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Abstract Finding the optimum distribution of mate-

rial phases in a multi-material structure is a frequent

and important problem in structural engineering which

involves topology optimization. The Bi-directional Evo-

lutionary Structural Optimization (BESO) method is

now a well-known topology optimization method. In

this paper an improved soft-kill BESO algorithm is in-

troduced which can handle both single and multiple

material distribution problems. A new filtering scheme

and a gradual procedure inspired by the continuation

approach are used in this algorithm. Capabilities of the

proposed method are demonstrated using different ex-

amples. It is shown that the proposed method can result

in considerable improvements compared to the normal

BESO algorithm particularly when solving problems in-

volving very soft material or void phase.

Keywords Topology optimization · Gradual BESO ·
Multi-material design · Continuation approach ·
Soft-kill BESO

1 Introduction

In many cases in structural engineering, one needs to

find the optimum distribution of one material within

a medium filled with other materials. In structural op-

timization, such problems are translated into topology

optimization problems.

The first widely used numerical topology optimiza-

tion method for continua was introduced by Bendsøe

and Kikuchi (1988) and is now commonly known as

the homogenization method. Since then, topology opti-

mization area attracted many researchers from different
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fields. During the last two decades, several new topol-

ogy optimization methods were introduced, developed

and their application in a wide range of physical prob-

lems was studied (Deaton and Grandhi 2014).

The central idea of the homogenization method is

to convert the topology optimization problem to a large

sizing optimization problem by defining topology as

material distribution. Many of the well-known topology

optimization methods adopted the material distribu-

tion approach. This includes Solid Isotropic Microstruc-

tures with Penalization (SIMP) and Bi-directional Evo-

lutionary Structural Optimization (BESO) methods.

In the SIMP method, the design variables (x) are

relative densities which continuously vary between x =

1 representing solids and a very small positive number,

0 < x = xmin � 1, representing voids. The intermedi-

ate values (xmin < x < 1) of design variables are penal-

ized using a power-law interpolation scheme (Bendsøe

1989). The BESO method, on the other hand, uses bi-

nary design variables with x ∈ {0, 1}. Because of its bi-

nary nature no penalization is required in this method.

The BESO method was originally introduced by

Querin et al (1998) and Yang et al (1999) as a succes-

sor of the Evolutionary Structural Optimization (ESO)

method which was proposed by Xie and Steven (1993).

After discretizing the design domain using finite ele-

ment method, to evolve the structure towards an op-

timal topology, BESO iteratively introduces new ele-

ments to efficient parts of the design domain and re-

moves its inefficient elements.

BESO-type algorithms can be divided into two classes:

hard-kill and soft-kill approaches. In single material dis-

tribution problems, the hard-kill approach is more com-

mon. In this approach the void elements are simply re-

moved from the structure. In the soft-kill approach, on

the other hand, the voids are replaced by a weak mate-
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rial. The soft-kill approach is essentially more suitable

for multi-material problems.

Topology optimization methods were originally used

for single material/void distribution problems. The first

study in two-material distribution problems is published

by Thomsen (1992) in which the homogenization method

was employed. Sigmund and Torquato (1997) and Bendsøe

and Sigmund (1999) extended the power-law material

interpolation scheme in the SIMP method to more than

two material phases. Later on the Discrete Material Op-

timization (DMO) method was proposed by Stegmann

and Lund (2005) and Lund and Stegmann (2006) which

extends the capabilities of the SIMP method to han-

dle any number of possibly anisotropic materials. Apart

from homogenization-based methods, different versions

of level-set methods have also been introduced to solve

multi-phase material distribution problems (see for ex-

ample Zhou and Wang 2007; Wang and Wang 2004;

Wang et al 2015). For other notable recent works in

this area, the reader is referred to the works of Gao and

Zhang (2011); Bruyneel (2011); Blasques and Stolpe

(2012); Gao et al (2013); Tavakoli and Mohseni (2014);

Tavakoli (2014); Park and Sutradhar (2015); Querin

et al (2015).

Since its introduction, the BESO method was con-

tinually developed and applied to many different prob-

lems (Huang and Xie 2010). In multi-phase material

distribution problems, the earliest application of the

ESO method is published by Rispler and Steven (1995).

Despite the apparent simplicity of using soft-kill BESO

in two-phase material distribution problems, however,

due to the numerical problems that are explained in

section 2.5, this method was only recently used to solve

these types of problems (see for example Liu et al 2008;

Ghabraie 2009; Ghabraie et al 2010a,b; Nguyen et al

2014). Huang and Xie (2009) extended the BESO method

to solve multi-phase material distribution problems.

This paper attempts to provide further improve-

ments to the multi-material BESO algorithm proposed

by Huang and Xie (2009). It focuses on proposing ap-

proaches to improve BESO results and treat the nu-

merical anomalies which can arise when solving multi-

material topology optimization problems with soft-kill

BESO. Noting that single material design problems are

special cases of multi-material design problems, the pro-

posed approaches can be used in both single and mul-

tiple phase material distribution problems.

According to Sigmund and Petersson (1998), most

topology optimization methods (including SIMP and

BESO) are prone to three common numerical instabili-

ties: mesh-dependency, formation of checkerboard pat-

terns, and the local minima problem. Huang and Xie

(2007) proposed a filtering scheme for hard-kill BESO

which successfully eliminates checkerboard patterns and

mesh dependency. This filtering scheme is introduced in

section 2.5. Through a simple example in section 2.6, it

is shown that this filtering scheme is not directly appli-

cable to soft-kill BESO. A brief review of the treatment

proposed by Huang and Xie (2009) for this problem is

presented in section 3. Then a new filtering scheme is

proposed in section 4 which works well with soft-kill

BESO.

Topology optimization problems are generally not

convex and have several local minima. Gradient based

optimization techniques can be trapped in these local

minima and miss the global optimum. As a result one

may get different solutions by starting from different

initial designs for the same problem. This is usually

referred to as the local minima problem.

The so-called continuation approaches are used with

the SIMP method to improve the final solutions and re-

duce their dependency on initial guess designs. These

approaches initially solve an artificial convex (or near

convex) version of the problem and then gradually change

it back to the original problem. In section 5, a continu-

ation approach is introduced which proves to be helpful

in improving final solutions and obtaining the same so-

lution for different initial designs in soft-kill BESO. The

proposed improved BESO algorithm is tested using a

number of examples in section 6.

2 BESO in multi-material distribution problem

2.1 Problem statement

Consider the following material distribution design prob-

lem with volume constraint

min
x∈Xn

f(x)

such that Vi(x) ≤ V̄i, i = 1, . . . ,m− 1,
(1)

where f : Xn 7→ R is the objective function, Vi is the

actual volume, and V̄i is the maximum allowable volume

for the i-th material phase in the design domain. n is

the number of elements (design variables) and m is the

number of material phases. x = [x1, x2, . . . , xn]T is the

design variable vector. Using BESO, we can define X =

{0, 1, . . . ,m− 1} which lists the possible values for any

design variable.

