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Several threads of the last 25 years’ developments in nonlinear wave theory that stem from the

classical Korteweg–de Vries (KdV) equation are surveyed. The focus is on various generalizations

of the KdV equation which include higher-order nonlinearity, large-scale dispersion, and a non-

local integral dispersion. We also discuss how relatively simple models can capture strongly

nonlinear dynamics and how various modifications of the KdV equation lead to qualitatively new,

non-trivial solutions and regimes of evolution observable in the laboratory and in nature. As the

main physical example, we choose internal gravity waves in the ocean for which all these models

are applicable and have genuine importance. We also briefly outline the authors’ view of the future

development of the chosen lines of nonlinear wave theory. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927448]

In the aftermath of the revolutionary development in the

theory of nonlinear waves in the 1960s–1970s, the inten-

sity of studies in this field does not show signs of decreas-

ing. Here, several lines of studies related to the KdV

equation are surveyed. Focusing on generalizations of the

KdV equation, we trace the development of main ideas

and concepts of nonlinear wave theory yielding qualita-

tively new solutions such as “fat” and table-top solitons,

breathers, and slowly radiating solitons. The reasons

underpinning the unmatched universality of the KdV

equation as a mathematical model applicable in many

physical contexts are quite natural: for long waves the

model combines the most typical, small quadratic nonli-

nearity and weak, small-scale dispersion. The balance

between the nonlinearity and dispersion allows the possi-

bility of solitary waves possessing astonishing particle-

like properties such as robustness and persistence in colli-

sions not only with each other but also with other pertur-

bations. This particle-like behavior is at the origin of the

term soliton introduced to emphasize the affinity of such

waves with elementary particles (electrons, protons, etc).

As the understanding of nonlinear waves matured, the

limitations of the KdV model and necessity to go beyond

it became apparent; hence, the trend towards developing

more general and rich models which generalize the KdV

equation and yield many new and non-trivial results.

Here, we briefly discuss their appearance in various

mathematical and physical contexts and some of the

results which follow, such as qualitatively new types of

solitons, their limiting shapes and parameters, and inter-

actions. It is also demonstrated that these features are not

mathematical artefacts, which is illustrated by examples

mainly related to nonlinear internal gravity waves in the

ocean.

I. INTRODUCTION: MODEL EVOLUTION EQUATIONS

The basic equations describing evolution of long nonlin-

ear dispersive waves were first derived in the end of the 19th

century by Boussinesq (1872) and Korteweg and de Vries

(1895). They were nearly forgotten until the 1960s, when the

interest in these equations exploded. They proved central in

the revolution in the understanding of nonlinear waves. The

revolution was unfolding in several different, albeit related,

directions. First, the “wave theory” supported by experi-

ments began to establish itself as an important branch of

mathematics and physics in the sense that various physical

(as well as chemical, biological, and other) phenomena can

be described by similar mathematical models, depending on

such general characteristics as dispersion and nonlinearity.

This, in turn, has resulted in identifying the key universal

“model” equations, such as the KdV equation and many

others. It has been realized that these asymptotically derived

model evolution equations are universal and represent a

powerful tool for studying nature. The surge in interest coin-

cided and was partly caused by the discovery of remarkable

mathematical properties of the key evolution equations:

many of these nonlinear partial differential equations were

found to be exactly solvable, and a new branch of mathemat-

ical physics, often referred to as integrable systems, was

born. These radically new mathematical techniques comple-

mented by numerical simulations and novel asymptotic

approaches have revealed the key role of solitary waves in

the wave field evolution. Solitary waves first observed in

a)Author to whom correspondence should be addressed. Electronic mail:

Lev.A.Ostrovsky@noaa.gov.
b)All authors contributed equally to this work.

1054-1500/2015/25(9)/097620/13/$30.00 VC 2015 AIP Publishing LLC25, 097620-1

CHAOS 25, 097620 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

89.109.49.156 On: Wed, 05 Aug 2015 16:56:15

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Southern Queensland ePrints

https://core.ac.uk/display/211498231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4927448
http://dx.doi.org/10.1063/1.4927448
mailto:Lev.A.Ostrovsky@noaa.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4927448&domain=pdf&date_stamp=2015-08-05


nature by Scott Russell in 1834 proved to be far from the

structurally unstable homoclinic solutions such as separatri-

ces in the ODE theory; on the contrary, they proved to be ro-

bust solutions representing asymptotic behavior of a wide

class of initial conditions. Moreover, the solitary solutions

exhibited particle-like properties: in integrable equations sol-

itary waves collide elastically, which gave rise to the term

“soliton.”

At the same time, new asymptotic methods of solution

of nonlinear evolution equations were developed, allowing

to examine many physically important cases which cannot

be reduced to integrable equations.

The revolutionary phase of the sixties and seventies of

the last century was followed by a period of very extensive

development characterized by an explosive growth of publi-

cations in which the primary ideas were further developed

and numerous new model equations, mostly integrable ones,

were suggested and analyzed (many of them were written

just as examples of integrability, without any asymptotic der-

ivation from physically meaningful equations). Then, start-

ing shortly before 1990, a deeper and more systematic

development of the nonlinear wave theory began; both inte-

grable and non-integrable equations found broader physical

applications and, due to the progress in numerical modeling,

were verified versus primitive physical equations.

The present paper aims to outline some of the latter

developments related to the KdV-like systems, mainly those

of the last 25 years. Note that nonlinear Schr€odinger equation

could have been the subject of an equally interesting story,

but here we concentrate entirely on the KdV and its “close rel-

atives.” Here, we follow several key lines. One is studying

broader classes of equations that describe wave fields with dif-

ferent dispersion and nonlinearity as compared to the KdV

equation. Second, we trace the enormous extension of the

family of fundamental localized solutions which are often

qualitatively different from those of KdV. Third, we discuss

new applications. We mostly use as examples those taken

from the context of internal gravity waves in the ocean; all

main types of equations discussed below have established

applications in the internal wave context. Moreover, for now

the most numerous and diverse observations of solitons in na-

ture apply to the oceanic internal waves.

Thus, what happened beyond the studies of the KdV

equation? The universality of the latter is due to the simple

physical approximation of generic weak (quadratic) nonli-

nearity and generic weak dispersion represented by the third-

order derivative

@u

@t
þ c

@u

@x
þ e au

@u

@x
þ b

@3u

@x3

� �
¼ 0; (1)

where c is the speed of long linear waves, a and b are con-

stant coefficients, and e� 1 is a small parameter, character-

izing smallness of nonlinear and dispersive terms. By

making the Galilean transformation x0 ¼ x� ct and t0 ¼ et,
this equation can be reduced to the canonical form

@u

@t
þ au

@u

@x
þ b

@3u

@x3
¼ 0; (2)

where primes are omitted and all terms are of the same

order. The balance between the nonlinear and dispersive

terms in this equation leads, in particular, to stationary soli-

tary waves—the solitons (we use here the term “stationary”

for a translational wave of a permanent form, uðx� VtÞ; in

the coordinate system moving with the wave speed V such

wave is indeed stationary as it depends only on spatial coor-

dinate). The remarkable mathematical properties of this

equation have been exhaustively studied (e.g., Refs. 1–4).

