University of Southern Queensland

DEVELOPMENT OF NEW MEASUREMENT METHODS TO DETERMINE SUGARCANE QUALITY FROM STALK SAMPLES

A Dissertation submitted by

Nazmi Mat Nawi

B.Eng (UPM, Malaysia) M.Eng (USQ, Australia)

For the award of

Doctor of Philosophy

2014

Abstract

Recently, there has been a growing interest within the Australian sugarcane industry to measure sugarcane quality in the field to further improve product quality and value. However, conventional technologies for measuring sugarcane quality in a laboratory have limitations for uses in the field because they require sugarcane to be prepared as either juice or fibrated samples. In-field samples processing is very difficult and time-consuming, especially during harvest. Thus, the development of a rapid and efficient measurement technique which can be performed directly on stalk samples is highly desirable.

In this thesis, a new quality measurement method for fresh sugarcane stalk samples was developed using a visible and shortwave near infrared spectroradiometer (VNIRS) with the wavelength ranging from 350 to 1075 nm. A light-proof measurement box was developed and used as an instrument platform to evaluate the capability of the VNIRS to measure quality parameters of sugarcane samples. The box was used to determine quality parameters using two newly proposed scanning methods: the skin scanning method (SSM) and the cross sectional scanning method (CSSM). These methods were applied on both whole stalk and internode samples. No preparation mechanism was required prior to the quality measurement on stalk samples.

The selection of chemometrics methods used to optimise the regression models between spectral data and sugar content were also investigated. Partial least square (PLS) regression analysis with full cross validation (leave-one-out) technique was chosen to establish regression models between the spectral data and quality parameters. To improve the accuracy of the regression models, the spectral data was first pre-processed using the multiplicative scatter correction (MSC) method. Principal component analysis (PCA) was then used to extract useful information from the spectral data, decrease the noise and determine the optimum number of latent variables (LVs). The pre-processing methods, PLS and PCA exercises were run using Unscrambler V 9.6 software. The RPD (ratio of prediction to deviation) value was also used to evaluate the performance of the models.

For whole stalk samples, it was found that the R^2 for SSM and CSSM were 0.82 and 0.68, respectively. The calibration models for the fibrated, juice and whole stalk samples were developed using quality values obtained by standard industry procedures. For internode samples, the R^2 for SSM and CSSM were 0.91 and 0.87, respectively. The calibration models for internode samples were developed using °Brix values obtained from a handheld refractometer. The RPD values of the prediction models for

internode samples by both SSM and CSSM were 2, indicating that these newly proposed methods can be used for coarse quantitative prediction purposes.

The variation of sugar content (°Brix) along the length of the stalks and internode samples were also assessed. The understanding of these variations can provide a foundation toward the design and development of the quality measurement system in the field. In this study, sugar content was found to vary significantly between the first and last internodes, with their average °Brix values being 22.2 and 7.6, respectively. The variation of sugar content between node and internode areas was 7.6% (SSM method) and 8.7% (CSSM method), respectively.

To demonstrate the possible applications of the proposed methods on a harvester, a basic calculation and conceptual design for a proposed in-field quality measurement system was outlined using the VNIRS mounted on top of the elevator conveyor. The proposed system had the potential to sense billet samples based on SSM either by directly scanning the moving billets on the elevator or by scanning the billets supplied by a sampling mechanism using a vacuum system. This theoretical design has shown that it is technically possible to develop a quality measurement system on a sugarcane harvester. However, more work needs to be done before this proposed method can be successfully mounted on a harvester.

Overall, it is concluded that the accuracy of the new measurement methods based on stalk samples using portable and low-cost VNIRS developed in this thesis is adequate. The proposed methods have significant potential uses as a tool for measuring sugarcane quality parameters from stalk samples in the field.

Certification of Dissertation

I certify that the ideas, experimental works, results, analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that this work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

Candidate

Nazmi Mat Nawi

Date

ENDORSEMENT

Principal supervisor

Dr Guangnan Chen

Associate supervisor

Dr Troy Jensen

Date

Date

Acknowledgements

First of all, I would like to express my deepest gratitude to the Ministry of Higher Education, Malaysia and Universiti Putra Malaysia (UPM) for providing me the scholarships to carry out this study. The financial supports from these organisations are very much appreciated.

