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Abstract

A range of active systems, particularly of chemical nature, are known to perform

self-excited oscillations coupled by diffusion. The role of the diffusion is not trivial so

that the differences in the phase of the oscillations through space may persist, depend-

ing on the values of the controlling parameters of the system. Firstly, we analyse a

6th-order nonlinear partial differential equation describing such dynamics. We eval-

uate the range of the parameters leading to different finite versions of the equation,

specifically a version based on nonlinear excitation and a version based on linear exci-

tation. In the second part of the work we solve the equation in two spatial dimensions

by finite-difference discretization in space and subsequent numerical integration of a

system of ordinary differential equations in time. A forced variant of the equation is

derived and selected exact solutions are presented. They are also used to verify the nu-

merical code. For the unforced equation, irregular dynamics intermitting with periods

of slow evolution are recorded and discussed.

Key words: Active dissipative system, nonlinear excitation, parametric space, irregular

dynamics

1 Introduction

In this work we analyse oscillators representing a class of dissipative active systems with self-

excitation. As examples of such systems mention fronts of gasless combustion [1, 2], certain

1corresponding author, email: strunin@usq.edu.au, tel.: +61-7-4631-5541, fax: +61-7-4631-5550
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type of reaction-diffusion systems [3, 4, 5] and seismic waves in fluid-saturated rocks [6].

Intuitively, diffusion (or thermal conductivity) should smooth out the differences of the

phase of the oscillations in space. However, as is now well-understood [1, 3], the combined

effect of the diffusion and self-excitation may produce complicated dynamics, during which

the difference may persist as time goes. Earlier we derived [7, 8, 9] a form of such an equation

based on nonlinear self-excitation,

∂tu = −A∇2u(∇u)2 +B(∇u)4 + C∇6u , (1)

where A > 0 and C > 0. The former condition guarantees that the term, −A∇2u(∇u)2, acts

as a nonlinear excitation (the anti-diffusion, −D∇2u, with the nonlinear diffusion coefficient,

D = A(∇u)2), and the latter condition ensures dissipative effect of the term C∇6u. We will

refer to (1) as the nonlinearly excited phase (nep) equation.

Clearly, (1) has the trivial, spatially-uniform solution

u = const .

It is stable to small perturbations since the linearized form of the equation is dissipative to

all wavelengths,

∂tu = C∇6u .

Therefore, in order to kick-start self-sustaining dynamics one needs a sufficiently strong

initial perturbation. If, at some stage of the dynamics, the surface u(x, y, t) flattens out to

significant extent, the motion will decay forever.

Previously we solved equation (1) in 1D numerically, using Galerkin method, under pe-

riodic boundary conditions [7]. A settled regime was obtained, in which a kink-shaped wave

moves along a spiral trajectory on the surface of a cylinder (see graph (b)). Such a regime

profoundly resembles an experimentally observed spinning combustion wave [2], illustrated

on the photo. It is important that it is not just the correct shape – a kink – of the wave

that is reproduced but also the dynamic mechanism behind it. In a laboratory, the spin-

ning combustion occurs when the reacting chemical composition is diluted with some neutral

admixture. As a consequence, it becomes difficult for the combustion process to maintain

itself (it actually occurs on the brink of collapse). As a result, the front has to form a cavity
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(a) A post-combustion trace left by the (b) A running spinning wave solution of Eq. (1)

spinning solid flame on a hollow cylinder; (five successive shapes) evolved from a

courtesy of A.G. Strunina (see also similar randomly chosen initial condition [7].

photos and discussions in [2, 10]).

Figure 1: Comparison of the experiment and simulation.

(kink) of certain size and moving with certain velocity, where the cold unburned composi-

tion is surrounded from two sides by the hot reaction products. This is the only way the

combustion can survive under the “difficult” conditions. For the 1D topology we did not

investigate whether, apart from the periodic waves, there may also realise irregular regimes.

Perhaps, those are possible at large diameters of the cylinder, when there is enough space

for a number of kinks to co-exist interact with each other in a complicated way. For the

2D topology, that is with an extra dimension available, we have a strong anticipation that

complicated, possibly chaotic, dynamics may indeed form and self-sustain provided the size

of the space domain is sufficiently large.

Another area of application of the equation (1) are reaction-diffusion systems, in par-

ticular those exhibiting nonlocal effects. For such systems equation (1) was derived [9] by

a rigorous procedure as a truncated version of the following infinite (also referred to as

generalized) phase diffusion equation,

∂tu = a1∇2u+ a2(∇u)2+

b1∇4u+ b2∇3u∇u+ b3(∇2u)2 + b4∇2u(∇u)2 + b5(∇u)4+

g1∇6u+ g2∇5u∇u+ g3∇4u∇2u+ g4(∇3u)2 + g5∇4u(∇u)2 + . . . .

(2)
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Here u denotes the phase of oscillations, and an, bn, gn, en, . . . are constant coefficients.

The right-hand side of (2) is virtually a Taylor series in small parameter ∇2 ∼ (1/L)2, with

L standing for the typical length scale, presumed large. There may be different kinds of

balance between the terms in (2) depending on the magnitudes and signs of the coefficients.

