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Abstract

The present Ph.D. thesis is concerned with the development of computational
procedures based on Cartesian grids, point collocation, immersed boundary
method, and compact integrated radial basis functions (CIRBF), for the simu-
lation of heat transfer and steady/unsteady viscous flows in complex geometries,
and their applications for the prediction of macroscopic rheological properties
of particulate suspensions.

The thesis consists of three main parts. In the first part, integrated radial ba-
sis function approximations are developed into compact local form to achieve
sparse system matrices and high levels of accuracy together. These stencils are
employed for the discretisation of the Navier-Stokes equation in the pressure-
velocity formulation. The use of alternating direction implicit (ADI) algo-
rithms to enhance the computational efficiency is also explored. In the sec-
ond part, compact local IRBF stencils are extended for the simulation of flows
in multiply-connected domains, where the direct forcing-immersed boundary
(DFIB) method is adopted to handle such complex geometries efficiently. In
the third part, the DFIB-CIRBF method is applied for the investigation of sus-
pensions of rigid particles in a Newtonian liquid, and the prediction of their
bulk viscosity and stresses.

The proposed computational procedures are verified successfully with several
test problems in Computational Fluid Dynamics and Computational Rheology.
Accurate results are achieved using relatively coarse grids.
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Chapter 1

Introduction

The chapter starts with an overview of particulate suspensions. Conventional
numerical methods used for solving fluid flows and fluid-solid systems are then
reviewed. Next, we describe radial basis functions that will be utilised to de-
velop approximation tools in the proposed computational procedures, which
is followed by the motivation and objectives of the present research project.
Finally, an outline of the thesis is presented.

1.1 Suspensions

Particulate suspensions widely exist in nature and are commonly produced in in-
dustry (Phan-Thien, 2013). Typical examples include paint, inks, biofluids (e.g.
blood, mucus and cartilage), cosmetics, food stuff, etc. Particulate suspensions
are systems formed by particles suspended in liquids. If the suspending liquid
is Newtonian, one speaks of Newtonian suspensions; otherwise, non-Newtonian
suspensions. Suspended particles can be rigid bodies, droplets or bubbles. If
the suspended particles are identical, one has monodispersed suspensions - oth-
erwise, polydispersed suspensions. The particle size also matters too. If the
size of suspended particles is sufficiently small, they will undergo their Brow-
nian motion and one speaks of colloidal suspensions. If this is not met, one
has non-colloidal suspensions. Further details can be found in (Phan-Thien,
2013). In this research project, we are mainly concerned with suspensions of
rigid spheres (3D) and circular discs (2D) in a Newtonian fluid (droplets and
bubbles will not be considered here).

The behaviour of suspensions is non-Newtonian in nature, due to the evolution
of microstructure (the spatial arrangement of rigid bodies). There are three
regimes of suspension, namely dilute, semi-dilute and concentrated. For a con-
centrated regime (i.e. volume fractions of the solid phase larger than 0.25),
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lubrication forces become dominant and special care is needed, particularly for
numerical modelling (one needs to maintain meshes/grids between the particle
surfaces when the volume fraction is increased). Suspensions are typically char-
acterised by (i) the dependence of viscosity on concentration (volume fraction of
the solid phase); (ii) non-zero first and second normal stress differences; and (iii)
migration of rigid particles from high to low shear regions in an inhomogeneous
shear flow such as Poiseuille flow.

1.2 Numerical methods

1.2.1 Simulating fluid flows

From a mathematical point of view, physical processes in nature such as the
motion of fluids and heat transfer can be described by a set of partial differential
equations (PDEs). These equations are based on the fundamental conservative
laws in physics: conservation of mass, conservation of momentum and conser-
vation of energy. The governing equations for Newtonian fluid flows are known
as the Navier-Stokes equation. Due to the complex nature of the governing
equations, analytical solutions cannot be obtained in most cases. Numerical
methods have been developed to find an approximate solution. In numerical
methods, one needs to discretise the PDEs in both space and time. As a result,
a linear/non-linear PDE will be converted into a system of linear/non-linear
algebraic equations. Such algebraic systems can then be solved for values of the
field variables (e.g. the velocity, pressure and temperature) at discrete points
within the computational domains and at all points in the domain by virtue of
the assumed interpolation.

Computational fluid dynamics (CFD) is concerned with the numerical simu-
lation of fluid flows. Common numerical methods used include finite differ-
ence methods (FDMs), finite volume methods (FVMs), finite element meth-
ods (FEMs), boundary element methods (BEMs) and spectral methods (SMs).
Fundamental backgrounds and applications of conventional methods have been
well documented, e.g. in (Roache, 1998; Tannehill et al., 1997; Peyret and Tay-
lor, 1983) for FDM; (Leveque, 2002; Tannehill et al., 1997; Patankar, 1980)
for FVM; (Zienkiewicz and Taylor, 2000; Girault and Raviart, 1986) for FEM;
(Pozrikidis, 2002; Tran-Cong, 1989; Phan-Thien and Kim, 1994; Tanner, 1985)
for BEM and (Peyret, 2002; Karniadakis and Sherwin, 1999; Canuto et al.,
1988) for SM. They have been used with varying degree of success in various
practical problems. It should be noted that (i) generating a mesh is not a
straightforward task; and (ii) the distortion of the mesh can result in a severe
reduction in accuracy. The latter can be alleviated by means of remeshing.
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Recently, the concept of solving PDEs without using a mesh/grid has been
introduced. The problem domain is simply discretised by a set of nodes that
can be randomly distributed. Like conventional methods, meshless methods
have also been developed to deal with the governing equations in their strong
form (reproducing kernel particle method (RKPM) (Liu et al., 1995)), weak
form (element-free Galerkin (EFG) method (Belytschko et al., 1994), meshless
local Petrov-Galerkin (MLPG) (Atluri and Zhu, 1998; Atluri and Shen, 2002;
Atluri et al., 2004)) and inverse statement (boundary node method (BNM)
(Mukherjee and Mukherjee, 1997; Yang et al., 2011), local boundary integral
equation (LBIE) method (Zhu et al., 1998)). Applications of meshless methods
for fluid flows have received a great deal of attention because of their economic
benefits in dealing with complex geometries such as free surfaces and channels
of varying cross-sections.

1.2.2 Modelling fluid-solid systems

If the Navier-Stokes equation governing the motion of a fluid and the Newton-
Euler equation governing the motion of solid bodies are solved directly, one
speaks of direct numerical simulations (DNSs). Since the solvent is modelled
explicitly, DNSs have the ability to deal with any kinds of the suspending liquid
and also any shapes and sizes of suspended particles. Based on the fluid-phase
solver employed, DNSs can be classified into two categories. In the first cat-
egory, a mesh following the movement of the particles, i.e. moving mesh, is
used. Methods in this category are usually based on the Arbitrary Lagrangian-
Eulerian (ALE) approach, e.g. (Yu et al., 2007, 2004, 2002), (Hu et al., 2001;
Hu, 1995; Hu et al., 1992). Finite element methods employed with unstructured
meshes have been developed to simulate the motion of a large number of rigid
objects in Newtonian and viscoelastic fluids. Nodes on the particle surfaces are
allowed to move with the particles, while nodes in the interior of the fluid are
smoothly updated by solving a Laplace’s equation. One needs to generate a new
mesh when the old one becomes too distorted; the flow field is then projected
onto the new mesh. In the second category, a mesh covering the whole domain
and independent of the particle movement, i.e. a fixed mesh, is used. Methods
in this category include immersed structural potential methods (ISPMs) (Gil
et al., 2010), fictitious boundary methods (FBMs) (Turek et al., 2003), immersed
boundary methods (IBMs) (Peskin, 2002), sharp interface methods (SIMs) (also
called ghost-fluid method) (Liu et al., 2000), virtual boundary methods (VBMs)
(Saiki and Biringen, 1996), immersed interface methods (IIMs) (Leveque and
Li, 1994), fictitious domain methods (FDMs) (Glowinski et al., 1994), etc. The
advantage of the second category over the first one is that it allows a fixed grid
to be used and thus eliminating the remeshing procedure.

Much research effort has also been put in the development of numerical methods
in the Lagrangian framework (i.e. particle-based methods). Unlike the Eulerian
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approach using a fixed frame of reference, the Lagrangian one follows the tra-
jectory of individual parts of the material. An advantage in using this approach
is that convective terms vanish in Lagrangian formulations and therefore the
numerical method employed is simpler. A popular particle-based Lagrangian
method is smoothed particle hydrodynamics (SPH) method pioneered by Lucy
(1977) and Gingold and Monaghan (1977). Up to date, SPH methods have
been improved in terms of both accuracy and stability and they have been ap-
plied to many engineering problems successfully (Monaghan, 2005; Randles and
Libersky, 1996; Morris et al., 1997; Hashemi et al., 2012). Dilts (1999) proposed
a novel method, namely Moving-Least-Squares-Particle Hydrodynamics (ML-
SPH), in which the conventional SPH method was newly derived by means of a
Galerkin approximation. In this derivation, the SPH interpolant was replaced
by the Moving-Least-Squares (MLS) interpolant.

1.3 Radial basis functions

Radial basis functions (RBFs) have emerged as a powerful numerical tool in
scattered data approximations and have found applications in various research
fields. Kansa (1990a,b) applied RBFs to solve parabolic, hyperbolic and el-
liptic PDEs, where the multiquadrics (MQ) function is adopted and used in a
global fashion, and the collocation technique is employed to discretise PDEs.
Kansa’s method and its variants are hereby referred to as differential/direct
RBF (DRBF) methods. The accuracy of MQ is strongly influenced by the
so-called shape/width parameter (Carlson and Foley, 1991; Rippa, 1999). In
approximating the function and its derivatives, MQ and some other RBFs are
known to possess spectral accuracy with an error estimate as O

(
λ
√
a/h
)
(Cheng

et al., 2003), where 0 < λ < 1, a is the RBF width and h is the characteristic
distance between RBFs’ centres. If one approximates the kth derivative, the
convergence rate is reduced to O

(
λ
√
a/h−k) as shown in Madych (1992). Noting

that any errors associated with a function approximation will be badly magni-
fied in the differentiation process. An indirect/integral (IRBF) approach was
proposed in Mai-Duy and Tran-Cong (2001a,b, 2003) in order to avoid such
a reduction in convergence rate. In this approach, derivatives of a function
are first approximated by RBFs. Lower-order derivatives and the function it-
self are then obtained through the integration process. Since integration is a
smooth process, it is expected that the indirect approach yields a more stable
solution than the direct approach. The indirect/integral approach was devel-
oped into global forms (Mai-Duy and Tran-Cong, 2001a), one-dimensional forms
(1D-IRBF) (Mai-Duy and Tanner, 2007; Mai-Duy and Tran-Cong, 2005), local
forms (Mai-Duy and Tran-Cong, 2009) and compact local forms (Thai-Quang,
Le-Cao, Mai-Duy, Tran and Tran-Cong, 2013; Mai-Duy and Tran-Cong, 2013;
Thai-Quang, Mai-Duy, Tran and Tran-Cong, 2012; Thai-Quang, Le-Cao, Mai-
Duy and Tran-Cong, 2012; Mai-Duy and Tran-Cong, 2011). Each form has its
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own strengths and weaknesses. For compact local forms, the information about
the governing equation or derivatives of the field variable is also included in
local approximations, which allows the achievement of sparse system matrices
and high levels of accuracy together. This research is concerned with the de-
velopment of compact local IRBF approximations for the discretisation of the
pressure-velocity formulation in solving viscous flows, fluid-solid interactions
and particulate suspensions.

1.4 Motivation and objectives

An understanding of the rheological properties and dynamic behaviours of par-
ticulate suspensions is clearly vital in industrial particulate-flow processes, e.g.
slurries, colloids, fluidised beds, spray drying/cooling in chemical engineering,
river sediment in environmental engineering, and rock cuttings in drilling opera-
tion in mining and petroleum engineering. Direct numerical simulations (DNSs)
for the description of microstructures in fluid media, from which bulk proper-
ties are derived, have made significant advances over the past twenty years.
However, to date, existing DNSs still face major deficiencies with respect to
efficiency and accuracy. Given the vastness of industrial processes involving
particulate suspensions, any achievement in solving these problems will bring
enormous benefits to the industry and consumers. The main objectives of this
research are

• To develop computational procedures, which will be both accurate and
efficient, for the simulation of heat transfer and steady/unsteady viscous
flows.

• To develop accurate and efficient computational procedures for the sim-
ulation of steady/unsteady viscous flows in multiply-connected domains
that are stationary.

• To develop accurate and efficient computational procedures for the sim-
ulation of steady/unsteady viscous flows in multiply-connected domains
that vary with time.

• To predict rheological properties of particulate suspensions.

The enhancement of accuracy is achieved through

• Using RBFs to represent the field variables in the governing equations.
RBFs converge much faster with respect to spacing refinement than con-
ventional low-order polynomials.
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• Using the integral formulation rather than the conventional differential
one to construct the RBF approximations (IRBF). A reduction in conver-
gence rate in the approximation of derivatives caused by differentiation
(Madych, 1992) is avoided in the present integral formulation.

• Constructing the IRBF approximations, where values of the governing
equation or derivatives at selected points are also included (compact forms).

The enhancement of efficiency is achieved through

• Using point collocation to discretise the governing equations. No integra-
tions are involved in this process.

• Using Cartesian grids rather than finite-element meshes to represent the
spatial problem domain. Generating a Cartesian grid is much simpler and
easier than generating a finite element mesh.

• Constructing IRBF approximations in a local form, leading to a sparse
system matrix.

• Using ADI algorithms of You (2006) to save memory storages and reduce
computational costs.

• Converting a multiply-connected domain into a simply-connected domain
by means of the direct forcing immersed boundary method.

1.5 Outline

The present thesis has a total of eight chapters including this chapter (Intro-
duction). Below are brief descriptions of the remaining chapters.

• In chapter 2, IRBFs are developed for the discretisation of the velocity-
pressure formulation on Cartesian grids to simulate 2D steady-state in-
compressible viscous flows. A high-order compact local integrated RBF
(CLIRBF) approximation scheme and an effective boundary treatment
for the pressure variable are proposed. A number of linear and non-linear
problems are considered to investigate the performance of the proposed
scheme/treatment numerically.

• In chapter 3, CLIRBF approximations are further developed for solv-
ing 1D and 2D time-dependent problems, where second-order Adams-
Bashforth/Crank-Nicolson algorithms are employed to discretise the tem-
poral derivatives. Four types of time-dependent equations, namely the
diffusion, Burgers, Stokes and Navier-Stokes equations, are considered.



1.5 Outline 7

• In chapter 4, CLIRBF approximations are employed with the ADI algo-
rithm of You (2006) to solve 2D convection-diffusion equation efficiently.
Several steady and unsteady problems are considered to verify the present
schemes. Results obtained are compared with those by some other ADI
schemes.

• In Chapter 5, CLIRBF approximations are employed with the direct forc-
ing immersed boundary (DFIB) method to simulate heat transfers and vis-
cous flows in multiply-connected domains. The proposed method, namely
DFIB-CIRBF, is verified through the solution of several test problems in-
cluding Taylor-Green vortices, rotational flow, lid-driven cavity flow with
multiple solid bodies, flow between rotating circular and fixed square cylin-
ders, and natural convection in an eccentric annulus between two circular
cylinders.

• In chapter 6, the present DFIB-CIRBF method is applied for the sim-
ulation of fluid-solid systems (the interactions between fluid and rigid
particles). Problems considered include Taylor-Green vortices, induced
flow by an oscillating circular cylinder, single particle sedimentation and
drafting-kissing-tumbling behaviour of two settling particles.

• In chapter 7, the present DFIB-CIRBF method is applied for the sim-
ulation of particulate suspensions in a sliding bi-periodic frame and the
prediction of their rheological properties numerically. The motion of a
liquid and particles are solved in a decoupled manner, where methods for
computing the rigid body motion are derived. Results concerning visco-
metric behaviour (e.g. viscosity and flow index) are presented.

• Chapter 8 concludes the thesis and suggests some possible research devel-
opments/extensions in the future.



Chapter 2

A compact IRBF scheme for
steady-state fluid flows

This chapter is concerned with the development of IRBF method for the simu-
lation of 2D steady-state incompressible viscous flows governed by the velocity-
pressure formulation on Cartesian grids. Instead of using low-order polynomial
interpolants, a high-order compact local IRBF scheme is employed to repre-
sent the convection and diffusion terms. Furthermore, an effective boundary
treatment for the pressure variable, where Neumann boundary conditions are
transformed into Dirichlet ones, is proposed. This transformation is based on
global 1D-IRBF approximators using values of the pressure at interior nodes
along a grid line and first-order derivative values of the pressure at the two
extreme nodes of that grid line. The performance of the proposed scheme is
investigated numerically through the solution of several linear (analytic tests
including Stokes flows) and non-linear (recirculating cavity flow driven by com-
bined shear & body forces and lid-driven cavity flow) problems. Unlike the
global 1D-IRBF scheme, the proposed scheme leads to a sparse system ma-
trix. Numerical results indicate that (i) the present solutions are more accurate
and converge faster with grid refinement in comparison with standard finite-
difference results; and (ii) the proposed boundary treatment for the pressure is
more effective than conventional direct application of the Neumann boundary
condition.

2.1 Introduction

It is known that the equations of motion of a Newtonian fluid can be obtained
via several formulations, including those based on the velocity-pressure (u−p),
the stream function-vorticity (ψ − ω) and the stream function (ψ) variables.
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The last two involve less dependent variables than the first one. However,
they require some special treatments for the handling of the vorticity boundary
condition (the ψ − ω formulation) and the calculation of high-order derivatives
including the cross-ones (the ψ formulation). Furthermore, the pressure field
needs be resolved, which is generally recognised as a complicated process. For
the u−p formulation, the pressure and velocity fields are obtained directly from
the discretised equations and it is straightforward to extend the formulation to
3D problems.

It was reported, e.g. (Roache, 1998; Cheng, 1968; Cyrus and Fulton, 1967), that
the use of a conservative form of the governing equation has the ability to give
more accurate results than the use of a non-conservative form. In Torrance et al.
(1972), through the simulation of a flow in a cavity, it was shown that results
by using the conservative equations with first-order accurate interpolants are
better than those by using the non-conservative equations with second-order
accurate interpolants.

To facilitate a numerical calculation, the spatial domain needs be discretised.
Generating a Cartesian grid, which is associated with finite-difference (FD)
methods, can be seen to be much more straightforward than generating a finite-
element (FE) mesh, which is associated with FE methods and finite-volume
(FV) methods.

A fractional-step/projection approach, which is originally suggested by Chorin
(1968), is widely applied for the simulation of incompressible viscous flows mod-
elled with the u−p formulation. Variations of this approach have been published
in, for example, (Almgren, 1996; Perot, 1993; Bell et al., 1989; Van Kan, 1986;
Kim and Moin, 1985). In this study, we will propose a numerical projection
method, based on Cartesian grids and a compact local IRBF scheme, for the
discretisation of the u− p formulation in two dimensions. Boundary conditions
for the pressure are taken in the form of Dirichlet type, and to do so, we pro-
pose a treatment based on global 1D IRBF approximations using values of the
pressure at interior nodes along a grid line and first-order derivative values of
the pressure at the two extreme nodes of that grid line. The performance of the
present method is investigated numerically through the solution of linear and
non-linear problems.

The remainder of the chapter is organised as follows. Sections 2.2 and 2.3
briefly outline the mathematical model of incompressible viscous flows and the
global 1D-IRBF approximation scheme, respectively. The proposed compact
local IRBF scheme and the proposed boundary treatment for the pressure are
described in Section 2.4. In Section 2.5, numerical results are presented and
compared with some benchmark solutions, where appropriate. Finally, some
concluding remarks are given in Section 2.6.
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2.2 Mathematical model

The transient Navier-Stokes equations for an incompressible Newtonian fluid in
a domain of interest Ω at the time t can be written in the non-dimensionalised
conservative form and in the primitive variables as

∇.u = 0 in Ω, t ≥ 0, (2.1)

∂u

∂t
+∇.(u u) = −∇p+ 1

Re
∇2u+ fb in Ω, t ≥ 0, (2.2)

where p, u = (u, v)T , fb =
(
fbx, fby

)T
are the static pressure, the fluid velocity

vector, and the fluid body force density vector, respectively, defined in the
Cartesian x and y coordinate system, the superscript T denotes the transpose;
Re = UL/ν the Reynolds number, in which ν is the kinematic viscosity, L is
the characteristic length and U is the characteristic speed of the flow.

For the projection method (Chorin, 1968), the velocity and the pressure vari-
ables in the above set of PDEs are solved separately in each iteration. The
temporal discretisation of (2.2) with an explicit Euler scheme gives

un − un−1

∆t
= −∇pn +

1

Re
∇

2un−1 −∇.(un−1un−1) + fn−1
b , (2.3)

where the superscript n denotes the current time level.

An intermediate velocity vector, denoted by u∗,n = (u∗,n, v∗,n)T , is defined as

u∗,n − un−1

∆t
=

1

Re
∇

2un−1 −∇.(un−1un−1) + fn−1
b . (2.4)

This equation, which does not involve the pressure gradient term, can be rewrit-
ten as

u∗,n = un−1 +∆t

[
1

Re
∇

2un−1 −∇.(un−1un−1) + fn−1
b

]
. (2.5)

It is seen that u∗,n does not satisfy the continuity equation (2.1). From (2.3)
and (2.4), one can derive the following equation

un − u∗,n

∆t
= −∇pn. (2.6)

The Poisson equation for the pressure is then obtained by applying the gradient
operator to both sides of (2.6) and forcing un to satisfy (2.1)

∇
2pn =

1

∆t
∇ · u∗,n. (2.7)
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After solving (2.7), the velocity field at the next time level is calculated through
(2.6) as

un = u∗,n −∆t∇pn. (2.8)

2.3 A brief review of the global 1D-IRBF scheme

Consider the approximation of a univariate function u(η) and its derivatives up
to second order. The second-order derivative of u is decomposed into RBFs

d2u(η)

dη2
=

m∑

i=1

wiGi(η), (2.9)

where m is the number of RBFs; {Gi(η)}mi=1 the set of RBFs; and {wi}mi=1 the set
of weights/coefficients to be found. Approximate representations for the first-
order derivative and the function itself are then obtained through integration

du(η)

dη
=

m∑

i=1

wiHi(η) + c1, (2.10)

u(η) =

m∑

i=1

wiH i(η) + c1η + c2, (2.11)

where Hi(η) =
∫
Gi(η)dη; H i(η) =

∫
Hi(η)dη; and c1 and c2 are the constants

of integration. In the IRBF methods, basis functions are obtained through

η
b1

η
1

η
2

η
3

η
q

η
b2

Figure 2.1: 1D-IRBF centres on a Cartesian grid line.

integration. For several RBFs including the multiquadric function used in the
present project, integrated basis functions can be obtained in analytic form
and thus equations (2.10) and (2.11) do not require any additional costs when
compared to their counterparts of the conventional (differential) RBF methods.
Let {ηi}qi=1 (q = m−2) and {ηb1, ηb2} be a set of interior nodal points and a set
of boundary nodal points, respectively, as shown in Figure 2.1. We choose the
set of RBF centres as the set of nodes. Evaluation of (2.11) at the interior and
boundary nodes results in

(
û
ûb

)
= H




ŵ
c1
c2


 , (2.12)
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where

û = (u1, u2, · · · , uq)T ,
ûb = (ub1, ub2)

T ,

ŵ = (w1, w2, · · · , wm)T ,

H =




H1(η1) · · · Hm(η1) η1 1

H1(η2) · · · Hm(η2) η2 1
...

. . .
...

...
...

H1(ηq) · · · Hm(ηq) ηq 1
H1(ηb1) · · · Hm(ηb1) ηb1 1
H1(ηb2) · · · Hm(ηb2) ηb2 1



. (2.13)

The system (2.12), which represents the relation between the RBF space and
the physical space and hereafter is called a conversion system, can be solved
for the unknown vector of weights (ŵ, c1, c2)

T by means of the singular value
decomposition (SVD) technique as




ŵ
c1
c2


 = H−1

(
û
ûb

)
, (2.14)

where H−1
is the pseudo-inverse of H.

Making use of (2.14), (2.10) and (2.9), values of the first and second derivatives
of u at the interior and boundary nodes are, respectively, computed as




du1
dη
du2
dη
...
duq
dη
dub1
dη
dub2
dη




=




H1(η1) · · · Hm(η1) 1 0
H1(η2) · · · Hm(η2) 1 0

...
. . .

...
...

...
H1(ηq) · · · Hm(ηq) 1 0
H1(ηb1) · · · Hm(ηb1) 1 0
H1(ηb2) · · · Hm(ηb2) 1 0



H−1

(
û
ûb

)
, (2.15)




d2u1
dη2

d2u2
dη2

...
d2uq
dη2

d2ub1
dη2

d2ub2
dη2




=




G1(η1) · · · Gm(η1) 0 0
G1(η2) · · · Gm(η2) 0 0

...
. . .

...
...

...
G1(ηq) · · · Gm(ηq) 0 0
G1(ηb1) · · · Gm(ηb1) 0 0
G1(ηb2) · · · Gm(ηb2) 0 0



H−1

(
û
ûb

)
. (2.16)

These expressions can be rewritten in the following compact form

d̂u

dη
= D̂1ηû+ k̂1η, (2.17)
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and

d̂2u

dη2
= D̂2ηû+ k̂2η, (2.18)

where the matrices D̂1η and D̂2η consist of all but the last two columns of the
product of two matrices on the right-hand side of (2.15) and (2.16), respectively;

and k̂1η and k̂2η are obtained by multiplying the vector ûb with the last two

columns of (2.15) and (2.16) respectively. It is noted that entries of k̂1η and k̂2η
are functions of the two boundary values.

It can be seen that derivatives of the function u at nodes are expressed in terms
of nodal values of u.

2.4 Proposed method

Consider an interior grid point x0 = (x0, y0)
T and its associated local 3-point

stencil [η1, η2, η3] (η1 < η2 < η3, η0 ≡ η2) as shown in Figure 2.2, in which η
represents x and y.

η
1

η
2

η
3

Figure 2.2: Local 3-point 1D-IRBF stencil.

2.4.1 A high-order compact local IRBF scheme

Over a local 3-point stencil, we can represent the conversion system as a matrix-
vector multiplication




u1
u2
u3
d2u1
dη2

d2u3
dη2




=

(
H
G

)

︸ ︷︷ ︸
C




w1

w2

w3

c1
c2



, (2.19)
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where ui = u(ηi) (i ∈ {1, 2, 3}); d2ui
dη2

= d2u
dη2

(ηi) (i ∈ {1, 3}); C is the conversion

matrix and H, G are submatrices defined as

H =



H1(η1) H2(η1) H3(η1) η1 1
H1(η2) H2(η2) H3(η2) η2 1
H1(η3) H2(η3) H3(η3) η3 1


 , (2.20)

G =

[
G1(η1) G2(η1) G3(η1) 0 0
G1(η3) G2(η3) G3(η3) 0 0

]
. (2.21)

Solving (2.19) yields




w1

w2

w3

c1
c2




= C−1




u1
u2
u3
d2u1
dη2

d2u3
dη2



, (2.22)

which maps the vector of nodal values of the function and of its second derivative
to the vector of RBF coefficients including two integration constants. Approxi-
mate expressions for u and its derivatives in the physical space are obtained by
substituting (2.22) into (2.11), (2.10) and (2.9), respectively.

u(η) =
[
H1(η) H2(η) H3(η) η 1

]
C−1

(
û
d̂2u
dη2

)
, (2.23)

du(η)

dη
=
[
H1(η) H2(η) H3(η) 1 0

]
C−1

(
û
d̂2u
dη2

)
, (2.24)

d2u(η)

dη2
=
[
G1(η) G2(η) G3(η) 0 0

]
C−1

(
û
d̂2u
dη2

)
, (2.25)

where η1 ≤ η ≤ η3; û = (u1, u2, u3)
T and d̂2u

dη2
= (d

2u1
dη2

, d
2u3
dη2

)T . The above three
equations can be rewritten in the form

u(η) =
3∑

i=1

ϕi(η)ui + ϕ4(η)
d2u1
dη2

+ ϕ5(η)
d2u3
dη2

, (2.26)

du(η)

dη
=

3∑

i=1

dϕi(η)

dη
ui +

dϕ4(η)

dη

d2u1
dη2

+
dϕ5(η)

dη

d2u3
dη2

, (2.27)

d2u(η)

dη2
=

3∑

i=1

d2ϕi(η)

dη2
ui +

d2ϕ4(η)

dη2
d2u1
dη2

+
d2ϕ5(η)

dη2
d2u3
dη2

, (2.28)

where {ϕi(η)}5i=1 is the set of IRBFs in the physical space. It can be seen from
(2.26)-(2.28) that the present IRBF approximations are expressed in terms of
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not only nodal function values but also nodal second-derivative values.

The present compact local 3-point IRBF scheme is utilised to represent the
variations of the velocity components, the intermediate velocity components
and the pressure in (2.3)-(2.8).

2.4.2 Two boundary treatments for the pressure

In order to solve the pressure Poisson equation (2.7), a boundary condition
for the pressure is required. On the non-slip boundaries, from the momentum
equation (2.2), one can derive the Neumann boundary condition for the pressure
as

∂pnb
∂x

=
1

Re

(
∂2un−1

b

∂x2
+
∂2un−1

b

∂y2

)
−
(
∂(un−1

b un−1
b )

∂x
+
∂(vn−1

b un−1
b )

∂y

)
+fb

n−1
x

=
u∗,nb − unb

∆t
, (2.29)

∂pnb
∂y

=
1

Re

(
∂2vn−1

b

∂x2
+
∂2vn−1

b

∂y2

)
−
(
∂(un−1

b vn−1
b )

∂x
+
∂(vn−1

b vn−1
b )

∂y

)
+ fb

n−1
y

=
v∗,nb − vnb

∆t
. (2.30)

In what follows, we will describe an implementation of the Neumann boundary
condition in the context of IRBFs (Treatment 1), and present a new treatment,
which transforms the Neumann boundary condition into the Dirichlet one, and
its detailed implementation (Treatment 2).

Treatment 1

The boundary condition for the pressure is imposed in the Neumann form.
Assume that η1 is a boundary node (i.e. ηb1 ≡ η1). At the current time level
n, one can calculate the value of ∂p/∂η at ηb1 through (2.29) and (2.30). We
modify the conversion system (2.19) as




pn1
pn2
pn3
∂pn

b1

∂η
∂2pn−1

3

∂η2




=




H
H
G







wn1
wn2
wn3
cn1
cn2



, (2.31)
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where ∂pnb1/∂η and ∂2pn−1
3 /∂η2 are known values; H is defined as in (2.20); and

H =
[
H1(ηb1) H2(ηb1) H3(ηb1) 1 0

]
, (2.32)

G =
[
G1(η3) G2(η3) G3(η3) 0 0

]
. (2.33)

Equation (2.31) leads to




wn1
wn2
wn3
cn1
cn2




=




H
H
G




−1




pn1
pn2
pn3
∂pn

b1

∂η
∂2pn−1

3

∂η2



. (2.34)

It can be seen that there are two unknowns over the stencil associated with
η0 ≡ η2, namely pnb1 and pn2 . As a result, apart from collocating (2.7) at η2 for
the unknown pn2 , one also needs to collocate (2.7) at ηb1 for the unknown pnb1.
Values of the second derivative of p at ηb1 and η2 at the current time level are
thus computed as

(
∂2pn

b1

∂η2

∂2pn2
∂η2

)
=

[
G1(ηb1) · · · Gm(ηb1) ηb1 1
G1(η2) · · · Gm(η2) η2 1

]


H
H
G




−1




pn1
pn2
pn3
∂pn

b1

∂η
∂2pn−1

3

∂η2



. (2.35)

Treatment 2

The boundary condition for the pressure is imposed in the Dirichlet form. The
process of deriving Dirichlet boundary conditions for the pressure is based on
the global 1D-IRBF approximation scheme, i.e. (2.9)-(2.11), using the previous
values of the pressure at interior nodes along a grid line and the current first-
order derivative values of the pressure at the two extreme nodes of that grid
line (Thai-Quang et al., 2011).

Consider a grid line η and let m be the number of nodes on the grid line. From
(2.29)-(2.30), one can obtain derivative values of the pressure at the two extreme
nodes, i.e. ∂pnb1/∂η and ∂pnb2/∂η. We modify the conversion system (2.12) as




p̂n−1

∂pn
b1

∂η
∂pn

b2

∂η


 =

(
H
H

) 


ŵn

cn1
cn2


 , (2.36)
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where the left-hand side is a known vector

p̂n−1 =
(
pn−1
1 , pn−1

2 , · · · , pn−1
q

)T
, (q = m− 2),

ŵn = (wn1 , w
n
2 , · · · , wnm)T ,

H =




H1(η1) · · · Hm(η1) η1 1
H1(η2) · · · Hm(η2) η2 1

...
. . .

...
...

...

H1(ηq) · · · Hm(ηq) ηq 1


 , (2.37)

H =

[
H1(ηb1) · · · Hm(ηb1) 1 0
H1(ηb2) · · · Hm(ηb2) 1 0

]
. (2.38)

Values of the pressure at the two extreme nodes at the current time level are
then estimated by collocating (2.11) at ηb1 and ηb2 and making use of (2.36)

(
pnb1
pnb2

)
=

[
H1(ηb1) · · · Hm(ηb1) ηb1 1
H1(ηb2) · · · Hm(ηb2) ηb2 1

](
H
H

)−1




p̂n−1

∂pn
b1

∂η
∂pn

b2

∂η


 . (2.39)

We use these known values as Dirichlet boundary conditions in solving the
pressure Poisson equation (2.7).

2.4.3 Solution procedure

The proposed solution procedure is outlined as follows.

• Step 1: Guess initial values for the pressure and velocity fields. For the
Re = 0 case, we use the rest state as the initial guess. For a Re > 0 case,
we use the solution corresponding to a smaller Re as the initial guess.

• Step 2: Compute the intermediate velocity field

u∗,n = un−1 +∆t

[
1

Re
∇

2un−1 −∇.
(
un−1un−1

)
+ fn−1

b

]
, (2.40)

using the proposed compact local IRBF scheme, i.e (2.27)-(2.28), in which,
for n > 2, nodal values of the field variable and its second derivatives are
taken from the time level (n − 1) and (n − 2), respectively. It is noted
that, on the boundary, some nodal second-derivative values are estimated
through the governing equations, e.g.

∂2un+1
b

∂x2
,
∂2vn+1

b

∂x2
,
∂2un+1

b

∂y2
and

∂2vn+1
b

∂y2
,

and some through the global 1D-IRBF scheme, e.g.
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∂2(uu)n+1
b

∂x2
,
∂2(uv)n+1

b

∂x2
,
∂2u

∗(n+1)
b

∂x2
,
∂2pn+1

b

∂x2
,
∂2(vu)n+1

b

∂y2
,
∂2(vv)n+1

b

∂y2
,
∂2v

∗(n+1)
b

∂y2
and

∂2pn+1
b

∂y2
.

• Step 3: Compute ∇.u∗,n according to the formula (2.27), in which, for
n > 1, nodal values of the function and its second derivatives are taken
from the time level n and (n− 1), respectively.

• Step 4: Compute the pressure gradients on the boundary from the mo-
mentum equations

∇pn =
1

∆t

(
u∗,n − un−1

)
. (2.41)

• Step 5: Derive a Dirichlet boundary condition for the pressure, i.e. pnb , in
the case of using Treatment 2. Otherwise, skip this step.

• Step 6: Solve the pressure Poisson equation

∇2pn =
1

∆t
∇.u∗,n, (2.42)

subject to the corresponding boundary conditions.

• Step 7: Compute ∇pn using (2.27) and estimate the velocity field at the
current time level

un = u∗,n −∆t∇pn. (2.43)

• Step 8: Check to see whether the flow reaches a steady state. If not,
repeat from Step 2. Otherwise, stop and output the results.

