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ABSTRACT
In this paper, a multiscale method based on the combination of
the Integrated Radial Basis Function (IRBF) approximationand the
Brownian Configuration Field (BCF) approach is used to simulate
the mechanical behaviours of flow of fibre suspensions. The bulk
properties of flow including velocity and stresses are governed by
conservation equations in continuum mechanics. Meanwhilethe
evolution of fibres’ configuration such as the position and direc-
tion of fibres are described by the Jeffery’s motion equationin the
Eulerian form. The decoupled calculations at two differentscales
are linked together through the formula of stress by Lipscomb, by
which the mutual influence between the kinematic propertiesof
flow and the dynamic behaviours of fibres is represented. In this
work, the IRBF based approximations are employed in two sepa-
rate processes of the numerical discretisation. While the IRBF high-
order approximations yield higher accuracy and faster convergence
of the method, they might enhance the stability of the fibre dynam-
ics simulation as well, especially for the case of concentrated fibre
suspension. The validity of the method is demonstrated by simu-
lating flows of different fibre concentrations between two parallel
plates.

Keywords: Multiscale method, Brownian Configuration Field, In-
tegrated Radial Basis Function, dilute fibre suspension flow.

NOMENCLATURE

ar fibre’s aspect ratio.
D rate of strain tensor.
kf fibre parameter.
np number of collocation points.
Nf number of fibre configuration fields.
p dimensionless pressure.
P direction unit vector of fibre.
Q length vector of fibre.
Re Reynold number.
t dimensionless time.
u dimensionless velocity vector.
u,v two components onx andy directions ofu .

φ volume fraction of fibre.
η0 Newtonian fluid viscosity,[kg/ms]
λ dependent parameter ofar .
µ material constant,[kg/ms].
θ angle between thex-axis and the fibre’s axis.
τττe extra-stress tensor.
τττ f fibre-contributed stress tensor.
τττs solvent-contributed stress tensor.
ω vorticity.
ΩΩΩ vorticity tensor.
Ψ stream function.

INTRODUCTION

Fibre-reinforced composite materials, e.g. polymer matrices
strengthened by glass fibres, are popularly used in many im-
portant industrial areas because of their advanced mechanical
properties such as high strength and stiffness but low den-
sity. These exceptional properties are mostly dominated by
the position and direction of fibres existing inside surround-
ing matrices. Hence, a competent understanding of the ori-
entation distribution of fibre configurations in the solventis
very important and needs to be carefully investigated by re-
searchers in both experimental and numerical aspects.
From the literature, a numerical simulation of fibre suspen-
sion basically consists of three following steps (Chibaet al.,
2001). In the first step, a fibre stress term is added to the
momentum conservation equation to include dynamic effects
of fibre on the bulk properties of the flow. The second step
is to use an equation of motion to describe the evolution of
fibres, where the Jeffery’s equation is suitable for dilute sus-
pension while the Folgar and Tucker’s equation is applicable
for semi-dilute and concentrated ones. The final step is to use
a model to calculate the fibre stress from fibre configurations.
The fibre stress tensor is determined by the fourth-order ori-
entation tensor〈PPPP〉. There are two main approaches
used to calculate the〈PPPP〉 tensor. One method relies
on a closure approximation such as the quadratic or or-
thotropic ones (Advaniet al., 1987; Cintra Jr and Tucker III,
1995) and the other method is based on the idea of Brow-
nian Configuration Field (BCF) developed byHulsenet al.
(1997). Whereas the closure approximation approach has
shown several non-physical behaviours and the uncertainty
in the solution (Szeri and Leal, 1994), the BCF has emerged
as a robust method for the simulation of fibre suspensions in
complex flows (Fanet al., 1999; Lu et al., 2006; Douet al.,
2007). For this approach, a large number of fibre configu-
ration fields is generated on each and every computational
nodes and the fourth-order tensors are then averagely calcu-
lated. This yields a good convergent solution, even at high
levels of concentration of fibre (Fanet al., 1999).
Recently, the IRBF-BCF macro-micro multiscale approach
was derived to successfully simulate a range of polymer
solutions (Tranet al., 2011, 2012; Nguyenet al., 2015).
Owing to the advantages of the IRBF-based numerical
scheme (Mai-Duy and Tran-Cong, 2001), the method pos-
sesses the high accuracy solution and the fast numerical
convergence. In this paper, one-dimensional IRBF (1D-
IRBF) scheme (Mai-Duy and Tran-Cong, 2007) is employed
to solve the vorticity-stream function based conservation
equations, whereas the fibre configuration governed by the
Jeffery’s equation is approximated using BCF approach to
determine the fibre stress tensor with the Lipscomb’s model.
The combination of IRBF-based approximations and the
BCF technique is expected to enhance the stability and the
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accuracy of the solution.

