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Abstract  

It is important to determine accurately the elastic properties of fibre reinforced polymer 

(FRP) composites material, considering that their member design is often governed by 

deflection rather than strength. In this study, the elastic properties of the pultruded glass FRP 

(GFRP) square sections were evaluated firstly using full-scale with different shear span to 

depth (a/d) ratios and tested under static four-point bending. Back calculation and 

simultaneous methods were then employed to evaluate the flexural modulus and shear 

stiffness and were compared with the results of the coupon tests. Secondly, the full-scale 

beams were tested up to failure to determine their capacity and failure mechanisms. Finally, 

prediction equations describing the behaviour of the pultruded GFRP square beams were 

proposed and compared with the experimental results. The results indicate that the back 

calculation method gives more reliable values of elastic properties of GFRP profiles. In 

addition, the behaviour of the beams is strongly affected by the a/d ratios. The shear was 

found to have a significant contribution on the behaviour of beams with lower a/d ratios 

while the flexural stress played a major part for higher a/d ratios. The proposed equation, 

which accounts for the combined effect of the shear and flexural stresses, reasonably 

predicted the failure load of pultruded GFRP square beams.  
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Introduction  

Fibre reinforced polymer (FRP) composites  emerged as a promising material to satisfy the 

increasing demand for better performing and more durable civil infrastructures 
1
. Recently, 

FRP composites have been used in bridges, because of their high stiffness, strength-to-weight 

ratios, corrosion resistance and durability 
2
. In addition to these superior properties, the 

process of producing FRP sections allows the designer to specify different material properties 

for different parts of the cross section 
3
. Nevertheless, the use of these advanced materials in 

structural applications is constrained due to limited knowledge on their material properties 

and structural behaviour. Therefore it is of paramount importance to investigate the properties 

of pultruded FRP sections so that they can be broadly utilised in structural applications.  

A number of micromechanical simulations have already been developed to predict the 

properties of pultruded beams such as flexural and shear modulus
4-6

. The mechanical 

properties estimated using these models showed a good correlation with the experimental 

results. However, the models require accurate information on the processing details of the 

FRP profiles such as individual properties of fibres and resin, the fibre volume fraction and 

the composition of the laminates 
7
. Therefore, the use of these models as a design tool for 

structural purposes is likely to complicate the process. Thus, several researchers investigated 

coupon specimens to determine the effective mechanical properties of the composites and 

used these properties to predict the behaviour of full scale pultruded FRP profiles 
8, 9

. 

Manaloet al. 
10

 mentioned that there are limited test methods and equipment to characterise 

the properties of thick FRP composites by using the results of coupon tests.  Moreover, the 

limited dimensions in the transverse direction of the majority of the pultruded GFRP sections 

added a new obstacle to the applicability of available test  standards 
11

. The complex internal 
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structure of composites and/or the variation of its mechanical properties within the element 

itself warrant testing of full scale sections to obtain realistic design properties. 

 Guadeset al. 
12

 conducted an experimental investigation to characterise the 

mechanical properties of square pultruded sections (100 mm x 100 mm) using both coupon 

and full – scale specimens. Although, there was a good agreement between the coupon and 

full-scale results for single span beams, the effect of shear deformation on the behaviour of 

the pultruded profiles was neglected as the beam considered in sufficiently long. Bank 
13

 

indicated that the effect of shear on thin walled FRP sections is very significant especially for 

shorter beams and should be considered in determining the elastic properties of composite 

material. In support of this, Bank 
13

 and Neto and Rovere 
14

 conducted experiments using 

full-scale sections to determine the flexural (E) and shear (G) modulus of FRP composite 

beams.  In both situations, three – point bending tests were used to characterise the behaviour 

of beams with different spans. Even though same test procedure and almost similar section 

properties were used in both research, there was a huge difference between the calculated 

E/G ratios as Bank 
13

 determined the elastic modulus based on Timoshenko Beam Theory 

while Neto and Rovere 
14

 used the graphical (simultaneous) test method.  Mottram 
15

 stated 

that the sensitivity of the graphical method in determining the slope (of the regression line 

through the data points) can lead to a significant change in the E and G calculations. As a 

result, there is a need to revisit the graphical method used to find the flexural and shear 

modulus.  

