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ABSTRACT

In this paper, a multiscale method based on the combination o
the Integrated Radial Basis Function (IRBF) approximatiod the
Brownian Configuration Field (BCF) approach is used to sateul
the mechanical behaviours of flow of fibre suspensions. Tiie bu
properties of flow including velocity and stresses are guserby
conservation equations in continuum mechanics. Meanwhie
evolution of fibres’ configuration such as the position ancdi
tion of fibres are described by the Jeffery’s motion equaitiotihe
Eulerian form. The decoupled calculations at two differecdles
are linked together through the formula of stress by Lipgzoby
which the mutual influence between the kinematic properies
flow and the dynamic behaviours of fibres is represented. ifn th
work, the IRBF based approximations are employed in two -sepa
rate processes of the numerical discretisation. WhileRfBH high-
order approximations yield higher accuracy and faster e@ance

of the method, they might enhance the stability of the fibneaahy-
ics simulation as well, especially for the case of conceattrdibre
suspension. The validity of the method is demonstrated toyi-si
lating flows of different fibre concentrations between twogtiel
plates.

Keywords: Multiscale method, Brownian Configuration Field, In-
tegrated Radial Basis Function, dilute fibre suspension flow

NOMENCLATURE

a, fibre’s aspectratio.

D  rate of strain tensor.

ki  fibre parameter.

np  number of collocation points.

Nt  number of fibre configuration fields.
p dimensionless pressure.

P direction unit vector of fibre.

Q length vector of fibre.

Reynold number.

t dimensionless time.

u dimensionless velocity vector.

two components or andy directions ofu .

¢  volume fraction of fibre.

No  Newtonian fluid viscosityjkg/md

A dependent parameter af.

¢ material constanfkg/mg.

0 angle between the-axis and the fibre’s axis.
Te  extra-stress tensor.

Ts+ fibre-contributed stress tensor.

Ts solvent-contributed stress tensor.
w  vorticity.

Q  vorticity tensor.

Y  stream function.

INTRODUCTION

Fibre-reinforced composite materials, e.g. polymer roafri
strengthened by glass fibres, are popularly used in many im-
portantindustrial areas because of their advanced mezdiani
properties such as high strength and stiffness but low den-
sity. These exceptional properties are mostly dominated by
the position and direction of fibres existing inside surmun
ing matrices. Hence, a competent understanding of the ori-
entation distribution of fibre configurations in the solvent
very important and needs to be carefully investigated by re-
searchers in both experimental and numerical aspects.
From the literature, a numerical simulation of fibre suspen-
sion basically consists of three following ste@h{baet al,
200). In the first step, a fibre stress term is added to the
momentum conservation equation to include dynamic effects
of fibre on the bulk properties of the flow. The second step
is to use an equation of motion to describe the evolution of
fibres, where the Jeffery’s equation is suitable for dilute-s
pension while the Folgar and Tucker’s equation is applieabl
for semi-dilute and concentrated ones. The final step isdo us
a model to calculate the fibre stress from fibre configurations
The fibre stress tensor is determined by the fourth-order ori
entation tensofPPPP). There are two main approaches
used to calculate théPPPP) tensor. One method relies
on a closure approximation such as the quadratic or or-
thotropic onesAdvaniet al,, 1987 Cintra Jr and Tucker 1]l
1995 and the other method is based on the idea of Brow-
nian Configuration Field (BCF) developed blulsenet al.
(1997. Whereas the closure approximation approach has
shown several non-physical behaviours and the uncertainty
in the solution §zeri and Leal1994, the BCF has emerged
as a robust method for the simulation of fibre suspensions in
complex flows Fanet al, 1999 Lu et al, 2006 Douet al,
2007. For this approach, a large number of fibre configu-
ration fields is generated on each and every computational
nodes and the fourth-order tensors are then averagely-calcu
lated. This yields a good convergent solution, even at high
levels of concentration of fibrd-anet al, 1999.

Recently, the IRBF-BCF macro-micro multiscale approach
was derived to successfully simulate a range of polymer
solutions {ranetal, 2011 2012 Nguyenetal, 2015.
Owing to the advantages of the IRBF-based numerical
scheme Mai-Duy and Tran-Cong200]), the method pos-
sesses the high accuracy solution and the fast numerical
convergence. In this paper, one-dimensional IRBF (1D-
IRBF) schemeNai-Duy and Tran-Cong007) is employed

to solve the vorticity-stream function based conservation
equations, whereas the fibre configuration governed by the
Jeffery’s equation is approximated using BCF approach to
determine the fibre stress tensor with the Lipscomb’s model.
The combination of IRBF-based approximations and the
BCF technique is expected to enhance the stability and the
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accuracy of the solution.

