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Abstract Series of observed flood intervals, defined as the time intervals between successive flood 
peaks over a threshold, were extracted directly from eleven approximately 100-year streamflow 
datasets from Queensland, Australia.   A range of discharge thresholds were analysed that correspond 
to approximately 3.7 months to 6.3 year return periods.  Flood interval histograms at South East 
Queensland gauges were consistently unimodal whereas those of the North and Central Queensland 
sites were often multimodal. The exponential probability distribution (pd) is often used to describe 
interval exceedance probabilities, but fitting utilizing the Anderson Darling statistic found little 
evidence that it is the most suitable. The fatigue life pd dominated sub-year return periods (<1 year), 
often transitioning to a log Pearson 3 pd at above-year return periods. Fatigue life pd is used in 
analysis of the life time to structural failure when a threshold is exceeded and this paper demonstrates 
its relevance also to the elapsed time between above-threshold floods. At most sites, the interval 
medians were substantially less than the means for sub-year return periods. Statistically the median 
is a better measure of central tendency of skewed distributions but the mean is generally used in 
practice to describe the classical concept of flood return period. 
 
Key words Flood frequency analysis; design discharges; partial series, peaks over threshold, annual 
series, flood interval, return period, probability distribution, nonparametric test. 
 

1  INTRODUCTION 

Streamgauge records are statistically analyzed to provide crucial information about 
the probability of floods, in terms of the frequency and magnitude of peak discharges 
associated with individual events. Inherent within this type of analysis is the flood 
return period, defined as the average interval of time within which the magnitude of 
the event will be equalled or exceeded once (Chow 1964). In this paper, the 
intervening time between successive exceedances of peak discharge over a threshold 
is referred to as the flood interval. 
  
Flood frequency analysis is based on data pertaining to the independent flood 
discharge maxima during each year (the annual series) or alternatively the partial 
series (PS). Various procedures for PS analysis are available; a common three-step 
approach is described by Kuczera and Franks (2006): (a) A sample of flood peaks is 
obtained from the streamflow record by selecting peaks that equal or exceed a 
selected threshold discharge.  This sample is the PS, alternatively referred to as the 
peaks over threshold or partial duration series. An example PS sample including 
discharges Xi (i=1 to n) ≥ a  threshold XT is shown on Figure 1, (b) A statistical 
distribution relating the flood discharge peaks to exceedance probability (the 
probability distribution, or pd) is fitted to the sample data, and (c) The probabilities 
are transformed into ‘annualised’ return periods, based fundamentally on Equation 
(1). 
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where TA (XT) is the return period (in years) of flood threshold XT based on being 
equaled or exceeded in any randomly selected year (i.e. based on annual probability 
exceedence) , FA (XT) is the cumulative frequency of XT being equaled or exceeded in 
any randomly selected year, λ is the average number of PS floods per time interval, 
taken to be a year, FT (XT) is the cumulative frequency of XT being equaled or 
exceeded in the population of PS floods. In all cases, suffix T denotes the partial 
series and A denotes the annual series equivalent. 
 
The return period is expressed as an equivalent annual probability and the equation 
(1) relationship to the PS frequency is accurate for flood magnitudes with return 
periods longer than 5 years (Bell et al. 1989).  A more robust relationship should use 
the Langbein-Takeuchi relationship (Takeuchi 1984) in defining FA (XT) in equation 
(1): 
 
F஺ሺ்ܺሻ ൌ expሾെߣሼ1 െ F்ሺ்ܺሻሽሿ   (2) 
 
As noted by Bell et al. (1989), the equation 1 relation enables the conversion of PS 
frequency to annual estimates that suit most purposes, and as this is often the case, the 
cumulative frequencies FA and FT are confused in the literature or not explicitly 
defined. As this paper considers return periods shorter than 1 year, the preference is to 
express flood frequency in terms of the PS return period, denoted herein as TT (XT). 
As indicated in Figure 1, a PS sample of floods exceeding XT has a corresponding set 
of intervals Ti (i=1 to n-1). The PS return period is conventionally estimated as an 
average of the intervals. (In Australia, interval is referred to as “recurrence interval” 
and return period is referred to as the “average recurrence interval”).  Based on this 
interpretation, the following equation is also considered to apply: 
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Much research has been conducted on aspects relating to all three steps of the outlined 
PS methodology based on flood peaks. Various pds have been fitted to PS discharges 
including exponential (Cunnane 1973, Madsen et al. 1997) and log Pearson 3 
(Jayasuriya and Mein 1985). The generalized Pareto (GP) pd is a popular choice with 
its merits demonstrated in the late 1920s (Fisher and Tippet 1928 cited in Ribatet et 
al. 2007).  Stedinger et al. (1993) and Rao and Hamed (2000) provide discussions and 
reviews of the application of various pd types to flood frequency analysis.   
 
