

# AUSTRALIA University of Southern Queensland Faculty of Health, Engineering and Sciences

## TRIBOLOGICAL BEHAVIOUR OF GRAPHITE/DATE PALM FIBRES REINFORCED EPOXY COMPOSITES

A dissertation submitted by

Abdullah Al-Ajmi 006 10 231 64

For the award of **Doctor of Philosophy** 

August 2013

Principal Supervisor: Dr. B.F. Yousif

#### Abstract

Natural fibres are becoming alternative candidates to synthetic fibres because of their environmental and economic advantages. In this study, the mechanical and the tribological performance of epoxy composites (ECs) based on date palm fibres (DPFs) was evaluated and compared with neat epoxy (NE). The work is divided into three stages: fibre optimisation, graphite optimisation and final composite selection.

Different fibre diameters (0.3–0.7 mm) and concentration of sodium hydroxide (NaOH) (zero to nine per cent) were used in preparing the fibre. For optimisation purposes, the interfacial adhesion between the DPFs and the epoxy matrix was studied using a new fragmentation technique that considers the influence of the NaOH treatment and the fibre diameter. At this stage, the results revealed that NaOH treatment significantly influences both the fibre strength and the fibre interfacial adhesion. Six per cent NaOH exhibited the optimum concentration to gain good mechanical properties for the EC, since it can maintain good interfacial adhesion, while maintaining good fibre strength.

In the second stage, the influence of the graphite weight presentation on ECs was evaluated from a mechanical and tribological perspective. Different weight percentages were used in the sample preparation (zero to seven per cent) for tensile, hardness and adhesive wear experiments. In the first part of this study, ultimate tensile strength and modulus of elasticity values and fracture morphology are determined. In the second part, specific wear rate, friction coefficient, interface temperature and surface morphology of the composites are determined. The results are discussed to gain the optimum mixing ratio of graphite with epoxy. The results revealed that there is a significant influence of the weight fraction of the graphite on both mechanical and tribological performance of the composites. Intermediate weight percentage of three weight per cent graphite in the EC was considered the optimum from both mechanical and tribological performance, since there is a slight reduction in the tensile properties and significant improvement to the hardness, wear and frictional characteristics. The modification on the wear track roughness significantly controlled the wear and frictional behaviour of the composites. Micrographs of the worn surface showed different wear mechanisms, depending on the content of the graphite in the composites. Softening and fragmentation appeared with low content of graphite presence in the composite, since there was no sign of aggregation or detachments of fillers.

From the second stage on the graphite percentage in the composite, it was concluded that three weight per cent of graphite in the ECs represents the optimum content from mechanical and tribological perspectives. In the third stage, the mechanical and tribological performance of the ECs based on three weight per cent graphite, DPF and three weight per cent graphite plus DPF are discussed and compared with NE. Further, the tribological performance of the composites is discussed, considering two different adhesive wear techniques: block on ring (BOR) and block on disk (BOD). This stage revealed that DPF is able to improve the mechanical properties of the ECs with no signs of pull out or debonding of the fibres. The main fracture mechanism was breakage in the fibre, fracture in the resinous regions and micro-cracks with graphite presence in the composites. Further, the addition of the three weight per cent of the graphite into the date fibre/ECs contributed to the improvement of the ECs; the fibres assisted in strengthening the surface, while the graphite generated the lubricant film transfer. Tribological experimental configuration significantly controlled the wear behaviour of the composite; the wear performance worsened under BOD compared to BOR because of the high thermo-mechanical loading in the case of BOD compared to BOR.

### List of publications

Shalwan, A\*\* & Yousif, BF 2013, 'In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres', *Materials & Design*, vol. 48, June, pp 14–24.

Shalwan, A\*\* & Yousif, BF 2014, 'Investigation on interfacial adhesion of date palm/epoxy using fragmentation technique', *Materials & Design. Volume 53*, Pages 928–937.

Shalwan, A\*\* & Yousif, BF 2013 in press, 'Correlation between mechanical and tribological performance of polymer composite materials', *International Journal of Precision Technology*, August.

Shalwan, A\*\* & Yousif, BF 2013, 'Influence of graphite content on mechanical and wear characteristics of epoxy composites', under review August 2013, *Wear*.

Shalwan, A\*\* & Yousif, BF 2013, 'Mechanical, wear and frictional performance of epoxy composites based on date palm fibres and graphite filler', under consideration since July 2013 *Tribology Letter*.

