
University of Southern Queensland

Faculty of Health, Engineering & Sciences

An Innovative Intelligent System for Child Care & Safety

Applications using ZigBee Wireless Sensing Networks

A dissertation submitted by

Brad Goold

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Computer Systems Engineering (HON)

Submitted: October, 2014

ii

This page has been intentionally left blank

Abstract

The focus of this paper is to outline the research undertaken of Wireless Sensor Net-

works and how they can be used to assist in home health and safety applications. The

particular area of interest is a computer controlled system that tracks a wireless sensor

attached to a child indoors for the purpose of alarming when the child enters a prede-

termined unsafe area. The system must also define boundaries and have the ability to

alert a parent/guardian in the case of the boundaries being breached.

A thorough review of the available literature was undertaken which gave the author

background information as to techniques for localisation and their suitability in indoor

applications.

An empirical approach to localisation using the Profiling/Fingerprinting method was

used. A centralised system design was implemented and an application called Adapt-

able Infant Monitoring System was written and tested to perform the localisation and

boundary alarming and to provide the ability for remote location retrieval via storing

relevant data in a database.

Algorithms were proposed to reduce the localisation error. These algorithms have been

rigorously tested in two scenarios. A baseline test was applied to create a benchmark,

then testing was applied to a real residential situation. The results are analysed and

discussed.

The results concluded that localisation using the specified hardware and the finger-

printing technique was inadequate for the application domain. Factors attributing to

the localisation error have been discussed including irregular radio signal propogation

which has been earmarked for further work.

ii

The localisation accuracy does not render the research work invalid. Providing an omni-

directional radio signal and additional research and testing will see the full potential of

the system design.

The system proposed in this research allows for user-defined boundaries to be set for

the alarming mechanism. This feature alone provides, versatility and expandability

which is one of a kind and has potiential to enter the market-place covering unlimited

application scenarios.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineer-

ing & Sciences, and the staff of the University of Southern Queensland, do not accept

any responsibility for the truth, accuracy or completeness of material contained within

or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Health,

Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Brad Goold

0050085400

Signature

Date

Acknowledgments

Firstly I would like to thank my supervisor, Hong Zhou for her guidance and support

throughout this project.

I must also mention those who helped keep me on track and gave assistance from their

own disciplines: Martin Stager, Warrick Velt, and Sebastian Binnewies.

Most importantly, I would like to thank my wife, Carina, for her incredible support

and patience with me throughout the whole degree. And a big thanks to my parents

who believed in me.

Brad Goold

University of Southern Queensland

October 2014

Contents

Abstract i

Acknowledgments v

List of Figures xii

List of Tables xv

List of Algorithms xvi

Abbreviations xvii

Chapter 1 Introduction 1

1.1 Project Aims . 2

1.2 Objectives, Parameters and Constraints 3

1.3 Market Research . 5

1.3.1 Market Definitions . 6

1.3.2 Market Size . 7

1.3.3 Market Segmentation . 7

CONTENTS vii

1.3.4 Market Trends . 8

1.3.5 Market Forecasts . 8

1.3.6 Market Research Summary . 9

1.4 Overview of the Dissertation . 10

1.5 Chapter Summary . 10

Chapter 2 Technology and Tools 12

2.1 Chapter Overview . 12

2.2 Current Technology in Child Safety Monitoring 12

2.3 Application Areas . 13

2.4 Introduction to Wireless Sensor Networks 14

2.5 Crossbow TelosB Wireless Sensors . 15

2.5.1 Hardware components . 16

2.5.2 IEEE802.15.4 Communications 16

2.5.3 Wireless Sensor Software Development (TinyOS and nesC) . . . 18

2.6 Interfacing a C application using the MySQL API 27

2.7 Chapter Summary . 30

Chapter 3 Review of Literature 31

3.1 Chapter Overview . 31

3.2 Wireless Sensing Network Indoor Localisation Techniques 32

3.2.1 Range Based Localisation . 33

CONTENTS viii

3.2.2 Range Free Localisation . 37

3.2.3 Hybrid Localisation . 39

3.3 Localisation for Health and Safety Applications 41

3.4 Information Logistics - Communication and Routing 42

3.5 Chapter Summary . 43

Chapter 4 Localisation Protocol and Algorithm Design 44

4.1 Chapter Overview . 44

4.2 Profiling/Fingerprinting Localisation . 44

4.3 Centroid Algorithm . 46

4.4 Weighted Centroid Algorithm . 46

4.5 Collection Tree Routing Protocol (CTP) 48

4.6 Chapter Summary . 50

Chapter 5 System Design and Implementation 51

5.1 Chapter Overview . 51

5.2 System Architecture . 51

5.3 System Hardware . 53

5.4 System Software . 54

5.4.1 User interface . 55

5.4.2 Profiling Function . 56

5.4.3 Localising Function . 58

CONTENTS ix

5.4.4 Defining Safe/Unsafe areas function 59

5.4.5 Graph Function . 61

5.4.6 Semi-Automated Accuracy Testing Function 61

5.4.7 Setup Function . 62

5.5 Software Modules for Distributed Sensor Motes 63

5.5.1 Target Node Function . 64

5.5.2 Static Nodes . 64

5.5.3 Root Node (Base Station) . 64

5.6 Chapter Summary . 67

Chapter 6 Evaluation And Testing 68

6.1 Chapter Overview . 68

6.2 Evaluation Design . 68

6.2.1 Evaluation Metrics . 68

6.2.2 Design of Testing Procedures . 69

6.2.3 Boundary Test Design . 73

6.3 Testing and Results . 74

6.3.1 Localisation Testing . 74

6.3.2 Comparison of Localisation Tests 81

6.3.3 Sensor Orientation . 83

6.3.4 System Response Time . 87

6.3.5 Boundary and Alert Test . 89

CONTENTS x

6.4 Chapter Summary . 90

Chapter 7 Conclusions and Further Work 92

7.1 Research Objectives - Key Findings and Conclusions 92

7.2 Closing Summary . 95

References 96

Appendix A Project Specifications 108

Appendix B Datasheets 110

Appendix C Code Listings 117

C.1 TelosB mote code . 117

C.1.1 AIMSAppC.nc . 117

C.1.2 AIMSC.nc . 118

C.1.3 AIMS.h . 123

C.1.4 AIMS BEACON.h . 123

C.2 Localisation Software Code . 124

C.2.1 Main Application aims.c . 124

C.2.2 WSN interface wsn if.c . 131

C.2.3 Database interface db if.c . 139

C.2.4 Centroid Algorithms vector.c . 159

C.2.5 Raw Keyboard keybd.c . 163

CONTENTS xi

C.2.6 AIMS Makefile . 164

C.3 Matlab Data Analysis Code . 164

C.3.1 Baseline Testing Analysis Code 164

C.3.2 Residential Testing Analysis Code 166

Appendix D Setting Up Development Platform 168

Appendix E Test Data 172

List of Figures

1.1 Sketch of proposed system outline . 4

1.2 Market Projection of Wearable Devices (Wearable Technology Market -

Global Scenario, Trends, Industry Analysis, Size, Share And Forecast

2012 - 2018 2013) . 6

2.1 Layout depicting a typical application for use by the proposed system . 14

2.2 Crossbow TelosB Wireless Sensor (MoteIV 2004) 15

2.3 Transmission power reflected by the register values in the CC2420 . . . 16

2.4 Component A provides the interface for use by component B 20

3.1 Trilateration technique showing signal propagation ‘circles’ (Boukerche,

Oliveira, Nakamura & Loureiro 2007). 34

3.2 Triangulation technique showing angles from 2 beacons to the target

node. (Abdelsalam & Olariu 2009b). 36

4.1 The Centroid of the 4 best database matches for localisation 46

4.2 The Weighted Centroid of a 4 vertex polygon 47

4.3 Example network showing the ETX gradient of nodes 49

5.1 Overview of the system design from the VM to the WSN and Database 52

LIST OF FIGURES xiii

5.2 Basic Software Design Model . 55

5.3 Format of the the Beacon Frame . 56

5.4 Format of the the Data Frame . 56

5.5 Serial Frame transferred from Base Station 57

5.6 State diagram for boundary control . 60

5.7 Sequence of events for receiving a Beacon Message 65

5.8 Sequence of events for the root node receiving CTP messages 66

6.1 Common residential home showing overlaid grid for visualisation 75

6.2 Testing the sterile area with LoS for all positions 76

6.3 Scatter Plot for initial Baseline test. Indicates very random and spurious

readings. 77

6.4 Baseline test distribution showing positive skewing and the probability

plot against the Rayleigh Distribution. 79

6.5 Mean Error vs Parameters for Weighted Centroid and Centroid Algorithms 81

6.6 Mean Error vs Algorithms for Home and Baseline tests 82

6.7 Location distribution for different sensor orientations 84

6.8 Location distribution for different sensor orientations 85

6.9 Propagation Model of MicaZ mote with cc2420 Radio Chip (Azevedo &

Santos 2007) . 86

6.10 RSSI Vs Angle of reference for TelosB mote at 3m. 87

6.11 Distribution Plot of System Response Time 88

6.12 Probability Plot of System Response Time 88

LIST OF FIGURES xiv

B.1 CC2420 Datasheet (Chi 2004) . 111

B.2 CC2420 Datasheet (Chi 2004) . 112

B.3 CC2420 Datasheet (Chi 2004) . 113

B.4 CC2420 Datasheet (Chi 2004) . 114

B.5 Crossbow TelosB Datasheet (Cro 2003) 115

B.6 Crossbow TelosB Datasheet (Cro 2003) 116

List of Tables

5.1 CSV file output from Test Function. Test Data2014 10 19 13 29 16.csv 62

6.1 Algorithm Test Table . 73

6.2 Baseline Test - Best Match Algorithm 77

6.3 Comparison of algorithms for baseline tests 80

6.4 Comparison of algorithms for residential rest 80

E.1 Baseline Test Data . 172

E.2 Residential Test Data . 177

E.3 Orientation Test of RSSI for TelosB mote 183

List of Algorithms

1 Profiling Algorithm . 45

2 Weighted Centroid Algorithm . 48

Abbreviations

AoA Angle of Arrival

ADC Analogue to Digital Converter

API Application Programming Interface

APS Ad-hoc Positioning System

BAN Body Area Network

CAGR Compounded Annual Growth Rate

CTP Collection Tree Protocol

CSV Comma Separated Values

DOF Degrees of Freedom

DV Distance Vector

EMI Electro-Magnetic Interference

ETX Expected Transmissions

GPS Global Positioning System

HW Hardware

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

IPTS Indoor Personnel Tracking System

LEMON Location Estimation by Mining Oversampled Neighbourhoods

LoS Line of Sight

LQI Link Quality Indication

LTS Long Term Support

MAC Media Access Control

MEMS Micro-Electro-Mechanical-Systems

MIT Massachusetts Institute of Technology

ML Maximum Likelihood

MMSE Minimum Mean Square Error

NAT Network Address Translation

NLoS Non-Line of Sight

OEM Original Equipment Manufacturer

OS Operating System

PoA Phase of Arrival

PC Personal Computer

PDM Probability Density Map

PDR Pedestrian Dead Reckoning

PRR Packet Reception Rate

RF Radio Frequency

RFID Radio Frequency Identification

RSSI Received Signal Strength Indicator

SW Software

ToA Time of Arrival

TMP Time Management Plan

TDoA Time Difference of Arrival

TX Transmit

WAF Wall Attenuation Factor

WSN Wireless Sensing Network

Chapter 1

Introduction

Wireless Sensing Networks are fast-evolving into an era where the Internet Of Things is

the “Hot Topic” for research and information gathering systems. Extensive research has

already been undertaken into localisation and object tracking in indoor applications,

but there is little in the way of complete solutions for home health and safety. This

project aims to research current solutions and localisation approaches and aims to

produce an out of the box solution for in-home localisation for home health and safety.

The motivation for the project emerged with the startling statistics of the amount of

children below 5 dying in backyard swimming pools. The Royal Life Saving National

Drowning Report stated that 19 children under 5 drowned in swimming pools alone in

the 2012/13 financial year. In addition, 4 more children died from drowning in spas in

the same period of time (Lifesaving Society Australia 2013). This raises the question

as to whether the emerging WSN technology can be used to assist in reducing these

incidents.

For completeness, a Market Research was undertaken in the preliminary stages of the

project to discover the strengths and weaknesses of the WSN market . The com-

pounded annual growth rate of WSN’s in 2011 was at 42% (Shalini 2012), and market

confidence shows interest in this evolving technology. Market projections for wearable

devices which include WSN nodes also strengthen this confidence as shown in Fig-

ure 1.2. Torres-Solis, Falk & Chau (2010) state that there is “immense” opportunity

in implementing an indoor localisation scheme, particularly in the area of providing

navigational aids to Topographical Disorientation affected individuals.

1.1 Project Aims 2

It was found during an analysis of the literature that the area of using WSN’s for child

monitoring and health and safety has not been widely researched or applied in practice.

This opens an area whereby a possible new application for pervasive computing can be

applied.

1.1 Project Aims

This project aims to research, design and implement an out-of-the-box solution for

personnel localisation in homes or residential buildings. It is proposed that we deliver

a solution whereby the user requires minimal set-up time and technical knowledge in

order to successfully interact with the WSN in the home.

The basis for the selection of this topic is to propose an open source and cost effective

solution to localisation for indoor/residential applications in the interest of increasing

the standards of living in and around the home, particularly in the application area of

home health and safety.

In addition to the swimming pool deaths previously stated, one child is injured to some

extent in the driveway every week by a motor vehicle (Eccleston 2014)1. With that

comes the opportunity for using pervasive computing to help solve health and safety

issues or enhance the quality of life for people in and around their homes.

Examples of uses for such an application are as follows:

• Child Monitoring—Anyone who has children will know that a toddler loves to

explore, and this may mean that they can go out of sight in the blink of an eye.

If predetermined “limits” were set out, a parent could be reassured that the child

is within those limits if no alarm was to be raised 2

• Patient Monitoring—Six out of ten patients who suffer from dementia or related

illnesses can wander even in familiar places (www.alz.org 2014). This could put

them in a situation whereby they could be injured or injure other people.

1The extent of the injuries are reported to be from minor to fatal
2The author in no means portrays that it is acceptable for the parent leave the child unsuper-

vised. There are many variables that must be considered before the proper implementation of such an

application, namely the confirmation of the child wearing the device.

1.2 Objectives, Parameters and Constraints 3

Preliminary technology-based research was undertaken into the different wireless tech-

nologies — their strengths, weaknesses and opportunities. It was declared that the

sensors that comply to IEEE802.15.4 would be the most suited to the application be-

cause of the low power and low cost of the devices. Amongst the considerations were —

WIFI, Bluetooth and RFID. The main factors against the common infrastructure item,

WIFI, was the bandwidth usage and power usage. Bluetooth only has a sensing range

of 10m and is very high in power usage and cost (Chu, Wang, Liang, Ouyang, Cai &

Chen 2011). RFID has a sensing range of only 1-2m and the cost of an RFID reader is

relatively high (Liu, Darabi, Banerjee & Liu 2007). Furthermore, the university sup-

plied Crossbow Telosb motes are IEEE802.15.4 compliant, low power, low cost and can

be easily adapted/programmed using the TinyOS operating system which is designed

for such devices3. Tafa (n.d.), who wrote “Sensor Networks in Pervasive Health-care

Computing”, states that “this operating system is very appropriate for most of the

WSN applications including those used in health-care”.

1.2 Objectives, Parameters and Constraints

The major objective of this project is to design and implement an effective indoor

localisation system whereby a wireless sensor is able to be effectively tracked within

a WSN. The term “localisation” in relation to WSN’s can be defined as finding the

location of a sensor’s physical position in a deployment area efficiently (Abdelsalam &

Olariu 2009b).

The localisation data is routed to a local computer/router where it is used to calculate

an estimated position of the target and perform higher level tasks based upon a set of

pre-defined rules.

An example of such rules could be that a certain area is not to be breached or an

audible alarm will sound in conjunction with a call to the guardian’s mobile phone.

Figure 1.1 shows an illustration of the basic proposed system.

A practical viewpoint was taken when defining the parameters of this project which

includes the fact that indoor localisation must tackle the expectation of obstacles in the

localisation area. Krishna & Doja (2011) state that building walls, reflecting surfaces,

3see section 2.5.2 for more details on IEE802.15.4

1.2 Objectives, Parameters and Constraints 4

Figure 1.1: Sketch of proposed system outline

objects (transparent and opaque), and room shape are factors that must be considered

when localising indoors. Another factor that must be considered is the latency of

localisation. The system must be able to localise a moving object in real time. These

variables are evaluated during testing and are considered to be the most important

metrics as a real-life scenario is the aim of the project.

Certain assumptions and constraints were derived so that the project was able to be

completed and tested with the supplied resources and within the supplied time frame.

These constraints may be relaxed or removed as an opportunity for future work. These

parameters indicate the particular situational, environmental and technological basis

for which the design is to consider as the high-level inputs to the system:

2D localisation only — 3D localisation systems require more time spent on applica-

tion writing as well as the fact that the added dimension opens up more oppor-

tunity for localisation error.

Use of Telosb Crossbow motes — The author has limited prior knowledge into

WSN motes, so a research of a “standard” mote was chosen as the preferred

1.3 Market Research 5

platform. Furthermore, as research progressed, more evidence concreted the use

of crossbow motes, namely their adherence to IEEE802.15.4 defining low power,

low cost devices.

Programmed in nesC with TinyOS — Preliminary research and tutorials into TinyOS

and nesC has formed the basis for using the Crossbow motes and TinyOS.

Open Source — For contribution to the research community, an open source software

system is to be adhered to.

Low Cost — Cost is to be kept at a minimum without compromising the functionality

of the system. The estimated budget for a complete system should be less than

$300.

Time Constraint —Research, design, test and implement in 37 weeks. The deadline

for this project to be complete and tested is 24th October 2014. This enables the

author time to proof-read and print the final documentation of the project which

has a due date of 30th October 2014.

1.3 Market Research

This section aims to describe the condition of the current Wireless Sensing Network

market. It’s not an exhaustive Market Research document, but rather an indication

to the reader as to the motivations behind this project4. The WSN market is obscure

in the fact that there are two tiers in the way we see Wireless Sensors. These being

the “WSN solutions” and the “devices” themselves. This difference is outlined in the

sections 1.3.1 and 1.3.3 but in general, we can consider the tiers as markets for end-users

or developers/designers.

As this project is based on “indoor” WSN’s, the research in respect to end users is

focused on “smart homes” and WSN solutions for residential areas5.

The IEEE802.15.4 and ZigBee standard has a large market share in smart metering,

4A full market research would have taken too much time away from the design and implementation

of the project, although an idea of the shape of the market is important
5At times the line between industrial solutions and in-home solutions is grey in their application,

and this overlap is also considered

1.3 Market Research 6

Figure 1.2: Market Projection of Wearable Devices (Wearable Technology Market - Global

Scenario, Trends, Industry Analysis, Size, Share And Forecast 2012 - 2018 2013)

energy management and resource management (Hatler, Gurganious & Chi 2014). There

is also strength in the ZigBee market in regards to consumer confidence and preferences

with most people regarding ZigBee as “familiar” or “most familiar”. One negative

aspect of using a sensor in the 2.4GHz frequency band, (such as ZigBee) is that the

frequency band is “crowded” and suffers “limited range”. Renesas are contributing

to the development of an international sub-GHz standard, but it has not yet become

available (Mametani n.d.). We believe it would be too pre-emptive to adopt an un-

released standard for the proposal of a new solution.

Because of the interoperability of ZigBee sensors, it would prove favourable to continue

with market trends and momentum. The worldwide trend in revenue of WSN’s is

rising and expected to rise as outlined in this chapter. Also, the amount of companies

offering out-of-the-box solutions for WSN localisation is very small. We consider this an

opportunity for this project to enter the market place in a competitive and comfortable

state.

1.3.1 Market Definitions

Indoor localisation techniques using WSN’s can be purchased from specialised WSN

firms that create a total solution, although this market is not well described or adver-

tised. This was evident when researching specific companies offering solutions to home

owners. Total solutions for homes are directed more towards smart energy, security

and home-automation.

1.3 Market Research 7

As for a developer who would potentially offer a solution such as the one proposed by

this project, the technical aspect of the WSN market is very large and well defined.

The market leaders on Wireless sensor technology are Renesas, Microsemi, Silicon Lab-

oratories, Linear Technology / Dust Networks, Texas Instruments / National Semi,

Lord, Semtech, Analog Devices, Millennial Net. Although companies such as Renesas

provide the lower level IC’s to intermediate firms who design and assemble the sensors.

1.3.2 Market Size

Globally, the market for wireless sensor devices was $532 million in 2010 and $790

million in 2011 with a CAGR (Compounded Annual Growth Rate) of 46%. (Shalini

2012). At the current standpoint in early 2014, 9 billion devices are connected to the

Internet (www.researchmoz.us 2014). With the growth rate increasing each year, we

can predict that the market is accepting the IoT as a part of everyday life and we can

consider it as sense of confidence for pursuing a project in this area.

1.3.3 Market Segmentation

As previously stated, the market is split into two main tiers. On one side, there is the

portion of the market who purchase the end product or the solution. For example, the

home owner will purchase a WSN energy saving package from a company who supplies,

installs and commissions the sensors. The other side of the market is based on the

developers and designers of WSN’s and the portion of the market who create OEM

systems for specific purposes.

For the purposes of this project, we need to consider both of these tiers as we will

be striving to develop a device that uses the “technical” aspects (such as sensors,

controllers, base-stations etc). We must also consider the current market as it stands.

For example if the market is saturated with solutions similar to the one proposed, then

we may find the project infeasible.

1.3 Market Research 8

1.3.4 Market Trends

According to www.researchmoz.us (2014) the amount of devices connected to the in-

ternet is set to rise to 100 billion by 2020. Focusing in on our area of research, WSN

revenues from smaller buildings will increase 60% faster than larger buildings over the

next five years. In 2017, global WSN revenues from buildings under 50,000 square feet

will reach $1.3 billion up from $127 million in 2012” (Hatler, Gurganious & Chi 2013).

Although the definition of a small building is relatively large, one can get an indication

of the market direction and momentum of WSN’s in smaller buildings.

“there will be 50 million smart homes and buildings enabled by wireless sensor network

(WSN) technology”, according to global technology research firm ON World.

The do-it-yourself (DIY) model is preferred or most preferred by half of the respondents

compared with 41% that would prefer to purchase from a cable/broadband service

provider. ZigBees brand recognition continues to grow as 45% more consumers ranked

it as Familiar or Most Familiar in 2013 compared with ON Worlds previous survey in

2012.

Between 2012 and 2018, ZigBee and IEEE802.15.4 based systems will make up 43% of

the wireless chip-sets used for smart metering, home and building energy management,

distributed energy resources as well as lighting controls.

1.3.5 Market Forecasts

As previously stated, the future of the IEEE802.15.4 market remains strong and contin-

ues to grow. As the trend has not started to plateau, one can expect strong continuous

growth. Hatler et al. (2014) describes the future in WSN devices with the following

statement:

“In fact, revenues from ZigBee/15.4 devices and associated equipment will

reach $50 billion (up from previous years) within the next few years” (Hatler

et al. 2014).

1.3 Market Research 9

1.3.6 Market Research Summary

The state of the WSN market can be summarised as a market that achieves strong

growth and a successful short-medium term future. In addition to the state of the

market, it can be concluded that from the information gained from a product search

and comparison (available on request), the devices that are currently available in the

market for retail sale are costly and somewhat sparsely defined in terms of power,

localisibility and adaptability. In regards to development products such as the Ember

by Silicon Labs, the price for a SW license and development kit is expensive and ongoing

for the developer which proves unsuitable for our purposes as a Research Project.

1.4 Overview of the Dissertation 10

1.4 Overview of the Dissertation

The rest of this dissertation is organised as follows:

Chapter 2 is an overview of the background information that encompasses all facets

of this project. Included are the current systems in place, an insight into the tech-

nology and an introduction to to the communications protocol and TinyOS/NesC

programming structure.

Chapter 3 is a comprehensive review of the literature surrounding indoor localisation

techniques and the application to health and safety applications. This review

was used as the foundation for further research into the child health and safety

monitoring system.

Chapter 4 defines the the theoretical concepts developed in this project in order to

adhere to the project objectives. Algorithms are defined in this section in addition

to further information into the Collection Tree Routing Protocol.

Chapter 5 introduces the AIMS system. This acronym stands for Adaptable Infant

Monitoring System. The section details the design steps including hardware,

software and system design and gives finer details of the functionality of the

system.

Chapter 6 defines the evaluation and testing procedures and displays the results of

the tests including further testing of re-design stages.

Chapter 7 concludes the project with an evaluation of the objectives and how they

were met. Further work and research opportunities are also discussed.

1.5 Chapter Summary

The main focus points delivered in Chapter 1 are centred around using a Wireless

Sensor Network to assist in reducing the number of childrens lives lost from drowning

in swimming pools. The aims of the project are to research and deliver a versatile and

user friendly WSN system which can detect the position of a child in a sensor network

and alarm when the child breaches set boundaries.

1.5 Chapter Summary 11

A market research was undertaken which showed that the state of the WSN market is

strong and consumer confidence in the technology is high. Actual WSN devices were

researched for price and usability, but it was concluded that the university supplied

TelosB wireless sensor be utilised because of the availability and adherence to the low-

cost, low power IEEE802.15.4 network protocol.

Additional constraints were defined including a maximum cost of $300 for the total

system package deliverable to the home. The system is to be programmed and made

open source using TinyOS and NesC. Localisation will be in 2 dimensions, and the time

frame for the project completion is 37 weeks.

Chapter 2

Technology and Tools

2.1 Chapter Overview

In order to have an objective view on the scope of the proposed system, the existing

technology in child safety monitoring was researched. This research included papers,

products and patents and a critical analysis of the solutions was made. Furthermore,

the application areas and scenarios for the proposal are defined in conjuction with

introductions to the tools required to meet the objectives. These tools give the reader

the essential background understanding of the building blocks of the proposed system.

2.2 Current Technology in Child Safety Monitoring

Pool monitoring devices have been designed and patented since the 1970’s all over the

world. Amongst those are wave monitoring devices (Codina 1972) & (Millen 1983);

wearable submersion devices that wirelessly transmit when the device is submerged

(Quinones 1996) & (Flood 1998); Swimmer motion and behaviour tracking devices

such as the system designed by Miller, Halwachs & Farstad (1999) where they use

electromagnetic pulses to track and transmit the swimmers behaviour and position;

video monitoring devices that track swimmer movements and locations (Lu & Tan 2004)

& (Xiaoyang, Wenkai & Fei 2007).

2.3 Application Areas 13

Wu, Cai, Huo, Wu & Zhou (2013) designed a wearable drowning monitor whereby the

micro-controller system is worn by the child and when the child is detected to be at a

certain depth and movement is in a window of set parameters , then an alarm is raised.

This design is aimed for use at crowded swimming pools in china where supervision is

‘difficult’. It is acknowledged that in this circumstance, the design has merit and is a

viable solution for children who can already swim but may have sustained an injury

causing unconsciousness in the water.

Taking into account the merits of the aforementioned designs, it is clear that these

systems are only valid for discrete locations or swimming pools alone. The research

direction and proposed solution outlined in this document is highly versatile whereby

the user can define the areas that they deem as unsafe and it doesn’t necessarily need

to be a swimming pool. The unsafe area may be a bathroom, garage, or driveway

etc. This versatility along with the low cost will be more saleable in the growing WSN

marketplace.

Furthermore, the use of a system where the boundaries are defined by the user means

that the alarm can be raised BEFORE the child enters the water. This saves precious

time in an emergency situation.

2.3 Application Areas

This project is aimed primarily at the domestic market whereby the system can be

used in a normal home. A person who is deemed to be at risk in some way would have

the target sensor attached to them. The areas in which the person may move around

in are recorded into the systems computer prior to attachment of the target sensor.

Unsafe areas are defined by the user to the software in order to set out boundaries

for alarming purposes. Once the person breached the boundaries, the alarm would

be raised to the user. The image in Figure 2.1 shows a typical application scenario

whereby the person who is being tracked is allowed inside the house, but not outside.

There are 2 physical exits whereby the wearer of the sensor would be able to enter the

forbidden zone marked in yellow.

The application domain does not restrict itself to a particular scene such as a swimming

pool or even just on child safety. The domain extends to situations such as Alzheimer’s

2.4 Introduction to Wireless Sensor Networks 14

patients or dementia patients who may get lost or enter an unsafe area where they may

injure themselves or others. In addition, the system may be used to create an unsafe

area around water tanks which is also a known risk for drowning amongst children

(anon 2014).

Figure 2.1: Layout depicting a typical application for use by the proposed system

2.4 Introduction to Wireless Sensor Networks

WSN’s are defined as a network of small embedded systems with wireless connectiv-

ity via radio link that can perform tasks, gather information or route information to

other sensors. Network types can vary in their formation, topology, communication

protocol, routing protocol and communication range. Applications of wireless sensing

networks range from monitoring environmental variables, activating remote devices,

monitoring health of hospital patients (Purvis 2014), tracking assets and the location

of objects/people, and even for security surveillance. The applications for wireless sens-

ing networks is starting to evolve more as the price of purchasing and implementing a

WSN falls to affordable levels.

