
UNIVERSITY OF SOUTHERN QUEENSLAND 

DEVELOPMENT AND VALIDATION OF A 
MECHANICAL THORAX SURROGATE FOR THE 
EVALUATION OF THE BLUNT TRAUMA DUE TO 

BALLISTIC IMPACTS 

A Dissertation submitted by 

 Narasimha Murthy Thota 
B.Tech (Mech. Engg.), M.Sc (Physics), ME (Engg. Design), B.A.M.S 

For the award of  

Engineering Doctorate 
 2014 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/211498453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




i

Dedication
To my father Late Sri. Venkaiah, my mother Late Smt. 

Anantha Laxmi and my aunt Narsamma for their 
divine love and blessings, my wife Smiti and lovely 

kids Curie and Cura aka Mihir for their love and 
unconditional support 



ii

Abstract 
Although fruits of few decades worth of research carried out worldwide by scientists, 
engineers and researchers, have been available to everybody with a mouse click, 
engineering problems have not always been easy to accomplish. The complexities of 
the real life problems are due to lack of resources, lack of applicability of the available 
data and also due to the increasingly innovative and competitive marketplace. 
Therefore, engineers always face challenges and strive to accomplish the tasks to 
obtain desired outcome with continuous research and innovative approach. Two of 
such challenges, one related to the validation of a closed cell foam material for 
fabrication of non-lethal munitions and the other related to the development of 
compliant vehicle front protection systems (VFPS) for modern passenger cars, 
necessitated  extensive research study and led to the development of the finite element 
(FE) model of thorax surrogate (Mechanical THOrax for Trauma Assessment – 
MTHOTA) and development a computer aided engineering (CAE) based method for 
the development of airbag compatible and ADR 69/00 (Australian Design Rule for 
vehicle occupant safety) compliant multi-variant vehicle front protection systems for 
a vehicle with multi-variants, with a minimum number of crash tests. These two 
challenging problems, pertinent research, development, and the outcome, have been 
presented in this thesis.  

Initially, four anthropomorphic test devices (ATDs) were reviewed for their suitability 
for the evaluation of the blunt trauma. As they were found unsuitable for the intended 
application, novel concepts for the thorax surrogate were developed and studied for 
their feasibility. One of the novel ideas was pursued further and developed into a fully 
correlated (validated) FE model of a thorax surrogate (MTHOTA). Robustness and 
efficacy of the MTHOTA surrogate was verified for many cases studies from the 
published literature. Biomechanical responses obtained for the MTHOTA surrogate 
have shown a correlation with the respective cases. Due to its simplicity, accuracy, 
easy setup, fast solving and non-ambiguity, the MTHOTA surrogate was successfully 
used for the evaluation of: 

1. the blunt thoracic trauma due to ballistic impacts and the risk of commotio-
cordis due to solid sports ball impacts 

2. the effect of material, spin and impact speed of the solid sports ball on the 
thoracic trauma 

3. projectile – thorax energy interactions and their relation with the viscous 
criterion 

4. the performance of new non-lethal weapons and foam materials  

5. the effect of the energy-absorbing mechanisms on the blunt thoracic trauma 
caused by Kinetic Energy Non-Lethal Weapons (KENLW) 

Concerning the second challenge mentioned above, a systematic procedure based on 
the non-linear finite element analysis simulations was devised for the development of 
compliant front protection systems for vehicles with and without airbags. The devised 
method has successfully been implemented and made commercially non-viable and 
extremely cumbersome FPS development projects into reality.  
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By exploiting the non-linear FE simulations expertise and foam material data, effect 
of foam embellishments on the pedestrian safety characteristics of the FPS was 
examined highlighting the benefits of garnishing FPS with such semi-rigid foam parts 
and presented in the thesis. Effect of FPS on the crash compatibility between vehicles 
was also studied and made recommendations for reaping the benefits of the VFPS.     
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PVC Poly Vinyl Chloride  

S Scale factor of the ATD (a dimensionless multiplication factor) 

SP Short Projectile 

TPE Thermo Plastic Elastomer 

TTI Thoracic Trauma Index 

VC Viscous Criterion =  Product of the instantaneous ‘Velocity of chest 
deformation’ and instantaneous ‘Chest compression’ 

VCmax Max of Viscous Criterion 

VF Ventricular Fibrillation 

VFPS Vehicle Front Protection System 

  

Units  

9 9.81 m/s2 

GPa Giga Pascal 

kgf kilogram-force 

kPa kilo Pascal 

kN kilo Newton 

m meter 

m/s meter per second 

ms millisecond  

N Newton 

s second 


