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Abstract 

Smartphone technology provides bountiful opportunities for greater participation in 

scientific and technological research. Digital camera image sensors have been used for 

the detection, measurement, and monitoring of corrosion; this work extends that 

capability to the smartphone.  It has been observed that as the corrosion increased in 

clean iron, red responses decreased proportionally.  Green and blue responses 

quantifiably decreased faster, matching the observed overall reddening as the corrosion 

increased. Potential noise sources due to the variable texture of the corroded samples had 

a negligible effect on the results. The effectiveness of this method for the characterization 

of a smartphone image sensor response to the degree of iron corrosion was reflected in 

congruent validation tests and errors less than 5%. These results demonstrate that the 

smartphone may be employed as a low cost and efficient means for the evaluation of 

surface corrosion. 

 

KEYWORDS: Smartphone, corrosion, image sensor 
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Smartphone technology is ubiquitous and the inherent processing power, 

programmability, and sensor arrays are generally underutilized. There has been 

considerable work in the application of smartphone technology for scientific and 

technological applications; examples include solar measurements 
[1]

, bacteriological 

imaging 
[2]

, and seismographs 
[3]

. Smartphone use for scientific and technological 

investigations provides an opportunity for wider participation in these endeavours 
[1]

. 

This research extends the use of the smartphone image sensor to determine the 

concentration of iron that has corroded. 

 

Corrosion, particularly of iron, is of great mutual concern of those in industry and 

construction, home-owners, and those who love their cars. Corrosion is a natural process 

that can be accelerated due to the presence of aerosol pollution 
[4-6]

. Corrosion is not only 

aesthetically displeasing to look at, it is of major concern to those who rely on the 

stability and strength of iron and iron based alloys, such as steel 
[5-6]

. The effects of 

corrosion are costly, with an estimated cost to the United States economy in 1999 and 

2001 of $276 billion dollars per year, or just over 3% of the gross national product 
[4]

. 

 

There is a necessity to monitor the integrity of iron, particularly when exposed to areas of 

high pollution, airborne salinity, and humidity. Practicalities demand that any monitoring 

and detection of corrosion to be nondestructive 
[5]

. Qi and Gelling 
[5]

 summarized the 

main sensors used to detect corrosion as being one or a combination of electromagnetic, 

electrochemical, optical fluorescent, and optical fiber mechanisms, all based on the 

chemical, galvanic, and optical properties. In pipes, fiber optic systems have proven to be 
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invaluable in detecting corrosion 
[7-8]

. For concrete reinforcement, the use of impedance 

capacitive sensors has been found to be effective in alerting people to corrosion that is 

not visible 
[9]

. 

 

Digital image processing has also been used in the detection and monitoring of surficial 

corrosion. Laboratory tests successfully demonstrated that the corrosion processes may 

be monitored using digital speckle pattern interferometry 
[10]

. Digital cameras have been 

used for the detection of corrosion; particularly; the onset of the process. The color due to 

the degree of corrosion was used as a basis of a Support Vector Machine 
[11]

. Perlin Noise 

has been used to simulate oxide corrosion textures to provide a means for visual 

estimation of the amount of corrosion present in a sample quickly and accurately for 

onsite inspections 
[6]

. 

 

The image sensor used in a smartphone is based on complementary metal oxide 

semiconductor (CMOS) technology 
[12]

. Typically, images are saved in smartphones in 

jpeg format, with the intensity of each of the red, green, and blue responses in each pixel 

scaled as integers from 0 to 255 
[13]

. Smartphones are not designed to provide full spectral 

data, but the color responses may be calibrated to quantify the magnitude and change in 

incident light 
[1]

. However, previous work has found that each smartphone image sensor 

has differences in their response, due to various manufacturing methodologies 
[1]

, so this 

study provides a method to characterize corrosion concentration. Smartphone image 

sensors have been shown to have a negligible dark noise response 
[13]

. 
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A key factor when developing corrosion monitoring systems is that any system needs to 

be easy to use and require minimal computational processing power to develop a model 

for corrosion formation 
[4, 6]

. The development of this method used a smartphone and 

freely available image processing tools, as demonstrated in previous work 
[1-3]

. This study 

demonstrates the characterization of corrosion using an inexpensive smartphone image 

sensor. 