THE GOVERNING EQUATIONS FOR FIBRE SUSPENSION
FLOW IN DIMENSIONLESS FORM

Consider an isothermal and incompressible flow of fibre sus-
pensions in two-dimensional (2-D) space. The continuity and
momentum equations for the flow in dimensionless form are
given by (Lu et al., 2006)

∇ ·u = 0, (1)

∂u
∂ t

+u ·∇u =−∇p+
1
Re

∇ · τττe, (2)

wheret, u, p and τττe are the time, velocity field, pressure
and extra-stress tensor in the dimensionless form, respec-
tively andRe the Reynolds number. For fibre suspensions
in a Newtonian solvent, the extra-stress tensor (τττe) consists
of two components as follows.

τττe = τττs+ τττ f , (3)

whereτττs = 2D andτττ f are stress components contributed by
Newtonian solvent and fibre suspensions, respectively and

D = 1
2

(
∇u+(∇u)T

)
the rate of strain tensor.

There are several models used to calculate the stress con-
tributed by fibre suspensions, for example, the Lipscomb
model (Lipscombet al., 1988) for dilute suspensions and
Phan-Thien and Graham model (Phan-Thien and Graham,
1991) for semi-dilute and concentrated suspensions. In this
paper, the former one is used to investigate the present
method in the simulation of the flow of dilute fibre suspen-
sions. The Lipscomb model is given by

τττ f = kf D : 〈PPPP〉 , (4)

whereη0 is the Newtonian fluid viscosity;P the orientation
unit vector of fibre;〈(·)〉 the statistical average of(·) and
〈PPPP〉 the fourth order orientation tensor or structure ten-
sor. The dimensionless quantitykf is the fibre parameter and
written by

kf =
φ µ
η0

, (5)

whereφ is the volume fraction of fibres and defined as the
volume of all fibres in one unit volume of the flow; andµ is
the material constant, which is chosen in the limit of a high
aspect ratio of fibre as follows (Chibaet al., 2001).

µ =
η0ar

2

ln(ar)
, (6)

wherear is the aspect ratio of the fibre.

Substituting Eq. (6) into Eq. (5) yields kf =
φar

2

ln(ar )
. There-

fore, the fibre parameter is considered as the single one in the
fibre stress equation (4), which describes the impact of fibre
suspension on the kinematic behaviour of the flow.
The evolution of fibres’ orientation in flow is captured by the
Jeffery’s equation as (Lipscombet al., 1988)

∂P
∂ t

+u ·∇P = ΩΩΩ ·P+λ (D−D : PPI) ·P, (7)

whereΩΩΩ = 1
2

(
(∇u)T −∇u

)
is the vorticity tensor;λ a de-

pendent parameter of aspect ratio,λ = a2
r −1

a2
r +1

andI the iden-

tity matrix. Like in (Chibaet al., 2001), the parameterλ is
chosen as 1 in this paper.

It is worth noting in Eq. (7) that the orientation unit vector
P is a function of space and time (P = P(x, t)). However, its
unit length (‖P‖) is often violated by numerical simulations
due to computational errors. Therefore, a configuration field
Q(x, t), which is no concern of fibre’s length, is introduced
as follows.

Q(x, t) = QP(x, t) , (8)

whereQ is the modulus ofQ. With λ = 1, the Jeffrey’ equa-
tion (7) is rewritten for the evolution ofQ as follows.

∂Q
∂ t

+u ·∇Q = (∇u)T ·Q. (9)

The fourth order orientation tensor〈PPPP〉 can be now de-
fined by

〈PiPiPiPi〉=
1

Nf

Nf

∑
i=1

〈
Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi

〉
, (10)

whereNf is the number of fibres. The components of the
tensor〈PPPP〉 in a two-dimensional fibre orientation field
are given by (Chibaet al., 2001)

P1111=
Nf

∑
i=1

cos4 θi
Nf

, P1112=
Nf

∑
i=1

cos3 θi sinθi
Nf

,

P1122=
Nf

∑
i=1

cos2 θi sin2 θi
Nf

, P1222=
Nf

∑
i=1

cosθi sin3 θi
Nf

,

P2222=
Nf

∑
i=1

sin4 θi
Nf

,

(11)

whereθi is the angle between thex-axis and the axis of fibre
i.
The quantitiesP1111 and P1122 are also given byP1111 =
〈P1P1P1P1〉 andP1122= 〈P1P1P2P2〉, whereP1 andP2 are two
components of the unit vectorP along x-direction andy-
direction, respectively.