To capture different wave dynamics, the first natural

step is a straightforward extension of the nonlinearity and

dispersion by retaining the next-order terms in the asymp-

totic expansion. A rather general form of this extension,

which has been derived by many authors to describe nonlin-

ear waves in different physical contexts (see, e.g., Ref. 5 for

surface and internal waves) is

@u

@t
þ au

@u

@x
þ b

@3u

@x3

þ e a1u2 @u

@x
þ c1u

@3u

@x3
þ c2

@u

@x

@2u

@x2
þ b1

@5u

@x5

� �
¼ 0:

(3)

This equation combines quadratic and cubic nonlinear terms,

linear dispersion of the 3rd and 5th order, and also nonlinear

dispersion with the coefficients c1 and c2. In general, the

equation is not exactly integrable. However, Fokas and Liu6

found an asymptotic transformation of solutions of the

extended KdV equation (3) for function u to solutions of the

KdV equation for a new auxiliary function v

u ¼ vþ e k1v2 þ k2vxx þ k3vx

ðx
x0

vdxþ k4xðavvx þ bvxxxÞ

2
64

3
75;
(4)

where the coefficients ki are rational functions of coefficients

of Eq. (3). Thus, approximate solutions u(x, t) to Eq. (3) can

be obtained from the appropriate solutions v(x, t) of the KdV

equation (2) that are valid up to O(e2). Inasmuch as the KdV

equation is completely integrable, one can say, that Eq. (3) is

asymptotically integrable, i.e., it tends to an integrable one

when e ! 0. This approach, although interesting, was not

exploited thus far; the terms O(e) in Eq. (4) actually give just

small corrections to the KdV solutions.

On the other hand, particular cases of (3) can lead to

equations that describe much richer and qualitatively differ-

ent classes of equations as compared to KdV, particularly

when there is a degeneracy of either leading order nonli-

nearity or dispersion terms, and these higher-order terms

can be comparable with the lower-order terms. Even in rela-

tively simple cases, the family of solutions, including soli-

tary solutions and of the corresponding equations, can be

enormously broadened. The KdV equation possesses a sin-

gle class of localized solutions—the already mentioned soli-

tons which are asymptotics of all localized initial conditions

for which ða=bÞ
Ðþ1
�1 ð1þ jxjÞuðxÞdx > 0, see Ref. 73. The

097620-2 Ostrovsky et al. Chaos 25, 097620 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

89.109.49.156 On: Wed, 05 Aug 2015 16:56:15



KdV solitons have a single free parameter apart from the

“phase” specifying its position. The examples considered

below are much richer in this respect.

For example, keeping the fifth-order derivative term

results in the non-integrable equation known as the

Kawahara equation7

@u

@t
þ au

@u

@x
þ b

@3u

@x3
þ b1

@5u

@x5
¼ 0: (5)

It possesses solitary waves with oscillating and decaying

asymptotics which can form fairly complicated multisolitonic

structures. Moreover, the Kawahara equation demonstrates

important extensions of the very notion of a solitary wave. It

possesses a class of coupled solitons also with more degrees

of freedom than the classical KdV-type solitons.8 It also

admits a class of “non-local” steady solitary waves consisting

of a central “core” which resembles a classical soliton, and

oscillatory, non-damping small amplitude “wings” which

extend to both infinities. Such solutions were christened

“nanopterons,”9 which means “dwarf-wing”; the name is not

often used, however. These objects can be viewed as solitary

waves simultaneously radiating and absorbing a linear wave

of small amplitude. These and other “quasi-solitons” which

cannot be exactly localized or slowly attenuate due to radia-

tion form a broad class beyond the scope of KdV; even in the

case of slow damping they can form a useful intermediate

asymptotics in the process.10 Various aspects of their descrip-

tion are often a mathematical challenge; they attracted a lot

of attention in the literature (see, e.g., Ref. 11). Some aspects

of radiating solitary waves are discussed below in Sec. III.

Another generalization of KdV is adding a comparable

cubic term to obtain the so-called Gardner equation which

also exhibits important new classes of solitary waves, table-

top solitons, and breathers. It will be considered in more

detail in Sec. II.

The form of Eq. (3), even without a small parameter, is

not universal. A more general form of a one-dimensional

weakly nonlinear and weakly dispersive evolution equation

resulting from asymptotic derivation can be written as

@u

@t
þ C uð Þ @u

@x
þ G

@u

@x

� �
¼ 0; (6)

where C(u) is the quadratic polynomial and G is a

differential-integral operator obtained by the inverse Fourier

transform of the linear dispersion relation c (k)1

G ¼
ð1
�1

K x� zð Þ @u

@z
z; tð Þdz;

K xð Þ ¼ 1

2p

ð1
�1

c kð Þ � c0½ �e�ikxdk; (7)

and c0 � c (0) is the linear long-wave velocity. Evidently,

the KdV equation, as well as other evolution equations men-

tioned above, are just particular cases of Eq. (6). For exam-

ple, for the KdV equation C(u)¼ au and G¼ b@2/@x2. A

more complicated example of an integral-differential

equation for which the very existence of a solitary wave is a

non-trivial problem, is considered in Sec. III.

Finally, generalizations are also possible for some strongly

nonlinear cases, although the applicability of “one-wave” evo-

lution equations cannot be taken for granted. In these cases,

the nonlinearity and dispersion cannot be completely sepa-

rated, and the term responsible for the long-wave dispersion

remains nonlinear. In Sec. IV we show how much insight can

be obtained using the understanding provided by weakly non-

linear models even for strongly nonlinear dynamics.

The paper is organized as follows. In Sec. II, we discuss

solitary solutions and long wave evolution in the Gardner

equation. Sec. III deals with the models containing two dis-

persions, the short-scale (KdV-type) and long-scale (integral)

dispersion, and discusses some peculiar properties of their

solutions. Sec. IV describes strongly nonlinear model equa-

tions, their limitations and applications. Finally, Section V

summarizes the present state of understanding and gives

some thoughts regarding the future of development in non-

linear wave theory and applications.

II. GARDNER EQUATION: SOLITONS, KINKS,
BREATHERS

A. Solitons

The Gardner equation

@u

@t
þ au

@u

@x
þ a1u2 @u

@x
þ b

@3u

@x3
¼ 0 (8)

appeared in mathematical physics at the end of 1960s as an

important example of completely integrable equations (e.g.,

Refs. 2 and 3). Later, Lee and Beardsley5 used this equation

as the model describing strongly nonlinear internal waves

observed in the ocean. Solitary solutions to the Gardner

equation can be very different and depend on the sign of the

cubic coefficient a1. Nonetheless, they can be presented as

the one-parameter family12

u x; tð Þ ¼
A

1þ B cosh x� Vtð Þ=D
� � ;

A ¼ 6b

aD2
; B2 ¼ 1þ 6a1b

a2D2
; V ¼ b

D2
; U0 ¼

A

1þ B
;

(9)

where V is the soliton speed, D is its characteristic width, and

U0 is the amplitude. The parameter B is in the limits

0<B< 1 for a1 < 0 and B2> 1 for a1 > 0. Soliton shapes

are shown in Fig. 1 for a> 0 and b> 0. At fixed signs of coef-

ficients a and b, the soliton characteristics are qualitatively

different for different signs of the cubic nonlinear term.