For example, when a1 > 0 and the initial field u(x, y, 0) is sufficiently smooth, the diffusion

term dominates during the entire period of evolution. The equation is effectively reduced to

the linear diffusion equation

∂tu = a1∇2u . (3)

In the case a1 = −ε < 0 (assumed small) and, by the order of magnitude, a2 = 1, b1 = −1,

equation (2) reduces to the Kuramoto–Sivashinsky (KS) equation [1, 3],

∂tu = −ε∇2u+ (∇u)2 −∇4u . (4)

The KS equation contains the linear anti-diffusion term, −ε∇2u, which represents excitation;

it is counterbalanced by the dissipative term, −∇4u. Taking into account smallness of ε, it

is straightforward to show that the scales of u and L resulting from the balance are such

that the rest of the terms in (2) are negligible compared to the three balancing terms in (4).

In a similar way equation (2) effectively reduces to the finite form (1) when b4 = −ε and, by

the order, b5 = 1 and g1 = 1 and, additionally, all the lower-order terms in the right-hand

side of (2) are negligibly small. To meet this latter condition, the five coefficients a1, a2,

b1, b2 and b3 (alongside with the coefficient b4) must be small. Denoting the characteristic

scale of the phase variations by U > 0 we evaluate in absolute value: ∇2u(∇u)2 ∼ U3/L4,

(∇u)4 ∼ U4/L4 and ∇6u ∼ U/L6. The balance between the three terms of (1),

εU3/L4 ∼ U4/L4 ∼ U/L6 , (5)

governs the scales of the dissipative structures,

U ∼ ε , L ∼ (1/ε)3/2 . (6)

The smallness condition for the five mentioned coefficients may indeed realize in certain

systems and, as we show in the next section, is not a rare occasion. An example is the

following system [9],

∂tX = f(X) + δ∇2X + k1g1(S1) + k2g2(S2) , (7)
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τ1∂tS1 = −S1 +D∇2S1 + h1(X) , (8)

τ2∂tS2 = −S2 +D∇2S2 + h2(X) . (9)

Here δ, k1, k2, τ1, τ2 and D are constants, and X, S1 and S2 represent the concentrations

of reactants. This system is relevant to certain type of bio-systems [4]. Equations (7)–(9)

leads to a Ginzburg-Landau (GL) equation for the complex amplitude A – measure of the

concentrations – with two nonlocal terms,

∂tA = µσA− β|A|2A+ δ∇2A

+k1η1
′
∫
dr′G1(r− r′)A(r′, t) + k2η2

′
∫
dr′G2(r− r′)A(r′, t) , (10)

where Gn are coupling functions resulting from the presence of chemicals S1 and S2. In one

dimension,

Gn(x) =
1

2
(ζn + iηn)e−(ζn+iηn)|x| , n = 1, 2 , (11)

with

ζn =

(
1 +

√
1 + θ2n

2D

)1/2

, ηn =

(
−1 +

√
1 + θ2n

2D

)1/2

. (12)

All the new parameters appearing in (10)–(12) are constants. Rescaling (10) (we refer to [4]

and [9] for details) leads to

∂tA = A− (1 + ic2)|A|2A+ (δ1 + iδ2)∇2A

+K1(1 + ic11)

∫
dr′G1(r− r′)[A(r′)− A(r)]

+K2(1 + ic12)

∫
dr′G2(r− r′)[A(r′)− A(r)] .

(13)

Equation (13) contains 9 independent parameters: δ1, δ2, c11, c12, c2, K1, K2, θ1 and θ2. The

complex amplitude A is connected to the real-valued amplitude, a, and real-valued phase of

the oscillations, ϕ, via

A = ae−iϕ . (14)

Substituting (14) into the Ginzburg-Landau equation (13) and separating real and imaginary

parts, we obtain

∂ta = a− a3 + δ1∇2a− δ1 a(∇ϕ)2 + 2δ2∇a∇ϕ+ δ2 a∇2ϕ+ Re I . (15)
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∂tϕ = c2a
2 + 2δ1

∇a∇ϕ
a

+ δ1∇2ϕ− δ2
∇2a

a
+ δ2(∇ϕ)2 − 1

a
Im I , (16)

where

I =
I0
e−iϕ

, (17)

and I0 denotes the nonlocal terms in (13).

The real amplitude, a, tends towards 1, driven by ∂ta ≈ a − a3. Note that the terms

following a−a3 in (15) are relatively small due to the slow variations in space. Despite being

small, they make the amplitude a deviate from 1. At the same time the phase increases at

an approximately constant rate as ϕ = c2t, because the amplitude is approximately driven

by ∂tϕ ≈ c2a
2 ≈ c2. However, being perturbed by the rest of the terms in (16), the phase

deviates from c2t. We define the phase deviation, u, via

ϕ = c2t+ u . (18)

For the slow spatial variations under consideration, ∇ ∼ 1/L ∼ ε1 is small. To provide

consistency with (6) we state

ε1 = ε3/2 . (19)