The conventional three-step method is based on fitting a probability density function 
(pdf) to the PS peak discharges (X sample). By comparison, alternative approaches 
such as directly using interval statistics to determine return periods has received less 
attention, i.e. utilize the T sample shown on Figure 1. One such approach is to assume 
that the count of exceeding floods in a given time interval follows a Poisson pd (Kirby 
1969) and, if this is the case, it can be demonstrated the resulting T values are 
exponentially distributed (Shane and Lynn 1964). Early work by Thom (1959) on 
rainfall intervals questioned the use of a mean recurrence interval based on simple 
averaging (number of years divided by the number of events) to indicate design risk 
and proposed an alternative approach based on the Poisson pd.  Thom (1959) also 



recognized that the rainfall interval can be considered a random variable and has a 
probability distribution. 
 
Ben-Zvi and Azmon (2010) offer a direct approach based on fitting a gamma pd to the 
T sample rather than the PS flood discharge peaks. The approach was tested on data 
from nine streamgauges located in Israel. Estimates of discharge for various return 
periods were based on the statistics of the T sample using slope methods described by 
Brauner (1997).  It was found that the exponential pd gave a poor representation of 
the observed T distribution. Previous analysis of the same streamgauges (Ben-Zvi 
1999) showed that the gamma pd fitted the T samples of the high peaks better than the 
exponential pd. 
 
Other researchers who have adopted a more direct approach using T samples include 
Keylock (2005) who adapted Tsallis statistics to describe extreme flood return periods 
for the Po River, Italy. This analysis built on earlier work by Mazzarella and Rapetti 
(2004) who classified historical flood descriptions observed since 1780. Interestingly, 
Kishore et al. (2011) used random walk analysis to derive a theoretical interval 
frequency relationship of extreme events within complex networks such as transport 
and flood drainage systems and this expression had a similar form as described by 
Keylock (2005). 
 
This broad approach of directly working with T samples extracted from observed 
streamflow data as an alternative to the more classical statistical analysis of X samples 
is taken up by this paper. The premise is simple; ensembles of T samples 
corresponding to various thresholds XT were extracted from observed streamflows and 
their probability distributions were investigated. Relatively long streamflow records 
(approximately 100-year length) available at several sites in Queensland, Australia 
were used in the study.  
 
The specific research questions considered in the study were twofold.  Firstly “Do the 
T samples resulting from different flood thresholds follow a consistent pd type?” In 
other words, can the flood interval distribution corresponding to relatively frequent 
discharges inform the distribution for larger flood magnitudes with sparse observed 
data? As precedence, Ashkar and Rouselle (1983) suggest that if the Poissonian flood 
occurrence is found applicable at a certain threshold discharge, then it should also 
apply at higher threshold discharges.  
 
Evidence of a consistent pd to explain flood interval frequency (using T sample) 
offers the potential to provide an alternative to more conventional methods of analysis 
based on flood discharges (using X sample). The exponential pd was assessed as a 
candidate for a consistent pd.  Data that fits an exponential pd exhibits a standard 
deviation equal to the mean and a skewness of 2. These statistical properties were 
used in the evaluation of the exponential pd. Testing of statistical differences between 
flood interval samples were also carried out, together with goodness-of-fit analyses 
against numerous pd candidates. 
 
The second research question was “Does the use of the median significantly influence 
the return period estimate?” The return period is generally expressed as the numerical 
average of the intervals, consistent with equation 3. However as the pds relevant to 
the T samples may be highly skewed, the median may be a superior statistic to denote 



the central tendency of observed flood intervals. This aspect was explored by 
preparing flood frequency charts at selected streamgauges and plotting quantiles 
based on the median and the mean for direct comparison. 

 

2  DATA AND METHODS 

2.1 Streamflow data 

The Queensland Department of Natural Resources and Mines operates a large number 
of streamgauge sites throughout Queensland. A total of 11 streamgauge sites (Table 
1) were identified that had approximately 100-year periods of record and also had 
limited periods of missing or poor quality data.  The selected streamgauges represent 
a range of Köppen climate zones (Stern and de Hoedt 2000) from tropical to 
temperate. The catchments can be broadly divided into two groups; mostly ‘coastal’ 
that drain eastward and some ‘inland’ that drain towards the west and as such are 
defined by their location relative to the Great Dividing Range.  Catchment area varies 
from <100 to >130,000 square kilometers in size.  The locations of the streamgauges 
are mapped on Figure 2. 
 
 Table 1 and Figure 2 here 
 

2.2 Methodology used in T sample analysis 

Daily flow volumes and discharge maxima were obtained at each streamguage for the 
full record period available to March 2013. Independent flood events were identified 
based on using the long-term average daily volume as a flow marker to delineate 
floods (Brodie 2013). A flood was defined as a period within the record starting when 
daily flows rose above the average volume and ceasing when flows fell below the 
average. Daily discharge peaks and their time of occurrence within each ‘above 
average’ period were identified to form a series of candidate flood peaks for PS 
analysis. The mean number of these ‘above average’ floods per year ranged from 3.5 
(130003 Fitzroy River) to 8.1 (143303 Stanley River) with the mean across the 
streamgauges of 5.1 floods/year. 
 