Pervasive computing has fast become an accepted part of life over the last decade. More

and more computers and computer controlled devices are used to perform tasks that

we take for granted. Examples are automated toll gates on toll-roads and automated

checkouts at the supermarket. Wireless sensing networks have been extended to the

2.5 Crossbow TelosB Wireless Sensors 15

consumer market with Smart Metering devices and smart home automation controllers.

2.5 Crossbow TelosB Wireless Sensors

Telosb wireless sensors from Crossbow Inc have been specifically designed to enable

cutting edge experimentation for the research community. The incorporation of the

low power MSP430 MCU and CC2420 radio chip enables researchers to use the latest

technology which adheres to the IEEE802.15.4 communications standard. In addition

to this, the mote has on board temperature, humidity and light sensors as well as a

USB connection for ease of programming and interface (Cro 2003). The datasheet for

the TPR2420CA can be found in Appendix B.5.

Figure 2.2: Crossbow TelosB Wireless Sensor (MoteIV 2004)

According to Gao, Zhou & Su (2011), the three major goals of the TelosB for exper-

imentation are to consume minimal power, allow ease of use and increase the soft-

2.5 Crossbow TelosB Wireless Sensors 16

ware/hardware robustness. The CC2420 radio chip allows for various transmit power

settings (-25dBm -> 0dBm) as shown in Figure 2.3, which allows the developer to tune

the transmission range for lower battery consumption (See B.4 for output current con-

sumption). In addition, the utilisation of the MSP430’s low power operation, sleep and

active modes allows further reduction in power usage by the mote.

Figure 2.3: Transmission power reflected by the register values in the CC2420

2.5.1 Hardware components

The Crossbow telosb mote has been designed with additional functionality built into

the hardware of the device. Included in this functionality is a temperature sensor,

humidity sensor, total-solar radiation sensor and a photo synthetically-active radiation

sensor (MoteIV 2004). The USB interface allows ease of connection and programming

of the device in conjunction with the ability of using the USB for a power source. More

importantly, the USB can act as the primary channel from the WSN to the outside

world.

2.5.2 IEEE802.15.4 Communications

The TelosB mote, coupled with the CC2420 radio chip adheres to the 802.15.4 stan-

dard for LR-WPAN devices. The standard covers 3 main frequency ranges: 868MHz,

2.5 Crossbow TelosB Wireless Sensors 17

915MHz and 2.45GHz1. This standard defines the PHY and MAC layers and its main

objectives are: ease of installation, reliable data transfer, low cost and extended battery

life — whilst maintaining a simple, yet flexible protocol (IEEE 2011). These objectives

are coupled with the intent for incorporating little or no further infrastructure.

The Physical Layer PHY

The physical layer provides the data transmission from the device. It is the layer

that interacts directly with the RF transceiver providing services such as channel se-

lection, energy management and signal management functions. 2.45GHz using the

IEEE802.15.4 standard communicates through using Digital Sequence Spread Spec-

trum (DSSS). The CC2420 radio module incorporated in the TelosB handles the PHY

later functionality in addition to many of the MAC functions described in 2.5.2.

The Media Access Control Layer MAC

TinyOS in conjunction with the CC2420 driver and CC2420 chip handle the MAC

functionality (TinyOS 2013). The MAC layer enables the transmission of MAC frames

and provides addressing and channel access mechanisms. Error protection is achieved by

generating MAC frame checking sequences. The MAC layer also incorporates a control

mechanism so that multiple communication mechanisms cannot access the radio chip

simultaneously. This multiplexing allows the seamless operation of different network

protocols operating over the same physical communication medium.

Access to the radio chip uses the CSMA/CA (Carrier Sense, Multiple Access with

Collision Avoidance) control algorithm. CSMA/CA basically means that the device

will listen on the network until there is no transmission heard. It keeps waiting until the

channel is free and then sends a frame. It waits for an acknowledge from the receiving

device before deeming success or failure. If the frame collides, the MAC functionality

goes into a transmission delay called Binary Exponential Back-off whereby it waits a

predetermined amount of time before starting the CSMA sequence again (IEEE 2011,

pp21-23).

1The TelosB wireless sensors used for this project use the 2.45GHz band, and therefore 2.45GHz is

the only frequency band discussed here

2.5 Crossbow TelosB Wireless Sensors 18

TinyOS provides this MAC functionality as an abstraction through the Active Message

interface which is discussed in Section 2.5.3. Active Messages are directly accessible

through the application layer.

2.5.3 Wireless Sensor Software Development (TinyOS and nesC)

Introduction

TinyOS is an operating system designed for low power embedded systems such as wire-

less sensors. It consists of a scheduler and drivers for a suite of different micro-controllers

and hardware components. TinyOS is written using a programming language called

‘nesC’ which stands for ‘Network Embedded Systems C’ which is a component based

and event driven (TinyOS 2013). The scheduler in TinyOS is very lightweight and

robust. It schedules tasks in a round-robin technique whereby there is no concurrency

and therefore it is favourable that short un-nested tasks are used.

The program structure of nesC varies significantly to a normal C program but the nor-

mal syntax of the code remains very similar. The nesC structure uses components and

interfaces which are ‘wired’ together to form an application. According to Levis (2006),

wiring is the most challenging concept about nesC for people new to the language. The

following sections give the reader background information to the programming construct

and calling mechanism of NesC. These sections aim to give a basis to understanding

this wiring technique and how TinyOS can be used as a flexible and robust operating

system for wireless devices.

Components and Interfaces

In nesC, Components are similar to objects in the fact that they encapsulate the func-

tionality of a certain program element. A component in nesC has a “specification”

and an “implementation”. The specification defines the functions that the component

provides and uses. These functions are usually grouped together in “interfaces” defined

below. The implementation is the actual code that the component provides. For ex-

ample if a component provides a function called open(), then the implementation for

open must be coded in the implementation section for that component.

2.5 Crossbow TelosB Wireless Sensors 19

There are 2 types of Components: A Component Module provides the implementation

of the interfaces that a component defines in it’s specification. A Component Configu-

ration is a way of linking different components together through their interfaces. This

is discussed later.

Listing 2.1 shows an example of how component module is structured. The specification

is defined in the “module” section where the interfaces that it uses and provides are

defined. These used interfaces must be provided by a higher level component in order

for the functionality of this component to be valid. The implementation section shows

the actual callback for the Boot interface event called booted(). So when the booted

event is raised, this code is called. In turn, the booted() function in this example then

uses the SplitControl interface to start another lower level component. Note that the

name of the interface can be changed by using the ‘as’ directive.

Listing 2.1: necC ‘Component Module’

1 //
↪→ −−
↪→

2 module ComponentC () {
3 uses {
4 i n t e r f a c e Boot ;
5 i n t e r f a c e S p l i t C o n t r o l as RadioControl ;
6 }
7 }
8 implementation {
9 // Must d e f i n e implementat ion o f the booted event prov ided from

↪→ the
10 // boot i n t e r f a c e
11 event void Boot . booted () {
12

13 // C a l l the s t a r t f u n c t i o n prov ided by the S p l i t C o n t r o l
14 // i n t e r f a c e .
15 i f (c a l l RadioControl . s t a r t () != SUCCESS)
16 f a t a l p rob l em () ;
17 }
18

19 // Must d e f i n e implementat ion o f startDone event
20 event void RadioControl . startDone (e r r o r t e r r o r) {
21 i f (e r r o r != SUCCESS)
22 f a t a l p rob l em () ;
23 // a p p l i c a t i o n code can go here . .
24 // . . .
25 }
26 }
27 //

↪→ −−
↪→

Interfaces - Collections of related functions that can be used by or provided to compo-

nents. An example of a commonly used interface is the standard control interface:

The standard control interface defines 2 functions called start() and stop(). A compo-

nent that “provides” this interface must therefore define the implementations for the

functions. This means that there may be many implementations of start() and stop()

2.5 Crossbow TelosB Wireless Sensors 20

which are related to different components in the same application (Levis 2006, pp. 22-

24). A set of “used” interfaces outlines to the user the interfaces it needs to perform its

job. The functions defined in the interface have two directives called a “command” or

an “event”. A command is to be defined by the component that provides the interface

and the “event” is to be defined by the component that uses that interface. An example

of the SplitControl interface is shown in Listing 2.2.

Listing 2.2: nesC ‘interface’

1 //
↪→ −−
↪→

2 i n t e r f a c e S p l i t C o n t r o l {
3 command e r r o r t s t a r t () ; // implementat ion d e f i n e d by the

↪→ component
4 // t h a t t h i s i n t e r f a c e i s wired to .
5 event s t a r t don e (e r r o r t) ; // implementat ion d e f i n e d by c a l l i n g

↪→ component
6 command e r r o r t stop () ;
7 }
8 //

↪→ −−
↪→

The block diagram in Figure 2.4 gives a visual representation of how components and

interfaces interact. Although it is noted by Levis (2006, pp. 34) that it is “dangerous

to signal events from commands”, the intention of the drawing is to give the reader an

intuition of the calling structure of the code without introducing complexities.

Figure 2.4: Component A provides the interface for use by component B

The second type of Component is called a ‘configuration’. A configuration is used to

“wire” components together by connecting their interfaces. Every nesC application

has at least one configuration that wires the components together (Gao et al. 2011).

Configurations not only connect interfaces together, but they also can “export” inter-

faces (Levis 2006, pp. 54). Exporting means that an interface my not be required by

a certain component, but can be used by a higher level component. Consider the case

where the lower level application code receives the Received Signal Strength from the

CC2420 radio chip. The higher level code may not require this information, but and

interface that provides the functionality can be exported to the application level code

2.5 Crossbow TelosB Wireless Sensors 21

for use by the application developer.

Component Configurations also have a specification and implementation section. The

implementation section is used to define the actual wiring and components used. The

specification is used to define interfaces that are provided or used for calling and caller

components. The specification in the top level application component may be empty.

An example application including a configuration is shown in Listing 2.3 which gives

the reader a better intuition as to the wiring and structure. ComponentC from Listing

2.1 is also wired into this application.

2.5 Crossbow TelosB Wireless Sensors 22

Listing 2.3: nesC ‘Configuration’ and one of the Module files

1 //−−
2 //MyApp. nc
3 //−−
4 // Conf i gura t ion
5 c o n f i g u r a t i o n MyAppC { }
6 implementation {
7 components MainC , ComponentC , RadioC , SubC ;
8

9 ComponentC . Boot −> MainC ; // MainC p r o v i d e s the Boot i n t e r f a c e
10 ComponentC . S p l i t C o n t r o l −> RadioC ; // RadioC p r o v i d e s

↪→ s p l i t c o n t r o l
11

12 RadioC . subControl −> SubC ; //SubC a l s o p r o v i d e s a s p l i t c o n t r o l
13 }
14 //−−
15 //RadioC . nc
16 //−−
17 module RadioC {
18 prov ide s i n t e r f a c e S p l i t C o n t r o l ;
19 // . . .
20 uses i n t e r f a c e S p l i t C o n t r o l as subControl ;
21 }
22

23 implementation {
24

25 command e r r o r t S p l i t C o n t r o l . s t a r t () {
26 // s t a r t d e v i c e here
27 re turn SUCCESS;
28 }
29 // . . .
30 command e r r o r t S p l i t C o n t r o l . stop () {
31 // s t a r t d e v i c e here
32 re turn SUCCESS;
33 }
34 // . . .
35

36 task void foo () {
37 // . . .
38 c a l l subControl . s t a r t () ; // c a l l s the s p l i t c o n t r o l i n t e r f a c e

↪→ o f
39 // the SubC component
40

41 s i g n a l S p l i t C o n t r o l . startDone () ; // s i g n a l s event to be run
↪→ by

42 // the code in ComponentC
43 // . . .
44 }
45

46 task void bar () {
47 // . . .
48 s i g n a l S p l i t C o n t r o l . stopDone () ;
49 }
50

51 event subControl . StartDone () {
52 // s u b c o n t r o l has s t a r t e d
53 re turn SUCCESS;
54 }
55 }

Note that the specification for this configuration is empty (Line 5). This is the top

level file and therefore the component need not provide or use any external interfaces.

As mentioned, the implementation defines the components that are used before wiring

them. The wiring occurs from line 9 with the use of ‘->’. The arrow points from the

2.5 Crossbow TelosB Wireless Sensors 23

user to the provider. In the case of exporting an interface as previously mentioned, the

’=’ sign is used to signal that the ‘user’ doesn’t actually use the interface but provides

it to the next layer of abstraction. The wiring arrows can be reversed as long as the

arrow points from the user to the provider.

An example calling structure would follow a simple routine such as:

1. ComponentC gets signalled by Boot.Booted() when the sensor boots up.

2. (Listing 2.1 line 15) ComponentC calls SplitControl.start() which, through the

wiring, is wired to RadioC. Therefore RadioC.SplitControl.Start() (2.3 line 25) is

invoked.

3. Hypothetically, RadioC does some stuff, and waits for a return event before post-

ing the task foo() to the scheduler. When the scheduler runs foo() it calls sub-

Control.Start() (2.3 line 38). As we can see by the configuration wiring (2.3 line

12), ‘SubC’ provides that interface, so we know that SubC will signal an event

called subControl.StartDone() (2.3 line 51) when it has started.

4. After the return from subControl.Start() in the task foo() (2.3 line 38), the event

SplitControl.startDone() is signalled (2.3 line 41)and therefore invokes the func-

tion which is coded in ComponentC (2.1 line 20) called

event ComponentC.RadioControl.startDone().

As can be seen from following the simple calling structure above, the wiring and calling

sequence can be quite hard to follow. This requires the application developer to gain

experience in writing and learning the coding techniques in tinyOS and nesC before

embarking on an application.

The TinyOS wiki from Stanford university 2 has a number of tutorials and code ex-

amples to help an application developer find their feet with nesC programming. It is

recommended that a minimum of graduate level programming or experienced enthusiast

is required to grasp the concepts of nesC development and programming (Levis 2006).

2http://tinyos.stanford.edu/tinyos-wiki/

http://tinyos.stanford.edu/tinyos-wiki/

2.5 Crossbow TelosB Wireless Sensors 24

Radio Communication

This subsection will give a brief outline on how messages are sent using the simple

TinyOS message type called an Active Message. This is the lowest networking layer

and is typically implemented over the sensor’s radio. Active messages are single hop

without a routing layer above performing some sort of routing protocol. The messages

are given a type which is an 8 bit integer denoting the type of message in the packet

(Gao et al. 2011).

The first thing that needs to be done to create a TinyOS application that sends a

message via radio is to find which components are required to perform the task. The

component called ‘ActiveMessageC’ provides the following interfaces:

c o n f i g u r a t i o n ActiveMessageC {
prov ides {

i n t e r f a c e S p l i t C o n t r o l ;
i n t e r f a c e AMSend [am id t id] ;
i n t e r f a c e Receive [am id t id] ;
i n t e r f a c e Receive as Snoop [am id t id] ;
i n t e r f a c e Packet ;
i n t e r f a c e AMPacket ;
i n t e r f a c e PacketAcknowledgements ;
i n t e r f a c e PacketTimeStamp<T32khz , u int32 t> as

↪→ PacketTimeStamp32khz ;
i n t e r f a c e PacketTimeStamp<TMil l i , u in t32 t> as

↪→ PacketTimeStampMilli ;
i n t e r f a c e LowPowerListening ;

}
}

Therefore one would guess that we we can write an application that uses these in-

terfaces to send a packet via the radio. Unfortunately, this is not recommended.

Following the tutorials on the TinyOS-wiki and spending some time trying to grasp the

concept, one will find that we need to use the virtualised interfaces called AMSender

and AMReceiver in conjunction with ActiveMessageC to send and receive packets. The

reason for this is because AMSender provides a virtualized abstraction disallowing 2

components sharing the radio to interfere with each other. ActiveMessageC is only

used for the SplitControl interface, i.e. turning on and off the radio.

g e n e r i c c o n f i g u r a t i o n AMSenderC(am id t AMId) {
prov ide s {

i n t e r f a c e AMSend ;
i n t e r f a c e Packet ;
i n t e r f a c e AMPacket ;
i n t e r f a c e PacketAcknowledgements as Acks ;

}
}

The AMSenderC component requires a parameter to be passed in. This is the Ac-

tive Message Type. This type of ‘generic’ component actually creates a copy of the

2.5 Crossbow TelosB Wireless Sensors 25

AMSenderC code and replaces all uses of the parameter with the value passed in. In

other words, when we create a ‘new AMSenderC(10)’ we create a new version of the

AMSender module with active message type set to 10. All messages sent through this

component will be sent with its type field set to 10.

From the above listing, we can see that the AMSenderC configuration provides us with

Packet, AMPacket and AMSend. Now we can use these interfaces to send a message.

The following code produces a simple calling sequence starting from the booted() event

and ending up using a periodic timer to send messages over the radio with active

message type set to 0x06.

Listing 2.4: Configuration for sending an AM via radio

1 //
↪→ −−−
↪→

2 //MyApp. nc
3 //

↪→ −−−
↪→

4 c o n f i g u r a t i o n MyApp{ }
5 implementation {
6 components MainC ;
7 components ActiveMessageC ;
8 components new AMSenderC(0 x06) ;
9 components new TimerMill iC () as Timer ;

10

11 ComponentC . Packet −> AMSenderC ;
12 ComponentC . AMPacket −> AMSenderC ;
13 ComponentC .AMSend −> AMSenderC ;
14 ComponentC . S p l i t C o n t r o l −> ActiveMessageC ;
15 ComponentC . Timer −> Timer ;
16 }
17 //

↪→ −−−
↪→

Listing 2.5 requires a few explanations. Firstly note that the payload data has to be

requested from the ‘Packet’ module. This tells that component to return a pointer to

the payload area of the specified size. The payload is wrapped in layers as traditional

messages are when being transmitted. Also note that the data structure in message.h

uses ‘nx struct’. This is called a ‘platform independent’ type and is required because of

the differences in ‘endianness’ by different hardwares. For example when compiling for

a MSP430, if this struct werent defined, the CC2420 would deem the data incompatible

(Levis 2006, pp. 137-9).

Listing 2.5: Module for sending an AM via radio

1 //
↪→ −−−
↪→

2 //ComponentC . nc
3 //

↪→ −−−
↪→

4 #inc lude ”message . h”
5 module ComponentC () {

2.5 Crossbow TelosB Wireless Sensors 26

6 uses i n t e r f a c e S p l i t C o n t r o l ;
7 uses i n t e r f a c e Boot ;
8 uses i n t e r f a c e AMPacket ;
9 uses i n t e r f a c e Packet ;

10 uses i n t e r f a c e AMSender ;
11 uses i n t e r f a c e Timer<TMil l i >;
12 }
13 implementation {
14

15 bool busy = FALSE;
16

17 event void Boot . booted () {
18 c a l l S p l i t C o n t r o l . s t a r t () ; // s t a r t the rad io
19 // go to s l e e p andd wai t f o r the rad io to s t a r t .
20 }
21

22 event void S p l i t C o n t r o l . startDone (e r r o r t e r r o r) {
23 i f (! e r r o r)
24 c a l l BTimer0 . s t a r t P e r i o d i c (TIMER PERIOD MILLI) ;
25 e l s e
26 f a ta lp rob l em () ;
27 // go to s l e e p and wai t f o r t imer to f i r e
28 }
29
30

31 event void Timer . f i r e d () {
32

33 i f (! busy) {
34 // g e t p o i n t e r to the pay load
35 Msg∗ msg = (Msg∗) (c a l l Packet . getPayload(&pkt , s i z e o f (Msg)))

↪→ ;
36 // s e t the pay load
37 msg−>data1 = 0x5A5A ;
38 msg−>data2 = 0xA5A5 ;
39

40 //Send the packe t
41 i f (c a l l Send . send (AM BROADCAST ADDR,
42 &pkt , s i z e o f (Msg)) == SUCCESS) {
43 busy = TRUE;
44 }
45 // go to s l e e p and wai t f o r sendDone ()
46 }
47

48 event void Send . sendDone (message t ∗ msg , e r r o r t e r r o r) {
49 i f (&pkt == msg) {
50 busy = FALSE;
51 // message has been se n t !
52 }
53 }
54

55 //−−
56 // message . h
57 //−−
58 typede f n x s t r u c t Msg {
59 nx u in t16 t data1 ;
60 nx u in t16 t data2 ;
61 } Msg ;

Take note that when sendDone() is raised, the parameter passed is a pointer to the

message sent. This is to ensure that the message type that was sent is the actual message

that triggered this event. In the case of more components using the radio chip, it is

necessary to check the message that was the required message for the triggered event.

2.6 Interfacing a C application using the MySQL API 27

Conclusion

TinyOS and nesC provides structured and robust platform in which to develop appli-

cations for the WSN domain. It has been shown that in order to create an application

using TinyOS and nesC there is a fair level of understanding that is required. Once the

developer has learn the concepts of the language and calling structure, the platform

becomes very powerful and flexible. This section only provided a small introduction to

a very large topic. It was intended that the reader understand how event based is im-

plemented and how that can reduce the need for program loops which waste processor

time and in turn battery power.

2.6 Interfacing a C application using the MySQL API

Using the ‘MySQL C API’ requires some background knowledge in the way connections

are made to the databases and how data is returned. Creating queries is very similar

to using the printf() function with the SQL query as the parameter. The following

paragraphs will give a simple background on how a C program can use the MySQL

API for simple tasks.

Firstly the MySQL development library must be downloaded, in addition with having

the database software installed. The dev library is called “libmysqlclient-dev”. After

installation of the libraries, the API is accessed through the header file “mysql.h”. Using

the GCC compiler, the application files can be compiled and linked using “$(mysql config

–libs)”. This will include the library and it’s location.

To make a connection to a MySQL through a C function, the code requires the root

username and password. This gives the user the privileges to create and drop databases,

tables etc. There is an exhaustive amount of information about security and access

rights, but they will be discussed no further here. To connect to the database, the

following lines must be used:

MYSQL ∗conn = m y s q l i n i t (NULL) ;

i f (! mysq l r ea l connec t (conn , se rver , user , password , database , 0 ,
↪→ NULL, 0))
{

f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
mysq l c l o s e (conn) ;
r e turn 1 ;

2.6 Interfacing a C application using the MySQL API 28

}

The parameters to the the mysql real connect() function, server, user, password and

database are strings holding the relevant information. If the function returns NULL

we have a problem connecting. The error from MySQL will be printed to stderr for

debugging purposes. Once the connection has been made, the user can continue ma-

nipulating the database. The connection pointer is then used in the database access

functions throughout that function call.

Queries are very simple, although the return from a query must be handled correctly

to reach the required information. A simple query to select all information from a table

is shown below 3.

Listing 2.6: MySQL API access to retrieve table contents

1 MYSQL RES ∗ r e s u l t ;
2 MYSQLROW row ;
3 i n t numf ie lds = 0 ;
4 i n t i i = 0 ;
5

6 MYSQL ∗conn = m y s q l i n i t (NULL) ;
7

8 i f (! mysq l r ea l connec t (conn , se rver , user , password , database , 0 ,
↪→ NULL, 0))

9 {
10 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
11 mysq l c l o s e (conn) ;
12 re turn 1 ;
13 }
14 i f (mysql query (conn , ”SELECT ∗ from Main ; ”))
15 {
16 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
17 mysq l c l o s e (conn) ;
18 re turn 1 ; // or e x i t (1) i f you are not hand l ing err or e l s e w h e r e .
19 }
20 r e s u l t = m y s q l u s e r e s u l t (conn) ;
21 num f i e ld s = mysq l num f ie lds (r e s u l t) ;
22

23 row = mysq l f e tch row (r e s u l t) ;
24

25 whi le (row != NULL}
26 {
27 // loop through each f i e l d in t h a t row
28 f o r (i i = 1 ; i i < num f i e ld s ; i i ++)
29 {
30 // need to use on ly rows t h a t have non−n u l l v a l u e s
31 i f (row [i i] != NULL)
32 {
33 p r i n t f (”%2.4 f , ” , a t o f (row [i i])) ;
34 }
35 e l s e
36 {
37 p r i n t f (”NULL\ r \n”) ;
38

39 }
40 p r i n t f (”\n\ r ”) ;
41 }
42 row = mysq l f e tch row (r e s u l t) ;

3The table is assumed to have all data-types as floats

2.6 Interfacing a C application using the MySQL API 29

43 }
44

45 m y s q l f r e e r e s u l t (r e s2) ;

First a connection is made to the database 2.6 Line 8. Then the query is sent (line

14). The result is then requested whereby it is further broken down into rows using

the result returned from the API. The number of fields in each row is sought after to

confirm the number of elements in the row array that is returned. Each iteration of

the while loop takes another row from the result data. As shown, null values must be

dealt with accordingly (line 37). It is also important to free the allocated memory for

the result after the result has been used. The API allocates memory as large as the

result, therefore passes the responsibility of the calling function to free the allocated

memory when it so desires. This occurs at line 45 in this example.

The query string can be any standard MySQL query. This includes creating and drop-

ping databases and tables etc. Information can also be retrieved from the table schema

and other administrative information tables that reside inside MySQL. Inserting and

deleting data is also accessed through the simple query function.

The API contains many functions that can help manipulate databases further. The

information given here uses the relevant sections of Oracle (2014)’s MySQL C-API

documentation as a guide and gives the reader a background as to how this project

interfaces with the MySQL C API and how the data is manipulated.

2.7 Chapter Summary 30

2.7 Chapter Summary

Chapter 2 elaborated on the current state of the child safety devices that have been

developed. It was found that although there are a number of patented devices, they all

lack the ability to detect when the child has entered an unsafe area. They detect the

fact that the child is in the water, or the state of the child’s movements. It is noted

that time is precious in life-saving situations and the earlier the alarm, the more chance

of saving the life of the child if it enters an unsafe area.

The application domain for the proposed system is shown to have many applications,

including monitoring of Alzheimer’s patients or even monitoring children in regards to

bath tubs or spas. As the systems boundaries are to be user-defined, the application

scenarios are virtually limitless.

Background information into the WSN technology, and more specifically, the Crossbow

TelosB mote was introduced. This included the hardware and communications protocol

as well as TinyOS and NesC. The programming language and Operating System calling

structure have been outlined for a thorough grounding on how the wireless sensors will

fit into the system design.

Chapter 3

Review of Literature

3.1 Chapter Overview

A portion of this work has been aimed at completing a thorough survey of the literature

outlining the current and historical state of wireless sensing localisation technology and

it’s applications in homes, buildings or residential areas. To narrow the research to the

particular area of study, certain databases were targeted with selected keywords such

as “indoor localisation” OR “Position tracking” AND “WSN”1. The results were then

filtered down to capture the articles and studies that were published during the last 4

years. As this dissertation deals with the practicality of human-tracking, the results

were further filtered into publications that applied (or could be applied) to tracking a

human in the designated environment.

The resulting publications were then analysed for their specific metrics such as:

• Study type: Theoretical, empirical, comparative or survey

• The direction or ‘school of thought’ that the paper follows.

• The approach or methodologies taken to localise the person

• The validity of the data

• The references backing up their claims.

1Those databases included ACM, IEEE Xplore, Compendex and others

3.2 Wireless Sensing Network Indoor Localisation Techniques 32

• Conclusions made and future works proposed.

Following on from each analysis references were traced back to the original source. This

uncovered more information giving a thorough understanding of the roots of localisa-

tion in WSN’s. This information was then used to create an understanding as to the

application areas of this project and to possibly uncover areas of research which were

vague or not yet embarked upon.

3.2 Wireless Sensing Network Indoor Localisation Tech-

niques

Localising an object or person indoors has had a vast amount of attention over the last

10 - 20 years. Since GPS is ineffective indoors, the task of tracking an object indoors

involves different techniques which can be broken into 2 major styles: Range Free

and Range Based.

The range based technique uses range information which is provided when packets of

data are sent and received, or utilise the angle of signal arrival (AoA) or the time

of arrival (ToA). Another range technique calculates the position based on the signal

phase of arrival (POA)(Liu et al. 2007). Range free uses techniques where the range

is not required such as fingerprinting and DV-hop. Hybrid systems have also been

implemented which exploit the benefits and suppress the disadvantages of both of these

methods. This method is discussed in detail in Section 3.2.3.

Calculating the actual position can be performed using one of two broadly defined

approaches. These are the Distributive approach and Centralised approach.

The Distributive approach is when the node (or nodes) calculates the position based

upon the information received from all other nodes. The Centralised approach is when

all information is routed to a Base Station or a PC etc. which in turn calculates the

position of the node (Nazir, Arshad, Shahid & Raza 2012).

3.2 Wireless Sensing Network Indoor Localisation Techniques 33

3.2.1 Range Based Localisation

Range based localisation is where the target node’s position is found by using range

measurements such as received signal strength, angle, time, or phase to position the

target node. The methods exploit these principles explicitly to calculate the location

of the node. The following outlines the literature on the different techniques and the

basic principles taken to achieve positioning.

Using RSSI as the location parameter is one of the most widely researched topics in re-

gards to (indoor) localisation due to its availability in most modern radio chips (Schmid,

Volker, Gadeke, Weber, Stork & Muller-Glaser 2010). Received Signal Strength Indi-

cation is the voltage received at a receivers signal strength indicator (RSSI) circuit

(Wang, Chen, Lin, Chuang, Lai & Jiang 2012). It is the measured power of a received

radio signal (Benkic, Malajner, Planinsic & Cucej 2008). The log normal shadowing

model is the most commonly used propagation model which indicates that the average

received signal strength decreases exponentially with distance:

Pr(d) = Pt(d0)− 10 log

(
d

d0

)
+ xσ (3.1)

Where Pr(d) is the RSSI power as a function of distance d. n is a path loss exponent

which depends on the environment such as walls, obstacles etc. xσ is a random variable

which accounts for the random variation in path loss (Sahoo, Hwang & Lin 2008).