To the authors’ knowledge, there are very limited experimental studies conducted to 

determine the structural properties of full – scale FRP composite beams made of vinyl ester 

resin with E-glass fibre reinforcement oriented in different directions. In this study, hollow 

pultruded GFRP square beams with different shear span-to-depth (a/d) ratios were tested 

using static four – point bending configuration. Graphical (simultaneous) and back 
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calculation methods were used to calculate the E and G and compared with the results of the 

coupon test. In addition, the effect of a/d ratio on the strength and failure behaviour of the 

GFRP beams was analysed. Based on the experimental results of this research, a simplified 

prediction equation to obtain the failure load of the GFRP beams was proposed with due 

consideration given to the effect of a/d ratio. These predicted failure loads are then compared 

with the experimental results.      

Determination of flexural and shear modulus (Beam Theory) 

The relatively low elastic modulus of GFRP leads to designs being governed by deflection 

and buckling limitations, instead of strength 
16, 17

. In addition, the anisotropic nature of the 

FRP composites results in low shear modulus to longitudinal elastic modulus ratio. 

Accordingly, the contribution of shear deformation in the total deformation becomes 

significant and should be considered in designing composite structures
3, 5, 14

. This shear 

contribution can be theorised by using Timoshenko beam theory. This theory incorporates 

shear deformation of thin walled composite sections in deflection and investigates its effect in 

a quantitative manner in order to reliably determine the E and G for the pultruded FRP 

section. In this method the controlling equations are: 

�� �∅
�� = �                                                                                    (1) 

�	
�
 + 	∅ = 	 


���	                                                                             (2) 

where I is the second moment of area, ∅	is the bending slope,  M is the bending moment, δ is 

the total deflection, V is the shear force and A is the cross- sectional area. The shear 

coefficient K is a constant which accounts for the shear distribution over the beam cross 

section. For homogenous box profile, K can be calculated using the equation recommended 

by  Bank 
7
: 

K = 	 ��
������∗� �� �����                                                                     (3) 
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where υ, G and E refer to the longitudinal Poisson’s ratio, shear modulus and elastic modulus, 

respectively of the section. By solving equations 1 and 2 for the case of four- point load 

bending with the load applied at a distance (a) from the support point (a=L/3 in this case, 

where L is the beam span), the total deflection can be obtained as follows: 

! = 	 �"	#$%
���&	'( +	 #$

&)*+                                                                      (4) 

where P is the total applied load, EI is the flexural stiffness and KGA  is the shear stiffness.  

  Two techniques are commonly used to calculate EI and KGA by using the above 

equation. The first technique is called “back calculation method (BCM)” which was based on 

the Bernoulli equation to determine the EI from the strain readings on the outer flange 

surfaces at mid-span (in the constant moment region):  

�� = 	,-
.                                                                                      (5) 

where c is the distance from the neutral axis to the outermost fibre, and ε is the measured 

strain. After EI is calculated, Equation 4 can be used to back calculate KGA.        

  The second technique is referred to as “simultaneous method (SM)” where at least 

two different spans should be investigated experimentally. Each test produces a data set for 

load, deflection and span. These three terms are known in Equation 4 with EI and KGA as 

two unknowns. For better interpretation of the method, Equation 4 is divided throughout by 

PL/6A as follows:  

&+/
#$ =	 �"	

��&' 0$
12

� +	 �
)*	                                                             (6) 

This represents a straight line, with (L/r)
 2

 being the independent variable on the horizontal 

axis and 6Aδ/PL being the dependent variable on the vertical axis. Herein, r is the radius of 

gyration of the section defined by	3 = 4� 5� . By plotting the variable 
&+/
#$   against	0$

12
�
, the 

elastic modulus can be found from the slope of the straight line and the shear modulus from 

the intercept on the vertical axis: 
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� = �"	
��&∗6789:	                                                                          (7) 

;< =		 �
=>?:1-:9?	                                                                       (8) 

Experiment program 

Material properties  

Pultruded GFRP square sections (125 mm x 125 mm x 6.5 mm thickness) produced by 

Wagner’s Composite Fibre Technologies (WCFT), Australia were used in this study. These 

sections are made from vinyl ester resin with E-glass fibre reinforcement. The density of 

these pultruded profiles is 2050 kg/m
3
. As per standard  ISO 1172 

18
, the burnout test 

revealed an overall glass content of 78% by weight in these profiles. The stacking sequence 

of the plies is [0
0
/+45

0
/0

0
/-45

0
/0

0
/-45

0
/0

0
/+45

0
/0

0
], where the 0

o
 direction aligns with the 

longitudinal axis of the tube. Table 1 shows the mechanical properties of the pultruded 

sections determined from coupon tests. 