2.5 Numerical examples

The proposed method can be applied to any type of RBF (e.g. Gaussian,
multiquadric (MQ) and inverse multiquadric). However, it has generally been
accepted that, among RBFs, the multiquadric (MQ) function tends to result in
the most accurate approximation (Franke, 1982). We choose the following MQ
as the basis function here as well as in the remaining chapters.

Gi(x) =
√
(x− ci)T (x− ci) + a2i , (2.44)

where x = (x, y)T is the position vector of the point of interest; ci = (xci, yci)
T

and ai the position vector of the centre and the width of the ith MQ, respec-
tively. In 1D form, MQ function in (2.44) becomes

Gi(η) =
√

(η − ci)2 + a2i , (2.45)
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where η represents x or y.

Analytic forms of the integrated MQ basis functions are given below (Mai-Duy
and Tran-Cong, 2011).

Hi(η) =

∫
Gi(η)dη =

r

2
Q +

a2i
2
R, (2.46)

H i(η) =

∫
Hi(η)dη =

(
r2

6
− a2i

3

)
Q+

a2i r

2
R, (2.47)

where r = ‖η−ci‖; Q =
√
r2 + a2i ; and R = ln (r +Q). The plots of 3 functions

G(η), H(η) and H(η) are shown in Figure 2.3. For each stencil, the set of nodal
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Figure 2.3: The plots of basis functions employed in the present studies with
c = 0 and a = 0.2.

points is taken to be the set of MQ centres. We simply choose the MQ width
as ai = βhi in which β is a given positive number and hi the distance between
the ith node and its nearest neighbouring node. We assess the performance of
the proposed method through two measures:

• the root mean square (RMS) error defined as

RMS =

√∑N
i=1(ui − ūi)2√

N
, (2.48)
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where N is the number of nodes over the whole domain and ū is the exact
solution, and

• let Ne denote the error norm (i.e. RMS in this chapter). The average
rate of convergence with respect to the grid refinement is determined by
considering the error norm behaviour as Ne ≈ O(hα), where the value of
the convergence rate α is determined by the method of least squares with
the data taken in the logarithmic scale, and h is the average grid spacing.
For the local rates of convergence, they are given by

α =
log(Ne(r)/Ne(s))

log(h(r)/h(s))
, (2.49)

where the superscripts (r) and (s) indicate the data obtained from the
rth and sth calculations (r < s), respectively.

The proposed method is verified through the solution of a linear second-order
ODE and the simulation of viscous flows to obtain their structures at the steady
state. For the latter, the steady state is considered to have been reached when

√∑N
i=1(u

n
i − un−1

i )2

N
< 10−9, (2.50)

where un and un−1 are the approximate solutions at the current and previous
time levels, respectively.

2.5.1 Ordinary differential equation (ODE)

As a first test, we consider the following boundary-value second-order problem

d2u

dx2
= −(2π)2 sin(2πx), 0 ≤ x ≤ 1, u(0) = u(1) = 0. (2.51)

The exact solution to this problem can be verified to be ū(x) = sin(2πx). We
add a pseudo time-derivative term to equation (2.51) to facilitate an iterative
calculation

d2u

dx2
= −(2π)2 sin(2πx) +

du

dt
. (2.52)

When the difference of u between two successive time levels is small, i.e. du
dt

≃ 0
(the iterative process is said to converge), the obtained solution is also a solution
to (2.51).

In the present calculation, a time step of 0.5 is used. It is noted that the higher
the value of a permissible time step, the faster the convergence of the solution
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will be. One can reduce the grid size h and/or vary the MQ width β to enhance
the solution accuracy.

For β−adaptivity study, the value of β is chosen in a wide range of 2-100.
Results obtained at a grid of 51 are shown in Figure 2.4. As β increases, the
error Ne reduces significantly. However, at very large values of β, the behaviour
of Ne becomes unstable. It appears that the optimal value of β is 8 and the
corresponding condition number of the system matrix is 5.84× 108. It is noted
that, from a theoretical point of view, it is still not clear how to choose the
optimal value of the MQ width. Unlike global IRBF versions (where β=1 is a
preferred value), the present compact IRBF scheme can work well with a wide
range of β (20 ≤ β ≤ 60).

For h−adaptivity study, the present IRBF and standard second-order FD cal-
culations are conducted on various sets of uniformly distributed points, from 5
to 51 with an increment of 2. Results obtained by the two methods are given
in Figure 2.5. It can be seen that the present scheme outperforms the FDM in
terms of the solution accuracy and convergence rate, whereas the two schemes
have similar values of the matrix condition number.

0 20 40 60 80 100
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10
−3

β

R
M
S

Figure 2.4: ODE, N = 51: the effects of the MQ width β on the solution
accuracy.
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Figure 2.5: ODE, β = 20, N ∈ {5, 7, 9, ..., 51}: the effects of the grid size h
on the system matrix condition (a) and the solution accuracy (b) for the FDM
and the present scheme. The matrix condition number grows as O(h−2) for the
two methods while the solution converges as O(h2) for FDM and O(h3.23) for
the IRBF method.
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2.5.2 Analytic Stokes flow

Consider a Stokes flow (Fadel and Agouzoul, 2011). Equations (2.1)-(2.2) reduce
to

∇.u = 0, (2.53)

∂u

∂t
= −∇p+∇2u+ fb. (2.54)

The exact solution is chosen as

u(x, y) = 2πx2(1− x)2 sin(πy) cos(πy), (2.55)

v(x, y) = −2x(x − 1)(2x− 1) sin2(πy), (2.56)

p(x, y) = sin(x) cos(y), (2.57)

from which, one can derive the corresponding body force

fbx = 2π(−1+6x+2(π2−3)x2−4π2x3+2π2x4) sin(2πy)+cos(x) cos(y), (2.58)

fby = 4π2x(1−3x+2x2) cos(2πy)−12(1−2x) sin2(πy)−sin(x) sin(y). (2.59)

Let Ω = [0, 1]×[0, 1] be the flow domain. Values of u and v are prescribed on the
boundaries according to (2.55) and (2.56), respectively, whereas the hydrostatic
pressure mode is eliminated by fixing the pressure value at a single node. In
the present study, we take the centre of the cavity as a reference point.

The simulations are performed for a set of uniform grids, namely {11×11, 21×
21, · · · , 51×51}. In Table 2.1, we present an accuracy analysis with respect to
grid refinement for results obtained by the proposed scheme and the standard
second-order central FD scheme. It can be seen that the former outperforms the
latter regarding both the solution accuracy and the rate of convergence. The
overall convergence rates are of O(h3.01) for u, O(h3.11) for v and O(h2.88) for p
by the proposed scheme, while the corresponding values are O(h2.09), O(h2.18)
and O(h2.78) by the FDM.

2.5.3 Recirculating cavity flow driven by combined shear

and body forces

This problem is taken from Shih and Tan (1989) which has an exact solution.
The recirculating flow of a Newtonian fluid in a square cavity (Figure 2.6) is
induced by the combined shear and body forces. The governing equations are
of the form (2.1)-(2.2). It is assumed that the velocity profile along the top
boundary is v = 0 and u(x, 1) = 16x2(x− 1)2 while the other walls are non-slip
and stationary. The body force, which is present in the y-direction only, is given
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Table 2.1: Stokes flow: RMS errors, local and overall convergence rates for u, v and p by the proposed method and FDM. The
overall convergence rate α is presented in the form of O(hα).

Grid Ne(u) Rate Ne(v) Rate Ne(p) Rate
Present method

11× 11 6.5648E-04 —- 5.3296E-04 —- 1.7813E-02 —-
21× 21 8.3206E-05 2.98 6.0128E-05 3.15 2.3210E-03 2.94
31× 31 2.4489E-05 3.02 1.6978E-05 3.12 7.2212E-04 2.88
41× 41 1.0289E-05 3.01 7.0329E-06 3.06 3.2314E-04 2.80
51× 51 5.1893E-06 3.07 3.6338E-06 2.96 1.7496E-04 2.75

O(h3.01) O(h3.11) O(h2.88)
FDM

11× 11 3.9284E-03 —- 1.3077E-03 —- 5.8633E-02 —-
21× 21 8.7393E-04 2.17 2.0142E-04 2.70 7.0630E-03 3.05
31× 31 3.8109E-04 2.05 9.6704E-05 1.81 2.3485E-03 2.72
41× 41 2.1146E-04 2.05 5.8460E-05 1.75 1.1005E-03 2.63
51× 51 1.3579E-04 1.98 3.7685E-05 1.97 6.8175E-04 2.15

O(h2.09) O(h2.18) O(h2.78)
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Figure 2.6: Recirculating cavity flow: A schematic diagram of the physical
domain (non-dimensionalised).

by

fbx = 0, (2.60)

fby = − 8

Re
[24F (x) + 2f ′(x)g′′(y) + f ′′′(x)g(y)]

− 64 [F2(x)G1(y)− g(y)g′(y)F1(x)] , (2.61)

where

f(x) = x4 − 2x3 + x2, (2.62)

g(y) = y4 − y2, (2.63)

F (x) =

∫
f(x)dx = 0.2x5 − 0.5x4 + x3/3, (2.64)

F1(x) = f(x)f ′′(x)− [f ′(x)]2 = −4x6 + 12x5 − 14x4 + 8x3 − 2x2, (2.65)

F2(x) =

∫
f(x)f ′(x)dx = 0.5[f(x)]2, (2.66)

G1(y) = g(y)g′′′(y)− g′(y)g′′(y) = −24y5 + 8y3 − 4y. (2.67)
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The exact solution to this problem is known to be

u(x, y) = 8f(x)g′(y) = 8(x4 − 2x3 + x2)(4y3 − 2y), (2.68)

v(x, y) = −8f ′(x)g(y) = −8(4x3 − 6x2 + 2x)(y4 − y2), (2.69)

p(x, y, Re) =
8

Re
[F (x)g′′′(y) + f ′(x)g′(y)]

+ 64F2(x)
[
g(y)g′′(y)− [g′(y)]2

]
. (2.70)

We employ several uniform grids, namely {21× 21, 31× 31, . . . , 71× 71}, and
the two previously discussed boundary treatments for the pressure to simulate
the flow. Table 2.2 compares the present results with those obtained by FD
approximation schemes. In the case of IRBFs, the imposition of the pressure
boundary condition in the Dirichlet form (Treatment 2) yields more accurate
results than those in the Neumann form (Treatment 1). In the case of FDs, the
two treatments have similar performances. The IRBF solutions are seen to be
more accurate and to converge faster than the FD ones. To achieve a similar
level of accuracy, the FDM requires a denser grid than the proposed scheme.
For example, with Treatment 1, RMS errors of the p solution are 2.9 × 10−4

using a grid of 61 × 61 for the former and 2.8 × 10−4 using a grid of 21 × 21
for the latter. Figure 2.7 shows profiles of the velocity on the horizontal and
vertical centrelines of the cavity, which are in very good agreement with the
exact solution.

2.5.4 Lid-driven cavity flow

It differs from the previous problem in that the velocity of the lid is now pre-
scribed as u = (1, 0)T and the body force components are set to zeros. There
are thus two values of u at the two top corners, making the stress solution there
singular. The singular lid-driven cavity flow is widely used as a test problem for
the assessment of accuracy of numerical solvers in CFD. From the literature, FD
results using very dense grids by Ghia et al. (1982) and pseudo-spectral results
by Botella and Peyret (1998) have been often cited for comparison purposes. It
is noted that for the latter, the field variables were decomposed into the regular
part that is approximated with Chebyshev polynomials and the singular part
that is treated analytically; and a benchmark spectral solution for Re = 100
and Re = 1000 were provided.

We use Treatment 2 only in the imposition of the pressure boundary condition.
A wide range of Re, namely {100, 400, 1000, 3200} and uniform grids, namely
{11×11, 31×31, 51×51, 71×71, 91×91, 111×111, 129×129} are considered
in the simulation. The time step is chosen in the range of 0.1 to 0.00025. Smaller
time steps are employed for higher Re and higher grid densities. Tables 2.3, 2.4
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Table 2.2: Recirculating cavity flow, Re = 100: RMS errors and local convergence rates for u, v and p.
Present (Dirichlet) Present (Neumann) FDM (Dirichlet) FDM (Neumann)

Grid Ne(u) Rate Ne(u) Rate Ne(u) Rate Ne(u) Rate
21× 21 3.7323E-04 —- 6.8994E-04 —- 2.7515E-03 —- 2.8806E-03 —-
31× 31 8.8758E-05 3.54 3.0028E-04 2.05 1.2587E-03 1.93 1.2598E-03 2.04
41× 41 3.3153E-05 3.42 1.8214E-04 1.74 7.2116E-04 1.94 7.1861E-04 1.95
51× 51 1.6052E-05 3.25 1.0607E-04 2.42 4.7417E-04 1.88 4.7156E-04 1.89
61× 61 8.8940E-06 3.24 6.6161E-05 2.59 3.3465E-04 1.91 3.3254E-04 1.92
71× 71 5.2855E-06 3.38 3.8683E-05 3.48 2.5021E-04 1.89 2.4875E-04 1.88

Grid Ne(v) Rate Ne(v) Rate Ne(v) Rate Ne(v) Rate
21× 21 3.0814E-04 —- 1.1666E-03 —- 3.3290E-03 —- 3.0724E-03 —-
31× 31 6.9064E-05 3.69 4.3065E-04 2.46 1.5300E-03 1.92 1.5246E-03 1.73
41× 41 2.7564E-05 3.19 2.3730E-04 2.07 8.7191E-04 1.95 8.9158E-04 1.86
51× 51 1.3899E-05 3.07 1.3227E-04 2.62 5.5126E-04 2.05 5.6429E-04 2.05
61× 61 8.2254E-06 2.88 7.9870E-05 2.77 3.8059E-04 2.03 3.8919E-04 2.04
71× 71 5.2222E-06 2.95 4.6700E-05 3.48 2.7666E-04 2.07 2.8119E-04 2.11

Grid Ne(p) Rate Ne(p) Rate Ne(p) Rate Ne(p) Rate
21× 21 2.8508E-04 —- 7.3830E-04 —- 2.5036E-03 —- 5.8569E-03 —-
31× 31 6.2890E-05 3.73 2.9702E-04 2.25 1.1474E-03 1.92 2.7822E-03 1.84
41× 41 2.3775E-05 3.38 1.7771E-04 1.79 6.5178E-04 1.97 1.5035E-03 2.14
51× 51 1.2035E-05 3.05 1.0679E-04 2.28 4.1769E-04 1.99 9.5988E-04 2.01
61× 61 7.0999E-06 2.89 6.7371E-05 2.53 2.9038E-04 1.99 6.6316E-04 2.03
71× 71 4.5087E-06 2.95 4.0092E-05 3.37 2.1349E-04 2.00 4.9218E-04 1.93
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Table 2.3: Lid-driven cavity flow, Re = 100: Extrema of the vertical and horizontal velocity profiles along the horizontal and
vertical centrelines, respectively, of the cavity. “Errors” are relative to the “Benchmark” solution.
Method Grid umin Error (%) ymin vmax Error (%) xmax vmin Error (%) xmin

Present 11× 11 -0.1912173 10.66 0.4807 0.1595908 11.13 0.2307 -0.2236027 11.90 0.8136
Present 31× 31 -0.2102259 1.78 0.4578 0.1768808 1.50 0.2370 -0.2501843 1.43 0.8107
Present 51× 51 -0.2121503 0.88 0.4579 0.1781849 0.77 0.2372 -0.2520400 0.69 0.8107
FDM (ψ − ω) (Ghia et al., 1982) 129× 129 -0.2109 1.47 0.4531 0.17527 2.40 0.2344 -0.24533 3.34 0.8047
FDM (u− p) (Bruneau and Saad, 2006) 129× 129 -0.2106 1.61 0.4531 0.1786 0.54 0.2344 -0.2521 0.67 0.8125
FVM (u− p) (Sahin and Owens, 2003) 257× 257 -0.213924 0.06 0.4598 0.180888 0.73 0.2354 -0.256603 1.10 0.8127
FVM (u− p), cpi. (Deng et al., 1994) 128× 128 -0.21315 0.42 — 0.17896 0.34 — -0.25339 0.16 —

Benchmark (Botella and Peyret, 1998) -0.2140424 0.4581 0.1795728 0.2370 -0.2538030 0.8104

Table 2.4: Lid-driven cavity flow, Re = 1000: Extrema of the vertical and horizontal velocity profiles along the horizontal and
vertical centrelines, respectively, of the cavity. “Errors” are relative to the “Benchmark” solution.
Method Grid umin Error (%) ymin vmax Error (%) xmax vmin Error (%) xmin

Present 51× 51 -0.3629562 6.59 0.1787 0.3515585 6.73 0.1637 -0.4898251 7.07 0.9052
Present 71× 71 -0.3755225 3.36 0.1753 0.3637009 3.51 0.1608 -0.5086961 3.49 0.9078
Present 91× 91 -0.3815923 1.80 0.1735 0.3698053 1.89 0.1594 -0.5174658 1.82 0.9085
Present 111× 111 -0.3840354 1.17 0.1728 0.3722634 1.24 0.1588 -0.5209683 1.16 0.9088
Present 129× 129 -0.3848064 0.97 0.1724 0.3729119 1.07 0.1586 -0.5223350 0.90 0.9089
FDM (ψ − ω) (Ghia et al., 1982) 129× 129 -0.38289 1.46 0.1719 0.37095 1.59 0.1563 -0.5155 2.20 0.9063
FDM (u− p) (Bruneau and Saad, 2006) 256× 256 -0.3764 3.13 0.1602 0.3665 2.77 0.1523 -0.5208 1.19 0.9102
FVM (u− p), cpi. (Deng et al., 1994) 128× 128 -0.38511 0.89 — 0.37369 0.86 — -0.5228 0.81 —

Benchmark (Botella and Peyret, 1998) -0.3885698 0.1717 0.3769447 0.1578 -0.5270771 0.0908
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Table 2.5: Lid-driven cavity flow: Extrema of the vertical and horizontal velocity profiles along the horizontal and vertical centrelines,
respectively, of the cavity at different Reynolds numbers Re ∈ {400, 3200}.

Re Method Grid umin ymin vmax xmax vmin xmin

400 Present 31× 31 -0.316205 0.2833 0.293696 0.2236 -0.435578 0.8583
Present 51× 51 -0.323158 0.2814 0.297493 0.2248 -0.442770 0.8605
Present 71× 71 -0.325168 0.2804 0.300818 0.2252 -0.449146 0.8620
FDM (ψ − ω) (Ghia et al., 1982) 129× 129 -0.32726 0.2813 0.30203 0.2266 -0.44993 0.8594
FVM (u− p), cpi. (Deng et al., 1994) 128× 128 -0.32751 — 0.30271 — -0.45274 —
FVM (u− p) (Sahin and Owens, 2003) 257× 257 -0.328375 0.2816 0.304447 0.2253 -0.456316 0.8621

3200 Present 91× 91 -0.406818 0.0983 0.403852 0.1016 -0.528864 0.9451
Present 111× 111 -0.418545 0.0962 0.415776 0.0995 -0.544789 0.9462
Present 129× 129 -0.423061 0.0963 0.420565 0.0994 -0.551563 0.9466
FDM (ψ − ω) (Ghia et al., 1982) 129× 129 -0.41933 0.1016 0.42768 0.0938 -0.54053 0.9453
FVM (u− p) (Sahin and Owens, 2003) 257× 257 -0.435402 0.0921 0.432448 0.0972 -0.569145 0.9491
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Figure 2.7: Recirculating cavity flow, Treatment 2, Re = 100: Variations of u
along the vertical centreline (a) and v along the horizontal centreline (b) by the
present scheme using a grid of 21 × 21 and the exact solution (Shih and Tan,
1989).
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and 2.5 show the present results for the extrema of the velocity profiles along the
centrelines of the cavity for several Reynolds numbers in comparison with some
others (Ghia et al., 1982; Deng et al., 1994; Botella and Peyret, 1998; Sahin
and Owens, 2003; Bruneau and Saad, 2006). For Re = 100 (Table 2.3) and
Re = 1000 (Table 2.4), the “errors” are calculated relative to a “benchmark”
solution (Botella and Peyret, 1998), which shows that the present results are
very comparable with others.

Velocity profiles along the vertical and horizontal centrelines for different grid
sizes at Re = 1000 are displayed in Figure 2.8, where a grid convergence of
the IRBF solution is clearly observed (i.e. the present solution approaches the
benchmark solution very fast as the grid density is increased). We virtually
achieve the benchmark solution with only 91 × 91 grid in comparison with a
grid of 129× 129 used to obtain the benchmark solution in Ghia et al. (1982).
In addition, those velocity profiles at Re ∈ {100, 400, 1000, 3200} with the grid
of 129 × 129 are also shown in Figure 2.9, where the present solutions match
the benchmark ones very well.

Figure 2.10 exhibits the distributions of the pressure for the flow at Re ∈ {100,
400, 1000, 3200} which look feasible in comparison with those reported in the
literature. We also show streamlines and iso-vorticity lines, which are derived
from the velocity field, for the flow at Re ∈ {100, 400, 1000, 3200} in Figure
2.11 and 2.12, where secondary vortices are well captured.

2.6 Concluding remarks

In this chapter, we propose a high-order compact local IRBF scheme for the
discretisation of the pressure-velocity formulation in the Cartesian-grid point-
collocation framework. Two boundary treatments for the pressure, one is based
on values of the pressure and the other based on normal derivative values of the
pressure, are studied. Like FDMs, the present approximations involve 3 nodes
in each direction, resulting in a sparse system matrix. Numerical examples
indicate that (i) the present results are superior to the FD results in terms of
the solution accuracy and the convergence rate with grid refinement, and (ii)
the imposition of boundary conditions for the pressure yields better results in
the Dirichlet form than in the Neumann form.
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Figure 2.8: Lid-driven cavity flow, Re = 1000: Profiles of the u-velocity along
the vertical centreline (a) and the v-velocity along the horizontal centreline (b)
using several grids. Note that curves for the last three grids are indistinguishable
and agree well with the benchmark FD results.
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Figure 2.9: Lid-driven cavity flow, 129 × 129: Profiles of the u-velocity along
the vertical centreline and the v-velocity along the horizontal centreline for
Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200 (d).
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(a) (b)

(c) (d)

Figure 2.10: Lid-driven cavity flow, 129 × 129: Isobaric lines of the flow for
Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200 (d). The contour
values used here are taken to be the same as those in Abdallah (1987), Botella
and Peyret (1998) and Bruneau and Saad (2006).
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(a) (b)

(c) (d)

Figure 2.11: Lid-driven cavity flow, 129 × 129: Streamlines of the flow for
Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200 (d). The contour
values used here are taken to be the same as those in Ghia et al. (1982).
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(a) (b)

(c) (d)

Figure 2.12: Lid-driven cavity flow, 129× 129: Iso-vorticity lines of the flow for
Re = 100 (a), Re = 400 (b), Re = 1000 (c) and Re = 3200 (d). The contour
values used here are taken to be the same as those in Ghia et al. (1982).



Chapter 3

A compact IRBF scheme for
transient flows

This chapter presents a high-order approximation scheme based on CIRBF sten-
cils and second-order Adams-Bashforth/Crank-Nicolson algorithms for solving
time-dependent problems in one and two space dimensions. We employ CIRBF
stencils, where the RBF approximations are locally constructed through integra-
tion and expressed in terms of nodal values of the function and its derivatives,
to discretise the spatial derivatives in the governing equation. We adopt the
Adams-Bashforth and Crank-Nicolson algorithms, which are second-order ac-
curate, to discretise the temporal derivatives. The performance of the proposed
scheme is investigated numerically through the solution of several test problems,
including heat transfer governed by the diffusion equation, shock wave propaga-
tion and shock-like solution governed by the Burgers’ equation, and torsionally
oscillating lid-driven cavity flow governed by the Navier-Stokes equation in the
primitive variables. Numerical experiments show that the proposed scheme is
stable and high-order accurate in reference to the exact solution of analytic test
problems and achieves a good agreement with published results for other test
problems.

3.1 Introduction

High-order approximation schemes have the ability to provide efficient solu-
tions to time-dependent differential problems. A high level of accuracy can
be achieved using a relatively coarse discretisation. Many types of high-order
schemes have been reported in the literature. For example, in solving the diffu-
sion equation, Kouatchou (2001) combined a high-order compact finite differ-
ence approximation and a collocation technique. Sun and Zhang (2003) pro-
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posed a high-order compact boundary value method. Gupta et al. (2005) pro-
posed a high-order FD approximation defined on a square mesh stencil using
nine nodes. For Burgers’ equation, introduced originally by Bateman (1915),
Hassanien et al. (2005) proposed a fourth-order FD method based on two-level
three-point approximations of order 2 in time and 4 in space while Zhu and
Wang (2009) presented a method based on cubic B-spline quasi-interpolations.
Recently, Hosseini and Hashemi (2011) presented a local-RBF meshless method
dealing with several initial and boundary conditions. It is noted that the Burg-
ers’ equation is considered as a good means of verifying new numerical methods
in CFD (Caldwell et al., 1987; Iskander and Mohsen, 1992) because the equa-
tion contains both the convection and diffusion terms. For the Navier-Stokes
equation, Botella and Peyret (1998) developed a Chebyshev collocation method
and provided the benchmark spectral results for the lid driven cavity flow prob-
lem. Ding et al. (2006) presented a local multiquadric differential quadrature
method for the solution of three-dimensional incompressible flow problems in
the velocity-pressure formulation while Mai-Duy et al. (2008), Mai-Duy and
Tran-Cong (2008), Le-Cao et al. (2009) proposed an integrated RBF (IRBF)
method to solve fluid flow and thermal problems in the stream function-vorticity
formulation. Recently, Tian et al. (2011) proposed a fourth-order compact dif-
ference scheme constructed on 2D nine-point stencils and Fadel and Agouzoul
(2011) used a standard Padé scheme to construct high-order approximations in
a velocity-pressure-pressure gradient formulation. It is noted that the velocity
(u) and pressure (p) formulation has several advantages over both the stream
function-vorticity formulation and the stream function formulation. The u-p
formulation can provide both the velocity field and the pressure field from solv-
ing the discretised equations and also works for 2D and 3D problems in a similar
manner.

In this chapter, we present a high-order approximation scheme based on CIRBF
stencils and second-order Adams-Bashforth/Crank-Nicolson algorithms for solv-
ing time-dependent problems, where emphasis is placed on the treatment of the
extra information in the compact stencils. A series of test problems is consid-
ered to verify the proposed scheme. It will be shown that the present scheme
is stable and high-order accurate. For example, the CIRBF solution converges
very fast with grid refinement at a rate of up to 4.47 (i.e. error norm ≈ O(h4.47),
h the grid size) in solving the Burgers’ equation, and is more accurate than the
compact FD method reported in Tian et al. (2011) in the study of Taylor de-
caying vortices. The remainder of the chapter is organised as follows. Section
3.2 briefly outlines the problem formulation, i.e. time-dependent equations con-
sidered in this chapter. The proposed CIRBF scheme, and its implementation
and boundary treatment details are described in Section 3.3. In Section 3.4, nu-
merical results are presented and compared with the exact solutions and some
published approximate results, where appropriate. Section 3.5 concludes the
chapter.
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3.2 Problem formulations

We consider four types of time-dependent equations, namely the diffusion, Burg-
ers, Stokes and Navier-Stokes equations. It is noted that the Navier-Stokes
equation is taken in the velocity-pressure formulation, and the Stokes equation
is just a simple case of the Navier-Stokes equation by neglecting the convection
term and letting the Reynolds number be one.

3.2.1 Diffusion equation

∂u

∂t
= α

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fb in Ω, t ≥ 0, (3.1)

u(x, y, 0) = u0(x, y) in Ω, t = 0, (3.2)

u(x, y, t) = uΓ(x, y, t) on Γ, t ≥ 0, (3.3)

where u, α and fb are the field variable, the heat conductivity (assumed constant
here) and the driving function, respectively; u0 and uΓ prescribed functions; Γ
the boundary of domain Ω.

3.2.2 Burgers’ equation

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, a ≤ x ≤ b, t ≥ 0, (3.4)

u(x, 0) = u0(x), a ≤ x ≤ b, (3.5)

u(a, t) = uΓ1(t) and u(b, t) = uΓ2(t), t > 0, (3.6)

where u0(x), uΓ1(t) and uΓ2(t) are prescribed functions; and [a, b] the segment
of interest.

3.2.3 Navier-Stokes equation

∇.u = 0 in Ω, t ≥ 0, (3.7)

∂u

∂t
+ (u.∇)u = −∇p + 1

Re
∇2u+ fb in Ω, t ≥ 0, (3.8)

u(x, y, 0) = u0(x, y) in Ω, t = 0, (3.9)
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u(x, y, t) = uΓ(x, y, t) on Γ, t ≥ 0, (3.10)

where u0 and uΓ are prescribed functions. The other relevant field variables are
defined before in chapter 2.

3.3 Numerical formulations

The proposed scheme discretises the temporal and spatial derivatives using the
Adams-Bashforth/Crank-Nicolson algorithms and CIRBF approximations, re-
spectively. For the latter, salient features include (i) the IRBF approximations
are constructed over three-point stencils, (ii) values of the field variable and its
second derivatives at a node are considered as two unknowns, and (iii) nodal
derivative values at the boundary are approximated using the global 1D-IRBF
approach.

The spatial discretisation simply and necessarily relies on a Cartesian grid on
which overlapping 3-node stencils are defined. Thus, the method is not un-
structured. Approximations using integrated RBFs are constructed over each
stencil to represent the field variable and its derivatives. Owing to the nature
of RBFs, the present method has the ability to work with “irregular” stencils,
in which distances between nodes can be different, and thus can be extended
to domains of non-rectangular shape in a straightforward manner, which was
numerically demonstrated in some previous works (Mai-Duy and Tran-Cong,
2013) using the streamfunction-vorticity formulation of fluid flow. It was found
that high order IRBF methods can capture very steep gradients without resort-
ing to non-uniform discretisation, e.g. (Mai-Cao and Tran-Cong, 2005, 2008).
This is further demonstrated with the solution of problems reported later in the
present work. Thus, we only use uniform Cartesian grids in this work. Unlike
FE-type meshes, the generation of a Cartesian grid, uniform or non-uniform, is
a trivial task.

3.3.1 Temporal discretisation

Diffusion equation

The temporal discretisation of (3.1) with a Crank-Nicolson scheme (Crank and
Nicolson, 1996) gives

un − un−1

∆t
=

1

2
α

[(
∂2u

∂x2
+
∂2u

∂y2

)n
+

(
∂2u

∂x2
+
∂2u

∂y2

)n−1
]
+

1

2

(
fb
n + fb

n−1
)
.

(3.11)
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Burgers’ equation

The temporal discretisation of (3.4) with an Adams-Bashforth scheme (Butcher,
2003) for the convection term and a Crank-Nicolson scheme for the diffusion
term gives

un − un−1

∆t
+

[
3

2

(
u
∂u

∂x

)n−1

− 1

2

(
u
∂u

∂x

)n−2
]
=

1

2Re

(
∂2u

∂x2

n

+
∂2u

∂x2

n−1
)
. (3.12)

Navier-Stokes equation

The temporal discretisation of (3.8) with an Adams-Bashforth scheme for the
convection term and a Crank-Nicolson scheme for the diffusion term gives

un − un−1

∆t
+

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
=

−∇pn−1/2 +
1

2Re

(
∇2un +∇2un−1

)
+

1

2

(
fnb + fn−1

b

)
. (3.13)

We apply the pressure-free projection/fractional-step methods developed by
Kim and Moin (1985) to solve the continuity equation (3.7) and momentum
equation (3.13). The two governing equations are thus advanced in time ac-
cording to the following two-step procedure, where one can project an arbitrary
vector field into a divergence-free vector field via the pressure variable in (3.13)

u∗,n − un−1

∆t
+

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
=

1

2Re

(
∇2u∗,n +∇2un−1

)
+

1

2

(
fnb + fn−1

b

)
, (3.14)

un − u∗,n

∆t
= −∇φn, (3.15)

with

∇.un = 0, (3.16)

where φ is the pseudo-pressure from which the pressure is derived through

pn−1/2 = φn − ∆t

2Re
∇2φn. (3.17)

The detailed calculation can be summarised as follows.

At first, the intermediate velocity vector is obtained by solving (3.14) in the
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form of

u∗,n − ∆t

2Re
∇2u∗,n = un−1 +

∆t

2Re
∇2un−1 +

∆t

2

(
fnb + fn−1

b

)

−∆t

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
, (3.18)

subject to the following boundary conditions (Brown et al., 2001)

n . u∗,n|Γ = n . unb , (3.19)

t . u∗,n|Γ = t .
(
unb +∆t∇φn−1

)
|Γ, (3.20)

where n = (nx, ny)
T and t = (tx, ty)

T are the normal and tangential unit vectors.
It can be seen that u∗,n does not satisfy the continuity equation (3.16).

Then, by applying the gradient operator to both sides of (3.15) and forcing un

to satisfy (3.16), the Poisson equation for the pseudo-pressure φ is obtained

∇2φn =
1

∆t
∇.u∗,n, (3.21)

which can be solved with the Neumann boundary condition derived from (3.15)

∇φn|Γ =
u∗,n
b − unb
∆t

. (3.22)

However, as shown in Thai-Quang, Le-Cao, Mai-Duy and Tran-Cong (2012),
Thai-Quang, Le-Cao, Mai-Duy and Tran-Cong (2012), a transformation of the
boundary condition from the Neumann form into the Dirichlet form can lead
to an improvement in the solution accuracy. We will use the Dirichlet form in
solving (3.21).

After obtaining the pseudo-pressure φn, one can compute the velocity at the
next time level through (3.15)

un = u∗,n −∆t∇φn, (3.23)

and then the pressure through (3.17).

3.3.2 Spatial discretisation

The approximation scheme employed in this chapter for the spatial discretisa-
tion is almost the same as the one used in chapter 2, i.e. equations (2.26)-(2.28).
Here we use the implicit form of the extra information of nodal second-order
derivative values rather than the explicit form as in chapter 2. Since this chapter
is mainly concerned with the evolution of the solution, it can be seen that the
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values of u and ∂2u/∂η2 used in (2.26)-(2.28) should be chosen at the same time
level in order to achieve the best performance of the CIRBF stencils. In this re-
gard, we propose to take values of un and ∂2un

∂η2
at each node as two independent

unknowns.

Let a 2D problem domain Ω be represented by a Cartesian grid where the
nodes are indexed by i in the x direction (i ∈ {1, 2, . . . , nx}) and j in the y
direction (j ∈ {1, 2, . . . , ny}). The total number of grid points is therefore
N = nx × ny for a rectangular domain. For non-rectangular domains, the grid
points outside the domain are discarded and N < nx×ny. For each interior grid
point xi,j = (xi,j, yi,j)

T (i ∈ {2, 3, . . . , nx − 1} and j ∈ {2, 3, . . . , ny − 1}), we
form two 3-point stencils, namely [xi−1,j , xi,j, xi+1,j ] and [yi,j−1, yi,j, yi,j+1]. For
the sake of convenience, we use η to denote x and y, thus having a generic
stencil [η1, η2, η3] (η1 < η2 < η3, η2 ≡ ηi,j) as shown in Figure 2.2.

Consider a node xi,j = (xi,j, yi,j)
T . The two algebraic equations associated with

this node are established as follows.

The first equation is derived from (2.28) for a 3-point stencil associated with
xi,j . Collocating (2.28) at the central node of a stencil yields

d2un2
dη2

=
3∑

i=1

d2ϕi(η2)

dη2
uni +

d2ϕ4(η2)

dη2
d2un1
dη2

+
d2ϕ5(η2)

dη2
d2un3
dη2

, (3.24)

where η2 = xi,j for [xi−1,j , xi,j, xi+1,j ] and η2 = yi,j for [yi,j−1, yi,j, yi,j+1]. It is
noted that, in chapter 2, values of the second-order derivative at two extreme
nodes of a compact stencil are treated like known values using nodal function
values at time step (n − 1) and nodal second-order derivative values at time
step (n− 2).