Most of the literature pointed out that the monetary cost of localisation was lowest

when using RSSI, although Zhao & Smith (2013), who proposed an acoustic RFID based

indoor system argues that the existing systems are “costly”. Zhao & Smith (2013)’s

approach with acoustics failed to indicate how to solve the problem of obstacles or

NLoS localisation. Zhang, Xia, Yang, Yao & Zhao (2010) point out that “its (RSSI’s)

low cost does make it attractive for possible hybrid mobile terminal locating schemes”

which are discussed further in Section 3.2.3.

RADAR (Bahl & Padmanabhan 2000) was one of the first RSSI based localisation

systems proposed. They used 2 techniques, namely trilateration, which they define as

‘triangulation’ (shown in figure 3.1) – and an empirical approach using fingerprinting

(defined in Section 3.2.2). The author’s conclude an accuracy that RADAR produced

3.2 Wireless Sensing Network Indoor Localisation Techniques 34

Figure 3.1: Trilateration technique showing signal propagation ‘circles’ (Boukerche et al.

2007).

was within 2-3m and with the high power of WIFI, they only required 3 beacon nodes

per 1000m2. Another pure RSSI based localisation scheme was proposed by Hightower,

Vakili, Borriello & Want (2001). They called their scheme “SpotON” and the objective

was to localise objects in office areas by calibrating each sensor to known distances and

then letting the sensor search the calibrated list to find the mapped distance. Hightower

et al. (2001) found that the results were somewhat inaccurate and concluded that there

was opportunity for further work on localisation techniques. A dedicated empirical

study on RSSI also confirmed these findings which was completed by Benkic et al.

(2008).

Bahl & Padmanabhan (2000) was aware of the multipath, shadowing and attenua-

tion effects of using RF indoors and adapted an algorithm which they called “Wall

Attenuation Factor”(WAF) into their localisation calculations.

Most, if not all of the literature researched mention the difficulties of using an only-

RSSI localisation solution. Zhao & Jia (2010) stated that RSSI may produce an error

of as much as 50% and Haque, Nikolaidis & Gburzynski (2009) went further to mention

that using only RSSI would be “futile”. Technical electronic discrepancies also affect

the RSSI read by a node even if the received power is the same, such as the bias on the

3.2 Wireless Sensing Network Indoor Localisation Techniques 35

reference voltage for the ADC(Zhong & He 2009). Benkic et al. (2008) completed an

empirical study on RSSI measurements radio chips from 3 different vendors. They state

that “There is a general belief that in Wireless sensor networks RSSI is a bad estimator

of link quality. This belief was confirmed during our research”. On the contrary,

Krishna & Doja (2011) state that RSSI is cost effective and suitable for short range

applications, although they lack a definition of ‘short range’. Yedavalli, Krishnamachari

& Venkatraman (2007) made an important point in saying that although averaging

RSSI can improve the accuracy, the amount of beacon/anchor nodes (above 3) doesn’t

necessarily have any effect. They also noted the obvious point that if we need to average

the RSSI values, this takes up valuable time and can hinder the real-time accuracy when

tracking a mobile target.

Giorgetti, Farley, Chikkappa, Ellis & Kaleas (2011), who proposed CORTINA, have

an interesting approach where the beacon nodes continually monitor the RSSI of the

neighbouring beacon nodes so they can keep track of the change in RSSI and channel

quality. They also take multiple readings and calculate the mean RSSI. They use a

system whereby the beacon nodes transmit the dummy RSSI signal to the target node

(and also to each other).

Cortina also uses a 1 time setup where they use a RFID tag that’s located at the power

outlet of the beacon nodes. The beacon then sends the RFID information back to the

coordinator which then can tell the position of that beacon based upon the setup data.

In addition, Cortina also uses barometric pressure to get a discrete 3D localisation

estimation in which they can tell which floor the node is on. RSSI information is

actually collected by the target node over a certain amount of time (4 seconds). Once

this information has been collected, the information is packed in a couple of packets

and sent back to the coordinator for dispatch to the main computer for localisation

calculation. This saves on network throughput if each of the beacons send their info

back over the network to the coordinator.

A major point to note about the use of CORTINA is, as stated above, the fact of

mobility. If the information is collected over 4 seconds, the localisation system will be

increasingly inaccurate and rough on faster moving targets.

There were conflicting views about signal propagation through a human body and the

effects it has on localisation. Schmid et al. (2010) argue that their RSS means (averages)

3.2 Wireless Sensing Network Indoor Localisation Techniques 36

were relatively unchanged with reference to the position that the node was located on

the body. Bahl & Padmanabhan (2000) have a more convincing argument, stating that

if water effects the attenuation levels, and the human body is made of water, then it

must also effect the attenuation to some degree. They found this was true in their

results.

Angle of arrival (AoA) is a method where the angle of the received signal is measured

by using rotating narrow-beam beacon nodes whereby the AoA is able to be calculated

by the angle of the beacon when the signal was received at the target. This uses a

technique called triangulation to calculate the distance based on the angles of 2 or

more beacon nodes. Abdelsalam & Olariu (2009b), who used this technique claim an

accuracy of 0.15 times the transmission range, therefore in regards to a CC2420 radio

chip, this equates to approximately 4.5m. Unfortunately for AoA localisation, Line

of Sight is required which is impractical in real world indoor localisation applications.

This technique was not further researched.

Figure 3.2: Triangulation technique showing angles from 2 beacons to the target

node. (Abdelsalam & Olariu 2009b).

Time of Arrival (ToA) and Time delay of arrival (TDoA) exploit the radio frequency

propagation speed in order to sense the distance to the target by measuring the delay

or using precisely synchronised clocks (Zhang et al. 2010). ToA is the main principle of

GPS. This method includes the use of specific hardware which adds additional cost to

the project and cannot overcome the problem of NLoS range measurements. Mention

must go to Zhao & Smith (2013) for their incredibly accurate acoustic RFID system

which produced accuracies of less than 2cm with a latency of 700ms.

3.2 Wireless Sensing Network Indoor Localisation Techniques 37

3.2.2 Range Free Localisation

Fingerprinting, otherwise known as Static Scene Analysis (Gwon, Jain & Kawahara

2004) is a 2 stage process whereby in the initial stage, the system must be ‘profiled’

or ‘analysed’ by the localisation software in order to record specific information about

each location. This information can come from the RSSI, ToA, AoA etc and be used

not for their range values, but in an attempt to ‘fingerprint’ the locations in a map of

the the sensing area (Torres-Solis et al. 2010). The second stage is the localisation stage

where the target sensor transmits the fingerprint information to the main computer (in

a centralised approach). This information is matched in the database of stored values

or a number of algorithms are performed to localised the node using MMSE or KNN

(and many others) using this information.

RADAR (in addition to only RSSI) used the signal range as fingerprints to store in

a database. RADAR used WIFI signals (802.1) and a centralised application written

on a PC for storage and position calculation (Bahl & Padmanabhan 2000). Their

accuracy was about 2-3m for a moving target using their technique, which somewhat

confirms Glatz, Steger & Weiss (2010) who state that RSSI-fingerprinting turns out to

result in quite noisy readings. We also must consider that RADAR uses WIFI signals

which are higher power than IEEE802.15.4 low power signals.

A very similar approach to RADAR is LEMON, proposed by Haque et al. (2009).

It stands for Location Estimation by Mining Over-sampled Neighbourhoods. Their

method also involves using the RSSI for fingerprinting the position of the target node

at a certain position. The profiling stage saves these fingerprints in a database. When

the node is to be localised, the database is data-mined and the closest results are further

interpolated to estimate the target’s location. With 4 nodes in a 7mx7m area LEMON

was able to accurately position to <2m. Another scheme using the exact same idea

is the one proposed by Soleimanifar, Lu, Nikolaidis & Lee (2011) and they also report

accuracies from 1 to 2m. Cherntanomwong & Suroso (2011) also use this approach and

boast a mean error of less than 0.5m. These similar methods to the same approach

report a range of error values which appears to be contradictary.

In 2008, Zhou, Jin, Zeng & Zhou (2008) proposed a localisation algorithm called Con-

centric Beacons Localisation which improves on the accuracy above. The basic approach

is that 4 anchor nodes are located at the corners of a square 2D area. The anchor nodes

3.2 Wireless Sensing Network Indoor Localisation Techniques 38

transmit broadcasts at different power levels. The broadcast packet contains the TX

power that the packet was sent. To estimate the position of the target, that node

calculates the lowest signal strength from each different beacon and then computes the

interpolation of the vertical and horizontal components. The intersection of the per-

pendiculars to each axis define the estimated position of the target node. The authors

conclude an accuracy of 0.4 x the distance between transmission steps. If this estima-

tion is accurate, the transmit power using the Crossbow Telosb mote will be able to

provide an accuracy of less than 1/2 a meter.

Another system developed that also manipulated the transmit power was that provided

by Angelopoulos, Filios, Karagiannis, Nikoletseas & Rolim (2012). In a different ap-

proach, they used statistical analysis of the received packets when transmitting with

low transmit power. The anchors receive a transmitted packet and respond with a reply

packet. The amount of successful packets received per ”burst” of localisation packets

is used to localise the node in comparison with the anchor nodes. The localisation is

based upon the stochastic effect of RF propagation. Meaning that although the tar-

get may be in the transmission range, there is a possibility that the packet wont be

received (due to external influences such as EMI, other RF, etc.). Also, if the target

is outside the transmission range, there is also the possibility that the packet will get

through. This enables the aspect of statistically analysing the “amount” of packets

that are received in a certain burst to localise the target node. The MAC layer in the

WSN protocol has the re-transmission number reduced to 0 so that the possibility of

reception is not interfered with favourably (Angelopoulos et al. 2012). Although the

author supplies good results, they fail to indicate to the reader how the results were

measured and the method of data collection.

Bras, Pinho & Borges Carvaloh (2013) propose a scheme where sectorized pentagonal

antenna is used as the signal transmitter. Packets sent to the node are numbered with

the transmitted sector and the RSSI is sent back to the Localisation System computer

for calculation based upon fingerprinting. It was concluded the localisation system they

propose is marginally better than a 4 node RSSI fingerprinting method, although with

the cost of WSN nodes reducing, the expectation that their technology will prevail

seems unconfirmed.

A contextual approach was also developed whereby the location of the anchor nodes

were specifically set out so that certain areas were monitored more heavily than others.

3.2 Wireless Sensing Network Indoor Localisation Techniques 39

The localisation system called IPTS (Indoor Personnel Tracking System), proposed by

Chu et al. (2011), would detect that the target had passed a certain way-point or door

entry, then only take readings that were valid for that particular area. This empirical

approach required refining their parameters during the testing phase. They used a

HW/SW design around the ZigBee standard and boast an accuracy of around 0.4m

but do not define the number of nodes or node density.

3.2.3 Hybrid Localisation

To overcome some of the shortcomings of the singular approaches, researchers and de-

signers have been combining the different techniques. Ad-hoc Positioning System APS

is a hybrid technique that combines the use of 3 GPS nodes for real-world localisation

and DV-hop which uses the hop count back to a receiver node to calculate the distance.

This type of localisation requires a dense internal network (Niculescu & Nath 2001).

The objective of APS was to provide an absolute location for indoor localisation based

upon the GPS locations derived from their respective sensors. This application area

leans more towards an assisted GPS.

Colombo, Fontanelli, Macii & Palopoli (2011) used Pedestrian Dead Reckoning (PDR)

from 9 DOF accelerometers and gyro’s in combination with cameras and signal pro-

cessing equipment to localise their target. Although their system provided an accuracy

of less than 0.1m it would prove impractical because of the fact that most indoor en-

vironments have NLoS areas. They note that the accumulated error of PDR without

reference is a problem for indoor applications.

Alternatively, Combining RSSI with other methods has improved the accuracy of lo-

calisation without necessarily increasing the cost. The method outlined by Coluccia

& Ricciato (2010) which combines Maximum Likelihood (ML) estimation with RSSI

improves the accuracy down to less than 2m. A combination that achieved higher ac-

curacy was developed by Shen, Yu & Tan (2012) who used the ‘Markov Random Field

Model’. Simply put, they estimate what is a ‘good’ reading and apply their algorithm

to it to get a more accurate position. Both of these approaches only provided theoret-

ical results without including obstacles. On the other hand, Noguchi, Fukada, Mori,

Sanada & Sato (2013) provided details of their empirical design, including obstacles

and their results show high accuracy using RSSI and the kNN (k nearest neighbour)

3.2 Wireless Sensing Network Indoor Localisation Techniques 40

algorithm. The use of a Probability Density Map to guess the next position of the

target node was proposed by Boom, Ros, De-Hosson & D’Souza (2012) although their

accuracy is only 2.1m the complexity is quite low compared to other systems.

Another practical method which produced excellent results was proposed by Sugano,

Kawazoe, Ohta & Murata (2006) who used Minimum Mean Squared Error (MMSE) and

Maximim Likelihood Error (MLE) in conjunction with RSSI. Their empirical approach

lead them to use these statistical methods in conjunction with raw RSSI values. They

achieved an accuracy of 1.5-2m with a node density of 0.27 nodes/m2. The appealing

part of this distributed system is the simplicity and practicality of their approach.

Combining more aspects in a complex system, Schmid et al. (2010) used RSSI, GPS,

PDR and Kalman Filters to localise an object in a building. The difference in their

approach is that they used WIFI signals from infrastructure wireless routers. With this,

they boast an accuracy of 3m without extra infrastructure cost. They fail to mention

the added overhead of data sent over WIFI that restricts the user bandwidth.

A Mathematical Modelling approach was taken by Rudafshani & Datta (2007) using

the Monte Carlo algorithm and a modified version of it. They claim to have the best

results that they have discovered with localisation accuracy as low as 0.2m with a

node density of approximately 0.002 (six nodes within the sensing range of the target

node. The complexity of this system is somewhat daunting and the amount of theory

required to understand and program this system is far beyond the time constraints of

the project.

Cricket, proposed by MIT use the combination of Radio and ultrasonic signals to cap-

ture ToA and RSSI to localise the target node. They have a high accuracy (in the range

of cm), but fail due to the inherent problem of NLoS human tracking (Abdelsalam &

Olariu 2009b, pp 38).

DV-distance uses RSSI and the hop count back to the sink node to calculate a cumu-

lative distance all distances are corrected with correction factor formula. An unknown

node calculates it’s position using trilateration when in the signal range of at least three

beacon odes. (Niculescu & Nath 2003). In addition to this method, Zhao & Jia (2010)

used the weighted centroid along with DV-distance in order bring down the localisation

error associated with DV-distance only. They improved the results by more than 20%.

3.3 Localisation for Health and Safety Applications 41

3.3 Localisation for Health and Safety Applications

There have been a number of designers and researchers that have produced solutions for

health and safety applications (mainly in hospitals and aged care units). This section

will outline some of the literature and derive it’s relevance to this project.

OFlaherty & ODonoghue (2010) introduces a system called VsenseTM , developed by

Vital Technology Solutions whereby the patient wears a body area network (BAN)

which monitors the vital signs of the patient and reports information back to a main

database for evaluation. This system doesn’t provide localisation information.

CodeBlue is a total solution for emergency response, localisation and vital-signs tracking

of patients in hospitals (Lorincz, Malan, Fulford-Jones, Nawoj, Clavel, Shnayder, Main-

land, Welsh & Moulton 2004). The system offers an integrated approach to Vsense’s

BAN incorporating a parcel of different solutions in one package as an attempt to

provide an ubiquitous approach.

The Patient Centric Network (PCN) project is developing a common pervasive com-

puting architecture for sensors in hospitals similar to the one outlined in CodeBlue.

They argue that their focus is oriented towards the a integrated system without the

need for proprietary devices and ‘black-boxes’ (nms.lcs.mit.edu n.d.). The website for

PCN has a very sparse amount of information and it seems the program may have been

abandoned.

An extensive and well written article on pervasive computing in health-care written by

Tafa (n.d.) takes a more detailed approach at the topic of integrating sensor networks

into a fully ubiquitous computing outfit. The author also studies the appropriate

devices and connectivity of those devices. TinyOS is regarded as the choice Operating

System because of its small size and event based operation.

Lu & Tan (2004) provided an interesting concept to help prevent drowning in swimming

pools. Their vision based system monitors the activity of the swimmer and calculates

their conditions based upon states derived in a state machine. This example of a vision

based approach to monitoring arose many doubts in regards to video surveillance and its

merits. The authors conclude that the system would provide many false alarms which

were hard to rectify. Wu et al. (2013) had a similar approach although a wearable

3.4 Information Logistics - Communication and Routing 42

device was developed utilising accelerometers to track the behaviour of the person

being monitored. They too reported many false alarms and suggested future work to

the study of rectifying these alarms.

The aforementioned articles provide some insight into the systems that have been pro-

posed. Yet they haven’t touched on the application area in regards to location moni-

toring and alarming in specific circumstances. This opens an area whereby a possible

new application for pervasive computing can be applied.

3.4 Information Logistics - Communication and Routing

Throughout the literature, a number of routing and upper-layer message protocols were

mentioned, such as ZigBee, WirelessHART & 6LoWPAN, but there was no arguments

in relation to the most effective for localisation (Giorgetti et al. 2011). Alternatively,

there was mention in regards to the way that data was collected and processed which

brought about the following definitions: Distributive approach and Centralised

approach. Distributed is when the node (or anchor nodes) calculates the localisation

result such as defined by Sugano et al. (2006). Centralised is when a Base Station or

PC etc. calculates the result (Nazir et al. 2012).

Giorgetti et al. (2011) use centralised approach with collection tree protocol called

JesNet. All of their information routes back over the JesNet protocol to a central

computer for processing. There has been mention that this approach hinders traffic

in the network and that a distributed approach is better (Sugano et al. 2006). On

the other hand, the resources available on small WSN devices may also impact on the

amount of data that can be stored for localisation if the WSN us used for multiple

tasks.

Most of the literature didn’t disclose the actual platform the software was written on,

or the devices used. As the ZigBee protocol stack was inferred to be the choice protocol,

further research was undertaken into the API, its complexity and availablility on Telosb

motes. Many hours of searching and downloading prospective ZigBee stacks proved to

be unsuccessful. Les Bowtel from USQ confirms the difficulty in getting an operational

ZigBee stack for the TelosB mote as he embarked on the same search as the author.

The following quote sums up this research:

3.5 Chapter Summary 43

Many vendors offer us a ZigBee stack with their ZigBee solutions. No

matter the vendor, working with a ZigBee stack still requires high program-

ming skills and deep ZigBee theoretical knowledge. (Benkic et al. 2008)

Furthermore, the practicality of this project is considered more important than the

theoretical understanding of an API for a routing protocol. The author and super-

visor have concluded that the routing protocol will be chosen on its simplicity and

effectiveness.

3.5 Chapter Summary

This review gave an insight into the indoor localisation techniques and methodologies

that have been proposed or developed. The accuracies of some of the proposals was

somewhat hard to gauge as the node densities, type, etc. were often not provided. Some

of the localisation schemes required the use of large scale networks with a high number

of beacon/anchor nodes which impedes on the “cost effectiveness” parameter of our

project. Although some more accurate systems such as AoA and ToA have been defined,

their limitations far outweigh their gains in accuracy in regards to NLoS solutions

and additional cost of hardware. Hybrid systems utilising RSSI, Fingerprinting and

statistical analysis prove to be the lowest cost in respect to the total system, although

development time may inherently be an issue. The method of node clustering in order

to improve accuracy around particular areas of interest will be explored as suggested

by Werb & Lanzl (1998) who states that this approach “can be useful for tracking

babies and Alzheimer patients”. Taking the immense amount of information that is

available on WSN localisation, the author believes a study into a system using RSSI

fingerprinting and a combination of statistical approaches may prove the most effective

and efficient given the time and constraints that the project is bound to.

Chapter 4

Localisation Protocol and

Algorithm Design

4.1 Chapter Overview

This chapter provides more details on the theory behind localisation using profiling and

the algorithms that were developed. The literature on profiling which was reviewed in

the previous chapter contained contextual ideals and hence little information as to the

finer details of the data storage and retrieval. More intense searching for details out-

lining the actual fingerprinting algorithms were unsuccessful also. The fingerprinting

algorithm (below) was developed by the author based upon the concepts and informa-

tion from the literature. Additional algorithms were produced to further reduce the

error that was encountered during the initial testing phases.

4.2 Profiling/Fingerprinting Localisation

Profiling or Fingerprinting is a technique where signals such as RSSI are utilised to

create a signature at locations throughout the working area. Static sensors are located

at various positions throughout the area, but their individual positions aren’t required

for this technique. The target sensor periodically sends beacon signals to the static

nodes. When the static nodes have received the RSSI information, it is routed towards

4.2 Profiling/Fingerprinting Localisation 45

the gateway for processing at the base-station PC. Each sensor’s value creates a digital

fingerprint of the actual location that the sensor is situated. Mathematically, this can

be represented as follows:

P (xn, yn) = {RSSIs1, RSSIs2, . . . , RSSIsk} n = xmax × ymax (4.1)

where k is the number of static sensors and x and y are the physical locations defining

position P .

Data: xSize ySize numSensors numSamples Packet PacketBuffer SensorID’s

initialisation;

ii=0, jj=0, kk=0;

likePackets;

begin

for ii := 1 to xSize do

for jj := 1 to ySize do

print “put the sensor at position ii,jj”;

for kk := 1 to numSamples do

Packet = receivePacket();

push packet onto packetBuffer;

search packetBuffer for a suite of likePackets;

save indexes of likePackets;

if likePackets = TRUE then

store RSSI from like packets in DB table ii,jj,sensorID ;

end

end

end

end

for ii := 1 to xSize do

for jj := 1 to ySize do

for kk := 1 to numSensors do

calc Average of DB table ii,jj,SensorID[kk];

store Average in Main Table (iijj,SensorID[kk]);

end

end

end

end

Algorithm 1: Profiling Algorithm

The algorithm for fingerprinting is shown in Algorithm 1 which defines the major

procedural functions of fingerprinting.

4.3 Centroid Algorithm 46

4.3 Centroid Algorithm

This project contributed to the research by deriving 2 more algorithms to further

increase the accuracy of the MMSE algorithm. The first is the Centroid algorithm

where the k closest matches from the database are used to form a polygon.

Figure 4.1: The Centroid of the 4 best database matches for localisation

The centroid of this polygon provides a more accurate localisation given that empirical

results show that the best match is not necessarily the closest point to the actual

position of the sensor. The centroid can be defined mathematically as follows:

C =
m∑
n=1

Pn
m

which minimises the squared distances between the points on the polygon. m is the

number of points in the polygon, or more specifically, the number of best matches

chosen from the database. P is the position at point n of m. A visual representation

showing the 4 closest database matches and their centroid is shown in Figure 4.1.

4.4 Weighted Centroid Algorithm

The second algorithmic contribution is the Weighted Centroid. It follows from the

Centroid Algorithm that the best matched point on the polygon is (calculated to be)

4.4 Weighted Centroid Algorithm 47

the closest location to the position of the target sensor. Each successive point is a

lesser match. If this is taken true, we can hypothesise that the position would be more

weighted towards the best matched points on the polygon.

Starting from the best-matched point on the polygon, vectors are drawn to the lesser

matched points. The endpoints of these vectors are then reduced towards the better

matched point by a ‘weighting factor’. The next step is to choose the second best match

and do the same for each lesser matched point. The weighting factor is calculated by

the differences between their error values. Once all points are moved, the centroid of

the new points is found. Figure 4.2 shows a visual representation of the algorithmic

steps. Note that each positional movement is denoted by the ‘prime’ notation such as

A-> A′ and B-> B′.

Figure 4.2: The Weighted Centroid of a 4 vertex polygon

4.5 Collection Tree Routing Protocol (CTP) 48

The general form of the algorithm is as follows.

Data: Position(1...n), ii, jj, kk

Result: WeightedCentroid

initialisation;

ii=0, jj=0, kk=0;

n = number of positions in polygon;

begin

for ii := 1 to (n-1) do

for jj := ii to (n-1) do

calculate length from Position(ii) to position(jj+1);

calculate weighting factor;

move position(jj+1) towards Position(ii) by weighting factor;

end

end

for kk := 1 to n do

sumx += Position.x;

sumy += Position.y;

WeightedCentroid.x = sumx/n;

WeightedCentroid.y = sumy/n;

end

end

Algorithm 2: Weighted Centroid Algorithm

4.5 Collection Tree Routing Protocol (CTP)

As previously stated in Section 3.4, the routing protocol adopted in this project is due

to it’s simplicity and effectiveness. The CTP routing protocol offers a simple routing

protocol that delivers messages to the root node in a best effort style that proves to be

very effective.

CTP is address free in the sense that nodes do not directly address each other to deliver

a message. The process of delivering a message to the root node is by choosing the next

hop by using a routing gradient. The routing gradient is created by using Link Quality

Estimates which calculate the amount of uni-cast messages are acknowledged by nearby

motes. The LQI is then used to calculate the Expected Transmission or ETX. The ETX

is the metric used to form the basis of CTP (Fonseca, Gnawali, Jamieson, Kim, Levis

4.5 Collection Tree Routing Protocol (CTP) 49

& Woo 2006).

Each node calculates the ETX to each of it’s parents. The ETX is simply the sum of

the expected transmissions to the parent plus the ETX that the parent has calculated.

The key point is that the parent only keeps the ETX that is the lowest in the direction

of a root node therefore creating a gradient of ETX’s for which the CTP frameworks

runs from.

Figure 4.3 shows and example network using integers for simplicity. The ETX for node

‘H’ would be set to 7 as this is the best ETX to the root node. Note that node ‘F’ the

calculated ETX as 9 through node ‘H’ indicating that H’s ETX is chosen to be 7.

Figure 4.3: Example network showing the ETX gradient of nodes

4.6 Chapter Summary 50

4.6 Chapter Summary

This chapter aimed to introduce the techniques for communication routing and locali-

sation. Utilising the information gathered during the Literature Review, the chosen lo-

calisation concepts were built upon and a formal protocol for the fingerprinting method

was introduced.

Furthermore, 2 algorithms were derived to enhance the localisation accuracy of the

system. The Centroid Algorithm and an enhancement called the Weighted Centroid

Algorithm use the k best matches in the fingerprint database to narrow down on the

centroid of the formed polygon. These algorithms are tested against the default Best

Match algorithm during the evaluation and testing stage in Chapter 6.

Chapter 5

System Design and

Implementation

5.1 Chapter Overview

This chapter introduces the software platform that has been developed to track the

location of an infant in a WSN using the theoretical ideals set out in Chapter 4. The

software is regarded as Adaptable Infant Monitoring System (AIMS) in this thesis.

AIMS incorporates the software developed for the TelosB wireless sensors in conjunction

with the software that resides on the central computer for localisation, storage and

remote retrieval.

Section 5.2 is a description of the system architecture design of the development plat-

form. 5.3 describes the hardware and how it is interconnected to the central computer.

The central computer localisation software is described in Section 5.4. A breakdown of

the sensor node software is given in Section 5.5.

5.2 System Architecture

In order to have a robust platform PC to program the TelosB motes using TinyOS and

to provide a scenario for programming the localisation application, a Virtual Machine

was chosen as the best option. This method was chosen for the fact that a vanilla install

5.2 System Architecture 52

of a Linux operating system could be installed and that version is a Long Term Support

(LTS). Ubuntu 12.04LTS was chosen as the choice system as it was recommended in

the TinyOS tutorials for a base platform to build the tool-chains. To adhere with the

project objectives, the code shall be open source. This enhances the use of a Linux

virtual machine. Figure 5.1 gives an overview of the major system components.

Figure 5.1: Overview of the system design from the VM to the WSN and Database

For the code to interact with the WSN, the TinyOS SDK (Software Development Kit)

was used. This code is open source and was manipulated to adapt to the AIMS software.

MySQL server was installed in addition to the database system. The development files

and libraries have also been installed to give access to the MySQL API.

Oracle’s Virtual-box was used as the virtual machine driver and the Ubuntu VM was

created on that machine. The network was set up using NAT so that the relevant

drivers and updates could be installed as required. Emacs was used as the text editor

for the C code and Eclipse was downloaded for developing the NesC code for the TinyOS

platforms on the motes.

Each of the Mote’s id’s were filtered in the Virtual-Box hardware filter so that they

would be passed directly to the virtual machine when they were plugged in. Further-

more, ‘udev rules’ were created to enable easier interaction with the sensors. Each

of the serial numbers of the devices were translated in udev rules so that they corre-

sponded to their mode id’s which were labelled on the devices. This reduces confusion

and the added hassle of knowing which device will be programmed by ‘chance’.

5.3 System Hardware 53

NesC code syntax has a few dissimilarities from C so a plugin was downloaded to handle

the syntax changes and additional keywords. The plugin also allows the user to follow

through the calling structure to break apart components and their commands.

The tool-chain for compiling and downloading to the telosb motes was sourced and

downloaded. Getting the correct tool-chain files proved more difficult than expected,

so the author saved all files used to set up the machine in a folder and is accessible for

further developers.

A full tutorial for setting up the virtual machine is located in Appendix D. Furthermore,

the files required for executing the tutorial are available from the author.