A VORTICITY-STREAM FUNCTION FORMULATION FOR
SIMULATIONS OF FIBRE SUSPENSION FLOW

In this paper, the vorticity-stream function approach is used
to solve the macroscopic governing equations (1) and (2).
Let x and y be two orthogonal coordinates of a 2-D space
andx is chosen as the flow direction;u andv are two veloc-
ity components alongx andy directions, respectively. The
velocity-vorticity and velocity-stream function relations are
given by

ω =
1
2

(
∂u
∂y

−
∂v
∂x

)
, (12)

u=
∂Ψ
∂y

, v=−
∂Ψ
∂x

, (13)

whereω andΨ are vorticity and stream function variables,
respectively.
Taking the curl of Eq. (2) and using Eqs. (1), (3) and (12),
the vorticity transport equation of fibre suspension flow is
expressed as

∂ω
∂ t

+u
∂ω
∂x

+ v
∂ω
∂y

=
1
Re

(
∂ 2ω
∂x2 +

∂ 2ω
∂y2

)

+
1

2Re

(
∂ 2τxx

f

∂x∂y
+

∂ 2τxy
f

∂y2 −
∂ 2τyx

f

∂x2 −
∂ 2τyy

f

∂x∂y

)
,

(14)
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whereτxx
f , τxy

f , τyx
f andτyy

f are the stress components of the
symmetric fibre stress tensorτττ f .
Substituting expressions in Eq. (13) into Eq. (12) yields the
equation for stream function as follows.

∂ 2Ψ
∂x2 +

∂ 2Ψ
∂y2 = 2ω . (15)

NUMERICAL METHOD

In this work, an IRBF-BCF multiscale approach is used
to simulate fibre suspension flows where a semi-implicit
scheme is applied to discretise both the vorticity equation
(14) and the equation of fibre configuration fields (9) with
respect to time. At each time step, the 1D-IRBF scheme is
employed to approximate both the field variables of flow and
the fibre configuration field.

The 1D-IRBF based spatial discretisation scheme

Consider a second order one-dimensional elliptic differential
equation of a variableω = ω(x) and its boundary conditions
as follows.

L ω = f (x∈ Γ), Bω = h (x∈ ∂Γ), (16)

whereL is the second order differential operator;B the
operator expressing the boundary conditions;f and h the
known functions; andΓ and∂Γ the domain and boundary
of the variableω .
For IRBF-based methods, the highest order derivative (the
second order one in this case), the lower order derivatives
and the original function are decomposed by a set of RBFs
and their RBF weights as follows (Mai-Duy and Tran-Cong,
2007).

d2ω
dx2 =

m

∑
j=1

wj (t)g j (x) =
m

∑
j=1

wj (t)G[2]
j (x) , (17)

dω
dx

=
m

∑
j=1

wj (t)G[1]
j (x)+C1(t) , (18)

ω (x, t) =
m

∑
j=1

wj (t)G[0]
j (x)+C1 (t)x+C2(t) , (19)

where
{

wj (t)
}m

j=1 is the RBF weights,m the number of

grid lines;
{

g j (x)
}m

j=1 is the RBFs;G[1]
j (x) =

∫
G[2]

j (x)dx;

G[0]
j (x) =

∫
G[1]

j (x)dx; andC1 andC2 unknown integration
constants. In this paper, the multi-quadric RBFs (MQ-RBFs)
is used and given by

g j (x) =
√
(x− c j)2+a2

j , (20)

where
{

c j
}m

j=1 and
{

a j
}m

j=1 are RBF centres and widths, re-

spectively. A set of collocation points
{

x j
}m

j=1 is taken to be
the set of centres.
The Eqs. (17), (18) and (19) are written on every collocation
point and re-arranged to produce the following set of alge-
braic equations

d̂2ωωω
dx2 = Ĝ[2]ŵ,

d̂ωωω
dx

= Ĝ[1]ŵ, ω̂ωω = Ĝ[0]ŵ, (21)

where

ŵ =
(

w1 (t) w2 (t) · · · wm(t) C1 (t) C2 (t)
)T

;

ω̂ωω =
(

ω1 (t) ω2 (t) · · · ωm(t)
)T

with ω j = ω (x j);

d̂iωωω
dxi =

(
diω1(x,t)

dxi
diω2(x,t)

dxi · · ·
diωm(x,t)

dxi

)T
;

Ĝ[i] =




G[i]
1 (x1) · · · G[i]

m (x1) a[i]1 b[i]1
...