Considering a two-material design problem (m = 2),

in BESO each element can only have two states (X =

{0, 1}). For each element we use one design variable.

xe = 0 represents the first material phase for element

e and xe = 1 represents the second material phase for

this element.
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Consider a problem with two isotropic linear elastic

material phases. For simplicity assume that the Pois-

son’s ratios of the two material phases are equal. The

two moduli of elasticity are E(0) and E(1). In its sim-

plest form, elastic modulus of each element can be re-

lated to its design variable by the following linear in-

terpolation scheme,

Ee(xe) = E(0) + xe(E
(1) − E(0)), e = 1, . . . , n. (2)

Without loss of generality, assume E(1) > E(0).

The element level stiffness matrix Ke can be ex-

pressed as a function of Ee and consequently of xe.

The stiffness matrix of the system can be derived by

assembling element stiffness matrices as follows

K(x) =

n∑
e=1

Kg
e(xe), (3)

with Kg
e denoting the global level stiffness matrix of

element e. The equilibrium equation can now be written

as

K(x)u = f (4)

in which f and u are nodal load and displacement vec-

tors respectively.

2.2 Sensitivity numbers

In the BESO method, the sensitivity number αe is a

measure of the effectiveness of changing the material

phase of element e on reducing (or increasing in case of

maximization) the objective function. Suppose that by

changing the design variable value of the e-th element,

the vector of design variables changes from x to xe.

Based on Taylor series for f in the neighborhood of xe

we can obtain the following first-order approximation

for the change in f due to changing xe

∆
e
f = f(xe)− f(x) =

∂f

∂xe
∆xe. (5)

The notation ∆
e
f represents the effect of imposing a

change in element e on the objective function and thus

can be used to define the sensitivity number for the e-th

element.

For a minimization problem, we can define the vec-

tor of sensitivity numbers to match the steepest descent

search direction (Ghabraie 2009). This gives us the fol-

lowing sensitivity numbers

αe = − ∂f

∂xe
, e = 1, . . . , n. (6)

2.3 Minimum compliance design

Mean compliance is the most commonly used objective

function in topology design of structures. It can be de-

fined as

c(u,x) = fTu. (7)

Minimum compliance design problem can be stated by

setting f = c in eq. (1). Hereafter we use the mean

compliance as the objective function.

Differentiating eq. (7), the following set of equations

are derived

∂c

∂xe
= −uT ∂K

∂xe
u, e = 1, . . . , n. (8)

For the term ∂K
∂xe

, based on eq. (3) and eq. (2) we

can write

∂K

∂xe
=
∂Kg

e

∂Ee

∂Ee

∂xe
=

Kg
e

Ee

∂Ee

∂xe
=

Kg
e

Ee
(E(1) − E(0)). (9)

Using eq. (9) in eq. (8), and noting that all the non-zero

elements of Kg
e are related to the degrees of freedom of

element e, we can write

∂c

∂xe
= −E

(1) − E(0)

Ee
uT
e Keue, e = 1, . . . , n, (10)

where ue is the displacement vector of element e. Sub-

stituting (10) in (6), we obtain

αe =
E(1) − E(0)

Ee
uT
e Keue, e = 1, . . . , n. (11)

2.4 Switching elements and termination criterion

Different algorithms have been proposed to add and

remove elements in the BESO method. Traditionally

the volume constraint in eq. (1) is not satisfied in ini-

tial iterations. This will allow the BESO algorithm to

start with a more relaxed version of the problem. In

the algorithm introduced by Huang et al (2006) and

Huang and Xie (2007) a controlling parameter called

evolutionary volume ratio (Rv) gradually pushes the

material volumes to their limits. Another parameter,

called maximum allowable admission ratio (Ra) lim-

its the maximum amount of materials to be added to

prevent sudden changes. Once the required volume is

reached, it will be kept constant by switching the same

number of elements to and from each material phase.

From this point froward, Rv has no effect.

In examples solved in this paper, the initial designs

satisfy the volume constraint in eq. (1). The maximum

allowable amount of change in each iteration is limited

by a parameter called move limit (η) to prevent sudden
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changes. This is a special case of the algorithm proposed

by Huang et al (2006) with η = Ra. As noted before,

Rv has no effect in this case.

To terminate the BESO procedure, the following

convergence criterion can be used

ε =
|
∑s

i=1(f[k−i+1] − f[k−i])|∑s
i=1 f[k−i+1]

≤ τ, (12)

where f[n] denotes the value of the objective function in

the n-th iteration, k is the current iteration and τ is an

allowable tolerance. s is a predefined number which de-

termines the number of iterations considered in check-

ing convergence.

In order to improve the results, in this paper a two-

step termination procedure is adopted. A near conver-

gence situation is recognized when τ < ε ≤ τ ′. Once

this criterion is satisfied, the move limit η is reduced to

prevent sudden changes near convergence. Convergence

is assumed when ε ≤ τ .

In all examples solved in this paper, s = 12, τ ′ =

10−4, and τ = 10−6 are used. The move limit η is halved

whenever near convergence situation is identified.

2.5 Filtering scheme for hard-kill BESO

Huang and Xie (2007) used a Filtering approach in

hard-kill BESO to overcome checkerboard patterns and

mesh dependency. In this approach firstly nodal sen-

sitivities are derived by averaging sensitivities of the

elements connecting to each node as follows

α̃j =

∑
e∈Ej veαe∑
e∈Ej ve

. (13)

In this equation, Ej is the set of elements which are

connected to node j and ve denotes the volume of el-

ement e. Filtered element sensitivities are then calcu-

lated through the following filtering scheme

α̂e =

∑N
j=1 wejα̃j∑N
j=1 wej

, (14)

where α̂e is the filtered sensitivity of element e, N is

the number of nodes in the design domain, and wej is

a weighting factor. A simple linear weighing factor can

be defined as

wej = max{0, r − rej}. (15)

Here r is the filtering radius and rej is the distance

between the centroid of element e and node j.

2.6 Using hard-kill filtering scheme in soft-kill BESO

The above BESO algorithm is used to optimize the

material distribution in a short cantilever beam. The

design domain, loading, supports and the initial distri-

bution of materials are depicted in Fig. 1. The elas-

tic moduli of the two material phases are assumed as

E(0) = 0.2 and E(1) = 1.0. The move limit is chosen

as η = 6 elements which is equivalent to 0.25% of the

total number of elements in the design domain (ND).

The volume of the stronger material should not be more

than 40% of the whole domain. The remaining parts

of the design domain should be filled with the weaker

material. The magnitude of the concentrated force is

p = 1. Elements are all bi-linear squares with side size

of h = 1. All units are consistent.

l = 60

d
=

40

p

material 0
material 1

Fig. 1 Design domain and initial distribution of the two ma-
terial phases in a short cantilever beam.

Fig. 2a shows the final topology obtained by apply-

ing the above BESO algorithm without using the filter-

ing technique (r = 0). As expected areas with checker-

board patterns are visible in the final topology. Apply-

ing the hard-kill filtering scheme with r = 0.05d = 2,

one obtains the topology depicted in Fig. 2b. The stiffer

material phase is scattered and the topology is not rec-

ognizable.