Arhaim, YH, Shalwan, A\*\* & Yousif, BF 2013, 'Correlation between frictional force, interface temperature and specific wear rate of fibre polymer composites', *Advanced Materials Research*, vol. 685, pp. 45–49.

\*\*Note: the candidate used his Arabic surname (Shalwan, A) instead of the English (Al-Ajmi, A.)

### **Certification of thesis**

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this thesis are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Abdullah Al-Ajmi 006 10 231 64

Signature of Candidate

Date

Endorsement

Signature of Principle Supervisor

Signature of Associate Supervisor

Date

Date

#### Acknowledgements

I would like to express my most sincere appreciation to my PhD project supervisors Dr B. F. Yousif and Prof. Dr. Kin Tak Lau for their support, encouragement, aluable input and guidance provided at every stage of this thesis. I would also like to extend my gratitude towards the entire departmental and technical staff for their assistance and support in using the facilities and materials for conducting the experimental work.

In addition, I wish to express my deepest appreciation to my family members for their constant support throughout this study, especially my mother and my son Mohammed. I would like to extend my appreciation to my friends for their encouragement.

My particular appreciation is also extended to the University of Southern Queensland for financial support during this study.

### Contents

| List of tables                                                               | X    |
|------------------------------------------------------------------------------|------|
| List of figures                                                              | . xi |
| Chapter 1: Introduction                                                      | 1    |
| 1.1 Introduction                                                             | 1    |
| 1.2 Objectives                                                               | 4    |
| 1.3 Project significance                                                     | 5    |
| 1.4 Organisation of the thesis                                               | 5    |
| Chapter 2: Literature review                                                 | 8    |
| 2.1 Mechanical properties of natural fibres/polymer composites               | 8    |
| 2.1.1 Influence of natural fibres on mechanical behaviour of polymeric       |      |
| composites                                                                   | 8    |
| 2.1.2 Interfacial adhesion of natural fibres                                 | 11   |
| 2.1.3 Effect of fibre orientation on mechanical properties                   | 16   |
| 2.1.4 Effect of volume fraction                                              | 16   |
| 2.1.5 Effect of fibre physical properties                                    | 18   |
| 2.2 Tribological performance of polymeric composites based on natural fibres | 19   |
| 2.2.1 Influence of natural fibres on tribological behaviour of polymeric     |      |
| composites                                                                   | . 19 |
| 2.2.2 Effect of treatments                                                   | 26   |
| 2.2.3 Operating parameters                                                   | 28   |
| 2.2.4 Frictional behaviour                                                   | 29   |
| 2.3 Possible reduction of friction coefficient                               | 31   |
| 2.3.1 Liquid lubricants                                                      | 31   |
| 2.3.2 Solid lubricants                                                       | 35   |
| 2.4 Chapter summary                                                          | 37   |
| Chapter 3: Methodology                                                       | 39   |
| 3.1 Introduction                                                             | 39   |
| 3.2 Materials selection and preparation                                      | 41   |
| 3.2.1 Date palm fibre preparation and treatment                              | 41   |
| 3.3 Preparation of samples                                                   | 43   |
| 3.3.1 Single fibre tensile test                                              | 43   |
| 3.3.2 Fragmentation test specimens                                           | 43   |
| 3.3.3 Composite specimens preparation                                        | 44   |
| 3.4 Experimental procedure                                                   | 47   |
| 3.4.1 Mechanical properties                                                  | . 49 |
| 3.4.1.1 Single fibre tensile test                                            | 49   |
| 3.4.1.2 Single fibre fragment test                                           | 49   |
| 3.4.1.3 Tensile experiments of the composites                                | 50   |
| 3.4.2 Tribological experiments                                               | 51   |
|                                                                              |      |