Table 1. Mechanical properties from coupon test 

Characterization of elastic properties for pultruded sections 

Following the methodology proposed by Bank 
13

, GFRP pultruded profiles with three 

different a/d ratios were tested under static four - point bending. The details of the tested 

specimens are listed in Table 2. The load was applied at the third points of the span and shear 

span to total length (a/L) was maintained at 1/3 for all tests. Figure 1 shows the schematic 

illustration of the test set-up and the tests were conducted according to ASTM D7250 
19

. A 

2000 kN capacity servo hydraulic testing machine was used with a loading rate of 2 mm/min. 

All specimens were tested only up to approximately 20% of the failure load to ensure that the 

beams are still in the elastic range. Strain gauges (PFL-20-11-1L-120) of 20 mm length were 

attached to the bottom face at the mid-span of the specimens. Laser displacement transducer 
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was used to measure the mid-span deflection. The applied load and the deflection of the 

loading ram were recorded using the Systems 5000 data acquisition system.  

Table 2. Details of the specimens tested for the elastic properties  

Figure 1. Experimental set-up for characterisation of elastic properties. 

Behaviour of hollow pultruded GFRP composite beams  

Hollow GFRP pultruded sections with four different a/d ratios were tested up to failure under 

static four point bending test. In contrast to section 3.2, the load was applied at the two points 

with a load span equal to 300 mm. The constant load span was used to keep the upper face of 

the section under same condition for all specimens and to take account of the limitation on 

the length of the test frame. Vertical supports were provided to prevent lateral buckling. The 

details of the tested specimens are listed in Table 3. Figure 2 shows the experimental set up. 

A 2000 kN capacity universal machine was used for applying the load. Steel plates were 

provided at the support and loading points to minimise indentation failure.  

Table 3. Details of the specimens tested for the behaviour of GFRP beams 

Figure 2. Experimental setup for the behaviour of GFRP beams. 

Experimental results and observations  

The experimental results for the elastic properties and the behaviour of full scale beams are 

discussed in this section.  

Elastic properties of GFRP sections 

E and G using back calculation method. The load versus deflection curves for all specimens 

are shown in Figure 3. Linear elastic behaviour up to 20 kN can be observed from these. The 

variations of E and KGA with load for all specimens are shown in Figures 4 to 6. From these 

curves, it can be seen that these parameters start at a high value but reduce with increasing 

load. In order to minimise the errors that might have occurred due to deflection 
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measurements in this study, EI and KGA were computed from the average of several points 

spaced within a range of L/800 to L/600 deflection as suggested by Hayes and Lesko 
20

. The 

average calculated values of E and KGA from the BCM are summarized in Table 4. In this 

table, a numerical value for the moment of inertia has been used. The shear modulus G is 

separated from KGA using the k determined from equation (3) and the nominal cross section 

area of the beam. The average value of E was 47.2 GPa which is 20% higher than the coupon 

test results. The higher flexural modulus obtained from the full section compared with the 

coupon specimens can be related to the continuity of ±45
o 

fibres along the length of the 

pultruded beams. In addition, the shear modulus value of 4 GPa is comparable with the value 

suggested by Mottram 
15

 for a standard GFRP pultruded profile. 

Figure 3. Load – deflection relationship for GFRP beams.  

Figure 4. Elastic modulus (E) and Shear stiffness (KGA) versus Load for a/d =1.6  

Figure 5. Flexural Modulus (E) and Shear Stiffness (KGA) versus Load for a/d =2.4 

Figure 6. Flexural Modulus (E) and Shear Stiffness (KGA) versus Load for a/d =3.2  

Table 4. Summary of average E and KGA for each span for GFRP beam testing (BCM) 

E and G using simultaneous method. In order to determine the elastic properties E and G, a 

graph for 6Aδ/PL versus (L/r) 
2
 was plotted as shown in Figure 7.  A linear regression was 

used to obtain the slope, intercept and the coefficient of correlation, which are also shown in 

the figure. The E and G values were then calculated using equations 7 and 8, respectively. 

