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Abstract

Many physical and chemical systems exhibit self-oscillatory dynamics, for exam-
ple systems involving the Belousov-Zhabotinsky reaction and systems used for
material synthesis by solid-phase combustion, known as self-propagating high-
temperature synthesis. Phase of oscillators crucially depend on diffusion (or
thermal conductivity), which is reflected in the partial differential equation gov-
erning the phase of oscillations. At first sight, the role of diffusion is to equalise
the phase in space. However, more complex situations are possible; for exam-
ple the phase equation may involve self-excitation such as anti-diffusion in the
(Kuramoto-Sivashinsky equation). In this research we investigate a version of the
phase equation based on a nonlinear self-excitation. Previously it was shown that
nonlinear self-excitation can arise in chemical systems with non-local interaction.

In the present research, we analyse this kind of system in order to determine
the validity range of the nonlinearly excited phase equation in the parametric
space. Specifically, we numerically evaluate the values of the parameters that
guarantee the assumptions of slow variations of the phase in space and time and,
simultaneously, the key role of the nonlinear self-excitation.

We also numerically solve the phase equation with nonlinear self-excitation
in two spatial dimensions by finite-difference discretization in space and subse-
quent numerical integration of a system of ordinary differential equation in time.
Irregular dynamics intermitting with periods of slow evolution are revealed and
discussed.

As a separate task, we derive a forced variant of the phase equation and
present selected exact solutions – stationary and oscillatory. They are also used
to verify the numerical code. In the numerical experiments, we use a range of
sizes of spatial domain.

Lastly, different forms of the nonlinearly excited phase equation are investi-
gated based on different types of dynamical balance.
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