The first important qualitative departure from the KdV

solitons is that when a1< 0, the shape of solitons changes sig-

nificantly with increase of amplitude U0 from zero to the lim-

iting value Ulim¼�a/a1; namely, it goes from the bell-shaped

KdV soliton (B ! 1), to the table-top pattern (B ! 0,

D2 !�6a1b=a) with the infinitely increasing width (see Fig.

1(a)). In this case the sign of the coefficient a controls the soli-

ton polarity which can be either positive or negative so that au
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is always positive. The edges of this soliton are close to step-

like transitions (kinks, or non-dissipative shock waves)13

u ¼ 6
a

2a1

17tanh
x� Vt

2D

� �
; V ¼ � a2

6a1

;

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 6a1b

a2

r
; (10)

where the signs correspond to the frontal (descending in space)

kink and the rear (ascending) “anti-kink.” Note that these pat-

terns are different from the kinks and anti-kinks in the sine-

Gordon equation2,3 where they are the only solitary solutions,

whereas here they exist as the limit for a family of solitons.

In the case of a1> 0 (see Fig. 1(b)), there exist two dif-

ferent families of solitons: “positive” solitons which, with

increase in amplitude, vary from the KdV soliton to the soli-

ton of the modified KdV (mKdV) equation2,3 (Eq. (8) with

a¼ 0), with no limitation on its amplitude; and “negative”

solitons with the amplitude U0<Umin¼�2a/a1. In the case

of U0¼Umin, the Gardner soliton (9) reduces to its limiting

form having algebraically (rather than exponentially) decay-

ing asymptotics (u� 1/x2, when x ! 1). This “algebraic”

soliton has zero speed V in (8) (i.e., in the coordinate frame

propagating with the linear long-wave velocity.) With the

increase of amplitude jU0j Gardner solitons transform into

the mKdV solitons. In the range 0>U0>Umin, there are no

stationary solitons at all, instead there are more complicated

nonstationary wave patterns called breathers2,3,73 which are

discussed below in more detail.

B. Interaction of solitons and kinks. Formation
of soliton trains

Two-soliton interaction processes in Gardner equation

are also quite peculiar.14 The interaction of solitons of the

same polarity is similar to that in the KdV equation. This

result can be interpreted within the framework of the approx-

imate theory of interaction of solitons as particles with

repulsing potential.15 If solitons have different polarities in

the case of positive a1, the result is more interesting, since

the solitons can attract each other and form breathers, i.e.,

localized waves pulsating in the course of propagation. In

this case, the breather solution can be found analytically.16

Depending on their parameters, they can take the form of ei-

ther bound states of solitary waves of opposite polarity peri-

odically interacting with each other (see Fig. 2(a)), or in the

form of envelope solitons whose carrier wave moves with a

different velocity than the envelope wave, as in the nonlinear

Schr€odinger (NLS) equation (see Fig. 2(b)). We emphasize

that breathers exist only in the case of a positive a1 and has

no analogues in the KdV equation.

As mentioned, a non-trivial feature of the Gardner soli-

ton close to the flat-top one is that it can be considered as a

compound of kink and anti-kink (see above). The kinks

behave quasi-independently in the process of interaction of

two such solitons. In Ref. 17, this problem was studied using

asymptotic theory. As a result, the “double Toda” equation

was derived for interacting kinks (the parameters

a¼�a1¼ 6 and b¼ 1 were used):

FIG. 1. Soliton shapes in the Gardner equation (5) with a¼b¼ 1 for different soliton amplitudes. (a) a1¼�1: line 1—KdV-like soliton, 2—“fat” soliton, 3—

table-top soliton with kink and anti-kink edges. (b) a1¼ 1: lines in the upper half-plane—“positive” solitons, line 4—one of the family of “negative solitons,”

line 5—the limiting case of “negative” solitons: the algebraic soliton. Reprinted with permission from Grimshaw et al., Physica D 132, 40 (1999). Copyright

1999 Elsevier.

FIG. 2. Gardner breathers. (a) Oscillating

pair of solitons within one period of os-

cillation T: 1� t¼ 0, 2� t¼T/4,

3� t¼T/2, 4� t¼ 3 T/4. (b) Breather

in the form of a wave packet. Reprinted

with permission from Grimshaw et al.,
Chaos 20, 013102 (2010). Copyright

2010 American Institute of Physics.
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d2Sn

dt2
¼ 4 eSn�Snþ2 � eSn�2�Snð Þ; (11)

where Sn are coordinates of kinks and anti-kinks; even num-

bers n correspond to frontal kinks, odd numbers n—to rear

anti-kinks. If a kink–anti-kink pair belongs to the same

Gardner soliton, then they are linked by the Katz–van

Moerbeke equation realizing the degenerated B€acklund trans-

form for the Toda equation.2,3,73 The main new element of

this process as compared to interaction of solitons considered

as a whole object is that, along with their behavior as par-

ticles, they reveal the wavelike features. Figure 3 illustrates

this by showing trajectories of soliton fronts and rears in two

interacting solitons having almost limiting amplitudes: the

front of the rear soliton (numbered by 2) first affects the front

of the first soliton (numbered by 4) rather than the much

closer rear anti-kink (3) of the latter, and vice versa; this testi-

fies to the remote action between the kinks.

When Eq. (11) is applied to chains of kinks, slow modu-

lation of the chain can again be described by the Toda sys-

tem, and the modulating envelope propagates with the

“group” velocity three times greater than the “phase veloc-

ity” of the carrier.

As can be expected from the integrability of the Gardner

equation, its multisoliton solutions can be found by the

inverse scattering method.14,18 For negative a1 and small ini-

tial amplitudes (<0.5 Umin), the process of the solitons’ for-

mation from a long initial pulse is similar to that in the KdV

equation. For larger initial amplitudes, a leading table-top sol-

iton is formed followed by smaller KdV-type solitons and dis-

persive tails.

C. Internal waves in the ocean: Solibores

Along with the KdV equation, the Gardner equation is

being actively applied to various physical problems, in par-

ticular, to studies of oceanic internal waves.27,65 The coeffi-

cients of the KdV and Gardner equations are determined by

the integrals over depth of products of eigenfunctions of the

linear boundary value problem. These eigenfunctions, in

turn, depend on the vertical profiles of water density q(z)

through the Brunt–V€ais€al€a (buoyancy) frequency

N zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� g

q
dq
dz

s
(12)

and shear flow U(z).