| 3.4.3 Calibration and measurement technique of friction coefficient           | . 55        |
|-------------------------------------------------------------------------------|-------------|
| Chapter 4: Interfacial adhesion of date palm/epoxy using fragmentation        |             |
| technique                                                                     | . 56        |
| 4.1 Introduction                                                              | . 56        |
| 4.2 Influence of fibre treatment on surface morphology                        | . 58        |
| 4.2.1 Optical microscope micrographs morphology                               | . 58        |
| 4.2.2 Scanning electron microscope morphology                                 | . 60        |
| 4.3 Single fibre tensile test                                                 | . 63        |
| 4.4 Single fibre fragmentation tensile test                                   | . 68        |
| 4.5 Comparison to other published works                                       | . 79        |
| 4.6 Chapter summary                                                           | . 82        |
| Chapter 5: Influence of graphite content on mechanical and wear               |             |
| characteristics of epoxy composites                                           | . 83        |
| 5.1 Introduction                                                              | . 83        |
| 5.2 Tensile properties of graphite/epoxy composites                           | . 83        |
| 5.2.1 Stress strain diagram, ultimate TS and modulus of elasticity            | . 83        |
| 5.2.2 Fracture behaviour of the epoxy composites                              | . 86        |
| 5.3 Tribological performance of the epoxy composites based on different       |             |
| graphite contents                                                             | . 93        |
| 5.3.1 Running in and steady state of the adhesive wear                        | . 93        |
| 5.3.2 Running in and steady state of the coefficient of friction              | . 95        |
| 5.3.3 Frictional heat in the interface of graphite/epoxy composites           | . 98        |
| 5.4 Surface observations                                                      | 101         |
| 5.4.1 Roughness modifications of the wear track                               | 101         |
| 5.4.2 Roughness of the composite surface                                      | 103         |
| 5.4.3 Scanning electron microscopy observation                                | 106         |
| 5.4.3.1 Micrographs of NE worn surface                                        | 106         |
| 5.4.3.2 Micrographs of one weight per cent graphite/epoxy worn surface.       | 108         |
| 5.4.5.5 Micrographs of inree weight per cent graphile/epoxy work              | 100         |
| Surface                                                                       | 109         |
| 5.4.3.5 Micrographs of seven weight per cent graphite/epoxy worn surface.     | 110         |
| 5.4.5.5 Micrographs of seven weight per cent graphile/epoxy work              | 112         |
| 5 5 Comparison with provious works                                            | 112         |
| 5.5 Comparison with previous works                                            | 115         |
| Chapter 6: Mechanical and wear characteristics of DPF and graphite            | 110         |
| filler/ECS                                                                    | 117         |
| ( 1 Introduction                                                              | 117         |
| 6.2 Tangila proparties of data palm/graphita/apoyy composites                 | 117         |
| 6.2.1 Stress strain diagram ultimate tensile stress and modulus of electicity | 11/<br>v.of |
| date palm/graphite/epoxy composites                                           | 7 UI        |
| 6.2.2 Fracture behaviour date nalm/graphite/epoxy composites                  | 124         |
| 6.2.3 Shore D hardness of the selected composites                             | 124         |
| 5.2.5 Shore D hurdness of the servered composites                             | 140         |

| 6.3 Tribological performance of date palm/graphite/epoxy composites under |                                                                     |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|
| BOR technique                                                             | 127                                                                 |
| 6.3.1 Wear behaviour of date palm/graphite/epoxy composites               | . 127                                                               |
| 6.3.2 Frictional behaviour of date palm/graphite/epoxy composites         | 129                                                                 |
| 6.3.3 Observation on the worn surfaces after BOR tests                    | 133                                                                 |
| 6.3.3.1 Roughness modifications of the wear track                         | 133                                                                 |
| 6.3.3.2 Roughness of the composite surface                                | 134                                                                 |
| 6.3.3.3 SEM observation                                                   | 135                                                                 |
| 6.4 Tribological performance of date palm/graphite/epoxy composites under |                                                                     |
| BOD technique                                                             | 138                                                                 |
| 6.4.1 Wear and frictional behaviour of date palm/graphite/epoxy composite | s 139                                                               |
| 6.4.2 Observation on the worn surfaces of date palm/graphite/ECs after    |                                                                     |
| BOR testing                                                               | 143                                                                 |
| 6.5 Discussion and arguments with previous works                          | 147                                                                 |
| 6.6 Correlation between mechanical and tribological properties            | 150                                                                 |
| 6.7 Chapter summary                                                       | 154                                                                 |
| Chapter 7: Conclusions and recommendations                                | 160                                                                 |
|                                                                           |                                                                     |
| 7.1 Conclusion                                                            | 160                                                                 |
| 7.1 Conclusion<br>7.2 Recommendations                                     | 160<br>162                                                          |
| 7.1 Conclusion                                                            | 160<br>162<br><b>1635</b>                                           |
| <ul> <li>7.1 Conclusion</li></ul>                                         | 160<br>162<br>1635<br>7582<br>for<br>1793                           |
| <ul> <li>7.1 Conclusion</li></ul>                                         | 160<br>162<br>1635<br>7582<br>for<br>1793<br>201                    |
| <ul> <li>7.1 Conclusion</li></ul>                                         | 160<br>162<br>1635<br>7582<br>for<br>1793<br>201<br>d<br>201<br>208 |
| <ul> <li>7.1 Conclusion</li></ul>                                         | 160<br>162<br>1635<br>7582<br>for<br>1793<br>201<br>d<br>201<br>208 |