The second equation is obtained from the governing equation. Collocating the
diffusion equation (3.11), Burgers’ equation (3.12), and Navier-Stokes equations
(3.14) and (3.21), at x = xi,j yields

uni,j −
α∆t

2

(
∂2uni,j
∂x2

+
∂2uni,j
∂y2

)
=

un−1
i,j +

α∆t

2

(
∂2un−1

i,j

∂x2
+
∂2un−1

i,j

∂y2

)
+

∆t

2

(
fnbi,j + fn−1

bi,j

)
, (3.25)

uni,j −
∆t

2Re

∂2uni,j
∂x2

=

un−1
i,j +

∆t

2Re

∂2un−1
i,j

∂x2
−∆t

[
3

2

(
un−1
i,j

∂un−1
i,j

∂x

)
− 1

2

(
un−2
i,j

∂un−2
i,j

∂x

)]
, (3.26)
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u∗,n
i,j − ∆t

2Re
∇2u∗,n

i,j = un−1
i,j +

∆t

2Re
∇2un−1

i,j +
∆t

2

(
fb
n
i,j + fb

n−1
i,j

)

−∆t

[
3

2

(
un−1
i,j .∇

)
un−1
i,j − 1

2

(
un−2
i,j .∇

)
un−2
i,j

]
, (3.27)

∇2φni,j =
1

∆t
∇.u∗,n

i,j , (3.28)

respectively.

The present final algebraic systems corresponding to the above equations are
thus solved for the values of the field variable and its second-order derivative at
the interior grid nodes. In the following, we will describe the solution procedure
in detail for the case of Dirichlet boundary conditions.

Algebraic systems from the stencil equations

Rewriting (3.24) with reference to the global coordinate system leads to

− d2ϕ4(xi,j)

dx2
∂2uni−1,j

∂x2
+
∂2uni,j
∂x2

− d2ϕ5(xi,j)

dx2
∂2uni+1,j

∂x2
=

d2ϕ1(xi,j)

dx2
uni−1,j +

d2ϕ2(xi,j)

dx2
uni,j +

d2ϕ3(xi,j)

dx2
uni+1,j, (3.29)

for the stencil [xi−1,j , xi,j , xi+1,j], and

− d2ϕ4(yi,j)

dy2
∂2uni,j−1

∂y2
+
∂2uni,j
∂y2

− d2ϕ5(yi,j)

dy2
∂2uni,j+1

∂y2
=

d2ϕ1(yi,j)

dy2
uni,j−1 +

d2ϕ2(yi,j)

dy2
uni,j +

d2ϕ3(yi,j)

dy2
uni,j+1, (3.30)

for the stencil [yi,j−1, yi,j, yi,j+1].

Equations (3.29) and (3.30) at the interior nodes adjacent to the boundary
involve second derivatives of u at the boundaries. We utilise the global 1D-IRBF
approach (Mai-Duy and Tran-Cong, 2008; Thai-Quang, Le-Cao, Mai-Duy and
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Tran-Cong, 2012) to estimate these values, e.g. on an x-grid line,

∂2un1,j
∂x2

=




G1(x1,j)
...

Gnx
(x1,j)
0
0




T 


H1(x1,j) · · · Hnx
(x1,j) x1,j 1

H1(x2,j) · · · Hnx
(x2,j) x2,j 1

...
. . .

...
...

...
H1(xnx,j) · · · Hnx

(xnx,j) xnx,j 1




−1

︸ ︷︷ ︸
Dxx(1)




un1,j
un2,j
...

unnx,j


 ,

(3.31)

∂2unnx,j

∂x2
=




G1(xnx,j)
...

Gnx
(xnx,j)
0
0




T 


H1(x1,j) · · · Hnx
(x1,j) x1,j 1

H1(x2,j) · · · Hnx
(x2,j) x2,j 1

...
. . .

...
...

...
H1(xnx,j) · · · Hnx

(xnx,j) xnx,j 1




−1

︸ ︷︷ ︸
Dxx(nx)




un1,j
un2,j
...

unnx,j


 ,

(3.32)

where j ∈ {1, 2, . . . , ny}, or in matrix-vector form

∂2un1,j
∂x2

= Dxx(1)

[
un1,j u

n
2,j . . . u

n
nx,j

]T
, (3.33)

∂2unnx,j

∂x2
= Dxx(nx)

[
un1,j u

n
2,j . . . u

n
nx,j

]T
. (3.34)

On a y-grid line, in the same manner, one has

∂2uni,1
∂y2

= Dyy(1)

[
uni,1 u

n
i,2 . . . u

n
i,ny

]T
, (3.35)

∂2uni,ny

∂y2
= Dyy(ny)

[
uni,1 u

n
i,2 . . . u

n
i,ny

]T
, (3.36)
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where

Dyy(1) =




G1(yi,1)
...

Gny
(yi,1)
0
0




T 


H1(yi,1) · · · Hny
(yi,1) yi,1 1

H1(yi,2) · · · Hny
(yi,2) yi,2 1

...
. . .

...
...

...
H1(yi,ny

) · · · Hny
(yi,ny

) yi,ny
1




−1

,

(3.37)

Dyy(ny) =




G1(yi,ny
)

...
Gny

(yi,ny
)

0
0




T 


H1(yi,1) · · · Hny
(yi,1) yi,1 1

H1(yi,2) · · · Hny
(yi,2) yi,2 1

...
. . .

...
...

...
H1(yi,ny

) · · · Hny
(yi,ny

) yi,ny
1




−1

.

(3.38)

It can be seen from (3.33)-(3.34) and (3.35)-(3.36) that derivative values of u at
the boundaries are expressed in terms of nodal values of u on the x- and y-grid
lines, respectively.

The systems of equations corresponding to the stencil equation are thus obtained
by letting i ∈ {2, 3, . . . , nx − 1} and j ∈ {2, 3, . . . , ny − 1} in (3.29)-(3.30),
j ∈ {1, 2, . . . , ny} in (3.33)-(3.34), and i ∈ {1, 2, . . . , nx} in (3.35)-(3.36)

Lxx
∂̂2u

∂x2

n

= Bxxûn, (3.39)

Lyy
∂̂2u

∂y2

n

= Byyûn, (3.40)

where Lxx, Bxx, Lyy and Byy are N ×N matrices,

ûn =
(
un1,1, u

n
1,2, . . . , u

n
1,ny

, un2,1, u
n
2,2, . . . , u

n
2,ny

, . . . , unnx,1, u
n
nx,2, . . . , u

n
nx,ny

)T
,

(3.41)

∂̂2u

∂x2

n

=

(
∂2un1,1
∂x2

,
∂2un1,2
∂x2

, · · · ,
∂2un1,ny

∂x2
,
∂2un2,1
∂x2

,
∂2un2,2
∂x2

, · · · ,
∂2un2,ny

∂x2
,

· · · ,
∂2unnx,1

∂x2
,
∂2unnx,2

∂x2
, · · · ,

∂2unnx,ny

∂x2

)T
, (3.42)
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and

∂̂2u

∂y2

n

=

(
∂2un1,1
∂y2

,
∂2un1,2
∂y2

, · · · ,
∂2un1,ny

∂y2
,
∂2un2,1
∂y2

,
∂2un2,2
∂y2

, · · · ,
∂2un2,ny

∂y2
,

· · · ,
∂2unnx,1

∂y2
,
∂2unnx,2

∂y2
, · · · ,

∂2unnx,ny

∂y2

)T
. (3.43)

Algebraic systems from the governing equations

Collocating the governing equation, e.g. (3.25) for diffusion problems, at a grid
node xi,j results in

uni,j −
α∆t

2

∂2uni,j
∂x2

− α∆t

2

∂2uni,j
∂y2

= rhsni,j, (3.44)

where

rhsni,j = un−1
i,j +

α∆t

2

(
∂2ui,j
∂x2

+
∂2ui,j
∂y2

)n−1

+
∆t

2

(
fnbi,j + fn−1

bi,j

)
. (3.45)

It is straightforward to extend the present procedure to diffusion problems,
where the heat conductivity is a function of space and time. It is noted that
this collocation process can also be done in a similar way for fluid problems
governed by (3.12), (3.14) and (3.21).

The system of equations corresponding to the governing equation is thus ob-
tained by letting i and j in (3.44) be {2, 3, . . . , nx−1} and {2, 3, . . . , ny−1},
respectively

Iûn −
(
α∆t

2
I

)
∂̂2u

∂x2

n

−
(
α∆t

2
I

)
∂̂2u

∂y2

n

= r̂hs
n
, (3.46)

where I is the N ×N identity matrix,

r̂hs
n
=

(
rhsn1,1, rhs

n
1,2, . . . , rhs

n
1,ny

, rhsn2,1, rhs
n
2,2, . . . , rhs

n
2,ny

,

. . . , rhsnnx,1, rhs
n
nx,2, . . . , rhs

n
nx,ny

)T
. (3.47)
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Final system of algebraic equations

The final set of equations is formed by combining (3.39), (3.40) and (3.46)




Bxx −Lxx O

Byy O −Lyy

Iip −α∆t
2
Iip −α∆t

2
Iip







ûn

∂̂2u
∂x2

n

∂̂2u
∂y2

n




=




O

O

r̂hs
n

ip




, (3.48)

where O is a zero matrix of dimensions N × N , O is a zero vector of length

N , Iip consists of rows of I that correspond to the interior nodes, and r̂hs
n

ip are

entries of r̂hs
n
that are associated with the interior nodes. After imposing the

boundary conditions, the system matrix on the left side of (3.48) is of dimensions
(3N − (2nx + 2ny − 4))× (3N − (2nx + 2ny − 4)).

The resultant system (3.48) is sparse and can be efficiently solved by, for exam-
ple, the LU decomposition technique to obtain unknown nodal values of u, ∂

2u
∂x2

and ∂2u
∂y2

at the current time level. The number of non-zero entries is given by

Nentries = 2× [2 + (nx − 1)× (ny − 2)]

+ 2× 3 (nx − 2) + 6× (nx − 2)× (ny − 2)− 2× (ny − 2)

+ 2× [2 + (ny − 1)× (nx − 2)]

+ 2× 3 (ny − 2) + 6× (nx − 2)× (ny − 2)− 2× (nx − 2)

+ 3 × (nx − 2) × (ny − 2) ,

or

Nentries = 19N − 64
√
N + 60,

for the case of nx = ny =
√
N . Furthermore, the extra storage required by

the Adams-Bashforth scheme from equation (3.18) is 2N . Thus, the storage
requirement is of O(N).

In the case of Neumann boundary conditions, one can appropriately add the
following first derivative equations, which can be generated using the CIRBF
(i.e. (2.24)/(2.27)) or the global 1D-IRBF approach (i.e. equations provided
below) (Mai-Duy and Tran-Cong, 2008; Thai-Quang, Mai-Duy, Tran and Tran-
Cong, 2012), to the final system of equations to determine unknown values of
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u on the boundaries

∂un1,j
∂x

=




H1(x1,j)
...

Hnx
(x1,j)
1
0




T 


H1(x1,j) · · · Hnx
(x1,j) x1,j 1

H1(x2,j) · · · Hnx
(x2,j) x2,j 1

...
. . .

...
...

...
H1(xnx,j) · · · Hnx

(xnx,j) xnx,j 1




−1

︸ ︷︷ ︸
Dx(1)




un1,j
un2,j
...

unnx,j


 ,

(3.49)

∂unnx,j

∂x
=




H1(xnx,j)
...

Hnx
(xnx,j)
1
0




T 


H1(x1,j) · · · Hnx
(x1,j) x1,j 1

H1(x2,j) · · · Hnx
(x2,j) x2,j 1

...
. . .

...
...

...
H1(xnx,j) · · · Hnx

(xnx,j) xnx,j 1




−1

︸ ︷︷ ︸
Dx(nx)




un1,j
un2,j
...

unnx,j


 ,

(3.50)

for an x-grid line, and

∂uni,1
∂y

=




H1(yi,1)
...

Hny
(yi,1)
1
0




T 


H1(yi,1) · · · Hny
(yi,1) yi,1 1

H1(yi,2) · · · Hny
(yi,2) yi,2 1

...
. . .

...
...

...
H1(yi,ny

) · · · Hny
(yi,ny

) yi,ny
1




−1

︸ ︷︷ ︸
Dy(1)




uni,1
uni,2
...

uni,ny


 ,

(3.51)
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∂uni,ny

∂y
=




H1(yi,ny
)

...
Hny

(yi,ny
)

1
0




T 


H1(yi,1) · · · Hny
(yi,1) yi,1 1

H1(yi,2) · · · Hny
(yi,2) yi,2 1

...
. . .

...
...

...
H1(yi,ny

) · · · Hny
(yi,ny

) yi,ny
1




−1

︸ ︷︷ ︸
Dy(ny)




uni,1
uni,2
...

uni,ny


 ,

(3.52)

for a y-grid line.

3.4 Numerical examples

Since the RBF approximations employed are local, the present scheme can work
with a wide range of β (2 ≤ β ≤ 100) as shown in chapter 2. Thus, we simply
pick β = 20 for CIRBF approximations in this chapter. The quality of the
RBF approximations depends on the distance between RBF centres which are
also grid nodes. Better approximation is generally obtained as more RBFs are
employed. A grid refinement (i.e. increasing the number of RBFs) thus provides
a way to enhance the accuracy of the RBF solution. We assess the performance
of the proposed scheme through following measures:

• the RMS error defined as (2.48),

• the maximum absolute error (L∞) defined as

L∞ = max
i

|ui − ui|, (3.53)

• the average rate of convergence α determined by the method of least
squares as described in chapter 2.

3.4.1 Diffusion equations

Diffusion problems are considered here to investigate the performance of the
proposed scheme for the diffusion term only.
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One-dimensional case

Consider a one-dimensional diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ π, t ≥ 0, (3.54)

with the following initial and boundary conditions

u(x, 0) = sin(2x), 0 < x < π and u(0, t) = u(π, t) = 0, t ≥ 0. (3.55)

The exact solution of this problem is known to be u(x, t) = sin(2x)e−4t.

Firstly, the spatial accuracy of the proposed scheme is investigated on various
grids N ∈ {11, 21, . . . , 101}. We employ here a very small time step, i.e.
∆t = 0.001, in order to minimise the effect of the approximate error in time.
Figure 3.1 shows the effect of the grid size h on the accuracy of the solution
computed at t = 1, from which one can see that the solution error behaves as
O(h3.4) (i.e. more than third-order accuracy in space).
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Figure 3.1: 1D diffusion equation, N ∈ {11, 21, . . . , 101}, ∆t = 0.001, t = 1:
The effect of grid size h on the solution accuracy by the proposed scheme. The
solution error behaves apparently as Ne ≈ O(h3.4).

Secondly, we investigate the temporal accuracy of our scheme through a set of
time steps, namely ∆t ∈ { 1

100
, 1

90
, . . . , 1

10
}. A fine grid of h = 0.0157 (i.e. 201

grid points) is taken so that the approximate error in space is much smaller than
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Figure 3.2: 1D diffusion equation, N = 201, ∆t ∈ { 1
100
, 1

90
, . . . , 1

10
}, t = 1: The

effect of time step ∆t on the solution accuracy by the proposed scheme. The
solution error behaves apparently as Ne ≈ O(∆t2).

the time splitting error. The error of the solution at t = 1 is shown in Figure
3.2 as a function of the time step. It can be seen that our scheme obtains
second-order accuracy in time. This result is fully expected as second-order
approximation algorithms for the discretisation of temporal derivative terms
are adopted in the present scheme.

Two-dimensional case

We next consider equation (3.1) in Ω = [0, 1]×[0, 1] with Dirichlet boundary con-
ditions, and the following parameters α = 1 and fb =

(
1
π2 + 2k2t

)
sin(kπx) sin(kπy),

where k is a given integer. The initial and boundary conditions are derived from
the exact solution u(x, y, t) = 1

π2 sin(kπx) sin(kπy)t+ xy. The higher the value
of k is, the more complex the variation of the solution will be. We choose k = 5,
∆t = 0.01 and employ a set of grids, namely {11 × 11, 21 × 21, . . . , 51 × 51}
to investigate the accuracy of the spatial discretisation of the proposed scheme.
Figure 3.3 shows the effect of the grid size h on the accuracy of the solution
computed at t = 1. One can see that the solution error behaves as O(h3.31) (i.e.
also more than third-order accuracy in space).
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Figure 3.3: 2D diffusion equation, {11× 11, 21× 21, . . . , 51× 51}, ∆t = 0.01,
t = 1: The effect of grid size h on the solution accuracy by the proposed scheme.
The solution error behaves apparently as Ne ≈ O(h3.31).

3.4.2 Stokes flow

The Stokes equations are a simple case of the transient Navier-Stokes equations
(3.7)-(3.8), where the non-linear convection term (u.∇)u is neglected and the
Reynolds number is set one. Through Stokes flows, we can test the performance
of the proposed scheme for the effect of coupling the velocity with the pressure
field without the involvement of the non-linear convection term (u.∇)u. Fol-
lowing Sheng et al. (2011), we consider the following exact solution

u(x, y, t) = π sin(2πy) sin2(πx) sin t, (3.56)

v(x, y, t) = −π sin(2πx) sin2(πy) sin t, (3.57)

p(x, y, t) = cos(πx) sin(πy) sin t, (3.58)

on a square domain Ω = [0, 1] × [0, 1], which corresponds to the source term
fb =

∂u
∂t

−∇2u+∇p. One can derive the initial solution and Dirichlet boundary
conditions for the velocity from (3.56)-(3.57). The reference pressure p = 0 is
specified at the centre of the domain.

The calculations are carried out with a very small time step, i.e. ∆t = 10−5,
to minimise the effect of the approximate error in time. We employ a number
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Figure 3.4: Stokes flow, {11 × 11, 21 × 21, . . . , 51 × 51}, ∆t = 10−5, t = 1:
The effect of grid size h on the solution accuracy by the proposed scheme. The
solution error behaves as Ne ≈ O(h3.07) and Ne ≈ O(h3.1) for the velocity (the
two indistinguishable lower lines) and the pressure, respectively.

of grids, namely {11× 11, 21× 21, . . . , 51× 51} to study the grid convergence
of the proposed scheme. Figure 3.4 shows the behaviour of the solution error
computed at t = 1 against the grid size h. One can see that the solution error
behaves apparently as O(h3.07) for the velocity and O(h3.1) for the pressure.

3.4.3 Burgers’ equation

The Burgers’ equation (3.4) is a good example to test a numerical scheme as it
involves both the convection and diffusion terms.

Approximation of shock wave propagation

Consider the following analytic solution of the Burgers’ equation (3.4) reported
in Hassanien et al. (2005)

u(x, t) =
[α0 + µ0 + (µ0 − α0) exp(η)]

1 + exp(η)
, (3.59)



3.4 Numerical examples 55

where 0 ≤ x ≤ 1, t ≥ 0, η = α0Re(x − µ0t − β0), α0 = 0.4, β0 = 0.125 and
µ0 = 0.6.

The initial and boundary conditions can be derived from (3.59). To facilitate
comparisons with some published results, we also employ Re = 100, t = 0.5 and
N = 37. Table 3.1 presents the CIRBF solution, the exact solution and those
in Hassanien et al. (2005), Dag, Irk and Saka (2005), Dogan (2004), Ali et al.
(2005), showing a close agreement achieved.

In order to study the convergence of the solution with grid refinement, the
calculations are carried out on a set of grids, namely N ∈ {11, 21, . . . , 101}.
The time step ∆t is required to be small enough at which the error caused
by the temporal discretisation can be negligible. In the present study, the
time step ∆t = 10−5 is chosen since experimentally there was no improvement
with smaller time steps. The errors of the solution against different grid sizes at
t = 0.5 are displayed in Figure 3.5, where the solution error behaves as O(h4.47).
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Figure 3.5: Shock wave propagation, N ∈ {11, 21, . . . , 101}, Re = 100, ∆t =
10−5, t = 0.5: The effect of grid size h on the solution accuracy by the proposed
scheme. The solution error behaves apparently as Ne ≈ O(h4.47).
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Table 3.1: Shock wave propagation, grid N = 37, Re = 100, t = 0.5: the exact, present and some other numerical solutions.
x Exact solution Present Ali et al. (2005) Dogan (2004) Dag, Irk and Saka (2005) Hassanien et al. (2005)

∆t = 0.05 ∆t = 0.025 ∆t = 0.05 ∆t = 0.025 ∆t = 0.01
0.000 1.0 1.0 1.0 1.0 1.0 1.0
0.056 1.0 1.0 1.0 1.0 1.0 1.0
0.111 1.0 1.0 1.0 1.0 1.0 1.0
0.167 1.0 1.0 1.0 1.0 1.0 1.0
0.222 1.0 1.0 1.0 1.0 1.0 1.0
0.278 0.998 0.998 0.999 0.999 0.999 0.998
0.333 0.980 0.980 0.985 0.994 0.986 0.982
0.389 0.847 0.850 0.847 0.848 0.850 0.849
0.444 0.452 0.449 0.452 0.407 0.448 0.455
0.500 0.238 0.238 0.238 0.232 0.236 0.239
0.556 0.204 0.204 0.204 0.204 0.204 0.204
0.611 0.2 0.2 0.2 0.2 0.2 0.2
0.667 0.2 0.2 0.2 0.2 0.2 0.2
0.722 0.2 0.2 0.2 0.2 0.2 0.2
0.778 0.2 0.2 0.2 0.2 0.2 0.2
0.833 0.2 0.2 0.2 0.2 0.2 0.2
0.889 0.2 0.2 0.2 0.2 0.2 0.2
0.944 0.2 0.2 0.2 0.2 0.2 0.2
1.000 0.2 0.2 0.2 0.2 0.2 0.2
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Shock-like solution

Another analytic solution of the Burgers’ equation is a shock-like one (Zhu and
Wang, 2009)

u(x, t) =
x/t

1 +
√
t/t0 exp(x2Re/4t)

, 0 ≤ x ≤ 1, t ≥ 1, (3.60)

where t0 = exp(Re/8). This solution represents the propagation of the shock.
We take the solution (3.60) at t = 1 as the initial condition, and conduct the
calculation at Re ∈ {100, 200} on a grid of N = 51 with ∆t = 0.01 and at
Re = 2000 on a grid of N = 201 with ∆t = 0.005.
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Figure 3.6: Shock-like solution, N ∈ {11, 21, . . . , 101}, Re ∈ {100, 200},
∆t = 10−5, t = 1.7: The effect of grid size h on the solution accuracy by the
proposed scheme. The solution error behaves as Ne ≈ O(h4.03) for Re = 100
and Ne ≈ O(h3.83) for Re = 200.

The present errors in terms of RMS and L∞ together with some other published
results are given in Table 3.2. The latter was obtained by the quadratic (QBGM)
and cubic (CBGM) B-spline based finite Galerkin methods (Dag, Saka and Boz,
2005), the septic B-spline method (Ramadanand et al., 2005), the quartic B-
spline collocation methods (QBCM1 and QBCM2) (Saka and Dag, 2007) and
the multiquadric quasi-interpolation (MQQI) method (Chen and Wu, 2006)
(results presented here correspond to the best value of the shape parameter c).
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Table 3.2: Shock-like solution: RMS and L∞ errors by the present and some other numerical methods.
x RMS × 103 RMS × 103 RMS × 103 L∞ × 103 L∞ × 103 L∞ × 103

N=51, Re=100, ∆t = 0.01 t=1.7 t=2.1 t=2.6 t=1.7 t=2.1 t=2.6
Present CIRBF 0.51333 0.39849 0.30645 1.29020 0.94819 0.70402
BSQI (Zhu and Wang, 2009) 0.82751 0.98595 1.58264 2.59444 2.35031 5.73827
MQQI (Chen and Wu, 2006) (c = 10−3) 5.89555 6.64358 6.90385 14.7550 15.9892 16.3403
QBCM1 (Saka and Dag, 2007) 0.17014 0.20476 1.29951 0.40431 0.86363 6.69425
QBCM2 (Saka and Dag, 2007) 0.24003 0.30849 1.57548 0.48800 1.14760 8.06799
Ref. (Ramadanand et al., 2005) 0.69910 0.72976 1.74570 3.13476 2.66986 8.06798

N=51, Re=200, ∆t = 0.01 t=1.8 t=2.4 t=3.2 t=1.8 t=2.4 t=3.2
Present CIRBF 0.79475 0.56208 0.39224 2.69630 1.77650 1.19470
BSQI (Zhu and Wang, 2009) 1.66464 2.06695 2.36889 5.12020 6.31491 6.85425
MQQI (Chen and Wu, 2006) (c = 10−2) 6.88480 7.89738 8.56856 25.6767 27.2424 2.68122
QBCM1 (Saka and Dag, 2007) 0.19127 0.14246 0.93617 0.54058 0.39241 5.54899
QBCM2 (Saka and Dag, 2007) 0.49130 0.41864 1.28863 1.16930 0.93664 7.49147
Ref. (Ramadanand et al., 2005) 0.68761 0.67943 1.48559 2.47189 2.16784 7.49146

N=201, Re=2000, ∆t = 0.005 t=1.7 t=2.4 t=3.1 t=1.7 t=2.4 t=3.1
Present CIRBF 1.86700 1.07860 0.74665 19.8620 12.3130 7.87850
BSQI (Zhu and Wang, 2009) 1.73914 1.60551 2.17489 4.57388 5.06708 6.21046
MQQI (Chen and Wu, 2006) (c = 10−3) 85.5754 91.4861 92.0002 370.921 313.435 275.749
QBCM1 (Saka and Dag, 2007) 0.01705 0.01252 0.60199 0.06192 0.05882 4.43469
QBCM2 (Saka and Dag, 2007) 0.35891 0.25132 0.63052 1.21170 0.80777 4.79061
QBGM (Dag, Saka and Boz, 2005) 0.35133 0.24451 0.63335 1.20755 0.80187 4.79061
CBGM (Dag, Saka and Boz, 2005) 0.35126 0.24448 0.63340 1.20726 0.80176 4.79061
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It can be seen that the proposed scheme outperforms the MQQI scheme and
produces results that are comparative with those by the other schemes.

Figure 3.6 shows a fast rate of convergence with grid refinement of the proposed
scheme, where a set of grids, namely {11, 21, . . . , 101} is employed and the
solution is computed at t = 1.7 using ∆t = 10−5. The convergence rate is of
O(h4.03) for Re = 100 and O(h3.83) for Re = 200.

3.4.4 Taylor decaying vortices

This problem is governed by the transient Navier-Stokes equations (3.7)-(3.8)
in which the body-force vector fb is neglected. Taylor decaying vortices are
often employed to verify numerical schemes in CFD. The flow describes an
initially periodical vortex structure convected by the flow field and exponentially
decaying due to the viscous effects. The exact solution of this problem is known
to be (Tian et al., 2011)

u(x, y, t) = − cos(kx) sin(ky) exp(−2k2t/Re), (3.61)

v(x, y, t) = sin(kx) cos(ky) exp(−2k2t/Re), (3.62)

p(x, y, t) = −0.25(cos(2kx) + cos(2ky)) exp(−4k2t/Re), (3.63)

where k is an integer. The initial and boundary conditions for the velocity
are derived from the exact solution (3.61)-(3.62) whereas the reference pressure
p = 0 is specified at the centre of the domain.

As in Tian et al. (2011), we also employ k = 2, Ω = [0, π] × [0, π], t = 2,
∆t = 0.002 and Re = 100, and conduct the simulation on a set of grids,
namely {11 × 11, 21 × 21, . . . , 51 × 51}. Numerical results indicate that the
proposed scheme is more than third-order accurate in space (i.e. Ne ≈ O(h3.4))
for the velocity (Table 3.3) and more than fourth-order accurate in space (i.e.
Ne ≈ O(h4.11)) for the pressure (Table 3.4). In comparison with the standard
second-order FDM and the compact FDM in Tian et al. (2011), the present
scheme performs better in terms of the accuracy, the average rate of convergence
and the CPU time (for a given accuracy) (Tables 3.3 and 3.4). For example,
to achieve the accuracy of about 1.3 × 10−3, the grid density and CPU time
required are about 21×21 and 2.517s for the present scheme, more than 31×31
and 2.625s for the compact FDM and more than 51 × 51 and 10.141s for the
standard FDM (Table 3.4). It is noted that the simulations are carried out on a
DELL computer which has 3.87 GB of RAM and one processor Intel (R) Core
(TM)2 Duo CPU E8400 of 3.0 GHz. All codes are written using the MATLAB
language.
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Table 3.3: Taylor decaying vortices, k = 2, ∆t = 0.002, t = 2, Re = 100: RMS errors and average rates of convergence for the
velocity by the present and some other numerical methods.

Compact FDM (Tian et al., 2011) Compact IRBF Compact FDM (Tian et al., 2011) Compact IRBF
Grid RMS(u) RMS(u) RMS(v) RMS(v)
11× 11 7.0070E-02 6.3558E-03 7.0070E-02 6.0332E-03
21× 21 9.0692E-03 2.5467E-04 9.0692E-03 2.5316E-04
31× 31 2.8851E-03 8.0732E-05 2.8851E-03 8.0587E-05
41× 41 1.2239E-03 3.9428E-05 1.2239E-03 3.9396E-05
51× 51 6.3063E-04 2.5607E-05 6.3063E-04 2.5599E-05

Ne ≈ O(h3.06) Ne ≈ O(h3.43) Ne ≈ O(h3.06) Ne ≈ O(h3.40)
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Table 3.4: Taylor decaying vortices, k = 2, ∆t = 0.002, t = 2, Re = 100: RMS errors, average rates of convergence for the pressure
and CPU time (seconds) by the present and some other numerical methods.

Second-order FDM (Tian et al., 2011) Compact FDM (Tian et al., 2011) Compact IRBF
Grid RMS(p) CPU (s) RMS(p) CPU (s) RMS(p) CPU (s)
11× 11 1.405E-01 0.281 1.076E-01 0.344 2.988E-02 0.756
21× 21 4.160E-02 0.640 1.057E-02 0.875 1.350E-03 2.517
31× 31 1.897E-02 1.984 2.910E-03 2.625 2.569E-04 9.759
41× 41 1.073E-02 5.156 1.136E-03 6.266 8.714E-05 24.298
51× 51 6.869E-03 10.141 5.393E-04 12.015 4.156E-05 58.934

Ne ≈ O(h1.97) Ne ≈ O(h3.44) Ne ≈ O(h4.11)
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3.4.5 Torsionally oscillating lid-driven cavity flow

In chapter 2, the steady state lid-driven square cavity flow was studied with a
similar 3-point stencil. The proposed CIRBF scheme is now applied to simulate
the flow in a square cavity driven by a simple harmonic oscillation of the top lid
(Figure 3.7). This cavity problem is studied in Chung and Denis (1999), Iwatsu
et al. (1992), Soh and Goodrich (1988). The flow is governed by the transient
Navier-Stokes equations (3.7)-(3.8) without the body force. The oscillating lid
velocity is given as u(t) = U0 sin(ωt), where ω is the frequency, with period of
K = 2π/ω.

1

1

x

v=0
u=0 u=0

v=0

v=0
u=0

v=0
y

0

u=U
0
sin(ωt)

Figure 3.7: Torsionally oscillating lid-driven cavity flow: Geometry and bound-
ary conditions.

In the present study, the flow starts from rest and the reference pressure p = 0
is specified at the centre of the cavity. It is observed that, after approximately 6
cycles, it reaches the periodic state. We are mainly interested in the simulation
of the quasi-steady periodic motion of the fluid.

For this problem, the Reynolds number Re and the frequency ω have a strong
influence on the flow behaviour. We consider Re ∈ {100, 400, 1000} based on
the maximum lid velocity U0 = 1 and ω ∈ {0.1, 1, 10} which were used in
Chung and Denis (1999), Iwatsu et al. (1992), Soh and Goodrich (1988). In the
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case of Re ∈ {100, 400}, the calculations are carried out on a grid of 65 × 65
using ∆t = 2π/500 for ω ∈ {0.1, 1} and ∆t = 2π/5000 for ω = 10. In the
case of Re = 1000, the calculations are carried out on a grid of 129× 129 using
∆t = 2π/1000 for ω ∈ {0.1, 1} and ∆t = 2π/10000 for ω = 10. For steady flow
simulations through transient equations, a time step should be chosen as large
as possible to save the computational time. More detail can be found in chapter
2. The u-velocity profiles along the vertical centreline are shown in Figure 3.8 at
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Figure 3.8: Torsionally oscillating lid-driven cavity flow: Profiles of u-velocity
along the vertical centreline during a half cycle of the lid oscillation for three
values of ω ∈ {0.1, 1, 10} and three values of Re ∈ {100, 400, 1000}. Times
used are t0 = 0, t1 = K/8, t2 = K/4, t3 = 3K/8, t4 = K/2 and t5 = 3K/4.
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Re ∈ {100, 400, 1000} and ω ∈ {0.1, 1, 10}. Firstly, we investigate the effect
of the frequency on the flow by fixing the Reynolds number. It can be seen that
the oscillating motion of the lid has an influence over a small region adjacent to
the lid for high frequencies and more deeply into the cavity at lower-frequency
oscillations. Secondly, we investigate the effect of the Reynolds number by fixing
the frequency. The effect of the oscillating lid penetrates the cavity more deeply
as the Reynolds number increases for ω = 0.1, but vice versa for ω ∈ {1, 10}.
In the case of high frequency and high Reynolds number (i.e. ω = 10 and
Re = 1000), the flow is seen to be confined to a very small depth of penetration
from the top of the lid, forming a boundary layer. The v-velocity profiles along
the horizontal centreline are shown in Figure 3.9 for aforementioned Reynolds
numbers and frequencies. In the case of high frequency, the magnitude of the
maximum v-velocity in the cavity is seen to decrease to a very small value as the
Reynolds number increases. In the interior core, the fluid is nearly stagnant.
These are in support of the previous statement that, in the high frequency range,
the flows are predominantly in the x-direction and concentrated only in a narrow
strip which is very near the top lid. The streamlines at Re ∈ {400, 1000} and
ω ∈ {1, 10} are shown in Figures 3.10-3.13. In the case of Re = 400 and ω = 1,
the counter rotating vortex appears at the upper right corner at t = 0. The
primary vortex is surrounded by the counter-rotating vortex at t = K/8, and
becomes very weak at t = 3K/8. However, at ω = 10, the primary vortex exists
in a short period from 0 to K/8 and then dies out at t = K/4. In the case of
Re = 1000 and ω = 1, the size of the counter-rotating vortex is relatively large
at t = 0. The primary vortex is reduced in size and strength as t increases, and
vanishes at the end of the first half-cycle. At ω = 10, the flow structure is very
similar to that in the case of Re = 400.

Our observations here are similar to those reported in the literature such as
Iwatsu et al. (1992) (Figures 2-7 and their descriptions) and Chung and Denis
(1999) (Figures 8-9 and 10-13 and their descriptions). It is noted that a quan-
titative comparison is not possible since numerical values were not reported in
Chung and Denis (1999), Iwatsu et al. (1992).

3.5 Concluding remarks

In this chapter, a new Cartesian-grid collocation discretisation scheme for time-
dependent problems is presented. The present approximations are based on 3-
point stencils, resulting in a sparse system matrix, while Adams-Bashforth/Crank
Nicolson algorithms and IRBF-based compact approximations are employed to
yield a high-order accurate solution in time and space, respectively. The pro-
posed scheme is verified successfully with a series of linear and nonlinear prob-
lems, including Taylor decaying vortices and torsionally oscillating lid-driven
cavity flows.
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Figure 3.9: Torsionally oscillating lid-driven cavity flow: Profiles of v-velocity
along the horizontal centreline during a half cycle of the lid oscillation for three
values of ω ∈ {0.1, 1, 10} and three values of Re ∈ {100, 400, 1000}. Times
used are t0 = 0, t1 = K/8, t2 = K/4, t3 = 3K/8, t4 = K/2 and t5 = 3K/4.
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Figure 3.10: Torsionally oscillating lid-driven cavity flow, 65× 65: Evolution of
streamlines during a half-cycle of the lid motion at Re = 400 and ω = 1.
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Figure 3.11: Torsionally oscillating lid-driven cavity flow, 65× 65: Evolution of
streamlines during a half-cycle of the lid motion at Re = 400 and ω = 10.
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Figure 3.12: Torsionally oscillating lid-driven cavity flow, 129× 129: Evolution
of streamlines during a half-cycle of the lid motion at Re = 1000 and ω = 1.
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Figure 3.13: Torsionally oscillating lid-driven cavity flow, 129× 129: Evolution
of streamlines during a half-cycle of the lid motion at Re = 1000 and ω = 10.