In order to discuss the reason behind the ineffective-

ness of the hard-kill filter in this example, consider a

one-dimensional truss element with cross sectional area

A and length L under a fixed load P . The stiffness of

this element is K = EA
L where E is the elastic modulus

of the material. The sensitivity of the mean compliance

with respect to changes in modulus of elasticity is

∂c

∂E
= − 1

E
uKu = −P

2L

E2A
. (16)

The sensitivity number α = − ∂c
∂E is proportional to

1
E2 and increases when E decreases. In particular when

E → 0 we have α→ +∞. This is in contradiction with

the hard-kill approach in which α = 0 is assumed for

E = 0.
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(a) r = 0, c = 30.191 (b) r = 2, c = 32.457
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r = 0 (no filter)

r = 2

(c)

Fig. 2 Final topology obtained by applying BESO to the
problem depicted in Fig. 1: a) without filtering and b) using
the hard-kill filtering scheme in section 2.5. c) Evolution of
objective function values for the two solutions.

The BESO routine sorts the elements based on their

sensitivity numbers and switches the elements based on

their ranking. Hence, what is important in BESO is

the ranking of sensitivity numbers, not their numerical

values. Without filtering, sensitivity numbers of differ-

ent material phases will not interfere with each other

and (except for checkerboard formation) the algorithm

works fine. When filtering is turned on, neighboring el-

ements will affect on each other’s sensitivity number.

In this case the coefficients 1
E(0) >

1
E(1) in eq. (11) give

more weight to soft elements in filtering. As a result,

instead of the elements surrounded by stiffer material,

the ones surrounded by softer material will be more

likely to be switched to stiffer material and vice versa.

3 Using penalization in BESO

To tackle the deficiencies which arise in using BESO in

multi-material distribution problems, Huang and Xie

(2009) used a material interpolation scheme with pe-

nalization in BESO. Following the power-law interpo-

lation scheme used in the SIMP method, Huang and

Xie (2009) suggested to replace eq. (2) with

Ee(xe) = E(0) + xpe(E(1) −E(0)), e = 1, . . . , n (17)

in which p > 1 should be used. Using this interpolation

scheme, eq. (11) changes to

αe = pxp−1e

E(1) − E(0)

Ee
uT
e Keue, e = 1, . . . , n.

(18)

Using xe = 0 in the above equation would result in

αe = 0. In other words, the soft-kill approach will

change to hard-kill where no information is available

on sensitivity of weak elements. To remedy this, Huang

and Xie (2009) suggested using a very small positive

value, 0 < xmin � 1, to represent weak elements.

In an alternative version of this approach, Ghabraie

(2009) and Nguyen et al (2014) used the following al-

ternative interpolation scheme suggested by Stolpe and

Svanberg (2001)

Ee(xe) = E(0)+
xe(E

(1) − E(0))

1 + q(1− xe)
, e = 1, . . . , n (19)

in which q > 0 should be used. Based on this inter-

polation scheme, the sensitivity numbers are calculable

from

αe =
(1 + q)(E(1) − E(0))

[1 + q(1− xe)]2Ee
uT
e Keue, e = 1, . . . , n,

(20)

where xmin = 0 can be used without causing problems.

Considering sensitivity numbers in eq. (18) and eq.

(20), by increasing the penalty factors, sensitivity of

weak elements reduces. In this situation, the hard-kill

filtering scheme in section 2.5 can work effectively if

sufficiently large penalty factors are applied.

Fig. 3 shows the solutions to the previous problem

using the interpolation scheme in eq. (17) assuming

xmin = 0.001 with p = 1.2, p = 1.3, and p = 1.5. It

can be seen that the checkerboard patterns are elimi-

nated and the final topologies are clear.

In this example, penalty factor values smaller than

1.2 did not completely eliminate the numerical anoma-

lies. For values 1.2 < p < 1.5 the final topology and final

value of the objective function depended on the penalty

factor, as illustrated in Fig. 3. For p ≥ 1.5 the solution

did not change by further increasing the penalty factor.

Although by using a sufficiently large penalty fac-

tor this approach can solve the deficiencies visible in

Fig. 2, using penalization in BESO where no inter-

mediate density is present does not have any physical

meaning. Moreover, final topologies obtained in this ap-

proach can depend on the penalty factor as illustrated

in Fig. 3.
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(a) p = 1.2 (b) p = 1.3 (c) p = 1.5
c = 29.630 c = 29.624 c = 30.231
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Fig. 3 Final topology obtained by BESO using different
penalty factors: a) p = 1.2, b) p = 1.3, and c) p = 1.5. d)
Eevolution of objective function values.

4 Alternative filtering scheme

Instead of using penalization, a different filtering scheme

is proposed here to eliminate the numerical anoma-

lies demonstrated in section 2.6. In the new filtering

scheme, eq. (13) is replaced by the following equation

α̃j =

∑
e∈Ej veEeαe∑
e∈Ej veEe

. (21)

By multiplying element sensitivities by their elastic mod-

uli, this scheme cancels the effect of the coefficient 1
Ee

in eq. (11).

The final topology obtained for the short cantilever

beam using this filter and the linear interpolation scheme

is illustrated in Fig. 4. The proposed approach suc-

cessfully eliminated all checkerboard patterns. Because

this filtering scheme works well with linear interpola-

tion scheme, it also eliminates the need for introducing

the concept of penalization in BESO.

5 Gradual BESO (gBESO )

Continuation approaches are used in combination with

methods like SIMP to overcome the local minima prob-

lem. In these approaches, a near convex version of the

problem is solved first and the problem is gradually

changed in steps towards the original problem after the

previous step is converged. For example, one can start
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Iteration

m
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n
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m
p
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a
n

ce

With new filter (r = 2)

Fig. 4 Final topology obtained by applying the new filtering
scheme and evolution of objective function values. The final
value of the objective function is c = 29.760.

the problem with a penalty factor close to unity and

then gradually increase the penalty factor to eliminate

intermediate densities.

A similar concept is used here to propose a further

improvement to the soft-kill BESO method. In this ap-

proach the problem is solved in a number of steps. A

near convex sub-problem is initially considered in the

first step with all material phases having elastic moduli

values very close to the softest material. After solving

the sub-problem in each step, the algorithm proceeds

to the next step where the elastic moduli of the stiffer

materials are gradually increased. This procedure is re-

peated until the elastic moduli of all material phases

reach their required values. For two material phases,

such procedure can be expressed as follows

E
(1)
〈1〉 = G0E

(0),

E
(1)
〈s〉 = G1E

(1)
〈s−1〉, s > 1,

(22)

where E〈s〉 denotes the value of E at step s, and G0 > 1

and G1 > 1 are two predefined factors. The G0 factor

should be chosen close to 1 to ensure that the initial

sub-problem is near convex.