### List of tables

| Table 2.1: Comparisons between various existing fibre-reinforced composites       | 17    |
|-----------------------------------------------------------------------------------|-------|
| Table 2.2: Adhesive wear and coefficient friction result of neat polymers and     |       |
| natural fibre composites under dry contact                                        | Table |
| 3.1: Specimen sets of the SFTT                                                    | 43    |
| Table 3.2: Technical specifications of the newly developed machine (Yousif        |       |
| 2012)                                                                             | 53    |
| Table 4.1: Summary of the previous works on optimum diameter and chemical         |       |
| treatment concentration on mechanical behaviour of fibre/polymer                  |       |
| composites                                                                        |       |
| Table 5.1: Summary of the previous works on effect of adding filler tribological  |       |
| behaviour of polymer composite                                                    | 115   |
| Table 6.1: Published works on tensile properties of natural fibre reinforce epoxy |       |
| or polyester composites                                                           |       |
| Table 6.3: Summary of previous works on effect of natural fibres and fillers on   |       |
| tribological behaviour of polymer composite                                       | 148   |
| Table 6.4 correlation coefficient of individual mechanical properties with coeffi | cient |
| of friction and specific wear rate.                                               | 156   |
| Table 6.5 Correlation coefficient of two mechanical properties combined with      |       |
| coefficient of friction and specific wear rate                                    | 157   |
| Table 6.6 Correlation coefficient of two or more than two mechanical properties   |       |
| combined with coefficient of friction and specific wear rate.                     | 158   |
|                                                                                   |       |

# List of figures

| Figure 1.1: Number of synthetic and natural fibre-reinforced polymeric                                           |
|------------------------------------------------------------------------------------------------------------------|
| composite articles. Source: www.ScienceDirect.com. Keywords used:                                                |
| natural fibres, reinforcement, polymers and synthetic fibres 2                                                   |
| Figure 1.2: Layout of the thesis7                                                                                |
| Figure 2.1: Some mechancial properties of natural fibre/polymer composites 10                                    |
| Figure 2.2: Scheme of reaction of fibre surface with NaOH treatment 12                                           |
| Figure 2.3: Tensile strength of polymeric composites based on natural fibres                                     |
| with/without treatment                                                                                           |
| Figure 2. 4: Specific wear rate and friction coefficient of some polymeric                                       |
| composites under dry contact conditions                                                                          |
| Figure 2.5: Schematic drawing showing the effect of treating the natural fibres                                  |
| on the wear behaviour of polymeric composites                                                                    |
| Figure 2.6: Specific wear rate and friction coefficient of some polymeric                                        |
| composites under wet contact conditions                                                                          |
|                                                                                                                  |
| Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric                               |
| Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites                    |
| Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric<br>composites                 |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |
| <ul> <li>Figure 2.7: Influence of solid lubricants on the frictional behaviour of polymeric composites</li></ul> |