The flood occurrence times based on daily peaks were utilized to derive intervals 
between floods that equal or exceed a given threshold. As a further check to limit the 
inclusion of dependent floods, the minimum interval was set at 3 days, as 
recommended by Potter and Pilgrim (1971) based on hydrological analysis of several 
rural catchments located in eastern New South Wales, Australia. This check was the 
most satisfactory of five sets of criteria that were tested.   
 
A consistent range of thresholds were adopted in the analysis to make direct 
comparisons between streamgauges. With reference to equation 4, N based on the 
available records varied from 80 to 103 years (93.7 ± 7.1) and this was considered to 
be consistent enough to adopt a standard set of n values throughout the analysis. 
Selected n values were 15, 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300. This 
range corresponds to return periods, on average, that varies from approximately 3.7 
months to 6.3 years. In this study, the threshold discharge was iteratively adjusted 
until the number of floods in the PS sample matched the selected n value.  
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where λ is the average number of PS floods per year, n is the number of floods in the 
PS sample and N is the period of streamflow record (years). 
 
It was assumed that no floods occurred during periods of missing data. This 
assumption is expected to become more valid as flood threshold increases (n reduces). 
Edge intervals (from the start of streamgauge data to the occurrence of the first flood 
and from the last flood to the end of data) were excluded from the flood interval 
series. There is loss of information associated with edge intervals and this effect 
becomes more pronounced as n declines. 
 
To facilitate the comparison between streamgauges and thresholds, the T values were 
reported as a ratio to the mean, i.e. ௜ܶ തܶ⁄ , with തܶ computed using equation (3). The 
unit-free ratio is referred to in this paper as the ‘flood interval ratio’. 
 
The data on the ratio enables us to check if the distribution of the flood interval differs 
significantly at the different streamgauges. An appropriate statistical test to test the 
equality of the locations or centres of the distributions at different sites should be 
applied to determine any significant differences. A one-way analysis of variance to 
test equality of the means would be appropriate if the distribution of the ratio is 
symmetrical. Otherwise a non-parametric equivalent test should be used to test the 
equality of medians. As indicated later in section 3.2, the non-parametric Kruskal-
Wallis test was adopted. 
 
The ܶ തܶ⁄   samples were then analyzed using EasyFit Professional (version 5.5, 
http://www.mathwave.com/) to identify suitable fitting pdfs. The Anderson Darling 
goodness of fit statistic was adopted to aid in pdf selection from a range of 65 
different types of pdf. The Anderson Darling test is considered superior to alternatives 
such as the Kolmogorov-Smirnov and chi-square tests for pd evaluation (Ahmad et al. 
1988). A range of pd fitting methods are used depending on the distribution. With 
reference to the pds found to be most relevant (as evident later in Table 2), the 
methods included the Method of Moments (exponential, gamma, log Pearson 3 pdfs), 
the Maximum Likelihood Method (Dagum, fatigue life and Pareto pdfs) and Method 
of L-Moments (generalized extreme value, Wakeby and generalized Pareto pdfs). 
 
The inclusion of the fatigue life pd is noteworthy as it is rarely used in flood 
hydrology. Also known as the Birnbaum-Saunders distribution, this pd was developed 
to model structural failure due to cracking (Birnbaum and Saunders 1969).  The 
fatigue life pd has a unimodal cumulative density function (cdf) as follows: 
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where α is the shape parameter, γ is the location parameter, β is the scale parameter 
and Φ is the cdf of the standard normal distribution. 
 
Flood frequency charts were prepared for all streamgauges in order to assess the 
influence of using the median or mean as the adopted measure of central tendency 
relating to flood return period. For comparison, the PS discharges were ranked and 



graphed against a plotting position estimate of return period based on the Cunnane 
formula (Cunnane 1978): 
 
 

்ܶሺ்ܺሻ ൎ ௉ܶ௉ ൌ
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   (6) 

 
where TPP is the return period plotting position of the rank m flood and N is the 
number of years of record. 
 
To summarize, the adopted methodology involved the following computational steps 
for each streamgauge: 
  
(1) Daily peak and mean volumetric discharges were obtained for the streamgauge 

and periods of missing data were identified (refer to Table 1). The daily peaks 
were used in Step (3) and the daily mean volumetric discharges employed in Step 
(2). 

(2) The average daily mean volumetric discharge over the full streamflow record was 
computed and this was utilised to identify sequences of flood periods in 
accordance to the approach described by Brodie (2013). Periods with daily flows 
less than the average or missing were included as non-flood periods. The 
historical streamgauge record was defined as a chronological sequence of flood 
and non-flood periods. 

(3) The peak flood discharge and date of peak for each flood sequence was identified 
from the daily peak data. 

(4) A target n was adopted. A trial discharge was then selected. Individual intervals 
were computed based on the intervening dates when the flood peak discharge 
equaled or exceeded the trial discharge. This resulted in a series of flood intervals 
(expressed in days between peak discharges). Checks were made to ensure the 
minimum interval exceeded 3 days. 