 

METHOD AND MATERIALS 

The smartphone used was an LG L3 (LG Electronics, Seoul, South Korea).  The 

smartphone was Wi-Fi and Bluetooth enabled, allowing images to be sent directly to a 

laptop. Image analysis, including developing histograms for grey (Y), red (R), green (G), 

and blue (B) responses (scaled to 255) 
[13]

 and statistical data (mean and standard error) 

of each image were determined using a freeware Java based image processing program 

called ImageJ. 

 

Clean square tiles (20 mm x 20 mm) were cut from an iron sheet.  Corroded iron square 

tiles (20 mm x 20 mm) were prepared by immersing pristine iron samples in saline water. 

Other tiles were maintained in a pristine state. All samples were kept clear of other 

contaminants, such as dirt and dust.  

 

Each image was taken 1 m directly above an arrangement of 5 x 5 squares, with different 

numbers of corroded and uncorroded tiles used firstly in geometric patterns for 

calibration and then randomly scattered with different amounts of corroded tiles for 
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model validation. Each image contained approximately 63,000 pixels. For consistency in 

the characterization, the calibration arrangements and the samples for the validation were 

illuminated by a D65 daylight lamp placed 2 m above the samples.  

 

The images were sent from the smartphone to a laptop and saved. These images were 

individually opened in ImageJ.  The average R, G, and B values were obtained by the 

following menu commands: Plugins  Analyze  RGB Measure. The Grey response 

(Y), representing the overall reflected light intensity from each sample was calculated by 

[13] 

0.3 0.59 0.11Y R G B    [1] 

where R, G, and B represent the red, green and blue pixel values from the smartphone 

image sensor. 

 

Initially for calibration, 5 x 5 arrangements were made of pristine iron tiles and separately 

corroded iron tiles.  A geometric pattern of corrosion from the center and from the edges 

were processed. The tiles were placed on a nonreflective neutral grey card. The 

arrangements of the tiles are shown in Figure 1. 

 

The calibration models were validated by further arrangements with a scattered 

distribution of corroded iron tiles within the 5 x 5 grid.  Ten pictures were taken for each 

arrangement and the standard error calculated for each. The grey, red, green, and blue 

responses using the calibration equations were compared with the values derived from the 

validation images. Further validation was performed using three pieces of corroded iron 
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found in the surrounding area. These samples were characterized using the same method 

as for calibration and validation measurements. 

 

RESULTS 

Several distinct and quantifiable patterns emerged from the image analysis. The 

histograms revealed that the presence of increasing corrosion caused a peak with a center 

digital value of approximately 73 to increase. At the same time, a decreasing and merging 

trend was visible in a double peak at digital values of approximately 151 and 170 (Figure 

2). Although the position of the lower intensity peak was different, the same trend was 

present for all red, green, and blue channels. 

 

CALIBRATION 

The grey response had a negative relationship with the percentage corrosion in each 

sample, starting from the approximate value for the sample with no corrosion 
0%( )C .  

This relationship has a coefficient of determination of 0.99. The relationship between 

grey response (Y) to percentage corrosion 
0%( )C  is in equation 2. 

0% %1.06Y C C   [2] 

The red response (R) exhibited a 1:1 decline with increasing corrosion, whereas the 

decrease in the green (G) and blue (B) responses were steeper: 

0% %R C C   [3] 

0% %1.12G C C   [4] 

0% %1.15B C C   [5] 
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Validation 

Smartphone images of scattered corrosion and the corrosion on the three random samples 

were used to validate the calibration relationships and demonstrated a coherent match to 

modelled values using equations (1), (2), (3), (4), and (5).  A comparison between the 

observed Y, R, G, and B values from corroded samples and the equivalent modelled 

values from the calibration tests are shown in Table 1. 

 

DISCUSSION 

Overall, as the corrosion in each sample increased, the images’ grey and red response 

decreases (darkens) at the same rate, and the green and blue responses darken faster, with 

blue darkening the fastest.  Figure 3 demonstrates that as the corrosion concentration 

increased, the grey value darkened, increasing the count of pixels possessing the same 

grey value as the 100 % corroded sample while not expanding the peak width.  At the 

same time, the higher value bimodal peak collapsed into a smaller single broad peak. 

 

Despite the random variations observed in the texture of the corroded tiles [6], the grey 

response with increasing concentration and the position of the peak remained consistent.  