Chapter 4

Incorporation of Alternating
Direction Implicit (ADI)
algorithm into compact IRBF
scheme

In this chapter, the ADI algorithm reported in You (2006) for the convection-
diffusion equation is implemented in the context of CIRBF approximations.
The CIRBF approximations are constructed over 3-point stencils, where extra
information is incorporated via two forms: only nodal second-order derivative
values (Scheme 1), and both nodal first- and second-order derivative values
(Scheme 2). The resultant algebraic systems are sparse, especially for Scheme 2
(tridiagonal matrices). Several steady and non-steady problems are considered
to verify the present schemes and to compare their accuracy with some other
ADI schemes. Numerical results show that highly accurate results are obtained
with the proposed methods.

4.1 Introduction

In this chapter, we consider a 2D unsteady convection-diffusion equation for a
variable u

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= dx

∂2u

∂x2
+ dy

∂2u

∂y2
+ fb, (x, y) ∈ Ω, t ≥ 0, (4.1)

subject to the initial condition

u(x, y) = u0(x, y), (x, y) ∈ Ω, t = 0, (4.2)
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and Dirichlet boundary condition

u(x, y, t) = uΓ(x, y, t), (x, y) ∈ Γ, t ≥ 0, (4.3)

where relevant variables are defined before in chapters 2, 3. In equation (4.1),
cx and cy are the convective velocities, and dx and dy are the positive diffusion
coefficients, respectively.

For the steady-state case, equation (4.1) reduces to

cx
∂u

∂x
+ cy

∂u

∂y
= dx

∂2u

∂x2
+ dy

∂2u

∂y2
+ fb. (4.4)

Equations (4.1) and (4.4) are known as a simplified version of the Navier-Stokes
equation. They are widely used in CFD and physical sciences to describe the
transport of mass, momentum, vorticity, heat and energy, the modeling of semi-
conductors, etc. For example, by means of (4.1), one can describe the heat
transfer in a draining film (Isenberg and Gutfinger, 1972), water transfer in
soils (Parlange, 1980) and the chemical separation processes (Dehghan, 2004).

It is desirable to have accurate and stable methods for solving the convection-
diffusion equation. The upwind and central finite differences are among popular
discretisation schemes for the approximation of spatial derivative terms because
they are simple and easy to implement. These finite-difference schemes gener-
ally yield good results on sufficiently fine meshes. However, poor results may be
obtained if the mesh used is relatively coarse. To improve the accuracy order,
larger stencils can be used. The drawback of this approach is that the band-
width of their coefficient matrices is increased, and thus it is time-consuming
to solve such systems either by using direct solvers, e.g. Gaussian elimination
and LU decomposition technique, or iterative methods, e.g. a generalized min-
imal residual algorithm (GMRES) and biconjugate gradient stabilised method
(BICGSTAB). This leads to the development of compact finite difference meth-
ods, where small matrix bandwidth and high-order accuracy can be achieved
together (Kalita and Chhabra, 2006; Kalita et al., 2002; Noye and Tan, 1989).

The ADI methods are highly efficient procedures for solving parabolic and hy-
perbolic problems (Thomas, 1995). As shown in Thomas (1995), the efficiency
of ADI methods is based on reducing problems in several space variables to a
number of one-dimensional problems. The standard PR-ADI method (Peace-
man and H. H. Rachford, 1955) has been popular because of its computational
cost-effectiveness. However, due to its low-order accuracy, the method often
produces significant dissipation and phase errors (Karaa and Zhang, 2004). To
enhance spatial accuracy, Karaa and Zhang (2004) has developed a high-order
compact ADI (HOC-ADI) scheme, which possesses fourth-order accuracy and
still retains the tridiagonal algorithm of the standard PR-ADI. For solving the
convection-dominated diffusion (CDD) equation (i.e. high Peclet numbers),
HOC-based schemes may suffer from excessive numerical dissipation (Ma et al.,
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2012; You, 2006). A high-order ADI method proposed in You (2006) was de-
signed to overcome this problem, where its factorisation involves four terms and
spatial derivatives are approximated using the Padé algorithm.

In this chapter, we implement the ADI method proposed in You (2006) in the
context of CIRBF approximations for the convection-diffusion equation. Two
compact 3-point schemes, namely ADI-CIRBF-1 and ADI-CIRBF-2, for the
spatial discretisation are proposed. Scheme 1 incorporates nodal values of the
second-order derivatives into the approximations, while Scheme 2 includes not
only nodal second-order derivative values but also nodal first-derivative values.
The resultant algebraic systems are sparse, especially for Scheme 2 (tridiagonal
matrices). The performances of the two present schemes are investigated nu-
merically through the solution of several analytic test problems governed by the
unsteady and steady 2D convection-diffusion equations. Results obtained are
also compared with those obtained by the standard PR-ADI scheme and some
other high-order compact ADI schemes. The remainder of the chapter is organ-
ised as follows. Section 4.2 gives a brief review of some ADI methods. Section
4.3 describes the two proposed schemes. In section 4.4, numerical results are
presented and compared with some published solutions. Section 4.5 concludes
the chapter.

4.2 A brief review of ADI methods

4.2.1 The Peaceman-Rachford method

The PR-ADI method splits equation (4.1) into two

un−1/2 − un−1

∆t/2
+cx

∂un−1/2

∂x
+cy

∂un−1

∂y
= dx

∂2un−1/2

∂x2
+dy

∂2un−1

∂y2
+f

n−1/2
b , (4.5)

un − un−1/2

∆t/2
+ cx

∂un−1/2

∂x
+ cy

∂un

∂y
= dx

∂2un−1/2

∂x2
+ dy

∂2un

∂y2
+ f

n−1/2
b , (4.6)

where the derivatives with respect to x and y are treated implicitly in the
first and second equations, respectively. The PR-ADI method often leads to
significant dissipation and phase errors due to its low-order accuracy in the
spatial discretisation.
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4.2.2 The Douglas-Rachford method

The Douglas-Rachford method (Douglas and Rachford, 1956) is a variant of the
Peaceman-Rachford method. Applying this method to (4.1), one obtains

u∗,n − un−1

∆t
+ cx

∂u∗,n

∂x
+ cy

∂un−1

∂y
= dx

∂2u∗,n

∂x2
+ dy

∂2un−1

∂y2
+ fnb , (4.7)

un − un−1

∆t
+ cx

∂u∗,n

∂x
+ cy

∂un

∂y
= dx

∂2u∗,n

∂x2
+ dy

∂2un

∂y2
+ fnb . (4.8)

Unlike the Peaceman-Rachford method, this scheme is very easy to gener-
alise to operator decompositions involving more than two operators (Glowinski
et al., 2003). However, it still retains the drawbacks of the standard Peaceman-
Rachford method.

4.2.3 Karaa’s method

This method factorises equation (4.1) as

(
Lx +

∆t

2
Ax

)(
Ly +

∆t

2
Ay

)
un =

(
Lx −

∆t

2
Ax

)(
Ly −

∆t

2
Ay

)
un−1, (4.9)

where

Lx = 1 +
∆x2

12

(
δ2x −

cx
dx
δx

)
, Ax = −

(
dx +

c2x∆x
2

12dx

)
δ2x + cxδx, (4.10)

Ly = 1 +
∆y2

12

(
δ2y −

cy
dy
δy

)
, Ay = −

(
dy +

c2y∆y
2

12dy

)
δ2y + cyδy, (4.11)

δη and δ2η are the first- and second-order central difference operators for η-
direction; and ∆x and ∆y the mesh size.

Introducing an intermediate variable u∗, equation (4.9) can be solved by the
following two steps

(
Lx +

∆t

2
Ax

)
u∗ =

(
Lx −

∆t

2
Ax

)(
Ly −

∆t

2
Ay

)
un−1, (4.12)

(
Ly +

∆t

2
Ay

)
un = u∗. (4.13)



4.3 Proposed schemes 74

4.2.4 You’s method

You (2006) proposed the following factorisation to equation (4.1)

(
1 +

∆t

2
cx
∂

∂x

)(
1− ∆t

2
dx

∂2

∂x2

)(
1 +

∆t

2
cy
∂

∂y

)(
1− ∆t

2
dy

∂2

∂y2

)
un =

(
1− ∆t

2
cx
∂

∂x

)(
1 +

∆t

2
dx

∂2

∂x2

)(
1− ∆t

2
cy
∂

∂y

)(
1 +

∆t

2
dy

∂2

∂y2

)
un−1

+ ∆tf
n−1/2
b . (4.14)

In the matrix-vector notation, equation (4.14) becomes

L−1
x T+

x L
−1
xxT

−
xxL

−1
y T+

y L
−1
yy T

−
yyu

n = L−1
x T−

x L
−1
xxT

+
xxL

−1
y T−

y L
−1
yy T

+
yyu

n−1, (4.15)

where

T±
x =

(
Lx ±

∆t

2
cxAx

)
, T±

xx =

(
Lxx ±

∆t

2
dxBxx

)
, (4.16)

T±
y =

(
Ly ±

∆t

2
cyAy

)
, T±

yy =

(
Lyy ±

∆t

2
dyByy

)
,

Lx, Lxx, Ax, Bxx, Ly, Lyy, Ay and Byy are coefficient matrices derived from the
standard fourth-order Padé schemes.

The equation (4.15) can be solved by the following two steps

L−1
x T+

x L
−1
xxT

−
xxu

∗ = L−1
x T−

x L
−1
xxT

+
xxL

−1
y T−

y L
−1
yy T

+
yyu

n−1, (4.17)

L−1
y T+

y L
−1
yy T

−
yyu

n = u∗. (4.18)

The last two ADI methods (section 4.2.3 and 4.2.4) are preferable to the first two
methods (section 4.2.1 and 4.2.2) in solving the convection-dominated diffusion
(CDD) equation.

4.3 Proposed schemes

We propose two high-order numerical schemes, which are based on CIRBF
approximations, for the spatial discretisation, and incorporated them into the
ADI framework proposed in You (2006).
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4.3.1 Spatial discretisation

Consider a 2D domain Ω as described in section 3.3.2. At an interior grid
point xi,j, the associated stencils to be considered here are (i) two local stencils:
[xi−1,j , xi,j, xi+1,j ] in the x-direction and [yi,j−1, yi,j, yi,j+1] in the y-direction, and
(ii) two global stencils: [x1,j , x2,j , . . . , xnx,j] (x1,j and xnx,j are the two boundary
nodes) in the x-direction and

[
yi,1, yi,2, . . . , yi,ny

]
(yi,1 and yi,ny

the two boundary
nodes) in the y-direction. Hereafter, for brevity, we use η to denote x and y,
and thus to have a generic local stencil [η1, η2, η3] (η1 < η2 < η3, η2 ≡ ηi,j)
(Figure 2.2) and a generic global stencil

[
η1, η2, . . . , ηnη

]
(Figure 4.1).

η
1

η
2 η

3
η

n
η

Figure 4.1: Global 1D-IRBF stencil.

Below are two proposed schemes whose constructions are based on (2.9)-(2.11).
The difference between the two lies in (i) types of nodal derivatives used in
their compact forms (i.e. second-order derivatives only for the first proposed
scheme, and both first- and second-order derivatives for the second proposed
scheme); and (ii) approximations for the boundary derivative values (i.e. global
approximations for the first scheme and compact local approximations for the
second scheme). The value of m is taken to be 3 for local stencils, and nx or ny
for global stencils.

CIRBF-1

In this scheme 1, the compact approximations for the nodal first- and second-
order derivative values at the interior nodes are exactly the same as described
in section 2.4.1, 3.3.2, i.e. equations (2.27)-(2.28).

First-order derivative compact approximations:

At the current time level n, equation (2.27) is treated in an implicit manner as

dun(η)

dη
=

3∑

i=1

dϕi(η)

dη
uni +

dϕ4(η)

dη

d2un1
dη2

+
dϕ5(η)

dη

d2un3
dη2

, (4.19)

where the nodal second-order derivative values are also considered as unknowns.
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Collocating (4.19) at η = η2 results in

dun2
dη

=
dϕ1(η2)

dη
un1+

dϕ2(η2)

dη
un2+

dϕ3(η2)

dη
un3+

dϕ4(η2)

dη

d2un1
dη2

+
dϕ5(η2)

dη

d2un3
dη2

, (4.20)

or in matrix-vector form

[
0 1 0

]



dun1
dη
dun2
dη
dun3
dη


 =

[
dϕ1(η2)
dη

dϕ2(η2)
dη

dϕ3(η2)
dη

]


un1
un2
un3


+

[
dϕ4(η2)
dη

0 dϕ5(η2)
dη

]



d2un1
dη2

d2un2
dη2

d2un3
dη2


 .

(4.21)

At the boundary nodes, nodal values of the first-order derivatives are approxi-
mated using the global 1D-IRBF approach (Mai-Duy and Tran-Cong, 2008)

(
dun1
dη
dunnη

dη

)
=




H1(η1) H1(ηnη
)

...
...

Hnη
(η1) Hnη

(ηnη
)

1 1
0 0




T 


H1(η1) · · · Hnη
(η1) η1 1

H1(η2) · · · Hnη
(η2) η2 1

...
. . .

...
...

...
H1(ηnη

) · · · Hnη
(ηnη

) ηnη
1




−1


un1
un2
...
unnη


 ,

(4.22)

where ui = u(ηi) (i ∈ {1, 2, . . . , nη}); and dui
dη

= du
dη
(ηi) (i ∈ {1, nη}).

The IRBF system on a grid line for the first-order derivative of u is obtained by
letting the interior node taking value from 2 to (nη − 1) in (4.21) and making
use of (4.22)

Lηûnη = Aηû
n +Aηηû

n
ηη, (4.23)

where Lη, Aη and Aηη are nη × nη matrices, and

ûn =
[
un1 , u

n
2 , . . . , u

n
nη

]T
, (4.24)

ûnη =

[
dun1
dη

,
dun2
dη

, . . . ,
dunnη

dη

]T
, (4.25)
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ûnηη =

[
d2un1
dη2

,
d2un2
dη2

, . . . ,
d2unnη

dη2

]T
. (4.26)

Second-order derivative compact approximations:

Collocating (2.28) at η = η2 and treating in an implicit manner at the current
time level n, leads to

− d2ϕ4(η2)

dη2
d2un1
dη2

+
d2un2
dη2

− d2ϕ5(η2)

dη2
d2un3
dη2

=

d2ϕ1(η2)

dη2
un1 +

d2ϕ2(η2)

dη2
un2 +

d2ϕ3(η2)

dη2
un3 , (4.27)

or in matrix-vector form

[
−d2ϕ4(η2)

dη2
1 −d2ϕ5(η2)

dη2

]



d2un1
dη2

d2un2
dη2

d2un3
dη2


 =

[
d2ϕ1(η2)
dη2

d2ϕ2(η2)
dη2

d2ϕ3(η2)
dη2

]


un1
un2
un3


 .

(4.28)

At the boundary nodes, nodal values of the second-order derivatives are ap-
proximated as (Mai-Duy and Tran-Cong, 2008; Thai-Quang, Le-Cao, Mai-Duy
and Tran-Cong, 2012)

(
d2un1
dη2

d2unnη

dη2

)
=




G1(η1) G1(ηnη
)

...
...

Gnη
(η1) Gnη

(ηnη
)

0 0
0 0




T 


H1(η1) · · · Hnη
(η1) η1 1

H1(η2) · · · Hnη
(η2) η2 1

...
. . .

...
...

...
H1(ηnη

) · · · Hnη
(ηnη

) ηnη
1




−1


un1
un2
...
unnη


 ,

(4.29)

where ui = u(ηi) (i ∈ {1, 2, . . . , nη}); and d2ui
dη2

= d2u
dη2

(ηi) (i ∈ {1, nη}).

The IRBF system on a grid line for the second derivative of u is obtained by
letting the interior node taking value from 2 to (nη − 1) in (4.28) and making
use of (4.29)

Lηηûnηη = Bηηûn, (4.30)

where Lηη, Bηη are nη × nη matrices.
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CIRBF-2

First-order derivative compact approximations:

Unlike Scheme 1, nodal derivative values (i.e. extra information) used in the
compact approximation of first derivatives are chosen here as du1

dη
and du3

dη
. We

construct the conversion system over a 3-point stencil associated with an interior
node in the form of




u1
u2
u3
du1
dη
du3
dη




=

(
H
H

)

︸ ︷︷ ︸
C2




w1

w2

w3

c1
c2



, (4.31)

where dui
dη

= du
dη
(ηi) (i ∈ {1, 3}); C2 is the conversion matrix; H is defined as

(2.20); and

H =

[
H1(η1) H2(η1) H3(η1) 1 0
H1(η3) H2(η3) H3(η3) 1 0

]
. (4.32)

Solving (4.31) yields




w1

w2

w3

c1
c2




= C−1
2




u1
u2
u3
du1
dη
du3
dη



, (4.33)

which maps the vector of nodal values of the function and of its first-order
derivative to the vector of RBF coefficients including the two integration con-
stants. Approximate expressions for the first-order derivatives in the physical
space are obtained by substituting (4.33) into (2.10)

du(η)

dη
=
[
H1(η) H2(η) H3(η) 1 0

]
C−1
2

(
û
d̂u
dη

)
, (4.34)

where η1 ≤ η ≤ η3; û = (u1, u2, u3)
T and d̂u

dη
= (du1

dη
, du3
dη

)T .

It can be rewritten as

du(η)

dη
=

3∑

i=1

dφi(η)

dη
ui +

dφ4(η)

dη

du1
dη

+
dφ5(η)

dη

du3
dη

, (4.35)

where {φi(η)}5i=1 is the set of IRBFs in the physical space.
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At the current time level, equation (4.35) is taken as

dun(η)

dη
=

3∑

i=1

dφi(η)

dη
uni +

dφ4(η)

dη

dun1
dη

+
dφ5(η)

dη

dun3
dη

, (4.36)

where nodal values of the first-order derivatives on the right hand side are
treated as unknowns.

Collocating (4.36) at η = η2 results in

−dφ4(η2)

dη

dun1
dη

+
dun2
dη

−dφ5(η2)

dη

dun3
dη

=
dφ1(η2)

dη
un1+

dφ2(η2)

dη
un2+

dφ3(η2)

dη
un3 , (4.37)

or in matrix-vector form

[
−dφ4(η2)

dη
1 −dφ5(η2)

dη

]



dun1
dη
dun2
dη
dun3
dη


 =

[
dφ1(η2)
dη

dφ2(η2)
dη

dφ3(η2)
dη

]


un1
un2
un3


 .

(4.38)
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Figure 4.2: Special compact 4-point 1D-IRBF stencils for left and right bound-
ary nodes.

At the boundary nodes, instead of using the global 1D-IRBF approach as in
Scheme 1, we compute the first derivative here using special compact local sten-
cils (Figure 4.2). These proposed stencils are constructed as follows. Consider
the boundary node η1. Its associated stencil is [η1, η2, η3, η4]. The conversion
system over this stencil is presented as the following matrix-vector multiplica-
tion




u1
u2
u3
u4
du2
dη




=

(
Hsp

Hsp

)

︸ ︷︷ ︸
Csp1




w1

w2

w3

w4

c1
c2



, (4.39)



4.3 Proposed schemes 80

where Csp1 is the conversion matrix and Hsp, Hsp are matrices defined as

Hsp =




H1(η1) H2(η1) H3(η1) H4(η1) η1 1
H1(η2) H2(η2) H3(η2) H4(η2) η2 1
H1(η3) H2(η3) H3(η3) H4(η3) η3 1
H1(η4) H2(η4) H3(η4) H4(η4) η4 1


 , (4.40)

Hsp =
[
H1(η2) H2(η2) H3(η2) H4(η2) 1 0

]
. (4.41)

Solving (4.39) yields




w1

w2

w3

w4

c1
c2




= C−1
sp1




u1
u2
u3
u4
du2
dη



. (4.42)

The boundary value of the first-order derivative of u is thus obtained by sub-
stituting (4.42) into (2.10) and taking η = η1

du(η1)

dη
=

[
H1(η1) H2(η1) H3(η1) H4(η1) 1 0

]
C−1
sp1

(
u1 u2 u3 u4

du2
dη

)T
,

(4.43)

or

dun1
dη

− dφsp5(η1)

dη

dun2
dη

=
dφsp1(η1)

dη
un1+

dφsp2(η1)

dη
un2+

dφsp3(η1)

dη
un3+

dφsp4(η1)

dη
un4 ,

(4.44)

where {φspi(η)}5i=1 is the set of IRBFs in the physical space. We rewrite equation
(4.44) in matrix-vector form

[
1 −dφsp5 (η1)

dη
0 0

]




dun1
dη
dun2
dη
dun3
dη
dun4
dη



=

[
dφsp1 (η1)

dη

dφsp2 (η1)

dη

dφsp3 (η1)

dη

dφsp4 (η1)

dη

]



un1
un2
un3
un4


 . (4.45)

In a similar manner, one is able to calculate the first derivative of u at the
boundary node ηnη

.
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The IRBF system on a grid line for the first derivative of u is obtained by letting
the interior node taking value from 2 to (nη − 1) in (4.38) and making use of
(4.45),

Lηûnη = Aηû
n. (4.46)

Second-order derivative compact approximations:

Nodal derivative values (i.e. extra information) used in the compact approxi-

mation of second-order derivatives are chosen here as d2u1
dη2

and d2u3
dη2

. The cor-

responding formulation is thus exactly the same as described in Scheme 1 (i.e.
(4.28)). However, at the boundary nodes, instead of using the global 1D-IRBF
approach as in Scheme 1, we compute the second-order derivative here using
special compact local stencils (Figure 4.2). Consider the boundary node, e.g. η1.
The conversion system over the associated stencil is presented as the following
matrix-vector multiplication




u1
u2
u3
u4
d2u2
dη2




=

(
Hsp

Gsp

)

︸ ︷︷ ︸
Csp2




w1

w2

w3

w4

c1
c2



, (4.47)

where Csp2 is the conversion matrix; Hsp is defined as before; and

Gsp =
[
G1(η2) G2(η2) G3(η2) G4(η2) 0 0

]
. (4.48)

Solving (4.47) yields




w1

w2

w3

w4

c1
c2




= C−1
sp2




u1
u2
u3
u4
d2u2
dη2



. (4.49)

The boundary value of the second-order derivative of u is thus obtained by
substituting (4.49) into (2.9) and taking η = η1

d2u(η1)

dη2
=

[
G1(η1) G2(η1) G3(η1) G4(η1) 0 0

]
C−1
sp2

(
u1 u2 u3 u4

d2u2
dη2

)T
,

(4.50)



4.3 Proposed schemes 82

or

d2un1
dη2

− d2ϕsp5(η1)

dη2
d2un2
dη2

=

d2ϕsp1(η1)

dη2
un1 +

d2ϕsp2(η1)

dη2
un2 +

d2ϕsp3(η1)

dη2
un3 +

d2ϕsp4(η1)

dη2
un4 , (4.51)

where {ϕspi(η)}5i=1 is the set of IRBFs in the physical space. We rewrite equation
(4.51) in matrix-vector form

[
1 −d2ϕsp5(η1)

dη2
0 0

]




d2un1
dη2

d2un2
dη2

d2un3
dη2

d2un4
dη2



=

[
d2ϕsp1 (η1)

dη2
d2ϕsp2 (η1)

dη2
d2ϕsp3 (η1)

dη2
d2ϕsp4 (η1)

dη2

]



un1
un2
un3
un4


 . (4.52)

The IRBF system on a grid line for the second derivative of u is obtained by
letting the interior node taking value from 2 to (nη − 1) in (4.28) and making
use of (4.52),

Lηηûnηη = Bηηûn, (4.53)

where Lηη, Bηη are nη × nη matrices.

It is noted that, for brevity, we use the same notations to represent the RBF
coefficients and the coefficient matrices for the two schemes and also for the
approximation of first and second derivatives in Scheme 2. In fact, for example,
the entries of Lη, Lηη, Aη and Bηη in (4.46) and (4.53) are different from those
of Lη, Lηη, Aη and Bηη in (4.23) and (4.30); and the coefficient set (w1, w2, w3,
w4, c1, c2) in (4.39) is not the same as that in (4.47).



4.3 Proposed schemes 83

4.3.2 Temporal discretisation

The temporal discretisation of (4.1) with a Crank-Nicolson scheme (Crank and
Nicolson, 1996) gives

un +
∆t

2
cx
∂un

∂x
− ∆t

2
dx
∂2un

∂x2
+

∆t

2
cy
∂un

∂y
− ∆t

2
dy
∂2un

∂y2
=

un−1 − ∆t

2
cx
∂un−1

∂x
+

∆t

2
dx
∂2un−1

∂x2
− ∆t

2
cy
∂un−1

∂y
+

∆t

2
dy
∂2un−1

∂y2

+ ∆tf
n−1/2
b + O(∆t2). (4.54)

We apply the ADI factorisation to (4.54), resulting in

{
1 +

∆t

2
cx
∂

∂x
− ∆t

2
dx

∂2

∂x2

}{
1 +

∆t

2
cy
∂

∂y
− ∆t

2
dy

∂2

∂y2

}
un =

{
1− ∆t

2
cx
∂

∂x
+

∆t

2
dx

∂2

∂x2

}{
1− ∆t

2
cy
∂

∂y
+

∆t

2
dy

∂2

∂y2

}
un−1

+ ∆tf
n−1/2
b + O(∆t2). (4.55)

Equation (4.55) can be further factorised as

(
1 +

∆t

2
cx
∂

∂x

)(
1− ∆t

2
dx

∂2

∂x2

)(
1 +

∆t

2
cy
∂

∂y

)(
1− ∆t

2
dy

∂2

∂y2

)
un =

(
1− ∆t

2
cx
∂

∂x

)(
1 +

∆t

2
dx

∂2

∂x2

)(
1− ∆t

2
cy
∂

∂y

)(
1 +

∆t

2
dy

∂2

∂y2

)
un−1

+ ∆tf
n−1/2
b + O(∆t2). (4.56)

It is noted that equations (4.55) and (4.56) have the same order accuracy in
time (i.e. second order) as equation (4.54).

4.3.3 Spatial - temporal discretisation

Incorporation of the CIRBF approximations derived in section 4.3.1 (i.e. CIRBF-
1) and 4.3.1 (i.e. CIRBF-2) into the ADI equation (4.56) leads to, respectively,
the following two schemes.
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ADI-CIRBF-1

From (4.23) and (4.30), nodal values of the first- and second-order derivatives
of u can be derived in terms of nodal variable values

ûη = L−1
η

(
Aη +AηηL−1

ηη Bηη
)
û, (4.57)

ûηη = L−1
ηη Bηηû. (4.58)

Substituting (4.57) and (4.58) into (4.56) results in

L−1
x T +

x L−1
xxT −

xxL−1
y T +

y L−1
yy T −

yy û
n =

L−1
x T −

x L−1
xxT +

xxL−1
y T −

y L−1
yy T +

yy û
n−1 +∆tf̂

n−1/2
b , (4.59)

where

T ±
x =

(
Lx ±

∆t

2
cx
{
Ax +AxxL−1

xxBxx
})

, T ±
xx =

(
Lxx ± ∆t

2
dxBxx

)
,(4.60)

T ±
y =

(
Ly ±

∆t

2
cy
{
Ay +AyyL−1

yy Byy
})

, T ±
yy =

(
Lyy ± ∆t

2
dyByy

)
.

ADI-CIRBF-2

From (4.46) and (4.53), nodal values of the first- and second-order derivatives
of u can be derived in terms of nodal variable values

ûη = L−1
η Aηû, (4.61)

ûηη = L−1
ηη Bηηû. (4.62)

Substituting (4.61) and (4.62) into (4.56) results in

L−1
x T +

x L−1
xxT −

xxL−1
y T +

y L−1
yy T −

yy û
n =

L−1
x T −

x L−1
xxT +

xxL−1
y T −

y L−1
yy T +

yy û
n−1 +∆tf̂

n−1/2
b , (4.63)

where

T ±
x =

(
Lx ±

∆t

2
cxAx

)
, T ±

xx =
(
Lxx ± ∆t

2
dxBxx

)
, (4.64)

T ±
y =

(
Ly ±

∆t

2
cyAy

)
, T ±

yy =
(
Lyy ± ∆t

2
dyByy

)
.
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Calculation procedure

Equation (4.59)/(4.63) is equivalent to

L−1
x T +

x L−1
xxT −

xxû
∗ = L−1

x T −
x L−1

xxT +
xxL−1

y T −
y L−1

yy T +
yy û

n−1 +∆tf̂
n−1/2
b , (4.65)

L−1
y T +

y L−1
yy T −

yy û
n = û∗, (4.66)

which can be solved by the following two steps.

Step 1: This step involves two substeps

• Substep 1: Compute the nodal values of u∗ at the left and right boundaries
of the computational domain via equation (4.66) for x = x1 and x = xnx

with the given boundary condition (4.3).

• Substep 2: Solve (4.65) on the x-grid lines (y = yj, j ∈ {2, 3, . . . , ny − 1})
for the values of u∗ at the interior nodes.

Step 2: Solve (4.66) on the y-grid lines (x = xi, i ∈ {2, 3, . . . , nx − 1}) for the
values of un at the interior nodes.

Owing to the ADI technique, the computational costs for two present solution
procedures are low. Scheme 2 (i.e. ADI-CIRBF-2) is more efficient as only local
stencils are involved.

4.4 Numerical examples

For global stencils, value of β = 1 is usually picked whereas value of β = 50 is
simply picked for local stencils in Scheme 1 and Scheme 2 in this chapter. We
assess the performance of the proposed scheme through the following measures:

• the average absolute error (L1) defined as

L1 =
1

N

N∑

i=1

|ui − ui|, (4.67)

• the RMS error defined as (2.48),

• the maximum absolute error (L∞) defined as (3.53),
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• the average rate of convergence α determined by the method of least
squares as described in chapter 2. The local rate of convergence is defined
as (2.49).

A flow is considered to reach its steady state when the criterion (2.50) is satisfied.

4.4.1 Unsteady diffusion equation

Consider a diffusion equation by setting the parameters in equation (4.1) as
cx = cy = 0, dx = dy = 1 and fb = 0. The analytic solution is taken here as
(Tian and Ge, 2007)

u(x, y, t) = e−2π2t sin(πx) sin(πy). (4.68)

The problem domain is chosen to be a unit square Ω = [0, 1] × [0, 1] and the
initial and Dirichlet boundary conditions are derived from (4.68).
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Figure 4.3: Unsteady diffusion equation, {11 × 11, 16 × 16, . . . , 41 × 41},
∆t = 10−5, t = 0.0125 : The effect of grid size h on the solution accuracy for
the two present schemes. The solution converges as O(h2.74) for ADI-CIRBF-1
and O(h4.76) for ADI-CIRBF-2.

We employ a set of uniform grids to study the convergence of the solution
with grid refinement. Results obtained at t = 0.0125 using ∆t = 10−5 and
{11 × 11, 16 × 16, . . . , 41 × 41} are displayed in Figure 4.3, showing that the
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approximate solution converges apparently as O(h2.74) for ADI-CIRBF-1, and
O(h4.76) for ADI-CIRBF-2.

We employ a set of time steps, namely ∆t ∈ {0.05, 0.025, 0.0125, 0.00625} to
test the temporal accuracy. Results obtained at t = 1.25 using a uniform grid
of 81×81 are shown in Table 4.1. Two present schemes are about second-order
accurate in time as expected (temporal derivative terms are presently discretised
with a second-order Crank-Nicolson scheme). It is noted that we employ a fine
grid of 81 × 81 to ensure that the approximate error in space is small enough
so that its effects can be neglected.

Table 4.1: Unsteady diffusion equation, t = 1.25, 81× 81: Solution accuracy of
the two present schemes against time step.

ADI-CIRBF-1 ADI-CIRBF-2
∆t RMS Local Rate RMS Local Rate
0.05 3.8700E-12 —- 3.8518E-12 —-
0.025 1.1432E-12 1.76 1.1276E-12 1.77
0.0125 2.9542E-13 1.95 2.9337E-13 1.94
0.00625 7.3686E-14 2.00 7.4054E-14 1.99

To facilitate a comparison with the exponential high-order compact ADI scheme
(EHOC-ADI) (Tian and Ge, 2007), we now choose ∆t = h2 and t = 0.125.
Table 4.2 indicates that the present ADI-CIRBF-2 scheme and the EHOC-ADI
scheme yield similar local rates of convergence of about 4.

Table 4.2: Unsteady diffusion equation, t = 0.125, ∆t = h2: Effect of grid size
on the solution accuracy.

EHOC-ADI ADI-CIRBF-2
Grid (nx × ny) RMS Local Rate RMS Local Rate
11× 11 8.55134E-05 —- 9.39417E-05 —-
21× 21 5.19160E-06 4.041 5.81951E-06 4.013
41× 41 3.17475E-07 4.031 4.02907E-07 3.852

Figure 4.4 plots the RMS error against time with ∆t = 10−4. It can be seen
that ADI-CIRBF-2 is the most accurate scheme, followed by ADI-CIRBF-1 and
then PR-ADI. It also shows that the present results using a grid of 21× 21 are
already more accurate than the standard ADI results using a grid of 41× 41.
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Figure 4.4: Unsteady diffusion equation, ∆t = 10−4: The solution accuracy of
the standard PR-ADI and the two present schemes against time.

4.4.2 Unsteady convection-diffusion equation

Consider the unsteady convection-diffusion equation (4.1), where fb = 0, in a
square Ω = [0, 2] × [0, 2] with the following analytic solution (Noye and Tan,
1989)

u(x, y, t) =
1

4t+ 1
exp

[
−(x− cxt− 0.5)2

dx(4t+ 1)
− (y − cyt− 0.5)2

dy(4t+ 1)

]
, (4.69)

and subject to Dirichlet boundary conditions. From (4.69), one can derive the
initial and boundary conditions.

Figure 4.5 shows the accuracy of the spatial discretisation of the two present
schemes. The calculations are carried out on a set of uniform grids, namely
{31 × 31, 41 × 41, . . . , 81 × 81} and a time step of 10−4 with the following
parameters: cx = cy = 0.8, dx = dy = 0.01. The accuracy of the solution is
measured at t = 1.25. It is noted that the time step is chosen small enough to
minimise the effect of the approximate error in time. It can be seen that the
solution converges very fast with grid refinement: O(h4.07) for ADI-CIRBF-1
and O(h4.32) for ADI-CIRBF-2. Figure 4.6 shows the initial pulse and the pulse
at t = 1.25 using a grid of 81×81 and ∆t = 0.00625 by the two present schemes.
The initial pulse is a Gaussian pulse centred at (0.5, 0.5) with the pulse height
1. At t = 1.25, the pulse moves to a position centred at (1.5, 1.5) with the pulse
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Figure 4.5: Unsteady convection-diffusion equation, {31×31, 41×41, . . . , 81×
81}, ∆t = 10−4, t = 1.25: The effect of grid size h on the solution accuracy for
the two present schemes. The solution converges as O(h4.07) for ADI-CIRBF-1
and O(h4.32) for ADI-CIRBF-2.
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Figure 4.6: Unsteady convection-diffusion equation, 81 × 81, ∆t = 0.00625:
The initial and the computed pulses at t = 1.25 by ADI-CIRBF-1 (a) and
ADI-CIRBF-2 (b).

height of 1/6. Figure 4.7 displays the surface plots of the solution obtained by
the analytic solution and the two present schemes in a sub-region 1 ≤ x, y ≤ 2
- these plots are almost identical.
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Figure 4.7: Unsteady convection-diffusion equation, 81 × 81, ∆t = 0.00625:
Surface plots of the pulse in the sub-region 1 ≤ x, y ≤ 2 at t = 1.25 by the
analytic solution (a), ADI-CIRBF-1 (b) and ADI-CIRBF-2 (c).