(5) The flood intervals were counted and step (4) was repeated with an adjusted trial 
discharge until the flood interval count matched the target n 

(6) Steps (4) and (5) were repeated for other n targets to cover the full range of 
analysis (n = 15 to 300) 

(7) Each flood interval series were converted to a flood interval ratio series based on 
calculating  ௜ܶ തܶ⁄  values 

(8) Sample statistics of the flood interval ratio series (mean, median, standard 
deviation and skewness) were estimated and plotted as boxplots. Kruskal-Wallis 
testing was conducted to evaluate the statistical differences between 
streamgauges.  

(9) Each flood interval ratio series was then individually analyzed using EasyFit 
Professional to identify and rank suitable fitting pdfs.  

(10) Flood frequency charts were finally prepared for each streamgauge to compare 
peak discharge estimates based on plotting positions in addition to mean and 
median flood interval ratios. 

3  RESULTS AND DISCUSSION 

3.1 Sample statistics of flood interval ratio 

Median, standard deviation and skewness statistics of ܶ തܶ⁄ 	pooling all streamgauges 
are presented as boxplots in Figure 3. Medians are generally significantly less than the 



means, with the low average flood interval ratios evident for the very frequent floods 
(≈ 0.4 to 0.5 for n = 210 to 300) increasing to approximately 80% of the mean at n = 
90 to 150. The average median drops for larger flood thresholds (n = 15 to 60). A 
value of n = 90 approximates the 1-year return period.  
 
The average standard deviations of ܶ തܶ⁄  falls in the 1.0 to 1.2 range and tends to 
decrease as n becomes smaller (increasing return period). Average skewness is 
generally in the 1.0 to 1.5 range, and a large variance of skewness is present. These 
general observations indicate that the exponential pd (Standard deviation = 1, 
Skewness = 2) would have limited application in describing interval frequencies, 
consistent with the findings of Ben-Zvi and Azmon (2010). 
 
Figure 3 here 
 
Box plots of ܶ തܶ⁄  statistics for individual streamgauges are compiled in Figure 4. 
Based on a visual assessment, the streamgauges can be placed into two groups: 1) 
Group I - Streamgauges that exhibit medians that have a distinctive peak close to the 
mean at n ≈ 120 to 150 then tend to reduce or oscillate at lower n (Gauges 110001, 
110002, 110003, 116001 and 130003), and 2) Group II - streamgauges that tend to 
have a more linear trend with reducing n (the remaining gauges). Geographically, the 
first grouping coincides with streamgauges situated in North Queensland plus a single 
representation within Central Queensland (130003 Fitzroy River).  The second 
grouping is clustered within South East Queensland.  At some gauges, the 
differentiation between groups is not clear cut; for example, Group II Gauge 143303 
Stanley River exhibits an unpronounced peak in the n ≈ 120 range. 
 
Figure 4 here 
 

3.2 Test for statistical differences between flood interval ratio samples 

Plots of ܶ തܶ⁄  data (not provided) showed that the distribution is not normal regardless 
of the size of n selected and the streamgauge in consideration. The histograms for 
various values of n clearly showed that the distribution of the ratio is highly skewed to 
the right. Thus we pursue the nonparametric method to conduct a test on the equality 
of medians of the flood interval ratio at different locations for various values of n.  
 
As an example we performed the independent samples Kruskal-Wallis test for n = 15. 
It was found that the test is not significant at all (with p-value = 0.985). Thus we 
conclude that the median ܶ തܶ⁄  ratio at different streamgauges are not significantly 
different. In other words, the geographical location of the river site has no impact on 
the median flood interval ratio. 
 
The same nonparametric test was performed on the median flood interval ratios at 
different streamgauges for n = 300. Once again, the test provided no significant 
evidence against the null hypothesis of equality of median ratios at different river sites 
(with p-value = 0.294). The tests on the ܶ തܶ⁄  ratio for other selected values of n (in 
between 15 and 300) lead to the same conclusion.  
 



3.3 Fitting pds to flood interval ratio samples 

The outcomes of the pd fitting using EasyFit Professional and the Anderson Darling 
statistic are presented in Table 2.  Group I streamgauges occupy the first five rows of 
the table.  
 
Some evidence of differences between Group I and II can be observed. The ܶ തܶ⁄  
histograms were visually inspected and many were found to be multimodal. 
Multimodal histograms are highlighted bold in Table 2. Group I streamgauges have a 
significantly higher incidence of attempting to fit pds to multimodal histograms, 
especially for n values greater than 90, corresponding to sub-year return periods (< 1 
year). An example to illustrate fitting to a multimodal histogram is given in Figure 5. 
Partial series histograms, albeit based on discharge peaks, can exhibit multimodal 
shapes depending on whether different mechanisms of flood generation, such as 
heavy rainfall and snowmelt, are present (Adamowski et al. 1998).  The mechanisms 
that apply to the predominantly tropical climate of Group I gauges is less clear, but 
may involve the absence or presence of cyclonic weather patterns. In contrast, the 
Group II histograms are almost consistently unimodal, and an example of which is 
also given in Figure 5.  The pd fitting against the multimodal histograms is relatively 
poor compared to those against the unimodal histograms. 
 