. . .
...

...
...

G[i]
1 (xm) · · · G[i]

m (xm) a[i]m b[i]m


,

with i = {0,1,2} and

(
a[i]1 ,a

[i]
2 , . . . ,a

[i]
m

)T
=





(0 · · · 0)T , i = 2
(1 · · · 1)T , i = 1
(x1 · · · xm)

T , i = 0
;

(
b[i]1 ,b

[i]
2 , . . . ,b

[i]
m

)T
=

{
(0 · · · 0)T , i = 1,2
(1 · · · 1)T , i = 0

.

Owing to the presence of integration constants in the IRBF
based approximation, more additional constraints can be in-
corporated into the algebraic equation system through the last
equation of (21) as follows.

(
ω̂ωω
f̂

)
= Ĉŵ,

whereĈ =

[
Ĝ[0]

L̂

]
and f̂ = L̂ŵ are additional constraints.

It is preferable to be working with variables in the physical
space, so a transformation is done as follows.

ŵ = Ĉ−1
(

ω̂ωω
f̂

)
, (22)

whereĈ−1 is the conversion matrix. Eq. (22) is substituted
into Eqs. (17) and (18) to obtain the second and first-order
derivatives ofω in terms of nodal variable values as

d2ω
dx2 = D2ω̂ωω + k2,

dω
dx

= D1ω̂ωω + k1 (23)

whereD1 andD2 are known vectors of lengthm; andk2 and
k1 are scalars determined byf̂. Applying Eq. (23) at every
collocation points yields

d̂2ωωω
dx2 = D̂2xω̂ωω + k̂2x,

d̂ωωω
dx

= D̂1xω̂ωω + k̂1x (24)

whereD̂2x andD̂1x are known matrices of dimensionm×m;
k̂2x andk̂1x are known vectors of lengthm andm is defined
as before. The subscriptx expresses the spatial direction,
on which the matrices (̂D2x, D̂1x) and the vectors (̂k2x, k̂1x)
are constructed. For 2-D problems, a similar process is pro-
ceeded ony-direction in order to achieve known matrices and
vectorsD̂2y, D̂1y, k̂2y andk̂1y. After obtaining these known
matrices and vectors, equations (14) and (8) can be solved
with appropriate boundary conditions at each time step.

Time discretisation of the vorticity transport equation
and the equation of fibre configuration fields

In order to temporally discretise the vorticity transport equa-
tion (14), the Crank-Nicolson scheme is used for the diffu-
sion term while the Euler explicit scheme is for the convec-
tion term. The resultant discrete equation is given by
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ωn+1−
∆t

2Re

(
∂ 2ωn+1

∂x2 +
∂ 2ωn+1

∂y2

)
= ωn+

∆t
2Re

(
∂ 2ωn

∂x2 +
∂ 2ωn

∂y2

)
−∆tun ∂ωn

∂x
−∆tvn ∂ωn

∂y
+

∆t
2Re

(
∂ 2(τxx

f )n

∂x∂y
+

∂ 2(τxy
f )n

∂y2 −
∂ 2(τyx

f )n

∂x2 −
∂ 2(τyy

f )n

∂x∂y

)
,

(25)

where superscripts(n+ 1) andn indicates the two succes-
sive time steps attn+1 = (n+1)∆t andtn = n∆t, respectively.
The components of fibre stress tensorτxx

f , τxy
f , τyx

f andτyy
f are

known quantities, which are calculated from the fibre config-
uration fields.
The temporal discretisation of the equation of fibre configu-
ration fields Eq. (8) is carried out using the Crank-Nicolson
scheme as follows.

