganisms (F/M) ratios, short 57 

hydraulic retention times (HRTs), and short solid retention times (SRTs), to achieve high reduction 58 

rate of sewage organics (Boehnke et al., 1997). Indeed, the treatment with short SRT has been 59 

demonstrated to significantly improve the biodegradability of sludge in the downstream anaerobic 60 

digester (Ge et al., 2013). The separation of excess sludge in the A-stage can be achieved through 61 

an intermediate clarifier (henceforth referred to as ‘A-stage clarifier’) or dynamic membrane 62 

filtration unit (Ersahin et al., 2012; Roest et al., 2012).  63 

 64 

During the biosorption process, the A-sludge retains particulate and colloidal organic substances 65 

within the biomass matrix, and therefore leaving mainly dissolved organics in the effluents. This 66 

would mean reduced aeration energy requirement and lower sludge production in the following B-67 
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stage (Versprille et al., 1984), and therefore may lead to considerable energy savings and overall 68 

reduction in biosolids generation. There is currently little information available regarding the 69 

biodegradability of the excess sludge and the types of dissolved organics leaving the A and B 70 

stages. Effluents from biological processes contain a wide range of complex organic compounds, 71 

including soluble microbial products (SMP) and extracellular polymeric substances (EPS), 72 

released during bacterial metabolism in mixed culture in bioreactors. Generally, in order to 73 

evaluate the performance of biological wastewater treatment processes, only the common generic 74 

parameters are measured. These include measures such as chemical oxygen demand (COD), 75 

biochemical oxygen demand (BOD), mixed liquor volatile suspended solids, and total organic 76 

carbon (TOC), which are done according to Standard Methods from the American Public Health 77 

Association (APHA) (Eaton and Franson, 2005). It is important to clearly identify the primary 78 

components of SMPs and ECPs in order to understand the fundamental mechanisms of biological 79 

activity that create these compounds, and how to reduce these compounds in the effluent. 80 

Preliminary results from Aquino (2004) on the identification of SMPs using GC-MS surprisingly 81 

revealed long chain alkenes and alkanes, as well as some aromatic compounds such as phthalates 82 

in significant concentration (low mg/L). Shen et al. (2012) showed that the concentration of SMPs 83 

in wastewater treatment plants ranged roughly from 5 to 25 mg TOC/L, with the major component 84 

being polysaccharides (ca. 3–18 mg/L) followed by humic substances (ca. 2–10 mg/L); while the 85 

protein concentration was relatively low (<5 mg/L). The SMPs presented a broad molecular weight 86 

distribution from smaller than 1 kDa to over 100 kDa. In addition, these compounds constitute the 87 

main foulants in membrane bioreactors which are being used more widely around the world (Mei 88 

et al., 2014). 89 
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Thus so far, there is virtually no report on the A-sludge’s biodegradability and its comparison with 90 

the B-sludge, a more conventional type of sludge, and the type of organics and their concentration 91 

in each stage.  92 

 93 

In this study, gas chromatography coupled with mass spectrometry (GC-MS) was used to identify 94 

recalcitrant low molecular weight (MW) organics (<580 Da) that were not adsorbed in the A-stage 95 

and appeared in the influent to the B-stage. Moreover, the recalcitrant compounds and soluble 96 

microbial products (SMPs) produced in the B-stage were also identified and compared with those 97 

in the A-stage. These are the compounds that are most likely to foul the membrane when MBRs 98 

are used in the B-stage, and that could also appear in the final effluent. There is therefore interest 99 

to shed more light on these compounds, in particular from an AB process treating combined 100 

industrial municipal wastewaters.  101 

 102 

2. Material and methods 103 

2.1 Reactors configuration and operating conditions 104 

A pilot unit was operated with an AB process to treat real municipal wastewater from households 105 

and small businesses in Singapore. The pilot plant was run in a continuous flow mode with an 106 

average wastewater flow of 1000 m3/d. It consisted of an equalization tank, 2 coarse (5 mm) rotary 107 

drum screen units, a high-rate A-stage contact tank, a primary/A-stage clarifier, 2 fine (2 mm) 108 