The fatigue life pd consistently dominated the Group II n > 150 scenarios (approx. 7.5 
month return period) and also featured in the Group I n > 240 scenarios (approx. 4.7 
month return period). At low n, the log Pearson 3 pd is preferred for 6 out of 11 
gauges at n = 15. At intermediate n ≈ 90 - 180, phased bi-Weibull and Dagum pds are 
common, but noting that for Group I gauges these are often unimodal attempts to fit 
multimodal histograms. For the transition from n = 90 towards n = 15, Pareto type pds 
and the Wakeby pd are represented within Table 2. 
 
Table 2 here 
 
Figure 5 here 
 
Ben-Zvi and Azmon (2010) used a gamma pd fitting to flood intervals for 5-year 
return period discharges and found a good fit for 6 of the 9 Israeli arid-zone 
streamflow gauges, with a fair fit for the remainder. A 5-year return period 
corresponds to n ≈ 15 to 30 for the Queensland stations under analysis. A log Pearson 
3 or Pareto type pd yielded better fitting than the gamma pd (Table 2). However, the 
gamma pd does provide a superior fit at some streamgauges for some other n values.  
Its usefulness to represent interval probabilities cannot be discounted. 
 
Fitting pds allows mode estimation to be performed and this data can be presented 
across all streamgauges as a boxplot (Figure 6). For some pds, the mode is unable to 
be implicitly computed.  However, there is a trend of consistently low modes (< 0.1) 
of the flood interval ratio for n > 120. This corresponds to return periods shorter than 
1-year. As n decreases, the scatter in the mode estimates between gauges increases 
significantly and the median mode approaches ≈ 0.2 for n ≤ 30.  
 
Figure 6 here 
 



The pd fitting shows no evidence of the exponential pd as being preferred for high-n 
scenarios, consistent with the preliminary assessment based on Figure 3 boxplot 
statistics.  This pd is preferred on a small number of scenarios (Gauge 143303 Stanley 
River, n = 150 - 180). The fatigue life pd dominates instead. 
 
The identification of the fatigue life pd is an interesting outcome as its original use 
was in structures to describe the elapsed time until the development and growth of a 
dominant crack occurs that passes a threshold and causes failure (Desmond 1985). In 
this paper, we have identified a hydrological analogy in the form of the elapsed times 
between flood events that also pass a type of threshold.   The fatigue life has been 
used in diverse applications including biological, medical and environmental studies 
such as air contamination (Sanhueza et al. 2008, Marchant et al. 2013) and also 
financial and sharemarket analyses (Ahmed et al. 2010) These examples demonstrate 
the versatility of the fatigue life pd and hence potential application to flood intervals. 
 
A more detailed investigation of the fatigue life pd was undertaken using data at 
gauging station 136202 (Barambah Creek).  As evident in Table 2, flood intervals at 
this location demonstrated the highest preference towards the fatigue life pd (9 out of 
the 11 ܶ തܶ⁄  series). Fatigue life pds fitted to all ܶ തܶ⁄  series at this streamgauge 
resulted in a narrow range of pdf parameters (1.17 < α < 1.53, 0.45 < β < 0.63, -0.06 < 
γ < 0.02).  The near-zero estimate for the location parameter γ indicates that the 
fatigue life pdf could be further simplified to a 2-parameter version (by setting γ = 0) 
with little loss of accuracy. The fitted pds are presented as Figure 7 and show that the 
distributions have similar tails but slightly different modes – the mode peaks for the 
larger flood magnitudes (n = 15 to 30, shown as black solid curves) are less than the 
more frequent floods (n = 60 to 300, shown as grey solid curves). The exponential pdf 
is also presented on Figure 7 (as a black dashed curve) and shows a significant shape 
difference compared to the fatigue life pds. 
 
Figure 7 here 
 
The specific research question posed in the paper is to identify whether a consistent 
pd type can be applied across the range of adopted flood thresholds.  From the fitting 
analysis, the strongest candidate is the fatigue life pd especially for the predominately 
uni-modal distributions found with Group II. Flood occurrence based on Poissonian 
counting would suggest the exponential pd would be appropriate, but this is not 
supported by the fitting results.  
 
It is notable that fatigue life pd used in the fitting is a 3-parameter pdf which 
potentially can be reduced to two parameters (as γ is close to zero). It is expected that 
more sophisticated multi-parameter pds (such as the 4-parameter generalized gamma) 
would yield better fits to the observed data, but this only occurred on occasions for the 
longer return periods (corresponding to n ≤ 120). This effect may be simply due to 
increased uncertainty in identifying the ‘best’ pd as the sample size, represented by n, 
reduces.  
 
This outcome is further illustrated in Table 3 which shows the Anderson Darling 
statistic for both the ‘best’ and second ‘best’ fitted pds for the Group II streamgauges. 
This table was compiled to identify whether the top-ranked pd identified by the fitting 
analysis is clearly separated from the next-best pd. Cases when a relatively small 



difference in the statistic, arbitrarily set at < 10%, are highlighted bold in the table.  
At several streamgauges, the performance of the top-fitted pd is only marginally 
better than the second ranked pd for sample sizes less than 90 (coinciding to return 
periods exceeding 1-year).   At sub-year return periods, although there are some 
exceptions, the top-fitted pd is generally more clearly identifiable as the ‘best’ pd. In 
many cases that involved fatigue life as the top fitted pd, the log normal pd was the 
next ‘best’ distribution.  
 