Many thanks are also extended to both of my supervisors, Dr Guangnan Chen and Dr Troy Jensen for their continuous guidance, advices, comments and encouragement. Their efforts ensured that this study was completed in a reasonable time and is highly appreciated.

Special thanks are also due to staff members of National Centre of Engineering in Agriculture (NCEA), Associate Professor Craig Baillie, Associate Professor Nigel Hancock, Dr Cheryl McCarthy and Dr Saman Abdanan Mehdizadeh for their kindness, help and technical support throughout the journey of this thesis. I also appreciate the support of the staff of Bureau of Sugar Experimental Station (BSES) Bundaberg, especially Mr John Panitz for assistance in collecting sugarcane stalk samples in the field.

I also express my gratitude to the Sugar Research and Development Corporation (SRDC) for providing a funding to the project of CSE022 'A coordinated approach to Precision Agriculture RDE for the Australian Sugar Industry'. Without this financial assistance, my work would not have been possible.

Finally, my sincere gratitude is due to my wife Suhaila and children (Muaz, Marissa and Munif) for their patience and support. Without their continuous encouragement, this study might not be as it is today. Thanks are also due to all of my friends and those who are directly or indirectly related to this study.

List of Publications

The following articles have been published or submitted for publication from the research contained within this dissertation.

Refereed international journal articles

Nawi, N. M., Jensen, T. & Chen, G. (2012), 'The application of spectroscopic methods to predict sugarcane quality based on stalk cross-sectional scanning', *Journal of American Society of Sugar Cane Technologists* **32**, 16-27.

Nawi, N. M., Chen, G., Jensen, T. & Mehdizadeh, S. A. (2013), 'Prediction and classification of sugar content of sugarcane based on skin scanning using visible and shortwave near infrared', *Biosystems Engineering* **115**, 154-161.

Nawi, N. M., Chen, G. & Jensen, T. (2013), 'Visible and shortwave near infrared spectroscopy for predicting sugar content of sugarcane based on a cross sectional scanning method', *Journal of Near Infrared Spectroscopy* **21**(4), 289-297.

Nawi, N. M., Chen, G. & Jensen, T. (2013), 'Application of spectroscopic method to predict sugar content of sugarcane from internode samples', *Journal of Tropical Agriculture and Food Sciences* **41**(2), *in press*.

Nawi, N. M., Chen, G. & Jensen, T. (2013), 'Quality measurement technologies and sampling strategies for precision agriculture in sugarcane industry: A review', accepted for publication in the journal of '*Precision Agriculture*' on 15 July 2013, subject to revisions.

Nawi, N. M., Chen, G. & Jensen, T. (2013), 'Determination of sugarcane quality from juice samples using visible and shortwave near infrared spectroscopy: Comparison between transmittance and transflectance measurement modes', under preparation and will be submitted to Journal of Mechanical Engineering and Sciences.

Refereed full-length conference articles

Nawi, N. M., Jensen, T., Chen, G. & Baillie, C. (2011), 'The application of spectroscopic methods to predict sugarcane quality based on stalk cross-sectional scanning', *SEAg 2011: Diverse Challenges, Innovative Solutions*, 29-30 Sep 2011, Gold Coast, Australia.

Nawi, N. M., Chen, G., Jensen, T. & Baillie, C. (2011), 'Transferring technology of measuring sugarcane quality from the laboratory to the field: what is possible?', *SEAg 2011: Diverse Challenges, Innovative Solutions*, 29-30 Sep 2011, Gold Coast, Australia.

Nawi, N. M., Jensen, T., Chen, G. & Baillie, C. (2012), 'Prediction of sugar content along the height of sugarcane internodes using Vis/NIR', *CIGR-AgEng 2012: Agriculture and Engineering for a healthier Life*, 8-12 July 2012, Valencia, Spain.