rotary drum screen units, and an ultrafiltration membrane bioreactor (MBR) system which 109 

comprised 5 biological tanks (2 anoxic tanks and 3 aerobic tanks), 1 membrane tank and 1 110 

deoxygenation tank. A simplified schematic diagram of the pilot plant is shown in Figure 1. The 111 

raw influent consisted of a mixture of incoming municipal wastewaters and dewatered digested 112 
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sludge and was drawn through submersible pumps operating in constant flowrate mode. Initial 113 

screening was subsequently performed through 5 mm perforated screen units followed by a screw 114 

conveyor type grit removal system. The A-stage was designed with an SRT of 0.5 d (calculated 115 

over the entire contact tank and clarifier) and a total HRT of 2 h, consisting of 0.5 h and 1.5 h for 116 

the contact tank and clarifier, respectively. To protect the downstream MBR process, 2 mm fine 117 

screens were provided for the removal of smaller solid particles. The following B-stage was 118 

operated with a 5-h HRT in the Modified Ludzack – Ettinger (MLE) configuration with a step-feed 119 

of 50% influent to the first anoxic zone and the other 50% to the second anoxic zone. A target SRT 120 

of 5 d was set in order to maintain the slow-growing nitrifying organisms for N removal. Dissolved 121 

oxygen (DO) concentrations were maintained at 0.3 and 1 mg O2/L in the corresponding contact 122 

tank and aerobic tanks.  123 

 124 

 125 

 126 

2.2 Physicochemical analyses 127 

Sludge samples were taken from the pilot plant on 26th March 2015. Physico-chemical parameters 128 

such as Total Solids (TS), Volatile Solids (VS), Total Suspended Solids (TSS), Volatile Suspended 129 

Solids (VSS) and COD concentrations were immediately analyzed in accordance with Standard 130 

Methods for the Examination of Water and Wastewater (APHA, 1995). Calorific value was 131 

determined using an oxygen bomb calorimeter (IKA, Malaysia) to measure the energy content in 132 

the sludge. The calorimeter unit consisted of a stainless steel bomb, a water jacket, an ignition unit, 133 

a thermometer, and a mechanical stirrer. Internal volume of the stainless steel bomb was 134 

approximately 350 mL and the volume of water jacket surrounding the bomb was 2 L. The 135 
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mechanical stirrer was used to keep the water jacket uniformly mixed. After centrifugation, the 136 

biomass pellet was frozen at -20°C and subsequently freeze-dried at 0.01 mbar vacuum and -45°C 137 

overnight. Next, the dried samples were crushed into powder, weighed and combusted using high 138 

pressure oxygen (30 bar) in bomb calorimeter. The temperature rise in the water jacket during 139 

combustion was used to calculate the energy content of sludge samples. The heat capacity of the 140 

bomb was determined using benzoic acid as a standard (Shizas & Bagley, 2004). 141 

 142 

 143 

2.3 Liquid-Liquid extraction 144 

Liquid-liquid extraction was performed on 100 mL of filtered supernatant (<0.45 m) using 70 mL 145 

Dichloromethane (GC-MS grade, Merck). This solvent was chosen because it has been used by 146 

other researchers for SMP analysis on GC-MS (Wu & Zhou, 2010). All glassware was washed 147 

with acetone prior to the procedure. A blank containing only distilled water was run along as 148 

control. Mixing was provided for 3 minutes by manually inverting the extraction funnel and 149 

separation of the 2 phases was then allowed for 5 minutes. Traces of water were removed by 150 

mixing the solvent phase with 2 spoons of Na2SO4. Solvent evaporation was then carried out at 151 

50°C under vacuum until 1 mL of solvent phase was obtained. 152 

 153 

 154 

2.4 Gas Chromatography – Mass Spectrometry 155 

The samples (injection volume: 1 µL) were then analyzed using a Shimadzu gas chromatograph 156 

equipped with an autosampler and a QP2010Ultra mass spectrometry detector (Shimadzu, Japan).  157 