THE GOVERNING EQUATIONS FOR FIBRE SUSPENSION
FLOW IN DIMENSIONLESS FORM

It is worth noting in Eq. 7) that the orientation unit vector
P is a function of space and tim@ & P (x,t)). However, its
unit length (|P||) is often violated by numerical simulations
due to computational errors. Therefore, a configuratiod fiel

Consider an isothermal and incompressible flow of fibre sus- q (x,t), which is no concern of fibre’s length, is introduced

pensions in two-dimensional (2-D) space. The continuity an
momentum equations for the flow in dimensionless form are
given by (u et al, 200§

O-u=0, (1)
Ju 1
E+U-Du:—Dp+@D-re, (2)

wheret, u, p and T are the time, velocity field, pressure

as follows.

Q(th) :QP(th)v (8)

whereQ is the modulus 0. With A = 1, the Jeffrey’ equa-
tion (7) is rewritten for the evolution of) as follows.

9y oo

T

9)

and extra-stress tensor in the dimensionless form, respec- 1he fourth order orientation tensGPPPP) can be now de-

tively and Rethe Reynolds number. For fibre suspensions
in a Newtonian solvent, the extra-stress tendgj ¢onsists
of two components as follows.

Te=Ts+ Ty, (3
whereTs = 2D andT; are stress components contributed by

fined by

1 9999>
NfiZ<Qi aaq/) 10

whereNs is the number of fibres. The components of the
tensor(PPPP) in a two-dimensional fibre orientation field

Newtonian solvent and fibre suspensions, respectively and are given by Chibaet al, 2001

D=3 (Du + (IZIu)T) the rate of strain tensor.

There are several models used to calculate the stress con-

tributed by fibre suspensions, for example, the Lipscomb
model Lipscombet al, 1988 for dilute suspensions and
Phan-Thien and Graham modd?h@n-Thien and Grahgm

199)) for semi-dilute and concentrated suspensions. In this
paper, the former one is used to investigate the present

method in the simulation of the flow of dilute fibre suspen-
sions. The Lipscomb model is given by

T = kiD: (PPPP), (4)

wherenq is the Newtonian fluid viscosity? the orientation
unit vector of fibre;{(-)) the statistical average df) and
(PPPP) the fourth order orientation tensor or structure ten-
sor. The dimensionless quantiy s the fibre parameter and
written by

Pu
ks o’ (5)
where @ is the volume fraction of fibres and defined as the
volume of all fibres in one unit volume of the flow; apds
the material constant, which is chosen in the limit of a high
aspect ratio of fibre as follow€hibaet al., 2007).

2
Nody
= , 6
H= @) (6)
whereg, is the aspect ratio of the fibre.
Substituting Eq. §) into Eq. &) yieldsk; = Ifg:). There-

fore, the fibre parameter is considered as the single onein th
fibre stress equatior), which describes the impact of fibre
suspension on the kinematic behaviour of the flow.

The evolution of fibres’ orientation in flow is captured by the
Jeffery’s equation ad {(pscombet al, 1988

oP

o TUOP=Q-P+A(D-D:PP)-P,  (7)

whereQ = % ((Du)T — Du) is the vorticity tensorj a de-

2 .
pendent parameter of aspect raflo— %ﬁ and| the iden-

tity matrix. Like in (Chibaet al, 2001), the parametei is
chosen as 1 in this paper.

N N¢

f )
cod 6 cos 6 sinG;
Pr111= '21 N0 Puie= _21+,
1= 1=
N¢ ) N¢ )
co 6 sin? 6 cosb; sin® 6
Puoo= 3 =x— Pra= _Zl =N (11)
£ £
N
_C sirfe
Pa222= N

i=1

whereg; is the angle between theaxis and the axis of fibre
i

The quantitiesP;117 and Py12 are also given byPij11 =
<P1P1P1P1> andP1122: <P1P1P2P2>, WherePl andPg are two
components of the unit vectd® along x-direction andy-
direction, respectively.