Nawi, N. M., Chen, G., Jensen, T. & Baillie, C. (2012), 'Potential technologies to measure sugarcane quality in the field', *CIGR-AgEng 2012: Agriculture and Engineering for a healthier Life*, 8-12 July 2012, Valencia, Spain.

Nawi, N. M., Chen, G. & Jensen, T. (2013), 'Application of visible and shortwave near infrared spectrometer to predict sugarcane quality from different sample forms', *Proceedings of SPIE 8881, Sensing Technologies for Biomaterial, Food, and Agriculture 2013*, 23-25 April 2013, Yokohama, Japan.

Nawi, N. M., Chen G. & Jensen, T. (2013), 'Visible and shortwave near infrared spectroscopy to predict sugarcane quality from clear and raw juice samples', *SEAg 2013: Innovative Agricultural Technologies for a Sustainable Future*, 22-25 Sep 2013, Perth, Australia.

Table of contents

Abstra	act	ii
Certifi	ïcation of Dissertation	iv
Ackno	owledgements	v
List of	f Publications	vi
List of	f Figures	xiii
List of	f Tables	xvi
Abbre	eviations x	viii
Chapt	ter 1 Introduction	1
1.1	Background	1
1.2	Research objectives	2
1.3	Organization of the thesis	. 3
Chapt	ter 2 The Australian sugarcane industry and the adoption of	_
0.1	precision agriculture (PA)	S
2.1	The economy of the Australian sugarcane industry	2
2.2	Sugarcane botany	5
2.3	Sugarcane harvesting	8
2.4	Mill measurement systems for the sugarcane industry	10
	2.4.1 °Brix	11
	2.4.2 Pol	11
	2.4.3 Fibre	11
2.5	Crop production information for growers	12
2.6	Variation of sugarcane production across the field	13
2.7	PA for the Australian sugarcane industry	15
	2.7.1 Technologies and methods in PA	15
	2.7.2 Yield monitoring system for sugarcane	17
2.8	In-field quality measurement – The missing element in current PA	
	technologies	19
2.9	Current in-field measurement methods for research programs	21
2.10	Common technologies for quality measurement in a laboratory	22
	2.10.1 Refractometer	23
	2.10.2 Polarimeter	23
	2.10.3 Chromatography	23
	2.10.4 Biosensor	23
	2.10.5 NIR Spectrometer	24
2.11	Alternative technologies to measure sugarcane quality in the field	25

	2.11.1	Electronic refractometer	25
	2.11.2	Microwaye	26
	2.11.3	Portable spectrometer	27
2.12	Conclu	usions	27
Chap	ter 3	Introduction to NIR spectroscopy and its application in	
		the sugarcane industry	29
3.1	Introd	uction	29
3.2	Theory	y of NIR spectroscopy	29
3.3	Wavel	ength selection	. 32
3.4	Instru	mentation	34
	3.4.1	Filter instrument	34
	3.4.2	Scanning monochromator instrument	. 34
	3.4.3	Fourier-transform spectrophotometers	34
	3.4.4	Photodiode array (PDA) spectrophotometers	. 35
	3.4.5	Acoustic optic tunable filter (AOTF) instruments	. 35
3.5	Instru	nent for field applications	35
3.6	Comm	non quality measurement systems in the field	. 37
3.7	Sampl	e presentation	. 38
3.8	Spectr	oscopic application in the sugarcane industry	40
	3.8.1	Selection of the wavelength region	41
	3.8.2	Selection of the suitable sample forms	42
3.9	Introd	uction to chemometrics	43
	3.9.1	Pre-processing of the spectra	. 43
		3.9.1.1 Smoothing	. 43
		3.9.1.2 Standardisation	44
		3.9.1.3 Normalisation	44
		3.9.1.4 Differentiation	45
	3.9.2 \	Variable-reduction: Principal component analysis	45
	3.9.3 N	Multivariate analysis methods	46
		3.9.3.1 Multiple linear regressions (MLR)	48
		3932 Principal component regression (PCR)	48
		3 9 3 3 Partial least squares regression (PLS)	48
3.10	Conclu	usions	49
Chap	ter 4	Materials and methodologies	50
4.1	Instru	mentation	. 50
	4.1.1	Visible and shortwave near infrared spectroradiometer (VNIRS)	50
	4.1.2	Full range spectroradiometer (FRS)	50
	4.1.3	Sensitivity and repeatability of the spectroradiometers	. 51
4.2	Light-	proof measurement box	52
	4.2.1	Box construction	. 53
	4.2.2	Illumination system	53
	4.2.3	Sensor to sample distance	54
	4.2.4	White panel	. 55
4.3	Plant 1	naterial and measurement methods	55