This relation connects the small parameter ε (our choice), representing the coefficient b4,

with the size of the formed dissipative structures, ε1 (the consequence of this choice). Thus,

the variations of the amplitude and phase are slow because the coefficient b4 is small. We

came to a typical centre manifold situation in which there is a fast variable, a, and a slow

variable, ϕ. The centre manifold theory states that there exists a manifold to which the

dynamics are attracted exponentially quickly,

a = a[∇ϕ] . (20)

Equation (20) manifests a stiff connection between the amplitude and phase on the centre

manifold. This link makes it possible to eliminate the amplitude from (16) and obtain a closed

equation for the phase. It is convenient to rescale the variables, t1 = ε21t and x1 = ε1 x, so

that

∇ = ε1∇1 , ∂t = ε21∂t1 . (21)

We expand the amplitude into the series in ε1,

a = 1 + ε21a2 + ε41a4 + ε61a6 + . . . . (22)
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Using (21), (18) and (22) in the phase equation (16) and the amplitude equation (15), we

derive, for the phase departure introduced in (18),

ε21∂t1u = 2c2 ε
2
1 a2 + 2c2 ε

4
1 a4 + c2 ε

4
1 a

2
2 + 2c2 ε

6
1 a6

+2δ1 ε
4
1∇1a2∇1u+ δ1 ε

2
1∇2

1u− δ2 ε41∇2
1a2 − δ2 ε61∇2

1a4

+δ2 ε
2
1 (∇1u)2 − 1

a
Im I + . . .

(23)

and, for the amplitude,

ε41∂t1a2 + ε61∂t1a4 + · · · = −2ε21a2 − ε41
(
2a4 + 3a22

)
− ε61

(
2a6 + 6a2a4 + a32

)
+δ1ε

2
1

(
ε21∇2

1a2 + ε41∇2
1a4 + . . .

)
− δ1

(
1 + ε21a2 + ε41a4 + . . .

)
ε21(∇1u)2

+2δ2ε1
(
ε21∇1a2 + ε41∇1a4 + . . .

)
ε1∇1u

+δ2
(
1 + ε21a2 + ε41a4 + . . .

)
ε21∇2

1u+ Re I .

(24)

Collecting terms ∼ ε21 in (24) we obtain

0 = −2a2 − δ1(∇1u)2 + δ2∇2
1u+ (Re I)2 , (25)

where (Re I)2 denotes the coefficient at ε21 in the ε1-series for Re I. After the necessary

manipulations using the expression I (we refer to [9] for details) we obtain a2 in terms of

∇1u in the form

a2 = α1∇2
1u− α2(∇1u)2 .

Similarly, we find other an in terms of ∇1u, substitute them into (23) and, after doing

necessary algebra, eventually arrive at the phase equation of the form (2). We present it

below in two parts. First we give the phase equation following from the Ginzburg-Landau

equation with only one nonlocal term. Then we explain how it should be transformed in
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order to represent the case with two nonlocal terms.

∂tu = ∇2u

[
2c2α1 + δ1 +

K

4
(ζ − c1η)C2 −

K

4
(c1ζ + η)S2

]
+(∇u)2

[
−2c2α2 + δ2 +

K

4
(c1ζ + η)C2 −

K

4
(ζ − c1η)S2

]
+∇4u

[
2c2β − δ2α1 +

K

48
(η + c1ζ)S4 +

K

48
(ζ − c1η)C4

−K
4

(η + c1ζ)C2α1 +
K

4
(ζ − c1η)S2α1

]
+∇u∇3u

[
2c2β2 + 2δ1α1 + 2δ2α2 −

K

12
(ζ − c1η)S4

+
K

12
(η + c1ζ)C4 −

K

2
(ζ − c1η)S2α2 +

K

2
(η + c1ζ)C2α2

]
+
(
∇2u

)2 [
2c2β1 + 2c2α

2
1 + 2δ2α2 −

K

16
(ζ − c1η)S4

+
K

16
(η + c1ζ)C4 −

K

2
(ζ − c1η)S2α2 +

K

2
(η + c1ζ)C2α2

]
+∇2u(∇u)2

[
2c2β3 − 4c2α1α2 − 4δ1α2 −

K

8
(ζ − c1η)C4 −

K

8
(η + c1ζ)S4

]
+(∇u)4

[
2c2β4 + 2c2α

2
2 +

K

48
(ζ − c1η)S4 −

K

48
(η + c1ζ)C4

]
+∇6u

[
2c2

(
1

2
δ1β +

K

8
(ζ − c1η)C2β +

K

4 · 4!
(ζ − c1η)C4α1

− K

4 · 6!
(ζ − c1η)S6 +

K

4 · 6!
(c1ζ + η)C6

+
K

8
(c1ζ + η)S2β +

K

4 · 4!
(c1ζ + η)S4α1

)

−βδ2 −
K

2
(ζ − c1η)

(
− 1

6!
C6 −

1

2
S2β −

1

4!
S4α1

)
−K

2
(c1ζ + η)

(
1

2
C2β +

1

4!
C4α1 −

1

6!
S6

)]
+ . . . ,

(26)

where

Cn(ζ, η) =
2Γ(n+ 1)

(ζ2 + η2)(n+1)/2
cos [(n+ 1) arctan(η/ζ)] ,

Sn(ζ, η) =
2Γ(n+ 1)

