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Fig. 1 Cross sections of a standard Brazilian disc subjected to diametrically opposite radial
loads

1 Introduction

The indirect Brazilian Tensile Strength (BTS) test, with a long history of
applications in diverse fields of engineering mechanics of solids, is a simple
splitting test of a disc loaded by a compressive line load generating a tensile
stress inside the disc until it fails (Hondros, 1959; Rocco et al, 1999). The idea
of the BTS was initiated by a coincidental observation of a church being moved
on concert rollers in Brazil, and has been developed gradually since then. It is
now widely accepted for indirect measurement of the tensile strength of a given
brittle material where the familiar direct tension test (e.g. of a steel bar) is not
practical. A state of the art review of the BTS test method, in particular for
the testing of rock specimens, can be found in (Diyuan and Louis, 2012). Based
on the conventional 2D elastic theory, it is evident that the maximum tensile
stress in a Brazilian loaded specimen occurs at its centre with a magnitude of
(ISRM, 1978; ASTM, 2008):

σt,Max =
P

2 π L
(1)

where P is the applied compressive load at failure per radius (r0), assumed
to be distributed over an arc length usually less than 15 degrees (2α ≤ 15◦),
and 2L is the thickness of the disc (see Fig. 1). It is worth mentioning that
in the derivation of (1), the distribution of the applied load in the axial (out
of plane) direction is assumed uniform, i.e. the disc is under a plane stress
condition. Simplicity, ease of sample preparation and reasonable control over
the specimen size have made the BTS a very popular method for indirect
measurement of the tensile strength of solid-brittle materials.

As an effective method of measuring the tensile strength of a wide range
of geo- and construction substances (Hondros, 1959; Wijk, 1978; Kourkoulis
et al, 2012), the Brazilian test has also been widely applied to disc specimens
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of harder and stiffer polymers, cemented carbides, advanced ceramics and
diamond composites (Cranmer and Richerson, 1998; Serati, 2014). However, it
has been long reported that following all the test prerequisites of the standard
Brazilian method may not be practical with such materials. Deviations from
standard recommendations arise mainly from the violation of the accepted
boundary conditions in a conventional BTS test method, e.g. the occurrence
of non-uniform contact load distributions along the specimen thickness also
over the specimen perimeter (Serati, 2014; Hooper, 1971).

The literature is almost replete with analytical works to account for such
deviations, in particular to study: (i) the effect of two-dimensional (2D) boundary
conditions (Kourkoulis et al, 2012), (ii) the specimen size (Rocco et al, 1999),
and (iii) the width of the bearing stripes in the BTS (Rocco et al, 2001).
However, the application of a non-uniform pressure along the thickness of
the BTS has not yet received adequate attention. This, in return, requires
a three-dimensional (3D) theoretical framework to improve and enhance the
current 2D solutions. Referring to little research results available on the application
of 3D theories relevant to the Brazilian test (Serati et al, 2013; Wei and Chau,
2013), this note aims to study the 3D boundary effect of contact pressure along
the axial direction. To pursue the objectives, the analytical recipe presented
by Serati et. al (Serati et al, 2013) for the stress analysis of 3D cylinders under
arbitrary surface loads is followed due to its ease in introducing a complex
boundary condition at contacts using the double Fourier expansion technique.

2 A Non-Uniform Contact Pressure Along the Thickness of the
BTS

To check the effect of a non-uniform contact load along the thickness on the
Brazilian result, the distribution of the load is assumed parabolic along the
z-direction, but uniform on its circumference. The loading is schematically
represented in Fig. 2 by green dot lines, where for ease of comparison, the
line load (black solid line) and the uniformly distributed radial load (red solid
lines) for which Eq. (1) was originally derived, are also illustrated. The double
Fourier series expressing the assumed non-uniform thickness loading yields:

σrr (r=r0, θ, z) = − P

π α L

(
α

2
+

∞∑
m=2,4,6

sin(mα)

m
cos(mθ)

)

×3

2

( ∞∑
n=1

8nπ + 32 cos(nπ4 ) sin(nπ4 )− 16nπ cos2(nπ4 )

n3π3
cos(γnz)

+
2

3

∞∑
n=1

(
1− cos(n π)

)
sin(n π2 )

n π
cos(γnz)

)
(2)

where L is half the thickness of the disc, γn = n π
2 L , 2α denotes the arc

loading angle over which the assumed radial load is applied, and P is the total
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Fig. 2 The loading types comparatively considered

force per radial length (or F/r0) acting on one side of the disc (0 ≤ θ ≤ π).
The characterisation of the parabolic loading introduced in (2) guarantees that

r0

∫ L

−L

∫ π

0

σrr (r=r0) dθ dz = F (3)

To obtain the relevant stress components induced by the pressure in Eq. (2),
one needs to first employ the coordinate-independent Papkovich-Neuber (PN)
relation (4) in (r, θ, z) domain following the methodology discussed by Serati
et al. (Serati et al, 2013),

2 µ u = −4 (1− ν)ψ +∇(R .ψ + φ) (4)

In Eq. 4, u is the elastic displacement field, µ is Lamé’s constant, ν is Poisson’s
ratio,R represents radial position vector in the domain of interest and ψ and φ
are a harmonic vector (∇2ψ = 0) and a harmonic scalar potential (∇2φ = 0).
The critical step, therefore, is to find general solutions forψ and φ that produce
the same boundary Fourier terms as in Eq. (2) after substituting in Eq. (4)
at r = r0. To this end, the method of separation of variables can be employed
to reduce the resultant PDEs to ODEs (Serati et al, 2013). It follows that φ
takes the form:

φ(r, θ, z) =

∞∑
n=1

B0n I0(γnr) cos(γnz) (5)

+

∞∑
m=2,4,6

∞∑
n=1

Dmn Im(γnr) cos(γnz) cos(mθ)
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while the acceptable vector components ψr and ψθ to satisfy ∇2ψ(ψr, ψθ, 0) =
0 become:

ψr =

∞∑
n=1

B′0n I1(γnr) cos(γnz)

+

∞∑
m=2,4,6

∞∑
n=1

(
D′mn Im+1(γnr) +D′′mn Im−1(γnr)

)
cos(γnz) cos(mθ)(6)

ψθ =

∞∑
n=1

B′′0n I1(γnr) cos(γnz)

+

∞∑
m=2,4,6

∞∑
n=1

(
D′mn Im+1(γnr)−D′′mn Im−1(γnr)

)
cos(γnz) sin(mθ)(7)

Having known the Fourier form of the presumed applied load as in Eq. (2), one
obtains all the constants B0n, B′0n, B′′0n, Dmn, D′mn, and D′′mn for each pair of
m and n by substituting (5), (6) and (7) into (4) and comparing the coefficients
of each group of terms cos(γnz), cos(γnz) cos(mθ), and cos(γnz) sin(mθ) with
those given from the Fourier boundary conditions in (2). This, for instance,
givesB′′0n = 0 to fulfil the presumed boundary conditions at r = r0. Substituting
back the calculated constants into the stress components produced by relation
(4), 3D stress components are recovered. It is also of importance to note that
other practical boundary conditions at contact, e.g. Hertzian distributions
both along the thickness and on the periphery of the disc, can be readily
analysed in the same manner once the target distribution is introduced by
an appropriate double Fourier series. For example, for the case when the
externally imposed radial pressure is considered uniform over the thickness,
but varies according to a parabolic law along the contact at the periphery of
the disc, the Fourier expansion reads:

σrr (r=r0, θ, z) = − 2 P

π α L

(
α

2
+

∞∑
m=2,4,6

3 sin(mα)− 3mα cos(mα)

m3α2
cos(mθ)

)

×
∞∑
n=1

(
1− cos(n π)

)
sin(n π2 )

n π
cos(γnz) (8)

2.1 Numerical Investigation

Based on the aforementioned methodology and for a standard test geometry of
the Brazilian test with L

r0
= 0.5 and 2α = 10◦, the variation of the radial stress

at the middle section (z = 0) is compared in Fig. 3 for two loading cases: (i)
a load acting uniformly in the z-direction as widely assumed in the available
standards (red solid lines in Fig. 2), and (ii) a non-uniform parabolic contact
distribution along the BTS thickness as expressed by Eq. (2). From Fig. 3, it
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is evident that the tensile value of the radial stress at the centre (σrr, r=0, θ=π
2

)
is almost one-third of the estimated value by Eq. (1), point A in the figure,
when the distribution of the load is parabolic (point B). In other words, the
conventional expression (1) overestimates the maximum tensile stress with a
factor of around 3 (three).
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Fig. 3 The effect of parabolic and uniform distribution of loading along the thickness of a
standard Brazilian disc with L
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= 0.5 and 2α = 10◦, when ν = 0.25,
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Fig. 4 The variation of radial stress at the centre (σrr, r=0, θ=π/2) of a solid disc subjected
to parabolic loading along its thickness defined by Eq. (2), when ν = 0.25 and 2α = 10◦

Moreover, the application of a non-uniform load over the thickness of the
BTS not only influences the magnitude of the maximum induced tensile stress,
but also changes its location within the specimen domain as a function of disc’s
aspect ratio, or L

r0
(see Figs. 4 and 5, ). That is, in thin discs with L

r0
< 0.7, the

location of the maximum tensile stress is displaced from the disc’s centre to the
perimeter. Thus, the transition from plane stress to plane strain, i.e. thin disc
to cylinder, could greatly change the location and the value of the maximum
tensile stress in a Brazilian disc if the contact load along the specimen thickness
is not uniform. In other words, for a conventional Brazilian specimen, in which
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Fig. 5 The variation of tensile stress throughout a disc subjected to the loading defined by
(2), when ν = 0.25 and 2α = 10◦

0.25 ≤ L
r0
≤ 0.75, expression (1) needs to be taken into account with great

care if the uncertainty of the load distribution along the thickness is large.
Otherwise, an erroneous result is expected as predicted in Figs. 3–5.

3 Conclusion

Using a three-dimensional analytical approach, the sensitivity of the Brazilian
test to its standard testing recommendations was investigated. It was concluded
that the tensile stress induced in a Brazilian disc is significantly affected
by the distribution of the applied load along its thickness rather than its
circumferential condition. Under a non-uniform contact pressure along the
BTS thickness, it was evident that both the numerical value and the location
of the maximum tensile stress varied as a function of the geometrical aspect
ratio of the disc specimen. For test conditions in which load distribution in
the contact region along the thickness does not follow the standards or the
uncertainty of its exact nature is large, e.g. in testing of super hard materials
with relatively high stiffness and hardness greater than the contact testing
platens, great care should be taken in regard to the interpretation of the
Brazilian test result.
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