In coastal oceanic areas, nonlinear internal waves are

typically generated by tides and often have a form of oscil-

lating fronts (undular bores or solibores) close to a sequence

of solitons. Disintegration of a long initial perturbation into

the Gardner solitons can be described using quasi-periodic

solutions of the Gardner equation which have been found for

both signs of a1. As in the case of the KdV equation, these

solutions are expressed in terms of Jacobi elliptic functions.

The periodic, slowly varying solutions are used to analyze

the evolution of an initial front within the framework of the

“dam break” problem, as disintegration of an initial stepwise

perturbation. This approach was earlier suggested by

Gurevich and Pitaevsky22 for the KdV equation based on the

Whitham equations1 for a cnoidal wave with slowly varying

parameters. It was then effectively applied to many physical

problems, including the Gardner equation.23 If a1< 0, a

weak initial step develops similarly to that in the KdV equa-

tion; for a larger step, the leading wave is the table-top soli-

ton. If a1> 0, the evolution of a front is qualitatively

different. Both these cases are studied by Kamchatnov

et al.23 The Gardner-like solibores were observed, in particu-

lar, by Henyey and Hoering.24

Unlike solitons, it is not easy to observe breathers in the

ocean; still there exists some indirect indications of their

occurence in the ocean.25 Meanwhile, direct numerical simu-

lations within the fully nonlinear Euler equations for three-

layer water flow suggest the existence of long-lived internal

wave breathers.26

In the context of internal waves in the ocean, the disper-

sion coefficient b is always positive, whereas the nonlinear-

ity coefficients a and a1 can be of either sign. The mapping

of all coefficients of the Gardner equation was undertaken in

Ref. 27 for the World Ocean based on the available hydro-

logical data.

III. DOUBLE-DISPERSION MODELS. ROTATIONAL
KdV: CAN IT SUPPORT SOLITONS?

A. Rotation modified KdV equation

Now we consider another extension of the KdV model

which makes the equation non-integrable. As mentioned, the

KdV equation combines the effects of weak nonlinearity and

weak, “small-scale” dispersion (the dispersion which mani-

fests itself in the short wavelength range). In the linear limit,

it corresponds to the dispersion relation in the form

x¼ ck�bk3 where the last term is small. Another practi-

cally interesting class of waves includes the “large-scale”

dispersion in addition to the small-scale one. If it is

also weak, then the dispersion relation takes the form

x¼ ck�b k3þ c/k. This kind of dispersion is characteristic

of waveguides in electrodynamics, acoustics, optics, and, as

will be discussed here, waves in rotating fluids.28 The corre-

sponding generalization of the KdV equation contains an in-

tegral dispersive term

FIG. 3. (a) Two interacting flat-top solitons as a compound of kinks and

anti-kinks. (b) Trajectories of kink and anti-kink centers. Reprinted with per-

mission from Gorshkov et al., Phys. Rev. E 69, 016614 (2004). Copyright

2004 American Physical Society.
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@u

@t
þ c0

@u

@x
þ au

@u

@x
þ b

@3u

@x3
¼ c

ðx
�1

udx0: (13)

After differentiation with respect to x, this equation takes a

more convenient form

@

@x

@u

@t
þ c0

@u

@x
þ au

@u

@x
þ b

@3u

@x3

� �
¼ cu: (14)

As with the Gardner equation, this equation was

obtained long before the 1990s for oceanic waves experienc-

ing the influence of Earth rotation28 and then has attracted

much attention of both mathematicians and physicists due to

its unusual properties; later it was dubbed the “Ostrovsky

equation” (see, e.g., Refs. 29–31); here we call it the rKdV

equation. Similar equations were derived in other contexts,

in particular, for waves in random media32 and for waves in

rotating plasmas.33

Note first that in its general form Eq. (14) is non-

integrable; moreover, even its stationary solutions have not

been obtained in the analytical form thus far. However, some

interesting rigorous results were formulated for this equation

from the very beginning. It is easy to see that any finite per-

turbation described by this equation has zero total “mass”:

M �
Ð

uðx; tÞdx ¼ 0, where the integration is taken either

over the period of a periodic wave or over the entire axis x
for localized perturbations. This zero-mass restriction, appa-

rently, has no grounds in basic physics and appears only as a

consequence of the approximations adopted in derivation of

Eq. (14); there is no such constraint within the set of primi-

tive equations. An interesting issue of how an arbitrary initial

perturbation with the non-zero total mass adjusts to suit Eq.

(14) has been considered by Grimshaw.29

Another important rigorous result is the “anti-soliton

theorem” established in Ref. 34 and then reproduced in

numerous other papers. The theorem states that when b> 0

(which is the oceanic case) there are no stationary solitary

solutions to Eq. (14). However, the existence of such solu-

tions is not prohibited if b< 0; the specific solitary solutions

with zero total mass were constructed numerically in Ref.

33. It was shown that they can form stationary bound states

in the form of multisolitons and even regular or random

chains of solitons (cf. notes about the Kawahara equation (5)

above). The phase space of the stationary version of Eq. (14)

can be fairly complicated; some stationary solutions were

studied in Refs. 35 and 30. The detailed description of all

possible stationary solutions is a challenge which, hopefully,

will be resolved in forthcoming studies.

B. Reduced rKdV

More successful were analytical studies of the reduced

case of Eq. (14) which is valid if the wave is long enough to

neglect the short-wave (KdV-type) dispersion

@

@x

@u

@t
þ c0

@u

@x
þ au

@u

@x

� �
¼ cu: (15)

The stationary solutions of Eq. (15) depending on one

variable f¼ x�V t, V¼ const, satisfy a second order ODE

and thus can be studied relatively easily. It was shown28

that there exists a class of smooth “fast” (V> 0) periodic

waves, limited in amplitude by a wave of parabolic shape;

evidently, an unlimited parabola is also a solution of the

full equation (14). The “slow” stationary waves are non-

smooth and limited in space. Later, stationary solutions of

Eq. (15) were classified in Ref. 36. Among them there are

singular solitary waves with sharp crests dubbed peakons

and cuspons. Even more complicated loop soliton solutions

were constructed and their interaction was studied (see,

e.g., Ref. 37 and references therein), but all such non-

smooth solutions are structurally unstable; they disappear

as soon as any of neglected physical factors such as dissipa-

tion or small-scale dispersion are taken into account;36 on

the contrary, solutions of the full equation are smooth as

long as the initial condition is smooth.

Thus, a non-trivial problem concerning the reduced

rKdV equation (15) is to find the condition under which the

initial perturbation eventually becomes singular (breaks) or,

on the contrary, remains smooth at all times in the process of

wave propagation. It has been shown in Ref. 38 that if the

initial condition u(x, 0)¼ u0(x) is such that d 2u0(x)/dx2> c/

3a at some x, then wave breaking eventually occurs and the

solution becomes singular. If d 2u0(x)/dx2< c/3a for all x, the

solution remains smooth at all times. Note that earlier a pa-

rameter39 Os¼ 3aK/c dubbed as the “Ostrovsky number”

was introduced, where K is the maximum curvature in the

initial condition; on the basis of this parameter, the authors

estimated the possibility of wave breaking in Eq. (15). The

physical basis for that is a “competition” between wave

steepening due to nonlinearity (as in non-dispersive simple

waves) and its deformation due to the long wave dispersion

which, unlike the small-scale dispersion in the KdV equa-

tion, is not always able to prevent wave breaking. Moreover,

in the non-breaking case, Eq. (15) can be reduced to the

completely integrable Tzitzeica equation (known also as the

Dodd–Bullough–Mikhailov equation) (for details and further

references see Ref. 39).