To explain the rationale behind the proposed grad-

ual approach, consider the following two-material com-

pliance minimization problem which is a special case of

eq. (1),

min
x∈Xn

c(x)

such that V1(x) ≤ V̄1.
(23)

BESO solves a discrete version of this problem with

X = {0, 1}. The continuous version of this problem, i.e.

when X = [0, 1] is equivalent to the variable thickness

sheet problem and is convex.

As shown by Ghabraie (2014), the changes in mean

compliance due to changing the design variable of ele-
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ment e can be expressed as

∆
e
c =

∞∑
m=1

1

m!

∂mc

∂xem
∆xe

m

=

∞∑
m=1

uT ∂K

∂xe

(
K−1

∂K

∂xe

)m−1

u ∆xe
m. (24)

Using eq. (9) in this equation we obtain

∆
e
c =

∞∑
m=1

uTKg
e

(
K−1Kg

e

)m−1
u

(
∆E

Ee
∆xe

)m

, (25)

where ∆E = E(1) − E(0). We have

∆E

Ee
=

{
E(1)

E(0) − 1, if Ee = E(0),

1− E(0)

E(1) , if Ee = E(1).
(26)

Hence,

lim
E(1)

E(0)
→1

∣∣∣∣∆EEe

∣∣∣∣ = 0. (27)

So if the ratio E(1)

E(0) approaches one, we can ignore the

higher order terms in eq. (25) and write

∆
e
c

∆xe
= uTKg

eu
∆E

Ee
= uT

e Keue
∆E

Ee
= αe. (28)

In this case, the sensitivity numbers used in BESO

approach the sensitivities of the continuous problem.

In other words, the discrete problem solved by BESO

method approaches the continuous variable thickness

sheet problem1. In gradual BESO, G0 defines the ratio
E(1)

E(0) for the initial sub-problem and thus need to be

selected close to one to make the initial sub-problem

near convex. Effects of the gradual parameters on final

results are studied in section 7.

To demonstrate the application of gBESO , the pre-

vious short cantilever beam problem is solved with grad-

ual BESO setting G0 = 1.0001 and G1 = 1.25. This

means that the procedure starts with E
(0)
〈1〉 = 0.2 and

E
(1)
〈1〉 = 1.0001 × E(0) = 0.20002 in the first step, and

after convergence of each step E(1) is increased by 25%

until it reaches the target value of 1. The results ob-

tained by this procedure are illustrated in Fig. 5 and

Fig. 6.

Fig. 5 shows the evolution of mean compliance val-

ues in this example. The solid line shows the values of

the mean compliance at each step calculated based on

1 Another conclusion is that the results of the variable
thickness sheet problem will have less elements with inter-
mediate thickness (grey elements) when the maximum and
minimum allowed thicknesses are chosen close to each other.
See Table 1.
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calculated with
E(1) = 1

calculated with

E
(1)

〈s〉 listed above

Fig. 5 Evolution history of mean compliance values obtained
by applying the gradual BESO method to the problem de-
picted in Fig. 1.

Step 1 Step 2 Step 3

E
(1)
〈1〉 = 0.20002 E

(1)
〈2〉 = 0.25003 E

(1)
〈3〉 = 0.31253

Step 4 Step 5 Step 6

E
(1)
〈4〉 = 0.39066 E

(1)
〈5〉 = 0.48833 E

(1)
〈6〉 = 0.61041

Step 7 Step 8 Step 9 (final)

E
(1)
〈7〉 = 0.76302 E

(1)
〈8〉 = 0.95377 E

(1)
〈9〉 = E(1) = 1

Fig. 6 Topologies obtained at the end of each step of the
gradual BESO procedure. Values of elastic modulus of the
stiffer material phase in each step is noted below each figure.
Elastic modulus of the softer material phase is E(0) = 0.2 in
all steps.

the elastic moduli of materials at that step, i.e. E
(1)
〈s〉 is

used to calculate the mean compliance at step s. These

values are listed above the graph. Because the stiffness

of the stiffer material phase is increasing throughout

the solution, significant drops are visible when the al-

gorithm proceeds to the next step.

After obtaining displacements by finite element anal-

ysis, if mean compliance is calculated based on the tar-

get elastic moduli of material phases (here E(1) = 1),
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the dashed line is obtained. Convergence of each step is

determined based on these values.

Topologies at the end of each step (solutions to the

sub-problems) are shown in Fig. 6. In this figure, the

lighter shades depict the weak material with E(0) = 0.2

while the darker shades show the stiffer material. The

value of the elastic modulus of the stiffer material is

noted under the final topology of each step. The final

solution is obtained at the end of the 9th step where

elastic modulus of the stiffer material reached the tar-

get value of E(1) = 1. In this example the final topology

is very similar to the one depicted in Fig. 4 which was

obtained without using the gradual stiffening proce-

dure. The final value of the objective function is slightly

improved by using the gradual procedure and reduced

from 29.760 to 29.623.

In following sections further examples are solved to

illustrate the capabilities of the proposed approach and

its superiority over the normal BESO algorithm.

6 Further examples

6.1 Simply supported beam

A simply supported beam is considered as another ex-

ample with the design domain, loading, and supports

illustrated in Fig. 7. A mesh of 120×40 bilinear square

elements are used to model half of the design domain

making use of symmetry. The total volume of the design

domain is to be equally shared between two materials.

These two materials are considered to have the elastic

moduli of E(1) = 1 GPa and E(0) = 0.1 GPa. A filter-

ing radius of r = 3 mm is used to make this example

comparable to the one solved by Huang and Xie (2009).

d
=

4
0

l = 120 l = 120

Fig. 7 Design domain of a simply supported beam. All di-
mensions are in mm.

The values of G0 = G1 = 2 and η = 0.005ND =

24 elements are adopted in this example. The initial

material distribution and the final topology obtained is

shown in Fig. 8 with the final objective function value

of 4.173 N ·mm. This solution is not significantly dif-

ferent from the one reported by Huang and Xie (2009)

but provides a slightly smaller value of the objective

function.

material 0 material 1

a) Initial material distribution

b) c = 4.173 N · mm

Fig. 8 A simply supported beam optimized using the grad-
ual BESO approach: a) initial material distribution, and b)
the obtained topology. The two materials have the elastic
moduli of E(1) = 1 GPa and E(0) = 0.1 GPa.

6.2 Starting from different initial designs

Using the proposed gradual BESO, if G0 is sufficiently

close to 1, it is possible to obtain the same solution

from different initial designs. To numerically illustrate

this, four different initial designs are selected for the

short cantilever beam problem. Results obtained with

and without applying the gradual procedure are illus-

trated in Fig. 9. In this example, a mesh size of 120×80

with a small filtering radius of r = 0.025d is used (d is

the depth of the design domain as shown in Fig. 1).

Using smaller filtering radius makes the problem more

susceptible to local minima. The move limit is chosen as

η = 0.0021ND = 20 elements and gradual parameters

are similar to the example solved in section 5.

It can be seen that without the gradual procedure,

final topologies depend on initial designs. However, by

using the proposed gradual procedure, identical final

results are obtained for all four initial designs.