(ζ2 + η2)(n+1)/2
sin [(n+ 1) arctan(η/ζ)] ,

(27)
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α1 =
δ2
2
− K

8
S2(ζ − c1η) +

K

8
C2(c1ζ + η) ,

α2 =
δ1
2

+
K

8
C2(ζ − c1η) +

K

8
S2(c1ζ + η) ,

(28)

and

β = α1
δ1
2

+
K

8
(ζ − c1η)C2α1 +

K

8
(η + c1ζ)S2α1

− K

4 · 24
(ζ − c1η)S4 +

K

4 · 24
(η + c1ζ)C4 ,

β1 = −3

2
α2
1 − δ1α2 +

δ2
2
α1 +

K

32
(ζ − c1η)C4 −

K

32
(η + c1ζ)S4

−K
4

(ζ − c1η)C2α2 −
K

4
(η + c1ζ)S2α2

−K
8

(ζ − c1η)S2α1 +
K

8
(η + c1ζ)C2α1 ,

β2 = −δ1α2 + δ2α1 −
K

24
(ζ − c1η)C4 −

K

24
(η + c1ζ)S4

−K
4

(ζ − c1η)C2α2 −
K

4
(η + c1ζ)S2α2 ,

β3 = 3α1α2 −
δ1
2
α1 −

5δ2
2
α2

−K
8

(ζ − c1η)C2α1 −
K

8
(η + c1ζ)S2α1

+
K

16
(ζ − c1η)S4 −

K

16
(η + c1ζ)C4

+
K

8
(ζ − c1η)S2α2 −

K

8
(η + c1ζ)C2α2 ,

(29)

β4 = −3

2
α2
2 +

K

4 · 24
(ζ − c1η)C4 +

K

4 · 24
(η + c1ζ)S4

+
K

8
(ζ − c1η)C2α2 +

K

8
(η + c1ζ)S2α2 +

δ1
2
α2 .

(30)

Observe that the coefficients a1, a2, b1, b2, b3, b4, b5 and g1 are combinations of the indepen-

dent parameters c1, c2, K, δ1, δ2 and θ (the latter is presented via ζ and η, see (12)). For

the GL equation with two nonlocal terms, (13), which is in our focus, the phase equation is

obtained by replacing

K(ζ − c1η)Sn → K1(ζ1 − c11η1)Sn1 +K2(ζ2 − c12η2)Sn2 ,
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K(η + c1ζ)Sn → K1(η1 + c11ζ1)Sn1 +K2(η2 + c12ζ2)Sn2 ,

K(ζ − c1η)Cn → K1(ζ1 − c11η1)Cn1 +K2(ζ2 − c12η2)Cn2 ,

K(η + c1ζ)Cn → K1(η1 + c11ζ1)Cn1 +K2(η2 + c12ζ2)Cn2

(n = 2, 4, 6)

in (26) and also in the expressions for α1 and α2, (28), and for β, β1, β2, β3 and β4, (29)–(30).

It was shown [9, 4] that the parameters K1 and K2 must satisfy the restriction

K1 +K2 < 1 . (31)

Another important condition that must be met is dissipative nature of the term g1∇6ψ,

hence

g1 > 0 . (32)

As we noted, equation (1) becomes a valid reduced form of (2) when b4 = −ε, b5 = 1 and

g1 = 1. In addition, all the lower-order terms preceding these three in the right-hand side of

(2) must be negligible, which is achieved by assuming that the coefficients a1, a2, b1, b2 and

b3 are sufficiently small or even zero. Thus, these 5 coefficients alongside with the coefficient

b4 must satisfy the conditions of smallness — a total of 6 conditions.

We want to find out how narrow/wide is the area in parametric space of independent

parameters within which (2) reduces to (1). We aim to determine a possibly larger piece of

this area and, out of curiosity, compare it with the area leading to the KS equation. This

is done in Section 2. Our second aim is to solve equation (1) numerically in two spatial

dimensions in order to see whether complicated/irregular regimes may settle with time and

what structure they have. We perform this in Section 3. Section 4 contains the conclusions.

2 Range of validity: numerical results

As an initial step we will demonstrate the existence of the values of the 9 independent

parameters, θ1, θ2, c12, c11, c2, K1, K2, δ1 and δ2, such that the 6 conditions of smallness are

satisfied, namely that b4 = −ε (small number) and also a1, a2, b1, b2 and b3 are sufficiently

small or zero [9]. Additionally, the restrictions g1 > 0, δ1 > 0, K1 +K2 < 1 must be satisfied.
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Our numerical program, written in reduce, solves the equations stating that the coefficients

a1, a2, b1, b2 and b3 are equal to zero exactly. It is easy to verify that the softer conditions of

the coefficients being slightly away from zero can always be achieved via tiny variations of

the independent parameters from their values giving exactly zero values to the coefficients.

Our program also computes the value of the parameter g1 to see whether it satisfies the

requirement g1 > 0. The program works better when a small value b4 = −ε is arranged

in the form of a product of one of the unknown parameters, for example K1, and a small

number: b4 = −K1 · 0.00001. For the input values θ1 = 1, θ2 = 2, c12 = 1 the computed

output (in rounded form) is

δ1 = 27 , K1 = 49 , K2 = −89

and

g1 = 33 .