C. Soliton evolution in rKdV

Returning to the full equation (14), we note that the

first attempt to classify its stationary translational solutions

was undertaken in Ref. 35. It was found that at certain con-

ditions there exist nonlinear periodic waves consisting of

parabolic sections mentioned above for Eq. (15) and narrow

pulses on the wave crests which are close to the KdV soli-

tons. These solutions were constructed analytically40 using

an asymptotic approach. The direct numerical modeling has

shown that such solutions are stable with respect to small

perturbations if bc> 0 and unstable in the opposite case. A

more detailed numerical investigation of possible stationary

solutions of Eq. (14) was undertaken in Refs. 41 and 30.

Still, the stability of such solutions within the more general,

non-stationary class of solutions remains an open question.
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Rather non-trivial are non-stationary solutions of Eq.

(14). According to the aforementioned “antisoliton theorem,”

an initial KdV soliton cannot exist infinitely; it gradually

decays due to radiation.42 As a result its amplitude A(t)
attenuates adiabatically as (t0� t)2 where t0 /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðt ¼ 0Þ

p
,

and at t � t0 the soliton is extinct, being completely con-

verted into a radiated wave (terminal damping). The situa-

tion can, however, radically change if a KdV soliton

interacts with a long wave close to the solution of Eq. (15).

These two waves exchange energies, and the losses due to

radiation from a soliton can be compensated by pumping

from a long wave so that a solitary wave can exist in this

environment. In the numerical example shown in Fig. 4, the

soliton amplitude periodically changes due to the energy

exchange with a long wave.

In particular, a stationary wave can be formed in which

a soliton is sitting on the long wave crest or trough. As fol-

lows from the numerical modeling, the former configuration

is stable and the latter is unstable. It is interesting that, as our

preliminary studies show, if only one soliton is traveling on a

periodic wave, the result is the opposite: the soliton equilib-

rium position on the crest is unstable, whereas its position at

the trough is stable. This difference is due to the fact that in

the latter case, soliton radiation is a pure loss, whereas in the

fully periodic case the soliton radiation can be compensated

by that from the solitons ahead of it.

The important outcome of these studies is that, notwith-

standing the “anti-soliton theorem,” waves close to solitons

can exist on a variable background such as a long periodic

wave co-propagating with them. Chen and Boyd41 found

some other non-trivial wave shapes; among them are solitary

waves of alternative polarity sitting on the crests of a back-

ground long wave.

The list of non-trivial features of rKdV equation (14)

can be continued. Recently, it was shown that in the long-

term evolution, the initial KdV soliton in Eq. (14) with

bc> 0 ends up as a specific envelope soliton which looks

similar to that in the NLS equation, but its carrier sinusoid

frequency always corresponds to the inflection point of the

dispersion curve x(k) where the group velocity has a local

maximum.31 The same phenomenon was observed also in

the context of waves in periodic lattice structures.44 Figure 5

demonstrates the evolution of the KdV soliton into the NLS

envelope soliton. At the beginning, the KdV soliton experi-

ences a terminal decay as described above, but after a long

time it evolves into a stable NLS-like soliton whose phase

and group speeds are different. If bc< 0 in Eq. (14), then

one can construct a stationary NLS-like soliton33 whose

phase and group speeds are equal Vp¼Vg¼ 2(bc)1/2; more-

over, the phase speed is maximal on such a soliton.

It is noteworthy that the effect of transformation of a

KdV soliton into an NLS-like soliton was observed in the

laboratory experiment in a rotating tank.45 Furthermore, a

general analysis of the modulation stability of quasi-

harmonic waves in the NLS equation following from Eq.

(14) has shown that the modulational instability occurs for

waves with wavenumbers k> kc, where kc¼ (c/3b)1/4. In the

case of KdV equation (c¼ 0), quasi-harmonic waves are

always stable with respect to modulational instability for any

wavenumbers.2 There is an apparent paradox in that the rota-

tion effect (c 6¼ 0) leads to modulation instability at large

rather than at small wavenumbers. This phenomenon is

explained by the suppression of a zero harmonic by rotation.

It appears in higher orders and cannot contribute to the

FIG. 4. Adiabatic interaction of a strong KdV soliton with a periodic wave

of quasi-parabolic profile satisfying Eq. (14).43 From bottom to top t¼ 0 (a),

t¼ 0.4 (b), t¼ 1 (c). Reprinted with permission from Gilman et al., Dyn.

Atmos. Oceans 23, 403 (1996). Copyright 1996 Elsevier.

FIG. 5. Numerical solution of Eq. (14) (for a¼b¼ c¼ 1) showing the for-

mation of a leading nonlinear wave packet (top) from a soliton (bottom).

Reprinted with permission from R. Grimshaw and K. Helfrich, Stud. Appl.

Math. 121, 71 (2008). Copyright 2008 John Wiley & Sons.
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nonlinear coefficient of the NLS equation making the equa-

tion modulationally unstable for k> kc.

D. Generalizations of rKdV

Similar to the KdV case, Eq. (14) can be supplemented

by cubic nonlinearity to obtain the rotation modified Gardner

equation

@

@x

@u

@t
þ c0

@u

@x
þ au

@u

@x
þ a1u2 @u

@x
þ b

@3u

@x3

� �
¼ cu: (16)

This equation, currently known as the Gardner–Ostrovsky

equation, was suggested in Ref. 50 for internal waves in a

rotating ocean when the interface between two layers (the

pycnocline) is located at the depth close to the half of the

fluid depth. The terminal decay of solitons at a1< 0 due to

large-scale dispersion was studied in Ref. 46. It was revealed

that solitons of relatively small amplitude (quasi-KdV soli-

tons) decay in accordance with the prediction of adiabatic

theory, whereas the decay of large amplitude solitons having

a table-top shape can occur non-adiabatically from the very

beginning. The direct numerical modeling of Eq. (16) shows

that the shape of table-top solitons distorts at the very early

stage of evolution. The influence of large-scale dispersion on

decay of another kind of solitons (when a1> 0) and breathers

has not been studied thus far.

The particular case of Eq. (16) with a ¼ 0 (rotation

modified mKdV equation) has been studied more thor-

oughly. This equation was derived and studied in a different

physical context, in particular, for ultrashort optical impulses

in nonlinear dielectrics (see, e.g., Ref. 47 and references

therein). The large-scale dispersion in this case is caused by

the polarization effect.