The calculated E in this method is 56.1 GPa which is higher than the coupon test results by 

about 43 %. In contrast, G is 3.3 GPa which is less than the average value for standard 

pultruded profiles by about 17 %.  

Figure 7. Typical graph to determine E and KG using simultaneous method. 

Behaviour of hollow pultruded GFRP composite beams   
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Load-deflection behaviour. Figure 8 shows the load - deflection curves for the GFRP 

pultruded beams, which shows a linear behaviour until failure. There is a non- linear response 

before the final failure for the beams with a/d ratios of 1.2 and 2.4. This behaviour is possibly 

due to the crushing of the corners of the specimen at the support and at the loading points 

which leads to separation of the web – flange junction. This progressive failure results in the 

web to continue carrying the applied load. The load carrying capacity of the beam is affected 

by the variation of the a/d ratio whereas a decreasing trend was observed with increasing a/d 

ratio. All the beams show a brittle failure in both flexural and transverse shear failure modes. 

Table 5 presents a summary of the test results with respect to failure load, corresponding 

deflection and failure mode. 

Table 5. Summary of experimental results for GFRP beams  

Stress -strain behaviour. The strain measurements for the beams at the top and bottom faces 

in addition to the strain at the shear path are shown in Figures 9 to 11. It can be seen that the 

tension strain at the bottom face is higher than the top face compression strain (i.e. for a/d 

ratio of 6 and stress 250 MPa the tension strain reaches 4700 micro strain compared with 

4000 micro-strain in the compression side).  There was a different trend in the strain on the 

top and bottom sides. The tension strains increased linearly up to failure, whereas the 

compression strains began to decrease non – linearly as the load exceeded approximately 

75% of the ultimate failure load.  At the top side, the strain was negative demonstrating that 

the profile is compressed, as expected. With increasing load, however, the values tend to 

become positive indicating that the top surface is moving from being compressed to 

tensioned as shown in Figure 9. This behaviour reflects the onset of buckling considering 

that the flange can be assumed to be simply supported at the loading points. Consequently, 

the increase in the applied load increased the compression component of the moment which 

results in a local buckling of the flange. Figure 10 shows that the tensile strain decreases 
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with decreasing shear span. The bottom side of the tested specimens were subjected to 

extensive tensile straining although failure cannot be observed there even after the 

compression region at the loading zone has failed entirely. Figure 11 shows that shear strain 

increases with decreasing a/d due to the fact that a significant portion of the shear is 

transferred directly to the support by an inclined strut. As a result the amount of the direct 

load transfer increases with decreasing a/d ratio. In summary, the failure initiated at web – 

flange junction and followed by buckling and/or crushing in the web depending on the a/d 

ratio: beams with higher a/d ratio experienced buckling failure whereas beams with lower 

a/d ratio experienced crushing. 

Figure 8. Load – deflection curves for GFRP beams. 

Figure 9. Stress versus compression strain. 

Figure 10. Stress versus tensile strain. 

Figure 11. Stress versus shear strain.  

Failure mode. The different failure modes of the GFRP beams are shown in Figure 12. The 

observed failure modes can be classified as flexural failure and transverse shear failure. The 

shorter beams (a/d ratios of 1.2 and 2.4) displayed progressive damage accumulation, which 

is indicated by the drops in the load – deflection curves, with the increasing of the applied 

load. It was observed that the specimens had cracked and some twisted away from the centre 

towards one side. The mode of failure observed was transverse shear failure resulting in the 

delamination and cracking of the fibre along the edges of the pultruded beam in addition to 

local buckling on the compression flange as shown in Figures 13(a) and (b). Moreover, it was 

observed that the failure initiated at web-flange junctions and followed by premature 

buckling and crushing in the webs. This failure behaviour is described as a potential failure 

for pultruded GFRP sections under concentrated bearing load conditions 
21

. For beams with 

a/d ratios of 3.6 and 6, the failure occurred at the points of loading and distinct cracks 
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developed on the top surface and side of the tubes. Furthermore, cracks developed at the 

intersection between the flange and the web due to the buckling, leading to separation 

between them. It was also observed that delamination crack happened at the compression 

surface and later progressed into the sides as a result of local buckling initiation as shown in 

Figure 13(c) and (d). Similar observation was reported by Guadeset al. 
12

 and Kumaret al. 
22

 

in their investigations on the flexural behaviour of 100 and 76 mm square pultruded FRP 

tubes. In their studies, however, they reported that the final failure of the specimen occurs 

mainly due to the effect of the local buckling of the thin wall which results in material 

delamination and cracking of the fibre along the edges of the beam under the point loads. 