Q(x, tn+1)+
∆t
2

u(x, tn) ·∇Q(x, tn+1) = Q(x, tn)−

∆t
2

u(x, tn) ·∇Q(x, tn)+∆t (∇u(x, tn))
T ·Q(x, tn) ,

(26)

wheretn = n∆t andtn+1 = (n+1)∆t are time at stepsn and
(n+1), respectively; and∆t the time step size.
It is worth noting that the velocity field and its gradient in
Eq. (26) are known and obtained by the numerical approxi-
mation of vorticity-stream functions. For the stability ofthe
present method, high-order upwind schemes (Ferreiraet al.,
2002) are applied to approximate the gradient of the fibre
configuration field (∇Q) at the right-hand-side of Eq. (26).
Since the fibre configuration fields,Qi , i =

(
1,2, · · · ,Nf

)
, are

independent with each other, (26) can be processed in paral-
lel. The configuration fields ofQi ’s are then conversed to
the orientation unit vector of fibresPi ’s using Eq. (8) for the
solutions of the fourth-order orientation tensor and the fibre
stress. Thus, the fibre stress is known in the transport vortic-
ity equation (14).

A NUMERICAL EXAMPLE

In this section, a flow of fibre suspensions between two par-
allel plates is simulated using the present method. This prob-
lem was previously studied byChibaet al. (2001) using a
combined approach based on the finite different method and
a statistical simulation for fibre configurations.
The geometry of the problem is given as in Fig.1, where
L = 10 andH = 1 are the length and height of the channel,
respectively. The Lipscomb’s fibre stress model is used with
a range of values of fibre parameter,kf = {2,6,10}. The
other parameters used in the simulation include: the Reynold
number,Re= 10; the time step size,∆t = 0.001; and the
number of fibre configuration fields,Nf = 180.

Cartesian grid and boundary conditions

Let ∆x and∆y be grid spaces onx andy-directions, respec-
tively. A non-uniform Cartesian grid described in Fig.2
is used to simulate the problem. The grid’s parameters are
as follows:∆y = 0.05 ony-direction;∆x is non-uniform on
x-direction with∆x1 = 0.05 at regions near the inlet and out-
let boundaries and∆x2 = 0.125 at the intermediate section
of the channel. The numerical experience shows that a finer
mesh at regions near the inlet and outlet allows the physical

Figure 1: Flow of fibre suspensions between two parallel
plates: the geometry of the problem.

Figure 2: Flow of fibre suspensions between two parallel
plates: the non-uniform Cartesian grid is used in the simu-
lation.

behaviours of flow and fibre configurations to be captured ac-
curately in these regions. It is worth noting that a finer mesh
of ∆x= ∆y= 0.025 was used inChibaet al. (2001).
The boundary conditions:

• At the inletAB:

With the velocity field, the flow is fully developed
where the velocity profile for the Newtonian fluid in this

work is parabolic:u= umax

(
1−
(

2y
H −1

)2
)

andv= 0

whereumax is the maximum velocity on the flow direc-
tion and chosen as 1.5.

With the fibre configuration field, a set ofNf fibres is
generated and assigned at each collocation point on the
inlet boundary. A fibrei is defined by the angleθi =

− π
2 +

π(i−1)
Nf

,
(
i = 1, ...,Nf

)
;

• On the wallsBC andAD:

With the velocity field, there is no slip, i.e.u = 0 and
v= 0.

With the fibre configuration field, co-linear alignment,
i.e. θi = 0;

• At the outletDC:

A flow out condition is used, i.e.∂u
∂x = 0 andv= 0.

Making use of the approximation schemes presented above,
the simulation is terminated when the convergence of field
variable(s) is/are reached a preset tolerance as follows.

CM(var) =

√√√√∑np
1 ∑ds

i=1

(
varni − varn−1

i

)2

∑np
1 ∑ds

i=1(varni )
2

≤ tol, (27)

whereds is the number of dimensions;tol a preset tolerance;
vari thei-component of the field variablevar at a collocation
point; np the total number of collocation points; andn the
iteration number.
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Results and discussion

It can be seen that the present method outperforms the
method byChibaet al. (2001) regarding convergence (see
Fig. 3). Indeed, for the fibre parameterkf = 10, after 7000 it-
erations of the simulation, theCMs of vorticity, velocity and
stream function can reach to 10−4, 10−5 and 10−6, respec-
tively whereas they were 10−3 and 10−4 for the vorticity and
the stream function, respectively inChibaet al.(2001) using
a finer mesh as mentioned above.

Time [t]
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10-5

10-4

10-3
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CM(ω)
CM(Ψ)
CM(V)

Figure 3: Flow of fibre suspensions between two parallel
plates: the convergence measure of velocity, vorticity and
stream function withkf = 10.