| Figure 3.11: Calibration chart for measuring friction force                                |
|--------------------------------------------------------------------------------------------|
| Figure 4.1: Optical images of fibre surface ( $D = 0.3 \text{ mm}$ )—(a) untreated, (b) at |
| 3% NaOH, (c) at 6% NaOH (d) at 9% NaOH 59                                                  |
| Figure 4.2: (a) optical microscope micrographs for three different diameters of            |
| fibre with defects, (b) scheme of cross-section of fibre with lumen and                    |
| defects 60                                                                                 |
| Figure 4.3: Micrographs of the untreated DPF 61                                            |
| Figure 4.4: Treated DPF with different NaOH concentrations                                 |
| Figure 4.5: Tensile behaviour of the single DPF (0.3 mm diameter) treated with             |
| different NaOH concentrations                                                              |
| Figure 4.6: Tensile behaviour of the single DPF (0.5 mm diameter) treated with             |
| different NaOH concentration64                                                             |
| Figure 4.7: Tensile behaviour of the single DPF (0.7 mm diameter) treated with             |
| different NaOH concentrations 64                                                           |
| Figure 4.8: Effect of diameter of fibre and NaOH treatment on TS on single fibre 66        |
| Figure 4.9: Effect of diameter of fibre and NaOH treatment on strain at fracture           |
| on single fibre                                                                            |
| Figure 4.10: Effect of diameter of fibre and NaOH treatment on modulus of                  |
| elasticity on single fibre67                                                               |
| Figure 4.11: Tensile behaviour of the single DPF fragmentation test (0.3 mm                |
| diameter) treated with different NaOH concentrations                                       |
| Figure 4.12: Tensile behaviour of the single DPF fragmentation test (0.5 mm                |
| diameter) treated with different NaOH concentrations 70                                    |
| Figure 4.13: Tensile behaviour of the single DPF fragmentation test (0.7 mm                |
| diameter) treated with different NaOH concentrations and NE71                              |
| Figure 4.14: Effect of diameter of fibre and NaOH treatment on tensile stress of           |
| date palm/EC72                                                                             |
| Figure 4.15: Effect of fibre diameter and NaOH treatment on shear stress on fibre          |
| of date palm/EC73                                                                          |
| Figure 4.17: Microscopy of fragmentation samples after testing the treated DPF             |
| (3% NaOH)/epoxy                                                                            |

| (6% NaOH)/epoxy76                                                                  |
|------------------------------------------------------------------------------------|
| Figure 4.19: Microscopy of fragmentation sample after testing the treated DPF      |
| (9% NaOH)/epoxy77                                                                  |
| Figure 4.20: Schematic drawing showing the treatment effect of different           |
| concentration (0%, 3%, 6% and 9%) on surface and structure fibre 79                |
| Figure 5.1: Stress strain diagrams of graphite/ECs                                 |
| Figure 5.2: Ultimate TS and modulus of elasticity of graphite/ECs                  |
| Figure 5.3: Micrographs of the NE after tensile testing—st = stretching, de =      |
| detachment, fr = fracture                                                          |
| Figure 5.4: Micrographs of the 1% graphite/ECs after tensile testing—cr =          |
| cracks, sl = shear lips, rl = river-like pattern                                   |
| Figure 5.5: Micrographs of 3% graphite/ECs after tensile testing—rl = river-like   |
| pattern, gp = graphite particle                                                    |
| Figure 5.6: Micrographs of 5% graphite/ECs after tensile testing—rl = river-like   |
| pattern, gp = graphite particle, de = debonding, ag = aggregation90                |
| Figure 5.7: Micrographs of 7% graphite/ECs after tensile testing—de =              |
| debonding, ag = aggregation, cr = cracks, fr = fracture                            |
| Figure 5.8: Shore D hardness of graphite/ECs                                       |
| Figure 5.9: Specific wear rate v. sliding distance of graphite/ECs                 |
| Figure 5.10: Schematic drawing representing the running in and steady state        |
| Figure 5.11: Specific wear rate at the steady state of the graphite/ECs after 7.5  |
| km sliding distance                                                                |
| Figure 5.12: Coefficient of friction v. sliding distance of the composites         |
| Figure 5.13: Coefficient of friction at the steady state of the composites after 7 |
| km sliding distance                                                                |
| Figure 5.14: Heat distribution in the interface and both rubbed surfaces of the NE |
| after 2.52, 5.04 and 7.56 km sliding distances at sliding velocity of 2.8          |
| m/s and applied load of 50 N                                                       |
| Figure 5.15: Interface temperature of graphite/ECs surface at the end of the       |
| adhesive loadings                                                                  |
| Figure 5.16: Samples of the roughness profile of the counterface                   |