	4.3.1	Whole stalk samples	56
		4.3.1.1 Cross sectional scanning method (CSSM)	56
		4.3.1.2 Skin scanning method (SSM)	. 57
		4.3.1.3 Quality measurement for whole stalk samples	. 58
	4.3.2	Internode samples	. 58
		4.3.2.1 Reflectance measurement for internode samples	59
		4.3.2.2 °Brix measurement for individual internode samples	60
		4.3.2.3 Moisture measurement for internode samples	. 61
		4.3.2.4 Fibre measurement for internode samples	62
	4.3.3	Juice and fibrated sugarcane samples	62
		4.3.3.1 Reflectance and transflectance measurement modes	63
		4.3.3.2 Transmittance measurement mode	65
4.4	Data a	analysis methodology	. 65
	4.4.1	Spectral data transformation	65
	4.4.2	Noise removal	. 66
	4.4.3	Pre-processing of the spectral data	66
	4.4.4	Application of principal component analysis (PCA)	66
	4.4.5	Application of partial least square (PLS)	
4.5	Calib	ration and validation methods	68
4.6	Statis	tical assessment for model accuracy	. 69
4.7	Ouali	tative measurement for spectral data	. 70
,	4.7.1	Description of the artificial neural networks (ANN)	71
4.8	Concl	usions	73
Chaj	pter 5	Application of VNIRS to predict sugarcane quality from juice and fibrated sugarcane samples	. 75
5.1 5.2	Station	ticel characteristics of the conventional complex	13
5.2 5.2	Statis	tical characteristics of the conventional samples	. 70
3.3	Overv	new of spectral curves for reflectance and transflectance	76
5 1	Dredi	nements	. /0
5.4	Predic	tion of sugarcane quality parameters from conventional samples	11
5.5	Overv Dural	view of spectral curves for juice samples using transmittance mode	. /8
5.0	Predic	ction of quality components from juice samples using	00
57	Deter	tiol applications of the VNIDS on conventional complex in the field	80
5.7	Foten	Or ality and a support of the VINKS on conventional samples in the field	99
	5.7.1	Quality measurement for breeding programs	. 81 01
5 0	5.7.2 Canal	Quality measurement for an on-the-go system on a narvester	01
5.8	Concl	usions	81
Chai	nter 6	The cross sectional scanning method	. 82
6.1	Introd	luction	82
6.2	Whole	e stalk samples	83
0.2	6.2.1	Statistical characteristic of whole stalk samples	
	6.2.2	Determination of sugarcane quality components	83
	6.2.3	Variations of prediction accuracy for different sugarcane	
	5.2.5	sections	85
			()_/