Insert Table 3 here 
 
However, as noted by Meylan et al. (2012), goodness-of-fit tests such as the Anderson 
Darling test only makes it possible to reject or accept the null hypothesis that an 
individual pd provides an explanatory fit to the observed data, and is unreliable in 
choosing the ‘best’ pd amongst a range of different pd types. A diversity of pds were 
identified in Table 2 across the streamgauges for n = 15, but this may not be the case 
given that the Kruskal-Wallis tests (section 3.2) found that the median ܶ തܶ⁄ 	 ratios 
between streamgauges are not significantly different. This raises the possibility that a 
common pd, such as the fatigue life, could be applicable across the range of n values 
but is unable to be confirmed by the statistical tests. 

3.4 Central tendency and T plotting position 

Figure 4 plots highlight the wide range of T values present within each PS sample, 
varying by at least two orders of magnitude. Coupled with the tendency for low-mode 
pds, this raises the issue of whether the return period based on the arithmetic mean of 
the intervals is a suitable measure of central tendency. This aspect was explored 
further by preparing flood frequency charts at each streamgauge. Two of these plots 
are presented as examples in Figure 8. 
 
 
Figure 8 here 
 
Mean intervals based on the arithmetic means (equation 3) of each T series extracted 
for both streamgauges are also plotted and closely overlay the Cunnane plotting 
positions.  Numerically, these two return period estimates are similar. Even at the 
lowest n equal to 15, the computed difference between the Cunnane and the mean 
estimate is less than 3%. Of interest is the median interval of each T sample, also 
plotted on the Figure 8 charts. Depending on the streamgauge and the flood 
magnitude, the flood interval is substantially different depending whether the median 
or the mean is adopted.  
 
These two sites were selected for presentation with reference to individual box plots 
in Figure 4. They represent two extremes: 1) Gauge 110001 where there is a 
significant departure of the median from the mean at low n, and 2) Gauge 136202 
where the mean and the median merge at low n. The flood frequency charts for the 
other gauges exhibited median curves relative to the mean that fall in between these 
extremes. The displacement of the median from the mean as plotted in Figure 4 (the 
gap between the closed and open circles) provides a direct guide on how the 
respective curves will plot on the flood frequency chart.  
 



Apart from the major trends that characterize the Group I and Group II gauges, each 
streamgauge has subtle differences at low n that make it difficult to provide firm 
conclusions. An example is the patterns exhibited by 110001 and 110002 which are 
two locations on the same river (Barron River): At 110001, the median departs from 
the mean at low n, whereas the opposite trend is present at 110002.  
 

4  CONCLUSIONS  

Streamflows at Queensland gauges with approximately 100-year datasets were 
analyzed to determine flood interval pd characteristics. Average daily flow volume 
was used to identify independent floods and T series were determined at each of the 
eleven streamgauges for a range of discharge thresholds. Based on the average time 
period of available records (Nഥ = 93.7 years), the selected range covers an average 
return period from 3.7 months to 6.3 years. 
 
Several findings can be drawn from the statistical analysis and pd fitting: 
(1) Limited evidence was found that the exponential pd is an appropriate distribution 

to use to describe the probabilities of flood intervals exceeding any of the adopted 
thresholds.   This is consistent with the findings of Ben-Zvi and Azmon (2010) for 
arid catchments in Israel, even though our study encompassed temperate, 
subtropical and tropical climates in Australia. 

(2) The streamgauges could be broadly classified into two geographical groupings: 
Group I situated in tropical North Queensland and a sole gauge representative in 
Central Queensland, and Group II situated in the temperate and subtropical South 
East Queensland. 

(3) Group I gauges tended to exhibit multimodal interval histograms for sub-year 
return periods with resulting poor fitting of unimodal pds. It is postulated that the 
multimodal characteristic may be associated with the incidence, or not, of 
cyclonic activity in the region during individual wet seasons.  

(4) Group II gauges had interval histograms that were almost consistently unimodal 
and this was conducive to satisfactory pd fitting.  

(5) The statistical plots show the distribution of the interval ratios is skewed to the 
right and the nonparametric test on the equality of medians is not significant.  

(6) Fitting based on the Anderson Darling statistic strongly indicated the fatigue life 
pd being appropriate to model Group II sub-year intervals of the order of less than 
7.5 month return period. There is indication of a transition towards the log 
Pearson 3 pd as the threshold discharge increases towards 6.3 year return period, 
but this was not consistent for all streamgauges. 