A VORTICITY-STREAM FUNCTION FORMULATION FOR
SIMULATIONS OF FIBRE SUSPENSION FLOW

In this paper, the vorticity-stream function approach isdis
to solve the macroscopic governing equatiofisgnd @).

Let x andy be two orthogonal coordinates of a 2-D space
andx is chosen as the flow direction;andv are two veloc-

ity components along andy directions, respectively. The
velocity-vorticity and velocity-stream function relatie are

given by
1/0u ov
==|=-= 12
“=3 (dy (3x) ’ (12)
ov ov
= — —_— 1
U=%y VT T (13)
wherew and W are vorticity and stream function variables,
respectively.

Taking the curl of Eq. Z) and using Egs. 1), (3) and (2),
the vorticity transport equation of fibre suspension flow is
expressed as

s, g, do_ 1 (Fe, i
ot ox dy Re\odx2 9y?

+i P21 . 921 ) 921Y" ) 92rY (14)
2Re\ dxdy = dy? ax2  oxdy |’
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wheret?, 1%, ¥* andt}” are the stress components of the
symmetric fibre stress tensoy.

Substituting expressions in EdL3) into Eq. (2) yields the
equation for stream function as follows.

°Y  9°Y
ox2  gy?
NUMERICAL METHOD

In this work, an IRBF-BCF multiscale approach is used
to simulate fibre suspension flows where a semi-implicit
scheme is applied to discretise both the vorticity equation
(14) and the equation of fibre configuration field® (ith
respect to time. At each time step, the 1D-IRBF scheme is
employed to approximate both the field variables of flow and
the fibre configuration field.

= 2w. (15)

The 1D-IRBF based spatial discretisation scheme

Consider a second order one-dimensional elliptic diffdaén
equation of a variabley = w(x) and its boundary conditions
as follows.

Zw="Ff (xel), (xear), (16)

where Z is the second order differential operata# the
operator expressing the boundary conditiofisand h the
known functions; and” anddl" the domain and boundary
of the variablew.

For IRBF-based methods, the highest order derivative (the
second order one in this case), the lower order derivatives
and the original function are decomposed by a set of RBFs
and their RBF weights as followdAai-Duy and Tran-Cong
2007).

ABw=nh

dZ m m
3¢ = 209K =3 WO K. an
o S w0+ (18)
=
w(X,t) = § Wi (t>GE°] (X)+C1()x+Co(t),  (19)

=1
where {w; (t)}]"; is the RBF weightsm the number of
grld lines; {gJ } is the RBFs; G[ (X) = [G (x)dx

( ) = fG (x )dx; andC; andC, unknown integration
constants In thls paper, the multi-quadric RBFs (MQ-RBFs)
is used and given by

gj (X) =

Where{cJ} and{a,}

spectively. A set of collocatlon pomt{sq}
the set of centres.

The Egs. 17), (18) and (L9) are written on every collocation
point and re-arranged to produce the following set of alge-
braic equations

(x—cj)2+a2, (20)

are RBF centres and widths, re-
is taken to be

12 e e A
‘3 X‘;’ &2 ‘j'j_‘;’ _&lw,  @-3&9%. (21)
where

W= wi(t) wa(t) Wm(t) Ci(t) Co(t) )
W= w(t) () W (t) )T with wj = w(xj);
@:( dar(xt)  dapxt)  damxt) )T.
d ol A ol )
Gy () - Gh(xa) & b}
Gl = : : o],
Gy (m) - Gl am bn
with i = {0,1,2} and
T .
) ) NT (00> 7|:2
(alal),...al) =4 @ pTi=1
(X1 ~xm)T,|:O
il T (0 0Ti=12
(bl’bz""’ m) { 1--1Ti=0

Owing to the presence of integration constants in the IRBF
based approximation, more additional constraints can-e in
corporated into the algebraic equation system througtaste |
equation of 21) as follows.

GO

whereC = andf = Lw are additional constraints.

It is preferable to be working with variables in the physical
space, so a transformation is done as follows.