Chap	ter 8	Basic calculation and conceptual design of the in-field quality measurement system	130
1.1	Discu		. 128
77	7.0.5 Discur	AININ CLASSIFICATION analysis for three quality classes	. 128 129
	1.6.2 762	ANN classification analysis for five quality classes	12/
	7.6.1	I raining and testing data sets for ANN classification	. 126
7.6	Classi	fication of sugarcane quality based on spectral data from the SSM	. 126
7 -	7.5.3	Comparison between CSSM and SSM for FRS	. 125
	1.5.2	Application of VNIKS to predict ternary quality parameters by the SSM	. 124
	750	by the SSM	. 122
	7.5.1	Application of the FRS to predict ternary quality parameters	
	quality	y parameters	122
7.5	The ap	oplication of the SSM to predict sugarcane ternary	
_	7.4.3	^o Brix prediction by the SSM along internode samples	121
	7.4.2	°Brix prediction by the SSM for each individual spectrum data	. 119
	7.4.1	°Brix prediction by the SSM from average spectral data	. 116
7.4	The S	SM for the internode samples	113
7.3	Effect	of different pre-processing methods on the SSM	. 112
	7.2.3	Variations of prediction accuracies for different stalk sections	. 110
	7.2.2	Determination of sugarcane quality components the SSM	. 110
	7.2.1	Statistical characteristic of whole stalk samples for the SSM	. 109
7.2	Qualit	y prediction from whole stalk samples by the SSM	109
7.1	Introd	uction	108
Chap	ter 7	The skin scanning method	. 108
6.4	Discus	ssion and conclusions	. 107
		prediction	. 106
		6.3.8.3 Selection of the best parameter for spectroscopic	
		growth quality components	104
		6.3.8.2 Spectra overview of the CSSM for predicting ternary	
		6.3.8.1 Statistical characteristics of the internode samples	. 103
	0.5.0	quality components	. 102
	638	The application of the CSSM to predict ternary growth	. 100
	0.3.0	Spectroscopic performance of different varieties	98 100
	626	^o Briv prediction by the CSSM along the length of the intermede	97
	6.3.5	^o Brix prediction by the CSSM for an individual internode	~ -
	6.3.4	°Brix prediction by CSSM for the average spectral data	94
	6.3.3	Spectral overview of the internode samples	91
		accuracy of CSSM	90
	6.3.2	Effects of different pre-processing methods on prediction	
	6.3.1	Sample properties and their spectral characteristics	89
6.3	Sugar	content prediction using internode samples	. 88
	6.2.4	Relative prediction performance using individual spectrum data	87

8.1	Introd	uction	130
8.2	Devel	opment of the conceptual design for the QMSS	130
	8.2.1	Key components of the QMSS	131
	8.2.2	Technical specifications of the spectrometer	131
	8.2.3	Measurement chamber	132
8.3	Possib	le sample forms and their measurement locations on a harvester	132
	8.3.1	Juice sample	134
	8.3.2	Stalk and billet samples	134
8.4	Sampl	ing strategies for field uses	134
8.5	Applic	cation of the SSM on a harvester	138
	8.5.1	Selection of a sampling location for billet samples	138
	8.5.2	Measurement procedure for the direct scanning method (DSM)	140
		8.5.2.1 Available time for the DSM	141
		8.5.2.2 Sampling frequency for the DSM	142
	8.5.3	Assisted (Pneumatic) scanning method (ASM)	142
		8.5.3.1 Aerodynamic properties of billets	142
		8.5.3.2 Power requirement for vacuum system	143
		8.5.3.3 Measurement procedure for the ASM	144
		8.5.3.4 Sampling frequency with vacuum sampling technique	145
8.6	Qualit	y mapping procedures and data processing	145
	8.6.1	Spectral data processing	146
	8.6.2	Outliers removal	146
8.7	Conclu	usions	147
Chap	ter 9	Conclusions and recommendations	148
9.1	Summ	ary of findings	148
9.2	Conclu	usions	150
9.3	Recon	nmendations for future work	151
Refer	ences		154
Apper on art	Appendix A MATLAB source codes for the classification algorithm based on artificial neural network (ANN)		