See that all the restrictions are met, namely

g1 > 0 , δ1 > 0 , K1 +K2 < 1 . (33)

Clearly we can make b4 as close to zero as we wish. Thus, for the above values of the

independent parameters the nep equation is a valid truncation of the phase equation (2).

Obviously, once there exists one valid point, it must be surrounded by a cloud of other valid

points. We aim to determine a possibly wider range of the values of the parameters making

the nep equation valid. Similarly to the numerical example above, we execute the following

procedure. We arbitrarily assign values to the 3 independent parameters θ1, θ2 and c12.

Using the program, we compute the values of the other 6 parameters from the list of 9.

Finally, we inspect whether all the restrictions are met, and, based on the outcome, make a

conclusion about whether or not a particular point in the 3D space (θ1, θ2, c12) is a one where

the nep equation is valid. If at least one of restrictions (33) is violated, the nep equation is

not valid.

Approximately 87690 points in the 3D space were analysed and the result is shown in

Fig. 1. All the points fall into three groups: the points where the nep equation is valid,

displayed as ’o’, the points where the equation is not valid, displayed as ’∗’, and the points,

displayed as 2, for which we were unable to make a conclusion about their validity because
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Figure 2: The area of validity of the nep equation.
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Figure 3: Valid and invalid points for the nep equation along selected horizontal lines.

the computation took too long to finish. For brevity we will call the circles “valid” points and

the stars “invalid” points. As is seen, the volume made of the valid points has a complicated

shape. The circles ’o’ may seem to form a continuous shape, however, at places they actually

intermit with the stars. To show this fact, we scattered a small number of stars over the

space, however, did not show all of them in order not to block the view of the circles. Bear in

mind that the empty space around the circles is meant to be filled with stars (and squares).

Note that the tall columns in Fig. 1 extend to infinity.

It is interesting to compare the validity areas for the nep and Kuramoto-Sivashinsky

equations. The KS equation (4) is relevant to many physical systems and can be deduced

from (7)–(9) as well. Its validity area can be readily explored using our program after a

simple adjustment. The KS equation is valid when only one condition on the coefficients is

imposed, namely

a1 = −ε < 0 , (34)
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Figure 4: Valid and invalid points for the KS equation along selected horizontal lines.

and, additionally, the following restrictions are satisfied,

b1 < 0 , δ1 > 0 K1 +K2 < 1 . (35)

Out of the 9 independent parameters we have freedom to choose 8 so that the remaining

1 parameter is to be computed from equation (34). We choose this computed parameter

to be δ1. In analogy to the nep case, we consider the 3D space (θ1, θ2, c12). Let us select

an arbitrary path in this space — a straight line. As we move from point to point along

the line, the values of the 3 parameters change. For each point we assign values to the

other 5 free parameters at our disposal, namely c11, c2, K1, K2 and δ2. There is plenty of

freedom in doing so, and our choice is to borrow these values from the nep computational

experiments executed at the same values of θ1, θ2 and c12. The last step is to inspect signs

of the computed parameters: if conditions (35) hold then the KS equation is valid at a given

point. If at least one of these restrictions is not satisfied, then the KS equation is not valid

at the point.

We opted to cut off a “box” in the 3D space (θ1, θ2, c12) to capture considerable amount
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Figure 5: Valid and invalid points for the nep equation along selected vertical lines.

of valid nep points revealed by Fig. 1. Then we pierced the box by 25 straight lines forming

a 5×5 grid. The lines uniformly fill the volume of the box. At all the point of the lines

validity of the KS and nep equations was tested. In the similar way we set up a grid of

25 vertical lines and analysed validity along them. The computational results are displayed

in Fig. 2–5. For a quantitative comparison between the KS and nep cases, we summed up

the distances occupied by the KS valid points and, separately, nep valid points, over all 25

horizontal lines and calculated the ratio ν =total nep distance/total KS distance. The same

was done for the vertical lines. The horizontal and vertical lines were analysed separately

in this calculation in order not to mix the distances measured in units of c12 and those

measured in units of θ2. In both cases the ratio turned out to be less than one: νvert = 0.19,

νhoriz = 0.85. This shows that even in a box deliberately chosen to contain many valid nep

points, its total amount (the distance) is less than that for the KS equation. This seems

to be a natural outcome since the KS equation imposes softer restriction on the coefficients

of the phase equation. We note that the performed comparison is by no means exhaustive
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Figure 6: Valid and invalid points for the KS equation along selected vertical lines.

considering the many-dimensional (9D) space we deal with. We realize that (a) the KS area

may be bounded or may spread to infinity in a given direction; and (b) many valid KS points

may be located far away from the validity area of the nep equation.

3 Forced and unforced dynamics

In this section we seek numerical and analytical solutions of equation (1) and its forced

version, in two-dimensional space. In 2D equation (1) is written as

∂tu =− A (∂2xu+ ∂2yu)
[
(∂xu)2 + (∂yu)2

]
+B

[
(∂xu)4 + 2(∂xu)2 (∂yu)2 + (∂yu)4

]
+ C

(
∂6xu+ 3∂4x∂

2
yu+ 3∂2x∂

4
yu+ ∂6yu

)
.