5.3 System Hardware

The hardware design of this system has specific constraints as outlined in Chapter

1. The university-supplied TelosB motes have been selected be used for the design

and implementation. TelosB motes have been designed specifically for the research

community and for prototyping purposes. A saleable product will require the use of

a device suited to the wearable market. The size of wireless sensors is reducing with

the development of the technology. Sensium (2014) have produced a medical patch-like

wireless sensor for a different application, but the physical size and flexibility of the

sensor confirms the technology is available and possible to be adapted to the project.

To adhere to the project objectives, the system need only be scalable to 6 static sensor

nodes plus an additional 1 target node and 1 base-station node. Taking this into

account, the bandwidth of data also considers the network topology and the routing

protocol used to convey the information to the central PC.

The distance between sensors is to be such that the area to be utilised by the system

is sufficiently covered by no more than 6 static sensors to adhere with cost restraints.

According to Cro (2003) the Crossbow TelosB mote has a transmission range of 20-

30m indoors. Using the Collection Tree protocol, the AIMS Central PC can be located

anywhere within 1 hop distance from any of the static sensors. The current system

supports an area whereby the target sensor is to effectively transmit to ALL static

nodes on each beacon signal. Therefore, if the localisation area is set out as a Square,

5.4 System Software 54

the maximum distance between each of the corner nodes is ≈ 20m.

The computer system running the AIMS Software must be Linux/UNIX based and be

preinstalled with the MySQL Database. The system also must have a USB port for

interfacing with the Gateway node and the WSN. In addition, the system must have

the hardware to access the internet.

5.4 System Software

The central localisation software serves 3 main purposes. The first is to retrieve the

packets of information from the WSN. The second is to perform the localisation function

on the received data. And the final purpose is to store this information in a database

so that a remote client can connect to the database and retrieve localisation results.

Figure 5.2 is a basic outline of the AIMS localisation software. The user interface is

text based but performs the required tasks efficiently and effectively.

The software comes as 1 executable called “aims” in addition to a number of source

code files and a Makefile for compilation.

To run the software, call “aims” from the command line in the current directory or by

using the system’s file manager.

5.4 System Software 55

Figure 5.2: Basic Software Design Model

5.4.1 User interface

The AIMS software that resides on the central PC runs a text-based user interface as a

back-end. The functionality of the user interface is such that the user can interact with

the software to perform monitoring, set-up, profiling, and even testing procedures. A

basic menu offers the user a choice of options whereby they press a key to select that

option. The interface has been enhanced by the use of raw terminal mode which enables

the software to detect the keystrokes and act upon them without waiting for a newline

such as what occurs by using stdio.h and scanf().

|==================================|
|Adaptable Infant Monitoring System|
|==================================|

|=========|
| A I M S |
|=========|

Welcome! Please make your selection from the menu
|======|
| MENU |
|======|
1. Profiling
2. Monitor
3. Graph
4. Set up
5. Set Algorithm Parameters

5.4 System Software 56

6. Change number of samples for Monitoring
7. Test Accuracy
8. Set Boundaries
’q’ to QUIT or go back

The following sections provide more detail as to the functionality of the menu options.

5.4.2 Profiling Function

The profiling function interacts with the WSN to store the individual fingerprint infor-

mation into the database. The profiling function for AIMS is set out below. It is based

on the concepts outlined by Haque et al. (2009), Cherntanomwong & Suroso (2011),

and Soleimanifar et al. (2011) and follows Algorithm 1 in section 4.2.

Step 1 — The user selects the Profiling option from the AIMS menu system. AIMS

then indicates to the user to place the target node at the first position in the

grid. The Target Node is switched on and periodically sends out beacon signals

in addition to a sequence number for packet synchronisation. The contents of the

beacon frame are shown in Figure 5.3. The sequence number gets incremented

by the target node on each transmit.

Figure 5.3: Format of the the Beacon Frame

Step 2 — The static sensors will receive this message and pack it in a different message

type for transmission over the Collection Tree Protocol. The payload contents

that are transmitted are shown in the Data Frame in Figure 5.4. The ‘interval’

Figure 5.4: Format of the the Data Frame

5.4 System Software 57

is the time period of beacons that the target is sending. This is generally 100ms.

The source id, is the id of the static sensor that actually received the beacon.

The RSSI is calculated by the static sensor using the receive beacon packet. As

mentioned, the sequence number is relayed for synchronisation of packets at the

localisation PC.

Step 3 — Once a packet is received by the Root Node, it is queued for transfer via

serial communications to the Localisation PC. The packets used for serial transfer

change their packet structure once again. The packets received by the PC are of

the following format.

Figure 5.5: Serial Frame transferred from Base Station

Step 4 — The TinyOS Software Development Kit was used by AIMS to handle the

reception of packets from the serial port. This SDK is distributed under the GNU

General Public License. The library module used returns a pointer to the data

that has been read and the length of the data are. The data contains the same

format as Figure 5.5. The Localisation software dissects this packet and copies

it’s contents into a data structure holding the relevant information for use by the

code.

Step 5 — The ‘profiling()’ function in AIMS clears the serial buffer and then reads in

successive packets. These packets are checked for their content before storing the

packets in a packet buffer. The buffer is shifted right on each successful read.

Step 6 — When a designated number of packets in the buffer have the same sequence

number and independent source ID’s the locations are then recorded. This ’suite’

of packets denotes a single beacon that has reached the designated sensors.

Step 7 — The suite of packets’ RSSI’s are then stored in the MySQL database table

corresponding to each sensor and its location.

Step 9 — Steps 5-8 are repeated for a set number of sample. For example, we may

like to take 6 samples for each sensor at each location, so we take 6 full sequence

5.4 System Software 58

sets, and save their RSSI’s in the table corresponding to each position. Below is

an example of a table for a specific sensor at a specific location.

+--------+------+
| sample | rssi |
+--------+------+
166	-31
167	-32
168	-31
169	-31
170	-32
+--------+------+

Step 10 — AIMS then indicates to the user to move the sensor to the next position.

Steps 2-10 are repeated until the entire grid has been profiled.

Step 11 — Once the profiling data collection is complete. The software then takes

the average of each sensor’s location table, and stores this average RSSI in a table

denoting the physical locations and each Sensor’s average RSSI values:

+----------+----------+----------+----------+----------+----------+----------+
| position | S07_rssi | S04_rssi | S03_rssi | S05_rssi | S06_rssi | S02_rssi |
+----------+----------+----------+----------+----------+----------+----------+
101	-54	-45	-56	-68	-57	-55
102	-55	-40	-56	-50	-67	-61
103	-58	-40	-58	-52	-54	-62
104	-57	-40	-64	-60	-57	-55
105	-64	-55	-66	-72	-67	-50
106	-62	-54	-71	-56	-81	-49
107	-63	-60	-56	-53	-73	-45
108	-71	-50	-62	-56	-61	-41
109	-58	-63	-66	-56	-61	-48
201	-54	-44	-56	-54	-62	-56
...
+----------+----------+----------+----------+----------+----------+----------+

Position 101 relates to x=1, y=1 or (1,1). This table defines the ‘Fingerprint’

of the location as defined by each of the individual sensors’ RSSI average (see

Equation 4.1.

5.4.3 Localising Function

Once the database is filled with the values for each location, the user can select 2

different localising functions from the menu, ‘single’ and ’continuous’. The procedure

for localising a single position is achieved by taking the RSSI’s as stated above and

matching them to the database. The initial chain of events for localising is very similar

to steps 1 through 6 of the profiling stage except that the target sensor is in any location

within the profiled area. The following steps will outline the events after 5.4.2 ‘Step 6’

above, when the full suite of values has been received at the PC:

5.4 System Software 59

Step 1 Once a full suite of values has been transmitted to the PC, the localisation

module then stores these values in a table called Monitor. This table has similar

format to the Main fingerprint table above whereby the columns denote the RSSI

values for each sensor. In this case each row contains a set of values for the

number of samples:

+--------+----------+----------+----------+----------+----------+----------+
| sample | S07_rssi | S04_rssi | S03_rssi | S05_rssi | S06_rssi | S02_rssi |
+--------+----------+----------+----------+----------+----------+----------+
1	-78	-60	-60	-56	-62	-62
2	-78	-61	-60	-56	-62	-62
3	-78	-60	-60	-58	-62	-62
4	-77	-54	-60	-56	-62	-61
5	-77	-54	-60	-56	-62	-61
6	-77	-54	-60	-58	-62	-61
7	-76	-54	-60	-58	-62	-61
8	-77	-54	-57	-58	-62	-62
9	-77	-54	-57	-56	-62	-61
10	-77	-54	-60	-56	-62	-61
+--------+----------+----------+----------+----------+----------+----------+

Step 2 The above sequence completes until the table is populated with the required

number of samples for localisation.

Step 3 To find the location of the sensor, the most simple approach is to find the

MMSE of the Monitor table compared with the Main table. The Mean Squared

Error is defined by:

E(n) =
m∑
k=1

√
(Rk − Sk,n)2 (5.1)

where ’m’ is the number of locations in the grid. ’k’ is the sensor number, Rk is

the current RSSI reading and Sk,n is the database reading corresponding to the

location ’n’. The minimum value of n from the list of E(n) is taken to be the

position in the database of the closest position to the sensor.

Cherntanomwong & Suroso (2011) claim that using this technique, they achieved

an average error of < 0.5m. See Chapter 6 for the results that this project

produced using this technique.

5.4.4 Defining Safe/Unsafe areas function

The versatility of AIMS is further enhanced by the use of user-definable boundaries

which can be changed at the user’s discretion.

5.4 System Software 60

In order to create boundaries for the purpose of alarming the user when the sensor/child

enters an unsafe area, a ‘state table’ was implemented into the database. The table

holds the state information for each position.

There are 3 States, namely Safe, Unsafe and Transitional. These states are given to the

sensor as it moves throughout the grid. This enables the software to make decisions

based on its state only. A simple state diagram is shown for the AIMS monitoring

system in Figure 5.6.

Figure 5.6: State diagram for boundary control

The transitional state allows the transition between safe and unsafe states based upon

real-world physical boundaries. For example, if AIMS were to detect a position change

that physically cannot occur such as going through a wall, this would lead the system

to alert the user on a false alarm. The transition state lets AIMS know that there is a

thoroughfare between the safe and unsafe zones at that point and that a state change

can occur through this area.

The sequence of events for setting the boundaries are as follows:

Step 1 — The user selects ‘set safe/unsafe areas’ from the AIMS main menu.

Step 2 — AIMS then prompts the for the position in which to change the state. All

states are initialised to safe, so only the transitional and unsafe states need to be

defined.

5.4 System Software 61

Step 3 — Once a user has input the position and the state, AIMS saves this state in

the database. An example of the ‘boundary’ table is shown:

+---+------+------+------+------+------+------+------+
| y | _1 | _2 | _3 | _4 | _5 | _6 | _7 |
+---+------+------+------+------+------+------+------+
1	s	s	s	s	s	s	u
2	s	s	s	s	s	s	u
3	s	s	s	s	s	s	u
4	s	s	s	s	s	s	u
5	s	s	t	t	s	s	u
6	u	u	t	t	u	u	u
7	u	u	u	u	u	u	u
8	u	u	u	u	u	u	u
9	u	u	u	u	u	u	u
+---+------+------+------+------+------+------+------+

Step 5 — After updating, the table, AIMS offers the user to exit or keep inputting

values. Steps 1-5 are repeated until the user exits.

5.4.5 Graph Function

The Graph option has been used primarily for debugging purposes. It performs the

same function as one iteration of ‘monitor’ except that it will create a text grid and

place an X in the position that is the floor() of the x position and y position. This

gives a visualisation as to the position of the sensor inside the grid.

newpos = 3.0000, 1.0000, e=12
current state = TRANS
last_state = SAFE
3.00, 1.00
| 0 0 X 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |

The MMSE error value is also shown in the first line to assist with accuracy and

algorithmic calculations.

5.4.6 Semi-Automated Accuracy Testing Function

A module was created to reduce the repeatability of testing and data entry into spread-

sheets for statistical analysis. This module performs 2 tasks. The first task is to direct

the user to the position where the sensor is to be placed. The second task is that it

5.4 System Software 62

takes readings, converts them to a position using all localisation algorithm parameters

for either the Weighted or Centroid algorithms1. The function saves the actual and

expected results into a CSV file for processing by software such as Matlab and Excel.

Each position is calculated a set number of times enabling the analyst the ability to

see whether the results are spurious, or follow some uniformality.

The CSV file is saved with the current date and time as to give each file a unique time-

stamp as to when the test was started. A snippet of the file as it would be imported

into spreadsheet is as follows. Note that all columns and rows are not included in this

example.

Table 5.1: CSV file output from Test Function. Test Data2014 10 19 13 29 16.csv

SAMPLE ACT X POS ACT Y POS KNN KC EST X POS EST Y POS TIME PER SAMPLE ERROR

1 1 1 3 1 5 7 0.11047 7.2111

1 1 1 3 1 5 7 0.12388 7.2111

1 1 1 3 1 5 7 0.16545 7.2111

1 1 1 3 1 7 5 0.17229 7.2111

1 1 1 3 1 6 8 0.14904 8.60233

2 1 2 3 1 1 3 0.14307 1

2 1 2 3 1 1 3 0.21927 1

2 1 2 3 1 3 6 0.16187 4.47214

2 1 2 3 1 1 3 0.19118 1

2 1 2 3 1 1 5 0.16718 3

3 1 3 3 1 6 7 0.15147 6.40312

3 1 3 3 1 4 5 0.15337 3.60555

3 1 3 3 1 3 5 0.16438 2.82843

3 1 3 3 1 3 5 0.1946 2.82843

3 1 3 3 1 3 5 0.13106 2.82843

4 1 4 3 1 2 4 0.16836 1

4 1 4 3 1 2 4 0.13192 1

4 1 4 3 1 4 5 0.13081 3.16228

4 1 4 3 1 4 5 0.13099 3.16228

4 1 4 3 1 4 5 0.15433 3.16228

5.4.7 Setup Function

The setup is very self-explanatory. The system asks a number of questions about the

physical layout and sensors. One thing to note is that when the ‘setup’ function is

called, the database will be deleted and profiling will be required again. The reason

for this is that the tables in the database need to be set up with the correct sizes and

columns. Furthermore, the setup phase checks the WSN for the sensors that it can

hear and uses that information to create names and columns.

1The initial version of this file allowed the user to select the parameters, but proved slow and time

consuming. It was updated during the residential testing procedures

5.5 Software Modules for Distributed Sensor Motes 63

The following shows the user interaction with the ‘setup’ function. All of these param-

eters are saved in the global settings data structure and then stored in the mirrored

table in the database for future retrieval.

Current Settings:

Number of Sensors = 6

Number of Samples = 20

Size in x direction = 7

Size in y direction = 9

number of samples for monitoring = 3

k nearest nodes = 6

k centroid points = 3

How many sensors are you using? 6

How many samples for profiling? 20

What is the x-size of the area? 7

what is the y-size of the area? 9

How many samples to take during monitoring? 3

Nearest nodes? 6

Centroid points? 5

As mentioned, AIMS listens to the network after the parameters are input. It makes a

list of the ‘heard’ sensors and stores them until the number of sensors designated are

found. The ID of the sensors is then used to create the table names for the positional

data and the column names in the Main and Monitor tables.

5.5 Software Modules for Distributed Sensor Motes

The objectives of the software that resides on the mote(s) is to perform the functions

outlined in Section 5.4.2 whereby there are 3 major tasks to accomplish. The first

being for the target mote to periodically send beacon signals. Following this, the static

nodes are required to capture the RSSI, and sequence number and route that back to

the central computer using CTP. The third task is for the base-station or root node to

forward these packets to the central computer as soon as possible upon arrival. All of

these functions were written into the one program although the functionality of unused

components is disabled by filtering out the Mote ID’s.

5.5 Software Modules for Distributed Sensor Motes 64

5.5.1 Target Node Function

The target node is the node that is worn by the infant. The task of the target node is to

broadcast simple Active Messages to the static nodes carrying the sequence information

for synchronisation. These messages are referred to in the code as ‘Beacons’. The struc-

ture of the code is much the same as the Radio Communication example set out in Sec-

tion 2.5.3. The destination address is AM BROADCAST ADDR, therefore all motes

receiving Active Messages will receive this message using their AMReceiverC.receive()

event.

5.5.2 Static Nodes

The static nodes perform the task of receiving the Beacon messages from the target

and packing it up in a frame for the Collection Tree Protocol to route back to the root

node. The receive event is named BReceive.receive() (refer to Appendix C.1). The flow

charts in Figure 5.7 describe the sequence of events that occur when a beacon message

is received 2.

The other functionality performed by the static nodes is through the Collection Tree

Protocol which is described in section 4.5. These static nodes also serve as forwarding

mechanisms for the protocol. They perform underlying tasks such as determining the

link quality to the nearest nodes and creating a routing gradient back to the root node.

5.5.3 Root Node (Base Station)

The base station has the task of receiving all CTP messages and forwarding them via

serial communications to the Localisation PC. The flowcharts in Figure 5.8 describe

the functionality and outline the calling structure. Refer to the listings in Appendix

C.1 — in particular the Receive.receive() (as a starting point).

2Note the dashed lines in Figures 5.7 and 5.8 do not link the charts but give an indication as to the

flow of events that the actual static node will achieve. Other events may occur during this time that

are unrelated to the functionality shown here

5.5 Software Modules for Distributed Sensor Motes 65

Figure 5.7: Sequence of events for receiving a Beacon Message

5.5 Software Modules for Distributed Sensor Motes 66

Figure 5.8: Sequence of events for the root node receiving CTP messages

5.6 Chapter Summary 67

5.6 Chapter Summary

AIMS was developed to encapsulate the whole system proposal including the WSN

and centralised approach. The software developed on the wireless sensors was designed

to route information efficiently to the root node where it is transferred to the AIMS

localisation software for processing.

The localisation software that resides on the PC performs a number of tasks including

setting up the wireless network parameters, profiling the working area, adjusting the

algorithm parameters, and monitoring the location of a child in that network.

This project is multi-faceted and the software design is only one element that makes

up the whole system. The software design in AIMS has moderately coupled modules

and to take an objective approach, could have been better designed given more time.

Albeit, the code performs the required tasks and does so with moderate ease of use.

The current AIMS system produces a text-only user interface which is very basic. The

functionality to perform the tasks, however is enhanced by the fact that all relevant

information is stored in a MySQL database. As mentioned a few times, this allows for

further expansion in regards to remote client software accessing the information and

providing a graphical and aesthetic user experience.

In regards to user-friendliness, the fingerprinting style of localisation holds little weight.

Profiling takes time and a little background knowledge for the user. As this was the best

performing method of localisation determined from the literature review, the method

was chosen on that merit.

Future consideration must be taken into information security. With a system proposal

such as AIMS, it is vital that the system is secure from hackers. This additional facet

of the system is suggested for further research and implementation.

Chapter 6

Evaluation And Testing

6.1 Chapter Overview

To ensure the system can perform the desired outcomes, this chapter aims to define the

evaluation parameters, their acceptable limits and to report on the results of testing

these derived metrics. The average accuracy (in meters) and the response time are the

two major metrics that are tested which determine if the AIMS software in conjunction

with the algorithms and parameters are able to achieve the objectives of this project.

6.2 Evaluation Design

6.2.1 Evaluation Metrics

Localisation Accuracy — This is the most important metric for the project and

should been tested thoroughly using different circumstances and algorithms. The

basic method of calculation is the linear distance between the actual position and

the calculated distance. An automated testing function has been in-built into

the program for this purpose. The average error calculated by the algorithms in

conjunction with the statistical analysis will be used to determine the accuracy

of that particular test.

6.2 Evaluation Design 69

Latency - System Response Time —

“In a data collection tree, a node must handle the data of all of its

descendents. If each child transmits a single sensor reading and a node

has a total of 60 descendants, then it will be forced to transmit 60 times

as much data. Additionally, it must be capable of receiving those 60

readings in a single sample period. This multiplicative increase in data

communication has a significant effect on system requirements. Net-

work bit rates combined with maximum network size end up impacting

the effective per-node sample rate of the complete system”.(Hill 2003,

pp. 24)

Following from the quotation above, we must provide the amount of data that

can be transferred through the root node to the localisation PC as this node is the

logistical bottleneck for the packet data. This will be measured by the amount of

packets that get through per second. This will give the ‘system response time’,

or latency, of the system. The total system response time will be the sum of the

latency from the WSN and the time that it takes to localise by searching the

database and performing the localisation algorithms. It is calculated by taking

the system time before the localisation process begins, and then again after it has

evaluated the position. These values will be plotted to show the distribution and

statistical information.

Boundary Alarms — The alarming mechanism of the system will be evaluated by

taking a sensor through a transitional zone to a unsafe zone and testing whether

the alarm functions. This will give an indication as to the effectiveness of the sys-

tem and will be used to determine if the system can perform the major objective

of the project. It must be noted that this metric is highly dependent on the two

aforementioned metrics. It is considered that the theory behind the alarm states

will be accurate if, and only if the localisation accuracy AND the response time

is such that an individual can be tracked inside each cell.

6.2.2 Design of Testing Procedures

The testing designs in this section have been included to evaluate the aforementioned

metrics. The initial testing designs created individual spreadsheets for each of the

6.2 Evaluation Design 70

algorithm parameters. This meant that the grid would have to be tested many times

over. Additional functionality was added to the automated testing module after the

second baseline testing stage. The new procedure calculates the estimated positions of

the combinations of most algorithm parameters for each cell. This reduced the amount

of iterations of the test and hence reduced the overall testing time. Furthermore, it

meant that the algorithms were carried out on the same testing data. The second

residential tests were completed using the redesigned testing module.

For clarity, the localisation tests were carried out as follows:

• Residential - Obstacles were included. Only the Best Match algorithm was used.

• Baseline - No obstacles. LoS to all static sensors from the target node. Best

Match Algorithm. Created for a benchmark. Automated testing module created

and used.

• Baseline - As above, but uses Centroid and Weighted Centroid algorithms. Device

buffering error found and repaired.

• Residential - Obstacles included. Best Match, Nearest nodes, Weighted Centroid

and Centroid algorithms tested. Automated testing procedure tweaked to perform

analysis on the same data.

NOTE: The baseline tests were not revisited with the updated automated

testing procedure as the original area was unavailable for access during the

later stages of the testing period.

It must be noted that there are more tests that can be applied to this project, for

instance varying the weighting factor of the Weighted Centroid Algorithm. Another

variation would be to test whilst there are many people in the area interrupting the

signal. The time consumed in testing these parameters would have been impractical to

complete by the project deadline. These are included in the plan for further work.

Localisation Testing and response time

The practicality of the application defines that testing of localisation should be applied

to real-life situations. The design of testing procedures are be based upon this ideal.

6.2 Evaluation Design 71

As previously mentioned, AIMS provides a testing function which returns the expected

position as well as the actual position calculated by the algorithms. These values

are saved into a CSV file for processing by mathematical or spreadsheet software.

Furthermore, the system response time is also calculated from the real time clock. This

is irrespective of the CPU time. The reason for this is to take into consideration the

processes the operating system has scheduled in during normal system running. This

will give a real life response time. The processing time, CSMA/CA time and database

access time are all encapsulated by the timing functions and therefore the latency on

localisation results will be

L(t) =

∑m
k=1 tr
m

. (6.1)

Here tr is the average response time and m is the number of samples taken. The

following steps outline the testing procedure for localisation and system response:

Step 1 — Create a grid of the area to be tested using 1m2 cells.

Step 2 — Place sensors about 2m outside of the perimeter of the area that is desired

to be tested.

Step 3 — Profile the area as defined in Section 5.4.2.

Step 4 — From the AIMS menu, select ‘Test Accuracy’. Follow the prompts until the

area has been tested. The CSV file will be saved in the format:

Test DataYYYY MM DD HH MM SS.csv 1.

Step 5 — After the test is complete, open the file manager and proceed to the location

where the AIMS software resides. Open the CSV file with EXCEL or OpenOffice

Calc. The data will be imported in their corresponding rows and columns. Each

sample is completed 5 times, therefore the sample column will contain 5 of each of

the same number. The columns will contain the sample, actual x position, actual

y position, value for nearest nodes, value for centroid vertices, time response, and

calculated error.

Step 6 — The data in the error column has been calculated using Pythagoras’ theo-

rem based upon the estimated position from the algorithm as follows:

1It is advisable to note the time that the test was started to help locate the file.

6.2 Evaluation Design 72

e(n) =
√

(x2 − x1)2 + (y2 − y1)2 ,

where n is the number of cells in the grid multiplied by 5 (samples). x2, y2 is the

estimated position and x1, y1 is the actual position.

The average of this column has been included at the bottom of the CSV file so

the user is required to perform less calculations into comparing the metrics.

Furthermore, the system response time is also averaged at the bottom of the CSV

file. The results of this testing is shown in Section 6.3.

Common House Localisation Testing

Using the procedure set out in Section 6.2.2, the system should be tested in a common

home to evaluate if the system is accurate enough to perform in a real life situation.

Using the results from this test in comparison to the baseline testing allows us to

establish the differences between an area with obstacles, walls etc to one with direct

LoS to the target sensor.

Baseline Testing

Baseline testing is performed with a complete LoS from all static sensors to the target

node. The reason for baseline testing is to gain a benchmark to compare the real life

accuracy to. It will give an indication as to the effectiveness of the system as compared

to the baseline which is expected to be the most accurate. It uses the procedure in

6.2.2 in conjunction with the following parameters.

Step 1 — Create a flat area with cells denoting the x and y positions in the grid.

Step 2 — Place the sensors approx 2m from each corner of the grid and so they are

in direct LoS of every cell in the grid.

Step 3 — Perform a profile of the area.

Step 4 — Perform the localisation tests as described in 6.2.2 and import the results

into a spreadsheet for comparison.

6.2 Evaluation Design 73

Algorithms

Table 6.1 outlines the tests that were designed in order to make a calculated assessment

of the results. The Baseline Test was only completed using a TX power of 20 because

of limited access to the test area in conjunction with the testing time. For comparison

between the Baseline and Home test, only this transmit power will be considered.

Table 6.1: Algorithm Test Table

Test No. TX Power Algorithm

1 20 Best Match

2 20 Centroid

3 20 Weighted

Centroid

For clarity, Test 1 uses the centroid algorithm, but has the vertices of the centroid set

to 1, therefore this equates to a single point which is the best match in the database.

The results from these tests are to be further analysed by using statistical analysis.

Upon finding the best performing parameters in each of the locations (baseline and

home), they are compared against each other to understand the differences between a

real life situation and a LoS situation.

6.2.3 Boundary Test Design

The boundary test is to be carried out using the same profile and localisation data

as one of the most favourable algorithms and parameter sets taken from the previous

tests. The principle of this test is to establish whether the alarms are raised when they

should be, and whether the localisation accuracy effects the alarming mechanism.

The following steps define the Boundary and Alarming Test:

Step 1 After the localisation tests have been completed and analysed, choose one of

the algorithms and parameter sets for this test. Enter those parameters into

AIMS.

Step 2 Define the safe and unsafe areas so that there is a 2 cell wide transitional

6.3 Testing and Results 74

zone through a doorway or similar. For example, the following table shows the

transitional zone centring around (3,5):

1 2 3 4 5 6 7
1 s s s s s s s
2 s s s s s s s
3 s s s s s s s
4 s s s s s s s
5 s t t t s s s
6 u t t t u u u
7 u u u u u u u
8 u u u u u u u
9 u u u u u u u

Step 4 Start with the sensor at a position in the safe zone. Select ’Monitor’ from the

AIMS menu. The results should scroll the screen returning the position and a

graph on each successful localisation. The state at that position should also be

displayed such as “SAFE” or “UNSAFE” or “TRANS”.

Step 5 Move the sensor through the transitional zone to the unsafe zone and record

the results. Upon entering the unsafe zone, AIMS will report that the boundary

has been breached.

Step 6 Repeat these steps a number of times and report the findings.

It is important to note that actual functionality of the software is being tested here.

The test is deemed successful IF and only IF the software reports a boundary breach

when the sensor passes from a transitional zone to an unsafe zone. If the localisation

result passed to the monitoring function is erratic, this problem does not affect the

functionality of the state machine (refer to Figure 5.6).

6.3 Testing and Results

The following sections cover the actual tests performed and give an analysis of the data

obtained.

6.3.1 Localisation Testing

Initial testing was performed in the residential situation. Surprisingly, the initial test

results were quite erroneous. As a result, baseline tests were then designed as per

6.3 Testing and Results 75

Chapter 6.2.2 to create a reference for possibly a best case scenario. It was through

the initial stages of the baseline testing that a buffering issue with the device driver for

the root node was found. This problem has been concluded to be the cause of the error

in the initial residential tests. The problem was rectified in the code and the baseline

testing was carried out as described.

Figure 6.1 shows the residential situation that was used to carry out the tests. The

grid gives a visualisation as to the cells in the database and their real life size and

applications.

Figure 6.1: Common residential home showing overlaid grid for visualisation

All tests were carried out with the Telosb motes set to channel 20 to lock to one specific

channel. The baseline testing was carried out with the TX power register value set to

20.

This section describes the tests and how they were performed on a practical level. The

results are then analysed and discussed.

Residential Test 1

The first localisation test was performed in the preferred use case of a normal home.