(7) Due to the similarities in their definitions, the return periods computed from the 
ܶ തܶ⁄  series (as arithmetic mean) were consistent with Cunnane plotting position 
estimates for the range of event exceedances under analysis. Given the low-mode 
characteristic of the fitted pds, the median interval may be a better measure of 
central tendency.  The median was often significantly less than the mean, 
particularly for the sub-year return periods. This observation has implications on 
how the return period of these relatively minor floods are best defined and 
statistically described. 
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Tables 

Table 1: Selected Queensland streamgauges 
Gauge Location Started Missing 

Data 
(%) 

Catchment 
Area 
(km2) 

Climate, 
Catchment 
Type 

110001 Barron River at Myola 1915 1.2 1940 Tr,C 
110002 Barron River at Mareeba  1915 2.4 840 Tr,C 
110003 Barron River at Picnic Crossing 1925 < 0.1 220 Tr,C 
116001 Herbert River at Ingham 1915 2.6 8805 Tr,C 
130003 Fitzroy River at Riverslea 1922 < 0.1 132090 ST,C 
130302 Dawson River at Taroom 1911 < 0.1 15846 ST,C 
136202 Barambah Creek at Litzowa 1920 < 0.1 640 ST, C 
138001 Mary River at Miva 1910 < 0.1 4830 ST, C 
143303 Stanley River at Peachester 1927 < 0.1 104 ST, C 
422306 Swan Creek at Swanfels 1919 < 0.1 83 Te, I 
422310 Condamine River at Warwick 1933 0.5 1360 Te, I 

Note: Climate types: Tr = Tropical, ST = Subtropical, Te =Temperate. Catchment 
types: I=Inland, C= Coastal. 
  



 
Table 2 Group I and II top fitted pds based on Anderson Darling statistic 

Gauge n = 300 n = 270 n = 240 n = 210 n = 180 n = 150 n = 120 n = 90 n = 60 n = 30 n = 15 

110001 Fatigue 
Life  

Fatigue 
Life  

Gen. 
Gamma  

Dagum  Dagum  Phased 
Bi-Weib 

Dagum Phased 
Bi-Weib 

Gen. 
Logistic 

Gen. 
Pareto 

Log-
Pearson 3 

110002 Fatigue 
Life  

Dagum  Dagum Gen. 
Gamma  

Gen. 
Gamma  

Dagum Phased 
Bi-Weib 

Dagum GEV Log 
Normal 

Gen. 
Pareto 

110003 Fatigue 
Life  

Fatigue 
Life  

Gen. 
Gamma  

Phased 
Bi-Exp 

Phased 
Bi-Weib 

Phased 
Bi-Weib 

Dagum Cauchy Wakeby Gen. 
Pareto 

Log-
Pearson 3 

116001 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Phased 
Bi-Weib 

Phased 
Bi-Weib 

Phased 
Bi-Weib 

Laplace Cauchy Wakeby Wakeby Error 

130003 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Phased 
Bi-Weib 

Dagum Phased 
Bi-Weib 

Wakeby Burr Log-
Pearson 3 

130302 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Wakeby Wakeby Dagum  Burr Weibull Fatigue 
Life  

136202 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Log-
Pearson 3 

Log-
Pearson 3 

138001 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life 

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Dagum Pareto 2 Inv. 
Gaussian  

Log-
Pearson 3 

143303 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Expon. Expon. Gen. 
Gamma  

Gamma Pareto 2 Gen. 
Pareto 

Log-
Pearson 3 

422306 Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Wakeby Wakeby Wakeby Gamma Dagum Frechet  

422310 Fatigue 
Life  

Fatigue 
Life  

Inv. 
Gaussian  

Fatigue 
Life  

Fatigue 
Life  

Fatigue 
Life  

Burr Fatigue 
Life  

Pareto 2 Dagum Wakeby 

Expon : exponential, Phased Bi –Exp : phased bi-exponential, Phased Bi-Weib : 
phased bi-Weibull, GEV : general extreme value, LP3 : log Pearson 3, Inv Gauss : 
inverse Gaussian, Gen Gamma : generalized gamma. Bold pdfs indicate fitting to 
multimodal histograms exhibiting at least two peaks. 
 
 LEGEND 
 Gamma family – gamma, generalized gamma 

 
 Extreme value theory family - generalized extreme value, Frechet, Gumbel Max, 

Weibull and phased bi-Weibull 
 Skewed normal family – inverse Gaussian, log normal, fatigue life and log Pearson 3 

 
 Wakeby 

 
 Logistic family - general logistic and log-logistic 

 
 Pareto family – generalized Pareto, Pareto 2, Burr, Dagum 

 
 Exponential family – exponential, phased bi-exponential, Laplace and error 

 
 
  