Shear crack was not observed even for beams with the lowest a/d ratio. The possible reason 

for this is the presence of the ±45
o 

plies in addition to the main fibre on the tube which 

provides a stronger shear resistance along the transverse direction.   

Figure 12. Failure modes of GFRP beams for different shear span to depth ratios. 

Discussion  

Determination of elastic properties. Table 6 gives a summary of the properties of the GFRP 

profiles based on the coupon and full scale tests. It can be seen from this table that there is a 

significant difference between the results determined from coupon and full scale tests. The 

main reason between the coupon and full scale results is the effect of discontinuity of the 

fibres (especially the +45
o
) in the small solid coupon of composite material. However, the 

continuity of the fibres in the full-scale beam results in higher effective elastic properties than 

the coupon specimens. Using these properties, the load-deflection behaviour of the full-scale 

pultruded GFRP beams were calculated using equation 4 and compared with the experimental 

results. Figure 13 displays comparison between the experimental and the predicted deflection 

calculated by using Timoshenko Beam Theory (equation 4). Elastic properties obtained from 

full scale test (using BCM and SM) and coupon test have been used to predict the deflection. 
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It can be seen that the Timoshenko Beam Theory provides a good approximation for the 

curves determined by the experimental tests. It can also be observed from the figure that 

using the elastic properties from BCM to calculate the beam deflection showed a good 

correlation with the experimental results for all a/d ratios. In contrast, analytical results using 

SM underestimated the experimental results and using coupon test results overestimated the 

deflection as shown in Figure 13. SM generally is relatively sensitive to the accuracy of the E 

measurement. When the span is short and for the same applied load, the deflection is in 

minimal. This observation is similar with Roberts and Al-Ubaidi 
23

 wherein they indicated 

that the measured elastic properties of Pultruded FRP I-profile can change substantially 

depending on the sensitivity of the graphical method. Therefore, it can be concluded that the 

elastic properties (E and G) determined using the BCM can reliably predict the behaviour of 

full scale GFRP beams.  

  Figure 14 shows the relationship between the flexural and shear deflection percentage 

of total deflection as a function of a/d ratio. The flexural and shear deflection was calculated 

using the average value obtained in this study (E/G = 11.6). It can be seen that the flexural 

deflection constitutes approximately 40% of the total deflection for a/d of 1.2. In contrast, 

shear deflection was 60 % for the same a/d ratio. These observations reflect the significant 

contribution of shear deformation in the total deflection of beams with low shear span to 

depth ratio. From the figure it can also be observed that the percentage of shear deflection is 

less than 10% for a/d of 10 and a ratio of 20 is required to decrease the shear deflection to 

less than 5%. Therefore, for composite beams with a/d equal or less than 10 the effect of 

shear deformation should be accounted in the total deflection calculation.  

Table 6. Summary of experimental properties for GFRP beams  

Figure 13. Comparison of theoretical and experimental deflection of beams with different a/d 

ratios. 

Page 14 of 30

http://mc.manuscriptcentral.com/jcm

Journal of Composite Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

13 

 

Figure 14. Contribution of flexural and shear deflection for beams with different a/d ratios.  

Effect of a/d ratio on shear stress. The effects of shear span to depth ratio on the shear stress 

of the GFRP beams were evaluated by calculating the shear stress experienced by the beams 

using equation 9: 

τ = 	
A
�BC                                                                            (9) 

where V is the shear force, Q is the first moment of area, I is the moment of inertia, and t is 

the wall thickness. The calculated values of shear stress at failure for different a/d ratios of 

the GFRP beams are shown in Figure 15. The results showed that the a/d ratio has a 

significant effect on the shear stress experienced by the pultruded GFRP beams. The reason is 

that the shorter span beams can be subjected to higher failure load which means higher shear 

force  resulting in higher shear stress according to Equation 9. As a result, it can be seen that 

the shear stress increases with decreasing   a/d ratio. Similar behaviour has been documented 

for composite sandwich beams and timber beams tested with different a/d ratios 
24-26

. The 

authors indicated that shorter beam is subjected to a higher shear stress compared with longer 

span beams.  They also mentioned that due to the core weakness, the shorter beams failed due 

to shear. In this study, no shear cracks were observed on the tested beams at the region of 

maximum shear even for short span beams.  