(22)

whereC ! is the conversion matrix. Eq2D) is substituted
into Eqgs. @7) and (L8) to obtain the second and first-order
derivatives ofw in terms of nodal variable values as

2 dw

w ~ ~
02 Drw+ ko, ax D10+ kg
where%;, and %, are known vectors of lengtim; andk, and

ki are scalars determined Ey Applying Eq. @3) at every
collocation points yields

(23)

Rw - - do  ~ . -
W = ’gwar k2x, a == .@j_xw‘i’ k]_x (24)

vAvhere@;X and@lX are known matrices of dimensiomx m;

kox andkix are known vectors of lengtim andm is defined
as before. The subscriptexpresses the spatial direction,
on which the matricesZax, Z1x) and the vectorskby, Kix)
are constructed. For R-problems, a similar process is pro-
ceeded ory-d|rect|on in order to achieve known matrices and
vectors@zw @1y, kay andkyy. After obtaining these known
matrices and vectors, equatiorisf{ and @) can be solved
with appropriate boundary conditions at each time step.

Time discretisation of the vorticity transport equation
and the equation of fibre configuration fields

In order to temporally discretise the vorticity transpagtia-
tion (14), the Crank-Nicolson scheme is used for the diffu-
sion term while the Euler explicit scheme is for the convec-
tion term. The resultant discrete equation is given by



wnJrl_ ﬂ aan+1 N dan+1 _ wn+
2Re\ ox2 ay? B c
At (020" %" " dw" H=1
ﬁe< P ay? >—Atu” ox — oy +
A D
At (AT AP QA SPap)"
Rel oy "o T a@  oxay )
(25) Figure 1: Flow of fibre suspensions between two parallel

plates: the geometry of the problem.

where superscriptéh+ 1) andn indicates the two succes-
sive time steps dt, 1 = (n+ 1)At andt, = nAt, respectively.
The components of fibre stress tensp; 177, 17 andt}” are
known quantities, which are calculated from the fibre config-
uration fields.

The temporal discretisation of the equation of fibre configu-
ration fields Eq. 8) is carried out using the Crank-Nicolson

scheme as follows. Figure 2: Flow of fibre suspensions between two parallel
plates: the non-uniform Cartesian grid is used in the simu-
A lation.
t
Q(X,thra1) + U (X,tn) - 0Q (X,th1) = Q (X, tn) —
(26) behaviours of flow and fibre configurations to be captured ac-
U (X,tn) - 0Q (X,t) + At (Ou (X, tn)) " - Q (X, 1), curately in these regions. It is worth noting that a finer mesh
of Ax= Ay = 0.025 was used i€hibaet al. (2001).
wheret, = nAt andtn,; = (n+ 1)At are time at steps and The boundary conditions:

(n+ 1), respectively; andt the time step size. L
It is worth noting that the velocity field and its gradient in e Atthe inletAB:
Eq. (26) are known and obtained by the numerical approxi-
mation of vorticity-stream functions. For the stabilitytbe
present method, high-order upwind schentearfeiraet al, >
2002 are applied to approximate the gradient of the fibre work is parabolicu = umax(l (%’ - 1) ) andv=0
configuration field [JQ) at the right-hand-side of Eg26).

Since the fibre configuration field®;, i = (1,2,--- ,Ns), are
independent with each otheB) can be processed in paral-

With the velocity field, the flow is fully developed
where the velocity profile for the Newtonian fluid in this

whereumax is the maximum velocity on the flow direc-
tion and chosen asi.

lel. The configuration fields o®;’s are then conversed to With the fibre configuration field, a set o fibres is
the orientation unit vector of fibrdg’s using Eq. 8) for the generated and assigned at each collocation point on the
solutions of the fourth-order orientation tensor and theefib inlet boundary. A fibre is defined by the anglé =
stress. Thus, the fibre stress is known in the transportovorti —I+ "(,'\I*D, (i =1,.., Nf);

ity equation (4). !

A NUMERICAL EXAMPLE e On the wallsBC andAD:

In this section, a flow of fibre suspensions between two par- With the velocity field, there is no slip, i.eu = 0 and
allel plates is simulated using the present method. Thispro v=0.

lem was previously studied bghibaet al. (200]) using a With the fibre configuration field, co-linear alignment
combined approach based on the finite different method and ie.6 =0 g ' g '
a statistical simulation for fibre configurations. '

The geometry of the problem is given as in Fity. where e At the outletDC:

L =10 andH = 1 are the length and height of the channel, - _

respectively. The Lipscomb’s fibre stress model is used with A flow out condition is used, I.% =0andv=0.

a range of values of fibre paramet&f,= {2,6,10}. The

other parameters used in the simulation include: the Relynol Making use of the approximation schemes presented above,
number,Re= 10; the time step sizejt = 0.001; and the the simulation is terminated when the convergence of field
number of fibre configuration fieldsl; = 180. variable(s) is/are reached a preset tolerance as follows.