Table 4.3 shows a comparison of L1, RMS and L∞ errors between the two
present schemes and the standard PR-ADI scheme, third-order nine-point com-
pact scheme (Noye and Tan, 1989), fourth-order nine-point compact scheme
(Kalita et al., 2002), HOC-ADI scheme (Karaa and Zhang, 2004) and exponen-
tial high-order compact ADI (EHOC-ADI) (Tian and Ge, 2007). It can be seen
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Table 4.3: Unsteady convection-diffusion equation, 81 × 81, t = 1.25, ∆t =
0.00625: Comparison of the solution accuracy between the present schemes and
some other techniques.

Method L1(u) RMS(u) L∞(u)
PR-ADI (Peaceman and H. H. Rachford, 1955) 3.109E-04 2.025E-03 7.778E-03
3rd-order 9-point compact (Noye and Tan, 1989) 1.971E-05 1.280E-04 6.509E-04
4th-order 9-point compact (Kalita et al., 2002) 1.597E-05 1.024E-04 4.477E-04
HOC-ADI (Karaa and Zhang, 2004) 9.218E-06 5.931E-05 2.500E-04
EHOC-ADI (Tian and Ge, 2007) 9.663E-06 6.194E-05 2.664E-04
ADI-CIRBF-1 8.457E-06 2.808E-05 2.250E-04
ADI-CIRBF-2 6.742E-06 2.197E-05 1.703E-04

Table 4.4: Unsteady convection-diffusion equation, 81 × 81, t = 1.25, ∆t =
2.5E − 4: Comparison of the solution accuracy between the present schemes
and some other techniques for case I.

Method RMS(u) L∞(u)
PR-ADI (Peaceman and H. H. Rachford, 1955) 1.11E-03 8.92E-03
HOC-ADI (Karaa and Zhang, 2004) 2.73E-05 2.46E-04
PDE-ADI (You, 2006) 2.20E-05 1.71E-04
HPD-ADI (Ma et al., 2012) 6.38E-05 6.54E-04
ADI-CIRBF-1 9.32E-06 7.80E-05
ADI-CIRBF-2 2.75E-06 2.37E-05

Table 4.5: Unsteady convection-diffusion equation, 81 × 81, t = 0.0125, ∆t =
2.5E − 6: Comparison of the solution accuracy between the present schemes
and some other techniques for case II.

Method RMS(u) L∞(u)
PR-ADI (Peaceman and H. H. Rachford, 1955) 2.69E-02 3.74E-01
HOC-ADI (Karaa and Zhang, 2004) 1.47E-02 2.42E-01
PDE-ADI (You, 2006) 5.49E-04 1.22E-02
HPD-ADI (Ma et al., 2012) 5.49E-04 1.24E-02
ADI-CIRBF-1 1.71E-03 3.32E-02
ADI-CIRBF-2 5.45E-04 1.06E-02

that the present schemes yield solutions with higher accuracy. In addition, in
Figure 4.8, we plot RMS against time for these schemes, except for EHOC-ADI
(the data for this scheme is not available). It shows that all of these curves have
similar shapes and the present schemes have smaller error for every time step.
Figure 4.9 displays contour plots of the pulse in the region 1 ≤ x, y ≤ 2 by the
analytic solution, PR-ADI, ADI-CIRBF-1 and ADI-CIRBF-2. Contour plots of
other mentioned schemes can be found in Tian and Ge (2007). It can be seen
that the computed pulses by the two present schemes are visually indistinguish-
able from the analytic one, while PR-ADI produces a pulse that is distorted in
both x- and y-directions. For the latter, the reason was explained in Noye and
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Figure 4.8: Unsteady convection-diffusion equation, 81×81, ∆t = 0.00625: The
solution accuracy of the present schemes and some other techniques against
time.

Tan (1989) (the second-order error terms of the standard PR-ADI scheme are
related to the wave numbers in both directions).

Recently, Ma et al. (2012) proposed a high-order hybrid Padé ADI (HPD-ADI)
method for convection-dominated diffusion problems and also examined the per-
formance of their method via this example. We consider two sets of parameters
used in their article.

Case I: cx = cy = 0.8, dx = dy = 0.01, h = 0.025, t = 1.25, ∆t = 2.5E − 4.

Case II: cx = cy = 80, dx = dy = 0.01, h = 0.025, t = 0.0125, ∆t = 2.5E − 6.

The corresponding Peclet number is thus Pe = 2 for Case I and Pe = 200 for
Case II. Results concerning RMS and L∞ errors are presented in Tables 4.4-4.5.
In the case of low Pe, the two present schemes are superior to HPD-ADI and also
other schemes (Table 4.4). In the case of high Pe (i.e. convection dominated),
ADI-CIRBF-2 yields the best performance: higher degrees of accuracy (Table
4.5) and higher rates of convergence (Table 4.6).
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Table 4.6: Unsteady convection-diffusion equation, t = 0.0125, ∆t = 2.5E − 6: The solution accuracy of the present schemes and
some other techniques against grid size for case II. LCR stands for “local convergence rate”.

PDE-ADI HPD-ADI ADI-CIRBF-1 ADI-CIRBF-2
Grid (nx × ny) RMS(nx) LCR RMS(nx) LCR RMS(nx) LCR RMS(nx) LCR
31× 31 1.93E-02 —- 1.91E-02 —- 3.22E-02 —- 2.42E-02 —-
41× 41 8.41E-03 2.98 8.30E-03 2.97 1.69E-02 2.29 8.45E-03 3.45
51× 51 3.74E-03 3.30 3.70E-03 3.29 9.14E-03 2.52 3.74E-03 3.58
61× 61 1.80E-03 3.51 1.78E-03 3.50 5.00E-03 2.75 1.79E-03 3.71
71× 71 9.51E-04 3.63 9.48E-04 3.62 2.85E-03 2.92 9.47E-04 3.80
81× 81 5.49E-04 3.69 5.49E-04 3.69 1.71E-03 3.05 5.45E-04 3.86
101× 101 2.21E-04 3.78 2.23E-04 3.76 7.14E-04 3.22 2.18E-04 3.91
121× 121 1.07E-04 3.81 1.10E-04 3.79 3.46E-04 3.33 1.04E-04 3.94

LCR=-log[RMS(nx)/RMS(31)]/log[nx/31].
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Figure 4.9: Unsteady convection-diffusion equation, 81 × 81, ∆t = 0.00625:
Contour plots of the pulse in the sub-region 1 ≤ x, y ≤ 2 at t = 1.25 by
the analytic solution (a), standard PR-ADI (b), ADI-CIRBF-1 (c) and ADI-
CIRBF-2 (d).

4.4.3 Steady convection-diffusion equation

Consider equation (4.4) with cx = cy = 0.1, dx = dy = 1 in a square Ω =
[0, L]×[0, L] and subject to Dirichlet boundary condition. The analytic solution
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takes the form (Sheu et al., 2011)

u =
u0

er+ − er−
eδx/2 sin(πx) (er+y − er−y) , (4.70)

where u0 = 1, δx = cxL/dx, δy = cyL/dy, L = 1, and

r± =
1

2
δy ±

1

2

√(
δ2y + 4W

)
, W = 4π2 + δ2x/4. (4.71)

The driving function fb is given by

fb = cx
∂u

∂x
+ cy

∂u

∂y
− dx

∂2u

∂x2
− dy

∂2u

∂y2
. (4.72)

10
−110

−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 

PR−ADI
ADI−CIRBF−1
ADI−CIRBF−2

h

R
M
S

Figure 4.10: Steady convection-diffusion equation, {11× 11, 16× 16, . . . , 51×
51}: The effect of grid size h on the solution accuracy for the standard PR-
ADI and two present schemes. The solution converges as O(h1.94), O(h3.02) and
O(h4.53) for PR-ADI, ADI-CIRBF-1 and ADI-CIRBF-2, respectively.

To solve the steady equation (4.4), a pseudo time-derivative term ∂u
∂t

is added
to its left side to facilitate an iterative calculation. The steady equation (4.4)
thus has the same form as the unsteady equation (4.1). When the difference of
u between two successive time levels is small, i.e. less than a given tolerance,
the obtained solution is the solution to (4.4).

In the present calculation, we employ a set of uniform grids, namely {11 ×
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11, 16 × 16, . . . , 51 × 51} and a time step of 0.0005. Figure 4.10 displays the
solution accuracy against the grid size, which shows the superiority of the two
present schemes over the standard PR-ADI scheme. The solution converges
apparently as O(h1.94), O(h3.02) and O(h4.53) for PR-ADI, ADI-CIRBF-1 and
ADI-CIRBF-2, respectively. Additionally, Figure 4.11 show that profiles of u
along the centrelines by ADI-CIRBF-1 and ADI-CIRBF-2 agree very well with
the analytic solutions.
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Figure 4.11: Steady convection-diffusion equation, 51 × 51: Profiles of the so-
lution u along the vertical and horizontal centrelines by ADI-CIRBF-1 (a)-(b)
and ADI-CIRBF-2 (c)-(d).
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4.5 Concluding remarks

This chapter presents new high-order approximation schemes for the discreti-
sation of convection-diffusion equations in two dimensions. The ADI algorithm
is adopted in the form in which the operator is factorised into four separate
terms rather than the usual two, while compact integrated-RBFs are imple-
mented to represent the variable and its derivatives over 3-point stencils. Two
CIRBF schemes are proposed, which lead to a significant improvement in ac-
curacy over the central-finite-difference-based ADI method. CIRBF-2 scheme,
where first-order and second-order derivatives are approximated separately, is
found to be more efficient and effective than CIRBF-1 scheme, where first-order
and second-order derivatives are approximated simultaneously. We note that
the assumption of rectangular domain here is not necessary and the present
methods can easily treat non-rectangular domains.



Chapter 5

Incorporation of direct forcing
immersed boundary (DFIB)
method into compact IRBF
scheme

In this chapter, we present a numerical scheme, based on the DFIB method and
CIRBF approximations, for solving the Navier-Stokes equations in two dimen-
sions. The problem domain of complicated shape is embedded in a Cartesian
grid containing Eulerian nodes. Non-slip conditions on the inner boundaries,
represented by Lagrangian nodes, are imposed by means of the DFIB method,
in which a smoothed version of the discrete delta functions is utilised to transfer
the physical quantities between two types of nodes. The velocities and pres-
sure variables are approximated locally on Eulerian nodes using 3-node CIRBF
stencils, where first- and second-order derivative values of the field variables are
also included in the RBF approximations. The present DFIB-CIRBF method
is verified through the solution of several test problems including Taylor-Green
vortices, rotational flow, lid-driven cavity flow with multiple non-moving sus-
pended solid bodies, flow between rotating circular and fixed square cylinders,
and natural convection in an eccentric annulus between two circular cylinders.
Numerical results obtained using relatively coarse grids are in good agreement
with available data in the literature.

5.1 Introduction

Flows past solid bodies of arbitrary shapes are widely encountered in engineer-
ing applications. Body-fitted grid methods, where the governing equations are
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discretised on a curvilinear grid conforming to the boundary, have been applied
to solve such problems. Their main advantage is that the boundary conditions
can be imposed in a simple and accurate way. However, generating a high qual-
ity mesh/grid is difficult and time-consuming. As a result, a lot of research effort
has been spent on the development of non-body-conforming methods. Among
them, the immersed boundary methods (IBMs) have received much attention
in recent years. In IBMs, one joins the fluid and solid regions together to make
a single domain that is discretised using an appropriate method. This approach
greatly simplifies the process of mesh generation and also retains the relative
simplicity of the governing equations. The basis of IBMs lies in the way to
introduce forces into the governing equations to impose prescribed values on
the immersed boundary.

The IBM was originally introduced by Peskin (1972, 1977) to investigate the
fluid dynamics of blood flow in human heart. The idea is to use an equivalent
body force field to represent bodies immersed in a fluid and hence the whole
domain, with the immersed bodies, is considered as fluid. Since then, many
variants of the Peskin’s method have been proposed. Goldstein et al. (1993)
developed a feedback forcing approach to iteratively determine the magnitude
of the force required to obtain a desired velocity on the immersed boundary.
Saiki and Biringen (1996) implemented this approach with the virtual boundary
method to compute the flow past a stationary, rotating and oscillating circu-
lar cylinder. However, the feedback forcing approach induces some oscillations
and places some restriction on the computational time step. To overcome these
drawbacks, Fadlun et al. (2000) proposed an approach, namely the direct forcing
(DF) technique, to evaluate the interactive forces between the immersed bound-
ary (IB) and the fluid, which is equivalent to applying a forcing term to the
Navier-Stokes equations. In comparison with the feedback forcing approach, the
DF approach can work with larger computational time steps. Kim et al. (2001)
proposed a combined IB finite-volume method, where a mass source/sink and a
momentum forcing are introduced, for simulating flows over complex geometries.
To transfer the physical quantities smoothly between Eulerian and Lagrangian
nodes and avoid strong restrictions on the time step, Uhlmann (2005) presented
a method to incorporate the regularised delta functions into a direct formula-
tion of the fluid-solid interactive force. Wang et al. (2008) developed an explicit
multi-direct forcing approach and obtained a better satisfaction of the non-slip
boundary condition than the original DF approach. Recently, Ji et al. (2012)
proposed an iterative IBM in which the body force updating is incorporated
into the pressure iterations for 2D and 3D numerical simulations of laminar and
turbulent flows. The reader is referred to, e.g. Mittal and Iaccarino (2005) for
a comprehensive review of IBMs.

High-order approximation schemes for the Navier-Stokes equations have the
ability to provide efficient solutions to steady/unsteady fluid flow problems.
A high level of accuracy can be achieved using a relatively coarse discretisa-
tion. Many types of high-order schemes for the Navier-Stokes equations have
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been reported in the literature. Botella and Peyret (1998) developed a Cheby-
shev collocation method and provided the benchmark results for the lid-driven
cavity flow problem. Ding et al. (2006) presented a local multiquadric differ-
ential quadrature method for the solution of 3D incompressible flow problems
in the velocity-pressure formulation, while Mai-Duy and Tran-Cong (2001b),
Mai-Duy et al. (2008), Mai-Duy and Tran-Cong (2008), Le-Cao et al. (2009)
proposed an IRBF method to solve heat transfer and fluid flow problems in the
stream function-vorticity formulation. Recently, Tian et al. (2011) proposed a
fourth-order compact difference scheme constructed on 2D nine-point stencils,
and Fadel and Agouzoul (2011) used the standard Padé scheme to construct
high-order approximations for the velocity-pressure-pressure gradient formula-
tion. It is noted that the velocity (u) and pressure (p) formulation has several
advantages over the stream function-vorticity formulation and the stream func-
tion formulation. The u-p formulation can provide the velocity and pressure
fields directly from solving the discretised equations and also work for 2D and
3D problems in a similar manner.

In this chapter, we present a numerical scheme, namely DFIB-CIRBF, for solv-
ing unsteady/steady fluid flow problems in 2D. The present scheme combines
DFIB method and the high-order CIRBF approximations for the spatial dis-
cretisation and utilises the second-order Adams-Bashforth/Crank-Nicolson al-
gorithms for the temporal discretisation. An interactive force, representing the
effect of the solid bodies on the fluid region, is added directly to the governing
equations (i.e. direct forcing) on the fluid-solid regions to satisfy their boundary
conditions. This interactive force is evaluated explicitly from the pressure gra-
dient, the convection and diffusion terms in the previous time level. Because the
Eulerian grid nodes do not generally coincide with the nodes on the interfaces
represented by Lagrangian nodes, a smoothed version of the discrete delta func-
tions is employed to transfer the quantities between two types of nodes. The
CIRBF approximations are constructed over 3-point stencils, where nodal first-
and second-order derivative values of the field variables are included in the RBF
approximations (Thai-Quang, Mai-Duy, Tran and Tran-Cong, 2013, 2012). A
series of test problems, including Taylor-Green vortices, rotational flow, flow
between rotating circular and fixed square cylinders, and natural convection in
an eccentric annulus between two circular cylinders, is considered to verify the
present scheme. The remainder of the chapter is organised as follows. Section
5.2 outlines the equations which govern the fluid flow phenomena. The numer-
ical formulation including the derivation of interactive forces, and the temporal
and spatial discretisations is described in detail in Section 5.3. In Section 5.4, in
order to evaluate the efficiency of the present method, several numerical results
are presented and compared with the analytic solutions and some approximate
results available in the literature, where appropriate. Section 5.5 concludes the
chapter.
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5.2 Governing equations

The idea of using an equivalent body force field to represent bodies immersed
in a fluid gives rise to the immersed boundary (IB) method as reviewed in
section 5.1 above. We adapt the IB method in which the non-slip fluid-solid
interfaces are replaced by an equivalent body force field FI (s, t) distributed over
the immersed surfaces. The body forces can then be converted to equivalent
body force field fI (x, t) distributed over the whole domain, with the immersed
bodies now considered as fluid. Similarly, for non-isothermal interfaces one can
introduce a thermal interactive force density fIT over the whole domain. Once
this step is achieved the entire domain is considered as containing only the fluid.
The flow field variables can then be Eulerian while the fluid-solid interface ones
are Lagrangian. The singular forces on the boundaries can be computed and
converted to an Eulerian body force field via regularised Dirac delta functions.
In the context of the IBM, the governing equations for thermal flows in the
dimensionless form are as follows.

∇.u = 0 in Ω, t ≥ 0, (5.1)

∂u

∂t
+ (u.∇)u = −∇p +

√
Pr

Ra
∇2u+ fb + fI in Ω, t ≥ 0, (5.2)

∂T

∂t
+ (u.∇)T =

1√
PrRa

∇2T + fIT in Ω, t ≥ 0, (5.3)

subject to the initial and boundary conditions:

u(x, y, 0) = u0(x, y) in Ω, t = 0, (5.4)

T (x, y, 0) = T0(x, y) in Ω, t = 0, (5.5)

u(x, y, t) = uΓ(x, y, t) on Γ, t ≥ 0, (5.6)

T (x, y, t) = TΓ(x, y, t) on Γ, t ≥ 0, (5.7)

where T is the temperature; fI =
(
fIx, fIy

)T
the fluid body interactive force

density vector; fIT the thermal interactive force; T0 and TΓ prescribed functions;
Pr and Ra the Prandtl and Rayleigh numbers defined as Pr = ν/α and Ra =
βg∆TL3/αν, respectively, in which α is thermal diffusivity, β is the thermal
expansion coefficient, g is the gravity and ∆T is the temperature difference,
respectively. In the dimensionless form, the characteristic velocity is taken as
U0 =

√
gLβ∆T for the purpose of balancing the buoyancy and inertial forces.

In (5.1), (5.2) and (5.3), the field variables are made dimensionless according
to the following definitions

x =
x′

L
, y =

y′

L
, u =

u′

U0
, v =

v′

U0
, p =

p′

ρU2
0

, T =
T ′ − Tc
Th − Tc

, (5.8)
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where x′, y′, u′, v′, p′, T ′ are the corresponding dimensional variables; and Th
and Tc the hot and cold temperatures, respectively.

The interactive forces fI and fIT represent the influence of the immersed solid
bodies on the fluid by the viscous and thermal effects, while the body force
fb is a function of the temperature, for instance, fb = (0, T )T for the thermal
problem considered in section 5.4. For isothermal flows, the term fb in (5.2) is

set to null, equation (5.3) is deactivated and the term
√

Pr
Ra

in (5.2) is replaced

by 1
Re
.

5.3 Numerical formulation

Consider a domain Ω comprised of the fluid region Ωf and solid region Ωs.

The latter is composed of Nesb embedded solid bodies Sk

(
Ωs =

⋃Nesb

k=1 Sk

)
as

shown in Figure 5.1. Let Γ and ∂Sk be the boundaries of Ω and kth solid
body Sk, respectively. While the entire domain Ω is discretised using a fixed
uniform Cartesian grid gh containing Eulerian grid nodes xi,j = (xi,j, yi,j)

T

(i ∈ {1, 2, . . . , nx} and j ∈ {1, 2, . . . , ny}), each ∂Sk is described by a set of
Nk
L Lagrangian nodes

Xk
l =

(
Xk
l , Y

k
l

)T ∈ ∂Sk 1 ≤ l ≤ Nk
L, 1 ≤ k ≤ Nesb. (5.9)

Ω
f

S
2

S
3

S
4

S
1∂S

1

∂S
2

∂S
3

∂S
4

Ω

Γ

Figure 5.1: A schematic outline for the problem domain.
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5.3.1 Direct forcing (DF) method

The DF method (Fadlun et al., 2000), a variant of the IB approach, proposed the
so-called direct forcing technique for the computation of the body force field. It
can be seen that the Lagrangian nodes, representing the immersed boundaries,
do not generally coincide with the Eulerian nodes on the computational domain
Ω. An interpolation process is therefore necessary to transfer data between
the selected Eulerian nodes and the Lagrangian nodes on the immersed body
surfaces. Below are the details for computing the momentum interactive force
fI in (5.2). One can calculate the thermal interactive force fIT in (5.3) in a
similar manner.

Derivation of the momentum interactive force

A temporal discretisation of the momentum equation (5.2) is given by (Uhlmann,
2005)

un − un−1

∆t
= rhsn−1/2 + f

n−1/2
I , (5.10)

where the convection, pressure, diffusion and body-force terms at a time tn−1/2

are lumped together in rhsn−1/2.

The interactive force term yielding the desired velocity u(d) can thus be defined
as (Fadlun et al., 2000)

f
n−1/2
I =

u(d),n − un−1

∆t
− rhsn−1/2, (5.11)

at some selected nodes (and zero elsewhere). The corresponding interactive
force at the Lagrangian nodes will be

F
n−1/2
I =

U(d),n −Un−1

∆t
−RHSn−1/2. (5.12)

Hereafter, we use upper-case letters for quantities evaluated at the Lagrangian
nodes Xk

l .

The desired velocity at a node on the fluid-solid interface in (5.12) is computed
from the rigid-body motion of the solid body as follow.

U(d)(Xk
l ) = Uk

c +ωωωkc × (Xk
l −Xk

c ), (5.13)

where Uk
c =

(
Uk
c , V

k
c

)T
and Xk

c =
(
Xk
c , Y

k
c

)T
are the translational velocity and

the position vectors of the mass centre of the kth solid body, respectively, and
ωωωkc is the rotational velocity of the solid body - all is defined in the Cartesian
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coordinate system.

When the interactive force is absent, equation (5.12) leads to

Ũn = Un−1 +RHSn−1/2∆t, (5.14)

where Ũ
n
is a preliminary velocity. Its Eulerian counterpart is

ũn = un−1 + rhsn−1/2∆t. (5.15)

In the present work, we employ the Adams-Bashforth scheme for the temporal
discretisation. The term rhsn−1/2 in (5.15) is computed explicitly as (Butcher,
2003)

rhsn−1/2 = −
[
3

2
∇pn−1 − 1

2
∇pn−2

]
−
[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]

+

√
Pr

Ra

[
3

2
∇2un−1 − 1

2
∇2un−2

]
+

[
3

2
fn−1
b − 1

2
fn−2
b

]
. (5.16)

Then, the interactive force at the Lagrangian nodes is computed now as

F
n−1/2
I =

U(d),n − Ũn

∆t
. (5.17)

In order to complete the evaluation of the interactive force term in (5.10), a

mechanism for transferring the preliminary velocities (ũn, Ũ
n
) and the forces

(F
n−1/2
I , f

n−1/2
I ) between the two Eulerian and Lagrangian node systems is re-

quired.

Transfer of quantities between Eulerian and Lagrangian nodes

Peskin (2002) employed the class of regularised delta functions

δh(x− x0) =
1

h2
φ

(
x− x0
h

)
φ

(
y − y0
h

)
, (5.18)

as kernels in a transfer step, where φ(r) is the 1D discrete delta functions (r can
be (x− x0)/h or (y − y0)/h); and h the Eulerian grid size. The relation of the
velocity and force between the two types of nodes can be given by (Uhlmann,
2005)

Ũ(Xk
l ) =

∑

x∈gh

ũ(x)δh(x−Xk
l )h

2 ∀1 ≤ l ≤ NL, 1 ≤ k ≤ Nesb, (5.19)
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fI(x) =

Nesb∑

k=1

NL∑

l=1

FI(X
k
l )δh(x−Xk

l )∆V
k
l ∀x ∈ gh, (5.20)

where the temporal superscript is dropped for brevity and ∆V k
l is the volume

covering the lth Lagrangian node of the kth solid body. For 2D problems,
this volume is simply taken as ∆V k

l = ∆s2 (Uhlmann, 2005), where ∆s is a
Lagrangian grid size that is chosen so that ∆s ≈ h.

In Peskin (2002), several axioms, including momentum conditions and a quadratic
condition, are described. These axioms lead to the unique definition of a par-
ticular smoothed delta function with finite support. A family of such functions
may be generated by imposing additional moment conditions and correspond-
ingly broadening the support. Commonly used discrete delta functions include
the 2-point hat function δ2h(r) (Leveque and Li, 1994), the 3-point discrete delta
function δ3h(r) (Roma et al., 1999) and the 4-point piecewise function δ4h(r)
(Peskin, 2002). Their 1D forms are given below

φ2(r) =

{
1− |r|, |r| ≤ 1,

0, 1 ≤ |r|,
(5.21)

φ3(r) =





1
3

(
1 +

√
−3r2 + 1

)
, |r| ≤ 0.5,

1
6

(
5− 3|r| −

√
−3(1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5,

0, 1.5 ≤ |r|,
(5.22)

φ4(r) =





1
8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, 2 ≤ |r|.
(5.23)

In the present study, we employ the 3-point discrete delta function δ3h(r) (Roma
et al., 1999).

5.3.2 Spatial discretisation

In this chapter, the spatial derivatives are discretised using the CIRBF-2 scheme
described in section 4.3.1 and modified as follows. At the boundary nodes, the
compact 4-point stencils are replaced with a newly derived compact 2-point
stencil (Figure 5.2) in order to make all coefficient matrices tridiagonal. The
present scheme is named CIRBF-3.
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Figure 5.2: Special compact 2-point IRBF stencils for the left and right bound-
ary nodes.

First-order derivative compact approximations

At the interior nodes, the compact approximations for the first-order derivatives
are described as (4.36), leading to (4.38).

At the boundary nodes, we compute the first derivative here using special com-
pact local stencils (Figure 5.2). These proposed stencils are constructed as
follows. Consider a boundary node η1. Its associated stencil is [η1, η2]. The
conversion system of this stencil is presented as the following matrix-vector
multiplication




u1
u2
du2
dη


 =

(
Hsp

Hsp

)

︸ ︷︷ ︸
Csp1




w1

w2

c1
c2


 , (5.24)

where Csp1 is the conversion matrix; and Hsp, Hsp matrices defined as

Hsp =

[
H1(η1) H2(η1) η1 1
H1(η2) H2(η2) η2 1

]
, (5.25)

Hsp =
[
H1(η2) H2(η2) 1 0

]
. (5.26)

Solving (5.24) yields




w1

w2

c1
c2


 = C−1

sp1




u1
u2
du2
dη


 . (5.27)

The boundary value of the first-order derivative of u is thus obtained by sub-
stituting (5.27) into (2.10) and taking η = η1

du(η1)

dη
=
[
H1(η1) H2(η1) 1 0

]
C−1
sp1

(
u1 u2

du2
dη

)T
, (5.28)

or

dun1
dη

− dφsp3(η1)

dη

dun2
dη

=
dφsp1(η1)

dη
un1 +

dφsp2(η1)

dη
un2 , (5.29)

where {φspi(η)}3i=1 is the set of IRBFs in the physical space. We rewrite equation
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(5.29) in matrix-vector form

[
1 −dφsp3 (η1)

dη

] [ dun1
dη
dun2
dη

]
=
[

dφsp1 (η1)

dη

dφsp2 (η1)

dη

] [
un1
un2

]
. (5.30)

In a similar manner, one can calculate the first derivative of u at the other
boundary node ηnη

.

The IRBF system on a grid line for the first derivative of u is obtained by letting
the interior node taking value from 2 to (nη − 1) in (4.38) and making use of
(5.30),

Lηûnη = Aηû
n. (5.31)

Second-order derivative compact approximations

At the interior nodes, the compact approximations for the second-order deriva-
tive leads to equation (4.28).

At the boundary nodes, we compute the second derivative here using special
compact local stencils (Figure 5.2). Consider a boundary node, e.g., η1. The
conversion system of its associated 2-node stencil is presented as the following
matrix-vector multiplication




u1
u2
d2u2
dη2


 =

(
Hsp

Gsp

)

︸ ︷︷ ︸
Csp2




w1

w2

c1
c2


 , (5.32)

where Csp2 is the conversion matrix; Hsp defined as before; and

Gsp =
[
G1(η2) G2(η2) 0 0

]
. (5.33)

Solving (5.32) yields




w1

w2

c1
c2


 = C−1

sp2




u1
u2
d2u2
dη2


 . (5.34)

The boundary value of the second-order derivative of u is thus obtained by
substituting (5.34) into (2.9) and taking η = η1

d2u(η1)

dη2
=
[
G1(η1) G2(η1) 0 0

]
C−1
sp2

(
u1 u2

d2u2
dη2

)T
, (5.35)
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or

d2un1
dη2

− d2ϕsp3(η1)

dη2
d2un2
dη2

=
d2ϕsp1(η1)

dη2
un1 +

d2ϕsp2(η1)

dη2
un2 , (5.36)

where {ϕspi(η)}3i=1 is the set of IRBFs in the physical space. We rewrite equation
(5.36) in matrix-vector form

[
1 −d2ϕsp3 (η1)

dη2

] [ d2un1
dη2

d2un2
dη2

]
=
[

d2ϕsp1 (η1)

dη2
d2ϕsp2 (η1)

dη2

] [ un1
un2

]
. (5.37)

The IRBF system on a grid line for the second derivative of u is obtained by
letting the interior node taking value from 2 to (nη − 1) in (4.28) and making
use of (5.37),

Lηηûnηη = Bηηûn, (5.38)

where Lηη, Bηη are nη × nη matrices.

5.3.3 Temporal discretisation

The temporal discretisation of (5.1)-(5.3) using the Adams-Bashforth scheme
(Butcher, 2003) for the convection term and the Crank-Nicolson scheme (Crank
and Nicolson, 1996) for the diffusion term yields

∇.un = 0, (5.39)

un − un−1

∆t
+

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
=

−∇pn−1/2 +
1

2

√
Pr

Ra

(
∇2un +∇2un−1

)
+ f

n−1/2
b + f

n−1/2
I , (5.40)

T n − T n−1

∆t
+

[
3

2
(un−1.∇)T n−1 − 1

2
(un−2.∇)T n−2

]
=

1

2
√
PrRa

(
∇2T n +∇2T n−1

)
+ fI

n−1/2
T . (5.41)

We apply the pressure-free projection/fractional-step method developed by Kim
and Moin (1985) to solve (5.40). This equation is advanced in time according



5.3 Numerical formulation 109

to the following two-step procedure

u∗,n − un−1

∆t
+

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
=

1

2

√
Pr

Ra

(
∇2u∗,n +∇2un−1

)
+ f

n−1/2
b + f

n−1/2
I , (5.42)

un − u∗,n

∆t
= −∇φn, (5.43)

where φ is the pseudo-pressure. It is noted that u∗,n does not satisfy the conti-
nuity equation (5.39) and the actual pressure p is derived as

pn−1/2 = φn −
(
∆t

2

√
Pr

Ra

)
∇2φn. (5.44)

5.3.4 Algorithm of the computational procedure

• Step 0: Start with the given initial and boundary conditions. In this study,
the initial conditions are zero for the velocity and temperature fields.

• Step 1: Compute thermal Eulerian counterpart t̃
n
, using a formula similar

to (5.15), which is then transferred to Lagrangian nodes to obtain T̃
n
using

a formula similar to (5.19).

• Step 2: Compute FI
n−1/2
T , using a formula similar to (5.17), which is then

transferred to Eulerian nodes to obtain fI
n−1/2
T using a formula similar to

(5.20).

• Step 3: Solve (5.41) for the solution T n with known fI
n−1/2
T and prescribed

boundary condition T nΓ .

• Step 4: Compute the body force f
n−1/2
b from the temperature field as

f
n−1/2
b =

(
0, T n−1/2

)T
=

(
0,
T n + T n−1

2

)T
. (5.45)

• Step 5: Compute momentum Eulerian counterpart ũn from (5.15), which

is then transferred to Lagrangian nodes to obtain Ũ
n
via (5.19).

• Step 6: Compute F
n−1/2
I from (5.17), which is then transferred to Eulerian

nodes to obtain f
n−1/2
I via (5.20).

• Step 7: Solve (5.42) for u∗,n subject to the following boundary condition
(Kim and Moin, 1985)

u∗,n|Γ = unb +∆t
(
∇φn−1

)
|Γ. (5.46)



5.3 Numerical formulation 110

For a more efficient solution, one can apply the alternating direction im-
plicit (ADI) algorithm to solve (5.42) and (5.41) as shown in Thai-Quang,
Mai-Duy, Tran and Tran-Cong (2012).

• Step 8: Equations (5.43) and (5.39) are then solved in a coupled manner
for un and φn in which the boundary condition for the pseudo-pressure φ
is not required. The values of φn are obtained for the interior nodes only.
After that, the values of φ at the boundary nodes are extrapolated from
known values at the interior nodes and known Neumann boundary values
derived from (5.43) (i.e., ∇φn|Γ = (u∗,n

b − unb ) /∆t) (Thai-Quang, Le-Cao,
Mai-Duy and Tran-Cong, 2012):

(
φn1,j
φnnx,j

)
=

[
H1(x1,j) · · · Hnx

(x1,j) x1,j 1
H1(xnx,j) · · · Hnx

(xnx,j) xnx,j 1

]




H1(x2,j) · · · Hnx
(x2,j) x2,j 1

H1(x3,j) · · · Hnx
(x3,j) x3,j 1

...
. . .

...
...

...
H1(xnx−1,j) · · · Hnx

(xnx−1,j) xnx−1,j 1
H1(x1,j) · · · Hnx

(x1,j) 1 0
H1(xnx,j) · · · Hnx

(xnx,j) 1 0




−1


φn2,j
φn3,j
...

φnnx−1,j

∂φn1,j/∂x
∂φnnx,j/∂x



,

(5.47)

for an x-grid line, and

(
φni,1
φni,ny

)
=

[
H1(yi,1) · · · Hny

(yi,1) yi,1 1
H1(yi,ny

) · · · Hny
(yi,ny

) yi,ny
1

]




H1(yi,2) · · · Hny
(yi,2) yi,2 1

H1(yi,3) · · · Hny
(yi,3) yi,3 1

...
. . .

...
...

...
H1(yi,ny−1) · · · Hny

(yi,ny−1) yi,ny−1 1
H1(yi,1) · · · Hny

(yi,1) 1 0
H1(yi,ny

) · · · Hny
(yi,ny

) 1 0




−1


φni,2
φni,3
...

φni,ny−1

∂φni,1/∂y
∂φni,ny

/∂y



,

(5.48)

for a y-grid line. It is noted that for flows with irregular outer boundaries,
instead of solving (5.43) and (5.39), we solve (5.39)-(5.40) simultaneously
for un and pn−1/2 in which pn−1/2 involves the interior nodes only (the
boundary condition for pn−1/2 is not required here).

• Step 9: Go back to step 1 and iterate for the next time level.
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5.4 Numerical examples

For the calculations in this chapter, values of β = 25 and β = 50 are simply
picked. We assess the performance of the present scheme through following
measures:

• the RMS error defined as (2.48),

• maximum absolute error (L∞) defined as (3.53),

• the average rate of convergence α determined by the method of least
squares as described in chapter 2,

• the convergence measure based on the velocity magnitude (CMvel) in the
whole analysis domain is defined as (given two successive grids)

CMvel =

√
∑N

i=1

(
velctfgi − velfgi

)2

√
∑N

i=1

(
velfgi

)2 , (5.49)

where velfg is the velocity magnitude field computed using the finer grid;
velctfg is the velocity magnitude field obtained at the finer grid by inter-
polating the solution computed using the coarser grid. The present results
is considered to be grid convergent if CMvel is less than 10−3.

A flow is considered to reach its steady state when the criterion (2.50) is satisfied.