(36)
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Consider a square domain, 0 ≤ x, y ≤ L. On the boundaries we stipulate zero value of the

first, second, and third derivatives normal to the boundary,

∂xu = 0 , ∂2xu = 0 , ∂3xu = 0 at x = 0 and x = L ,

∂yu = 0 , ∂2yu = 0 , ∂3yu = 0 at y = 0 and y = L .

3.1 Derivation of the forced equation

So far we assumed that the rate c2 was constant, both in time and space. Obviously this is

an ideal situation while any real physical system is not perfectly uniform. It is interesting

to explore the case when the rate c2 varies in space; this assumption would represent a non-

uniform distribution of the kinetics of the reacting system in space. In the ideal case of a

constant rate c2 the phase satisfies equation (16),

∂tϕ = c2a
2 + · · · = c2(1 + ε21a2 + ε41a4 + ε61a6 + . . . )2 + . . . , (37)

where the amplitude a is represented by the series (22) in small parameter ε1 and the second

set of dots denotes the terms which do not contain c2. Now assume that c2 is not constant

is space (but still constant in time),

c2 = c
(0)
2 + ε2c

(1)
2 (x, y) , (38)

with c
(0)
2 being a constant and ε2 being a new small parameter. Similarly to (18) we look for

the phase in the form

ϕ(x, y, t) = c
(0)
2 t+ u(x, y, t) .

Then equation (37) becomes

c
(0)
2 + ε21∂t1u =

[
c
(0)
2 + ε2c

(1)
2

]
(1 + ε21a2 + . . . )2 + · · · =

[
c
(0)
2 + ε2c

(1)
2

]
(1 + 2ε21a2 + . . . ) + . . .

= c
(0)
2 + ε2c

(1)
2 +

{[
c
(0)
2 + ε2c

(1)
2

]
2ε21a2 + . . .

}
+ . . . . (39)

The amplitude components an are separately expressed in terms of ∇1u from the amplitude

equation (24) as we explained in the previous section. Substituting the expressions for an

into (39), cancelling c
(0)
2 in both sides and performing some manipulations leads to

ε21∂t1u = ε2c
(1)
2 − ε41∇2

1u(∇1u)2
{[
c
(0)
2 + ε2c

(1)
2

]
2β3 + . . .

}
+ε41(∇1u)4

{[
c
(0)
2 + ε2c

(1)
2

]
2β4 + . . .

}
+ ε61∇6

1u
{[
c
(0)
2 + ε2c

(1)
2

]
δ1β + . . .

}
+ . . . ,

(40)
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where δ1, βn and β are the parameters composed of the original parameters of the physical

system. Note that the lower-order terms in ∇1, carried by a2 and a4, vanished because the

resulting factors in front of them are made zero. This is done by the appropriate choice

of the magnitudes of the original parameters, as we mentioned in the previous section. To

evaluate the order of the small parameter ε2 we need to take into consideration that all the

terms in (40) must have the same order of magnitude. Therefore, evaluating quantities by

their absolute value, we have

ε2c
(1)
2 ∼ b4∇2u (∇u)2 . (41)

By the definition of ε and in view of the connection (19),

b4 = ε = ε
2/3
1 .

The scales of the length, L, and phase departure, U , are found in (6),

u ∼ U ∼ ε = ε
2/3
1 , ∇ ∼ L−1 ∼ ε1 ,

consequently,

b4∇2u (∇u)2 ∼ b4
U3

L4
∼ ε

20/3
1 .

Since the parameter ε2 is introduced presuming c
(1)
2 ∼ 1, then, using (41), we determine

ε2 = ε
20/3
1 .

Finally, neglecting ε2c
(1)
2 inside the square brackets in (40) in comparison to c

(0)
2 and returning

to the unscaled operators ∇ = ε1∇1 and ∂t = ε21∂t1 we arrive at the forced equation

∂tu = −A∇2u(∇u)2 +B(∇u)4 + C∇6u+ f(x, y) , (42)

where the force term, f(x, y), is in fact the scaled rate ε2c
(1)
2 (x, y) from (40).

Our interest in the forced equation (42) is three-fold: (1) explore the effects of slow

variations of the kinetics in space (the nonuniformity of the reacting medium), (2) construct

exact solutions of the forced equation and numerically investigate their stability, (3) test the

numerical code by comparing the numerical solutions with the exact solutions.
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3.2 Exact solutions of the forced equation. Testing the numerical

code

We wrote a Matlab numerical code to solve equation (42). The spatial part of the equation

is discretized using central finite differences and the resulting system of ordinary differential

equations is integrated in time by the dae2 solver [11]. The solver ensures a good accuracy,

nevertheless we carried out our own tests as described further in this section. The idea for

the tests was to adopt the force function f(x, y, t) in special forms in order to ensure that

the forced equation (42) allows exact (a) stationary or (b) oscillating solution of our choice.