The test used a grid of 5m x 7m with 1m2 cells. The area was profiled immediately

before the test was performed.

6.3 Testing and Results 76

The results returned from a short analysis showed very scattered reading and a normal

mean of >3.5m. These readings did not reflect the claimed results in the literature such

as the claims from Cherntanomwong & Suroso (2011) of <0.5m average. No further

tests were carried out until a solution was arrived upon. The reason for the very low

accuracy was found after the baseline test was designed and carried out.

Baseline Testing

Figure 6.2 indicates the actual test area that was used for the baseline test. LoS was

achieved for all cells in the grid and the area was away from stray RF signals. A thor-

ough test was conveyed initially covering 690 data positions and taking approximately

20 hours to complete.

Figure 6.2: Testing the sterile area with LoS for all positions

During the final tests of this testing stage, it was found that the data read from the

WSN would be taken only at select times and not directed by the software. Further

investigation uncovered an issue with device buffering, hindering the ability to take in

the real time readings from the WSN. Many hours were spent performing the testing

designs, however, the results were not as expected. Figure 6.3 shows the scattered data

from the initial baseline test. As can be seen by the plot, the results are non uniform

and very inaccurate. As the buffering problem was discovered at this time, a statistical

analysis was completed on these results and the error was found to be approx. 3.67m.

The problem was rectified by clearing the device buffer before each set of packets were

read. The Baseline test was successfully completed over the next 16 hours 2.

2this discludes the prior tests that proved invalid which took a similar amount of time

6.3 Testing and Results 77

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

Er
ro

r
(m

)

Positions in grid

Error vs position
Best Match - Initial Baseline Test

Error distance

Figure 6.3: Scatter Plot for initial Baseline test. Indicates very random and spurious

readings.

The results of the two tests for the Best Match algorithm were:

Table 6.2: Baseline Test - Best Match Algo-

rithm

Test. TX Power Mean

Initial 20 3.67m

Secondary 20 3.40m

The slight improvement was still far from the stated values in the literature whereby

Cherntanomwong & Suroso (2011) claim 0.5m average error. The tests in the residential

scenario using baseline tests back up this data to strengthen the argument that the best

match algorithm cannot achieve an accuracy of 0.5m using this hardware and in these

scenarios.

6.3 Testing and Results 78

Redesign of algorithm and Baseline Test 2 results

As accuracy is the key metric in this project, the design stage was revisited as set out in

the project specification. At this point, the Centroid Algorithm and Weighted Centroid

algorithm were developed. These algorithms are defined the Section 4.3 and 4.4.

After testing these algorithms, the data was imported into Matlab where basic sta-

tistical analysis was performed. Histograms were created from each of the data sets

and their shape (positively skewed) was confirmed by plotting the data-points against

the various distribution probability plots in the Matlab ‘probplot’ function. Figure 6.4

shows the positively skewed histogram and its fit to the Rayleigh Distribution. This

probability plot shows that the data conforms to that distribution up until the 90th

percentile.

6.3 Testing and Results 79

Figure 6.4: Baseline test distribution showing positive skewing and the probability plot

against the Rayleigh Distribution.

To calculate the mean of this data, the Rayleigh mean was used as the data was

not normally distributed. Using the Rayleigh distribution functions in Matlab, it was

possible to get a clearer picture of the real mean of the data and its distribution. These

metrics were then applied to the testing procedures for new comparisons.

The results for the Baseline tests showed a minimum mean error of 2.17m using the

6.3 Testing and Results 80

weighted centroid algorithm. Table 6.3 shows the other results attained. The Weighted

centroid clearly outperforms all others in this scenario.

Table 6.3: Comparison of algorithms for baseline tests

Algorithm Weighted Centroid

Best Match - 3 nearest nodes 3.04 N/A

Best Match - 4 nearest nodes 2.85 N/A

Best Match - 5 nearest nodes 2.89 N/A

6 nearest, 2 vertices 2.38 2.91

6 nearest, 3 vertices 2.53 2.42

6 nearest, 4 vertices 2.26 2.29

6 nearest, 5 vertices 2.17 2.41

Residential Test 2

The second residential test batch was completed using the information gathered during

the previous test and design iterations. A grid of 9x7m was used which incorporated

both indoors and outdoor areas. 6 nodes were used as was the case for the baseline

testing. Table 6.4 contains the same tests as Table 6.3 for comparison. As previously

stated, the newer automated testing module created more test data to be analysed.

Table 6.4: Comparison of algorithms for residential rest

Algorithm Weighted Centroid

Best Match - 3 nearest nodes 2.77 N/A

Best Match - 4 nearest nodes 2.80 N/A

Best Match - 5 nearest nodes 2.76 N/A

Best Match - 6 nearest nodes 2.45 N/A

6 nearest, 2 vertices 2.18 2.24

6 nearest, 3 vertices 2.10 2.08

6 nearest, 4 vertices 2.06 2.03

6 nearest, 5 vertices 2.04 2.04

As a better comparison of the algorithms themselves, the full test data has been anal-

ysed. This test data was plotted on the same axes to give a comparison of the best

6.3 Testing and Results 81

performing algorithm over the parameter set. The results in Figure 6.5 show that the

Centroid algorithm outperforms the Weighted Centroid in all but a few of the parameter

sets. Ultimately, the Centroid algorithm achieves the best accuracy as stated above.

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Er
ro

r
(m

)

Algorithm

Mean Error vs
Parameters for

Centroid and Weighted Centroid

Weighted TX20

Centroid TX20

Figure 6.5: Mean Error vs Parameters for Weighted Centroid and Centroid Algorithms

6.3.2 Comparison of Localisation Tests

A comparison of the localisation test results revealed that the residential scenario was

more accurate than the baseline tests. Figure 6.6 visualises these results.

6.3 Testing and Results 82

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

2.90

3.00

3.10

Best
Match, 3
nearest

Best
Match, 4
nearest

Best
Match, 5
nearest

Weighted,
2 vertices

Weighted,
3 vertices

Weighted,
4 vertices

Weighted,
5 vertices

Centroid,
2 vertices

Centroid,
3 vertices

Centroid,
4 vertices

Centroid,
5 vertices

Er
ro

r
(m

)

Algorithm

Mean Error vs
Algorithms for different test scenarios

Base

Home

Figure 6.6: Mean Error vs Algorithms for Home and Baseline tests

There are some possibilities as to the reason the baseline tests did not prove to be more

accurate. On reason is the fact that there is no attenuation factor such as walls and

obstacles in the baseline test giving a certain distinctness to the readings. The theo-

retical exponentially decaying RSSI signal strength would apply less in the residential

situation with walls and furniture that attenuates the signal further.

The second possibility is that the baseline algorithm tests were carried out with their

parameters set individually. This means that for each received position data, only one

set of parameters and algorithm acted on that data. As previously mentioned, access

to the same grid wasn’t permitted to perform the tests using the newly developed

automated testing procedure.

In relation to the results attained, it can be concluded that the best performing algo-

rithm based on the test data was the Centroid Algorithm at 4 vertices. This equates

to the centroid of a polygon of the 4 best database matches. This resulted in a mean

error of 2.03m.

The Weighted Centroid algorithm’s internal parameters were not tweaked during this

6.3 Testing and Results 83

testing procedure. Tweaking the weighting factor adds another dimension to the testing

procedure, and holds value for future tests. It can be speculated that the correct tuning

on the weighting factor could in turn reduce the error below 2m.

6.3.3 Sensor Orientation

To further analyse the data for uniformality, the orientation of the sensor was taken

into account. The test was performed using the Weighted centroid algorithm with 5

vertices which proved to be one of the best ranked schemes. The sensor was placed

at an arbitrary position (3,3) and was rotated 90 degrees for each test. Each of the 4

orientation tests took approx 30 localisation results. The orientation of the sensor are:

Orientation 1 = ↑

Orientation 2 = →

Orientation 3 = ↓

Orientation 4 = ←

where Orientation 1 faces the y=1 horizontal. The distribution plots in Figure 6.7

clearly show that the orientation of the sensor affects the localisation results. The red

bars denote the frequency at the X positions whereby the blue denote frequency at the

Y positions.

6.3 Testing and Results 84

Figure 6.7: Location distribution for different sensor orientations

As a secondary test, a whip antenna was attached to the target node and the test was

re-performed. Figure 6.8 is the result of this test.

6.3 Testing and Results 85

Figure 6.8: Location distribution for different sensor orientations

As both of these tests returned similar results in regards to the orientation of the de-

vice, further research was embarked upon late into the testing stage. The research was

centred around the signal propagation of CC2420 devices. It was found that the prop-

agation signal is not omni-directional from a CC2420 with the standard PCB antenna.

This can be confirmed by the empirical results attained by Azevedo & Santos (2007).

Their study shows the propagation of the CC2420 to have no omni-directionality on

any plane. The sensor used to completed their study was the MicaZ sensor which has

also been designed by Crossbow. The radio propagation model with their sensor at ori-

entation 1 is shown in Figure 6.9. The propagation shows that there is a 9db difference

depending on the location of the static sensors around the node.

6.3 Testing and Results 86

Figure 6.9: Propagation Model of MicaZ mote with cc2420 Radio Chip (Azevedo & Santos

2007)

A similar test was carried out using the RSSI from the Target Sensor to a static node

sensor. This test was performed in a park away from obvious radio signal interference

or reflective surfaces and obstacles. The target sensor was positioned inside a circle

and the static node was positioned 3m away from the target in a circular shape. The

TX power of the target sensor was set at 25 or -2dB. The results of the test are shown

in Figure 6.10 where it is clear that the signal propagation from the TelosB mote using

the on-board antenna and CC2420 radio chip is not omni-directional. The table of the

testing results can be found in Table E.3.

6.3 Testing and Results 87

-85

-83

-81

-79

-77

-75

-73

-71

-69

-67

-65

0

22.5

45

67.5

90

112.5

135

157.5

180

202.5

225

247.5

270

292.5

315

337.5

RSSI vs static sensor
angular position

RSSI

Receiving sensor
always oreiented
towards the target

Figure 6.10: RSSI Vs Angle of reference for TelosB mote at 3m.

As this characteristic greatly reduces the reliability of the signal received, it can be

hypothesised that if the transmitted signal is not omni-directional, the accuracy of the

system is greatly hindered. The size and compactness of the sensor would need to suit

the application as does the effectiveness of the device. Additional research uncovered

an antenna designed in 2010 by Tze-Meng & Reza (2010). They created an omni-

directional antenna which suits the 2.4Ghz radio band. It is 51mm x 16mm x 0.8mm

which is slightly smaller than the PCB that comprises all of the TelosB components.

A suggestion for further work would be to initially test the use of the antenna by

gathering empirical results and further utilise this style of antenna in an industrial

design incorporating the sensor hardware and antenna.

6.3.4 System Response Time

The system response time was recorded during the automated testing results collected

for the localisation data. This data was collated and imported into Matlab for statistical

analysis.

The histogram for the response time data shows that the distribution is of the Rayleigh

Distribution as was the localisation data. There area a number of reasons that the

probability curve tracks away from the Rayleigh distribution after the 95th percentile.

One reason is that the packet may not have been delivered through the CTP protocol

6.3 Testing and Results 88

which causes the next packet to be taken and therefore a delay of longer than 220ms

would elapse. Another reason is that the signal was not heard at one of the sensors.

Again, this will cause a further delay for a full suite of packets to be read by the AIMS

localisation software.

Figure 6.11: Distribution Plot of System Response Time

Figure 6.12: Probability Plot of System Response Time

The Rayleigh Mean system response time is calculated to be 0.175 seconds or 175ms.

To take a practical viewpoint on this result, we must make an assumption. We must

assume that the child is to be tracked in every cell no matter of his/her speed. This is

so that the alarming module has the best possible chance to detect a boundary crossing.

6.3 Testing and Results 89

Therefore the child can not be moving any faster than: 1
0.175 = 5.7m/s.

This equates to ≈ 20km/h which is definitely unattainable for a child under 5 years

old considering that the four minute mile achieves requires a speed of 6.67m/s and is

considered a challenge for a adult athlete.

Taking this response time into consideration and careful forward planning around lo-

calisation accuracy, the speed of the system can be deemed acceptable.

6.3.5 Boundary and Alert Test

The boundary and alert test defined in Section 6.2.3 was carried out a number of times.

The following output shows the successful rejection of a state change without detecting

a transitional intermediate state:

===
OLD Position = 5.163596, 5.170851
newpos = 5.0611, 5.7424, e=33
current state = SAFE
last_state = SAFE
New Position is set to 5.061055, 5.742446
===
OLD Position = 5.061055, 5.742446
newpos = 5.0166, 6.1037, e=34
current state = UNSAFE
last_state = SAFE
Moving from SAFE to UNSAFE without being in TRANS not allowed...
keeping position
New Position is set to 5.061055, 5.742446 (old position)
===

The following output shows the successful state change from SAFE to TRANS.

===
OLD Position = 3.212254, 4.252542
newpos = 4.4013, 5.9706, e=29
current state = TRANS
last_state = SAFE
New Position is set to 4.401327, 5.970576
===
OLD Position = 4.401327, 5.970576
newpos = 4.3624, 5.9819, e=30
current state = TRANS
last_state = TRANS
New Position is set to 4.362372, 5.981872
===

The following output shows the successful transition from a transitional zone to an

unsafe zone. As mentioned, this state in the software can trigger a variety of different

alarm mechanisms. For example a digital output could be used, or even an email or

message could be sent.

6.4 Chapter Summary 90

===
OLD Position = 4.401327, 5.970576
newpos = 4.3624, 5.9819, e=30
current state = TRANS
last_state = TRANS
New Position = 4.362372, 5.981872
===
OLD Position = 4.362372, 5.981872
newpos = 4.7633, 7.2312, e=22
current state = TRANS
last_state = UNSAFE
SENSOR IN UNSAFE AREA
New Position is set to 4.763312, 7.231243
===

Note that the only functionality of the AIMS software was tested during this test.

Outside factors such as location accuracy or spurious readings were ignored so that the

focus of this test could be achieved. It must be mentioned that false alarms are common

due to the randomness of the localisation data getting fed into the state machine.

This further enhances the need for finer grained localisation in order to compliment a

functional system.

6.4 Chapter Summary

This chapter defined the metrics that were tested in order to deduce whether the system

was able to achieve the project directives. These metrics included system response time,

localisation accuracy, and boundary tests.

The localisation analysis and results described in this chapter return an average er-

ror of 2.03m as a best possible case using the Centroid Algorithm. This algorithm

compared the best in most cases against the Weighted Centroid and the Best Match

algorithms. The exhaustive testing during this time concludes that the AIMS system

cannot achieve the 0.5m mean error stated by Cherntanomwong & Suroso (2011) using

the same concept. In fact, using the simple Best Match algorithm, the error was 3.67m

on average.

It was found that increasing the number of nodes (node density) improved the results

also. Tests showed that using the nearest k nodes whilst fingerprinting was detrimental

with a decreasing k.

The comparison between Baseline Testing and Residential Testing proved a worthy ex-

ercise. It shows that using the fingerprinting technique, accuracy improves significantly

6.4 Chapter Summary 91

with obstacles such as walls and furniture etc. This can be put down to the attenuation

of the signal as it passes through a different medium creating more defined signatures

of some positions.

It was found that the orientation of the sensor was a major influence in the localisation

result. This led to further research into the propagation of the signal generated from

the CC2420 with an on-board antenna. Further tests unfolded that the propogation

was not omni-directional and therefore restricts the orientation of the sensor in order

to achieve more uniform results.

Fortunately, the non-uniform signal propagation does not render the AIMS system

invalid. An omni-directional antenna was found which suits the size and practicality of

this project. This antenna style coupled with the AIMS system has merit for further

research and trails in regards to reducing the localisation error.

The system response time resulted in an average latency of 175ms. This response time

is considered satisfactory if the accuracy of the system is reduced to below 1m.

Taking all metrics into consideration, it must be concluded that the accuracy of the

system is the driving factor for success or failure. In the current state, the AIMS

software requires further work in regards to localisation accuracy and signal propagation

This will enable the other metrics described above to achieve synergy for the whole

AIMS system.

Chapter 7

Conclusions and Further Work

This project aimed to research the viability of using a wireless sensor network based on

the IEEE812.15.4 standard for use in localisation and boundary alarming in residential

areas. The primary scenario is directed towards child safety and to reduce the number

of children drowning under the age of 5.

The concept proposed was to use the radio signals from a TelosB Wireless sensor to

effectively localise that sensor in a WSN. The location of the sensor is then to be used

to derive whether the child is within user-defined boundaries and hence “safe”. The

versatility of the proposal is that the system has no set scenario and can be extended

to other situations such as tracking of Alzheimer’s patients or of children in the vicinity

of water tanks or bath-tubs.

The following section will summarise the process and findings undertaken during this

research and empirical study. The last section will sum up the key findings of the

dissertation and the measure of achievement to the research community.

7.1 Research Objectives - Key Findings and Conclusions

Initially, a market research was undertaken to establish the viability of such a product

in the marketplace. It was found that the WSN market is gaining momentum and

evidence shows that much of the market prefer DIY WSN systems. It was also deemed

that the system proposed should cost less than $300 to ensure it is sellable in the

7.1 Research Objectives - Key Findings and Conclusions 93

marketplace.

In addition to the market research element, research into the existing solutions covering

child safety application was completed. This research revealed that there was a niche

in the market for a system that is versatile and can provide the functionality set out

above.

A thorough review of the literature surrounding localisation techniques and their ap-

plication to indoor scenarios was undertaken. This area proved to be well researched.

The localisation strategies were broken down into sub-categories and their characteris-

tics were rigorously examined. The range of complexity of the localisation procedures

defined in the literature ranged from relatively simple, to largely complex. It was

found that the claims of localisation accuracy using different approaches was somewhat

contradictive in some instances. The practicality of the systems was analysed for its

usability in a residential area and it was concluded that the “Fingerprinting” method

of localisation would prove to be the most accurate. Some authors claimed an average

localisation error as low as 0.5m using this method.

Background research into the CrossBow TelosB wireless sensor revealed that it would

be the device of choice because of its adherence to IEEE802.15.4, which defines low-

cost, low-power devices. These sensors were supplied by the University of Southern

Queensland as the prime candidate for the project and they were specifically designed

for for research and innovation. They are designed to use the TinyOS operating system

which is coded in NesC and the TinyOS API allows access to low level functionality of

the radio interface.

Built on these foundations, the proposed system called AIMS (Adaptable Infant Mon-

itoring System) was introduced. It comprises a total software/hardware package for

WSN communication, localisation, and boundary alarming. The major hardware com-

ponents are comprised of the wireless sensors (TelosB motes), a central computer com-

plete with USB interface and connection to the internet for remote information retrieval.

The system design elements for the software include a user interface, an interface to

the wireless sensor network, and an interface to a storage element which allows remote

retrieval of information. The MySQL database system was chosen as it is free, simple

and there is a vast online community offering help and tutorials.

7.1 Research Objectives - Key Findings and Conclusions 94

The functionality of AIMS was satisfactory and performs the required tasks to achieve

its objectives. Time constraints on the project forced the software design to lack in

elegance and a well defined structure. Furthermore, as this is a safety device, software

integrity tests would have to be completed thoroughly before delivery to the market. It

is also suggested that system security be applied to the system in the form of encryption

and defence against attacks such as communications jamming or DoS attacks.

The nature of the design and testing of this project put to work the concepts and

claims founded in the literature. The choice of localisation method was based on these

claims, however, the localisation accuracy that was attained was not as expected. Ad-

ditional algorithms that were produced did reduce the mean error by approximately

17%, but not to acceptable levels for a child safety device. The causes for the sig-

nificant error were further researched and it was found that the signal propagation

model from the sensor was not homogeneous. It is proposed for further work to re-

search omni-directional antennae and their effectiveness of reducing the error of the

system. Furthermore, tweaking the internal parameters of the weighting algorithm has

the potential to increase the accuracy and is therefore a suggested research point to be

embarked upon.

The actual response of the system was found to be acceptable and, given a higher

degree of accuracy, is able to track the position of a child in each 1m x 1m cell.

The aesthetic nature of the sensors require additional research in regards to their phys-

ical size, wear-ability and mounting positions. Both the target sensor and the static

sensors would need to be designed in such a way that it doesn’t impede on the envi-

ronment that they are utilised in.

The major aspect of this project that holds strong momentum for a niche in the market

is the versatility of the boundary settings. No system has been found that offers the

option of user-defined boundaries and hence enabling limitless application scenarios.

Further research into the application scenarios that could be applied to this sensor

would give great merit to the sale-ability of the system.

7.2 Closing Summary 95

7.2 Closing Summary

The measure of success or failure is generally considered to be whether the objectives

of the project have been achieved. In this case, the empirical nature of this project

uncovered some facts surrounding localisation in WSN’s that are very rarely mentioned

or considered in the literature. This project achieved a best average error of 2.03m

for localisation using derived algorithms and found that the uneven signal propagation

model results in far noisier readings than expected. Therefore the contribution that this

dissertation gives to the research community is the realisation that these factors must

be considered in further research in the effective use of RSSI and the Fingerprinting

method. The open source software AIMS achieves its major objectives and is available

for use in future research projects as it is believed that with finer grained accuracy and

additional time for refinement, the system proposed can assist in saving lives.

References

Abdelsalam, H. S. & Olariu, S. (2009a), A 3d-localization and terrain modeling tech-

nique for wireless sensor networks, in ‘Proceedings of the 2Nd ACM International

Workshop on Foundations of Wireless Ad Hoc and Sensor Networking and Com-

puting’, FOWANC ’09, ACM, New York, NY, USA, pp. 37–46.

URL: http: // doi .acm .org/ 10 .1145/ 1540343 .1540351

Abdelsalam, H. S. & Olariu, S. (2009b), Passive localization using rotating anchor pairs

in wireless sensor networks, in ‘Proceedings of the 2Nd ACM International Work-

shop on Foundations of Wireless Ad Hoc and Sensor Networking and Computing’,

FOWANC ’09, ACM, New York, NY, USA, pp. 67–76.

URL: http: // doi .acm .org/ 10 .1145/ 1540343 .1540355

Ahn, H. & Rhee, S.-B. (2010), Simulation of a rssi-based indoor localization system us-

ing wireless sensor network, in ‘Ubiquitous Information Technologies and Applica-

tions (CUTE), 2010 Proceedings of the 5th International Conference on’, pp. 1–4.

Angelopoulos, C. M., Filios, G., Karagiannis, M., Nikoletseas, S. & Rolim, J. (2012),

Fine-grained in-door localization with wireless sensor networks, in ‘Proceedings of

the 10th ACM International Symposium on Mobility Management and Wireless

Access’, MobiWac ’12, ACM, New York, NY, USA, pp. 159–162.

URL: http: // doi .acm .org/ 10 .1145/ 2386995 .2387025

anon (2012), ‘Wireless sensor networks (wsn) 2012-2022: Forecasts, technolo-

gies, players’, http://www.idtechex.com/research/reports/wireless-

sensor-networks-wsn-2012-2022-forecasts-technologies-players-

000314.asp?viewopt=desc.

anon (2014), ‘Water safety for children’.

http://doi.acm.org/10.1145/1540343.1540351
http://doi.acm.org/10.1145/1540343.1540355
http://doi.acm.org/10.1145/2386995.2387025
http://www.idtechex.com/research/reports/wireless-sensor-networks-wsn-2012-2022-forecasts-technologies-players-000314.asp?viewopt=desc
http://www.idtechex.com/research/reports/wireless-sensor-networks-wsn-2012-2022-forecasts-technologies-players-000314.asp?viewopt=desc
http://www.idtechex.com/research/reports/wireless-sensor-networks-wsn-2012-2022-forecasts-technologies-players-000314.asp?viewopt=desc

REFERENCES 97

URL: http: // raisingchildren .net .au/ articles/

safe fun with water .html

Azevedo, J. A. R. & Santos, F. E. (2007), ‘Signal propagation measurements with

wireless sensor nodes’.

Bahl, P. & Padmanabhan, V. (2000), Radar: an in-building rf-based user location

and tracking system, in ‘INFOCOM 2000. Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE’, Vol. 2,

pp. 775–784 vol.2.

Benkic, K., Malajner, M., Planinsic, P. & Cucej, Z. (2008), Using rssi value for distance

estimation in wireless sensor networks based on zigbee, in ‘Systems, Signals and

Image Processing, 2008. IWSSIP 2008. 15th International Conference on’, pp. 303–

306.

Boom, J., Ros, M., De-Hosson, G. & D’Souza, M. (2012), Indoor localisation using

a context-aware dynamic position tracking model, in ‘International Journal of

Navigation and Observation’, Vol. 2012, pp. 1–12.

Boukerche, A., Oliveira, H., Nakamura, E. & Loureiro, A. (2007), ‘Localization systems

for wireless sensor networks’, Wireless Communications, IEEE 14(6), 6–12.

Bras, L., Pinho, P. & Borges Carvaloh, N. (2013), ‘Evaluation of a sectorised antenna in

an indoor localisation system’, Microwaves, Antennas Propagation, IET 7(8), 679–

685.

Bulusu, N., Heidemann, J. & Estrin, D. (2000), ‘Gps-less low-cost outdoor localization

for very small devices’, Personal Communications, IEEE 7(5), 28–34.

Chen, H., Liu, B., Huang, P., Liang, J. & Gu, Y. (2012), ‘Mobility-assisted node

localization based on toa measurements without time synchronization in wireless

sensor networks’, Mob. Netw. Appl. 17(1), 90–99.

URL: http: // dx .doi .org/ 10 .1007/ s11036-010-0281-3

Chen, M. J., Zhang, D. & LM, N. (2006), An empirical study of radio signal strength

in sensor networks in using mica2 nodes, in ‘s’, HKUST.

Chen, T., Yang, Z., Liu, Y., Guo, D. & Luo, X. (2014), ‘Localization-oriented net-

work adjustment in wireless ad hoc and sensor networks’, Parallel and Distributed

Systems, IEEE Transactions on 25(1), 146–155.

http://raisingchildren.net.au/articles/safe_fun_with_water.html
http://raisingchildren.net.au/articles/safe_fun_with_water.html
http://dx.doi.org/10.1007/s11036-010-0281-3

REFERENCES 98

Cherntanomwong, P. & Suroso, D. (2011), Indoor localization system using wireless sen-

sor networks for stationary and moving target, in ‘Information, Communications

and Signal Processing (ICICS) 2011 8th International Conference on’, pp. 1–5.

Chi (2004), 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.

URL: http: // inst .eecs .berkeley .edu/ ~ cs150/ Documents/ CC2420 .pdf

Chu, C.-H., Wang, C.-H., Liang, C.-K., Ouyang, W., Cai, J.-H. & Chen, Y.-H. (2011),

High-accuracy indoor personnel tracking system with a zigbee wireless sensor net-

work, in ‘Mobile Ad-hoc and Sensor Networks (MSN), 2011 Seventh International

Conference on’, pp. 398–402.

Chuenurajit, T., Phimmasean, S. & Cherntanomwong, P. (2013), Robustness of 3d

indoor localization based on fingerprint technique in wireless sensor networks, in

‘Electrical Engineering/Electronics, Computer, Telecommunications and Informa-

tion Technology (ECTI-CON), 2013 10th International Conference on’, pp. 1–6.

Codina, J. (1972), ‘Alarm’. US Patent 3,636,544.

URL: https://www.google.com.au/patents/US3636544

Colombo, A., Fontanelli, D., Macii, D. & Palopoli, L. (2011), A wearable embedded

inertial platform with wireless connectivity for indoor position tracking, in ‘In-

strumentation and Measurement Technology Conference (I2MTC), 2011 IEEE’,

pp. 1–6.

Coluccia, A. & Ricciato, F. (2010), On ml estimation for automatic rss-based indoor

localization, in ‘Wireless Pervasive Computing (ISWPC), 2010 5th IEEE Interna-

tional Symposium on’, pp. 495–502.

Cro (2003), Telosb Mote Platform.

URL: http: // www .willow .co .uk/ TelosB Datasheet .pdf

Denis, B., Raulefs, R., Fleury, B., Uguen, B., Amiot, N., de Celis, L., Dominguez, J.,

Koldsgaard, M., Laaraiedh, M., Noureddine, H., Staudinger, E. & Steinboeck, G.

(2013), Cooperative and heterogeneous indoor localization experiments, in ‘Com-

munications Workshops (ICC), 2013 IEEE International Conference on’, pp. 6–10.

Eccleston, D. (2014), ‘Danger lurks in the driveway’, The Road Ahead .

http://inst.eecs.berkeley.edu/~cs150/Documents/CC2420.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf

REFERENCES 99

El Helou, M., Lahoud, S., Ibrahim, M. & Khawam, K. (2013), A hybrid approach for

radio access technology selection in heterogeneous wireless networks, in ‘Wireless

Conference (EW), Proceedings of the 2013 19th European’, pp. 1–6.

Engineers-Australia (2010), ‘Code of ethics - engineers australia’.

URL: http: // www .engineersaustralia .org .au/ ethics

Fischer, C. & Gellersen, H. (2010), ‘Location and navigation support for emergency

responders: A survey’, Pervasive Computing, IEEE 9(1), 38–47.

Flood, J. (1998), ‘Water-activated emergency radio beacon’. US Patent 5,710,989.

URL: http://www.google.com.au/patents/US5710989

Fonseca, R., Gnawali, O., Jamieson, K., Kim, S., Levis, P. & Woo, A. (2006), ‘The

collection tree protocol (ctp)’. TinyOS Enhancement Proposals, TEP123.