Since the approximations are presently based on RBFs, distances between two
neighbouring nodes in the stencil can be different. This capability is exploited
here to handle non-rectangular outer boundaries in a direct manner (i.e. body-
fitted grid). We can thus retain a body-conforming treatment for rectangular
and non-rectangular outer boundaries. We numerically demonstrate this ability
with the following example

∂2u

∂x2
+
∂2u

∂y2
= −8π2 sin(2πx) sin(2πy), (5.50)

defined on a circular domain of radius R = 1.5 and subject to Dirichlet boundary
condition. Its exact solution is u = sin(2πx) sin(2πy). A number of grids,
namely {12 × 12, 22 × 22, . . . , 102 × 102}, are employed to study the grid-
convergence behaviour of the solution (Figure 5.3). Those interior nodes that
fall very close to the boundary (within a distance of h/8) are removed from the
set of of nodal points. Figure 5.4 shows the matrix condition number and the
RMS error of the interior solution against grid size. Results by a Cartesian-grid
FDM (Sanmiguel-Rojas et al., 2005) are also included for comparison purposes.
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The solution converges as O(h2.03) for FDM and quite fast as O(h3.17) for the
present method. The two methods have similar condition numbers of the system
matrix.

Figure 5.3: Poisson equation, circular domain: Computational domain and its
discretisation.

5.4.1 Taylor-Green vortices

This problem is taken from Uhlmann (2005), where the analytic solution is
given by

u(x, y, t) = sin(πx) cos(πy)e−2π2t/Re, (5.51)

v(x, y, t) = − sin(πy) cos(πx)e−2π2t/Re, (5.52)

p(x, y, t) = 0.5
(
cos2(πy)− sin2(πx)

)
e−4π2t/Re, (5.53)

from which one can derive the initial solution, the time-dependent boundary
conditions and the time-dependent desired velocities U(d) on the inner immersed
boundaries. The solution is computed at Re = 5 and t = 0.3 using a time step
∆t = 0.001 and β = 25 for the following two domains.
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Figure 5.4: Poisson equation, circular domain, {12×12, 22×22, . . . , 102×102}:
The solution accuracy (a) and the matrix condition number (b) against grid
size by FDM and the present method. The solution converges as O(h2.03) and
O(h3.17) while the matrix condition grows as O(h−2.52) and O(h−2.46) for FDM
and the present method, respectively.
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Circular domain

A circular domain of unit radius is chosen here to investigate the performance
of the present scheme in dealing with non-rectangular outer boundaries. Sev-
eral grids, namely {12 × 12, 22 × 22, . . . , 52 × 52} are employed. Figure 5.5
shows the RMS errors of the velocity components and the pressure against the
grid size h. The solutions converge as O(h3.31), O(h3.29) and O(h2.87) for the
x-component velocity, y-component velocity and pressure, respectively. It can
be seen that fast rates of convergence (about third order) are achieved with the
present method. Figure 5.6 shows the analytic and computed vorticity isolines
using a grid of 52× 52, which are graphically indistinguishable.
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Figure 5.5: Taylor-Green vortices, circular domain, {12×12, 22×22, . . . , 52×
52}: The solution accuracy of the velocity components and pressure against grid
size. The solution converges as O(h3.31), O(h3.29) and O(h2.87) for x-component
velocity, y-component velocity and pressure, respectively.

Concentric annulus between two circular cylinders

The outer and inner radii of this domain are taken as Ro = 1 and Ri = 0.5,
respectively. We employ a set of grids, namely {22× 22, 32× 32, . . . , 52× 52}
to represent the problem domain. Figure 5.7 shows the Eulerian nodes dis-
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Figure 5.6: Taylor-Green vortices, circular domain, 52 × 52, ∆t = 0.001: the
analytic (a) and computed (b) isolines of the vorticity field at t = 0.3.

tributed inside and on the outer boundary, and Lagrangian nodes distributed
on the inner boundary, for instance, by a grid of 22 × 22. Figure 5.8 shows
the analytic and computed vorticity isolines using a grid of 52 × 52, where an
excellent agreement can be seen. The L∞ errors of the velocity components and
pressure against the grid size h are presented in Figure 5.9. The solutions con-
verge as O(h2.02), O(h2.03) and O(h2.02) for u, v and p, respectively. The rates
of convergence are reduced due to the effect of using regularised δh functions,
which are second-order accurate (Uhlmann, 2005), in the IB approach.

5.4.2 Rotational flow

The present scheme is further verified with a rotational flow, where a circular
ring (zero thickness) of R = 0.3 is embedded in a square domain Ω = [−1, 1]×
[−1, 1]. The solid ring rotates about its centre with an angular velocity ω = 2.
The simulation is conducted for Re = 18 using a grid of 65× 65 and ∆t = h/4
as in Le et al. (2006). Plots of the velocity u and velocity vector in a subdomain
[−0.5, 0.5] × [−0.5, 0.5] at t = 10 are shown in Figure 5.10, in which the flow
behaviours observed here are very similar to those reported in Le et al. (2006).
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Figure 5.7: Taylor-Green vortices, concentric annulus: Computational domain
and its discretisation (Eulerian nodes inside the annulus and on the outer bound-
ary, Lagrangian nodes on the inner boundary with a grid of 22× 22).
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Figure 5.8: Taylor-Green vortices, concentric annulus, 52× 52, ∆t = 0.001: the
analytic (a) and computed (b) isolines of the vorticity field at t = 0.3.

5.4.3 Lid-driven cavity flow with multiple solid bodies

This test problem is concerned with the lid-driven cavity flow in a square domain
Ω = [−1, 1]× [−1, 1] containing five fixed rigid circular cylinders (Figure 5.11).
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Figure 5.9: Taylor-Green vortices, concentric annulus, {22 × 22, 32 ×
32, . . . , 52 × 52}: The solution accuracy of the velocity components and pres-
sure against grid size. The solution converges as O(h2.02), O(h2.03) and O(h2.02)
for x-component velocity, y-component velocity and pressure, respectively.

The radius of the cylinders is R = 0.15 and their centres are located at (0, 0),
(0,−0.6), (−0.6, 0), (0, 0.6) and (0.6, 0), respectively. The top wall is driven
from left to right by a unit velocity whereas the other walls are stationary. The
Lagrangian nodes are distributed on the boundaries with a grid spacing ratio
∆s/h = 0.85. These parameters are taken from Su and Lai (2007). The grid
convergence study for this problem is carried out at Re = 100 on a set of uniform
grids, namely {41 × 41, 61 × 61, 81 × 81, 101 × 101, 121 × 121, 141 × 141},
using a time step of ∆t = 0.001. The present solutions converge at the grid of
121 × 121. The velocity field obtained with the grid 121 × 121 is presented in
Figure 5.12, showing that the primary vortex is captured very well around the
top-right corner. The flow field looks feasible and similar in comparison with
those shown in Su and Lai (2007). (To avoid cluttering, the velocity vectors are
plotted at every third grid point, i.e. at 41×41 points as in Su and Lai (2007)).
Figure 5.13 shows the u-velocity profile along the diagonal x = y for different
grid sizes.
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Figure 5.10: Rotational flow generated by a circular ring rotating about its
centre in a fluid filled square cavity, Re = 18, 65 × 65, t = 10, ∆t = h/4:
Distributions of the x-component velocity (a) and velocity vector (b) over the
computational domain.
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Figure 5.11: Lid-driven cavity flow with multiple solid bodies: Geometry and
boundary condition.
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Figure 5.12: Lid-driven cavity flow with multiple solid bodies: Velocity vector
field.
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Figure 5.13: Lid-driven cavity flow with multiple solid bodies: The effect of the
grid size on the u-velocity profile along the diagonal x = y. The curves are
discontinuous due to the presence of a circular body on the diagonal around
x = y = 0.

5.4.4 Flow between a rotating circular and a fixed square
cylinder

Consider a flow in a concentric annulus between a square cylinder Ω = [−2, 2]×
[−2, 2] and a circular cylinder of R = 1 (Figure 5.14). The inner cylinder rotates
with an angular velocity ω = 1 while the outer cylinder is stationary. This
problem is taken from Lewis (1979). The boundary conditions are as follows.

u = 0 on x = ±2, y = ±2, (5.54)

u = −ωy, v = ωx on R = 1. (5.55)

The calculations are carried out on a set of uniform grids, namely N ∈ {61 ×
61, 81 × 81, 101 × 101, 121 × 121, 131 × 131, 141 × 141} and a set of time
steps, namely ∆t ∈ {0.001, 0.0005, 0.00025, 0.0001} for various values of the
Reynolds number, namely Re ∈ {1, 100, 200, 500, 1000, 1400}. Smaller time
step is utilised for denser grid and higher Reynolds number. The maximum
values of the stream function and vorticity (ψmax and ζmax), the values of the
stream function on the circular cylinder (ψc) and minimum values of the stream
function (ψmin) are presented in Table 5.1. The present results, convergent at
a grid of 131 × 131, agree well with those reported in Lewis (1979) using a
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161× 161 grid.

The streamlines of the flow field using a grid of 131 × 131 is shown in Figure
5.15, in which the vortices at the corners are well captured and in agreement
with the results of Lewis (1979).
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Figure 5.14: Flow between a rotating circular and a fixed square cylinder: Ge-
ometry and boundary conditions.
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Table 5.1: Flow between rotating circular and fixed square cylinders: Maximum
values of the stream function (ψmax) and vorticity (ζmax), and values of the
stream function on the circular cylinder (ψc) by the present method and FDM.

Re Method Grid ψmin ψmax ζmax ψc

1 Present (u− p) 61× 61 -1.4203E-4 0.4785 1.0472 0.4785
81× 81 -1.3415E-4 0.4699 1.0233 0.4699
101× 101 -1.3588E-4 0.4712 1.0325 0.4712
121× 121 -1.3523E-4 0.4701 1.0249 0.4701
131× 131 -1.3478E-4 0.4695 1.0216 0.4695
141× 141 -1.3472E-4 0.4691 1.0209 0.4691

FDM (ψ − ζ) (Lewis, 1979) 161× 161 -1.4000E-4 0.4656 1.0186 0.4656
100 Present (u− p) 61× 61 -1.2527E-3 0.4808 1.2433 0.4808

81× 81 -1.1994E-3 0.4747 1.2374 0.4747
101× 101 -1.1830E-3 0.4711 1.2265 0.4711
121× 121 -1.1788E-3 0.4679 1.2216 0.4679
131× 131 -1.1760E-3 0.4658 1.2198 0.4658
141× 141 -1.1758E-3 0.4652 1.2193 0.4652

FDM (ψ − ζ) (Lewis, 1979) 161× 161 — — — 0.4577
200 Present (u− p) 61× 61 -2.0812E-3 0.4777 1.3110 0.4777

81× 81 -1.9988E-3 0.4715 1.3095 0.4715
101× 101 -1.9882E-3 0.4678 1.2992 0.4678
121× 121 -1.9796E-3 0.4652 1.2916 0.4652
131× 131 -1.9721E-3 0.4629 1.2897 0.4629
141× 141 -1.9716E-3 0.4625 1.2893 0.4625

FDM (ψ − ζ) (Lewis, 1979) 161× 161 — 0.4539 1.2559 0.4539
500 Present (u− p) 61× 61 -3.0170E-3 0.4738 1.3957 0.4738

81× 81 -2.9114E-3 0.4676 1.4143 0.4676
101× 101 -2.8354E-3 0.4599 1.3732 0.4599
121× 121 -2.7762E-3 0.4526 1.3719 0.4526
131× 131 -2.7298E-3 0.4512 1.3708 0.4512
141× 141 -2.7291E-3 0.4511 1.3702 0.4511

FDM (ψ − ζ) (Lewis, 1979) 161× 161 -2.7100E-3 0.4465 1.3430 0.4465
1000 Present (u− p) 61× 61 -3.2525E-3 0.4714 1.4321 0.4714

81× 81 -3.1714E-3 0.4648 1.4899 0.4648
101× 101 -3.1014E-3 0.4502 1.4264 0.4502
121× 121 -3.0326E-3 0.4429 1.3925 0.4429
131× 131 -3.0048E-3 0.4397 1.3767 0.4397
141× 141 -3.0042E-3 0.4394 1.3761 0.4394

FDM (ψ − ζ) (Lewis, 1979) 161× 161 — — — 0.4375
1400 Present (u− p) 61× 61 -3.2105E-3 0.4707 1.4329 0.4707

81× 81 -3.1543E-3 0.4637 1.5223 0.4637
101× 101 -3.0785E-3 0.4461 1.4279 0.4461
121× 121 -3.0241E-3 0.4379 1.4117 0.4379
131× 131 -2.9953E-3 0.4324 1.4026 0.4324
141× 141 -2.9947E-3 0.4320 1.4024 0.4320

FDM (ψ − ζ) (Lewis, 1979) 161× 161 — — — 0.4314
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Figure 5.15: Flow between a rotating circular and a fixed square cylinder:
Streamlines of the flow for several Reynolds numbers using a grid of 131× 131.
The contour values used here are taken to be the same as those in Lewis (1979),
except those on the circular boundary.
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5.4.5 Natural convection in an eccentric annulus between
two circular cylinders

The geometry of this problem can be defined through the following parameters:
the eccentricity ε, angular position ϕ, radius of the outer cylinder Ro and radius
of the inner cylinder Ri (Figure 5.16). The inner and outer cylinders are heated
(Th = 1) and cooled (Tc = 0), respectively. Calculation is carried out for Pr =
0.71, Ro/Ri = 2.6 and Ra = 104 using a set of uniform grids, namely {60 ×
60, 70 × 70, 80 × 80, 90 × 90, 100 × 100} and a set of time steps, namely
∆t ∈ {0.001, 0.0005, 0.00025, 0.0001}. Smaller time steps are used for higher
grid densities. A distribution of nodes and the boundary conditions are shown
in Figure 5.16.

For symmetrical flows, where the centres of the inner and outer cylinders lie
on the vertical symmetrical axis, several values of eccentricity, namely ε ∈
{0.25, 0.50, 0.75, 0.95} and angular direction, namely ϕ ∈ {−90◦, 90◦} are
considered. Table 5.2 compares the maximum value of the stream function
(ψmax) between the present scheme, one-dimensional integrated radial basis
function (1D-IRBF) scheme (Le-Cao et al., 2011) and differential quadrature
method (DQM) (Shu et al., 2002). It can be seen that good agreement is
achieved. The present solutions are convergent at the grid of 90× 90.

For unsymmetrical flows, the stream function at the inner wall (ψw) is no
longer zero and its value varies with the location of the inner cylinder. Val-
ues of the eccentricity and angular direction are taken as {0.25, 0.50, 0.75}
and {−45◦, 0◦, 45◦}, respectively. In Table 5.3, values of ψw are presented
and agree satisfactorily with those obtained by the 1D-IRBF scheme (Le-Cao
et al., 2011), DQM (Shu et al., 2002) and domain-free discretisation method
(DFD) (Shu and Wu, 2002). It is noted that the present governing equations
(5.1)-(5.3) are different from those used in Shu et al. (2002) and Shu and Wu
(2002) by a factor

√
PrRa. Therefore, to facilitate a comparison, our results

in the table, which are computed in the average sense from the values of ψ at
the Lagrangian nodes, are multiplied by this factor. The present solutions are
convergent at the grid of 90× 90.

Figures 5.17-5.18 and Figures 5.19-5.21 show the isotherms and streamlines of
the flow for symmetrical and unsymmetrical flows, respectively, where several
combinations of eccentricity and angular direction are considered. Each plot
contains 22 contour lines whose levels vary linearly from the minimum to maxi-
mum values. All plots look very feasible when compared with those obtained by
the 1D-IRBF scheme (Le-Cao et al., 2011), DQM (Shu et al., 2002) and (DFD)
(Shu and Wu, 2002).
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Figure 5.16: Natural convection in eccentric circular-circular annulus: Geome-
try and boundary conditions (a) and distribution of nodes (b) (Eulerian nodes
inside the annulus and on the outer boundary, Lagrangian nodes on the inner
boundary with a grid of 60× 60).

Table 5.2: Natural convection in eccentric circular-circular annulus, symmetrical
flows: the maximum values of the stream function (ψmax) for two special cases
ϕ ∈ {−90◦, 90◦} by the present and some other numerical schemes.

ψmax

ϕ ε DQMa 1D-IRBFb DFIB-CIRBFc

60× 60 70× 70 80× 80 90× 90 100× 100
−90◦ 0.25 15.50 15.71 15.26 15.30 15.35 15.36 15.36

0.50 18.32 18.50 18.10 18.39 18.44 18.47 18.47
0.75 20.62 20.72 20.10 20.41 20.47 20.49 20.49
0.95 22.16 22.19 21.91 22.35 22.44 22.49 22.50

90◦ 0.25 11.13 11.26 11.07 11.11 11.13 11.14 11.14
0.50 9.55 9.64 9.51 9.55 9.57 9.58 9.58
0.75 8.12 8.25 8.17 8.18 8.20 8.21 8.21
0.95 7.17 7.28 7.21 7.23 7.24 7.24 7.24

a (Shu et al., 2002)
b (Le-Cao et al., 2011)
c Present

5.5 Concluding remarks

In this chapter, we introduce compact integrated RBF approximations into
the immersed boundary and point-collocation framework to simulate viscous
flows in two dimensions. The direct forcing immersed boundary method is
utilised for the handling of inner boundaries, while high-order approximation
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Table 5.3: Natural convection in eccentric circular-circular annulus, unsym-
metrical flows: the stream function values at the inner cylinders (ψw) for
ε ∈ {0.25, 0.50, 0.75} and ϕ ∈ {−45◦, 0◦, 45◦} by the present and some
other numerical schemes.

ψw

ϕ ε DFDa DQMb 1D-IRBFc DFIB-CIRBFd

60 × 60 70 × 70 80 × 80 90 × 90 100 × 100
−45◦ 0.25 0.51 0.51 0.48 0.46 0.48 0.49 0.50 0.50

0.50 0.77 0.92 0.80 0.80 0.81 0.82 0.82 0.82
0.75 0.77 0.99 1.05 1.10 1.13 1.14 1.15 1.15

0◦ 0.25 0.72 0.72 0.60 0.67 0.68 0.68 0.68 0.68
0.50 1.10 1.15 1.28 1.07 1.07 1.07 1.07 1.07
0.75 1.26 1.30 1.18 1.25 1.29 1.31 1.32 1.32

45◦ 0.25 0.54 0.52 0.52 0.56 0.57 0.57 0.57 0.57
0.50 1.29 1.31 1.25 1.23 1.23 1.23 1.23 1.23
0.75 1.09 1.07 1.01 0.98 1.01 1.02 1.03 1.03

a (Shu and Wu, 2002)
b (Shu et al., 2002)
c (Le-Cao et al., 2011)
d Present

schemes (Adams-Bashforth/Crank-Nicolson and compact 3-point IRBFs) are
employed to represent temporal and spatial derivatives. The proposed method is
verified successfully with a series of problems of fluid flow in multiply-connected
domains. Very good results are obtained using relatively coarse Cartesian grids.
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(a) (b)

Figure 5.17: Natural convection in an eccentric circular-circular annulus, sym-
metrical flows: Contour plots for the temperature (a) and stream function (b)
fields for ε ∈ {0.25, 0.50, 0.75, 0.95} (from top to bottom) and ϕ = −90◦. Each
plot contains 22 contour lines whose levels vary linearly from the minimum to
maximum values.
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(a) (b)

Figure 5.18: Natural convection in an eccentric circular-circular annulus, sym-
metrical flows: Contour plots for the temperature (a) and stream function (b)
fields for ε ∈ {0.25, 0.50, 0.75, 0.95} (from top to bottom) and ϕ = 90◦. Each
plot contains 22 contour lines whose levels vary linearly from the minimum to
maximum values.
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(a) (b)

Figure 5.19: Natural convection in an eccentric circular-circular annulus, un-
symmetrical flows: Contour plots for the temperature (a) and stream function
(b) fields for ε ∈ {0.25, 0.50, 0.75} (from top to bottom) and ϕ = −45◦. Each
plot contains 22 contour lines whose levels vary linearly from the minimum to
maximum values.
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(a) (b)

Figure 5.20: Natural convection in an eccentric circular-circular annulus, un-
symmetrical flows: Contour plots for the temperature (a) and stream function
(b) fields for ε ∈ {0.25, 0.50, 0.75} (from top to bottom) and ϕ = 0◦. Each
plot contains 22 contour lines whose levels vary linearly from the minimum to
maximum values.
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(a) (b)

Figure 5.21: Natural convection in an eccentric circular-circular annulus, un-
symmetrical flows: Contour plots for the temperature (a) and stream function
(b) fields for ε ∈ {0.25, 0.50, 0.75} (from top to bottom) and ϕ = 45◦. Each
plot contains 22 contour lines whose levels vary linearly from the minimum to
maximum values.



Chapter 6

A DFIB-CIRBF approach for
fluid-solid interactions in
particulate fluids

In this chapter, the DFIB-CIRBF method presented in chapter 5 is further de-
veloped to model fluid-particle interaction in particulate fluids. The fluid flow
is computed by solving the Navier-Stokes equations in an Eulerian frame of
reference (FOR) with fractional-step/projection method based on CIRBF ap-
proximations whereas the rigid particles are allowed to move freely through the
computational domain and their motions are computed by solving the Newton-
Euler equations in a Lagrangian FOR. The interaction between fluid and parti-
cles is taken into account by mean of direct forcing immersed boundary method.
The particle-particle and particle-wall interactions are handled by available col-
lision models reported in the literature. The capability of the present method for
particulate flows is depicted by simulating several problems, including Taylor-
Green vortices, induced flow by an oscillating circular cylinder, single particle
sedimentation and drafting-kissing-tumbling behaviour of two settling particles.
Numerical experiments show that the present method provides an accurate ap-
proach to directly simulate particulate flows.

6.1 Introduction

The numerical simulation of flows of a viscous liquid containing several small
particles (i.e. multiphase flows or particulate flows) is an important area of re-
search and remains a challenge in many engineering applications. These types of
problems, depending on the application area, include sedimenting and fluidised
suspensions, lubricated transport, hydraulic fracturing of reservoirs, slurries and
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so on. It is very desirable to understand the phenomenon of fluid-particle inter-
action through either experimental measurements or numerical simulations for
engineering analysis and design purposes.

In comparison with experimental measurements, numerical simulations have
noticeable advantages because relevant parameters can be studied separately in
investigating the fluid-particle interactions of particulate flows. But, the results
obtained by the numerical simulations must be believable. Therefore, develop-
ing numerical methods with high accuracy is very important to simulate partic-
ulate flows effectively. At the present, in continuum mechanics, direct numerical
simulation appears to offer the highest-resolution. There are two types of DNS
approaches for the particulate flows currently. In the first approach, the fluid is
simulated using DNS but the particle is assumed to be a massless/volumeless
point and the main force acted on it is modeled by the Stokes drag force. This
approach is valid only when the particle scale is smaller than the grid scale and
the suspension is dilute. This approach is known as traditional DNS and it has
been extensively applied in the past decades (Luo et al., 2006; Marchioli et al.,
2003; Soltani et al., 1998; Squires and Eaton, 1990). In the second approach,
the actual physical characteristics of particle are considered and the hydrody-
namic force acted on it is computed by integrating the fluid stress tensor over
the particle surface. The flow around the particle such as the wake can be cap-
tured well and hence, the particulate flows are fully resolved in this approach.
In this chapter, we are interested in the latter approach because it is truly DNS
of particulate flows.

Several DNS methods for the particulate flows have been developed so far. Hu
et al. (1992), Hu et al. (2001) developed a FEM based on unstructured grids to
simulate the motion of a large number of rigid objects in Newtonian and vis-
coelastic fluids. This method is based on an ALE technique. Both fluid and solid
equations of motion are incorporated into a single coupled variational equation,
and the hydrodynamic forces and torques acting on the particles are eliminated
in the formulation. The nodes on the particle surface are allowed to move with
the particle, while the nodes in the interior of the fluid are smoothly updated
by solving a Laplace’s equation. At each time step, a new mesh is generated
when the old one becomes too distorted and the flow field is projected onto the
new mesh. The positions of the particles and grid nodes are updated explicitly,
while the velocity of the fluid and particles are determined implicitly. In 2D
problems, the remeshing of the body-fitted meshes in this method can be done
by available grid generation software. But in 3D problems, efficiently generating
the body-fitted mesh is very difficult and it has not been solved in a satisfac-
tory manner yet. Therefore, many researchers have tried to propose methods
that do not require remeshing. For example, Glowinski et al. (1999), Glowin-
ski et al. (2001) proposed a distributed Lagrange multiplier/fictitious domain
method (DLM/FDM) for the DNS of suspensions containing a large number of
rigid particles. In this method, the whole domain is assumed to be fluid and
the volumes corresponding to particles are constrained to move as rigid bodies.
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The fluid-particle motion is treated implicitly using a combined weak formu-
lation in which the mutual forces are canceled. This formulation permits the
use of the fixed structured grid, thus eliminating the requirement for remeshing
the domain. Later, Wan and Turek (2006), Wan and Turek (2007a) presented
a similar, but different multigrid FBM for the simulation of particulate flows.
The method is based on a fixed FEM background grid. The motion of the rigid
particles is modeled by the Newton-Euler equations. The boundary conditions
applied at the fluid-particle interface are considered as an additional constraint
to the governing Navier-Stokes equations. Hence, the fluid domain is extended
into the whole domain covering both fluid and particle volumes. The advantage
of this FDM over the previous ALE-FEM is that it allows a fixed grid to be
used, eliminating remeshing procedure, and it can be handled independently
from the flow features. As an improvement on the DLM/FDM formulation of
Glowinski et al. (1999), Patankar et al. (2000); Patankar and Sharma (2005)
presented a new DLM formulation (both strong and weak forms) for the sim-
ulation of particulate flows where a simple and efficient method of computing
the particle velocities was derived from the conservation of momenta of a rigid
particle. The efficiency of the method is based on a simple projection scheme
for rigid motion and makes it suitable for handling a large number of particles
and for 3D applications. A similar technique, which is also non-Lagrange mul-
tiplier based, was considered in Veeramani et al. (2007). Later, Blasco et al.
(2009) used the fast computational technique of Patankar and Sharma (2005)
and developed a method based on FDM with parallel computation.

Other known approaches for solving the particulate flows are based on Lattice
Boltzmann method (LBM) in combination with IBM. The first attempts were
made by Feng and Michaelides (2004), Feng and Michaelides (2005). The sim-
ulation of 2D and 3D particle sedimentation were carried out. Niu et al. (2006)
put forward a momentum exchange-based IB-LBM to simulate flows around
fixed and moving particles. The IBM, originally developed by Peskin (1972)
as reviewed in chapter 5, has attracted considerable interest in the last few
years (Mittal and Iaccarino, 2005). To compute the interactive force between
the fluid and solids, Goldstein et al. (1993) proposed a feedback forcing ap-
proach to iteratively determine the magnitude of the force required to obtain a
desired velocity on fluid-solid interface. Saiki and Biringen (1996) successfully
implemented this feedback forcing approach to compute the flow past a circu-
lar cylinder with virtual boundary method. But the feedback forcing approach
induces oscillations and the computational time step is restricted for numerical
stability. In order to overcome this drawback, Fadlun et al. (2000) proposed
a different approach, so-called direct forcing, to evaluate the interactive force.
An advantage of the direct over the feedback forcing approach is that the DF
approach does not require a smaller computational time step for numerical sta-
bility. To transfer the quantities smoothly between Eulerian and Lagrangian
nodes and avoid strong restrictions of the time step, Uhlmann (2005) proposed
an improved method to incorporate the regularised delta function approach into
a direct formulation of the fluid-solid interactive force. Wang et al. (2008) pro-
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posed an explicit multi-direct forcing approach based on the Peskin’s original
IBM to obtain better satisfaction of the non-slip boundary condition at the
fluid-solid interface than that of the original DF approach. Recently, Ji et al.
(2012) has proposed an iterative IBM in which the body force updating is in-
corporated into the pressure iterations for the 2D and 3D numerical simulations
of laminar and turbulent flows.

In this chapter, the DFIB-CIRBF method presented in chapter 5 is further
developed to model fluid-particle interaction in particulate fluids. A series of
test problems, including Taylor-Green vortices, induced flow by an oscillating
circular cylinder, single particle sedimentation and drafting-kissing-tumbling
behaviour of two settling particles are carried out to depict the capability of the
present method for particulate flow problems. The remainder of the chapter is
organised as follows. Section 6.2 outlines the equations which govern the phe-
nomenon of fluid-particle interaction and mathematical equations for the DF
approach in IBM. Section 6.3 provides detailed descriptions of the numerical
formulation including the temporal and spatial discretisations in the governing
equations. In Section 6.4, numerical results are presented and compared with
the analytic solutions and some published approximate results, where appropri-
ate. Finally, Section 6.5 concludes the chapter.

6.2 Mathematical formulation

In this section, we describe the equations which govern the motion of rigid par-
ticles immersed in a Newtonian fluid in two dimensions. In IBM, the existence
of the particle is represented by its effect on the fluid and this effect is enforced
by introducing a fluid body force density into the momentum equations as re-
viewed in chapter 5. Let us consider the entire domain Ω including the fluid

region Ωf and solid region Ωs occupied by the Np particles Pk

(
Ωs =

⋃Np

k=1 Pk

)

as shown in Figure 6.1. The outer boundary of the entire domain is Γ and the
boundary surface of kth particle Pk is ∂Pk. The particle boundary surface is
represented by the Lagrangian parametric coordinate s and the flow domain is
represented by the Eulerian coordinate x. Hence, any position on the particle
surface may be written as x = X (s, t). The non-slip boundary condition is
satisfied by enforcing the velocity at all particle boundaries to be equal to the
velocity of the fluid at the same location

U (s, t) =
∂X (s, t)

∂t
= u (X (s, t) , t) = u (x, t) . (6.1)

In (6.1) and hereafter, we use upper-case and lower-case letters for the quantities
evaluated at the Lagrangian nodes X and Eulerian nodes x, respectively.



6.2 Mathematical formulation 136

Ω
f

Ω

Γ

P
2

∂P
2

∂P
1

P
1

∂P
3

P
4 ∂P

4

P
3

Figure 6.1: Configuration with several rigid particles and interstitial fluid do-
main.

6.2.1 Governing equations for fluid motion

In the context of the IBM, the suspended rigid particles can be replaced by an
equivalent body force field fI (x, t). The whole domain is then considered to
be fluid only whose motion is governed by the transient incompressible Navier-
Stokes equations, together with appropriate initial and boundary conditions as
follows (Wu and Shu, 2010; Peskin, 2002).

∇.u = 0 in Ω, t ≥ 0, (6.2)

ρf

(
∂u

∂t
+ (u.∇)u

)
= −∇p+ µ∇2u+ fI in Ω, t ≥ 0, (6.3)

u(x, y, 0) = u0(x, y) in Ω, t = 0, (6.4)

u(x, y, t) = uΓ(x, y, t) on Γ, t ≥ 0, (6.5)

where ρf and µ are the density and the dynamic viscosity of fluid, respectively.

6.2.2 Direct forcing method

The readers are referred to section 5.3.1 for a detailed derivation of the interac-
tive force fI from non-dimensionalised Navier-Stokes equations. One can derive
the interactive force fI before non-dimensionalising equation (6.3) as follows.
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Derivation of the interactive force

Dividing (6.3) by ρf , one obtains

∂u

∂t
+ (u.∇)u = − 1

ρf
∇p+ ν∇2u+

1

ρf
fI , (6.6)

where ν = µ/ρf is the kinematic viscosity of fluid.

The temporal discretisation of the momentum equation (6.6) is written in the
form

un − un−1

∆t
= rhsn−1/2 +

1

ρf
f
n−1/2
I , (6.7)

where the convection, pressure and diffusion terms at a time tn−1/2 are lumped
together in rhsn−1/2.

The interactive force term yielding the desired velocity u(d) can thus be defined
as (Fadlun et al., 2000)

f
n−1/2
I = ρf

(
u(d),n − un−1

∆t
− rhsn−1/2

)
, (6.8)

at some selected nodes (and zeros elsewhere). The corresponding interactive
force at the Lagrangian nodes on the particle surfaces will be

F
n−1/2
I = ρf

(
U(d),n −Un−1

∆t
−RHSn−1/2

)
. (6.9)

The desired velocity at a node on the fluid-particle interface in (6.9) is simply
computed from the rigid-body motion of the particles

U(d),n(X) = Un
p +ωωωnp × (Xn −Xn

p ), (6.10)

where Up = (Up, Vp)
T and Xp = (Xp, Yp)

T are the translational velocity and
the position vectors of the particle centre, respectively, and ωωωp is the rotational
velocity of the particle - all is defined in the Cartesian coordinate system.

When the interactive force is absent, equation (6.9) leads to a preliminary ve-

locity Ũ
n
given by equation (5.14). Its Eulerian counterpart is ũn given by

equation (5.15).

In this chapter, the term rhsn−1/2 in (5.15) is computed explicitly as (Butcher,
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2003)

rhsn−1/2 = − 1

ρf

[
3

2
∇pn−1 − 1

2
∇pn−2

]
−
[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]

+ ν

[
3

2
∇2un−1 − 1

2
∇2un−2

]
. (6.11)

Hence, the interactive force at Lagrangian nodes on the particle surfaces is
computed now as

F
n−1/2
I = ρf

U(d),n − Ũn

∆t
. (6.12)

In order to complete the evaluation of the interactive force term in (6.7), a

mechanism for transferring the preliminary velocity (ũn, Ũ
n
) and the forces

(F
n−1/2
I , f

n−1/2
I ) between the two Eulerian and Lagrangian node system is re-

quired. For brevity, from here on we use “Lagrangian nodes” for “Lagrangian
nodes on the particle surfaces”.

Transfer of quantities between Eulerian and Lagrangian nodes

The fluid body interactive force at Eulerian nodes is computed from the particle
surface interactive force at Lagrangian nodes, and the particle surface velocities
at Lagrangian nodes is computed from the fluid velocity at the Eulerian nodes
as follows (Feng and Michaelides, 2005).

fI (x, t) =

∮

∂P

FI (s, t) δ (x−X (s, t)) dV, (6.13)

U (s, t) =

∫

Ω

u (x, t) δ (x−X (s, t)) dv, (6.14)

where δ (x−X (s, t)) is the Dirac delta function, dV and dv are the infinitesimal
volumes in Lagrangian parametric and Eulerian coordinates, respectively.

In this chapter, we employ the class of regularised delta functions (Peskin, 2002)
as defined in (5.18). It is preferable to write (6.13)-(6.14) in a discrete form.
For convenience, an even number of NL Lagrangian nodes are distributed over
the fluid-particle interface on each particle and their locations are defined by

Xk
l =

(
Xk
l , Y

k
l

)T
, where

Xk
l ∈ ∂Pk, ∀1 ≤ l ≤ NL, 1 ≤ k ≤ Np. (6.15)

For the sake of simplicity, all particles are assumed to have the same shape
and size. Therefore, the number of NL Lagrangian nodes is the same for all
particles. Equations (6.13)-(6.14) is rewritten in the discrete form as follows
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(Uhlmann, 2005).

Ũ(Xk
l ) =

∑

x∈Ω
ũ(x)δh(x−Xk

l )h
2, ∀1 ≤ l ≤ NL, 1 ≤ k ≤ Np. (6.16)

fI(x) =

Np∑

k=1

NL∑

l=1

FI(X
k
l )δh(x−Xk

l )∆V
k
l , ∀x ∈ Ω, (6.17)

A family of Peskin’s delta functions are summarised in section 5.3.1. The readers
are referred to that section for various common delta functions, e.g. 2-point hat
function, 3-point discrete delta function and 4-point piecewise function. In this
chapter, we also employ the 3-point discrete delta function δ3h(r) (Roma et al.,
1999) as in chapter 5.