It was important that the solutions were stable otherwise it would not be possible to obtain

them in the course of our nonstationary numerical experiments. Here is a simple example

where a desired solution is unstable. Consider the ordinary differential equation

dF/dt = F .

and let us wish that the forced equation

dF/dt = F + F1 (43)

has the exact solution F0 = 1. According to (43) we choose F1 = dF0/dt − F0 = −1. It is

easy to see, however, that the solution F0 = 1 is unstable. For equation (42) we would not

know apriori whether our chosen solution is stable or not, but if it is stable, our numerical

code should be capable of reproducing it. If it proves unstable, we would need to choose

a different solution. With this in mind, we conducted two tests. For the first test we

desired, as in the above simple example, that the forced equation had a stationary solution.

Of course the solution needs to be nontrivial (non-constant) is space and must satisfy the

boundary conditions. For the second test we created a nonstationary solution by multiplying

the stationary one by an oscillating function of time. The two cases are represented by the

single formula

u ≡ v(x, y, t) = M [1 + k sin(ωt)]x4(x− L)4y4(y − L)4 , (44)

where k = 0 gives the stationary solution and k 6= 0 the nonstationary one. Write equation

(42) as

∂tu = RHS + f(x, y, t) , (45)

19



where RHS stands for the right-hand side of (1). Substituting (44) into (45) we get

f(x, y, t) = ∂tv(x, y, t)− RHS[v(x, y, t)] . (46)

giving
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Figure 7: The exact solution (44) (k = 0) [left] and the force function (46) [right]. M =

1.3 · 1013, L = 0.4. The axes show grid points.
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Figure 8: Evolution of the numerical solution of (42) towards the stationary regime. t =

1.1 · 10−11, 1.24 · 10−10, 1.735 · 10−10, 10.0 · 10−10, 20.0 · 10−10. The equation coefficients

A = 10, B = C = 1. The domain size L = 0.4.
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Figure 9: Settling of the maximum of u in the 60×60-grid experiment.
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Figure 10: The exact solution (44) and settled numerical solution (circles) at t = 20.0 · 10−10

for 40×40, 60×60 and 90×90-grid experiments (u(x, y0) at y0 = 0.2 (grid points 20, 30 and

45 respectively)).
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Figure 11: The exact and numerical (circles) solutions for the oscillatory regime.

f(x, y, t) = Mkω cos(ωt)x4(x− L)4y4(y − L)4

− cM [1 + k sin(ωt)]
{[

4320(x− L)2 + 11520x(x− L) + 4320x2
]
y4(y − L)4

+ 3
[
24(x− L)4 + 384x(x− L)3 + 864x2(x− L)2 + 384x3(x− L) + 24x4

]
×
[
12y2(y − L)4 + 32y3(y − L)3 + 12y4(y − L)2

]
+ 3

[
24(y − L)4 + 384y(y − L)3 + 864y2(y − L)2 + 384y3(y − L) + 24y4

]
×
[
12x2(x− L)4 + 32x3(x− L)3 + 12x4(x− L)2

]
+
[
4320(y − L)2 + 11520y(y − L) + 4320y2

]
x4(x− L)4

}

+ gM3[1 + k sin(ωt)]3
{[

12x2(x− L)4 + 32x3(x− L)3 + 12x4(x− L)2
]
y4(y − L)4

+
[
12y2(y − L)4 + 32y3(y − L)3 + 12y4(y − L)2

]
x4(x− L)4

}
×
{[

4x3(x− L)4 + 4x4(x− L)3
]2
y8(y − L)8

+
[
4y3(y − L)4 + 4y4(y − L)3

]2
x8(x− L)8

}
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− bM4[1 + k sin(ωt)]4
{[

4x3(x− L)4 + 4x4(x− L)3
]4
y16(y − L)16

+ 2
[
4x3(x− L)4 + 4x4(x− L)3

]2
y8(y − L)8

×
[
4y3(y − L)4 + 4y4(y − L)3

]2
x8(x− L)8

+
[
4y3(y − L)4 + 4y4(y − L)3

]4
x16(x− L)16

}
.

(47)

Consider the stationary case first (k = 0). The shapes of the exact solution (44) and the

corresponding force function are shown in Fig. 7. The numerical solution, as it evolves from

the initial condition, is given in Fig. 8. At the initial moment the function was chosen to

have a similar shape to (44) (with k = 0), only with half the height. Note the large time

interval between the second and third snapshots. The time step ∆t = 5 · 10−13. See that

the numerical solution gradually increases in height and adjusts its peripheral parts. We

see a clear resemblance between the numerical and exact solutions. A more precise evidence

of their closeness is given by Fig. 9; it shows the evolution of the maximum of u, that is

the value of the function in the centre of the domain. Stability of the solution is proved

by the nonstationary experiment. There is a slight vertical drift of the nearly horizontal

curve because the stationary solution is only neutrally stable. As a result, equation (45)

allows a family of solutions u = v(x, y, t) + C with different constants C. The inevitable

numerical mismatch between the exact force f(x, y, t) and discretized RHS in (45) causes the

slow drift from one stationary solution to another. Fig. 10 compares the settled numerical

and exact profiles along the centre of the domain, y = 0.2, demonstrating a good agreement

except near the edges. Expectedly, the agreement improves for finer grids. Our second test

reproduced the oscillating solution (44) with k = 0.2, ω = 1011 and the same values for

the other parameters (the time step ∆t = 2 · 10−14). Fig. 11 displays the evolution of the

maximum of u. See that the numerical and exact solutions are close and, again, there is a

slow drift due to the neutral nature of stability.