Lists of Figures

2.1	Typical sugarcane internode (Kroes 1997)	6
2.2	Representation of a sugarcane cross-section and the fibrovascular	
	bundles (kroes 1997)	7
2.3	Sugarcane being harvested by a conventional sugarcane harvester	8
2.4	Typical sugarcane harvester (Caryn et al. 2002)	9
2.5	Haul-out truck used for carrying harvested sugarcane from a harvester	
	to rail sidings	10
2.6	A typical desktop refractometer for measuring sugarcane °Brix	11
2.7	A typical desktop polarimeter for measuring sugarcane pol	12
2.8	CCS variation in a 6.8 ha sugarcane block in the Bundaberg region	
	(Bramley et al. 2012)	14
2.9	Sugarcane yield map in an area of 43 ha in Brazil	
	(Magalhães & Cerri 2007)	14
2.10	The cyclical process of PA (Bramley 2009)	16
2.11	A sugarcane harvester equipped with components of yield monitoring	
	system (Magalhães & Cerri 2007)	18
2.12	Position of a scale setup on the elevator of the sugarcane harvester from	
	bottom view (Magalhães & Cerri 2007)	18
2.13	Method to detect billets from the elevator floor using optical sensors	
	(Price et al. 2011)	19
2.14	Flow injection manifold of biosensor for the determination of sucrose:	
	(1) buffer reservoir; (2) peristaltic pump; (3) injector; (4) electrochemical	
	cell; (5) potentiostat; (6) record; (7) waste reservoir (Kennedy et al. 2007)	24
2.15	Location where the electronic refractometer was installed to measure	
	sugarcane juice samples	26
3.1	The schematic diagram of the electromagnetic spectrum	32
3.2	Incident light on a fruit results in specular reflectance (gloss),	
	diffuse reflectance, diffuse transmittance, or absorbance (Abbott 1999)	38
3.3	Setup for the acquisition of (a) reflectance; (b) transmittance;	
	(c) interactance spectra; (i) light source; (ii) fruit;	
	(iii) monochromators/detector; (iv) light barrier; (v) support	
	(Nicolai et al. 2007)	39
3.4	Classification of the qualitative and quantitative multivariate analysis	
	techniques used in NIR spectroscopy (Blanco & Villarroya 2002)	47
4.1	Sensitivity figure of VNIRS as indicated by NeDL (ASD 1999)	51
4.2	Sensitivity figure of FRS as indicated by NeDL (ASD 1999)	52
4.3	Repeatability figure for FRS unit (ASD 1999)	52
4.4	Light-proof measurement box in use	53
4.5	Simplified diagram of the reflectance measurement inside the	
	measurement box	54
4.6	Simplified diagram of the transmittance measurement inside the	
	measurement box	54
4.7	Assisted diagram for calculating field-of-view (ASD 2005)	55

4.8	The division of fresh sugarcane stalks into three main sections	. 57
4.9	The whole stalk sample being scanned using spectroscopic method inside	
	the measurement box	. 58
4.10	Scanning positions along individual internodes	. 59
4.11	Intact internode versus cut internode with scanning positions	. 60
4.12	Cut section of internode samples which have been oven dried	. 61
4.13	Sugarcane disintegrator to fibrate stalk samples	. 63
4.14	Fibrated sugarcane samples for reflectance measurement	. 64
4.15	Colour difference between raw and clarified sugarcane juice	. 64
4.16	Three layers of feed-forward ANN	. 71
4.17	Nueron/node computation	. 72
5.1	Typical absorbance spectra for different sample forms	. 77
5.2	Typical absorbance spectra of CJ and RJ as measured by transmittance Mode	79
6.1	Typical absorbance spectra for bottom, middle and top sections as	
\sim	Transient also a second for hetter and the section of the	80
0.2	rypical absorbance spectra for bottom, middle and top sections as	96
62	Tranical sharehon as anastra far bettar middle and tan asstirances	80
0.3	I ypical absorbance spectra for bottom, middle and top sections as	07
<i>с</i> 1	measured by the VNIRS	. 8/
6.4	Typical average "Brix values of internodes for different sugarcane	0.0
<u> </u>		. 90
6.5	Typical absorbance spectra of CSSW at different Brix values:	
	(a) raw absorbance spectra; (b) absorbance spectra pre-processed	00
		. 92
6.6	Typical reflectance spectra of CSSM at different Brix values:	
	(a) raw reflectance spectra; (b) reflectance spectra pre-processed	0.0
	with MSC	93
6.7	Scatter plots of reference versus predicted ^o Brix for absorbance spectral	
	data by the CSSM: (a) calibration model; (b) prediction model	. 95
6.8	Scatter plots of reference versus predicted °Brix for reflectance spectral	
	data by the CSSM: (a) calibration model; (b) prediction model	. 96
6.9	Scatter plots of reference versus predicted °Brix for individual spectrum	
	data by the CSSM: (a) calibration model; (b) prediction model	. 99
6.10	Typical absorbance spectral curves of CSSM for each cut section	100
6.11	Typical absorbance spectra of CSSM for different varieties	102
6.12	Ternary Growth Model (Staunton et al. 2011)	103
6.13	Typical raw absorbance spectra for CSSM collected by the VNIRS	104
6.14	Typical absorbance spectra collected by the VNIR after being treated	
	with MSC method	105
6.15	Typical raw absorbance spectra collected by the FRS	105
6.16	Typical absorbance spectra collected by the FRS after being treated	
	with MSC method	106
7.1	Typical absorbance spectra of SSM for different stalk sections as	
	measured by the VNIRS	112