6.2.3 Governing equations for particle motion

Based on above DF approach and IBM, the hydrodynamic force FH =
(
FH
x , F

H
y

)T
and torque TH exerted on a moving particle immersed in the flowing fluid can
be expressed as (Wang et al., 2008)

FH = −
∫ Np

1

∫ NL

1

FI
k
l

(
Xk
l

)
dV k

l = −
∫

Ω

fI(x)dv = −
∑

x∈Ω
fI(x)h

2, (6.18)

TH = −
∫ Np

1

∫ NL

1

(Xk
l −Xk

p)× FI
k
l (X

k
l )dV

k
l

= −
∫

Ω

(x−Xp)× fI(x)dv = −
∑

x∈Ω
(x−Xp)× fI(x)h

2, (6.19)

where Xk
p =

(
Xk
p , Y

k
p

)T
is the centre coordinates of the kth particle. Then,

the motion of a particle is governed by the following Newton-Euler equations
(Wang et al., 2008; Blasco et al., 2009).

Mp
dUp

dt
= FH + (ρp − ρf ) Vpg + Fcol, (6.20)

Ip
dωωωp
dt

= TH , (6.21)

dXp

dt
= Up, (6.22)

dθθθp
dt

= ωωωp, (6.23)
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where ρp, Vp and Ip are the density, the volume and the moment of inertia of
the particle, respectively; Mp = ρpVp the mass of a particle; θθθp the angular

position of the particle; g = (gx, gy)
T the gravitational acceleration vector;

Fcol =
(
F col
x , F col

y

)T
the collision force vector acting on a particle by other

particles or walls when they come close to each other. For 2D problems, the
volume and the moment of inertia for a circular particle are Vp = πR2 and
Ip =

1
2
ρpπR

4, respectively, where R is the radius of the particle.

The discretisation forms of these governing equations are given as follows (Wang
et al., 2008).

Un
p = Un−1

p +
FH,n−1 + Fcol,n−1

Mp
∆t +

(
1− 1

ρr

)
g∆t, (6.24)

ωωωnp = ωωωn−1
p +

TH,n−1

Ip
∆t, (6.25)

Xn
p = Xn−1

p +
Un
p +Un−1

p

2
∆t, (6.26)

θθθnp = θθθn−1
p +

ωωωnp +ωωωn−1
p

2
∆t, (6.27)

where ρr =
ρp
ρf

is the particle-fluid density ratio.

When spreading the effect of the interactive force from the Lagrangian nodes
to the Eulerian nodes with DF method, the interactive force acted on the La-
grangian nodes containing the desired velocity U(d),n is unknown at the current
time level n. A simple way to deal with this problem is to apply a first-order
explicit scheme with U(d),n−1 instead of U(d),n. This way has been employed
in previous numerical simulations (Wang et al., 2008; Wan and Turek, 2007a;
Uhlmann, 2005) and it is known as a “weak coupling” of fluid-particle equations
(Uhlmann, 2005). We also employ this explicit scheme in the present work. The
interactive force exerted at the Lagrangian nodes on the immersed boundary
(i.e. equation (6.12)) is thus be changed into

F
n−1/2
I = ρf

U(d),n − Ũn

∆t
≈ ρf

U(d),n−1 − Ũn

∆t
, (6.28)

where

U(d),n−1 = Un−1
p +ωωωn−1

p × (Xn−1
l −Xn−1

p ). (6.29)
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6.2.4 Particle-particle and particle-wall collision models

In particulate flows, particle-particle or particle-wall collisions are unavoidable
and handling these collisions is an important task. Generally, an artificial mech-
anism is introduced in the numerical scheme to implement the repulsive force for
the collision process. In this chapter, we employed two different collision mod-
els, namely Model-1 and Model-2, for comparison purposes in a given problem.
Model-1 was originally proposed by Glowinski et al. (2001) and has been used in
Feng and Michaelides (2005), Blasco et al. (2009). The repulsive force between
particles is determined as

FPij =




0 for dij > Ri +Rj + ξ,
Cij

ǫP

(
Ri+Rj+ξ−dij

ξ

)2 (
Xi−Xj

dij

)
for dij ≤ Ri +Rj + ξ,

(6.30)

where Cij and ǫP are the force scale and the stiffness parameter specified in a
problem; Ri and Rj the radius of the ith and jth particle; Xi and Xj the coor-
dinates of the centres; dij = |Xi −Xj | the distance between the mass centres; ξ
the range of the repulsive force. Similarly, the repulsive force between a particle
and a wall is given by

FWi =




0 for diw > 2Ri + ξ,

Ciw

ǫW

(
2Ri+ξ−diw

ξ

)2 (
Xi−Xiw

diw

)
for diw ≤ 2Ri + ξ,

(6.31)

whereXiw is the coordinate vector of the centre of the nearest imaginary particle
Piw located on the boundary wall Γ with respect to the ith particle (Figure 6.2);
diw = |Xi −Xiw| the distance between the mass centres of the ith particle and
the centre of the imaginary particle Piw; and Ciw and ǫW corresponding force
scale and positive stiffness parameter.

Γ
diw

Xi

Xiw

Figure 6.2: Single particle sedimentation: Imaginary particle.
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Model-2 was proposed by Wan and Turek (2007a) and has been used in Wang
et al. (2008). The repulsive force between particles is determined as

FPij =





0 for dij > Ri +Rj + ξ,
1
ǫP

(Xi −Xj) (Ri +Rj + ξ − dij)
2 for Ri +Rj ≤ dij ≤ Ri +Rj + ξ,

1
ǫ′
P

(Xi −Xj) (Ri +Rj − dij) for dij ≤ Ri +Rj ,

(6.32)

where ǫ′P is another positive stiffness parameter for particle-particle collisions.
For the particle-wall collisions, the corresponding repulsive force is given by

FWi =





0 for diw > 2Ri + ξ,
1
ǫW

(Xi −Xiw) (2Ri + ξ − diw)
2 for 2Ri ≤ diw ≤ 2Ri + ξ,

1
ǫ′
W
(Xi −Xiw) (2Ri − diw) for diw ≤ 2Ri,

(6.33)

where ǫ′W is another positive stiffness parameter for particle-wall collisions.

The total repulsive forces (i.e. collision forces) exerted on the ith particle by
the other particles and the walls are expressed as

Fcoli =

Np∑

j=1,j 6=i
FPij + FWi . (6.34)

6.3 Numerical formulation

For the discretisations of the spatial derivatives in the governing equations, the
approximation scheme CIRBF-3 described in section 5.3.2 is employed in this
chapter. For temporal discretisation, the procedure is as follows.

The temporal discretisation of (6.6) with an Adams-Bashforth scheme (Butcher,
2003) for the convection term and a Crank-Nicolson scheme (Crank and Nicol-
son, 1996) for the diffusion term gives

un − un−1

∆t
+

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
=

− 1

ρf
∇pn−1/2 +

ν

2

(
∇2un +∇2un−1

)
+

1

ρf
f
n−1/2
I , (6.35)
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or

un − ν∆t

2
∇2un = un−1 +

ν∆t

2
∇2un−1 − ∆t

ρf
∇pn−1/2

−∆t

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
+

∆t

ρf
f
n−1/2
I . (6.36)

We apply the pressure-free projection/fractional-step methods developed by
Kim and Moin (1985) to solve the continuity equation (6.2) and momentum
equation (6.36). The two governing equations are advanced in time according
to the following two-step procedure, where one can project an arbitrary vector
field into a divergence-free vector field via the pressure variable in (6.36)

u∗,n − un−1

∆t
+

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
=

ν

2

(
∇2u∗,n +∇2un−1

)
+

1

ρf
f
n−1/2
I , (6.37)

un − u∗,n

∆t
= − 1

ρf
∇φn, (6.38)

with

∇.un = 0, (6.39)

where φ is the pseudo-pressure from which the actual pressure is derived through

pn−1/2 = φn − (ν∆t/2)∇2φn. (6.40)

The detailed calculation can be summarised as follows.

At first, an intermediate velocity vector u∗,n is obtained by solving (6.37) in the
form of

u∗,n − ν∆t

2
∇2u∗,n = un−1 +

ν∆t

2
∇2un−1

−∆t

[
3

2
(un−1.∇)un−1 − 1

2
(un−2.∇)un−2

]
+

∆t

ρf
f
n−1/2
I , (6.41)

subject to the following boundary condition (Kim and Moin, 1985)

u∗,n|Γ = unb +
∆t

ρf

(
∇φn−1

)
|Γ. (6.42)

It can be seen that u∗,n does not satisfy the continuity equation (6.39). For a
more efficient solution, one can apply the alternating direction implicit (ADI)
algorithm to solve (6.41) as shown in Thai-Quang, Mai-Duy, Tran and Tran-
Cong (2012).
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Equations (6.38)-(6.39) are then solved in a coupled manner for un and φn

in which the boundary condition for the pseudo-pressure φ is not required.
The values of φn are solved for the interior nodes only. Then, the values of
φn at the boundary nodes are extrapolated from known values at the interior
nodes and known Neumann boundary values derived from (6.38) (i.e. ∇φn|Γ =
ρf (u

∗,n
b − unb ) /∆t) (Thai-Quang, Le-Cao, Mai-Duy and Tran-Cong, 2012):

(
φn1,j
φnnx,j

)
=

[
H1(x1,j) · · · Hnx

(x1,j) x1,j 1

H1(xnx,j) · · · Hnx
(xnx,j) xnx,j 1

]




H1(x2,j) · · · Hnx
(x2,j) x2,j 1

H1(x3,j) · · · Hnx
(x3,j) x3,j 1

...
. . .

...
...

...
H1(xnx−1,j) · · · Hnx

(xnx−1,j) xnx−1,j 1
H1(x1,j) · · · Hnx

(x1,j) 1 0
H1(xnx,j) · · · Hnx

(xnx,j) 1 0




−1


φn2,j
φn3,j
...

φnnx−1,j

∂φn1,j/∂x
∂φnnx,j/∂x



,

(6.43)

for an x-grid line (j ∈ {1, 2, . . . , ny}), and
(

φni,1
φni,ny

)
=

[
H1(yi,1) · · · Hny

(yi,1) yi,1 1
H1(yi,ny

) · · · Hny
(yi,ny

) yi,ny
1

]




H1(yi,2) · · · Hny
(yi,2) yi,2 1

H1(yi,3) · · · Hny
(yi,3) yi,3 1

...
. . .

...
...

...
H1(yi,ny−1) · · · Hny

(yi,ny−1) yi,ny−1 1
H1(yi,1) · · · Hny

(yi,1) 1 0
H1(yi,ny

) · · · Hny
(yi,ny

) 1 0




−1


φni,2
φni,3
...

φni,ny−1

∂φni,1/∂y
∂φni,ny

/∂y



,

(6.44)

for a y-grid line (i ∈ {1, 2, . . . , nx}).

It is noted that the governing equations (6.2)-(6.3) can be non-dimensionalised
and written in a non-dimensionalised form with the definition of Reynolds num-
ber Re. The readers are referred to sections 5.3.3 and 5.3.1 for detailed descrip-
tions of the derivations of temporal discretisation and DF method, respectively,
in the non-dimensionalised form.

6.4 Numerical examples

As shown in chapter 2, our methods work well with a wide range of values for
β. The value of β = 50 is simply picked for all calculations in this chapter. We
assess the performance of the proposed method through the following measures:
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• maximum absolute error (L∞) defined by (3.53),

• the average rate of convergence α determined by the method of least
squares as described in chapter 2.

6.4.1 Taylor-Green vortices

To investigate the performance of the present DFIB-CIRBF method in the IB
approach, the problem of Taylor-Green vortices with following analytic solutions
(Uhlmann, 2005) is considered

u(x, y, t) = sin(kxx) cos(kyy)e
−(k2x+k

2
y)t/Re, (6.45)

v(x, y, t) = −kx/ky sin(kyy) cos(kxx)e−(k2x+k
2
y)t/Re, (6.46)

p(x, y, t) = 0.5

(
cos2(kyy)

k2x
k2y

− sin2(kxx)

)
e−2(k2x+k

2
y)t/Re, (6.47)

where kx = ky = π. This problem is simulated in an embedded circular domain
with radius unity and centred at the origin of the computational domain Ω =
[−1.5, 1.5] × [−1.5, 1.5]. The Reynolds number is set to be Re = 5 and the
solutions are computed at a final time t = 0.3 using a time step ∆t = 0.001
(Uhlmann, 2005). The initial field at t = 0, the time-dependent boundary
conditions at the domain boundary Γ and the time-dependent desired velocity
values U(d) at the circumference of the embedded circle are derived from (6.45)-
(6.47).

Figure 6.3 shows the position of the embedded circle in the computational do-
main, and computed and analytic vorticity isolines using a uniform grid of
151 × 151. The two results are almost identical and it can be inferred that
the problem is solved accurately by the present DFIB-CIRBF method. In-
deed, Figure 6.4 shows the maximum absolute error L∞ of the velocity for grid
nodes located inside the embedded domain, plotted as a function of the grid
size h. The result published by Uhlmann (2005) is also included for compari-
son purpose. The accuracy of the solution obtained by the present method is
slightly higher than that obtained by Uhlmann’s method whereas almost same
convergence rate, i.e. O(h2), is observed for both methods. The overall ac-
curacy of the present solution is higher because the high-order approximation
scheme (CIRBF-3) is employed for the fluid solver. From those good agreements
between the present and Uhlmann’s results, the second-order accuracy of the
interpolation/extrapolation with the regularised δh function is confirmed again
in this study.
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Figure 6.3: Taylor-Green vortices, 151 × 151, ∆t = 0.001: Position of the
embedded circle and the vorticity isolines at t = 0.3 for the analytic (a) and
present (b) solutions.
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Figure 6.4: Taylor-Green vortices, {31×31, 61×61, . . . , 151×151}, ∆t = 0.001,
t = 0.3: The effect of grid size h on the solution accuracy for the velocity. The
solutions converge as about O(h2) for both the present and referential results
(Uhlmann, 2005).

6.4.2 Induced flow by an oscillating circular cylinder

In this problem, a 2D viscous flow in a stationary square domain Ω = [−0.5, 0.5]×
[−0.5, 0.5] induced by an oscillating circular cylinder is considered (Figure 6.5).
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The diameter D of the cylinder is 0.5, and the motion is prescribed by the hor-
izontal translation of the centre X(t) = X0 cos(2πft), where the initial position
X0 is equal to 0.1 and the oscillation frequency f of the cylinder is equal to 1 Hz
(Liao et al., 2010). The corresponding horizontal velocity is U(t) = U0 sin(2πft)
where the maximum velocity is U0 = −2πfX0. Non-slip boundary conditions
are imposed on all fluid-solid interfaces. Based on D, U0 and constant density,
the Reynolds numbers of 100 and 800 are chosen by varying viscosity to simulate
the problem for verification purposes.

−0.5 0.5
−0.5

0.5

Solid

Fluid

u = v = 0

u = v = 0

u = 0
v = 0

u = 0
v = 0

Figure 6.5: Induced flow by an oscillating circular cylinder: Configuration of
the domain and boundary conditions.

The drag FD and lift FL forces generated by the cylinder can be obtained by
integrating the stress distributions along the cylinder wall or by computing the
volume integral of the Navier-Stokes equation. In this chapter, an alternative
method for computing the drag and lift induced by the presence of the cylinder
is used as in Lai and Peskin (2000), Su and Lai (2007), Liao et al. (2010)

FD = −
∫

Ω

fIx(x)dx
∼= −

∑

x

fIx(x)h
2, (6.48)

FL = −
∫

Ω

fIy(x)dx
∼= −

∑

x

fIy(x)h
2. (6.49)

Figure 6.6 shows the streamlines of the flow field at two different Reynolds
numbers using a uniform grid of 151 × 151. The same values of the contour
lines are used for comparison purpose. It is seen that the vortices inside the
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domain is stronger for the larger Re number as vortices behind the cylinder
are formed in the case of Re = 800, whereas no vortices exist in the case of
Re = 100.

Re = 100, t = 9.5 Re = 800, t = 9.5
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Figure 6.6: Induced flow by an oscillating circular cylinder, 151 × 151, ∆t =
0.001: Streamlines of the flow field for different Reynolds numbers at different
times.

The influence of the reduction of the viscosity can be clearly observed in Figure
6.7, where weaker drag force is observed at Re = 800 in contrast to the stronger
drag force obtained at Re = 100. After approximately one period, the drag
force appears to have reached the periodic state. Also shown in Figure 6.7, the
evolution of the drag forces correlate well with the oscillation frequency of the
cylinder. Similar results can be observed in Liao et al. (2010) for the case of
Re = 800 where a much finer grid of 300× 300 was used.
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Figure 6.7: Induced flow by an oscillating circular cylinder, 151 × 151, ∆t =
0.001: The evolution of the drag force for different Reynolds numbers. Re = 100
(dash line) and Re = 800 (solid line).

6.4.3 Single particle sedimentation

Next, we consider the problem of the sedimentation of a rigid circular particle
due to gravity in a bounded cavity filled with a viscous incompressible New-
tonian fluid, when the particle is released from rest from a position on the
centreline of the cavity.

The computational domain is a rectangular box of dimensions 2×6 cm (Figure
6.8). The particle radius is R = 0.125 cm and its density is ρp = 1.25 g/cm3.
The density and the dynamic viscosity of the fluid are ρf = 1 g/cm3 and µ = 0.1
g/cm.s, respectively. The gravitational acceleration is g = 980 cm/s2 and it acts
in the negative y-direction. Initially, the particle centre is set at the position
of (1,4) cm. Both the fluid and particle are initially at rest. All of the walls
are stationary as shown in Figure 6.8. These parameter values are taken to be
the same as those in Wu and Shu (2010), Blasco et al. (2009), Wan and Turek
(2006) whose results will be compared with ours.

Two different uniform grids, namely {51 × 151, 101 × 301} are considered to
study the effect of the grid size. A time step of ∆t = 0.001 is used in all
calculations and the solution is computed until the final time of t = 1. Model-1
is employed for the collision model in this example and the values used for the
parameters of the repulsive forces are ξ = h, ǫw = 2 and Cpw = (ρp − ρf) πR

2g
(Hayashi et al., 2012).

Figures 6.9, 6.10 and 6.11 shows the contours of the vertical velocity, stream-
lines, contours of the vorticity and the corresponding position of the particle at
different times. As observed, the particle path is rectilinear and the symmetric
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Figure 6.8: Single particle sedimentation: Schematic view and boundary con-
ditions.

flow field with respect to the vertical centreline is formed. It is noted that the
contours of the vorticity shown in Figure 6.11 are very comparable with the
ones observed in Wu and Shu (2010). Figure 6.12a,b shows the evolution of
the x and the y coordinates of the particle centre. As observed, the finer mesh
yields the results which are in better agreement with the published ones. Ad-
ditionally, symmetric solutions were reported in Blasco et al. (2009), Wan and
Turek (2007a) for these values with meshes of the order of 1/100, which is also
in agreement with our results as observed in Figure 6.12a. Figure 6.12c,d plots
the evolution of the two components of translational velocity of the particle
centre, where the same tendency and good agreement with those in Wu and
Shu (2010), Wan and Turek (2006) are achieved.

For a quantitative comparison, the terminal settling velocity Vt, defined as the
maximum of the particle translational velocity ‖Up(t)‖, and the maximum par-
ticle Reynolds number Rep,max are investigated. These are known as ones of
the main quantities of interest in this problem. The particle Reynolds number
and translational energy are defined as

Rep =
ρpD

√
U2
p + V 2

p

µ
, (6.50)

Et =
1

2
Mp

(
U2
p + V 2

p

)
, (6.51)
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Figure 6.9: Single particle sedimentation, 101 × 301, ∆t = 0.001: Contours of
the vertical velocity at different times. Values of the contour lines: ±{−0.5 :
−0.5 : −5, 0.5 : 0.5 : 1.5}.

where D is the diameter of the particle. Table 6.1 provides the present and
referential results, showing that good agreement is achieved. Figure 6.12e,f also
displays the evolution of the particle Reynolds number and translational energy,
showing that good agreements with referential results are obtained.
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Figure 6.10: Single particle sedimentation, 101× 301, ∆t = 0.001: Streamlines
of the flow field at different times. Values of the contour lines: ±{0.1 : 0.1 : 0.9}.

6.4.4 Drafting-kissing-tumbling behaviour of two settling

particles

This problem is usually known as a drafting, kissing and tumbling (DKT) phe-
nomenon (Fortes et al., 1987). In this problem, we simulate the motion and
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Figure 6.11: Single particle sedimentation, 101 × 301, ∆t = 0.001: Contours
of the vorticity of the flow field at different times. Values of the contour lines:
±{1, 5, 10, 20, 40, 80}.

interaction of two rigid circular particles sedimenting in a vertical channel filled
with a viscous incompressible Newtonian fluid as a further check for the perfor-
mance of the present method.
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Figure 6.12: Single particle sedimentation: Time histories of some quantities
including the x-coordinate of the particle centre (a), the y-coordinate of the
particle centre (b), the x-component of the translational particle velocity (c),
the y-component of the translational particle velocity (d), the Reynolds number
for the particle (e), and the translational kinetic energy (f).
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Table 6.1: Single particle sedimentation, ∆t = 0.001: Comparison of the termi-
nal settling velocity and maximum particle Reynolds number.

Method h Vt Rep,max

Present 1/25 5.197 16.24
1/50 5.434 16.98

Wu and Shu (2010) 1/100 —– 17.08

Blasco et al. (2009) 1/25 4.474 13.98
1/50 5.302 16.57
1/100 5.515 17.23
1/150 5.550 17.34

Wan and Turek (2007a) 1/48 —– 17.42
1/96 —– 17.15

Glowinski et al. (2001) 1/192 —– 17.27
1/256 —– 17.31

The computational domain is a channel of width 2 cm and height 6 cm (Figure
6.13). The particle density is ρp = 1.5 g/cm3 and its radius is 0.125 cm. The
density and dynamic viscosity of the fluid are ρf = 1 g/cm3 and µ = 0.01
g/cm.s, respectively. Gravity acts in the negative y-direction and gravitational
acceleration is g = 980 cm/s2. All walls of the channel are stationary as shown
in Figure 6.13. The simulation is started at t = 0 by releasing from rest two
particles located at (1-0.001,5) cm (particle P1) and (1+0.001,4.5) cm (particle
P2). The solution was computed until the final time of t = 0.35 and the time
step ∆t = 6.25 × 10−5 is used in the calculations. Model-2 is employed for the
collision model in this example and the values used for the parameters of the
repulsive forces are ξ = 2/256, ǫP = ǫ′P = 1.0 × 10−7, ǫ′W = ǫW = 0.5ǫP . Those
parameters are taken to be the same as used in Wang et al. (2008). A uniform
grid of 71 × 211 is used in the calculations. The initial horizontal positions
of the two particles are offset from the vertical axis of symmetry to encourage
horizontal motion and hence tumbling behaviour. Otherwise, only drafting and
kissing can be observed and the tumbling could not happen as pointed out in
Wang et al. (2008).

The evolutions of horizontal and vertical positions of the two particles are shown
in Figure 6.14. The particles tend to separate horizontally and, interestingly,
the upper particle eventually overtakes the lower one, which indicates the DKT
phenomenon of the two settling particles. Also, the evolutions of the horizontal
and vertical velocities of the two particles are depicted in Figure 6.15.

Figures 6.16-6.17 display the contours of the velocity magnitude, the contours
of the vorticity in the flow and the positions of the two particles sedimenting at
different times. From Figure 6.17, it is seen that the tendency of the develop-
ment of the vorticity is similar to that in Wang et al. (2008). It is noted that
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Figure 6.13: Drafting-kissing-tumbling of two settling particles: Schematic view
and boundary conditions.
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Figure 6.14: Drafting-kissing-tumbling of two settling particles, 71× 211, ∆t =
6.25 × 10−5: The evolution of the horizontal (a) and the vertical (b) positions
of the centre of the two particles.

the legend of the color bar in Wang et al. (2008) is different with ours because
they use a different scale of the domain for the post processing of their results.
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Figure 6.15: Drafting-kissing-tumbling of two settling particles, 71× 211, ∆t =
6.25 × 10−5: The evolution of the horizontal (a) and the vertical (b) velocities
of the two particles.

Clearly, the DKT phenomenon is successfully reproduced. The explanation of
this phenomenon can be found in Glowinski et al. (2001). When the lower par-
ticle falls, it creates a pressure drop in its wake. If two particles are close enough
initially, this wake reduces the drag acted on the upper particle from the fluid
while the lower particle encounters a bigger drag from the fluid. Therefore, the
upper particle falls faster than the lower one. Falling faster, the upper particle
touches the lower one at t = 0.209s. Once in contact, two particles act as an
elongated body falling in an incompressible viscous fluid. As is well known,
elongated bodies falling sufficiently fast in a Newtonian incompressible viscous
fluid have a tendency to rotate so that their board sides become perpendicular
to the flow direction. Indeed rotation takes place, as seen in Figure 6.17 at
t = 0.273s, but the two-particles assemblage is unstable and the two particles
separate at t = 0.317s and then they continue falling down at t = 0.342s. One
can see that the results computed by the present method are similar to those
observed in Wang et al. (2008), Wan and Turek (2007b), Glowinski et al. (2001).

6.5 Concluding remarks

In this chapter, we present a DFIB-CIRBF method for the discretisation of
PDEs governing the problems of particulate flows in the Cartesian-grid point-
collocation framework. The CIRBF approximation together with the extrapo-
lation/interpolation by the regularised discrete delta function are employed in
a DFIB method for fully-resolved direct numerical simulation of fluid-particle
interaction. The capability of the present method is tested by its applications
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Figure 6.16: Drafting-kissing-tumbling of two settling particles, 71× 211, ∆t =
6.25 × 10−5: Contours of the velocity magnitude and the positions of particles
at different times.

to simulate both stationary and moving boundary problems. Numerical results
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Figure 6.17: Drafting-kissing-tumbling of two settling particles, 71× 211, ∆t =
6.25× 10−5: Contours of the vorticity and the positions of particles at different
times.

show good agreement with available data in the literature. The complex flow
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structures and physical phenomenon are successfully observed. In this chapter,
only 2D problems are considered and the shape of the moving boundary in con-
sidered problems is circular. However, the present method can also be extended
to 3D problems and the arbitrarily curved boundary can be handled as well.



Chapter 7

A DFIB-CIRBF approach for
the rheology of particulate
suspensions

In this chapter, a direct forcing immersed boundary-compact integrated ra-
dial basis function (DFIB-CIRBF) simulation method reported in chapters 5
and 6 is further developed for the investigation of the rheology of particulate
suspensions in two dimensions. Suspensions of rigid particles in a Newtonian
liquid are investigated under homogeneous shear flows that are modelled by the
Lees-Edwards sliding bi-periodic frame. The equations of motion for the fluid
and suspended particles are solved in a decoupled manner, where methods of
computing the unknown rigid body motion are derived. Focus is also given to
the implementation of shear bi-periodic boundary conditions. The proposed
method is verified with bi-periodic shear flows of one, two and many particles.
Results obtained, including relative viscosity and flow index, are in good agree-
ment with those predicted by analytic theories and some other direct simulation
methods.

7.1 Introduction

Particulate suspensions occur in many industrial applications such as food pro-
duction, particles coating and plastics processing. The prediction of rheological
properties of such complex materials is of great academic and industrial interest.
The rheology of suspensions depends on many factors such as particle-volume
fraction, particle size, particle geometry and flow rate. Due to the evolution of
microstructure (i.e. spatial arrangement of rigid particles) in suspensions, the
use of experiments to determine their macroscopic rheological properties is seen
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to have its limitations and, in some cases, impractical (Phan-Thien and Kim,
1994). Analytical studies have traditionally been based on continuum models,
but these models may involve some microscopic parameters which are difficult
to determine (Raiskinmki et al., 2000). Numerical methods have emerged as a
powerful predictive tool, complementing experiments and analytic models. If
the fundamental equations for particles (Newton-Euler equations) and a fluid
(Navier-Stokes equations) are solved in a direct manner, one speaks of direct
numerical simulations (DNS). Advantages of DNSs lie in (i) easily handling par-
ticles of different shapes and sizes as well as any type of fluid; and (ii) having the
ability to directly calculate the hydrodynamic forces and torques from the fluid
flow. Based on the fluid-phase solver employed, DNS methods can be classified
into two categories. In the first category, a mesh follows the movement of the
particles, i.e. moving mesh. Methods in this category are usually based on Ar-
bitrary Lagrangian-Eulerian (ALE) approach, e.g. Hu et al. (1992), Hu (1995)
and Hu et al. (2001). In the second category, a mesh covers the whole domain
and is independent of the particle movement, i.e. a fixed mesh. Methods in this
category include the fictitious domain method (FDM) (Glowinski et al., 1994),
immersed boundary method (IBM) (Peskin, 1972), virtual boundary method
(VBM) (Saiki and Biringen, 1996), immersed interface method (IIM) (Leveque
and Li, 1994), sharp interface method (SIM) (also called ghost-fluid method)
(Liu et al., 2000) and fictitious boundary method (FBM) (Turek et al., 2003).
The second group is more efficient and thus can deal with the particulate system
with larger number of particles.

In the direct simulation of particulate flows under simple shear conditions,
Hwang et al. (2004) proposed to consider the flow in a sliding frame with
boundary conditions imposed periodically in all directions - the Lees-Edwards
conditions (Lees and Edwards, 1972). The computational sliding frame was em-
ployed in the context of fictitious-domain finite element methods (Hwang et al.,
2004) and radial basis function (RBF) methods (Le-Cao et al., 2010).

RBF networks (RBFNs) have emerged as a powerful tool for scattered data ap-
proximations. The application of RBFNs for the solution of ordinary (ODEs)
and partial (PDEs) differential equations was first presented by Kansa (1990a).
Since then, it has received a great deal of attention from both sciences and
engineering communities. RBF methods have been used with success to solve
various differential problems: heat transfer problems (Divo and Kassab, 2007;
Šarler et al., 2004), fluid flows (Sanyasiraju and Chandhini, 2008; Demirkaya
et al., 2008), fluid-solid interactions (de Boer et al., 2007; Beckert andWendland,
2001), etc. To avoid the reduction of convergence rate caused by differentiation,
Mai-Duy and Tran-Cong (2001a) proposed the use of integration to construct
RBFN expressions (IRBFNs). The integration approach was implemented in a
global form (Mai-Duy and Tran-Cong, 2001a), 1D global form (1D-IRBF) for
2D problems (Mai-Duy and Tanner, 2007; Mai-Duy and Tran-Cong, 2005), local
form (Mai-Duy and Tran-Cong, 2009) and compact local form for second- and
fourth-order elliptic PDEs (Mai-Duy et al., 2014; Thai-Quang, Le-Cao, Mai-



7.2 Mathematical formulation 163

Duy, Tran and Tran-Cong, 2013; Mai-Duy and Tran-Cong, 2013; Thai-Quang,
Le-Cao, Mai-Duy and Tran-Cong, 2012; Mai-Duy and Tran-Cong, 2011). For
compact local form, sparse system matrices and high levels of accuracy are
achieved altogether. The latter comes from the inclusion of the information
about the governing equation or derivatives of the field variable in local approx-
imations.

In this chapter, we apply a DFIB-CIRBF method (Thai-Quang, Mai-Duy, Tran
and Tran-Cong, 2013) for the direct simulation of particulate Newtonian sus-
pensions, with a focus on the computation of the rigid body motion and the
implementation of shear bi-periodic boundary conditions. The method is con-
sisted of three main components: (i) the direct forcing immersed boundary
(DFIB) method for the handling of multiply-connected domains that vary with
time; (ii) compact integrated radial basis function (CIRBF) approximations
for the spatial discretisation, and (iii) second-order Adams-Bashforth/Crank-
Nicolson algorithms for the temporal discretisation. An interactive force, repre-
senting the effects of rigid particles on the fluid region, is added directly to the
governing Navier-Stokes equations (i.e. direct forcing) to enforce the non-slip
boundary conditions on the fluid-particle interfaces. The interactive force is
evaluated explicitly from the pressure gradient, convection and diffusion terms
from the previous time level. Because the Eulerian grid nodes do not generally
coincide with Lagrangian nodes representing the interfaces, a smoothed version
of discrete delta function is employed to transfer the quantities between the
two frames of nodes. The CIRBF approximations are constructed over 3-point
stencils with extra information being nodal first- and second-order derivative
values (Thai-Quang, Mai-Duy, Tran and Tran-Cong, 2012). The present com-
putational procedure is verified with suspensions of identical particles of circular
cylindrical shape. The remainder of the chapter is organised as follows. Section
7.2 outlines the mathematical equations for the particulate suspension and for
the direct forcing (DF) approach in IBM. Section 7.3 provides some detailed
descriptions of the numerical formulation including the temporal and spatial
discretisations. In Section 7.4, numerical results are presented and compared
with some data in the literature. Finally, Section 7.5 concludes the paper.

7.2 Mathematical formulation

In this section, we describe the equations used for the simulation of Newto-
nian suspensions of inertialess rigid particles in two dimensions, including the
Navier-Stokes equation, sliding bi-periodic boundary conditions and the im-
mersed boundary (IB) formulation. Let us consider the entire domain Ω in-
cluding the fluid region Ωf and particle region Ωp occupied by the Np particles

Pk

(
Ωp =

⋃Np

k=1 Pk

)
as shown in Figure 7.1. The outer boundary of the entire

domain is Γ =
⋃4
q=1 Γq and the boundary surface of kth particle Pk is ∂Pk.
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Figure 7.1: A sliding bi-periodic frame with crossing and non-crossing suspended
particles.

7.2.1 Fluid motion

The creeping motion of a Newtonian fluid in a sliding bi-periodic domain Ω at
a shear time t is governed by the Stokes equation (Hwang et al., 2004).

∇.u = 0 in Ω, t ≥ 0, (7.1)

−∇p + ηs∇2u = 0 in Ω, t ≥ 0, (7.2)

where ηs is the kinematic viscosity of the solvent (fluid).

In IBM, an interactive forcing term (fI) is added to (7.2) to represent the effect
of rigid particles on the fluid. We will employ a pseudo-time marching technique
to obtain the solution to equation (7.2) which is thus rewritten in the unsteady
form as

∂u

∂tp
= −∇p + ηs∇2u+ fI , (7.3)

where tp is the pseudo-time. Once the particles are replaced by the equivalent
body force field fI , the entire volume now contains only the fluid whose motion is
governed by (7.3). Equation (7.3) will be integrated with respect to the pseudo
time. When the difference of the field variables between two successive time
levels is less than a small tolerance, the iterative process is said to be converged
and the obtained solution to (7.3) is also a solution to (7.2).
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7.2.2 Sliding bi-periodic frame concept

A large domain of the flow under simple shear conditions in the x-direction can
be divided into a set of identical small frames of width L and height H (Figure
7.1). Each frame translates along the shear direction at its own average velocity.
A row of frames slides relatively to the adjacent one by an amount ∆ = γ̇Ht
(Hwang et al., 2004), where γ̇ is the given shear rate. Because frames have
similar solutions, we consider only one frame. About the properties of a sliding
bi-periodic frame, the readers are referred to Hwang et al. (2004) for a detailed
discussion. In a frame without particles, it is seen that the velocity profile is
linear

u = u0 + γ̇y, (7.4)

v = 0, (7.5)

where u0 = (u0, 0)
T is the translational velocity vector of the frame; and y the

local coordinate within a frame (0 ≤ y ≤ H). With the presence of particles,
one has

u = u′ + u0 + γ̇y, (7.6)

v = v′, (7.7)

where u′ and v′ are the velocity perturbations by the particles from the linear
profile. Since the solution is continuous across frames, the following shear bi-
periodic boundary conditions for the velocity vector u = (u, v) and the traction
vector τττ = (τx, τy) can be applied to each frame (Hwang et al., 2004).

u (0, y, t) = u (L, y, t) , 0 ≤ y ≤ H, (7.8)

τττ (0, y, t) = τττ (L, y, t) , 0 ≤ y ≤ H, (7.9)

for two vertical boundaries, and

u (x,H, t) = u ({x− γ̇Ht}∗, 0, t) + (γ̇H, 0)T , 0 ≤ x ≤ L, (7.10)

τττ (x,H, t) = τττ ({x− γ̇Ht}∗, 0, t) , 0 ≤ x ≤ L, (7.11)

for two horizontal boundaries, where {.}∗ denotes a modular function of L,
e.g. {1.7L}∗ = 0.7L and {−1.7L}∗ = 0.3L. It is seen that the horizontal
sliding periodicity between Γ2 and Γ4 is time-independent but the vertical sliding
periodicity between Γ1 and Γ3 is time-dependent (Hwang et al., 2004). In terms
of velocity and pressure, (7.9) and (7.11) take the forms

−p (0, y, t) + 2ηs
∂u

∂x
(0, y, t) = −p (L, y, t) + 2ηs

∂u

∂x
(L, y, t) , (7.12)

ηs

[
∂u

∂y
(0, y, t) +

∂v

∂x
(0, y, t)

]
= ηs

[
∂u

∂y
(L, y, t) +

∂v

∂x
(L, y, t)

]
, (7.13)
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and

ηs

[
∂v

∂x
(x,H, t) +

∂u

∂y
(x,H, t)

]
=

ηs

[
∂v

∂x
({x− γ̇Ht}∗, 0, t) + ∂u

∂y
({x− γ̇Ht}∗, 0, t)

]
, (7.14)

− p (x,H, t) + 2ηs
∂v

∂y
(x,H, t) =

− p ({x− γ̇Ht}∗, 0, t) + 2ηs
∂v

∂y
({x− γ̇Ht}∗, 0, t) , (7.15)

respectively.