| Figure 5.17: Ra roughness values of the counterface surface after adhesive            |
|---------------------------------------------------------------------------------------|
| loadings for 7.56 km sliding distance 103                                             |
| Figure 5.18: Samples of the roughness profile of the composite surfaces after 7.56    |
| km sliding distance at sliding velocity of 2.8 m/s and applied load                   |
| of 50 N                                                                               |
| Figure 5.19: Ra roughness values of graphite/ECs surface after adhesive loadings      |
| for 7.56 km sliding distance106                                                       |
| Figure 5.20: Micrographs of NE after adhesive testing—fg = fragmentation, so =        |
| softening, fr = fracture                                                              |
| Figure 5.21: Micrographs of 1% graphite/ECs after adhesive testing—fg =               |
| fragmentation, so = softening, fr = fracture, gr = graphite, dt =                     |
| detachment, cr = crack                                                                |
| Figure 5.22: Micrographs of 3% graphite/ECs after adhesive testing—so =               |
| softening, $fr = fracture$ , $pg = patch of graphite$ , $df = deformation \dots 110$  |
| Figure 5.23: Micrographs of 5% graphite/ECs after adhesive testing—so =               |
| softening, fr = fracture, fl = film transfer, df = deformation 111                    |
| Figure 6.1: Stress strain diagram of different ECs based on graphite and/or DPFs. 118 |
| Figure 6.2: Ultimate TS and modulus of elasticity of different ECs based on           |
| graphite and/or DPF. NE = neat epoxy, GE = 3% graphite/epoxy, FE                      |
| = DPFE, GFE = 3 wt% graphite/date palm fibre/epoxy 119                                |
| Figure 6.3: Micrographs of DPFE composite after tensile test 125                      |
| Bo = bonded, Ep = Epoxy, Br = breakage, Rl = river-like, Tr = Trichome 126            |
| Figure 6.5: Shore D hardness of different ECs based on graphite and/or DPF. NE        |
| = neat epoxy, $GE = 3\%$ graphite/epoxy, $FE = DPFE$ , $GFE = 3$ wt%                  |
| graphite/date palm fibre/ epoxy 127                                                   |
| Figure 6.6: Specific wear rate v. applied load of different ECs based on graphite     |
| and/or DPF after 5.04 km sliding distance using BOR technique 128                     |
| Figure 6.7: Reduction in specific wear rate at the steady state of different ECs      |
| based on graphite and/or DPF at 70 N applied load using BOR                           |
| technique                                                                             |

| Figure 6.8: Coefficient of friction v. sliding load of different ECs based on     |    |
|-----------------------------------------------------------------------------------|----|
| graphite and/or DPF using BOR technique                                           | 0  |
| graphite and/or DPF at 70 N sliding load using BOR technique                      | 51 |
| Figure 6.10: Interface temperature of different ECs based on graphite and/or      |    |
| DPF at different applied loads after 5.04 km sliding distance using               |    |
| BOR technique                                                                     | 2  |
| Figure 6.11: Roughness values of the counterface surface after adhesive loadings  |    |
| of different ECs based on graphite and/or DPF at 50 N applied load                |    |
| using BOR technique                                                               | 4  |
| Figure 6.12: Roughness values of the specimen surface of different ECs based on   |    |
| graphite and/or DPF after adhesive loadings at 50 N using BOR                     |    |
| technique for 5 km sliding distance                                               | 5  |
| Figure 6.13: Micrographs of DPF/ECs after testing under 50 N applied load         |    |
| using BOR technique 13                                                            | 36 |
| Bo = bonded, So =Softening, Db =debonding                                         | 36 |
| Figure 6.14: Micrographs of date palm/3 wt% graphite/ECs after testing at 50 N    |    |
| using BOR technique                                                               | := |
| cracks, Db =debonding 13                                                          | 38 |
| Figure 6.15: Specific wear rate v. sliding distance of different ECs based on     |    |
| graphite and/or DPF using BOD technique14                                         | 0  |
| Figure 6.16: Reduction in specific wear rate at the steady state of different ECs |    |
| based on graphite and/or DPF at 70 N km sliding load using BOD                    |    |
| technique                                                                         | 0  |
| Figure 6.17: Specific wear rate of the selected composites using BOR and BOD      |    |
| techniques after applied load 50 N14                                              | 1  |
| Figure 6.18: Coefficient of friction v. sliding load of different ECs based on    |    |
| graphite and/or DPF using BOD technique14                                         | 2  |
| Figure 6.19: Interface temperature of different ECs based on graphite and/or      |    |
| DPF at different applied loads using BOD technique                                | 2  |