7.2	Typical absorbance spectra of SSM for different stalk sections as measured by the FRS	122
7.3	Typical sugarcane spectra for sugarcane internodes at different °Brix values: (a) raw reflectance spectra; (b) raw reflectance spectra	
	pre-processed with MSC	114
7.4	Typical absorbance spectra for sugarcane internodes at different °Brix	
	values: (a) raw absorbance spectra; (b) raw absorbance spectra	115
75	Scatter plots of reference versus predicted °Brix for reflectance spectral	115
1.5	data by the SSM: (a) calibration model: (b) prediction model	117
7.6	Scatter plots of reference versus predicted °Brix for absorbance spectral	11,
	data by the SSM: (a) calibration model: (b) prediction model	118
7.7	Scatter plots of reference versus predicted °Brix for individual spectrum	
	data by the SSM: (a) calibration model; (b) prediction model	120
7.8	Typical absorbance curves of SSM for each internode scanning section	121
7.9	Scatter plots of reference versus predicted °Brix by the SSM in the	
	wavelength range of 400 to 1800 nm: (a) calibration model;	
	(b) prediction model	123
7.10	Comparison of typical absorbance spectrum between SSM and CSSM	125
8.1	Location from which possible samples could be obtained	133
8.2	Operational configurations for biller sampler (Robotham 2000)	136
8.3	Sampling door and Pitman arm system (Robotham 2000)	136
8.4	Location of a mounted spectrometer to measure crop moisture in	
	forage (Digman & Shinners 2008)	137
8.5	Typical slat arrangement on the elevator of a sugarcane harvester	139
8.6	Proposed locations of two measurement chambers	139
8.7	Condition of billets on the elevator at the proposed measurement	
	Point	140
8.8	Schematic diagram of the QMSS with DSM	141
8.9	Terminal velocities of billet fragments relative to the extractor air	
0.45	velocity (Kroes 1997)	144
8.10	Schematic diagram of the QMSS with ASM	145

Lists of Tables

2.1	Constituents of sugarcane	7
2.2	Comparison of common methods for sugarcane quality determination	22
3.1	Commercially available spectrometers used for quality measurement in the field	37
32	Typical application of spectroscopic methods in the sugarcane industry	<i>4</i> 1
3.3	Steps in multivariate analysis techniques	46
5.1	Statistical characteristics of sugarcane quality components for juice and	10
5.1	fibrated samples	76
52	PLS models performance for each quality component of different	70
5.4	sample forms	78
53	PLS model performances of CI for transmittance measurement	79
5.4	PLS model performances of RI for transmittance measurement	80
61	Values of quality components for each variety	83
6.2	Statistical characteristics of the whole stalk samples for CSSM	83
63	Performance of PLS models in predicting sugarcane quality	05
0.5	components using spectroradiometers	84
6.4	PLS models performance in predicting °Brix values from different	0.
0.1	cutting sections	85
6.5	Ouality prediction from stalk samples	88
6.6	Characteristic of chemical and physical properties for internode samples	89
6.7	Statistical characteristics of °Brix values for internode samples	89
6.8	The effect of different pre-processing methods on the PLS models	
	performance for the CSSM	90
6.9	Predicted °Brix for each cut section using calibration model from	
	average spectral data ($R^2 = 0.87/RMSEC = 1.49$ °Brix)	100
6.10	PLS models performance for selected sugarcane varieties	101
6.11	Summary of statistical characteristics of internode samples for	
	predicting ternary growth quality components	104
6.12	Performance of PLS models in predicting TGM parameters using	
	the CSSM	106
7.1	Statistical analysis of the whole stalk samples used for the SSM	109
7.2	Performance of PLS models in predicting sugarcane quality components	
	based on the SSM	110
7.3	PLS models performance in predicting °Brix values from different	
	stalk sections using the SSM	111
7.4	The effect of different pre-processing methods on the PLS models	
	performance for the SSM	113
7.5	Predicted °Brix for each cut section using calibration model from	
	average spectral data (R2 = 0.83/ RMSEC = 1.54 °Brix)	122
7.6	PLS model performances for different wavelength ranges for the SSM	122
7.7	Performance of PLS models in predicting TGM parameters based	
	on the SSM	124
7.8	Classification table of °Brix values for five classes	126