URL: http: // www .tinyos .net/ tinyos-2 .1 .0/ doc/ html/ tep123 .html

Gao, R., Zhou, H. & Su, G. (2011), Structure of wireless sensors network based on

tinyos, in ‘Control, Automation and Systems Engineering (CASE), 2011 Interna-

tional Conference on’, pp. 1–4.

Giorgetti, G., Farley, R., Chikkappa, K., Ellis, J. & Kaleas, T. (2011), Cortina: Collab-

orative indoor positioning using low-power sensor networks, in ‘Indoor Positioning

and Indoor Navigation (IPIN), 2011 International Conference on’, pp. 1–10.

Glatz, P. M., Steger, C. & Weiss, R. (2010), Design, simulation and measurement of

an accurate wireless sensor network localization system, in ‘Proceedings of the 5th

ACM Workshop on Performance Monitoring and Measurement of Heterogeneous

Wireless and Wired Networks’, PM2HW2N ’10, ACM, New York, NY, USA, pp. 1–

8.

URL: http: // doi .acm .org/ 10 .1145/ 1868612 .1868614

Gwon, Y., Jain, R. & Kawahara, T. (2004), Robust indoor location estimation of sta-

tionary and mobile users, in ‘INFOCOM 2004. Twenty-third AnnualJoint Confer-

ence of the IEEE Computer and Communications Societies’, Vol. 2, pp. 1032–1043

vol.2.

Haque, I., Nikolaidis, I. & Gburzynski, P. (2009), A scheme for indoor localization

through rf profiling, in ‘Communications Workshops, 2009. ICC Workshops 2009.

IEEE International Conference on’, pp. 1–5.

http://www.engineersaustralia.org.au/ethics
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep123.html
http://doi.acm.org/10.1145/1868612.1868614

REFERENCES 100

Hatler, M., Gurganious, D. & Chi, C. (2013), ‘Smart Building Wireless Sensor Net-

works’, http://onworld.com/smbldgs/index.html.

Hatler, M., Gurganious, D. & Chi, C. (2014), ‘802.15.4 and Zigbee: Enabling the

Internet of Things’, http://onworld.com/zigbee/.

He, T., Huang, C., Blum, B. M., Stankovic, J. A. & Abdelzaher, T. (2003), Range-free

localization schemes for large scale sensor networks, in ‘Proceedings of the 9th An-

nual International Conference on Mobile Computing and Networking’, MobiCom

’03, ACM, New York, NY, USA, pp. 81–95.

URL: http: // doi .acm .org/ 10 .1145/ 938985 .938995

Hightower, J., Vakili, C., Borriello, G. & Want, R. (2001), Design and calibration of the

spoton ad-hoc location sensing system, Technical report, University of Washington.

Hill, J. L. (2003), System Architecture for Wireless Sensor Networks, PhD thesis, Uni-

versity of California, Berkely. AAI3105239.

Huang, C.-N. & Chan, C.-T. (2011), ‘Zigbee-based indoor location system by k-nearest

neighbor algorithm with weighted {RSSI}’, Procedia Computer Science 5(0), 58 –

65. The 2nd International Conference on Ambient Systems, Networks and Tech-

nologies (ANT-2011) / The 8th International Conference on Mobile Web Informa-

tion Systems (MobiWIS 2011).

URL: http://www.sciencedirect.com/science/article/pii/S1877050911003358

Huang, Y.-F., Jheng, Y.-T. & Chen, H.-C. (2010), Performance of an mmse based

indoor localization with wireless sensor networks, in ‘Networked Computing and

Advanced Information Management (NCM), 2010 Sixth International Conference

on’, pp. 671–675.

IEEE (2011), ‘Ieee standard for local and metropolitan area networks–part 15.4: Low-

rate wireless personal area networks (lr-wpans)’, IEEE Std 802.15.4-2011 (Revi-

sion of IEEE Std 802.15.4-2006) pp. 1–314.

Kim, H., Park, C., Cho, Y., Shin, C., Park, J. & Park, D. (2012), A study on a

ratiometric gps iteration algorithm for indoor localization, in ‘Computing and

Convergence Technology (ICCCT), 2012 7th International Conference on’, pp. 32–

35.

http://onworld.com/smbldgs/index.html
http://onworld.com/zigbee/
http://doi.acm.org/10.1145/938985.938995

REFERENCES 101

Kim, K. & Lee, W. (2007), Mbal: A mobile beacon-assisted localization scheme for

wireless sensor networks, in ‘Computer Communications and Networks, 2007. IC-

CCN 2007. Proceedings of 16th International Conference on’, pp. 57–62.

Krishna, M. B. & Doja, M. N. (2011), Computing methodologies for localization tech-

niques in wireless sensor networks, in ‘Proceedings of the International Conference

& Workshop on Emerging Trends in Technology’, ICWET ’11, ACM, New

York, NY, USA, pp. 1024–1028.

URL: http: // doi .acm .org/ 10 .1145/ 1980022 .1980245

Kung, H. T., Lin, C.-K., Lin, T.-H. & Vlah, D. (2009), Localization with snap-inducing

shaped residuals (sisr): Coping with errors in measurement, in ‘Proceedings of the

15th Annual International Conference on Mobile Computing and Networking’,

MobiCom ’09, ACM, New York, NY, USA, pp. 333–344.

URL: http://doi.acm.org/10.1145/1614320.1614357

Levis, P. (2006), ‘Tinyos programming’.

Li, Z., Trappe, W., Zhang, Y. & Nath, B. (2005), Robust statistical methods for secur-

ing wireless localization in sensor networks, in ‘Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks’, IPSN ’05, IEEE Press,

Piscataway, NJ, USA.

URL: http: // dl .acm .org/ citation .cfm? id= 1147685 .1147703

Lifesaving Society Australia, R. (2013), ‘Royal Lifesaving Society Australia’, National

Drowning Report 2013 .

URL: http: // www .royallifesaving .com .au/ data/ assets/ pdf file/

0003/ 9759/ RLS NationalDrowningReport 2013 .pdf

Liu, B. H., Otis, B., Challa, S., Axon, P., Chou, C. T. & Jha, S. (2006), On the fading

and shadowing effects for wireless sensor networks, in ‘Mobile Adhoc and Sensor

Systems (MASS), 2006 IEEE International Conference on’, pp. 51–60.

Liu, H., Darabi, H., Banerjee, P. & Liu, J. (2007), ‘Survey of wireless indoor positioning

techniques and systems’, Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on 37(6), 1067–1080.

Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A., Shnayder, V., Main-

land, G., Welsh, M. & Moulton, S. (2004), ‘Sensor networks for emergency re-

sponse: challenges and opportunities’, Pervasive Computing, IEEE 3(4), 16–23.

http://doi.acm.org/10.1145/1980022.1980245
http://dl.acm.org/citation.cfm?id=1147685.1147703
http://www.royallifesaving.com.au/__data/assets/pdf_file/0003/9759/RLS_NationalDrowningReport_2013.pdf
http://www.royallifesaving.com.au/__data/assets/pdf_file/0003/9759/RLS_NationalDrowningReport_2013.pdf

REFERENCES 102

Lu, W. & Tan, Y.-P. (2004), ‘A vision-based approach to early detection of drowning

incidents in swimming pools’, Circuits and Systems for Video Technology, IEEE

Transactions on 14(2), 159–178.

Mametani, T. (n.d.), ‘Renesas Solutions for Wireless Sensor Networks - Part 1’, http:

//am.renesas.com/edge ol/features/07/index.jsp.

McGuire, M., Plataniotis, K. & Venetsanopoulos, A. (2003), ‘Location of mobile ter-

minals using time measurements and survey points’, Vehicular Technology, IEEE

Transactions on 52(4), 999–1011.

Millen, T. (1983), ‘Wave responsive swimming pool alarm’. US Patent 4,408,193.

URL: http://www.google.com.au/patents/US4408193

Miller, B., Halwachs, J. & Farstad, A. (1999), ‘Swimmer location monitor’. US Patent

5,907,281.

URL: https://www.google.com.au/patents/US5907281

MoteIV (2004), ‘Telos - ultra low power ieee 802.15.4 compliant wireless sensor module’,

Telos Revision B - Datasheet .

Nasipuri, A. & Li, K. (2002), A directionality based location discovery scheme for

wireless sensor networks, in ‘Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications’, WSNA ’02, ACM, New York, NY,

USA, pp. 105–111.

URL: http://doi.acm.org/10.1145/570738.570754

Nazir, U., Arshad, M., Shahid, N. & Raza, S. (2012), Classification of localization

algorithms for wireless sensor network: A survey, in ‘Open Source Systems and

Technologies (ICOSST), 2012 International Conference on’, pp. 1–5.

Niculescu, D. & Nath, B. (2001), Ad hoc positioning system (aps), in ‘Global Telecom-

munications Conference, 2001. GLOBECOM ’01. IEEE’, Vol. 5, pp. 2926–2931

vol.5.

Niculescu, D. & Nath, B. (2003), ‘Dv based positioning in ad hoc networks’, Telecom-

munication Systems 22(1-4), 267–280.

nms.lcs.mit.edu (n.d.), ‘Patient-centric network’.

URL: http: // nms .lcs .mit .edu/ projects/ pcn/

http://am.renesas.com/edge_ol/features/07/index.jsp
http://am.renesas.com/edge_ol/features/07/index.jsp
http://nms.lcs.mit.edu/projects/pcn/

REFERENCES 103

Noguchi, H., Fukada, H., Mori, T., Sanada, H. & Sato, T. (2013), ‘Object and human

localization with zigbee-based sensor devices in a living environment’.

Oracle (2014), ‘Mysql c api - mysql 5.0 reference manual’.

URL: http: // dev .mysql .com/ doc/ refman/ 5 .0/ en/ c-api .html

Ouyang, R., Wong, A.-S. & Lea, C.-T. (2010), ‘Received signal strength-based wire-

less localization via semidefinite programming: Noncooperative and cooperative

schemes’, Vehicular Technology, IEEE Transactions on 59(3), 1307–1318.

OFlaherty, B. & ODonoghue, J. (2010), ‘The lead-user method in practice’, The De-

velopment of Emerging Medical Devices pp. 121–133.

Panwar, A. & Kumar, S. (2012), Localization schemes in wireless sensor networks, in

‘Advanced Computing Communication Technologies (ACCT), 2012 Second Inter-

national Conference on’, pp. 443–449.

Patwari, N. & Hero, III, A. O. (2003), Using proximity and quantized rss for sensor

localization in wireless networks, in ‘Proceedings of the 2Nd ACM International

Conference on Wireless Sensor Networks and Applications’, WSNA ’03, ACM,

New York, NY, USA, pp. 20–29.

URL: http: // doi .acm .org/ 10 .1145/ 941350 .941354

Priwgharm, R. & Chemtanomwong, P. (2011), A comparative study on indoor localiza-

tion based on rssi measurement in wireless sensor network, in ‘Computer Science

and Software Engineering (JCSSE), 2011 Eighth International Joint Conference

on’, pp. 1–6.

Purvis, M. (2014), ‘Zigbee and 802.15.4 to Drive 43 Percent of Wireless Smart En-

ergy Solutions’, http://www.onworld.com/news/ZigBee-802154-to-Drive-43-

Percent-of-Smart-Energy.html.

Quinones, S. (1996), ‘Baby pool guard alarm’. US Patent 5,486,814.

URL: http://www.google.com.au/patents/US5486814

Rudafshani, M. & Datta, S. (2007), Localization in wireless sensor networks, in ‘Pro-

ceedings of the 6th International Conference on Information Processing in Sensor

Networks’, IPSN ’07, ACM, New York, NY, USA, pp. 51–60.

URL: http: // doi .acm .org/ 10 .1145/ 1236360 .1236368

http://dev.mysql.com/doc/refman/5.0/en/c-api.html
http://doi.acm.org/10.1145/941350.941354
http://www.onworld.com/news/ZigBee-802154-to-Drive-43-Percent-of-Smart-Energy.html
http://www.onworld.com/news/ZigBee-802154-to-Drive-43-Percent-of-Smart-Energy.html
http://doi.acm.org/10.1145/1236360.1236368

REFERENCES 104

Sahoo, P. K., Hwang, I.-S. & Lin, S.-Y. (2008), A distributed localization scheme for

wireless sensor networks, in ‘Proceedings of the International Conference on Mobile

Technology, Applications, and Systems’, Mobility ’08, ACM, New York, NY, USA,

pp. 77:1–77:7.

URL: http: // doi .acm .org/ 10 .1145/ 1506270 .1506366

Savvides, A., Han, C.-C. & Strivastava, M. B. (2001), Dynamic fine-grained localization

in ad-hoc networks of sensors, in ‘Proceedings of the 7th annual international

conference on Mobile computing and networking’, ACM, pp. 166–179.

Schmid, J., Volker, M., Gadeke, T., Weber, P., Stork, W. & Muller-Glaser, K.

(2010), An approach to infrastructure-independent person localization with an

ieee 802.15.4 wsn, in ‘Indoor Positioning and Indoor Navigation (IPIN), 2010 In-

ternational Conference on’, pp. 1–9.

Sensium (2014), ‘Overview - worlds leading wireless healthcare solutions’.

URL: http: // www .sensium-healthcare .com

Shalini, R. (2012), ‘Global Markets and Technologies for Wireless Sen-

sors’, http://www.bccresearch.com/market-research/instrumentation-and-

sensors/wireless-sensors-technologies-markets-ias019a.html.

Shen, G., Yu, J. & Tan, L. (2012), Hierarchical rss-based indoor positioning using a

markov random field model, in ‘Wireless Communications, Networking and Mobile

Computing (WiCOM), 2012 8th International Conference on’, pp. 1–4.

Soleimanifar, M., Lu, M., Nikolaidis, I. & Lee, S. (2011), A robust positioning archi-

tecture for construction resources localization using wireless sensor networks, in

‘Proceedings of the Winter Simulation Conference’, WSC ’11, Winter Simulation

Conference, pp. 3562–3572.

URL: http: // dl .acm .org/ citation .cfm? id= 2431518 .2431941

Stoleru, R., He, T., Stankovic, J. A. & Luebke, D. (2005), A high-accuracy, low-cost

localization system for wireless sensor networks, in ‘Proceedings of the 3rd Inter-

national Conference on Embedded Networked Sensor Systems’, SenSys ’05, ACM,

New York, NY, USA, pp. 13–26.

URL: http: // doi .acm .org/ 10 .1145/ 1098918 .1098921

http://doi.acm.org/10.1145/1506270.1506366
http://www.sensium-healthcare.com
http://www.bccresearch.com/market-research/instrumentation-and-sensors/wireless-sensors-technologies-markets-ias019a.html
http://www.bccresearch.com/market-research/instrumentation-and-sensors/wireless-sensors-technologies-markets-ias019a.html
http://dl.acm.org/citation.cfm?id=2431518.2431941
http://doi.acm.org/10.1145/1098918.1098921

REFERENCES 105

Sugano, M., Kawazoe, T., Ohta, Y. & Murata, M. (2006), ‘Indoor localization sys-

tem using rssi measurement of wireless sensor network based on zigbee standard’,

Target 538, 050.

T V, S., Katti, A. K. & V S, A. (2006), Analysis of mobile beacon aided in-range

localization scheme in ad hoc wireless sensor networks, in ‘Proceedings of the 2006

International Conference on Wireless Communications and Mobile Computing’,

IWCMC ’06, ACM, New York, NY, USA, pp. 1159–1164.

URL: http: // doi .acm .org/ 10 .1145/ 1143549 .1143782

Tafa, Z. (n.d.), Sensor Networks in Pervasive Healthcare Computing, IGI Global.

URL: http: // www .igi-global .com/ chapter/ sensor-networks-pervasive-

healthcare-computing/ 50654

TinyOS (2013), ‘Tinyos overview’.

URL: http: // tinyos .stanford .edu/ tinyos-wiki/ index .php/

TinyOS Overview

Torres-Solis, J., Falk, T. H. & Chau, T. (2010), ‘A review of indoor localization

technologies: towards navigational assistance for topographical disorientation,

ambient intelligence’.

URL: http: // www .intechopen .com/ books/ ambient-intelligence/ a-

review-of-indoor-localization-technologies-towards-navigational-

assistance-for-topographical-disor

Tze-Meng, O. Goek, T. K. & Reza, A. W. (2010), A dual-band omni-directional mi-

crostrip antenna, in ‘Progress In Electromagnetics Research, Vol. 106, 363376,

2010’, Vol. 106, pp. 363–376.

Wang, J.-Y., Chen, C.-P., Lin, T.-S., Chuang, C.-L., Lai, T.-Y. & Jiang, J.-A. (2012),

High-precision rssi-based indoor localization using a transmission power adjust-

ment strategy for wireless sensor networks, in ‘High Performance Computing

and Communication 2012 IEEE 9th International Conference on Embedded Soft-

ware and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on’,

pp. 1634–1638.

Wearable Technology Market - Global Scenario, Trends, Industry Analysis, Size, Share

And Forecast 2012 - 2018 (2013), ”Transparency - Market Research”.

URL: http: // www .wearabletechworld .com/ topics/ from-the-experts/

http://doi.acm.org/10.1145/1143549.1143782
http://www.igi-global.com/chapter/sensor-networks-pervasive-healthcare-computing/50654
http://www.igi-global.com/chapter/sensor-networks-pervasive-healthcare-computing/50654
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Overview
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Overview
http://www.intechopen.com/books/ambient-intelligence/a-review-of-indoor-localization-technologies-towards-navigational-assistance-for-topographical-disor
http://www.intechopen.com/books/ambient-intelligence/a-review-of-indoor-localization-technologies-towards-navigational-assistance-for-topographical-disor
http://www.intechopen.com/books/ambient-intelligence/a-review-of-indoor-localization-technologies-towards-navigational-assistance-for-topographical-disor
http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm
http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm
http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm

REFERENCES 106

articles/ 323855-wearable-technology-next-mobility-market-

booming .htm

Werb, J. & Lanzl, C. (1998), ‘Designing a positioning system for finding things and

people indoors’, Spectrum, IEEE 35(9), 71–78.

Wu, J., Cai, J., Huo, M., Wu, M. & Zhou, J. (2013), ‘A wearable early monitoring and

alarming device for swimming pool drowning incidents’, Journal of Computational

Information Systems 9(21), 8619–8627.

www.alz.org (2014), ‘Alzheimers - wandering and getting lost’.

URL: http: // www .alz .org/ care/ alzheimers-dementia-wandering .asp

www.researchmoz.us (2014), ‘Semiconductor Wireless Sensor Internet of Things (iot)

Market Analysis 2014 - industry size, shares, growth, trends and forecast research

report 2020’, http://www.researchmoz.us/semiconductor-wireless-sensor-

internet-of-things-iot-market-shares-strategies-and-forecasts-

worldwide-2014-2020-report.html.

Xiaoyang, C., Wenkai, C. & Fei, L. (2007), Application of image restoration based on

robust estimation in drowning warning system, in ‘Digital Media and its Applica-

tion in Museum Heritages, Second Workshop on’, pp. 33–35.

Xie, Z., Hong, M., Liu, H., Li, J., Zhu, K. & Stankovic, J. (2011), Quantitative

uncertainty-based incremental localization and anchor selection in wireless sensor

networks, in ‘Proceedings of the 14th ACM International Conference on Model-

ing, Analysis and Simulation of Wireless and Mobile Systems’, MSWiM ’11, ACM,

New York, NY, USA, pp. 417–426.

URL: http: // doi .acm .org/ 10 .1145/ 2068897 .2068968

Yedavalli, K., Krishnamachari, B. & Venkatraman, L. (2007), ‘Fast/fair mobile local-

ization in infrastructure wireless sensor networks’, SIGMOBILE Mob. Comput.

Commun. Rev. 11(1), 29–40.

URL: http: // doi .acm .org/ 10 .1145/ 1234822 .1234828

Zhang, D., Xia, F., Yang, Z., Yao, L. & Zhao, W. (2010), Localization technologies

for indoor human tracking, in ‘Future Information Technology (FutureTech), 2010

5th International Conference on’, pp. 1–6.

http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm
http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm
http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm
http://www.wearabletechworld.com/topics/from-the-experts/articles/323855-wearable-technology-next-mobility-market-booming.htm
http://www.alz.org/care/alzheimers-dementia-wandering.asp
http://www.researchmoz.us/semiconductor-wireless-sensor-internet-of-things-iot-market-shares-strategies-and-forecasts-worldwide-2014-2020-report.html
http://www.researchmoz.us/semiconductor-wireless-sensor-internet-of-things-iot-market-shares-strategies-and-forecasts-worldwide-2014-2020-report.html
http://www.researchmoz.us/semiconductor-wireless-sensor-internet-of-things-iot-market-shares-strategies-and-forecasts-worldwide-2014-2020-report.html
http://doi.acm.org/10.1145/2068897.2068968
http://doi.acm.org/10.1145/1234822.1234828

REFERENCES 107

Zhang, S. & Xing, T. (2013), Open wsn indoor localization platform design, in ‘Instru-

mentation and Measurement, Sensor Network and Automation (IMSNA), 2013

2nd International Symposium on’, pp. 845–848.

Zhang, X., Banavar, M., Willerton, M., Manikas, A., Tepedelenlioglu, C., Spanias, A.,

Thornton, T., Yeatman, E. & Constantinides, A. (2012), Performance comparison

of localization techniques for sequential wsn discovery, in ‘Sensor Signal Processing

for Defence (SSPD 2012)’, pp. 1–5.

Zhao, F. & Guibas, L. J. (2004), Wireless Sensor Networks - An information processing

approach, Morgan Kaufmann.

Zhao, J. & Jia, H. (2010), A hybrid localization algorithm based on dv-distance and the

twice-weighted centroid for wsn, in ‘Computer Science and Information Technology

(ICCSIT), 2010 3rd IEEE International Conference on’, Vol. 7, pp. 590–594.

Zhao, Y. & Smith, J. R. (2013), A battery-free rfid-based indoor acoustic localization

platform, in ‘IEEE RFID 2013’.

Zhong, Z. & He, T. (2009), Achieving range-free localization beyond connectivity, in

‘Proceedings of the 7th ACM Conference on Embedded Networked Sensor Sys-

tems’, SenSys ’09, ACM, New York, NY, USA, pp. 281–294.

URL: http: // doi .acm .org/ 10 .1145/ 1644038 .1644066

Zhou, Q., Jin, D., Zeng, L. & Zhou, Y. (2008), Area concentric beacons localization

for wireless sensor networks, in ‘Wireless Communications and Networking Con-

ference, 2008. WCNC 2008. IEEE’, pp. 2129–2134.

http://doi.acm.org/10.1145/1644038.1644066

Appendix A

Project Specifications

ENG 4111/2 Research Project

Project Specification

For: Brad Goold

Topic: An innovative WSN-based intelligent system for

Home Safety and Health Monitoring

Supervisor: H. Zhou

Project Aim: This project aims to research, design and implement an out-

of-the box solution for object localisation in homes or resi-

dential buildings. It is proposed that we deliver a solution

whereby the user requires minimal set-up time and technical

knowledge in order to successfully interact with the WSN in

the home.

Program:

1. A thorough survey on the market & similar products

2. Literature review on wireless sensing networks in homes. Including, but not lim-

ited to: current technology, needs and requirements, and social acceptance/ethical

issues.

3. Additional research into what technologies are best suited for the application in

regards to cost, effectiveness and ease of use/installation.

109

4. Study of background/foundation knowledge of technology and tools (eg. WS-

N/Zigbee, NesC, TinyOS, Crossbow Motes). The type of sensor, programming

platform, communication protocol and operating system are dependent on the

above research.

5. Create an overview of the scope of the task, its merits, constraints, challenges

and finer details in an appropriately structured ‘Project Appreciation Report’.

6. Design, test and evaluate the solution.

Harware Design

Software Design (Sensor + network coding + basic IU)

Prototyping.

Testing - I.e. Total design testing which includes, but is not limited to: HW,

SW, adaptability and ease of use.

Implement changes as required and reiterate the design loop in order to op-

timise the design.

7. Produce a formal disseratation.

As time and resources permit:

1. Program an interactive User Interface for the user PC.

2. Outline a basic design for the total product solution:

Out of the box deliverables to potential customers. Instructions, software,

installation and setup details, constraints etc.

Agreed:

Student Name: Brad Goold

Date: 31st March 2014

Supervisor Name: Dr. Hong Zhou

Date: 31st March 2014

Examiner:

Date:

Appendix B

Datasheets

111

 SmartRF ® CC2420

CC2420
2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver

Applications

• 2.4 GHz IEEE 802.15.4 systems
• ZigBee systems
• Home/building automation
• Industrial Control

• Wireless sensor networks
• PC peripherals
• Consumer Electronics

Product Description

The CC2420 is a true single-chip 2.4 GHz
IEEE 802.15.4 compliant RF transceiver
designed for low-power and low-voltage
wireless applications. CC2420 includes a
digital direct sequence spread spectrum
baseband modem providing a spreading
gain of 9 dB and an effective data rate of
250 kbps.

The CC2420 is a low-cost, highly integrated
solution for robust wireless communication
in the 2.4 GHz unlicensed ISM band. It
complies with worldwide regulations
covered by ETSI EN 300 328 and EN 300
440 class 2 (Europe), FCC CFR47 Part 15
(US) and ARIB STD-T66 (Japan).

The CC2420 provides extensive hardware
support for packet handling, data
buffering, burst transmissions, data
encryption, data authentication, clear
channel assessment, link quality indication
and packet timing information. These

features reduce the load on the host
controller and allow CC2420 to interface
low-cost microcontrollers.

The configuration interface and transmit /
receive FIFOs of CC2420 are accessed via
an SPI interface. In a typical application
CC2420 will be used together with a
microcontroller and a few external passive
components.

CC2420 is based on Chipcon’s SmartRF®-
03 technology in 0.18 µm CMOS.

Key Features

• True single-chip 2.4 GHz IEEE
802.15.4 compliant RF transceiver
with baseband modem and MAC
support

• DSSS baseband modem with 2
MChips/s and 250 kbps effective data
rate.

• Suitable for both RFD and FFD
operation

• Low current consumption (RX: 19.7
mA, TX: 17.4 mA)

• Low supply voltage (2.1 – 3.6 V) with
integrated voltage regulator

• Low supply voltage (1.6 – 2.0 V) with
external voltage regulator

• Programmable output power
• No external RF switch / filter needed
• I/Q low-IF receiver
• I/Q direct upconversion transmitter
• Very few external components
• 128(RX) + 128(TX) byte data buffering
• Digital RSSI / LQI support
• Hardware MAC encryption (AES-128)
• Battery monitor
• QLP-48 package, 7x7 mm
• Complies with ETSI EN 300 328, EN

300 440 class 2, FCC CFR-47 part 15
and ARIB STD-T66

• Powerful and flexible development
tools available

Chipcon AS SmartRF® CC2420 Preliminary Datasheet (rev 1.2), 2004-06-09 Page 1 of 87

Figure B.1: CC2420 Datasheet (Chi 2004)

112

 SmartRF ® CC2420

above. The only differences are from the
requirements in [1] for CCM.

Timing

Table 8 shows some examples of the time
used by the security module for different
operations.

Mode l(a) l(m) l(MIC) Time
[us]

CCM 50 69 8 222

CTR - 15 - 99

CBC 17 98 12 99

Stand-
alone

- 16 - 14

Table 8. Security timing examples

Linear IF and AGC Settings

CC2420 is based on a linear IF chain
where the signal amplification is done in
an analog VGA (variable gain amplifier).
The gain of the VGA is digitally controlled.

The AGC (Automatic Gain Control) loop
ensures that the ADC operates inside its

dynamic range by using an analog/digital
feedback loop.

The AGC characteristics are set through
the AGCCTRL, AGCTST0, AGCTST1 and
AGCTST2 registers. The reset values
should be used for all AGC control and
test registers.

RSSI / Energy Detection

CC2420 has a built-in RSSI (Received
Signal Strength Indicator) giving a digital
value that can be read form the 8 bit,
signed 2’s complement RSSI.RSSI_VAL
register.

The RSSI value is always averaged over 8
symbol periods (128 µs), in accordance
with [1]. The RSSI_VALID status bit
(Table 5) indicates when the RSSI value is
valid, meaning that the receiver has been
enabled for at least 8 symbol periods.

The RSSI register value RSSI.RSSI_VAL
can be referred to the power P at the RF
pins by using the following equations:

P = RSSI_VAL + RSSI_OFFSET [dBm]

where the RSSI_OFFSET is found
empirically during system development
from the front end gain. RSSI_OFFSET is
approximately –45. E.g. if reading a value
of –20 from the RSSI register, the RF
input power is approximately –65 dBm.

A typical plot of the RSSI_VAL reading as
function of input power is shown in Figure
26. It can be seen from the figure that the
RSSI reading from CC2420 is very linear
and has a dynamic range of about 100 dB.

Chipcon AS SmartRF® CC2420 Preliminary Datasheet (rev 1.2), 2004-06-09 Page 47 of 87

Figure B.2: CC2420 Datasheet (Chi 2004)

113

 SmartRF ® CC2420

-60

-40

-20

0

20

40

60

-100 -80 -60 -40 -20 0

RF Level [dBm]

R
SS

I R
eg

is
te

r V
al

ue

Figure 26. Typical RSSI value vs. input power

Link Quality Indication

The link quality indication (LQI)
measurement is a characterisation of the
strength and/or quality of a received
packet, as defined by [1].