The proposed approach is also useful in single mate-

rial distribution problems. In this case the voids can be

modeled by a very soft material with an elastic modulus

value significantly smaller than that of the base mate-

rial. Here, the previous example is solved again with

material properties of E(1) = 1 and E(0) = 10−4 repre-

senting voids. G0 = 1.0001 is adopted again but G1 is

increased to 5 to speed up the solution procedure. All

other parameters are similar to the previous example.

The results are reported in Fig. 10.

Without using the gradual procedure, final topolo-

gies vary significantly for different initial designs. Using

gradual BESO results in identical topologies. These re-

sults show that using appropriate parameters, the pro-
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Initial design BESO gBESO

Case 1 c = 29.909 c = 29.859

Case 2 c = 29.866 c = 29.859

Case 3 c = 29.860 c = 29.859

Case 4 c = 29.920 c = 29.859

Fig. 9 The proposed gradual approach is used to obtain sim-
ilar solution starting from different initial designs in a two-
phase material distribution problem.

Initial design BESO gBESO

Case 1 c = 39.636 c = 39.659

Case 2 c = 41.654 c = 39.659

Case 3 c = 39.928 c = 39.659

Case 4 c = 40.183 c = 39.659

Fig. 10 The proposed gradual approach is used to obtain
similar solution starting from different initial designs in a sin-
gle material distribution problem.

posed gradual BESO is not sensitive to the initial design

in single or in multiple material distribution problems.

For comparison and verification, the same problem

is solved using SIMP method with p = 3, with and

without using continuation approach. In order to let

the SIMP method handle these problems, in the initial

designs, the voids are represented by x = 0.001 instead

of x = 0. The continuation approach starts with a large

filtering radius of r0 = 0.25d and after convergence of

each step the filtering radius is halved. A similar ter-

mination criterion is employed in the SIMP method to

make a valid comparison. Fig. 11 shows the obtained

topologies and final values of the objective function in

each case.

Initial design SIMP Continuation

Case 1 c = 128.29 c = 39.846

Case 2 c = 108.78 c = 39.846

Case 3 c = 41.526 c = 39.846

Case 4 c = 42.100 c = 39.821

Fig. 11 The solutions obtained using the SIMP method with
and without the continuation approach for different initial
designs. In all cases penalty factor of p = 3 is used.

As expected the SIMP method, like the normal BESO

method, is prone to the local minima problem. Using

the continuation approach rectifies this problem. The

solutions obtained via the continuation approach match

well with the result of gradual BESO.

6.3 Sensing unused supports

In problems with a void phase (or an extremely soft

material compared to other materials), if a support (or
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a separated solid area) is surrounded by a large area

of void elements, the normal BESO method may not

be able to “sense” that support (or solid area). This

behavior was first demonstrated by Zhou and Rozvany

(2001). The proposed gradual BESO algorithm can fix

this deficiency. To demonstrate this a simple example

with the initial design illustrated in Fig. 12 is consid-

ered. The design domain is discretized using a mesh

of 100 × 100 bilinear square elements. 25% of this do-

main is to be filled with a material with elastic mod-

ulus of E(1) = 1 while the voids are modeled using

E(0) = 10−4. A filtering radius of r = 5h is used where

h = 1 is the size of the elements. The units are all con-

sistent. The results obtained with and without using

the gradual procedure are reported in Fig. 12. Here a

move limit of η = 0.001ND = 10 elements is used and

the gradual parameters are selected as G0 = 1.01 and

G1 = 2.

Initial design BESO gBESO

c = 271.9 c = 38.88 c = 19.67

Fig. 12 A simple example showing the superiority of the
proposed gradual BESO over normal BESO (η = 10, G0 =
1.01, and G1 = 2).

It can be seen that without using the gradual proce-

dure the algorithm is not capable of making use of the

roller support resulting in a solution with c = 38.88.

Using the gradual BESO procedure, the final value of

the objective function is reduced by about 98% to c =

19.67.

6.4 More than two material phases

The approach proposed for two materials can be eas-

ily extended to problems with more material phases.

The linear interpolation scheme can be extended to the

following form

Ee(xe) = E(i−1) + (xe − i+ 1)(E(i) − E(i−1)),

for i − 1 ≤ xe ≤ i,

i = 1, . . . ,m − 1,

e = 1, . . . , n (29)

which maps Ee to E(0), E(1), . . . , E(m−1) respectively

for xe = 0, 1, . . . ,m − 1. Based on this interpolation

scheme, sensitivity numbers for the compliance mini-

mization problem take the form

αe =
E(i) − E(i−1)

Ee
uT
e Keue,

for i − 1 ≤ xe ≤ i,

i = 1, . . . ,m − 1,

e = 1, . . . , n. (30)

In each iteration, the switching procedure will be

completed in an internal loop over the material phases.

In iteration i (i = 1, . . . ,m − 1) of this internal loop,

elements are only switched between material phases i

and i − 1. Before switching, sensitivity numbers will

be filtered using the new filtering scheme introduced in

section 4.

This approach is tried on the short cantilever beam

with three material phases. The three phases have the

elastic moduli of E(0) = 0.2, E(1) = 0.5, and E(2) = 1.

The maximum allowable volume for material phases are

V̄1 = V̄2 = 0.2VT where VT is the total volume of the

design domain. The initial design is shown in Fig. 13.

A 120 × 80 mesh is used with the filtering radius of

r = 2h where h is the size of elements. The move limit

for switching between any pair of material phases is

selected as η = 10 elements equivalent to 0.1% of the

total number of elements in the design domain.

In order to check the evolution of the objective func-

tion values, the problem is initially solved without us-

ing the gradual procedure. The results are illustrated in

Fig. 13. As shown in this figure, the mean compliance

monotonically decreases and converges at c = 40.142.

The problem is also solved using the proposed grad-

ual BESO. To apply the gradual stiffening procedure in

multi-phase material problems, the highest elastic mod-

ulus E(m−1) is taken as the reference and step values

of elastic moduli of other material phases are interpo-

lated at each step. Hence, eq. (22) is expanded to the

following

E
(m−1)
〈1〉 = G0E

(0),

E
(m−1)
〈s〉 = G1E

(m−1)
〈s−1〉 , s > 1,

E
(i)
〈s〉 = E(0) +

E
(m−1)
〈s〉 − E(0)

E(m−1) − E(0)
× (E(i) − E(0)),

i = 1, . . . ,m− 2.

(31)

In this example, G0 = 1.0001 and G1 = 1.5 are

adopted. The final topology obtained via gradual BESO

is shown in Fig. 13. The final value of the mean com-

pliance in this case is c = 40.063 which shows a slight
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Initial design BESO gBESO

c = 40.142 c = 40.063

material 0 (E(0) = 0.2)

material 1 (E(1) = 0.5)

material 2 (E(2) = 1.0)

0 50 100 150 200 250 300 350

40

60

80

100
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Iteration
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BESO

Fig. 13 Solving a short cantilever beam problem with three
material phases.

improvement compared to the solution obtained with-

out using the gradual approach.

To further demonstrate the capabilities of the pro-

posed approach in handling multiple material phases,

the short cantilever beam problem is solved with five

material phases. The initial design is shown in Fig. 14.