The analytes were separated using an Rtx® -5MS column of 30m x 0.25 mm with a film thickness 158 
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of 0.25 µm. The temperature program of the GC-MS oven was: 50°C, hold 7 min, rate 7°C min-1 to 159 

325°C, hold 14 min. Helium was used as a carrier gas at a column flowrate of 1 mL/min. The 160 

injector temperature was set at 280°C (splitless injection mode), and the MS was operated in the 161 

electron impact ionisation mode (70 eV). The transfer line and ion source temperatures were 280 162 

and 230°C, respectively. Scan runs were made with a range from m/z 30 to 580. The 163 

chromatographic peaks were identified either by direct analysis of the mass spectrum or/and 164 

comparison with the NIST11 library (National Institute of Standards and Technology, 165 

Gaithersburg, MD, USA, http://www.nist.gov/srd/mslist.htm). The retention indexes were 166 

calculated by the library according to alkanes standards retention times (Trzcinski & Stuckey, 167 

2010). Quantification was done separately for each unknown compound using the alkane with the 168 

closest retention time. 169 

 170 

 171 

2.4 Biochemical Methane Potential 172 

Biochemical methane potential (BMP) of the A-stage and B-stage sludges was determined in batch 173 

assays using an Automatic Methane Potential Test System (AMPTS II, Bioprocess Control, 174 

Sweden). The assay was performed to examine the biodegradability of substrate subjected to the 175 

anaerobic incubation through the measurement of its cumulative methane production. The AMPTS 176 

reactor was seeded with anaerobic sludge which was collected from a mesophilic digester at Ulu 177 

Pandan Water Reclamation Plant in Singapore. The assay was conducted at 35°C for 178 

approximately 28 days. Prior to the assay, the inoculum was degassed at 35°C for one week to 179 

remove the residual carbon source. Biomedium containing nutrients and vitamin was prepared in 180 

http://www.nist.gov/srd/mslist.htm
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accordance with Owen et al. (1979). 200 mL of inoculum, 100 mL of substrate, and 50 mL of 181 

biomedium were added to each reactor which was subsequently flushed with nitrogen gas at 5 psi 182 

for approximately 5 min. Batch reactor without substrate addition was used as negative control and 183 

its methane production was subtracted from the methane production in the test bottles. All assays 184 

were performed in duplicate. The composition of biogas was analyzed with gas chromatography as 185 

previously reported (Tian et al., 2014).  The percentage of biodegradability was calculated through 186 

stoichiometric conversion of CH4 production from organic degradation as described in Speece 187 

(1996). Sample preparation of the anaerobically digested sludge prior to GC-MS analysis was done 188 

as described above. SMPs from the anaerobic inoculum used in the AMPTS were also analyzed 189 

following the same procedure and is referred to as “AMPTS control” in results and discussion. 190 

 191 

3. Results and discussion 192 

 193 

3.1 Physicochemical characteristics  194 

Table 1 shows the properties of A-stage and B-stage sludge collected in this study. The physical 195 

properties were very similar and both sludges had similar organic content (VS/TS ratio). Although 196 

the TCOD was around 4-6 g/L in both sludges, the B-stage had a significantly lower SCOD (38 197 

mg/L) compared to the A-stage (153 mg/L). This is due to the biodegradation of dissolved organics 198 

in the membrane bioreactor. The calorific value was higher in the A-stage sludge due to the 199 

concentration of carbon including dissolved organics, and possibly cellulose and lignin from raw 200 

sewage. 201 

 202 

3.2 GC-MS analysis of recalcitrant compounds and SMPs in AB process 203 
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 204 

144 peaks appeared on the chromatograph from the A-stage sludge supernatant (Supplementary 205 

material), but only 43 (30%) could be identified with a match percentage greater than 80% (Figure 206 

2 top left). Their concentration was not higher than 5 µg/L, except for a few acid compounds 207 

detected at a higher concentration such as dodecanoic (11.2 µg/L), hexadecanoic (28.5 µg/L), oleic 208 