The reduced version of Eq. (16) with a ¼b ¼ 0 can be

integrable, but the criterion for integrability is rather intri-

cate. This problem was studied by Johnson and Grimshaw.48

They thoroughly studied the wave breaking conditions

depending on the initial wave steepness and found a link of

that equation to the sine-Gordon equation.

E. Oceanic applications

Equations (14) and (15) are often applied in physical

oceanography where, as mentioned, soliton-like groups of

internal gravity waves are common. In particular (e.g.,

Refs. 49 and 50) it was shown that rotation decreases the

number of solitons formed in a given tidal cycle. Later,

Grimshaw et al.51 analyzed non-stationary processes for re-

alistic oceanic parameters. Li and Farmer39 made specific

calculations within the framework of these equations to-

gether with the direct numerical simulations of the corre-

sponding hydrodynamic equations to analyze the data of

experiments in the South China Sea. In particular, they con-

firmed the aforementioned result regarding suppressing sol-

iton formation by rotation.

IV. STRONGLY NONLINEAR KdV-TYPE MODELS

A. Stationary waves: History

Can KdV and its modifications be extended to strongly

nonlinear waves? A measure of nonlinearity can be, for

example, the ratio of maximal fluid velocity in a wave to its

propagation velocity in linear approximation; this ratio cor-

responds to the Mach number in gas dynamics. Classical

examples are non-dispersive waves in mechanics of com-

pressible media where the important basic classes of solu-

tions are the simple (Riemann) and shock waves. The theory

of strongly nonlinear dispersive waves is not well developed,

especially for multi-dimensional waves such as internal

waves in the ocean. In many cases, the direct numerical sim-

ulation (DNS) of the basic equations is used for each specific

problem. Still, a noticeable progress in derivation and appli-

cation of strongly nonlinear model equations can be reported.

We consider this problem in the context of stratified fluid

flows, including internal waves.

An additional difficulty in obtaining model equations as

compared with the weakly nonlinear waves considered above

is that the dependence on vertical coordinate z cannot be sep-

arated from the horizontal ones and, consequently, there is

no fixed modal structure. The early results were obtained for

stationary 2D motions in which all variables depend on z and

f¼ x�Vt where V¼ const. For these flows, the hydrody-

namic equations can be reduced to one equation52 for the

stream function w

Wff þWzz þ V�2N2ðz�W=VÞW ¼ 0; (17)

where N(z) is the Brunt–V€ais€al€a frequency (see Eq. (12)).

Equation (17) has been widely used in numerical model-

ing. A remarkable feature of this equation is that it evidently

becomes linear if N(z)¼ const. Therefore, stationary progres-

sive waves (but only stationary!) are described by a linear

equation and hence, can have, in particular, a sinusoidal pro-

file of arbitrary amplitude. The majority of other analytical

results were obtained for stationary waves in a two-layer

fluid with a density jump between the homogeneous layers.

The first study using this approach was, apparently, made in

Ref. 53. It was found that there exists maximal possible soli-

tary wave amplitude at which it acquires a flat-top shape and

tends to two infinitely separated kinks. Qualitatively this pat-

tern is similar to the solutions of the Gardner equation dis-

cussed above, but now it is valid for an arbitrarily strong

wave. For a two-layer fluid limited by immovable horizontal

surfaces from top and bottom, with upper layer thickness h1

and lower h2 and densities q1 and q2>q1, the amplitude of

the interface displacement g(x, t) and propagation velocity of

such a limiting soliton are

Amax ¼
h1 � h2

ffiffiffi
a
p

2
� h1 � h2

2
;

Vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 1� að Þ h1 þ h2ð Þ

p
1þ

ffiffiffi
a
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0 h1 þ h2ð Þ

p
2

; (18)

where a¼q1/q2, g0 ¼ g(1� a)a. The approximate equalities

in (18) are valid when density variation is small and a is
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close to unity; this so-called Boussinesq approximation is

well-suited to oceanic conditions where density variations in

water are always small. Moreover, in the same case, the free

water surface can still be assumed immovable (rigid lid

approximation) since surface waves do not significantly

affect internal motions (not vice versa, though). In what fol-

lows for simplicity we consider this case.

From Eq. (18) follows a significant result: the polar-

ity of a soliton (the sign of Amax) is specified entirely by

the difference h1� h2. As a consequence of that in the

oceanic solitons, the displacement is always directed

towards the thicker layer. There are no solitary solutions

when h1¼ h2; for small jh1� h2j nonlinearity is weak and

solitary solutions can be described by the Gardner equa-

tion. Figure 6 illustrates shapes of solitary waves at dif-

ferent amplitudes.54

B. Non-dispersive waves

Subsequently, effective numerical codes for directly solv-

ing the fully nonlinear 2D problems were developed both for

stationary and non-stationary solutions. Our goal, however, is

to answer the same question as above: is it possible to reduce

the 2D problem to one-dimensional equations (or the 3D

problem to 2D equations) by separating the z-dependence? As

mentioned, the strict answer is no: one cannot separate verti-

cal dependence from horizontal. However, some effective

long-wave equations have been obtained for strong nonlinear-

ity, primarily for the two-layer model, where at least one exact

result can be obtained. For very long waves, dispersion can be

completely neglected (the quasi-hydrostatic approximation).

In this case, as expected, the interface wave can propagate as

a simple wave with the local velocity55

c gð Þ ¼ 6c0 1þ 3
h1 � h2ð Þ h1 � h2 � 2gð Þ

h1 þ h2ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � gð Þ h2 þ gð Þ

h1h2

s
� h1 � h2 � 2g

h1 � h2

2
4

3
5

8<
:

9=
;; (19)

where c0 � c(0) is the long linear wave velocity. The de-

pendence (19) on local displacement g is shown in Fig. 7 for

three depth ratios corresponding to available observational

data.

Here, the long wave velocity non-monotonically

depends on the local displacement. Thus, unlike the classical

dynamics of compressible fluid, the waves of “compression”

and “rarefaction” can exist for any sign of displacement gra-

dient. It is interesting that cðgÞ returns to its linear value at

g¼ (h2� h1)/2, which coincides with the maximal amplitude

of the soliton given in (18). As in the 1D dynamics of com-

pressible fluids based on simple waves, the full description

of bi-directional non-dispersive internal waves can be devel-

oped using Riemann invariants.

Recently, a 2D generalization of the notion of a sim-

ple wave for a continuously stratified fluid was found.57

These solutions have the form f (n, b), where b is the ver-

tical coordinate of a fixed isoline of density (isopycnal

line), and n¼ x� c (x) t is the implicit variable. In such

waves all perturbations in a fixed vertical cross section

propagate at the same velocity, but vertical structure of

the field is different in each cross-section. This solution

was validated by comparison with the direct numerical

simulation.

FIG. 6. Displacement profiles in a soliton, g(x)/h1 vs x/h1 for two-layer

fluid with h2/h1¼ 3, q2/q1¼ 0.997 (surface is at þ1, and bottom is at �3

on the vertical axis).54 The lines depict the pycnocline depressions caused

by a soliton from 0.05 to 0.99 at the center. The dashed line marks the

level of limiting amplitude. Reprinted with permission from W. Evans and

M. Ford, Phys. Fluids 8, 2032 (1996). Copyright 1996 American Institute

of Physics.