The elastic moduli of the five phases are assumed to be

E(0) = 10−4, E(1) = 10−3, E(2) = 10−2, E(3) = 10−1,

and E(4) = 1. All material phases should occupy 20%

of the design domain.

Gradual BESO is used with G0 = 1.0001 and G1 =

5. Other parameters are the same as the previous 3-

material problem. The final value of the mean compli-

ance is c = 67.368. The initial design and step topolo-

gies are depicted in Fig. 14.

Three other initial designs are also considered for

this short cantilever beam. As shown in Fig. 15, gradual

BESO yields the exact same result for all these initial

designs.

6.5 More than one material phases and voids

Considering a very soft material to represent voids,

the proposed method can be used to solve problems

in which more than one material phases are to be dis-

tributed among voids in the design domain. The first ex-

ample considered is the simply supported beam shown

in Fig. 7. Two materials with E(2) = 1 GPa and E(1) =

Initial design 1 step 1
E

(4)
〈1〉 = 1.00010 × 10−4

E
(3)
〈1〉 = 1.00001 × 10−4

E
(2)
〈1〉 = 1.00000 × 10−4

E
(1)
〈1〉 = 1.00000 × 10−4

step 2 step 3 step 4
E

(4)
〈2〉 = 5.00050 × 10−4 E

(4)
〈3〉 = 25.0025 × 10−4 E

(4)
〈4〉 = 125.013 × 10−4

E
(3)
〈2〉 = 1.39969 × 10−4 E

(3)
〈3〉 = 3.39809 × 10−4 E

(3)
〈4〉 = 13.3901 × 10−4

E
(2)
〈2〉 = 1.03961 × 10−4 E

(2)
〈3〉 = 1.23765 × 10−4 E

(2)
〈4〉 = 2.22785 × 10−4

E
(1)
〈2〉 = 1.00360 × 10−4 E

(1)
〈3〉 = 1.02160 × 10−4 E

(1)
〈4〉 = 1.11162 × 10−4

step 5 step 6 step 7 (Final)
E

(4)
〈5〉 = 625.063 × 10−4 E

(4)
〈6〉 = 3125.31 × 10−4 E

(4)
〈7〉 = 1

E
(3)
〈5〉 = 63.3501 × 10−4 E

(3)
〈6〉 = 313.150 × 10−4 E

(3)
〈7〉 = 10−1

E
(2)
〈5〉 = 7.17884 × 10−4 E

(2)
〈6〉 = 31.9338 × 10−4 E

(2)
〈7〉 = 10−2

E
(1)
〈5〉 = 1.56171 × 10−4 E

(1)
〈6〉 = 3.81216 × 10−4 E

(1)
〈7〉 = 10−3

Fig. 14 Initial design and step topologies obtained by using
gradual BESO on a 5-material design problem. In all steps
E(0) = 10−4.

Initial design 2 Initial design 3 Initial design 4

Final design 2 Final design 3 Final design 4
c = 67.368 c = 67.368 c = 67.368

Fig. 15 Final topologies obtained by using gradual BESO
on a 5-material design problem with different initial disigns.
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0.1 GPa are to be used to fill 15% and 25% of the de-

sign domain volume respectively. The rest 60% of the

design domain should be filled with a very soft ma-

terial with E(0) = 10 kPa representing voids. Filter-

ing radius is r = 3 mm. All algorithmic parameters

are selected similar to the example shown in Fig. 8

(η = 0.005ND = 24 elements, G0 = G1 = 2).

The initial design and the final solution obtained

using the gradual BESO procedure are illustrated in

Fig. 16. The obtained topology is simpler and the ob-

jective function is almost 7% lower than the one re-

ported by Huang and Xie (2009) for the same problem

(c = 13.0 N.mm).

void (E(0) = 10 kPa)

material 1 (E(1) = 0.1 GPa)

material 2 (E(2) = 1.0 GPa)

a) Initial material distribution

b) c = 12.1 N.mm

Fig. 16 A simply supported beam of Fig. 7 is solved with two
materials and voids: a) the initial material distribution, and
b) the results obtained using the gradual BESO approach.

Another simply supported structure is considered

with the design domain depicted in Fig. 17. The dimen-

sions are l = 6 m and P = 15 kN. Due to symmetry

only half of the domain is modeled using a 240 × 240

mesh. Two examples are solved on this design domain,

one with two materials and voids and the other one with

three materials and voids. The adopted parameters in

both examples are r = 0.1 m, η = 120, G0 = 1.05 and

G1 = 10.

In the first of these examples, two materials with

E(1) = 100 GPa and E(2) = 200 GPA are distributed

in the design domain filling 20% and 10% of its volume

respectively. The rest 70% is occupied by a very soft

material with E(0) = 100 kPa representing voids. The

initial design and the obtained solution are shown in

Fig. 18.

In the three material design, like the two material

one the voids are represented by E(0) = 100 kPa. The

2P

P P

l

l l

Fig. 17 Design domain, loads and supports for a simply sup-
ported Michell-type structure.

Initial design Final solution
(c = 0.7968 N.m) (c = 0.1946 N.m)

void (E(0) = 100 kPa)

material 1 (E(1) = 100 GPa)

material 2 (E(2) = 200 GPa)

Fig. 18 The initial design and the final solution obtained
for the Michell-like structure (Fig. 17) with two materials
and voids.

three material phases have E(1) = 50 GPa, E(2) =

100 GPA and E(3) = 200 GPA all of which limited

to filling 10% of the design domain. The initial design

and the obtained solution are shown in Fig. 19. The re-

sults shown in Fig. 18 and Fig. 19 are comparable with

solutions provided by Wang and Wang (2004).

7 The effects of gradual parameters

In this section we study the effects of the move limit η

and the gradual parameters G0 and G1 on the perfor-

mance of the proposed gBESO approach. The problem

depicted in Fig. 12 is considered in this part due to its

particular nature.

The move limit (η) defines the maximum number of

elements which can be switched in each iteration. One

would generally expect that the lower the move limit,

the better the solution. Results obtained for various val-

ues of the move limit are shown in Fig. 20. The gradual
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Initial design Final solution
(c = 1.106 N.m) (c = 0.2119 N.m)

void (E(0) = 100 kPa)

material 1 (E(1) = 50 GPa)

material 2 (E(2) = 100 GPa)

material 3 (E(3) = 200 GPa)

Fig. 19 The initial design and the final solution obtained for
the Michell-like structure (Fig. 17) with three materials and
voids.

parameters are G0 = 1.01 and G1 = 2. As expected in-

creasing the move limit increases the final value of the

objective function.
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η = 2 η = 5 η = 20
c = 19.33 c = 19.62 c = 24.09

1

Fig. 20 The effect of changing move limit (η) on final solu-
tions of the problem shown in Fig. 12.

The gradual parameter G1 defines how fast the ma-

terials’ elastic moduli would approach their final values.

In other words, the number of steps required to com-

plete the gradual procedure can be controlled by G1.