(21.1 µg/L) and octadecanoic acids (20.5 µg/L) (Table 2). Long chain fatty acids (LCFA) originate 209 

from the degradation of fats, oils and grease present in raw sewage. LCFAs could have been taken 210 

up by Poly-phosphate accumulating microorganisms (PAO) in the B stage. 211 

It has been recently reported that LCFA can be used as sole carbon source for EBPR and were 212 

found to enhance PAO activity (Tayà et al., 2015). It is also possible that some of the compounds 213 

detected in this study by GC-MS were inhibitory or toxic to PAOs which can explain why the Bio-214 

P removal was not stable according to Qing (2015).  215 

 216 

Aromatic compounds were found in the low MW range (<150 Da) as well as in the high MW 217 

range (>300 Da) and bis(2-ethylhexyl) isophthalate was the largest aromatic compound in this 218 

sample with a MW of 390 Da. Overall, it was found that the compounds were mainly aromatic 219 

(27.9%), alcohols (25.6%) or acids (30.2%) (Figure 2 top right). The other compounds were 220 

alkanes, amines and ester, but in much smaller proportions. 221 

 222 

The total number of peaks was significantly greater in the A-stage supernatant (144) compared to 223 

the B-stage supernatant (84) (Figure 2 bottom left). This is consistent with the A-stage 224 

chromatograph that shows more peaks compared to the B-stage (Supplementary material). The B-225 

stage chromatogram also displayed a flatter baseline which is an indication that it had fewer peaks. 226 
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Similarly, the number of identified peaks with a match percentage greater than 80% was higher in 227 

the A-stage with 43 peaks versus 19 peaks in the B-stage supernatant. However, the B-stage 228 

supernatant was less characterized than the A-stage supernatant with 23% of the peaks being 229 

identified versus 30% for the A-stage supernatant.  230 

The A-stage supernatant contained high molecular weight (MW) compounds with Retention Index 231 

(RI) greater than 3000 and the greatest molecular weight was 534 Da for 9-Octadecenoic acid (Z)-, 232 

octadecyl ester. In contrast, the B-stage supernatant did not contain any compounds with RI greater 233 

than 3000 indicating that high MW compounds from the A-stage were hydrolyzed. This is relevant 234 

since membrane modules (ultrafiltration) are submerged in the B-stage membrane tank and the 235 

type of organics, their concentration and molecular weight will affect the fouling because they are 236 

the same size as the pore diameter (Mei et al., 2014). From this study, there were clear differences 237 

between the A-stage and B stage in terms of number of compounds, the type of organics, their 238 

concentration and molecular weight. The A-stage is a rapid physical separation step and the 239 

compounds detected in the A-stage supernatant are therefore very likely to be recalcitrant from raw 240 

sewage. In contrast, the B-stage is a biological step and soluble microbial products are more likely 241 

to be dominant in that sample. 242 

Zhou et al. (2009b) investigated SMPs in the effluent of a bench scale aerobic sequencing batch 243 

reactor treating distillery wastewater and found only 13 components by GC-MS whereas in this 244 

study 19 were found in the B-stage supernatant; They found that alkanes and esters such as 245 

heneicosane (19.8%), hexadecanoic acid, butyl ester (18.4%) and tetratetracontane (10.4%) were in 246 

significant percentage of the total compounds. Alkanes such as octacosane (3.3%), hentriacontane 247 

(2.4%), dotriacontane (2.4%) and acids such hexadecanoic acid, trimethylsilyl ester (1.2%) and 248 

acetic acid, octadecyl ester (3.8%) were also found but in lower proportions. Alkanes were the 249 
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most common compounds which were found in the effluent of a SAMBR-treated solid waste 250 

leachate (Trzcinski & Stuckey, 2010) and UASB effluent (Zhou et al., 2009a). These long chain 251 

carbohydrates (or alkanes) and esters are frequently found in the biological treatment effluent and 252 

are known to be the main components of SMP in aerobic reactors (Janga et al., 2007; Liang et al., 253 

2007). In this study, aromatic, alcohols and acids were more dominant presumably due to the more 254 

complex raw wastewater and also because of the short SRT applied in the pilot plant. It is known 255 

that the accumulation of SMPs becomes more pronounced at short SRTs (Liang et al., 2007) .  256 