FIG. 7. Simple wave velocity versus local interface displacement for h1/

h2¼ 3.86 (dots), 12 (dashed-dotted line), and 20.4 (solid line). Reprinted

with permission from L. A. Ostrovsky and J. Grue, Phys. Fluids 15, 2934

(2003). Copyright 2003 American Institute of Physics.
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C. Model equations for dispersive waves

When the dispersion, albeit weak, is crucial (which is

always true for solitary waves), it is natural to try to obtain

model equations generalizing the weakly nonlinear models

such as Boussinesq, KdV, and Benjamin–Ono equations. For

these cases, a long-wave approximation can be constructed

using the corresponding expansion of dispersive terms while

keeping the nonlinearity strong. Actually, this basic

approach was first suggested by Whitham58 for surface

waves based on the expansion of the Lagrangian; the later

work by Green and Naghdi59 includes a sloping bottom. For

internal waves in a two-layer case, Miyata60 suggested

Boussinesq-type long-wave equations for strongly nonlinear,

weakly dispersive waves in a two-layer fluid, and con-

structed a stationary solitary solution of these equations. A

comprehensive analysis of this problem for a two-layer fluid

was performed by Choi and Camassa.61 Thus, we call the

corresponding equations the MCC system. They have the

form

gt ¼ ½ðh2� h1Þu2�; ðu1� u2Þtþ u1u2x� u2u1x þ g0gx ¼ D;

(20)

where

D ¼ 1

3 h1 þ gð Þ h1 þ gð Þ3 u1xt þ u1u1xx � u2
1x

� �n o

� 1

3 h2 � gð Þ h2 � gð Þ3 u2xt þ u2u2xx � u2
2x

� �n o
: (20a)

The term D is responsible for the weak nonlinear dispersion

(non-quasistatic approximation); it is obtained by expansion

of the higher-order terms in hydrodynamic equations. Even

earlier, Choi and Camassa62 obtained similar equations for

the case of an infinitely deep lower layer, in the approxima-

tion analogous to that used for the Benjamin–Ono equation.

Within the framework of Eqs. (20), the description of

stationary waves can be reduced to a second-order ODE. In

particular, the velocity V of a soliton of amplitude A isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðh1 � AÞðh2 þ AÞ=ðh1 þ h2Þ

p
:

Equations (20) were generalized to include a bilinear

shear current profile.63 For stationary waves, an interesting

development was suggested by Voronovich:64 stationary

long-wave solitary solutions were found for a two-layer fluid

in which each layer is exponentially stratified so that the

buoyancy frequency N is constant in each layer (the “2.5-

layer model”). According to Eq. (17), the solution in each

layer is still linear which allows a relatively simple descrip-

tion. Note that in this case the solution may include an inter-

nal vortex core.

The above models, however, have a common inconsis-

tency. They assume a weak dispersion (long-wave approxi-

mation), whereas the nonlinearity can be arbitrarily strong.

On the other hand, a soliton can exist in the case of essential

balance between the nonlinearity and dispersion so that the

corresponding approximations should be verified in each

case. Fortunately, the direct numerical modeling shows that

they work well in a rather broad range of wave parameters.56

The next step was to write a one-directional evolution

equation generalizing the KdV and BO equations in which

the nonlinear long-wave velocity for the two-layer model is

taken in the exact form (19), whereas the dispersion parame-

ter corresponds to a local instantaneous displacement at each

point of the wave profile.56 Thus, the strongly nonlinear ana-

log of the KdV equation (the “b-model”) has the form

@g
@t
þ c gð Þ

@g
@x
þ @

@x
b gð Þ

@2g
@x2

	 

¼ 0; (21)

where b ¼ cðgÞðh1 � gÞðh2 þ gÞ=6 is the dispersion parame-

ter which locally corresponds to the KdV dispersion at each

point of the wave. A modification of the “b-model” (21), the

so-called “E-model,” as well as a similar generalization of

the Benjamin–Ono (BO) equation, were also suggested in

Ref. 56.

D. Oceanic observations

From the 1990s experimental observations of strongly

nonlinear internal solitons became ubiquitous,65 although

some single observations were reported even earlier. In cer-

tain cases, weakly nonlinear models such as the KdV and

Gardner equations describe them well. In general, however,

strongly nonlinear models are necessary. A characteristic

example is the Coastal Ocean Probing Experiment (COPE)

off the coast of northern Oregon performed in 1995 (Fig. 8),

which shows a long sequence of tide-generated solitary

impulses.66 As seen from Fig. 8, the depression of the sharp

pycnocline (often approximated by a density jump in theory)

reaches a depth 5–6 times its initial position (from 5 to 30 m

in Fig. 8). Although even stronger solitons were observed in

the ocean, this ratio is, perhaps, the “world record of

nonlinearity.”

In Ref. 66, the Gardner equation was used beyond its

formal range of applicability as a fit for the shape of an indi-

vidual soliton. In Ref. 17, the kink interaction model (11)

was applied to the same data to predict evolution of a group

of strong solitons. A more consistent and detailed theoretical

analysis of these and other data was performed in Ref. 56

using the MCC equations and the b- and E-models.

Remarkably, the dependencies of soliton velocity on its am-

plitude provided by these models are close to those obtained

from the direct numerical simulation. For the soliton width,

FIG. 8. Color contours of temperature variation in �C in a strong internal

wave measured off the NW coast of the USA. Reprinted with permission

from T. Stanton and L. Ostrovsky, Geophys. Res. Lett. 25, 2695 (1998).

Copyright 1998 American Geophysical Union.
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these results are close for moderate ratios q¼ h2/h1; for the

case of q> 10–12, significant discrepancies occurred; how-

ever, even in these cases the agreement with the DNS and

experimental results is much better than with those using the

KdV solitons.

Numerous other observations of strong internal solitons

and their groups have been reported in different areas of the

ocean.65,67

V. CONCLUSIONS AND PERSPECTIVES

From a close distance, a panorama of any scientific field

might look chaotic, but a quarter of a century span allows us

to choose and follow up upon a few coherent threads in the

recent phase of our chosen corner of nonlinear wave theory.

Here, we will briefly summarize the key points and ideas

described above and try to make a guess about their possible

development in the future.

It has been demonstrated how the account of higher-

order nonlinearity and/or dispersion allows one to capture

qualitatively new wave dynamics as compared to the classi-

cal KdV model. The point to be emphasized first is that for a

qualitative change to occur in a weakly nonlinear model, a

mere degeneracy of coefficients of the quadratic nonlinearity

and/or leading order dispersion is quite often sufficient to

obtain these new dynamics. The Gardner equation provides

an excellent example of such an extension: its solitary solu-

tions vary from bell-shaped to “fat” and table-top solitons;

kinks are also solutions; solitons of any polarity and breath-

ers can co-exist when the cubic term coefficient is positive.