Classification table of °Brix values for three classes	126
ANN classification results for five quality classes	127
ANN classification results for three quality classes	128
Basic components of the spectroscopic system for the QMSS	131
Technical specifications of Zeiss Corona Plus 45 NIR (1.7)	132
Primary mechanism needed for in-field quality measurement system	133
Comparison of technical requirements between whole stalk and	
billet scanning	135
Fixed values of parameters used for the QMSS	141
	Classification table of °Brix values for three classes ANN classification results for five quality classes ANN classification results for three quality classes Basic components of the spectroscopic system for the QMSS Technical specifications of Zeiss Corona Plus 45 NIR (1.7) Primary mechanism needed for in-field quality measurement system Comparison of technical requirements between whole stalk and billet scanning Fixed values of parameters used for the QMSS

Abbreviations

ACFA	Australian Cane Farmers' Association
ANN	Artificial neural network
AOTF	Acoustic optic tunable filter
ASM	Assisted (Pneumatic) scanning method
ASD	Analytical spectral device
BCH	Burnt cane harvesting
BSES	Bureau of Sugar Experimental Station
CA	Cluster analysis
CAS	Cane analysis system
CCD	Charge-coupled device
CCS	Commercial cane sugar
CJ	Clarified juice
CSSM	Cross sectional scanning method
CV	Coefficient of variation
DPLS	Discriminant partial least squares
DSM	Direct scanning method
EWs	Effective wavelengths
FOV	Field-of-view
FR	Full range
FRS	Full range spectroradiometer
FS	Fibrated sample
FWHM	Full width at half maximum
GCH	Green cane harvesting
GIS	Geographic information system
GLC	Gas-liquid chromatographic
GPS	Global positioning system
HPLC	High performance liquid chromatography
InGaAs	Indium Galium Arsenide
KNN	K-nearest neighbours
LDA	Linear discriminant analysis
LVs	Latent variables
MA3	Moving average with three segments
MA9	Moving average with nine segments
MIR	Mid infrared
MLR	Multiple linear regressions
NIR	Near infrared
MN	Mean normalization
MSC	Multiplicative scatter correction
PA	Precision agriculture
PbS	Lead sulfide
PCs	Principal components
PCA	Principal component analysis
PCR	Principal component regression

PDA	Photodiode array
PLS	Partial least square
QMSS	Quality measurement system for sugarcane
R^2	Coefficient of determination
RJ	Raw juice
RMSEC	Root mean square error of calibration
RMSEP	Root mean square error of prediction
RPD	Ratio of prediction to deviation/residual predictive deviation
SD	Standard deviation
SEC	Standard error of calibration
SEP	Standard error of prediction
SG1	Savitzky-Golay first derivative
SG2	Savitzky-Golay second derivative
Si	Silicon
SIMCA	Soft independent modelling of class analogy
SNV	Standard normal variate correction
SSM	Skin scanning method
SVM	Support vector machine
SWNIR	Shortwave near infrared
SW-NIR	Shortwave near infrared
TGM	Ternary growth model
UV	Ultraviolet
Vis	Visible
Vis-NIR	Visible and near infrared
VNIR	Visible and shortwave near infrared
VNIRS	Visible and shortwave near infrared spectroradiometer