 257 

Overall, there was a radical shift of compounds between the A-stage and B-stage. In fact, the B-258 

stage supernatant consisted of completely different compounds, except three: flutolanil (a common 259 

pesticide), triacetine and n-Nonadecanol-1, and their concentrations decreased compared to the A-260 

stage supernatant, showing that indeed some compounds could be biodegraded in the process or 261 

removed through adsorption to the B-stage sludge. The new compounds in B-stage were either 262 

SMPs or biodegradation end-products of residual COD in the soluble phase. 263 

The B-stage supernatant contained very diverse compounds such as aromatics (21%), alcohols 264 

(15%), acids (15%), alkanes (10%), alkenes (15%), aldehydes (10%), amide (5%) and ester (5%) 265 

as shown in Figure 2 (bottom, right).  266 

 267 

 268 

3.3 Anaerobic Biodegradability  269 

The cumulative methane production is shown in Figure 3 where it can be seen that 349±1 mL 270 

CH4/g VS and 238±12 mL CH4/g VS were produced from the A-stage and B-stage sludges, 271 

respectively, showing the greater biodegradability (+47%) of the A-stage sludge. From the COD 272 
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mass balance and considering the theoretical COD equivalence of 395 mL CH4 per gram COD 273 

(Speece, 1996), it was derived that 53% and 42% of the COD in A-stage and B-stage sludges were 274 

converted to methane gas, respectively. 275 

 276 

Moreover, the respective methane content in the biogas were 64% and 54% showing the higher 277 

energy content of the biogas obtained from the A-stage sludge.  This is consistent with the calorific 278 

value given in Table 1 which confirms that the A-stage yielded sludge with a greater carbon 279 

content and biodegradability potential compared to the more conventional aerated waste activated 280 

sludge.  This indicates the capacity of the AB system to rapidly capture the carbon from raw 281 

sewage and channel it to the existing anaerobic digester to increase energy production. 282 

 283 

3.4 GC-MS analysis of recalcitrant compounds and SMPs after anaerobic digestion (AD) 284 

 285 

After anaerobic digestion (AD) tests, SMPs and recalcitrant compounds in the supernatant of the 286 

digested sludges were also analyzed using GC-MS. A few peaks (identified by ** in 287 

Supplementary Table S2) were also found in the inoculum used in the anaerobic biodegradability 288 

test, for instance p-cresol which was detected in relatively high concentration. It was found that the 289 

number of peaks decreased from 144 to 124 in the digested A-stage sludge (Figure 4 top left). This 290 

shows that some compounds were anaerobically degraded to methane, CO2 or converted to new 291 

biomass while new molecules appeared as end-product of the anaerobic process or SMPs produced 292 

by anaerobic metabolism. Among these 124 peaks, only 31 (or 25%) were identified and only 6 293 

were in common before and after the anaerobic biodegradability test (identified by *** in 294 

Supplementary Table S2). These compounds originated therefore from the raw wastewater and not 295 
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from the anaerobic metabolism. One of them was oleic acid and its concentration had decreased 296 

from 21.14 µg/L before AD to 1.4 µg/L after AD. However, the concentration of some of these 297 

increased through the anaerobic digestion test which could be the result of biological degradation 298 

of colloids and large molecules in the sludge sample. 299 

 300 

The number of low molecular weight compounds (with RI lower than 1200) was 3 before AD 301 

(Table 2), and this increased to 10 after AD (Supplementary Table S2) showing that high 302 

molecular weight compounds were hydrolyzed to low molecular weights compounds during 303 

anaerobic digestion tests. The number of compounds with RI>3000 (chain with more than 30 304 

Carbons) was 5 before AD and 4 after AD. In both B-stage supernatants (before AD in Table S1 305 

and after AD in Table S3) no compounds with RI>3000 was found showing a different molecular 306 

weight distribution than in A-stage. 307 

It was observed that the distribution of compounds also changed with a significantly greater 308 

proportion of aromatic compounds: 42% after AD versus 28% before AD. This is because 309 

aromatic compounds are generally more recalcitrant and therefore represent a major fraction of 310 

residual compounds after AD. All the aromatic compounds detected after AD were smaller than 311 