The RSSI value described in the previous
section may be used by the MAC software
to produce the LQI value. The LQI value is
required by [1] to be limited to the range 0
through 255, with at least 8 unique values.
Software is responsible for generating the
appropriate scaling of the LQI value for the
given application.

Using the RSSI value directly to calculate
the LQI value has the disadvantage that
e.g. a narrowband interferer inside the
channel bandwidth will increase the LQI
value although it actually reduces the true
link quality. CC2420 therefore also provides
an average correlation value for each
incoming packet, based on the 8 first
symbols following the SFD. This unsigned
7-bit value can be looked upon as a
measurement of the “chip error rate,”
although CC2420 does not do chip
decision.

As described in the Frame check
sequence section on page 36, the average
correlation value for the 8 first symbols is
appended to each received frame together
with the RSSI and CRC OK/not OK when
MDMCTRL0.AUTOCRC is set. A correlation
value of ~110 indicates a maximum quality
frame while a value of ~50 is typically the
lowest quality frames detectable by
CC2420.

Software must convert the correlation
value to the range 0-255 defined by [1],
e.g. by calculating:

LQI = (CORR – a) · b

limited to the range 0-255, where a and b
are found empirically based on PER
measurements as a function of the
correlation value.

A combination of RSSI and correlation
values may also be used to generate the
LQI value.

Chipcon AS SmartRF® CC2420 Preliminary Datasheet (rev 1.2), 2004-06-09 Page 48 of 87

Figure B.3: CC2420 Datasheet (Chi 2004)

114

 SmartRF ® CC2420

VCO and PLL Self-Calibration

VCO

The VCO is completely integrated and
operates at 4800 – 4966 MHz. The VCO
frequency is divided by 2 to generate
frequencies in the desired band (2400-
2483.5 MHz).

PLL self-calibration

The VCO's characteristics will vary with
temperature, changes in supply voltages,
and the desired operating frequency.

In order to ensure reliable operation the
VCO’s bias current and tuning range are
automatically calibrated every time the RX
mode or TX mode is enabled, i.e. in the
RX_CALIBRATE, TX_CALIBRATE and
TX_ACK_CALIBRATE control states in
Figure 24 on page 43.

Output Power Programming

The RF output power of the device is
programmable and is controlled by the
TXCTRL.PA_LEVEL register. Table 9
shows the output power for different

settings, including the complete
programming of the TXCTRL control
register. The typical current consumption
is also shown.

PA_LEVEL TXCTRL register Output Power [dBm] Current Consumption [mA]

31 0xA0FF 0 17.4

27 0xA0FB -1 16.5

23 0xA0F7 -3 15.2

19 0xA0F3 -5 13.9

15 0xA0EF -7 12.5

11 0xA0EB -10 11.2

7 0xA0E7 -15 9.9

3 0xA0E3 -25 8.5

Table 9. Output power settings and typical current consumption @ 2.45 GHz

Voltage Regulator

CC2420 includes a low drop-out voltage
regulator. This is used to provide a 1.8 V
power supply to the CC2420 power
supplies. The voltage regulator should not
be used to provide power to other circuits
because of limited power sourcing
capability and noise considerations.

The voltage regulator input pin VREG_IN
is connected to the unregulated 2.1 to 3.6
V power supply. The voltage regulator is
enabled / disabled using the active high
voltage regulator enable pin VREG_EN.

The regulated 1.8 V voltage output is
available on the VREG_OUT pin. A
simplified schematic of the voltage
regulator is shown in Figure 27.

The voltage regulator requires external
components as described in the
Application Circuit section on page 18.

When disabling the voltage regulator, note
that register and RAM programming will
be lost as leakage current reduces the
output voltage on the VREG_OUT pin below

Chipcon AS SmartRF® CC2420 Preliminary Datasheet (rev 1.2), 2004-06-09 Page 50 of 87

Figure B.4: CC2420 Datasheet (Chi 2004)

115

P h o n e : 4 0 8 . 9 6 5 . 3 3 0 0 F a x : 4 0 8 . 3 2 4 . 4 8 4 0 E - m a i l : i n f o @ x b o w . c o m W e b : w w w . x b o w . c o m

Document Part Number: 6020-0094-01 Rev B

•	 IEEE	802.15.4	compliant	

•	 250	kbps,	high	data	rate	radio	

•	 TI	MSP430	microcontroller	with	
10kB	RAM	

•	 Integrated	onboard	antenna	

•	 Data	collection	and	programming	
via	USB	interface

•	 Open-source	operating	system	

•	 Optional	integrated		
temperature,	light	and		
humidity	sensor	

Applications

•	 Platform	for	low	power		
research	development	

•	 Wireless	sensor	network		
experimentation

Crossbow’s	TelosB	mote	(TPR2400)	is	
an	open	source	platform	designed	to	
enable	cutting-edge	experimentation	
for	the	research	community.	The	
TPR2400	bundles	all	the	essentials	
for	lab	studies	into	a	single	platform	
including:	USB	programming	capabil-
ity,	an	IEEE	802.15.4	radio	with	inte-	
grated	antenna,	a	low-power	MCU	
with	extended	memory	and	an	opti-
onal	sensor	suite	(TPR2420).	TPR2400	
offers	many	features,	including:

•	IEEE	802.15.4/ZigBee	compliant		
		RF	transceiver

•	2.4	to	2.4835	GHz,	a	globally			
	 compatible	ISM	band
•	250	kbps	data	rate
•	Integrated	onboard	antenna		 	
•	8	MHz	TI	MSP430	microcontroller	
	 with	10kB	RAM
•	Low	current	consumption
•	1MB	external	flash	for	data	logging
•	Programming	and	data	collection		
	 via	USB
•	Optional	sensor	suite	including		
	 integrated	light,	temperature	and		
	 humidity	sensor	(TPR2420)
•	Runs	TinyOS	1.1.10	or	higher

The	TelosB	platform	was	developed	
and	published	to	the	research	comm-

TELOSB MOTE PLATFORM

unity	by	UC	Berkeley.	This	platform	
delivers	low	power	consumption	
allowing	for	long	battery	life	as	well	
as	fast	wakeup	from	sleep	state.	
Though	the	TPR2400	is	an	uncertified	
radio	platform,	it	is	fully	compatible	
with	the	open-source	TinyOS	
distribution.		

TPR2400	is	powered	by	two	AA	
batteries.	If	the	TPR2400	is	plugged	
into	the	USB	port	for	programming	
or	communication,	power	is	provided	
from	the	host	computer.		If	the	
TPR2400	is	always	attached	to	the	
USB	port	no	battery	pack	is	needed.

TPR2400	provides	users	with	the	
capability	to	interface	with	additional	
devices.	The	two	expansion	conne-
ctors	and	onboard	jumpers	may	be	
configured	to	control	analog	sensors,	
digital	peripherals	and		LCD	displays.

TinyOS	is	a	small,	open-source,	
energy-efficient	software	operating	
system	developed	by	UC	Berkeley	
which	supports	large	scale,	self-
configuring	sensor	networks.	The	
source	code	software	development	
tools	are	publicly	available	at:
http://www.tinyos.net

TELOSB

TELOSB

TPR2400CA	Block	Diagram

Figure B.5: Crossbow TelosB Datasheet (Cro 2003)

116

C r o s s b o w Te c h n o l o g y , I n c . 4 1 4 5 N o r t h F i r s t S t r e e t S a n J o s e , C a l i f o r n i a 9 5 1 3 4 - 2 1 0 9

Document Part Number: 6020-0094-01 Rev B

Ordering Information

Notes
1Programmable	in	1	MHZ	steps,	5	MHz	steps	for	compliance	with	IEEE	802.15.4/D18-2003.

Specifications	subject	to	change	without	notice

TPR2420	with	Sensor	Suite

Model Description

TPR2400CA IEEE	802.15.4	TelosB	Mote

TPR2420CA IEEE	802.15.4	TelosB	Mote	with	Sensor	Suite	

Specifications 	TPR2400CA TPR2420CA Remarks

Module

Processor	Performance 16-bit	RISC 16-bit	RISC

Program	Flash	Memory 48K	bytes 48K	bytes

Measurement	Serial	Flash 1024K	bytes 1024K	bytes

RAM 10K	bytes 10K	bytes

Configuration	EEPROM 16K	bytes 16K	bytes

Serial	Communications UART UART 0-3V	transmission	levels

Analog	to	Digital	Converter 12	bit	ADC 12	bit	ADC 8	channels,	0-3V	input

Digital	to	Analog	Converter 12	bit	DAC 12	bit	DAC 2	ports

Other	Interfaces Digital	I/O,I2C,SPI Digital	I/O,I2C,SPI

Current	Draw 1.8	mA 1.8	mA Active	mode

5.1	µA 5.1	µA Sleep	mode

RF Transceiver

Frequency	band1 2400	MHz	to	2483.5	MHz 2400	MHz	to	2483.5	MHz 	ISM	band

Transmit	(TX)	data	rate 250	kbps 250	kbps

RF	power -24	dBm	to	0	dBm -24	dBm	to	0	dBm

Receive	Sensitivity -90	dBm	(min),	-94	dBm	(typ) -90	dBm	(min),	-94	dBm	(typ)

Adjacent	channel	rejection 47	dB 47	dB +	5	MHz	channel	spacing

38	dB 38	dB -	5	MHz	channel	spacing

Outdoor	Range 75	m	to	100	m 75	m	to	100	m Inverted-F	antenna

Indoor	Range 20	m	to	30	m 20	m	to	30	m Inverted-F	antenna

Current	Draw 23	mA 23	mA Receive	mode

21	µA 21	µA Idle	mode

1	µA 1	µA Sleep	mode

Sensors

Visible	Light	Sensor	Range 320	nm	to	730	nm Hamamatsu	S1087

Visible	to	IR	Sensor	Range 320	nm	to	1100nm Hamamatsu	S1087-01

Humidity	Sensor	Range 0-100%	RH Sensirion	SHT11	

															Resolution 0.03%	RH

															Accuracy ±	3.5%	RH Absolute	RH

Temperature	Sensor	Range -40°C	to	123.8°C Sensirion	SHT11

															Resolution 0.01°C

															Accuracy ±	0.5°C @25°C

Electromechanical

Battery 2X	AA	batteries 2X	AA	batteries Attached	pack

User	Interface USB USB v1.1	or	higher

Size									(in) 2.55	x	1.24	x	0.24 2.55	x	1.24	x	0.24 Excluding	battery	pack

															(mm) 65	x	31	x	6 65	x	31	x	6 Excluding	battery	pack

Weight				(oz) 0.8 0.8 Excluding	batteries

															(grams) 23 23 Excluding	batteries

Figure B.6: Crossbow TelosB Datasheet (Cro 2003)

Appendix C

Code Listings

C.1 TelosB mote code

C.1.1 AIMSAppC.nc

Listing C.1: Aims Main Application Configuration File

1 #d e f i n e CC2420 DEF RFPOWER 20
2 #d e f i n e LOW POWER LISTENING 1
3 #d e f i n e CC2420 CHANNEL 20
4 c o n f i g u r a t i o n AIMSAppC { }
5 implementation {
6

7 components MainC , AIMSC, LedsC , new TimerMill iC () ;
8

9 AIMSC. Boot −> MainC ;
10 AIMSC. Timer −> TimerMill iC ; // time a f t e r r e c e i v i n g beacon
11 AIMSC. Leds −> LedsC ; // i n d i c a t i o n o f message sending / r e c e i p t
12

13 // CTP Components
14 components Co l l ec t ionC as Co l l e c to r , // C o l l e c t i o n l a y e r
15 ActiveMessageC , // AM l a y e r
16 new Col lect ionSenderC (AM AIMS) , // Sends mul t ihop RF
17 Ser ia lAct iveMessageC , // S e r i a l messaging
18 new SerialAMSenderC (AM AIMS) , // Sends to the s e r i a l por t
19 CC2420ActiveMessageC ; // to g e t RSSI v a l u e
20

21 // Beacon Components
22 components new TimerMill iC () as Timer0 ; // per iod o f beacons
23 components ActiveMessageC as BActiveMessageC ;
24 components new AMSenderC(AM AIMSBEACONMSG) ;
25 components new AMReceiverC (AM AIMSBEACONMSG) ;
26

27 // CTP Wiring
28 //========================
29 AIMSC. CC2420Packet −> CC2420ActiveMessageC . CC2420Packet ;
30 AIMSC. RadioControl −> ActiveMessageC ; // Radio
31 AIMSC. S e r i a l C o n t r o l −> Ser ia lAct iveMessageC ; // f o r base s t a t i o n
32 AIMSC. RoutingControl −> C o l l e c t o r ; // CTP
33

34 AIMSC. Send −> Col lect ionSenderC ;

C.1 TelosB mote code 118

35 AIMSC. Se r i a lSend −> SerialAMSenderC .AMSend ;
36 AIMSC. Snoop −> C o l l e c t o r . Snoop [AM AIMS] ;
37 AIMSC. Receive −> C o l l e c t o r . Receive [AM AIMS] ;
38 AIMSC. RootControl −> C o l l e c t o r ;
39

40 // Queue f o r b a s e s t a t i o n to send through UART
41 //===
42 components new PoolC (message t , 10) as UARTMessagePoolP ,
43 new QueueC(message t ∗ , 10) as UARTQueueP;
44 AIMSC. UARTMessagePool −> UARTMessagePoolP ;
45 AIMSC.UARTQueue −> UARTQueueP;
46

47 // Target Sensor Beacon Wiring
48 //============================
49 AIMSC. BTimer0 −> Timer0 ;
50 AIMSC. BPacket −> AMSenderC ;
51 AIMSC. BAMPacket −> AMSenderC ;
52 AIMSC.BAMSend −> AMSenderC ;
53 AIMSC. BAMControl −> BActiveMessageC ;
54 AIMSC. BReceive −> AMReceiverC ;
55

56 }

C.1.2 AIMSC.nc

Listing C.2: Aims Main Application Implementation

1 #inc lude ”Timer . h”
2 #inc lude ”AIMS. h”
3 #inc lude ”AIMS BEACON. h”
4

5 module AIMSC @safe () {
6 uses {
7 // I n t e r f a c e s f o r i n i t i a l i z a t i o n :
8 i n t e r f a c e Boot ;
9 i n t e r f a c e S p l i t C o n t r o l as RadioControl ;

10 i n t e r f a c e S p l i t C o n t r o l as S e r i a l C o n t r o l ;
11 i n t e r f a c e StdControl as RoutingControl ;
12

13 // I n t e r f a c e s f o r communication , mul t ihop and s e r i a l :
14 i n t e r f a c e Send ;
15 i n t e r f a c e Receive as Snoop ;
16 i n t e r f a c e Receive ;
17 i n t e r f a c e AMSend as Se r i a lSend ;
18 i n t e r f a c e Co l l e c t i onPacke t ;
19 i n t e r f a c e RootControl ;
20

21 // I n t e r f a c e s f o r s e r i a l comms
22 i n t e r f a c e CC2420Packet ;
23 i n t e r f a c e Queue<message t ∗> as UARTQueue ;
24 i n t e r f a c e Pool<message t> as UARTMessagePool ;
25

26 // Timers and read i n t e r f a c e s e t c
27 i n t e r f a c e Timer<TMil l i >;
28 i n t e r f a c e Leds ;
29

30 // Beacon i n t e r f a c e s
31 i n t e r f a c e Timer<TMil l i> as BTimer0 ;
32 i n t e r f a c e Packet as BPacket ;
33 i n t e r f a c e AMPacket as BAMPacket ;
34 i n t e r f a c e AMSend as BAMSend;
35 i n t e r f a c e S p l i t C o n t r o l as BAMControl ;
36 i n t e r f a c e Receive as BReceive ;
37 }
38 }
39

40 implementation {
41 task void uartSendTask () ; //Send r e c e i v e d p a c k e t s over UART

C.1 TelosB mote code 119

42 s t a t i c void startTimer () ; //Time d e l a y a f t e r r e c i e p t o f CTP msg
43 // LEDs Functions
44 s t a t i c void f a ta l p rob l em () ;
45 s t a t i c void report prob lem () ;
46 s t a t i c void r e p o r t s e n t () ;
47 s t a t i c void r e p o r t r e c e i v e d () ;
48

49 u i n t 8 t ua r t l en ; // l e n g t h o f u a r t b u f
50 // b u f f e r s
51 message t sendbuf ;
52 message t uartbuf ;
53 // f l a g s
54 bool sendbusy=FALSE, uartbusy=FALSE;
55

56 /∗ Current l o c a l s t a t e − l o c a l CTP s t r u c t u r e ∗/
57 a ims c tp t l o c a l ;
58

59 // BOOTED
60 // ======
61 event void Boot . booted () {
62 // s e t l o c a l s t a t e f o r t h i s node
63 l o c a l . i n t e r v a l = DEFAULT INTERVAL;
64 l o c a l . id = TOS NODE ID ;
65

66 // S t a r t CTP − node 8 = TARGET and doesnt use CTP
67 i f (TOS NODE ID != 8) {
68 i f (c a l l RadioControl . s t a r t () != SUCCESS)
69 f a t a l p rob l em () ;
70

71 i f (c a l l RoutingControl . s t a r t () != SUCCESS)
72 f a t a l p rob l em () ;
73 }
74 // Target node
75 //============
76 i f (TOS NODE ID == 8) {
77 c a l l BTimer0 . s t a r t P e r i o d i c (TIMER PERIOD MILLI) ;
78 }
79 // Base S t a t i o n doesnt r e c e i v e beacons
80 //====================================
81 i f (TOS NODE ID != 0) {
82 c a l l BAMControl . s t a r t () ;
83 }
84 e l s e
85 {
86 c a l l BAMControl . s top () ;
87 }
88 }
89

90 // Radio Contro l has s t a r t e d
91 //==========================
92 event void RadioControl . startDone (e r r o r t e r r o r) {
93 i f (e r r o r != SUCCESS)
94 f a t a l p rob l em () ;
95

96 // check the s i z e o f our message w i l l f i t the rad io max
97 // payload l e n g t h
98 i f (s i z e o f (l o c a l) > c a l l Send . maxPayloadLength ())
99 f a t a l p rob l em () ;

100

101 // base s t a t i o n uses the s e r i a l
102 i f (TOS NODE ID == 0) {
103 i f (c a l l S e r i a l C o n t r o l . s t a r t () != SUCCESS)
104 f a t a l p rob l em () ;
105 }
106 }
107

C.1 TelosB mote code 120

108 // S e r i a l c o n t r o l i s s t a r t e d
109 //==========================
110 event void S e r i a l C o n t r o l . startDone (e r r o r t e r r o r) {
111 i f (e r r o r != SUCCESS)
112 f a t a l p rob l em () ;
113

114 // I f we are the base s t a t i o n , s e t o u r s e l v e s as roo t
115 i f (l o c a l . id == 0)
116 c a l l RootControl . setRoot () ;
117

118 }
119

120 // S t a r t one s ho t t imer when beacon i s r e c e i v e d
121 //===
122 s t a t i c void startTimer () {
123 i f (c a l l Timer . isRunning ()) c a l l Timer . stop () ;
124

125 c a l l Timer . startOneShot (l o c a l . i n t e r v a l) ;
126 }
127

128 // Dummy f u n c t i o n s to handle unused e v e n t s
129 event void RadioControl . stopDone (e r r o r t e r r o r) { }
130 event void S e r i a l C o n t r o l . stopDone (e r r o r t e r r o r) { }
131

132 // Root event − r e c e i v e messages on CTP
133 //======================================
134 event message t ∗
135 Receive . r e c e i v e (message t ∗ msg , void ∗payload , u i n t 8 t l en) {
136 // roo t on ly r e c e i v e s messages in CTP
137 a ims c tp t ∗ in = (a ims c tp t ∗) payload ;
138 a ims c tp t ∗ out ;
139

140 // send to s e r i a l
141 i f (uartbusy == FALSE) {
142 out = (a ims c tp t ∗) c a l l Se r i a lSend . getPayload(&uartbuf ,

↪→ s i z e o f (a ims c tp t)) ;
143 // check t h i s i s our message
144 i f (l en != s i z e o f (a ims c tp t) | | out == NULL) {
145 re turn msg ; // l e a v e i f not
146 }
147 e l s e {
148 memcpy(out , in , s i z e o f (a ims c tp t)) ; // copy in to

↪→ out
149 }
150 uar t l en = s i z e o f (a ims c tp t) ;
151 post uartSendTask () ; // c a l l the uar t t a s k wi th the
152 // message saved in ’ out ’
153 } e l s e {
154 // The UART i s busy . Put the messages in a queue
155 message t ∗newmsg = c a l l UARTMessagePool . get () ;
156 i f (newmsg == NULL) {
157 // no queue space . . drop i t .
158 report prob lem () ;
159 re turn msg ;
160 }
161

162 // S e r i a l por t busy , so enqueue .
163 out = (a ims c tp t ∗) c a l l Se r i a lSend . getPayload (newmsg ,

↪→ s i z e o f (a ims c tp t)) ;
164 i f (out == NULL) {
165 re turn msg ;
166 }
167 memcpy(out , in , s i z e o f (a ims c tp t)) ;
168

169 i f (c a l l UARTQueue . enqueue (newmsg) != SUCCESS) {
170 //no queue space , drop .

C.1 TelosB mote code 121

171 c a l l UARTMessagePool . put (newmsg) ;
172 f a t a l p rob l em () ;
173 re turn msg ;
174 }
175 }
176 r e p o r t r e c e i v e d () ;
177 re turn msg ;
178 }
179

180 // Send message v i a UART
181 // t a s k c a l l e d by the s c h e d u l e r . pos ted by Receive . r e c e i v e
182 //==
183 task void uartSendTask () {
184 i f (c a l l Se r i a lSend . send (0 x f f f f , &uartbuf , ua r t l en) !=

↪→ SUCCESS) {
185 report prob lem () ;
186 } e l s e {
187 uartbusy = TRUE;
188 }
189 }
190

191 // S e r i a l message has been sen t
192 //=============================
193 event void Se r i a lSend . sendDone (message t ∗msg , e r r o r t e r r o r) {
194 uartbusy = FALSE;
195 i f (c a l l UARTQueue . empty () == FALSE) {
196 // Theres s t i l l messages in the uart queue . Repost f o r
197 // sending t h o s e messages
198 message t ∗queuemsg = c a l l UARTQueue . dequeue () ;
199 i f (queuemsg == NULL) {
200 f a t a l p rob l em () ;
201 re turn ;
202 }
203 memcpy(&uartbuf , queuemsg , s i z e o f (message t)) ;
204 i f (c a l l UARTMessagePool . put (queuemsg) != SUCCESS) {
205 f a t a l p rob l em () ;
206 re turn ;
207 }
208 post uartSendTask () ;
209 }
210 }
211

212 // I n d i c a t e on messages t h a t are not f o r t h i s mote
213 //==
214 event message t ∗
215 Snoop . r e c e i v e (message t ∗ msg , void ∗ payload , u i n t 8 t l en) {
216 a ims c tp t ∗omsg = payload ;
217 // message rece ived , but not f o r us , t o g g l e l e d
218 // r e p o r t r e c e i v e d () ;
219 re turn msg ;
220 }
221

222 // Timer f i r e s s h o r t l y a f t e r r e c e i v i n g a Beacon message
223 //==
224 event void Timer . f i r e d () {
225 i f (! sendbusy) {
226 a ims c tp t ∗o = (a ims c tp t ∗) c a l l Send . getPayload(&

↪→ sendbuf , s i z e o f (a ims c tp t)) ;
227 i f (o == NULL) {
228 f a t a l p rob l em () ;
229 re turn ;
230 }
231 memcpy(o , &l o c a l , s i z e o f (l o c a l)) ;
232 i f (c a l l Send . send(&sendbuf , s i z e o f (l o c a l)) == SUCCESS)
233 sendbusy = TRUE;
234 e l s e

C.1 TelosB mote code 122

235 report prob lem () ;
236 }
237 }
238

239 // Message has been se n t v i a CTP
240 //==============================
241 event void Send . sendDone (message t ∗ msg , e r r o r t e r r o r) {
242 i f (e r r o r == SUCCESS) {
243 r e p o r t s e n t () ;
244 }
245 e l s e
246 report prob lem () ;
247 sendbusy = FALSE;
248 }
249

250 // ======================================
251 // BEACON Code
252 // ======================================
253 u i n t 1 6 t counter = 0 ;
254 bool busy = FALSE;
255 message t pkt ;
256

257 // every t imer per iod (100ms)
258 //============================
259 event void BTimer0 . f i r e d () {
260 counter++; // seq number .
261 i f (! busy) {
262 AIMSBeaconMsg t∗ aims beacon pkt = (AIMSBeaconMsg t∗) (

↪→ c a l l BPacket . getPayload(&pkt , s i z e o f (
↪→ AIMSBeaconMsg t))) ;

263 aims beacon pkt−>nodeid = TOS NODE ID ;
264 aims beacon pkt−>counter = counter ;
265 i f (c a l l BAMSend . send (AM BROADCAST ADDR, &pkt , s i z e o f (

↪→ AIMSBeaconMsg t)) == SUCCESS) {
266 busy = TRUE;
267 }
268 }
269 }
270

271 //Beacon Messages s t a r t i s done
272 //==============================
273 event void BAMControl . startDone (e r r o r t e r r) {
274 i f (e r r == SUCCESS) {
275 i f (TOS NODE ID == 8) {
276 c a l l BTimer0 . s t a r t P e r i o d i c (TIMER PERIOD MILLI) ;
277 }
278 }
279 e l s e {
280 c a l l BAMControl . s t a r t () ; // t r y again
281 }
282 }
283

284 event void BAMControl . stopDone (e r r o r t e r r) { }
285

286 event void BAMSend. sendDone (message t ∗ msg , e r r o r t e r r o r) {
287 i f (&pkt == msg) {
288 busy = FALSE;
289 r e p o r t s e n t () ; // f l a s h b l u e l e d
290 }
291 }
292

293 event message t ∗ BReceive . r e c e i v e (message t ∗ msg , void ∗ payload ,
↪→ u i n t 8 t l en) {

294 // roo t node doesnt need to r e c e i v e
295 i f (l en == s i z e o f (AIMSBeaconMsg t) && TOS NODE ID != 0) {

C.1 TelosB mote code 123

296 AIMSBeaconMsg t∗ aims beacon pkt = (AIMSBeaconMsg t∗)
↪→ payload ;

297 l o c a l . r s s i = c a l l CC2420Packet . g e tRs s i (msg) ;
298 l o c a l . seq = aims beacon pkt−>counter ;
299 startTimer () ; // d e l a y then send
300 }
301 re turn msg ;
302 }
303

304 // Use LEDs to r e p o r t v a r i o u s s t a t u s i s s u e s .
305

306 s t a t i c void f a ta l p rob l em () {
307 i f (TOS NODE ID == 0 | | TOS NODE ID == 8)
308 {
309 c a l l Leds . led0On () ;
310 c a l l Leds . led1On () ;
311 c a l l Leds . led2On () ;
312 c a l l Timer . stop () ;
313 }
314 }
315

316 s t a t i c void report prob lem () {
317 i f (TOS NODE ID == 0 | | TOS NODE ID == 8) {
318 c a l l Leds . l ed0Toggle () ;
319 }
320 }
321

322 s t a t i c void r e p o r t s e n t () {
323 i f (TOS NODE ID == 0 | | TOS NODE ID == 8) {
324 c a l l Leds . l ed2Toggle () ;
325 }
326 }
327

328 s t a t i c void r e p o r t r e c e i v e d () {
329 i f (TOS NODE ID == 0 | | TOS NODE ID == 8) {
330 c a l l Leds . l ed1Toggle () ;
331 }
332 }
333

334

335 }

C.1.3 AIMS.h

Listing C.3: AIMS CTP Message Header

1 #i f n d e f AIMS H
2 #d e f i n e AIMS H
3

4 enum {
5 //NREADINGS = 0 ,
6 DEFAULT INTERVAL = 10 , //Time a f t e r r e c e i v i n g beacon from t a r g e t
7 AM AIMS = 0x93
8

9 } ;
10

11 typede f n x s t r u c t a ims ctp {
12 nx u in t16 t i n t e r v a l ; // Samping per iod
13 nx u in t16 t id ; // id o f sending mote .
14 n x u i n t 8 t r s s i ; // Received S i g n a l S t r e n g t h
15 nx u in t16 t seq ; // Synchroni sa t ion sequence number
16 } a ims c tp t ;
17

18 #e n d i f

C.1.4 AIMS BEACON.h

C.2 Localisation Software Code 124

Listing C.4: AIMS Beacon Message Header

1 #i f n d e f AIMS BEACON H
2 #d e f i n e AIMS BEACON H
3

4 enum {
5 AM AIMSBEACONMSG = 6 , // message type
6 TIMER PERIOD MILLI = 100 // beacon per iod
7 } ;
8

9 typede f n x s t r u c t AIMSBeaconMsg {
10 nx u in t16 t nodeid ;
11 nx u in t16 t counter ;
12 } AIMSBeaconMsg t ;
13

14 #e n d i f

C.2 Localisation Software Code

C.2.1 Main Application aims.c

Listing C.5: AIMS Localisaton App - Main

1 //
↪→ −−−
↪→

2 // Adaptab le I n f a n t Monitoring System
3 //

↪→ −−−
↪→

4 // Author : Brad Goold
5 // Date : 26 May 2014
6 // Email Address : W0085400@umail . usq . edu . au
7 //
8 // Purpose : This s o f t w a r e i n t e r a c t s wi th a w i r e l e s s sensor network