The handling of pressure values on the interfaces was not discussed in the paper
of Hwang et al. (2004); here, they are considered as unknowns, and, in this type
of flow, we impose

p (0, y, t) = p (L, y, t) , 0 ≤ y ≤ H, (7.16)

∂p

∂x
(0, y, t) =

∂p

∂x
(L, y, t) , 0 ≤ y ≤ H, (7.17)

for two vertical boundaries, and

p (x,H, t) = p ({x− γ̇Ht}∗, 0, t) , 0 ≤ x ≤ L, (7.18)

∂p

∂y
(x,H, t) =

∂p

∂y
({x− γ̇Ht}∗, 0, t) , 0 ≤ x ≤ L, (7.19)

for two horizontal boundaries.

Equations (7.8)-(7.11) together with (7.16)-(7.19) and (7.1)-(7.3) complete a set
of governing equations for fluid motion.

7.2.3 Direct forcing method

The derivations of the interactive body force field for the problems in this chap-
ter are similar to those in section 5.3.1 as follows.

At the present shear time n, the temporal discretisation of the momentum
equation (7.3) at the current pseudo-time level ñ (iterative step) can be written
in the form

un,ñ − un,ñ−1

∆tp
= rhsn,ñ−1/2 + f

n,ñ−1/2
I , (7.20)
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where ∆tp is the pseudo-time step. In (7.20), the pressure and diffusion terms

at the shear time level tn and pseudo-time level t
ñ−1/2
p are lumped together in

rhsn,ñ−1/2. It is noted that the current iterative step ñ is different from the
present shear time level n. The former is a pseudo-time introduced for the
purpose of facilitating an iterative calculation, while the latter is the physical
time. For brevity, the superscript n is omitted since the field variables below
are all associated with the present shear time n. Equation (7.20) thus reduces
to

uñ − uñ−1

∆tp
= rhsñ−1/2 + f

ñ−1/2
I . (7.21)

The interactive force term yielding the desired velocity u(d) can thus be defined
as (Fadlun et al., 2000)

f
ñ−1/2
I =

u(d),ñ − uñ−1

∆tp
− rhsñ−1/2, (7.22)

at some selected nodes (and zero elsewhere). The corresponding interactive
force at the Lagrangian nodes will be

F
ñ−1/2
I =

U(d),ñ −Uñ−1

∆tp
−RHSñ−1/2. (7.23)

The desired velocity at a node on the fluid-particle interface in (7.23) is simply
computed from the rigid-body motion of the particles

U(d),ñ(X) = Uñ
p +ωωωñp ×

(
Xñ −Xñ

p

)
. (7.24)

When the interactive force is absent, the preliminary velocity Ũ
ñ
is obtained

from equation (7.23) as

Ũñ = Uñ−1 +RHSñ−1/2∆tp. (7.25)

Its Eulerian counterpart is

ũñ = uñ−1 + rhsñ−1/2∆tp. (7.26)

The term rhsñ−1/2 in (7.26) is computed explicitly as

rhsñ−1/2 = −
[
3

2
∇pñ−1 − 1

2
∇pñ−2

]
+ ηs

[
3

2
∇2uñ−1 − 1

2
∇2uñ−2

]
. (7.27)

Now, one can compute the interactive force at Lagrangian nodes in the form of

F
ñ−1/2
I =

U(d),ñ − Ũñ

∆tp
. (7.28)
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In order to complete the evaluation of the interactive force term in (7.21), a

mechanism for transferring the preliminary velocities (ũñ, Ũ
ñ
) and the forces

(F
ñ−1/2
I , f

ñ−1/2
I ) between the two Eulerian and Lagrangian node systems is re-

quired. The readers are referred to section 6.2.2 for detailed descriptions of this
transfer process.

7.2.4 Particle motion

Let FH and TH be the total force and torque acting on a suspended particle,
respectively. We now derive expressions for computing the linear and angular
velocities of a suspended particle for the following two cases.

Non-boundary-crossing particles

Consider a suspended particle that lies within the computational domain. There
are hydrodynamic forces/torques acting on it. At the current shear time level
n and iterative step ñ, one has

FH,n,ñ = −
NL∑

l=1

F
n,ñ−1/2
I,l , (7.29)

TH,n,ñ = −
NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
× F

n,ñ−1/2
I,l . (7.30)

Substituting (7.28) into (7.29)-(7.30) and making use of (7.24) yield

FH,n,ñ = −
NL∑

l=1

Un,ñ
p +ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)
− Ũn,ñ

l

∆tp

= −NL

∆tp
Un,ñ
p − 1

∆tp
ωωωn,ñp ×

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
+

1

∆tp

NL∑

l=1

Ũn,ñ
l , (7.31)
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TH,n,ñ = −
NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×

Un,ñ
p +ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)
− Ũn,ñ

l

∆tp

= − 1

∆tp

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×Un,ñ

p

− 1

∆tp

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×
[
ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)]

+
1

∆tp

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
× Ũn,ñ

l . (7.32)

Since the iteration implemented here is just a false transient process (tp is a
pseudo-time), we will keep the configuration of the particles unchanged (the
initial configuration is retained) during the solving process for tn. In this study,
the particle is considered massless and therefore both external forces and torques
are equal to zero. As a result, the left sides of (7.31)-(7.32) vanish and the two
corresponding equations, in the case of two dimensions, can be solved for the
motion of the particle as




Un,ñ
p

V n,ñ
p

ωn,ñp


 =




NL 0 −
∑NL

l=1

(
Y n
l − Y n

p

)

0 NL

∑NL

l=1

(
Xn
l −Xn

p

)
∑NL

l=1

(
Y n
l − Y n

p

)
−
∑NL

l=1

(
Xn
l −Xn

p

)
−
∑NL

l=1

((
Xn
l −Xn

p

)2
+
(
Y n
l − Y n

p

)2)




−1




∑NL

l=1 Ũ
n,ñ
l∑NL

l=1 Ṽ
n,ñ
l∑NL

l=1

((
Y n
l − Y n

p

)
Ũn,ñ
l −

(
Xn
l −Xn

p

)
Ṽ n,ñ
l

)


 . (7.33)

Boundary-crossing particles

When a suspended particle crosses the boundary (leaving the domain), another
particle must enter the domain simultaneously by virtue of the periodic bound-
ary conditions. In terms of numerical implementation, its outside part can
be brought back to the computational domain with a modified position and
velocity.

Let x′ = (x′, y′)T be the relocated position. At a given (γ̇, H, t), the relocated
position x′ is determined from the original position x as

(x′, y′) = ({x− γ̇Ht}∗, y −H) , y > H, (7.34)
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(x′, y′) = ({x+ γ̇Ht}∗, y +H) , y < 0, (7.35)

(x′, y′) = ({x}∗, y) , x < 0 or x > L. (7.36)

It is noted that (7.34)-(7.36) are also applicable to Lagrangian nodes.

If the particle crosses the upper/lower boundary, one also needs to modify its
velocities to account for the sliding effects. The x-velocity U ′ at the relocated
position is determined from the original x-velocity U as

U ′ = U − γ̇H, y > H, (7.37)

U ′ = U + γ̇H, y < 0. (7.38)

The total force and torque exerted on the particle can be calculated as

FH,n,ñ = −
NLi∑

l=1

F
n,ñ−1/2
I,l −

NLo∑

l′=1

F
n,ñ−1/2
I,l′ , (7.39)

TH,n,ñ = −
NLi∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
× F

n,ñ−1/2
I,l

−
NLo∑

l′=1

(
Xn,ñ
l′ −Xn,ñ

p′

)
× F

n,ñ−1/2
I,l′ . (7.40)

where NLi
and NLo

are the total number of Lagrangian nodes representing the
inside and outside parts of the particle, respectively (NLi

+NLo
= NL). Sub-

script l indicates the original Lagrangian nodes while l′ indicates the relocated
Lagrangian nodes. Similarly, subscripts p and p′ indicate the original and re-
located particle centres, respectively. Since Xl′ −Xp′ = X′

l −X′
p = Xl −Xp,

equation (7.40) is rewritten as

TH,n,ñ = −
NLi∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×F

n,ñ−1/2
I,l −

NLo∑

l′=1,l=l′

(
Xn,ñ
l −Xn,ñ

p

)
×F

n,ñ−1/2
I,l′ .

(7.41)

The solving process here is similar to that for the case of non-crossing particles.
Forces on the right sides of (7.39) and (7.41) are first expressed in terms of the
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linear and angular velocities of the particle, leading to

FH,n,ñ = −
NLi∑

l=1

Un,ñ
p +ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)
− Ũn,ñ

l

∆tp

−
NLo∑

l′=1,l=l′

(
Un,ñ
p + (signγ̇H, 0)T

)
+ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)
− Ũn,ñ

l′

∆tp

= − NL

∆tp
Un,ñ
p − 1

∆tp
ωωωn,ñp ×

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
+

1

∆tp

NLi∑

l=1

Ũn,ñ
l +

1

∆tp

NLo∑

l′=1

Ũn,ñ
l′

− NLo

∆tp
(signγ̇H, 0)T , (7.42)

TH,n,ñ = −
NLi∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×

Un,ñ
p +ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)
− Ũn,ñ

l

∆tp

−
NLo∑

l′=1,l=l′

(
Xn,ñ
l −Xn,ñ

p

)
×

(
Un,ñ
p + (signγ̇H, 0)T

)
+ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)
− Ũn,ñ

l′

∆tp

= − 1

∆tp

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×Un,ñ

p

− 1

∆tp

NL∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
×
[
ωωωn,ñp ×

(
Xn,ñ
l −Xn,ñ

p

)]

+
1

∆tp

NLi∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
× Ũn,ñ

l +
1

∆tp

NLo∑

l′=1,l=l′

(
Xn,ñ
l −Xn,ñ

p

)
× Ũn,ñ

l′

− 1

∆tp

NLo∑

l=1

(
Xn,ñ
l −Xn,ñ

p

)
× (signγ̇H, 0)T , (7.43)

where sign is the sign function defined as

sign =





−1, Yl > H,

1, Yl < 0,

0, others.

(7.44)
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Then, one solves (7.42) and (7.43) with their zero left sides, resulting in




Un,ñ
p

V n,ñ
p

ωn,ñp
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NL 0 −
∑NL
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)
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Y n
l − Y n

p

)
−
∑NL
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(
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l −Xn

p

)
−
∑NL
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((
Xn
l −Xn

p

)2
+
(
Y n
l − Y n

p

)2)




−1




∑NLi

l=1 Ũ
n,ñ
l +

∑NLo

l′=1 Ũ
n,ñ
l′ −NLo

signγ̇H∑NLi

l=1 Ṽ
n,ñ
l +

∑NLo

l′=1 Ṽ
n,ñ
l′∑NLi

l=1

((
Y n
l − Y n

p

)
Ũn,ñ
l −

(
Xn
l −Xn

p

)
Ṽ n,ñ
l

)
+

∑NLo

l′=1,l=l′

((
Y n
l − Y n

p

)
Ũn,ñ
l′ −

(
Xn
l −Xn

p

)
Ṽ n,ñ
l′

)
−

∑NLo

l=1

(
Y n
l − Y n

p

)
signγ̇H



. (7.45)

The motions of the liquid and rigid particles at the shear time level tn (i.e.
un, pn,Un

p and ωωωnp ) are obtained by iteratively solving equations (7.1), (7.3),
(7.8)-(7.11), (7.16)-(7.19) and (7.33)/(7.45) (for non-boundary-crossing/boundary-
crossing particle). The particle configuration at the next shear time level (n+1)
is derived the following kinematic equations

dXp

dt
= Up, (7.46)

dθθθp
dt

= ωωωp, (7.47)

where θθθp is the angular orientation of particles. Using the second-order Adams-
Bashforth scheme for the temporal discretisations, equations (7.46)-(7.47) re-
duce to

Xn+1
p = Xn

p +∆t

(
3

2
Un
p −

1

2
Un−1
p

)
, (7.48)

θθθn+1
p = θθθnp +∆t

(
3

2
ωωωnp −

1

2
ωωωn−1
p

)
. (7.49)

7.2.5 Rheological properties

Bulk properties such as reduced/relative viscosities, and first and second normal
stress differences are important results to characterise particulate suspensions
(the non-Newtonian behaviour). For the present problem, the bulk stress is
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calculated by (Hwang et al., 2004)

〈σσσ〉 = 1

A

∫

Γ

xτττds, (7.50)

where A is the area of the domain, or in the detailed form

〈σxx〉 =
1

A

∫

Γ

xτxds = − 1

A

∫

Γ1

xηs

(
∂u

∂y
+
∂v

∂x

)
dx

+
1

A

∫

Γ3

xηs

(
∂u

∂y
+
∂v

∂x

)
dx+

1

H

∫

Γ2

(
−p+ 2ηs

∂u

∂x

)
dy, (7.51)

〈σyy〉 =
1

A

∫

Γ

yτyds =
1

L

∫

Γ3

(
−p+ 2ηs

∂v

∂y

)
dx, (7.52)

〈σxy〉 =
1

A

∫

Γ

xτyds = − 1

A

∫

Γ1

x

(
−p + 2ηs

∂v

∂y

)
dx

+
1

A

∫

Γ3

x

(
−p+ 2ηs

∂v

∂y

)
dx+

1

H

∫

Γ2

ηs

(
∂u

∂y
+
∂v

∂x

)
dy, (7.53)

〈σyx〉 =
1

A

∫

Γ

yτxds =
1

L

∫

Γ3

ηs

(
∂u

∂y
+
∂v

∂x

)
dx. (7.54)

In the case of boundary-crossing particles (Figure 7.2), the formula needs be
modified as

〈σσσc〉 = 〈σσσ〉 − 1

A

∫

Γc

xτττds, (7.55)

where Γc is parts of boundaries crossed by particles (Γc = Γ1,c ∪ Γ2,c ∪ Γ3,c ∪ Γ4,c).

Equation (7.50) can be written in a symmetric form as (Phan-Thien, 2013)

〈σσσ〉 = 1

2A

∫

Γ

(xτττ + τττx) ds. (7.56)

We employ Simpson’s rule to evaluate integrals in (7.51)-(7.54). It is noted that
〈σxy〉 = 〈σyx〉. The viscosity η and first normal-stress difference N1 are obtained
by further taking the averaging process in time

η =
1

Kγ̇

∫ K

0

〈σxy〉 dt, (7.57)

N1 =
1

K

∫ K

0

〈σxx − σyy〉 dt. (7.58)
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Figure 7.2: Illustration of parts of boundaries crossed by particles.

7.3 Numerical formulation

7.3.1 Spatial discretisation

The flow domain Ω is discretised using a Cartesian grid nx × ny. We employ
compact 3-nodes integrated RBF stencils (Thai-Quang, Mai-Duy, Tran and
Tran-Cong, 2013) to approximate the field variables and their derivatives. It is
noted that 1D global IRBF schemes (Mai-Duy and Tran-Cong, 2008) are used
on the boundary Γ1 to obtain boundary values at the sliding nodes.

7.3.2 Temporal discretisation

We discretise the time derivative term in (7.3) with a Crank-Nicolson scheme
(Crank and Nicolson, 1996)

uñ − uñ−1

∆tp
= −∇pñ−1/2 +

ηs
2

(
∇2uñ +∇2uñ−1

)
+ f

ñ−1/2
I , (7.59)

or
(
I − ηs∆tp

2
∇2

)
uñ+∆tp∇pñ−1/2 =

(
I +

ηs∆tp
2

∇2

)
uñ−1+∆tpf

ñ−1/2
I . (7.60)
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where I is the N × N identity matrix. For the present problem, the boundary
conditions for the velocities are not given explicitly, but in the form of shear
bi-periodic conditions. We will solve the set of governing equations (7.60) and
(7.1) simultaneously. In the matrix-vector form, it is written as




Au O Gx

O Av Gy

Dx Dy O







ûñ

v̂ñ

p̂ñ−1/2




=




r̂uñ

r̂vñ

O



, (7.61)

where Au, Av, Gx, Gy, Dx, Dy are N ×N matrices defined as

Au = Av = I − ηs∆tp
2

∇2, (7.62)

Gx = ∆tp∇x, Gy = ∆tp∇y, (7.63)

Dx = ∇x, Dy = ∇y, (7.64)

r̂uñ, r̂vñ, ûñ, v̂ñ, p̂ñ−1/2 are vectors of length N defined as

ruñ =

(
I +

ηs∆tp
2

∇2

)
uñ−1 +∆tpfI

ñ−1/2
x , (7.65)

rvñ =

(
I +

ηs∆tp
2

∇2

)
vñ−1 +∆tpfI

ñ−1/2
y , (7.66)

r̂uñ =

(
ruñ1,1, ru

ñ
1,2, . . . , ru

ñ
1,ny

, ruñ2,1, ru
ñ
2,2, . . . , ru

ñ
2,ny

, . . . ,

ruñnx,1, ru
ñ
nx,2, . . . , ru

ñ
nx,ny

)T
, (7.67)

r̂vñ =
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rvñ1,1, rv

ñ
1,2, . . . , rv

ñ
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ñ
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ñ
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ñ
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ñ
nx,ny

)T
, (7.68)

ûñ =

(
uñ1,1, u

ñ
1,2, . . . , u

ñ
1,ny

, uñ2,1, u
ñ
2,2, . . . , u

ñ
2,ny

, . . . ,

uñnx,1, u
ñ
nx,2, . . . , u

ñ
nx,ny

)T
, (7.69)
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v̂ñ =

(
vñ1,1, v

ñ
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ñ
1,ny
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ñ
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ñ
2,ny
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vñnx,1, v
ñ
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, (7.70)

p̂ñ−1/2 =

(
p
ñ−1/2
1,1 , p

ñ−1/2
1,2 , . . . , p

ñ−1/2
1,ny

, p
ñ−1/2
2,1 , p
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2,ny

, . . . ,

p
ñ−1/2
nx,1 , p

ñ−1/2
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nx,ny

)T
, (7.71)

O is N ×N zero matrix and O is zero vector of length N .

7.3.3 Solution procedure

The flow is simulated with respect to the shear time. At each shear time level
tn, the system of equations are integrated with respect to the pseudo-time tp
discretised by a series of tñ. The solution procedure at a shear time level tn can
be summarised as follows.

• Step 1: Compute ũn,ñ from (7.26), and then Ũ
n,ñ

via (6.16) (at the be-
gining, one has ñ = 1).

• Step 2: Compute Un,ñ
p and ωωωn,ñp (the particle motion) via (7.33) (non-

boundary-crossing particle) and via (7.45) (boundary-crossing particles).

• Step 3: Compute U(d),n,ñ via (7.24) (and U ′(d),n,ñ via (7.37)-(7.38) if the

particle crossing occurs). Compute F
n,ñ−1/2
I from (7.28), and then f

n,ñ−1/2
I

via (6.17).

• Step 4: Solve the system formed by (7.61), (7.8)-(7.11) and (7.16)-(7.19)
to obtain un,ñ and pn,ñ−1/2.

• Step 5: Check the difference of the field variables between the current and
previous iterations.

If it is less than a specified tolerance (10−9), update the position of par-
ticles, correct the position and velocity of crossing particles, and then
proceed to next shear time level.

If not, go back to Step 1.
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7.4 Numerical results

A range of the β values, namely {20, 25, . . . , 50} is picked for the calculations
in this chapter.

7.4.1 Analysis of periodic boundary conditions

Special care is needed in solving problems with periodic boundary conditions
as they may have multiple solutions (each solution is different from another by
a constant). For example, consider the following simple equation

∂2u

∂x2
= − sin x, 0 ≤ x ≤ 2π, (7.72)

subject to periodic boundary conditions: u (0) = u (2π) and ∂u (0) /∂x =
∂u (2π) /∂x. A solution to this problem can be verified to be u = sin (x) + c,
where c is a constant. If one tries to solve this problem by a numerical discreti-
sation scheme (e.g. a RBF method), the obtained system of algebraic equations
will be ill-conditioned. To make the solution unique, an appropriate extra condi-
tion is required, e.g. the value of u at a point in the domain of interest. Taking
the extra condition into account, the ill-conditioning problem of a numerical
scheme is eliminated.

For the present problem, we simulate a flow in a rectangular frame, which
is subject to periodic boundary conditions in both directions. To avoid the
problems just mentioned above, apart from periodic boundary conditions, we
also impose zero velocities at a point on the centreline. Consider a frame of
dimensions 1×1, ηs = 1 and γ̇ = 1. Numerical results obtained using a uniform
grid of 31 × 31 show that, with a reference point, similar velocity profiles are
produced at different shear times (Figure 7.3), and the matrix condition number
is in the range of 107-108 (Figure 7.4).

t = 0.1 t = 0.5 t = 0.9

Figure 7.3: Couette flow, 31× 31: Velocity vector field at different shear times.
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Figure 7.4: Couette flow, 31× 31: Condition number of the system matrix A.

7.4.2 Particulate suspensions

We verify the present method with bi-periodic shear cells containing one, two
and many particles.

One-particle

Consider a circular cylinder of radius R suspended freely at the centre of a frame.
The frame is a basic part of the flow shown in Figure 7.5. The simulation is
carried out with the geometric parameters: L×H = 1×1 and several values of
R, namely {0.05, 0.15, 0.25, 0.35, 0.4, 0.45, 0.475, 0.485}, the imposed shear
rate: γ̇ = 1, and the discretisation parameters: ∆t = 0.1 (shear time step),
∆tp = {10−4, 5 × 10−5, 1 × 10−5} (pseudo-time steps) and Cartesian grids of
{51 × 51, 71 × 71, 111 × 111}. Higher grid densities and smaller pseudo-time
steps are used for larger particle radii. The circular cylinder is expected to have
a rotational motion only relative to the sliding frame. It can be seen that the
initial configuration is reproduced after the time period K = L/γ̇H = 1.

Figure 7.6 displays variations of the angular velocity of the particle with shear
time for various particle radii. They graphically agree well with those produced
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t = 0 t = 0.5 t = 1

Figure 7.5: One-particle problem: A periodic configuration of particles can be
modelled by a frame with one single particle for the analysis of the flow.

by the fictitious-domain finite element method (FEM) reported in Hwang et al.
(2004) (Figure 13). We observe that the centre of the particle has nearly zero
velocities in all cases, as expected. In Figure 7.7, the evolution of the flow for
the case of R = 0.25 is demonstrated through the development of the vorticity
field in one period 0 ≤ t ≤ K = 1. It can be seen that (i) the contour plot at
the shear time t = 0.5 is symmetric about the vertical centreline of the frame;
and (ii) contour plots at other shear times are symmetric about the time t = 0.5
(half periodic). It also shows that the cylinder continuously rotates clockwise
as the shear time increases.
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Figure 7.6: One-particle problem: The angular velocity against the shear time
for different particle radii.

In a dilute regime, it has been found that the relative viscosity of the suspension
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Figure 7.7: One-particle problem, R = 0.25, 51× 51, ∆tp = 10−4: Contours of
vorticity of the flow. Values of isolines are -0.5:0.25:2.5.

depends linearly on the volume fraction ηr = η/ηs = 1 + η0φ, where η is the
viscosity of the suspension; ηs the viscosity of the solvent (suspending fluid);



7.4 Numerical results 181

η0 the intrinsic viscosity; φ the solid-volume fraction and Brady (1983) showed
that η0 = 2 for suspensions of circular cylinders. Consider the case R = 0.05
which corresponds to φ = 7.854 × 10−3 (dilute suspension). We compute the
bulk shear stress using the data over the whole time period 0 ≤ t ≤ K = 1, from
which the relative viscosity is predicted as ηr = 1.0162 and the corresponding
intrinsic viscosity is thus 2.06 that is close to the theoretical value of 2.

Results concerning shear stress and first normal stress difference are shown in
Figure 7.8, where their time variations in the period are observed to be sim-
ilar to those predicted by the fictitious-domain FEM (Hwang et al., 2004).
Figure 7.9 shows a high dependence of the relative viscosity on the volume
fraction. In this figure, a wide range of the volume fraction is employed,
φ = {0.0079, 0.0707, 0.1963, 0.3848, 0.5027, 0.6362, 0.7088, 0.7390}, which
correspond to R = {0.05, 0.15, 0.25, 0.35, 0.4, 0.45, 0.475, 0.485}. The vis-
cosity grows rapidly as the volume fraction increases. Our results again agree
well with those of (Hwang et al., 2004).

Two-particle

Consider two identical suspended circular cylindrical particles. Their initial
locations are shown in Figure 7.10: the left upper particle denoted by P1, the
right lower one by P2, XP1 = (0.25, D) and XP2 = (0.75,−D). One can expect
that P1 moves toward the right while P2 moves toward the left. As shown in
Hwang et al. (2004), the value of D strongly affects the flow field. In this work,
we employ R = 0.12, D = {0.25, 0.025}, a uniform grid of 71 × 71, ∆t = 0.1
and ∆tp = 5 × 10−5. Figures 7.11-7.12 show the flow behaviour in two cases
D = 0.25 and D = 0.025, respectively. For D = 0.25, it is seen that the two
particles simultaneously translate horizontally and rotate clockwise with respect
to time (their translations in the vertical direction are insignificant). They start
to cross the boundaries at about t = 2.7 and complete it at about t = 3.7. For
D = 0.025, the two particles, apart from rotating, now have translations in both
directions. They are close to each other at t = 6.4, tend to contact at t = 7.8
but prevented from doing so by lubrication forces, and then, separate at t = 9.2.
Figure 7.13 displays the orbits of the particle centres - they look feasible and
compare well with those in Hwang et al. (2004). Our results of time-dependent
bulk shear stresses and those of Hwang et al. (2004) are shown in Figure 7.14.
Good agreement is achieved.

7.4.3 Many particles

Periodic flows of many particles provide a good test for numerical methods as
the randomness of suspended particles, occurring naturally in practice, is taken
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Figure 7.8: One-particle problem: The bulk shear stress (a) and the bulk
normal-stress difference (b) against the shear time for different particle radii.

in to account. Particles can now cross the boundary in any direction, and the
symmetric behaviour of the flow in the case of one particle is no longer valid.
Larger volume fractions are achieved by increasing the number of suspended



7.4 Numerical results 183

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

10

11

 

 

Present
Hwang, Hulsen and Meijer (2004)
analytic (dilute)

φ

η r

Figure 7.9: One-particle problem: Relative viscosity against solid-volume frac-
tion.
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Figure 7.10: Two-particle problem: Initial configuration of two particles de-
pending on D.

particles.
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Figure 7.11: Two-particle problem, R = 0.12: Contours of vorticity of the flow
for D = 0.25. Values of isolines are -0.5:0.25:2.5.

Viscosity against solid-area fraction

Our concern here is about the linear relation of the relative viscosity at low
volume fractions since the result agreement among theoretical, experimental
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Figure 7.12: Two-particle problem, R = 0.12: Contours of vorticity of the flow
for D = 0.025. Values of isolines are -0.5:0.25:2.5.

and numerical approaches is obtained only in dilute regime up to date. We
employ particles of R = 0.05 and R = 0.12 (monodispersed suspensions),
a uniform grid of 51 × 51, a shear time step ∆t = 0.01 and a pseudo-time
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Figure 7.13: Two-particle problem, R = 0.12: The orbit of the two particle
centres for D = 0.025 and D = 0.25.
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Figure 7.14: Two-particle problem, R = 0.12: Time-dependent bulk shear stress
with respect to the x coordinate of the particle P1 for D = 0.025 and D = 0.25.

step ∆tp = 10−4. Low area fractions considered are φ = {0.0079, 0.0157,
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0.0236, 0.0314, 0.0393, 0.0452, 0.0905, 0.1357, 0.1810, 0.2262} formed from
the use of {1, 2, 3, 4, 5} suspended particles of R = 0.05 and R = 0.12.
Long calculations are carried out here to minimize the effects of time on the
rheological properties. Figure 7.15 shows that a relation 1 + 2φ is obtained for
the relative viscosity as the volume fraction approaches zero.
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Figure 7.15: Many-particle problem, Np ∈ {1, 2, 3, 4, 5}: Relative viscosity
against solid-volume fraction in dilute suspensions. The first five points on the
left correspond to R = 0.05 and the last three points on the right correspond to
R = 0.12. The results show that the relative viscosity is independent of particle
size in the dilute limit.

Figure 7.16 shows the initial locations for five-particle problems with R = 0.05
and R = 0.12 considered above. The vorticity isolines at a time t = 4 are
displayed in Figure 7.17, showing that particles cross both x- and y-directions.

Flow index

In this section, we study the effects of shear rate on the flow behaviour. Several
shear rates, namely γ̇ = {0.1, 0.5, 1, 5, 10}, are employed. According to
Herschel-Bulkley model (Herschel and Bulkley, 1926), the shear stress σxy is
expressed by

σxy = σ0
xy + Cγ̇m, (7.73)
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Figure 7.16: Many-particle problem: Initial configurations of particles for five-
particle problems with R = 0.05 (a) and R = 0.12 (b).

where σ0
xy is the yield stress; C the consistency (same value as η at γ̇ = 1);

and m the flow index which defines the degree of non-Newtonian behaviour
(shear-thickening for m > 1 and shear-thinning for m < 1).

Figure 7.18 shows the dependence of shear stress on shear rate at different solid-
volume fractions. It is observed that the profiles are almost linear. All curves
pass through the origin, indicating σ0

xy = 0 as expected. For a given shear rate,
shear stress is larger as solid-volume fraction increases. Figure 7.19 shows that
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Figure 7.17: Many-particle problem: Vorticity isolines of the flow for five-
particle problems with R = 0.05 (a) and R = 0.12 (b) at t = 4. Values of
isolines are -0.2:0.2:2 for (a) and -2:0.25:3.5 for (b).

the flow index approaches 1 (Newtonian fluid) as the volume fraction is reduced.
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7.5 Concluding remarks

In this study, a new computational procedure, based on the direct forcing im-
mersed boundary method and compact integrated RBF approximations, is pro-
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posed for the direct simulation of suspensions of rigid particles. Expressions of
computing fluid and rigid boy motions are presented in detail. The multiply-
connected domain whose geometry varies with time is simply discretised using a
fixed Cartersion grid, while the Navier-Stokes equation is discretised efficiently
with point collocation approach. Very encouraging results are obtained. Unlike
particle-based simulation techniques, the present method does not suffer from
the compressibility issues; however, the obtained system of equations for the
solvent needs be solved simultaneously and thus requiring large computational
efforts. Parallel calculations will be considered in our future work to throughout
investigate concentrated suspensions with a particular focus on the handling of
lubrication forces.



Chapter 8

Conclusions

This chapter concludes the thesis with a brief summary of the main contribu-
tions of the present research project and some suggestions for future develop-
ments and extensions.

8.1 Research contributions

The present research project results in new computation procedures for the
simulation of flows of a Newtonian fluid in complex geometries, particularly
multiply-connected domains, and their applications for the investigation of fluid-
solid systems (i.e. fluid-particle interactions and particulate suspensions). The
strengths of these procedures lie in the use of point collocation, Cartesian grids,
integrated RBFs, compact local forms and direct forcing immersed boundary
method. Key contributions/advances of the research are summarised below

A successful development of compact local IRBF approximations for
the discretisation of the velocity-pressure formulation

This contribution has been presented in chapter 2. IRBF approximations are
expressed in terms of values not only of the field variable but also of its deriva-
tives. In addition, an effective boundary treatment for the pressure variable,
where Neumann boundary conditions are transformed into Dirichlet ones, is
proposed. These lead to a significant improvement in accuracy.

A successful development of compact IRBF approximations for the
simulation of time-dependent problems

This contribution has been presented in chapter 3. We discretise temporal
derivatives with the Adams-Bashforth/Crank-Nicolson algorithm. Compact
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IRBF stencils presented in chapter 2 are employed in an implicit manner, result-
ing in stencils CIRBF-1. The proposed scheme is successfully applied to solve
four types of time-dependent equations, namely the diffusion, Burgers, Stokes
and Navier-Stokes equations. Numerical experiments show that the proposed
scheme is stable and high-order accurate.

A successful incorporation of ADI algorithm for solving convection-
diffusion equation

This contribution has been presented in chapter 4. We propose another compact
IRBF stencil, referred to as CIRBF-2, to achieve tridiagonal matrices with the
ADI algorithm (You, 2006) in solving 2D convection-diffusion equations. Such
systems can be solved efficiently. Several steady and non-steady problems are
considered to verify the present schemes and to compare their accuracy with
some other ADI schemes. Numerical results show that highly accurate results
are obtained with the proposed method.

A successful development of a direct forcing immersed boundary
method employed with CIRBF approximations for heat transfer and
fluid flow problems

This contribution has been presented in chapter 5. A direct forcing immersed
boundary (DFIB) method employed with CIRBF approximations is successfully
developed for the simulation of viscous flows and heat transfers in multiply-
connected domains. The approximation scheme here is based on CIRBF-2,
except that a compact 2-point stencil is employed at boundary nodes in order
to produce tridiagonal coefficient matrices, and thus making the finally resul-
tant system matrix sparser. This proposed scheme, namely CIRBF-3, is more
efficient than CIRBF-2 and still keeps the accuracy as good as CIRBF-2. The
present DFIB-CIRBF method is verified through several test problems and nu-
merical results obtained using relatively coarse grids are in good agreement with
available data in the literature.

Successful applications of DFIB-CIRBF method for fluid-solid inter-
actions in particulate fluids

This contribution has been presented in chapter 6. The present DFIB-CIRBF
method is successfully applied to investigate fluid-solid systems. Both pre-
scribed and induced motions of the bodies/particles are considered. Particle-
wall and particle-particle interactions are also taken into consideration. The
capability of the present method is depicted by simulating several problems in-
cluding Taylor-Green vortices, induced flow by an oscillating circular cylinder,
single particle sedimentation and drafting-kissing-tumbling behaviour of two
settling particles. Good agreement is achieved.

Successful application of DFIB-CIRBF method for numerical predic-
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tion of rheological properties of particulate suspensions

This contribution has been presented in chapter 7. The present DFIB-CIRBF
method is further developed to simulate particulate suspensions in a sliding
bi-periodic frame and predict their rheological properties numerically. It is
noted that there have been only a few continuum simulation works studying
the rheology of particulate suspensions. Methods for computing fluid and rigid
body motions are presented in detail. The implementation of shear bi-periodic
boundary conditions is also discussed in detail. We verify the proposed method
in bi-periodic shear flows of one, two and many particles. Results obtained,
including relative viscosity and flow index, are in good agreement with those
predicted by analytic theories and some other direct simulation methods.

8.2 Possible future work

In the present thesis, only 2D fluid flows and suspensions of monodispersed
circular cylinders in a Newtonian liquid are considered. The present compu-
tational procedures can be further developed to investigate the size and shape
distributions of rigid particles in suspensions. Other explorations include (i)
employing a viscoelastic fluid as the suspending liquid; (ii) taking into account
the energy equation to study the effects of the temperature; (iii) solution to
other engineering applications (e.g. turbulent models); and (iv) incorporating
domain decompositions and implementing the computer code in parallel to deal
with large scale problems.
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