This is especially significant as different tiles were used in each trial, demonstrating that 

the variability of texture did not result in excess noise in each image.  Further, the 

positioning of the tiles, from a patterned configuration in the calibration tests to random 

placements for validation did not have any significant effect on the grey response trend. 
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Red, green, and blue responses also decreased, but at different rates. Equations (3), (4), 

and (5) represent mathematical models of corrosion growth 
[4]

 as detected by a 

smartphone camera.  On visual inspection, the iron oxide is dark red, implying that there 

is a minimal deviation in the red while there is a steeper decrease in the green and blue 

responses. The red response darkens at the rate that the percentage of corrosion increases, 

demonstrating that the red response is an indicator of the degree of corrosion, provided 

that the initial pristine amount is known (  in equation 2). This approach is similar to 

the Support Vector Machine method, but using a less complicated, resource consuming 

approach 
[4, 11]

. When compared to the red response, the green and blue responses 

demonstrate a linear relationship with coefficients of determination of 0.99 for both. 

 

When the green and blue responses are compared to the red, the relationships are very 

similar to their response to increasing corrosion as shown by 

1.13 21G R   [6] 

1.18 29B R   [7] 

However, when the green and blue channel responses are normalized to red responses (G’ 

and B’ respectively) and compared to the proportion of corrosion, the relationship is a 

broad negative parabola (Figure 4).  The coefficients of the parabola are less than 10
-4

. 

These relationships are significantly weaker than their calibrated values, with coefficients 

of determination for G’ and B’ of 0.88 and 0.93, respectively: 

5 2

% %  2  10   0.0003 1G C C   [8] 

5 2

% %  2  10   0.0002 1B C C   [9] 
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The decrease in Figure 4 is consistent with the green and blue response calibration. The 

broad parabolic nature of the relationship is likely to be an artifact of the corrosion 

texture, as the divergence from the lines increases with increasing corrosion. The 

normalization of the green and blue responses reveal that there was a reduction of up to 

18% and 25% in their intensities. 

 

The scattering of the corroded pieces for the validation measurements introduced errors 

of 1.7%, 1.1%, and 2.4% with the calibrated models for the red, green and blue 

responses, respectively.  There were no discernible patterns in errors with increasing 

corrosion. However, the red response errors were generally positive while green and blue 

errors were generally negative (Figure 5).  This suggests that the smartphone image 

sensor marginally compensated for the red response at the expense of the green and blue 

responses. However, these errors are small and were within 5% of modelled values. 

 

CONCLUSIONS 

Varying amounts of red iron corrosion were characterized using a smartphone sensor, 

with images analyzed by a simple Java processing program. Models for red, green, and 

blue responses to corrosion were quantified. The red response exhibited a very strong 

inverse 1:1 relationship with the percentage of corrosion, with the green and blue 

responses having a quantifiably steeper regression. These results demonstrate that the 

smartphone image sensor quantified the reddening and dimming of the iron with 

increasing corrosion. Errors in all three color responses were within 5%, similar to what 

was found using the Perlin noise based models [6]. These measurements indicated that 
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the variable texture of the corroded surface did not cause significant noise in the image 

sensor, demonstrating that the smartphone is a low cost and efficient means of evaluating 

surface corrosion. 
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Table 1 Comparison of red, green and blue responses to corroded materials with 

calibration equations. 

 Measured Response Modelled Response 

Corrosion, % Red Green Blue Red Green Blue 

10 168 162 162 165 165 164 

50 123 117 116 124 122 119 

100 83 70 68 73 61 58 
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Figure 1. Arrangement of pristine and corroded iron tiles.  Corroded tiles are shaded. 
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Figure 2. Combined histogram for the grey response of 20% (grey dashed line), 48% 

(black dashed line) and 80% (black line) corrosion. 
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Figure 3. Relative darkening of the grey response with increasing corrosion. As corrosion 

increased, the grey response decreases to the lower peak (A), resulting in a consistent 

increase without widening (B), and causes a subsequent decrease of the upper values (C). 
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Figure 4. Green (diamonds and full line) and blue (squares and dashed line) responses 

normalized to red response plotted against the degree of corrosion. 
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Figure 5. Error between the measured and modelled red (diamonds), green (squares), and 

blue (triangles) responses with respect to the percentage of corrosion. 
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