Fig. 4 describes the development of velocity along the
centreline of channel for a range of fibre parameterskf =
(2,6,10). The velocity undershoot is observed for all cases
of fibre parameter and reflects the effect of the fibre config-
uration at the inlet. In other words, a random distribution of
fibres’ orientation at the inlet resists the development of ve-
locity near the inlet area. The effect of inlet fibre configura-
tion is gradually reduced down-to the outlet and the flow can
reach a fully developed state with an enough long channel.
Furthermore, the undershoot increases with the increment of
fibre parameter.

x
0 2 4 6 8 10

C
en

tre
lin

e 
ve

lo
ci

ty
 p

ro
fil

e 
[u

]

1.3

1.35

1.4

1.45

1.5

φµ/η
0
 = 2

φµ/η
0
 = 6

φµ/η
0
 = 10

Figure 4: Flow of fibre suspensions between two parallel
plates: the centreline velocity profiles withkf = (2,6,10).

The effect of the fibre parameter on the outlet velocity pro-
files was also studied and presented in Fig.5 for a range of
kf = (2,6,10). Results depict the outlet velocity profile of
flow become more plug-like with higher values of the fibre
parameter as compared with the fully developed outlet veloc-
ity profile in the Newtonian fluid.
Figs. 6 describes the distribution of two componentsP1111
(Top figure) andP1122 (Bottom figure) of the fourth-order
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Figure 5: Flow of fibre suspensions between two parallel
plates: the velocity profile at the outlet of the Newtonian fluid
flow and the fibre suspension flows withkf = (2,6,10).

tensor〈PPPP〉 on the width of the channel as well as along
the channel. The distribution shows that fibres have a ten-
dency to be associated to the flow direction (x-direction in
this example) when approaching the outlet. In other words,
the componentsP1111andP1122of tensorP converge to unity
and zero, respectively at the region near the outlet. Fur-
thermore, the isotropic state of fibre configurations is mostly
maintained on the centreline along the channel.
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Figure 6: Flow of fibre suspensions between two parallel
plates: the distribution of the componentsP1111 (Top figure)
andP1122 (Bottom figure) along the channel withkf = 10.

The distribution of the shear stress (Txy) and the first normal
stress (Txx−Tyy) of the flow with the fibre parameterkf = 10
are presented in Fig.7. Results show that in contrast to the
Newtonian fluid flow, a high stress concentration appears at
the corner between the inlet boundary and the walls in the
simulation of the fibre suspension flow. The distribution of
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Txy andTxx−Tyy as well as their values are close match with
those byChibaet al. (2001).
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Figure 7: Flow of fibre suspensions between two parallel
plates: The distribution of shear stress (Top figure) and the
first normal stress difference (Bottom Figure) in flow with
kf = 10.

Finally, the orientation of fibres along the channel is de-
scribed by ellipses whose shape and major axes are deter-
mined by the eigenvalues and eigenvectors of the second-
order orientation tensor〈PP〉. For example, a circular ellipse
implies a fibres’ isotropic direction at a collocation point,
while a horizontal straight-line ellipse indicates that all fi-
bres at that point completely align with the flow direction.
Fig. 8 shows the evolution of the fibres’ orientation along
the channel. The result shows that the fibres’ orientation is
strongly impacted by the shear stress field of the flow along
the channel (see Fig.7, Top)and the boundary conditions
for fibre configurations at the inlet and the wall. Indeed, the
isotropic orientation is maintained at the inlet and the centre-
line, where having the zero-value shear stress. This isotropic
state is gradually reduced to the completely alignment state
when approaching the wall, where the maximum shear stress
exists.
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Figure 8: Flow of fibre suspensions between two parallel
plates: the evolution of the fibres’ orientation from the in-
let x= 0 to x= 2 in flow with kf = 10.

CONCLUSION

This paper reports the use of a 1D-IRBF-BCF method to
simulate dilute fibre suspension flows. At a time step, all
governing differential equations including the vorticitytrans-
port equation and the Jeffery’s equation of fibre configura-
tion fields are separately solved using the 1D-IRBF method.
The evolution of fibre configurations captured by the Jef-
fery’s equation is approximated using the BCF idea. The two
processes are closed by Lipscomb’s model. The significant
contribution of this work is to integrate the 1D-IRBF scheme
into the numerical approximation of two phases solvent and
fibres. Taking the advantages of the method, the stability and

the accuracy of solutions are significantly improved. Indeed,
the obtained results by simulating the fibre suspension flow
through a channel including velocity, stress and the distribu-
tion of fibre configuration are in very good agreement with
those ofChibaet al. (2001) whereas the convergence mea-
sure is significantly improved even with a coarser mesh used.
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