Integrability of the Gardner equation made it possible to ana-

lytically obtain the full picture of interactions between soli-

tons of various types and between solitons and non-localized

waves. Further development of asymptotic methods made it

possible to describe multisoliton and multikink ensembles in

both integrable and non-integrable systems, including the

“hierarchy” of such ensembles allowing one to build a high-

order ensemble as an envelope over the previous one.

Extensions of the KdV equation with higher-order dis-

persion and integral dispersion considerably enrich the fam-

ily of solitary waves and possible scenarios of wave

dynamics. They provide examples of solitons with non-

monotonic structures, coupled solitons, multisoliton fronts

and groups, as well as stationary random sequences of

coupled solitons. When steady solitary waves cannot exist

on a constant background due to radiation losses, they can

propagate long enough in the form of gradually decaying

“radiating solitons” and serve as intermediate asymptotics,

possibly evolving into wave packets—the envelope solitons

mentioned in Sec. III. Solitons, which asymptotically decay

in the absence of a background can, exist indefinitely if they

exchange energy with a variable background. The richness

of the evolution scenarios provided by the evolution equa-

tions with integral dispersion seems to be limitless, but to

advance in their understanding new methods of analysis

have to be developed. We definitely expect this thread to

continue well into the future.

The generalizations of KdV mentioned above still corre-

spond to weakly nonlinear and weakly dispersive waves in

physical applications. The theory of “genuinely” strongly

nonlinear waves in dispersive media is an extremely difficult

and not very well developed part of the wave theory. Direct

numerical simulations of the evolution of strongly nonlinear

waves are necessarily computationally expensive and not

always easy for interpretation, which makes it practically

impossible to sweep a multidimensional parameter space.

Remarkably, relatively straightforward modifications of

weakly nonlinear equations including KdV have proved able

to capture strongly nonlinear patterns in good agreement

with the DNS and experiments.

We want to emphasize that all, sometimes bizarre, prop-

erties of the soliton zoo described above are not exotic: such

waves do exist in many real physical environments as exem-

plified by internal waves in the oceans. It is essential that, in

the latter case, the 1D (2D) evolution equations describe 2D

(3D) waves with an appropriate depth distribution. For weak

nonlinearity, these waves are multimodal, and the results are

different for different vertical modes. For strongly nonlinear

waves, which cannot be presented by a few fixed modes,

manageable results have so far been either for non-dispersive

(simple) waves or for a two-layer model of stratification.

Nonetheless, in all cases considered above, not only a quali-

tative but also a quantitative (albeit approximate) agreement

with observation was obtained in a number of cases.

Let us now briefly speculate about what can be expected

in short- and long-term perspectives in the corner of the non-

linear wave theory visited in this paper, and beyond that.

A shortage of room forced us to leave aside many prom-

ising threads related to our main topics. Among them is the

development of a statistical description of ensembles of

essentially non-sinusoidal waves whose deterministic evolu-

tion we have discussed above. One of the developing direc-

tions is “soliton turbulence” for integrable models where

substantial progress has been made in kinetic description of

soliton ensembles (“soliton gas”).19 In contrast to hydrody-

namic turbulence where there are clear sources and sinks of

energies providing universal turbulence spectra (such as in

the Kolmogorov turbulence), in the integrable models the

random soliton ensembles can produce various scenarios of

very complex dynamics, but retain dependence on the initial

distribution of their parameters. Studies of evolution of the

wave field momenta during elementary interactions of soli-

tons carried out within the KdV and mKdV equations20,21

will certainly be extended for other models, including non-

integrable ones.

Another topic to be mentioned is wave dynamics in

coupled evolution equations, e.g., KdV and rKdV equa-

tions.68 Recent findings show that two wave trains each

described by KdV and modulationally stable when consid-

ered in isolation become unstable when coupling is taken

into account.69 The results derived from these model equa-

tions containing only quadratic nonlinearity should be

treated with a certain caution, because within the framework

of more accurate or primitive equations the outcome may be

different due to the influence of cubic nonlinearity. In a

somewhat related problem of the Zakharov equation for deep

water, it has been shown71 that the modulation instability of

a quasi-monochromatic wavetrain is affected by the presence
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of a second wave which leads to modification of the instabil-

ity domain. Coupled equations describing vector solitons in

plasmas and chains of particles70 yield a new type of solitary

waves—helical solitons. Study of their properties, unusual

features of interaction, the role in the energy transport in bio-

molecules represents intriguing issues which are likely to

attract attention in the nearest future.

We were unable to survey significant progress in studies

of two-dimensional generalizations of the KdV equation, the

Kadomtsev–Petviashvili, Zakharov–Kuznetsov, and other

equations which possess multidimensional fully localized

solitons, the lumps.2,3,73 Returning to the area of our main

physical example, the oceanic internal waves, we only very

superficially mentioned a rich body of field observations and

totally passed over laboratory modeling of internal solitons.

We expect all these threads we barely mentioned here and

some others which were not mentioned to flourish and bring

important new results yet in the next decade. We also antici-

pate progress in derivation and numerical justification of

strongly nonlinear evolutional models.

Much more difficult is to forecast, even roughly, the

subsequent development in the upcoming decades. What

shall a reader see in the Chaos issue dedicated to the 50th an-

niversary of the journal in 2041? All we dare to predict is a

series of “Grand Unifications” (borrowing the terminology

from quantum field theory).

The first of them is a much closer intertwining of analyt-

ical models, computations, and physical experiments. We

believe that, in spite of the increasing prominence of the lat-

ter two, model equations will retain their key role as the first

step in identifying and qualitative understanding of new phe-

nomena, as well as selection of the most promising future

directions of research. We will see increasing numerical

efforts applied to both the model evolution equations and

primitive equations.

Second is the overlapping of different effects and mod-

els in nonlinear wave theory. We have already seen that the

long-wave soliton can be transformed to an envelope soliton

due to radiation in a rotational system. An opposite process

can be represented by super-short (femtosecond) laser

impulses which can have a length of only a few carrier wave

periods47 and their description as “envelope waves” becomes

insufficient.

Third is the merging of various approaches originated in

different areas of nonlinear wave theory. In particular, lack

of space forced us to abandon touching a very important

class of “autowaves” existing, in particular, in biological

media such as nerve fibers and in some chemical reactions

(e.g., Ref. 72). They are typically considered separately from

quasi-conservative waves like KdV solitons and even from

oscillating waves in active media such as laser impulses. We

will see development and adaptation of relevant asymptotic

methods for description of such processes; in fact, such a de-

velopment has already started.74

Fourth, the progress of experimental techniques with

application of new methods and equipment can provide sur-

prising discoveries in nonlinear waves (a good recent exam-

ple is the development of the method of direct observation of

the dispersion relation of surface water waves in a

laboratory45).

And it is most easy to predict that there will be many

unpredictable events in both theory and experiment. We are

looking forward to seeing these events and hope that young

generation of scientists will bring them forward.
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