  The relationship between the shear stress and the a/d ratios seems to be linear. Almost 

all the tested sections failed in similar mode by local buckling under the applied load 

followed by cracking at the compression side and the delamination of the plies. Although the 

tensile strain is low for small a/d ratios, the bottom face of the beam displays a crushing of 

fibres at the support without any failure at the mid-span as shown in Figure 12. The reason 

for this is the higher applied load corresponding to lower a/d ratio.  

Page 15 of 30

http://mc.manuscriptcentral.com/jcm

Journal of Composite Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

14 

 

The maximum calculated shear stress of the pultruded GFRP beams with shear span to depth 

ratio of 1.2 and 6 are 55 and 32 MPa, respectively. These shear stresses are 45% and 27%, 

respectively, of the shear strength of the pultruded profile given in Table 1. These lower 

percentages indicated that the shear stress is not only the factor which affected the behaviour 

of the pultruded beams but also the flexural stress. Manaloet al. 
10

 mentioned that these 

combined stresses played an important part in understanding the overall behaviour of 

composites and should be considered in the design and analysis of composite materials.  

Figure 15. Shear stress versus shear span to depth ratio for GFRP beam.  

Effect of a/d ratio on flexural stress. The flexural behaviour of the GFRP hollow sections 

have been studied by calculating the bending stress using equation 10: 

σ = 	EF
B                                                                               (10) 

The calculated bending stresses for GFRP beams with different a/d ratios are shown in Figure 

16. It can be seen that the bending stress increases with increasing a/d ratio. The maximum 

bending stress with a/d ratios of 1.2 and 6 are 98 and 300 MPa, respectively. These bending 

stress values are 21% and 66% of the compression strength, respectively, and 13% and 41%, 

respectively, of the tensile strength of the pultruded profile as mentioned in Table 1. This 

explains the reason why the failure is happening at the compression side. Furthermore, the 

results indicated that the specimen experiences considerable flexural stresses even at a/d ratio 

of 1.2 which contributed to the failure mechanisms. Similar result was reported by Turvey 

and Zhang 
27

 in their investigation on the shear failure strength of web – flange junctions in 

pultruded GRP profiles. In their study, however, they reported that failure is a function of 

combined high shear and bending stresses at the interfaces of different plies.  

Figure 16. Bending stress versus shear span to depth ratio for GFRP beam.  
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Effect of a/d ratio on failure mode. The GFRP pultruded beams showed a brittle failure mode. 

The failure happened without any reduction in the slope of the load – deflection behaviour. 

The beams with a/d ratio of more than 3 exhibited a flexural mode of failure. The failure of 

those beams was controlled by the buckling under the load points followed by cracks and 

delamination at the compression face in addition to a web – flange junction failure as shown 

in Figures 12(c) and (d). The beams with a/d less than 3 showed a transverse shear failure. 

This type of failure was resulting in the delamination and cracking of the fibre along the 

edges of the pultruded beam in addition to local buckling on the compression flange. This 

failure behaviour was reported by Turvey and Zhang 
27

 and Wu and Bai 
21

  as a web – flange 

junction failure which caused mainly by the concentrated bearing load conditions. A change 

in the slope of the load – deflection behaviour has been noticed. In some cases, it can be seen 

that there are some drops in the load at the failure progress stage for the beams with spans 

lower a/d ratios. This failure response is due to the progressive damage accumulation of the 

section. No pure shear failure or shear cracks appeared in all of the tested beams. The main 

reason for that is the stacking sequence of the plies of the GFRP pultruded sections are in the 

form of ±45 degrees.  It was clearly noticed that the failure cracks position was closer to the 

top loading point than to the supports. 

Prediction of failure load for pultruded GFRP beams with different a/d ratio 

The contribution of the shear deformation was clearly observed for all a/d ratios considered in 

this study. Therefore, in order to estimate the failure load of the pultruded GFRP beams, it is 

important to account for the shear and the bending stresses in the prediction equation.  