Choosing smaller values for G1 can result in more it-

erations but it causes smoother transition between the

sub-problems and hence better solutions are generally

expected.

To study the effect of G1 on final solutions, the move

limit is fixed at η = 10 and G0 = 1.01 is chosen. The

problem is solved with different values of G1. Fig. 21

summarizes the results. Although some random oscil-

lation are observable, as expected, increasing G1 can

significantly increase the final value of the objective

function.

G1 = 50 G1 = 7010 G1 = 10000
c = 19.78 c = 19.22 c = 22.07
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Fig. 21 Final values of the objective function (mean compli-
ance) for the problem shown in Fig. 12 with η = 10,G0 = 1.01
and different G1 values.

A number of different final topologies obtained in

this test are depicted in Fig. 21. It is interesting to

note the big jumps around G1 = 4 and G1 = 7000.

The solutions with G1 < 4 effectively used both sup-

ports. With 4 ≤ G1 ≤ 7000 only the roller support at

top right corner of the design domain (see Fig. 12) is

used. Looking at the solution of the first sub-problem

(Fig. 22d) and comparing it to the topologies shown in

Fig. 21, one can see that for large values of G1, it seems
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that the final solutions were trapped in the local min-

ima close to Fig. 22d. The small number of steps and

big jumps between the material properties used in the

sub-problems prevent the algorithm from finding better

solutions.

Another interesting point to note is that despite the

variety, all the solutions in Fig. 21 are better than the

normal BESO solution for this problem (see Fig. 12).

This is due to the suitable G0 value which is chosen

close to one in this case.

Regarding the gradual parameter G0, as explained

before, this value should be chosen close to one to make

the initial sub-problem near convex. In section 5, it was

mentioned that for G0 values close to one, the solution

of the first gBESO sub-problem would be close to the

continuous version of the same problem (variable thick-

ness sheet). This is demonstrated in Fig. 22 and Table 1.

Table 1 Comparing the results of the BESO (binary) and
variable thickness sheet (continuous) versions of the optimiza-

tion problem (eq. 23) for different values of E(1)

E(0) (E(0) =

10−4). The design domain and the initial design are shown
in Fig. 12.

final c value
E(1)

E(0) variable BESO diff. Percentage of
thickness (%) grey elements

sheet (vts) in vts solutions
1.01 138476 138477 0.001 0.68
2 75807 75929 0.16 14.3
5 33041 33961 2.79 28.6
10 17251 18074 4.77 41.2
20 8867 9621 8.50 52.0
50 3619 4221 16.6 66.0

It can be seen in Fig. 22 and Table 1 that BESO so-

lutions are similar to those of variable thickness sheet

problem when E(1)

E(0) is close to one. As this ratio grows

solutions of the two problem deviate from each other.

Hence, if G0 value is not chosen small enough, the

gBESO procedure might not be effective.

To further study the effect of G0 value on final so-

lutions, different G0 values are tested with η = 10 and

G1 = 2. The results are summarized in Fig. 23. It can

be seen that lower values of G0 are advisable to ensure

better solutions. Although in this case 15 ≤ G0 ≤ 18

also resulted in good solutions for this problem, there

is no guarantee that this behavior happens with other

problems. For G0 = 10000, we have E
(1)
〈1〉 = E(1) and the

gradual BESO will behave exactly like normal BESO.

It should be noted that although in all the examples

shown here, the proposed gradual BESO yields better

solution than normal BESO, this is not necessarily al-

ways the case. If one starts a problem with an initial

design very close to the optimal solution, it is possible

a) E(1)

E(0) = 1.01 b) E(1)

E(0) = 2 c) E(1)

E(0) = 10

d) E(1)

E(0) = 1.01 e) E(1)

E(0) = 2 f) E(1)

E(0) = 10

Fig. 22 Comparing the final solutions of continuous (a-c)
and binary (d-f) versions of the optimization problem (eq.

23) for different ratios of E(1)

E(0) (E(0) = 10−4). The design
domain and the initial design are shown in Fig. 12.

that normal BESO converges to a better solution than

gradual BESO, because the latter will possibly move

away from the initial design when solving its first sub-

problem. However, in general it is expected that grad-

ual BESO converges to better solutions in compare to

normal BESO as demonstrated in this paper.

8 Conclusion

The soft-kill BESO method has been improved and ap-

plied to single and multi-phase material distribution

problems. Instead of using a penalty factor, a new filter-

ing scheme is proposed for the soft-kill BESO method

to eliminate numerical anomalies which arise in multi-

ple material distribution problems. A continuation ap-

proach by gradual stiffening of materials is also intro-

duced to improve the results of soft-kill BESO. The al-

gorithm is extended to any number of material phases.

Capabilities of the proposed approach are tested

through a number of examples. It is demonstrated that

the proposed gradual BESO approach is capable of han-

dling problems with several material phases and is not

sensitive to initial designs. It is also illustrated that

unlike the traditional hard-kill BESO method, the pro-

posed method is capable of making use of redundant

supports and recovering broken links.

References

Bendsøe MP (1989) Optimal shape design as a material dis-
tribution problem. Structural Optimization 1(4):193–202,
DOI 10.1007/BF01650949



An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases 15

G0 = 80 G0 = 130 G0 = 200
c = 23.31 c = 26.54 c = 36.89

1 2 5

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

1
0
0
0
0

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

G0

fi
n

a
l

m
ea

n
co

m
p

li
a
n

ce

G0 = 10 G0 = 15 G0 = 50
c = 21.75 c = 19.28 c = 19.88

1

Fig. 23 Final objective function values (mean compliance)
for the problem shown in Fig. 12 with η = 10, G1 = 2 and
different G0 values.

Bendsøe MP, Kikuchi N (1988) Generating optimal topolo-
gies in structural design using a homogenization method.
Computer Methods in Applied Mechanics and Engineer-
ing 71(2):197–224, DOI 10.1016/0045-7825(88)90086-2

Bendsøe MP, Sigmund O (1999) Material interpolation
schemes in topology optimization. Archive of Applied Me-
chanics 69(9-10):635–654, DOI 10.1007/s004190050248

Blasques JP, Stolpe M (2012) Multi-material topology
optimization of laminated composite beam cross sec-
tions. Composite Structures 94(11):3278–3289, DOI
10.1016/j.compstruct.2012.05.002

Bruyneel M (2011) SFP—a new parameterization based on
shape functions for optimal material selection: application
to conventional composite plies. Structural and Multidis-
ciplinary Optimization 43(1):17–27, DOI 10.1007/s00158-
010-0548-0

Deaton JD, Grandhi RV (2014) A survey of structural
and multidisciplinary continuum topology optimization:
post 2000. Structural and Multidisciplinary Optimization
49(1):1–38, DOI 10.1007/s00158-013-0956-z

Gao T, Zhang W (2011) A mass constraint formulation for
structural topology optimization with multiphase materi-
als. International Journal for Numerical Methods in En-
gineering 88(8):774–796, DOI 10.1002/nme.3197