Table 3 Anderson Darling statistics for Group II top-2 fitted pds  
 
 130302 136202 138001 143303 422306 422310 

n = 300 Fatigue Life 2.296 
Lognormal 3.079 

Fatigue Life 0.956 
Inv.Gauss. 0.992

Fatigue Life 1.729 
Lognormal 2.421 

Fatigue Life 0.972 
Lognormal 1.306 

Fatigue Life 0.659 
Lognormal 0.689 

Fatigue Life 0.613 
Inv.Gauss. 0.793 

n = 270 Fatigue Life 2.172 
Lognormal 3.102 

Fatigue Life 0.757 
Lognormal 1.316 

Fatigue Life 1.465 
Lognormal 2.180 

Fatigue Life 0.998 
Lognormal 1.504 

Fatigue Life 0.612 
Gen.Gamma 1.535 

Fatigue Life 0.644 
Inv.Gauss.0.734 

n = 240 Fatigue Life 1.933 
Lognormal 2.926 

Fatigue Life 0.526 
Lognormal 1.010 

Fatigue Life 1.130 
Lognormal 1.825 

Fatigue Life 1.488 
Lognormal 2.047 

Fatigue Life 0.680 
Lognormal 1.515 

Inv.Gauss. 0.845 
Fatigue Life 0.876

n = 210 Fatigue Life 4.004 
Wakeby 4.628 

Fatigue Life 0.709 
Lognormal 1.408 

Fatigue Life 1.383 
Gen.Gamma 2.033 

Fatigue Life 1.701 
Weibull 2.034 

Fatigue Life 0.682 
Gen.Gamma 1.107 

Fatigue Life 0.585 
Inv. Gauss. 0.966 

n = 180 Fatigue Life 1.941 
Gamma 2.722 

Fatigue Life 0.684 
Lognormal 1.386 

Fatigue Life 0.797 
Lognormal 1.469 

Expon. 2.026 
Fatigue Life 2.049 

Fatigue Life 0.952 
Gen.Gamma 1.624 

Fatigue Life 0.582 
Inv.Gauss. 1.025 

n = 150 Wakeby 1.196 
Weibull 1.372 

Fatigue Life 0.427 
Lognormal 0.923 

Fatigue Life 0.713 
Gen.Gamma 0.944 

Expon. 1.631 
Pareto 2 1.633 

Wakeby 1.098 
Gamma 1.335 

Fatigue Life 0.711 
Weibull 0.728

n = 120 Wakeby 0.519 
Burr 0.731 

Fatigue Life 0.406 
Gen.Gamma 0.629 

Fatigue Life 0.737 
Weibull 0.751

Gen.Gamma 0.752 
Pareto 2 0.873 

Wakeby 0.832 
Gen.Gamma 0.917 

Burr 0.612 
Fatigue Life 0.751 

n = 90 Dagum 0.332 
Wakeby 0.358 

Fatigue Life 0.514 
Burr 0.735 

Dagum 0.702 
LP3 0.863 

Gamma 0.624 
Pareto 2 0.631 

Wakeby 0.488 
Gamma 0.524 

Fatigue Life 0.294 
LP3 0.458 

n = 60 Burr 0.191 
Wakeby 0.191 

Fatigue Life 0.316 
LP3 0.455 

Pareto 2 0.554 
Burr 0.561 

Pareto 2 0.316 
Gen Pareto 0.317 

Gamma 0.524 
Wakeby 0.535 

Pareto 2 0.336 
Burr 0.337 

n = 30 Weibull 0.382 
LP3 0.383 

LP3 0.177 
Wakeby 0.181 

Inv.Gauss. 0.301 
Frechet 0.303 

Gen Pareto 0.241 
Burr 0.243 

Dagum 0.301 
Gamma 0.322 

Dagum 0.262 
Wakeby 0.279 

n = 15 Fatigue Life 0.299 
LP3 0.319 

LP3 0.261 
Dagum 0.271 

LP3 0.195 
Ph. Bi-Weib 0.236 

LP3 0.300 
Fatigue Life 0.311 

Frechet 0.252 
GEV 0.262 

Wakeby 0.326 
Gen.Pareto 0.326 

Series with fatigue life as the top fitting pd are shaded. Series with < 10% difference 
in Anderson Darling statistic between the first and second best pd are shown bold. 



Figure 1. PS timeseries plot showing threshold discharge XT, PS flood peak discharges 
≥ XT (Xi) and the corresponding intervals Ti. In this case, number of PS floods n = 15. 
The PS has been extracted from N years of streamflow data. 

Figure 2 Streamgauge locations 

Figure 3 Box plots of flood interval ratio medians, standard deviations and values of 
skewness against n for all streamgauges pooled. Horizontal lines represent the 
maximum and minimum. Vertical bars represent the 25th and 75th percentiles. Open 
circles are means of the medians and the closed circles are medians (50th percentiles) 
of the medians. 
 
Figure 4 Box plots of flood interval ratio (vertical axis) against n (horizontal axis) for 
each streamgauge. Refer to Figure 3 for description of plot symbols. 
 
Figure 5 Selected flood interval ratio histograms (a) Gauge 110001, n = 210 showing 
multimodal histogram, and (b) Gauge 130302, n=210 showing unimodal histogram. x 
=	ܶ തܶ⁄ 	  
 
Figure 6 Box plots of flood interval ratio modes against n for all streamgauges pooled. 
Refer to Figure 3 for description of plot symbols. 
 
Figure 7 Fatigue life pdfs fitted to 136202 Barambah Creek T series. Exponential pdf 
(n = 180 Exp) is also shown. x =	ܶ തܶ⁄  
 
Figure 8. Flood frequency charts showing peak discharge (m3/s) against return period 
(years) for streamgauges 110001 and 136202. Grey crosses are PS discharges plotted 
using Cunnane plotting position, open circles are average intervals based on the 
observed T series and black diamonds are median intervals based on the observed T 
series. 
 
 