3.3 Intermittent and irregular dynamics under the unforced equa-

tion

In this section we consider the original unforced equation (1). We present just one numerical

experiment, which took a long time (months) to run in real terms. The reason was the
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large size of the domain that we chose aiming to provide enough space for the dissipative

structures to form and interact with each other. An inevitable price for the choice was that

many gridpoints were required to spatially resolve the dissipative structures. Hopefully this

would lead (and actually did) to the complicated irregular dynamics. Small domains are less

interesting as they would result in a flat motionless u-field. To investigate the onset of chaos

at transitional domain sizes – from small to large – is an interesting task but at this stage

we leave it for the future because of the computer limitations.

We present a series of snapshots showing the numerical experiment with the domain size

L = 2. A 60×60 grid is chosen as a compromise between accuracy and speed of computation.

The snapshots are shown in pairs: the function itself at a specified moment of time and, next

to it, the corresponding plot of the excitation term, −A∇2u(∇u)2. Recall that it is this term

that is responsible for the energy release in the system, hence it indicates the area where the

“action” is actually occurring at a given moment. The initial condition was a single narrow

peak sitting on the plateau u ≡ 0 (top Fig. 12). The snapshots are complemented by the

graph of the integral excitation, Fig. 17,∫ L

0

∫ L

0

∣∣A∇2u(∇u)2
∣∣ dxdy (48)

as a measure of the intensity of the dynamics. After an initial period of violent dynamics

(not shown) the surface becomes smooth as shown by the second-from-the-top snapshot in

Fig. 12. Gradually, after the relatively calm evolution during t < 450 · 10−9 the dynamics

build up and remain intensive for 450 · 10−9 < t < 900 · 10−9. Then the motion

slows down before picking up again around t ∼ 1500 · 10−9. It appears we have recorded a

cycle of the dynamics, slow motion — burst — slow motion, and the beginning of the next

cycle. Irregularity of the dynamics within the cycle is demonstrated by Fig. 18. It shows the

positions of the absolute maximum of the excitation term on the (x, y)-plane. In addition,

Fig. 19 also shows the positions of the second-largest maximum of the excitation.

The way the shape of the function u(x, y, t) looks and moves is remarkably different to a

typical behaviour of a linearly excited system, such as the Kuramoto-Sivashinsky equation

and Nikolaevskii equation. Under the boundary and initial conditions similar to those of

our experiments, the linearly excited models produce dissipative structures simultaneously

emerging (with certain dominant wavelengths) all over the available spatial domain. This
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Figure 12: t = t0, 9 · 10−9, 150 · 10−9, 225 · 10−9.
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Figure 13: t = 462 · 10−9, 510 · 10−9, 541.5 · 10−9, 552 · 10−9.
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Figure 14: t = 558 · 10−9, 570 · 10−9, 588 · 10−9, 609 · 10−9.
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Figure 15: t = 651 · 10−9, 679.5 · 10−9, 738 · 10−9, 769.5 · 10−9.
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Figure 16: t = 822 · 10−9, 1281 · 10−9, 1519.5 · 10−9, 1873.5 · 10−9.
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Figure 17: Integral of the absolute excitation.
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Figure 18: The positions of the global maximum of the excitation at different moments.
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Figure 19: The positions of the second-largest maximum of the excitation at different mo-

ments.

is because any flat fragment of the u-field quickly transforms into a lumpy shape by the

linear instability mechanism. By contrast, in our case, characterised by the linear stability,

significant portions of the u-field remain almost flat until the signal arrives to them from

other locations. The maximum of the excitation, which is concentrated on the steepest slopes,

moves like a worm digging its way in predominantly lateral direction. Having travelled over

the domain, the worm sooner or later returns to its earlier (x, y)-location. Qualitatively this

is the same type of behaviour as the spinning combustion waves, only irregular.

4 Conclusions

The work consists of two parts. In the first part we evaluated the area of validity of the

nonlinearly excited phase equation in parametric space for a system of nonlocally coupled

oscillators. We compared the validity areas for the nep and KS equations within the same

system. The 8D subspace of the 9D space of independent parameters was pierced by a set

of lines. The 8 parameters spanning the subspace were chosen to be θ1, θ2, c12, c11, c2, K1,
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K2 and δ2. It is only possible to graphically display three (or fewer) dimensions, for example

θ1, θ2 and c12, which was done. The lines in the 8D subspace are identical for both the

nep and KS equations. At each point on the lines each equation is either valid or invalid

and sometimes our result was inconclusive. We found that the nep equation has a sizable

range of validity, yet narrower than that for the KS equation. This can be explained by

the stricter conditions required by the nep equation. We derived the forced version of the

nep equation addressing nonuniformity of the reacting medium in space. Selected exact

solutions of this version were constructed. Stability of the solutions was demonstrated by

the numerical experiments. Comparison of the exact and numerical solutions demonstrates

satisfactory performance of the numerical code. For the unforced version of the equation,

we revealed periods of fast irregular dynamics intermitting with stages of slow evolution.
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