| Figure 6.20: Roughness values of the counterface surface after adhesive of            |
|---------------------------------------------------------------------------------------|
| different ECs based on graphite and/or DPF loadings at 50 N using                     |
| BOD technique                                                                         |
| experiments using BOD under low applied loads. Fr = fragmentation, Ab                 |
| = abrasive, Pg = ploughing, Cr = crack, Bo = bonded, Po = pull                        |
| out, Fl = film transfer                                                               |
| Figure 6.22: Micrographs of the date palm/3 wt% graphite/ECs after the                |
| experiments using BOD under high applied loads. Pl = pull out fibre,                  |
| Pg = ploughing, Fl = film transfer, Db = debonding                                    |
| Figure 6.23: Correlation between the individual mechanical properties and             |
| specific wear rate of the studied materials                                           |
| Figure 6.24: Correlation between selective combined mechanical properties and         |
| specific wear rate of the studied materials                                           |
| Figure A.3: Heat distribution in the interface and both rubbed surfaces of            |
| the 5%Gr-EC after 2.52, 5.04 and 7.56 km sliding distances at sliding                 |
| velocity of 2.8 m/s and applied load of 50 N 177                                      |
| Figure A.4: Heat distribution in the interface and both rubbed surfaces of            |
| the 7%Gr-EC after 2.52, 5.04 and 7.56 km sliding distances at sliding                 |
| velocity of 2.8 m/s and applied load of 50 N 178                                      |
| Figure B.1: Heat distribution in the interface and both rubbed surfaces of the NE     |
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and                  |
| sliding distance 5.04 km (BOR)                                                        |
| Figure B.2: Heat distribution in the interface and both rubbed surfaces of the GE     |
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and                  |
| sliding distance 5.04 km (BOR) 182                                                    |
| Figure B.3: Heat distribution in the interface and both rubbed surfaces of the FE     |
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and                  |
| sliding distance 5.04 km (BOR) 184                                                    |
| Figure B.4: Heat distribution in the interface and both rubbed surfaces of the GFE at |
| 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and                     |
| sliding distance 5.04 km (BOR) 186                                                    |

| Figure B.5: Heat distribution in the interface and both rubbed surfaces of the NE |
|-----------------------------------------------------------------------------------|
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and              |
| sliding distance 2.52 km (BOD) 188                                                |
| Figure B.6: Heat distribution in the interface and both rubbed surfaces of the GE |
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and              |
| sliding distance 2.52 km (BOD) 190                                                |
| Figure B.7: Heat distribution in the interface and both rubbed surfaces of the FE |
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and              |
| sliding distance 2.52 km (BOD) 192                                                |
| Figure B.8: Heat distribution in the interface and both rubbed surface of the GFE |
| at 20, 30, 40, 50 N sliding loads at sliding velocity of 2.8 m/s and              |
| sliding distance 2.52 km (BOD) 194                                                |
| Figure B.9: Roughness values of the counterface surface after adhesive loadings   |
| of different ECs based on graphite and/or DPF at 50 N applied load                |
| using BOR technique                                                               |
| Figure B.10: Roughness values of the specimen surface of different ECs based      |
| on graphite and/or DPF before adhesive loadings at 50 N using BOR                 |
| technique                                                                         |
| Figure B.11: Roughness values of the specimen surface of different ECs based      |
| on graphite and/or DPF after adhesive loadings at 50 N using BOR                  |
| technique 197                                                                     |
| Figure B.12: Roughness values of the counterface surface after adhesive of        |
| different ECs based on graphite and/or DPF loadings at 50 N using                 |
| BOD technique 198                                                                 |
|                                                                                   |
| Figure C. 1 correlation between specific wear rate and modulus of elasticity 199  |
| Figure C. 2 correlation between specific wear rate and elongation at break 199    |
| Figure C. 3 correlation between specific wear rate and hardness 200               |
| Figure C. 4 correlation between specific wear rate and tensile strength 200       |