206 Da which is different than before AD where they were found in the low (<150 Da) and high 312 

ranges of MW (>300 Da). From the results of the A-stage sludge, it can be added that aromatic 313 

biodegradation end-products and SMPs were all smaller then about 200 Da (aromatics are shown 314 

with † in Supplementary S2). Alcohols and acids were secondary compounds with 16% and 10% 315 

of the total number of compounds, respectively (Figure 4 top right). These proportions were 25.6% 316 

and 30% in the sample before AD (Figure 2 top right).  317 
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In conclusion, there were fewer compounds after AD with a higher proportion of aromatics and a 318 

lower proportion of acids and alcohols.   319 

  320 

In the B-stage supernatant the total number of compounds decreased from 84 to 76 before and after 321 

AD, respectively, while the number of identified peaks remained 19 (Figure 4 bottom left). When 322 

comparing before and after AD, only 2 compounds (2,4,7,9-Tetramethyl-5-decyn-4,7-diol and 323 

propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester) were common in 324 

both samples indicating that there was a radical shift of compounds during anaerobic digestion of 325 

the B-stage sludge. The number of compounds with RI lower than 1200 was 2 before AD and 326 

became 10 after AD showing that hydrolysis of larger molecular weight compounds was taking 327 

place during the BMP tests (Supplementary materials Tables S1 and S3). 328 

The proportion of various compounds significantly changed during the AD process. The 329 

percentage of aromatic compounds increased to 58 % while the percentage of alcohols and acids 330 

decreased to 10% each (Figure 4 bottom right). The further stabilization in the B stage due to the 331 

process configuration was confirmed with a lower number of compounds compared to the A-stage 332 

supernatant (19 versus 31) and also by a higher degree of aromaticity: 58% versus 42%. This was 333 

expected since the SRT is longer in the B-stage (5 days) than in the A-stage (0.5 days) and 334 

retention of bacteria by the membrane in the B-stage can also contribute to a better biodegradation 335 

of SMPs. The role of the A-stage is also to provide protection to the B-stage and buffer any 336 

organic shock that may occur. The higher number of compounds in the A-stage compared to the B-337 

stage showed that indeed the process configuration allowed for fewer contaminants ending up in 338 

the B-stage. This provides protection for the biological process in the B-stage as fewer toxic or 339 

inhibitory compounds were detected.  340 
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 341 

In this study aromatics were detected in both the aerobic sludges (from A-stage and B-stage) and 342 

the anaerobically digested sludges, but the degree of aromaticity was greater in the anaerobically 343 

digested sludge.  344 

The concentrations were typically less than 5 µg/L which is too low to explain the residual SCOD 345 

given in Table 1: 153 mg/L and 38 mg/L in the A-stage and B-stage sludge, respectively.  346 

This is because the use of GC-MS is limited to the identification of non-polar, volatile and 347 

thermostable compounds and many peaks in the chromatograms could not be identified. 348 

Techniques such as LC-MS or Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass 349 

Spectrometry (MALDI-ToF-MS) would certainly shed more light on the nature of the high MW 350 

compounds that were not detected and could explain the residual COD in the effluent. 351 

 352 

 353 

 354 

 355 

4. Conclusions 356 

This study showed that the supernatant of both A-stage and B-stages sludges contained aromatics 357 

(27.9% and 21.1% of identified compounds), long chain alkanes (7% and 10.5%), alcohols (25.6% 358 

and 15.8%), acids (30.2% and 15.8%) and esters (2.3% and 5.3%). More methane could be 359 

produced from the A-stage sludge (349±1 mL CH4/g VS) compared to the B-stage sludge (238±12 360 

mL CH4/g VS). After anaerobic digestion of these sludges, the total number of compounds 361 

detected by GC-MS was lower, and there was a greater proportion of aromatic compounds (42% 362 

and 58%).  363 
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