Gao T, Zhang W, Duysinx P (2013) Simultaneous design
of structural layout and discrete fiber orientation us-
ing bi-value coding parameterization and volume con-
straint. Structural and Multidisciplinary Optimization
48(6):1075–1088, DOI 10.1007/s00158-013-0948-z

Ghabraie K (2009) Exploring topology and shape optimisa-
tion techniques in underground excavations. PhD thesis,
School of Civil, Environmental and Chemical Engineering
Science, RMIT University, Melbourne, Australia

Ghabraie K (2014) The ESO method revisited. Struc-
tural and Multidisciplinary Optimization pp 1–12, DOI
10.1007/s00158-014-1208-6

Ghabraie K, Xie YM, Huang X (2010a) Using BESO method
to optimize the shape and reinforcement of underground
openings. In: Ghafoori N (ed) Challenges, Opportunities
and Solutions in Structural Engineering and Construc-
tion: Proceedings of the 5th International Structural En-
gineering and ConstructiomConference (ISEC-5), 22-25
Sep. 2009, Las Vegas, USA, Taylor and Francis, London,
pp 1001–1006

Ghabraie K, Xie YM, Huang X, Ren G (2010b) Shape and
reinforcement optimization of underground tunnels. Jour-
nal of Computational Science and Technology 4(1):51–63,
DOI 10.1299/jcst.4.51

Huang X, Xie YM (2007) Convergent and mesh-independent
solutions for the bi-directional evolutionary structural op-
timization method. Finite Elements in Analysis and De-
sign 43(14):1039–1049, DOI 10.1016/j.finel.2007.06.006

Huang X, Xie YM (2009) Bi-directional evolutionary topol-
ogy optimization of continuum structures with one or
multiple materials. Computational Mechanics 43(3):393–
401, DOI 10.1007/s00466-008-0312-0

Huang X, Xie YM (2010) Evolutionary topology optimization
of continuum structures. John Wiley and Sons

Huang X, Xie YM, Burry MC (2006) A new algorithm for
bi-directional evolutionary structural optimization. Japan
Society of Mechanical Engineers International Journal Se-
ries C 49(4):1091–1099, DOI 10.1299/jsmec.49.1091

Liu Y, Jin F, Li Q, Zhou S (2008) A fixed-grid bidirectional
evolutionary structural optimization method and its ap-
plications in tunnelling engineering. International Journal
for Numerical Methods in Engineering 73(12):1788–1810,
DOI 10.1002/nme.2145

Lund E, Stegmann J (2006) Eigenfrequency and buckling op-
timization of laminated composite shell structures using
discrete material optimization. In: e MPB, Olhoff N, Sig-
mund O (eds) IUTAM Symposium on Topological De-
sign Optimization of Structures, Machines and Materi-
als, Springer Netherlands, vol 137, pp 147–156, DOI
10.1007/1-4020-4752-5 15

Nguyen T, Ghabraie K, Tran-Cong T (2014) Applying bi-
directional evolutionary structural optimisation method
for tunnel reinforcement design considering nonlinear ma-
terial behaviour. Computers and Geotechnics 55:57–66,
DOI 10.1016/j.compgeo.2013.07.015

Park J, Sutradhar A (2015) A multi-resolution method for 3d
multi-material topology optimization. Computer methods
in applied mechanics and engineering 285:571–586, DOI
10.1016/j.cma.2014.10.011

Querin OM, Steven GP, Xie YM (1998) Evolutionary struc-
tural optimisation (ESO) using a bidirectional algo-
rithm. Engineering Computations 15(8):1031–1048, DOI



16 Kazem Ghabraie

10.1108/02644409810244129
Querin OM, Victoria M, Dı́az C, Mart́ı P (2015) Layout opti-

mization of multi-material continuum structures with the
isolines topology design method. Engineering Optimiza-
tion 47(2):221–237, DOI 10.1080/0305215X.2014.882332

Rispler A, Steven G (1995) Shape optimisation of metal-
lic inserts in composite bolted joints. In: International
Aerospace Congress 1995: Proceedings; Second Pacific
International Conference on Aerospace and Technology;
Sixth Australian Aeronautical Conference, Institution of
Engineers, Australia, pp 225–229

Sigmund O, Petersson J (1998) Numerical instabilities in
topology optimization: A survey on procedures deal-
ing with checkerboards, mesh-dependencies and local
minima. Structural and Multidisciplinary Optimization
16(1):68–75, DOI 10.1007/BF01214002

Sigmund O, Torquato S (1997) Design of materials with
extreme thermal expansion using a three-phase topol-
ogy optimization method. Journal of the Mechanics and
Physics of Solids 45(6):1037–1067, DOI 10.1016/S0022-
5096(96)00114-7

Stegmann J, Lund E (2005) Discrete material optimization of
general composite shell structures. International Journal
for Numerical Methods in Engineering 62(14):2009–2027,
DOI 10.1002/nme.1259

Stolpe M, Svanberg K (2001) An alternative interpolation
scheme for minimum compliance topology optimization.
Structural and Multidisciplinary Optimization 22(2):116–
124, DOI 10.1007/s001580100129

Tavakoli R (2014) Multimaterial topology optimization by
volume constrained allen–cahn system and regularized
projected steepest descent method. Computer Methods
in Applied Mechanics and Engineering 276:534–565, DOI
10.1016/j.cma.2014.04.005

Tavakoli R, Mohseni SM (2014) Alternating active-phase al-
gorithm for multimaterial topology optimization prob-
lems: A 115-line matlab implementation. Structural
and Multidisciplinary Optimization 49(4):621–642, DOI
10.1007/s00158-013-0999-1

Thomsen J (1992) topology optimization of structures com-
posed of one or two materials. Structural optimization
5(1–2):108–115, DOI 10.1007/BF01744703, presented at
NATO ASI Optimization of Large Structural Systems,
Berchtesgaden, Germany, Sept. 23 Oct. 4, 1991

Wang MY, Wang X (2004) “color” level sets: a multi-phase
method for structural topology optimization with multi-
ple materials. Computer methods in applied mechanics
and engineering 193(6–8):469–496

Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material
level set-based topology and shape optimization method.
Computer Methods in Applied Mechanics and Engineer-
ing 283:1570–1586, DOI 10.1016/j.cma.2014.11.002

Xie YM, Steven GP (1993) A simple evolutionary proce-
dure for structural optimization. Computers & Structures
49(5):885–896, DOI 10.1016/0045-7949(93)90035-C

Yang XY, Xie YM, Steven GP, Querin OM (1999) Bidi-
rectional evolutionary method for stiffness optimization.
American Institute of Aeronautics and Astronautics Jour-
nal 37(11):1483–1488

Zhou M, Rozvany GIN (2001) On the validity of ESO
type methods in topology optimization. Structural
and Multidisciplinary Optimization 21(1):80–83, DOI
10.1007/s001580050170

Zhou S, Wang MY (2007) Multimaterial structural topol-
ogy optimization with a generalized cahn–hilliard model
of multiphase transition. Structural and Multidisci-
plinary Optimization 33(2):89–111, DOI 10.1007/s00158-
006-0035-9