Proposed prediction equation  

Based on the experimental results, buckling failure occurred at the concentrated load points 

and/or near the support locations. The main reason for this behaviour is the high shear forces 
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that typically develop at those locations. Bank 
7
 stated that, when the beam is subjected to 

high shear forces and high bending moment, the web is subjected to combined shear stress (τ) 

and axial compressive or tensile (flexural) stress,	�G . As a result, the combined effect of both 

stresses is significant and should be accounted for in the prediction of failure load. Structural 

plastics design manual ASCE 
28

 recommends using an interaction equation based on the 

isotropic plate theory to calculate the critical load which takes into account the combined 

effect of shear and flexural stresses. This equation expressed in the form:   

HIJK
HILL

+	 MIJK
MILL

≤ 1                                                                 (11) 

where GP-? and τact are the actual flexural and shear stresses, respectively,  GP77 and τall are the 

corresponding material allowable stresses. In this formula the combined effect of the shear 

and flexure has been suggested and the failure load can be calculated using the following 

equation: 

Q = �
IJ

RSTILL�	 U
RSKVILL

	                                                               (12) 

In this study, a linear interaction equation similar to ASCE equation is proposed to predict the 

failure load of the pultruded GFRP beams which account for the combined effect of shear and 

flexure. In the proposed equation, buckling stress GWX-Y7=>Z	calculated according to Bank 
13

 

has been used instead of the allowable compressive strength due to the fact that almost all the 

tested hollow pultruded profiles failed with local buckling. Therefore, the predicted failure 

load of the pultruded GFRP beams can be calculated as: 

Q = �
IJ

RST[\J]L^_`�	 U
RSKVILL

                                                            (13) 

The allowable stresses of the pultruded GFRP material are listed in Table 1.  

Comparison between predicted and the experimental failure loads 
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The predicted failure load of the pultruded GFRP beams tested using 4 – point load and the 

percentage difference between the predicted and actual (experimental) average failure loads 

are summarised in Table 7. For clarity, the comparison is also shown in Figure 17.  

It can be seen from Table 7 and Figure 17 that the proposed equation (13) shows a good 

agreement between the predicted and the actual failure load. For beam with a/d ratio 1.2, the 

proposed equation overestimates the failure load by 11%. This indicates that the beams are 

more likely to fail by transverse shear failure and the shear has the higher effect on the 

section’s failure mode. In contrast, the flexural compression stress is the more dominant 

stress to cause the failure for pultruded beams with a/d ratios of 3.6 – 6. Moreover, it can be 

clearly noticed that the use of equation (12) to predict the failure load depends on the ultimate 

flexural stress will overestimate the failure load by as much as 31 to 44 %. Figure 18 shows 

the percentages of stress contribution from the failure stress of the pultruded beams. As seen 

from the figure, for beams of a/d ratio 1.2, shear stress contribution (57%) for the failure load 

is higher than that for the flexural stress (42%). For beams with higher a/d ratio, the flexural 

stress becomes the dominant stress to cause the failure with 79% of the failure load compared 

with 21% of shear stress, respectively. These percentages showed that the predicted 

contributions compare well with the experimental contributions for shear and flexural 

stresses. In general, the proposed equation 13 provided a conservative but practical estimation 

of the failure load of the pultruded GFRP beams with different a/d ratios.     

Table 7. Predicted failure load compared with the actual failure load 

Figure 17. Comparison between the predicted and the actual failure loads. 

Figure 18. Percentages of stress contribution from the total failure stress. 

Conclusions  
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The behaviour of GFRP pultruded square beams with different shear span to depth (a/d) 

ratios was investigated using the four-point bending test. Similarly, the elastic properties of 

the beams were determined by testing full-scale specimens. The following conclusions can be 

drawn based on the results of the investigation: 

1. The back calculation method gives more reliable values of effective flexural and shear 

moduli of pultruded hollow GFRP square sections compared with simultaneous 

method and coupon test. This method is based on the Bernoulli equation and uses the 

strain readings at mid-span of the beam. A good correlation between the predicted and 

the actual load-deflection behaviour was achieved using the elastic properties 

determined from this method.  

2. The shear deformation contributes by as much as 50% to the total deflection of beams 

with low a/d ratio. Thus, it is recommended to account for the shear deflection in the 

deflection calculation of GFRP beams when (a/d) is less than or equal to 6. 