| Figure C. 6 correlation between specific wear rate and the combination of           |
|-------------------------------------------------------------------------------------|
| modulus of elasticity, tensile strength and elongation at break                     |
| modulus of elasticity, tensile strength, hardness and elongation at                 |
| break                                                                               |
| Figure C. 8 correlation between specific wear rate and the combination of           |
| tensile strength and elongation at break                                            |
| Figure C. 9 correlation between specific wear rate and the combination tensile      |
| strength and hardness                                                               |
| Figure C. 10 correlation between specific wear rate and the combination of          |
| modulus of elasticity and elongation at break                                       |
| Figure C. 11 correlation between specific wear rate and the combination of          |
| modulus of elasticity and hardness                                                  |
| Figure C. 12 correlation between specific wear rate and the combination of          |
| hardness and elongation at break                                                    |
| Figure C. 13 correlation between specific wear rate and the combination of          |
| modulus of elasticity, hardness and elongation at break 205                         |
| Figure C. 14 correlation between friction coefficient and tensile strength 206      |
| Figure C. 15 correlation between friction coefficient and modulus of elasticity 206 |
| 3 Figure C. 16 correlation between friction coefficient and tensile elongation at   |
| break                                                                               |
| Figure C. 17 correlation between friction coefficient and hardness                  |
| Figure C. 18 correlation between friction coefficient and the combination of        |
| modulus of elasticity and tensile strength                                          |
| Figure C. 19 correlation between friction coefficient and the combination of        |
| modulus of elasticity, tensile strength and elongation at break 208                 |
| Figure C. 20 correlation between friction coefficient and the combination of        |
| modulus of elasticity, tensile strength, hardness and elongation at                 |
| break                                                                               |
| Figure C. 21 correlation between friction coefficient and the combination of        |
| tensile strength and elongation at break                                            |

| igure C. 22 correlation between friction coefficient and the combination of                                  |       |
|--------------------------------------------------------------------------------------------------------------|-------|
| tensile strength and hardness<br>igure C. 23 correlation between friction coefficient and the combination of | . 210 |
| modulus of elasticity and elongation at break                                                                | . 210 |
| igure C. 24 correlation between friction coefficient and the combination of                                  |       |
| modulus of elasticity and hardness                                                                           | . 211 |
| igure C. 25 correlation between friction coefficient and the combination of                                  |       |
| hardness and elongation at break                                                                             | . 211 |
| igure C. 26 correlation between friction coefficient and the combination of                                  |       |
| modulus of elasticity, hardness and elongation at break                                                      | . 212 |
|                                                                                                              |       |

### List of abbreviations

| ABS   | Acrylonitrile butadiene styrene            |
|-------|--------------------------------------------|
| ASTM  | American Society for Testing and Materials |
| BFRP  | Betelnut fibres reinforced in polyester    |
| BOD   | Block on disk                              |
| BOR   | Block on ring                              |
| CFRP  | Coir fibre-reinforced polyester            |
| CPC   | Cotton-polyester composite                 |
| Df    | Fibre diameter                             |
| DPF   | Date palm fibre                            |
| DPFE  | Date palm fibre-reinforced epoxy           |
| EC    | Epoxy composite                            |
| GJ    | Gigajoule                                  |
| GR    | Graphite powder                            |
| HDPE  | High-density polyethylene                  |
| ICMF  | Incomplete maturation fibres               |
| KFRE  | Kenaf fibre-reinforced epoxy               |
| MoS2  | Molybdenum disulfide                       |
| NaOH  | Sodium hydroxide                           |
| NE    | Neat epoxy                                 |
| РА    | Polyamides                                 |
| PEEK  | Polyarylethe-retherketone                  |
| PLA   | Polylactic acid                            |
| РММА  | polymethyl methacrylate                    |
| РР    | Polypropylene                              |
| PPESK | Polyphatalazinone ether sulfone ketone     |

| PPE  | Polyphatalazinone ether  |
|------|--------------------------|
| PPS  | Polyphenylene sulfide    |
| PTFE | Poly-tetrafluoroethylene |

| Ra      | Roughness average                             |
|---------|-----------------------------------------------|
| RNFPC   | Reinforced natural fibre polymer composite    |
| SCRP    | Sugarcane fibre/polyester composite           |
| SEM     | Scanning electron microscopy                  |
| SiC     | Silicon carbide                               |
| SFFT    | Single fibre fragmentation test               |
| SFTT    | Single fibre tensile test                     |
| SP      | Sisal fibres/polyester composites             |
| T-OPRP  | Treated oil palm fibre-reinforced polyester   |
| TS      | Tensile strength                              |
| T-SP    | Treated sisal fibres/polyester composites     |
| UHMWPE  | Ultra-High Molecular Weight Polyethylene      |
| US      | United States                                 |
| UT-OPRP | Untreated oil palm fibre-reinforced polyester |
| UT-SP   | Untreated sisal fibres/polyester composites   |
| Vf      | Volume fraction                               |
| Ws      | Specific wear rates                           |
| Wt      | Weight                                        |