Cartesian grid and boundary conditions

L_et Ax andAy be _grid spaces OR an(_jy-direct_ions, respec- Z;p idil (vari” _ var{‘*l)z
tively. A non-uniform Cartesian grid described in Fi@ CM(var) = o —de o <tol, (27)
is used to simulate the problem. The grid’s parameters are Y1 Yicq(var)

as follows: Ay = 0.05 ony-direction;Ax is non-uniform on

x-direction withAx; = 0.05 at regions near the inlet and out-  whereds is the number of dimensions)l a preset tolerance;
let boundaries andix, = 0.125 at the intermediate section  var; thei-component of the field variabiear at a collocation
of the channel. The numerical experience shows that a finer point; np the total number of collocation points; amcthe
mesh at regions near the inlet and outlet allows the physical iteration number.
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Results and discussion

It can be seen that the present method outperforms the
method byChibaet al. (200]) regarding convergence (see
Fig. 3). Indeed, for the fibre parametar= 10, after 7000 it-
erations of the simulation, tHéMs of vorticity, velocity and
stream function can reach to 19 105 and 10, respec-
tively whereas they were 18 and 104 for the vorticity and

the stream function, respectively@hibaet al. (2001) using

a finer mesh as mentioned above.

1072
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Figure 3: Flow of fibre suspensions between two parallel

plates: the convergence measure of velocity, vorticity and
stream function wittkks = 10.

Fig. 4 describes the development of velocity along the
centreline of channel for a range of fibre parameters-
(2,6,10). The velocity undershoot is observed for all cases
of fibre parameter and reflects the effect of the fibre config-
uration at the inlet. In other words, a random distributién o
fibres’ orientation at the inlet resists the developmentesf v
locity near the inlet area. The effect of inlet fibre configura
tion is gradually reduced down-to the outlet and the flow can
reach a fully developed state with an enough long channel.
Furthermore, the undershoot increases with the increnfent o
fibre parameter.
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Figure 4: Flow of fibre suspensions between two parallel
plates: the centreline velocity profiles with = (2,6,10).

The effect of the fibre parameter on the outlet velocity pro-
files was also studied and presented in Fidor a range of

ki = (2,6,10). Results depict the outlet velocity profile of
flow become more plug-like with higher values of the fibre
parameter as compared with the fully developed outlet veloc
ity profile in the Newtonian fluid.

Figs. 6 describes the distribution of two componeR{s11
(Top figure) andPy122 (Bottom figure) of the fourth-order

15 g
=
Q
S
s 17
=
o
o
o - - - Newtonian case
B 0.5¢ —o—apulng =2
8 ..... £ ¢/~L/770 =6
—a—oulng, =10
0]
(0] 0.1 0.2 0.3 0.4 0.5
y

Figure 5: Flow of fibre suspensions between two parallel
plates: the velocity profile at the outlet of the Newtoniarflu
flow and the fibre suspension flows wkh= (2,6, 10).

tensor(PPPP) on the width of the channel as well as along
the channel. The distribution shows that fibres have a ten-
dency to be associated to the flow directiord(rection in

this example) when approaching the outlet. In other words,
the componentB; ;11 andPy 12, 0f tensorP converge to unity
and zero, respectively at the region near the outlet. Fur-
thermore, the isotropic state of fibre configurations is tyost
maintained on the centreline along the channel.

Pllll

0.15¢

O0.1r¢

I:>1122

0.05

Figure 6: Flow of fibre suspensions between two parallel
plates: the distribution of the componeRig1 (Top figure)
andP; 12, (Bottom figure) along the channel wikq = 10.

The distribution of the shear stresky) and the first normal
stress Txx— Tyy) of the flow with the fibre parametéf = 10

are presented in Figl. Results show that in contrast to the
Newtonian fluid flow, a high stress concentration appears at
the corner between the inlet boundary and the walls in the
simulation of the fibre suspension flow. The distribution of



Txy andTyxx — Tyy as well as their values are close match with
those byChibaet al. (2007).
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Figure 7: Flow of fibre suspensions between two parallel

the accuracy of solutions are significantly improved. Irijee
the obtained results by simulating the fibre suspension flow
through a channel including velocity, stress and the digtri
tion of fibre configuration are in very good agreement with
those ofChibaet al. (200]) whereas the convergence mea-
sure is significantly improved even with a coarser mesh used.
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