3. The shear stress experienced by the beam decreases with increasing a/d. In contrast, 

the flexural stress increases with increasing a/d ratio. 

4. The failure of the beam is governed by the buckling under the loading points followed 

by cracks and delamination at the web-flange junction at the compression face. 

5. The proposed equation accounting for the combined effect of shear and flexural 

stresses in pultruded GFRP square beams and accounting for the buckling stress of 

composites reasonably predicted the failure load of full size pultruded GFRP beams. 

6. Aside from shear and flexural stresses, it was found that there is a complexity on the 

overall behaviour of pultruded GFRP square beams with low a/d, which needs further 

investigation.    
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*All dimensions are in mm as per Table 2 

Figure 1. Experimental set-up for characterisation of elastic properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*All dimensions are in mm as per Table 3 

Figure 2. Experimental setup for the behaviour of GFRP beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Load – deflection relationship for GFRP beams 

a  a  

L 

300 mm 

P 

125mm  125mm  

Page 23 of 30

http://mc.manuscriptcentral.com/jcm

Journal of Composite Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Elastic modulus (E) and shear stiffness (KGA) versus Load for a/d =1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flexural modulus (E) and shear stiffness (KGA) versus Load for a/d =2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Flexural modulus (E) and shear stiffness (KGA) versus Load for a/d =3.2 
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Figure 7. Typical graph to determine E and KG using SM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Load – deflection curves for GFRP beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Stress versus compression strain 
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Figure 10. Stress versus tensile strain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Stress versus shear strain 
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Figure 12. Failure modes of GFRP beams for different shear span to depth ratios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Comparison of theoretical and experimental deflection of beams with different a/d 

ratios 

(a) a/d= 1.2 

(c) a/d= 3.6 (d) a/d= 6 
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Figure 14. Contribution of flexural and shear deflection for beams with different a/d ratios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Shear stress versus shear span to depth ratio for GFRP beam 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Bending stress versus shear span to depth ratio for GFRP beam 
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Figure 17. Comparison between the predicted and the actual failure loads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Percentages of stress contribution from the total failure stress 
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All Tables 

 

Table 1. Mechanical properties from coupon test 

Properties  Average value SD 

Compressive modulus (Longitudinal), GPa 38 1.4 

Compressive  strength, MPa 640 37 

Tensile modulus (Longitudinal), GPa 42 2 

Tensile Strength (MPa) 741 39 

Flexural modulus (Longitudinal)  (GPa) 39.3 2.3 

Shear modulus  (Longitudinal) (GPa) 5.7 0.4 

Shear Strength (MPa) 120 14 

Inter-laminar shear strength (MPa) 51 2 

 

Table 2. Details of the specimens tested for the elastic properties  

Span length 

mm 

Shear span, a 

mm 
a/d 

600 200 1.6 

900 300 2.4 

1200 400 3.2 

Table 3. Details of the specimens tested for the behaviour of GFRP beams 

Span length 

mm 

Shear span, a 

mm 

a/d 

600 150 1.2 

900 300 2.4 

1200 450 3.6 

1800 750 6 

Table 4. Summary of average E and KGA for each span for GFRP beam testing (BCM) 

a/d E 

GPa 

C.O.V 

% 

KGA 

GPa-cm
2
 

C.O.V 

% 

G 

GPa 

1.6 47.3 4.4 58.5 10 4.8 

2.4 46.2 2.4 49.1 9 4.1 

3.2 48.1 2.1 39.3 10 3.3 

Ave. 47.2    4 
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Table 5. Summary of experimental results for GFRP beams  

Shear span/ depth Average failure load 

kN 

Deflection 

mm 

Failure mode 

1.2 148 8 TS 

2.4 132 9 TS 

3.6 107.8 14 F 

6 80.8 37 F 

TS: transverse shear failure  

F: flexural failure 

 

Table 6. Summary of experimental properties for GFRP beams  

Test type E modulus 

GPa 

G modulus 

GPa 

Coupon 39.3 5.7 

BCM 47.2 4 

SM 56.1 3.3 

 

Table 7. Predicted failure load compared with the actual failure load 

a/d ratio Exp. 

kN 

Eq. 12 

kN 

Eq. 13 

kN 

1.2 148 214 164 

2.4 132 170 115 

3.6 107.8 142 88 

6 80.8 106 60 
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