↪→ to
9 // perform l o c a l i s a t i o n and boundary d e t e c t i o n o f a t a r g e t sensor

10 // i n s i d e t h a t network v i a the F i n g e r p r i n t i n g / P r o f i l i n g l o c a l i s a t i o n
11 // method .
12 //
13 // Pre : The TelosB w i r e l e s s s ens ors must be sw i t c hed on and the
14 // base−s t a t i o n must be p lugged i n t o the USB por t on the h os t
15 // machine .
16 //
17 // Post :
18 //

↪→ −−−
↪→

19 // APP
20 #inc lude <s t d i o . h>
21 #inc lude <s t d l i b . h>
22 #inc lude <mysql . h>
23 #inc lude <uni s td . h>
24 #inc lude <s t r i n g . h>
25 #inc lude <ctype . h>
26 #inc lude <i n t t y p e s . h>
27 #inc lude <uni s td . h>
28 #inc lude ” s f s o u r c e . h”
29 #inc lude ” s e r i a l s o u r c e . h”
30 #inc lude <math . h>
31 #inc lude <time . h>
32 #inc lude ” w s n i f . h”
33 #inc lude ”aims . h”
34 #inc lude ” d b i f . h”
35 #inc lude ”keybd . h”

C.2 Localisation Software Code 125

36

37 // Data s t r u c t u r e to ho ld packe t in format ion .
38 s t r u c t Packet Rec Packet , Packet Buf f e r [BUFFER SIZE] ;
39

40 // S e t t i n g s s t r u c t
41 s t r u c t s e t t i n g s g s e t t i n g s ;
42

43 //===
44 // Function Proto types
45 //===
46 // User i n t e r f a c e
47 void c l e a r S c r e e n (void) ;
48 void d i s p l a y s e t t i n g s (void) ;
49 void set boundary (const char ∗dev , const i n t baud , void (∗message) (

↪→ s e r i a l s o u r c e m s g problem)) ;
50 void s e t mon i to r ing samp l e s (void) ;
51 //===
52

53 void se t up (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem)) ;

54 void p r o f i l e (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem)) ;

55 void monitor (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem)) ;

56 void set mon samples (const char ∗dev , const i n t baud , void (∗message
↪→) (s e r i a l s o u r c e m s g problem)) ;

57 void s e t a l g o r i t h m (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem)) ;

58

59 //===
60 // Menu s t u f f
61 //===
62 typede f s t r u c t {
63 char ∗ desc ;
64 void (∗ func) (const char ∗dev , const i n t baud , void (∗message) (

↪→ s e r i a l s o u r c e m s g problem)) ;
65 } MenuItem ;
66

67 MenuItem Menu [] = {
68 {” P r o f i l i n g ” , p r o f i l e } ,
69 {”Monitor” , monitor } ,
70 {”Graph” , mon 1} ,
71 {” Set up” , s e t up } ,
72 {” Set Algorithm Parameters ” , s e t a l g o r i t h m } ,
73 {”Change number o f samples f o r Monitoring ” , set mon samples } ,
74 {” Test Accuracy” , t e s t } ,
75 {” Set Boundaries ” , set boundary } ,
76 {NULL, NULL} ,
77 } ;
78

79 i n t print menu (MenuItem ∗ p)
80 {
81 i n t c t r = 1 ;
82 p r i n t f (”|======|\r \n”) ;
83 p r i n t f (” | MENU | \ r \n”) ;
84 p r i n t f (”|======|\r \n”) ;
85 whi le (p−>desc != NULL)
86 {
87 p r i n t f (”%d . %s \ r \n” , c t r++, p−>desc) ;
88 p++;
89 }
90 p r i n t f (” ’ q ’ to QUIT or go back\ r \n”) ;
91 re turn ctr −1;
92 }
93

94

C.2 Localisation Software Code 126

95 //===
96

97 i n t main (i n t argc , char ∗∗ argv)
98 {
99 //===

100 // Menu V a r i a b l e s
101 //===
102 MenuItem ∗ s e l e c t e d i t e m ;
103 MenuItem ∗ menu = &Menu [0] ;
104 char key = ’ y ’ ;
105 i n t s e l e c t i o n ;
106 i n t num menu items ;
107 //===
108 char ∗ dev ;
109 i n t baud ;
110 i n t i ;
111

112 //=============================
113 // i n i t i a l i s e g s e t t i n g s v a l u e s
114 //=============================
115 f o r (i = 0 ; i < MAX SENSORS; i++)
116 g s e t t i n g s . i d s [i] = 0 ;
117

118 //=============================
119 // V a l i d a t e cmd l i n e args
120 //=============================
121 i f (argc != 3)
122 {
123 f p r i n t f (s tde r r , ”Adaptable In fan t Monitoring System AIMS\n”)

↪→ ;
124 f p r i n t f (s tde r r , ”\ tUsage : %s <device> <rate >\n\ t d e v i c e =

↪→ b a s e s t a t i o n mote dev i c e f i l e \n\ t r a t e = buad ra t e (bps)
↪→ \n” , argv [0]) ;

125 f p r i n t f (s tde r r , ”Example : %s /dev/mote1 115200 \n” , argv [0])
↪→ ;

126 e x i t (2) ;
127 }
128 dev = argv [1] ;
129 baud = a t o i (argv [2]) ;
130 system (” c l e a r ”) ;
131 p r i n t f (”|==================================|\r \n”) ;
132 p r i n t f (” | Adaptable In fan t Monitoring System | \ r \n”) ;
133 p r i n t f (”|==================================|\r \n”) ;
134 p r i n t f (”\ t |=========|\r \n”) ;
135 p r i n t f (”\ t | A I M S | \ r \n”) ;
136 p r i n t f (”\ t |=========|\r \n\ r \n”) ;
137

138 //================================
139 // Check the s t a t e o f the Database
140 //================================
141 i f (check db hea l th () == EXIT FAILURE)
142 s e t up (dev , baud , s tderr msg) ;
143 //==
144 // MENU
145 //==
146 p r i n t f (”Welcome ! Please make your s e l e c t i o n from the menu\ r \n”) ;
147 s e t con io t e rmina l mode () ; // Set f o r raw input
148 num menu items = print menu (menu) ;
149

150 whi le (key != ’ q ’ && key != ’Q’)
151 {
152

153 whi le (! kbhit ()) // wai t f o r k e y p r e s s
154 {
155 us l e ep (1000) ; // g i v e the p r o c e s s o r a r e s t
156 }

C.2 Localisation Software Code 127

157 key = getch () ; // consume key
158 p r i n t f (”%c\ r \n” , key) ;
159 s e l e c t i o n = a t o i (&key) ; // numerical s e l e c t i o n
160

161 i f (s e l e c t i o n <= num menu items && s e l e c t i o n > 0)
162 {
163 s e l e c t e d i t e m = &menu [s e l e c t i o n −1] ;
164 r e s e t t e rmina l mode () ; // r e s e t raw input
165

166 // run the f u n c t i o n from the menu
167 s e l e c t e d i t e m−>func (dev , baud , s tderr msg) ;
168

169 // p r i n t the menu again
170 s e t con io t e rmina l mode () ;
171 num menu items = print menu (menu) ;
172 // p r i n t f (” a s d f a d s %s\ r\n” , s e l e c t e d i t e m−>desc) ;
173

174 }
175

176

177 }
178 r e s e t t e rmina l mode () ;
179 c l e a r S c r e e n () ;
180 p r i n t f (”Thank you f o r us ing A. I .M. S !\ r \n”) ;
181

182 re turn 0 ;
183 //===
184

185 }
186

187 //==
188 // HELPER FUNCTIONS
189 //==
190 void c l e a r S c r e e n ()
191 {
192 const char ∗ CLEAR SCREE ANSI = ”\e [1 ; 1H\e [2 J” ;
193 wr i t e (STDOUT FILENO,CLEAR SCREE ANSI, 1 2) ;
194 }
195

196 unsigned char s e t g s e t t i n g s (void) {
197 unsigned char ∗ s e t [7] ;
198 s e t [0] = &g s e t t i n g s . num sensors ;
199 s e t [1] = &g s e t t i n g s . num samples ;
200 s e t [2] = &g s e t t i n g s . x s i z e ;
201 s e t [3] = &g s e t t i n g s . y s i z e ;
202 s e t [4] = &g s e t t i n g s . num mon samples ;
203 s e t [5] = &g s e t t i n g s . k n e a r e s t ;
204 s e t [6] = &g s e t t i n g s . k c e n t r o i d ;
205 i n t r e t = 0 ;
206 unsigned i n t ans ;
207 i n t i i = 0 ;
208 char ∗ que s t i on s [7] = {
209 ”How many s e n s o r s are you us ing ? ” ,
210 ”How many samples f o r p r o f i l i n g ? ” ,
211 ”What i s the x−s i z e o f the area ? ” ,
212 ”what i s the y−s i z e o f the area ? ” ,
213 ”How many samples to take during monitor ing ? ” ,
214 ” Nearest nodes ? ” ,
215 ” Centroid po in t s ? ” ,
216 } ;
217

218 f o r (i i = 0 ; i i < 7 ; i i ++)
219 {
220 p r i n t f (”%s ” , que s t i on s [i i]) ;
221 // Get user input
222 r e t = scan f (”%i ” , &ans) ;
223 // Clear the standard input stream

C.2 Localisation Software Code 128

224 s can f (”%∗[ˆ\n] ”) ;
225 s can f (”%∗c”) ;
226

227 whi le (r e t != 1)
228 {
229 p r i n t f (”need a s i n g l e i n t e g e r ! t ry again : ”) ;
230 // Get user input
231 r e t = scan f (”%i ” , &ans) ;
232 // Clear the standard input stream
233 s can f (”%∗[ˆ\n] ”) ;
234 s can f (”%∗c”) ;
235 }
236 // ans = a t o i (&ans) ;
237 p r i n t f (”ans = %d\n” , ans) ;
238 ∗ s e t [i i] = ans ;
239 }
240 // c l e a r S c r e e n () ;
241 // p r i n t f (”Done !\n\ r ”) ;
242 re turn 0 ;
243

244

245 }
246

247 void s e t mon i to r ing samp l e s (void)
248 {
249 i n t ret , ans ;
250

251 p r i n t f (”Number o f samples f o r Monitoring ?”) ;
252 // Get user input
253 r e t = scan f (”%i ” , &ans) ;
254 // Clear the standard input stream
255 s can f (”%∗[ˆ\n] ”) ;
256 s can f (”%∗c”) ;
257

258 whi le (r e t != 1)
259 {
260 p r i n t f (”need a s i n g l e i n t e g e r ! t ry again : ”) ;
261 // Get user input
262 r e t = scan f (”%i ” , &ans) ;
263 // Clear the standard input stream
264 s can f (”%∗[ˆ\n] ”) ;
265 s can f (”%∗c”) ;
266 }
267 // ans = a t o i (&ans) ;
268 p r i n t f (” sav ing %d to s e t t i n g s \n” , ans) ;
269 g s e t t i n g s . num mon samples = ans ;
270

271 }
272

273 void d i s p l a y s e t t i n g s (void) {
274 i n t i i ;
275 p r i n t f (” Contents o f the G SETTINGS s t r u c t \n”) ;
276 p r i n t f (”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n”) ;
277 p r i n t f (”Number o f Sensors = %d\n” , g s e t t i n g s . num sensors) ;
278 p r i n t f (”Number o f Samples = %d\n” , g s e t t i n g s . num samples) ;
279 p r i n t f (” S i z e in x d i r e c t i o n = %d\n” , g s e t t i n g s . x s i z e) ;
280 p r i n t f (” S i z e in y d i r e c t i o n = %d\n” , g s e t t i n g s . y s i z e) ;
281 p r i n t f (”number o f samples f o r monitor ing = %d\n” , g s e t t i n g s .

↪→ num mon samples) ;
282 p r i n t f (”k nea r e s t nodes = %d\n” , g s e t t i n g s . k n e a r e s t) ;
283 p r i n t f (”k c en t r o id po in t s = %d\n” , g s e t t i n g s . k c e n t r o i d) ;
284

285 f o r (i i = 0 ; i i < MAX SENSORS; i i ++)
286 p r i n t f (” Sensor ID[%d] = %d\n” , i i , g s e t t i n g s . i d s [i i]) ;
287 p r i n t f (”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n”) ;
288

C.2 Localisation Software Code 129

289 }
290

291 enum Pos i t i onH i s t o ry {
292 NO HISTORY = 1 ,
293 FULL HISTORY = 2 ,
294 } Pos i t i onH i s t o ry ;
295

296 void stderr msg (s e r i a l s o u r c e m s g problem)
297 {
298 f p r i n t f (s tde r r , ”Note : %s \ r \n” , msgs [problem]) ;
299 }
300

301

302 //
↪→ ===
↪→

303 // HELPER FUNCTIONS FOR MENU
304 //

↪→ ===
↪→

305 void se t up (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem))

306 {
307 c l e a r d a t a b a s e () ; // drop the database and r e c r e a t e i t
308 d i s p l a y s e t t i n g s () ;
309 s e t g s e t t i n g s () ; // user e n t e r s v a l u e s
310 g e t s e n s o r i d (dev , baud , s tderr msg) ; // search network f o r

↪→ sensor i d ’ s
311 c r e a t e t a b l e s () ; // c r e a t e t a b l e s based on r e c e i v e d v a l u e s
312 s t o r e g s e t t i n g s () ; // s t o r e the s e t t i n g s in the g s e t t i n g s
313 d i s p l a y s e t t i n g s () ;
314 // t a b l e
315 }
316

317 void set mon samples (const char ∗dev , const i n t baud , void (∗message
↪→) (s e r i a l s o u r c e m s g problem))

318 {
319 s e t mon i to r ing samp l e s () ;
320 s t o r e g s e t t i n g s () ;
321 }
322

323 //
↪→ ===
↪→

324 void p r o f i l e (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem))

325 {
326 p r i n t f (” P r o f i l i n g c a l l e d \ r \n”) ;
327 d e l e t e p o s d a t a () ;
328 p r o f i l i n g (dev , baud , s tderr msg) ;
329 populate main () ;
330 }
331

332 //
↪→ ===
↪→

333 void monitor (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem))

334 {
335 s e t con io t e rmina l mode () ;
336 char key = ’ x ’ ;
337 double ∗ x pos = (double ∗) mal loc (s i z e o f (double)) ;
338 double ∗ y pos = (double ∗) mal loc (s i z e o f (double)) ;
339

340

341 whi le (key != ’ q ’)
342 {
343 whi le (! kbhit ()) {

C.2 Localisation Software Code 130

344 /∗ do some work ∗/
345 mon 1 (dev , baud , s tderr msg) ;
346 // Monitoring (dev , baud , s tderr msg) ;
347 // g e t p o s i t i o n (x pos , y pos) ;
348

349 }
350 key = getch () ; /∗ consume the c h a r a c t e r ∗/
351

352 }
353 f r e e (x pos) ;
354 f r e e (y pos) ;
355 r e s e t t e rmina l mode () ;
356 p r i n t f (” te rmina l r e s e t \ r \n”) ;
357

358 }
359

360 //
↪→ ===
↪→

361 void s e t a l g o r i t h m (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem))

362 {
363 i n t ret , ans ;
364

365 p r i n t f (”Number o f po in t s o f polygon (1−5)?”) ;
366 // Get user input
367 r e t = scan f (”%i ” , &ans) ;
368 // Clear the standard input stream
369 s can f (”%∗[ˆ\n] ”) ;
370 s can f (”%∗c”) ;
371

372 whi le (r e t != 1)
373 {
374 p r i n t f (”need a s i n g l e i n t e g e r ! t ry again : ”) ;
375 // Get user input
376 r e t = scan f (”%i ” , &ans) ;
377 // Clear the standard input stream
378 s can f (”%∗[ˆ\n] ”) ;
379 s can f (”%∗c”) ;
380 }
381 // ans = a t o i (&ans) ;
382 p r i n t f (” sav ing %d to s e t t i n g s \n” , ans) ;
383 g s e t t i n g s . k c e n t r o i d = ans ;
384

385 p r i n t f (”Number o f nea r e s t nodes (3 or 4) ?”) ;
386 // Get user input
387 r e t = scan f (”%i ” , &ans) ;
388 // Clear the standard input stream
389 s can f (”%∗[ˆ\n] ”) ;
390 s can f (”%∗c”) ;
391

392 whi le (r e t != 1)
393 {
394 p r i n t f (”need a s i n g l e i n t e g e r ! t ry again : ”) ;
395 // Get user input
396 r e t = scan f (”%i ” , &ans) ;
397 // Clear the standard input stream
398 s can f (”%∗[ˆ\n] ”) ;
399 s can f (”%∗c”) ;
400 }
401 // ans = a t o i (&ans) ;
402 p r i n t f (” sav ing %d to s e t t i n g s \n” , ans) ;
403 g s e t t i n g s . k n e a r e s t = ans ;
404

405

406 s t o r e g s e t t i n g s () ;
407 }

C.2 Localisation Software Code 131

408

409 //
↪→ ===
↪→

C.2.2 WSN interface wsn if.c

Listing C.6: AIMS WSN interface module

1 //
↪→ −−−
↪→

2 // Adaptab le I n f a n t Monitoring System
3 //

↪→ −−−
↪→

4 // Author : Brad Goold
5 // Date : 26 May 2014
6 // Email Address : W0085400@umail . usq . edu . au
7 //
8 // Purpose : This s o f t w a r e i n t e r a c t s wi th a w i r e l e s s sensor network

↪→ to
9 // perform l o c a l i s a t i o n and boundary d e t e c t i o n o f a t a r g e t sensor

10 // i n s i d e t h a t network v i a the F i n g e r p r i n t i n g / P r o f i l i n g l o c a l i s a t i o n
11 // method .
12 //
13 // Pre : The TelosB w i r e l e s s s ens ors must be sw i t c hed on and the
14 // base−s t a t i o n must be p lugged i n t o the USB por t on the h os t
15 // machine .
16 //
17 // Post :
18 //

↪→ −−−
↪→

19

20

21 //
↪→ −−−
↪→

22 // Inc luded L i b r a r i e s
23 //

↪→ −−−
↪→

24 #inc lude <s t d i o . h>
25 #inc lude <s t d l i b . h>
26 #inc lude <uni s td . h>
27 #inc lude <s t r i n g . h>
28 #inc lude <termios . h>
29 #inc lude <i n t t y p e s . h>
30 #inc lude ” s f s o u r c e . h”
31 #inc lude ” s e r i a l s o u r c e . h”
32 #inc lude <math . h>
33 #inc lude ”aims . h”
34 #inc lude ” w s n i f . h”
35 #inc lude ” d b i f . h”
36 #inc lude <time . h>
37 #inc lude <endian . h>
38 //

↪→ −−−
↪→

39 //Data S t r u c t u r e s
40 extern s t r u c t s e t t i n g s g s e t t i n g s ;
41 extern s t r u c t Packet Rec Packet ;
42 //

↪→ −−−
↪→

43 // Function Proto types
44 //

↪→ −−−

C.2 Localisation Software Code 132

↪→
45 i n l i n e void p r i n t p a c k e t (s t r u c t Packet P) ; // h e l p e r f u n c t i o n
46 s t r u c t Packet ∗ wsn re c e i v e packe t (s e r i a l s o u r c e fd) ; // r e c e i v e and
47 // parse
48 //

↪→ −−−
↪→

49

50

51 // Receive and parse the packe t . Creates a packe t s t r u c t u r e and
52 // p o p u l a t e s the data .
53 // r e t u r n s a p o i n t e r to the packe t r e c e i v e d .
54 s t r u c t Packet ∗ wsn re c e i v e packe t (s e r i a l s o u r c e fd) {
55 // Local V a r i a b l e s
56 //−−−−−−−−−−−−−−−
57 // s e r i a l s o u r c e f d = NULL; // f i l e d e s c r i p t o r f o r the s e r i a l

↪→ source
58 i n t l en ; // l e n g t h o f the r e c i e v e d packe t .
59 u i n t 8 t ph ; // used f o r t r i a n g u l a r swap
60 char ∗ packet ; // p o i n t e r to the data r e c e i v e d from the forwarder
61 char l o c a l c o p y p a c k e t [PACKET SIZE+1] ; // l o c a l copy o f the

↪→ r e c e i v e d
62 // packe t .
63

64 // A l l o c a t e memory f o r the new packe t s t r u c t u r e .
65 s t r u c t Packet ∗ p = (s t r u c t Packet ∗) mal loc (s i z e o f (s t r u c t Packet

↪→)) ;
66

67 // read from the s e r i a l forwarder
68 packet = r e a d s e r i a l p a c k e t (fd , &l en) ;
69

70 // v a l i d a t e packe t
71 i f (! packet | | l en != PACKET SIZE | | p == NULL)
72 {
73 f p r i n t f (s tde r r , ”The r e c e i v e d packet i s NULL or not the

↪→ expected l ength or not enough memory\ r \n”) ;
74 f r e e (packet) ;
75 re turn NULL; // the s e r i a l forwarder has f a i l e d
76 }
77

78 //make a l o c a l copy o f the packe t
79 memcpy(l o ca l copy packe t , packet , l en +1) ;
80

81 // t r i a n g u l a r swap f o r wrong endianness .
82 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 memcpy(&ph , &l o c a l c o p y p a c k e t [1 4] , s i z e o f (u i n t 8 t)) ;
84 memcpy(& l o c a l c o p y p a c k e t [1 4] , &l o c a l c o p y p a c k e t [1 3] , s i z e o f (

↪→ u i n t 8 t)) ;
85 memcpy(& l o c a l c o p y p a c k e t [13] ,& ph , s i z e o f (u i n t 8 t)) ;
86 // b u i l d S t r u c t from packe t read
87 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 p−>s o u r c e i d = l o c a l c o p y p a c k e t [SOURCE ID] ;
89 p−>r s s i = l o c a l c o p y p a c k e t [RSSI] ;
90 memcpy(&p−>seq no , &l o c a l c o p y p a c k e t [SEQ NO] , 2) ;
91 f r e e (packet) ;
92 re turn p ;
93 }
94

95 // P r o f i l e the area
96 void p r o f i l i n g (const char ∗dev , const i n t baud , void (∗message) (

↪→ s e r i a l s o u r c e m s g problem)) {
97 // LOCAL VARIABLES
98 //=================
99 s e r i a l s o u r c e fd ; // f i l e d e s c r i p t o r

100 i n t i i , kk , l l , x pos = 1 , y pos = 1 ; // i t e r a t o r s
101 u i n t 1 6 t num stored = 0 ; // Number o f complete sequences s t o r e d

C.2 Localisation Software Code 133

102 unsigned char found items [g s e t t i n g s . num sensors] ;
103 unsigned char num found = 0 ;
104 s t r u c t Packet ∗ p ; // p o i n t s to the r e c i e v e d packe t .
105 i n t s fd ; // s e r i a l f i l e d e s c r i p t o r f o r f l u s h i n g d e v i c e f i l e

↪→ b u f f e r
106

107 //−−
108 // Open the s e r i a l forwarder and g e t f i l e d e s c r i p t o r
109 //−−
110 fd = o p e n s e r i a l s o u r c e (dev , baud , 0 , s tderr msg) ;
111 i f (! fd)
112 {
113 f p r i n t f (s tde r r , ”Couldn ’ t open s e r i a l port at %s :%d\ r \n” , dev

↪→ , baud) ;
114 re turn ;
115 }
116 s f d = s e r i a l s o u r c e f d (fd) ;
117 //−−
118 // loop through each p o s i t i o n
119 //−−
120 f o r (x pos = 1 ; x pos <= g s e t t i n g s . x s i z e ; x pos++)
121 {
122 f o r (y pos = 1 ; y pos <= g s e t t i n g s . y s i z e ; y pos++)
123 {
124 p r i n t f (” Please put the senso r at p o s i t i o n X:%d , Y:%d\ r \ r

↪→ \n” ,
125 x pos , y pos) ;
126 f f l u s h (s td in) ;
127 p r i n t f (”Confirm with ENTER: ”) ;
128 // We dont care what input we g e t back , as long as en ter
129 // i s p res s ed . .
130 s can f (”%∗c”) ;
131 //−−
132 // loop through u n t i l we g e t the number o f samples we

↪→ need
133 // f o r each l o c a t i o n
134 //

↪→ −−
↪→

135 whi le (num stored < g s e t t i n g s . num samples)
136 {
137 t c f l u s h (s fd , TCIFLUSH) ; // c l e a r the d e v i c e f i l e

↪→ b u f f e r
138 p = wsn re c e i v e packe t (fd) ; // r e c e i v e the packe t
139 t c f l u s h (s fd , TCIFLUSH) ;
140

141 i f (p)
142 {
143 // V a l i d a t e Addresses (dont need base or t a r g e t)
144 i f (p−>s o u r c e i d != 0x00 &&
145 p−>s o u r c e i d != 0x08)
146 {
147 // s h i f t r i g h t b u f f e r .
148 f o r (kk = BUFFER SIZE−1; kk > 0 ; kk−−)
149 {
150 memcpy(&Packet Buf f e r [kk] ,
151 &Packet Buf f e r [kk−1] , s i z e o f (

↪→ s t r u c t Packet)) ;
152 }
153 // put the read v a l u e i n t o the f i r s t e lement
154 memcpy(&Packet Buf f e r [0] , p , s i z e o f (s t r u c t

↪→ Packet)) ;
155 // Find how many i n s t a n c e s o f each sequence

↪→ number in

C.2 Localisation Software Code 134

156 // the b u f f e r t h e r e are . I f t h e r e are the
↪→ name amount

157 // o f i n s t a n c e s as t h e r e are sensors , then
↪→ we have a

158 // f u l l s u i t e and we can s t o r e t h e s e
↪→ i n s t a n c e s in the DB

159 found items [0] = 0 ; // p o i n t s to the f i r s t
↪→ packe t

160 // in the b u f f e r (the one
↪→ we

161 // j u s t saved) ;
162 num found = 1 ; // The f i r s t one i s a g iven
163

164 f o r (l l = 0 ; l l < BUFFER SIZE ; l l ++)
165 {
166 i f (Packet Buf f e r [l l] . seq no ==
167 Packet Buf f e r [0] . seq no &&
168 Packet Buf f e r [l l] . s o u r c e i d ==
169 Packet Buf f e r [0] . s o u r c e i d &&
170 l l > 0)
171 {
172 Packet Buf f e r [0] . seq no = 0xFFFF;
173 Packet Buf f e r [0] . s o u r c e i d = 0 ;
174 Packet Buf f e r [0] . r s s i = −128;
175 }
176

177 i f (Packet Buf f e r [l l] . seq no ==
178 Packet Buf f e r [0] . seq no &&
179 Packet Buf f e r [l l] . s o u r c e i d !=
180 Packet Buf f e r [0] . s o u r c e i d)
181 {
182 num found++;
183 found items [num found−1] = l l ; //

↪→ p o i n t s
184 // to element
185 }
186 }// f o r l l = 0 . . .
187

188 i f (num found == g s e t t i n g s . num sensors)
189 {
190 // we have a f u l l se t ,
191 num stored++;
192 num found = 0 ;
193

194 f o r (i i = 0 ; i i < g s e t t i n g s . num sensors
↪→ ; i i ++)

195 {
196 Packet Buf f e r [found items [i i]] . r s s i

↪→ −= 45 ;
197 s t o r e (Packet Buf f e r [found items [i i

↪→]] , x pos , y pos) ;
198 }
199 //
200 }// i f (num found . . .
201 num found = 0 ;
202 } // v a l i d a t e a d d r e s s e s
203 }// i f l e n == p a c k e t s i z e
204 f r e e (p) ;
205 }// w h i l e num stored
206 num stored = 0 ; // r e s e t f o r next loop
207 }// f o r y pos
208 }// f o r x pos
209 c l o s e s e r i a l s o u r c e (fd) ;
210 }
211

212 i n l i n e void p r i n t p a c k e t (s t r u c t Packet P)

C.2 Localisation Software Code 135

213 {
214 p r i n t f (”SEQ = %d , SOURCE ID = %d , RSSI = %d\ r \n” , P. seq no , P.

↪→ sou r c e id , P . r s s i) ;
215 }
216

217 unsigned char g e t s e n s o r i d (const char ∗dev , const i n t baud , void (∗
↪→ message) (s e r i a l s o u r c e m s g problem)) {

218

219 s e r i a l s o u r c e fd ; // f i l e d e s c r i p t o r
220 i n t i i , f l a g = 0 , counter = 0 ;
221 u i n t 8 t f ound id s [g s e t t i n g s . num sensors] ; // s t o r a g e f o r id ’ s
222 s t r u c t Packet ∗ p ; // r e c e i v e d packe t
223 i n t num ids found = 0 ;
224

225 fd = o p e n s e r i a l s o u r c e (dev , baud , 0 , s tderr msg) ;
226 i f (! fd)
227 {
228 f p r i n t f (s tde r r , ” wsn r e c i eve packe t () : Couldn ’ t open s e r i a l

↪→ port at %s :%d\ r \n” , dev , baud) ;
229 re turn EXIT FAILURE ;
230 }
231 // i n i t i a l i s e
232 f o r (i i = 0 ; i i < g s e t t i n g s . num sensors ; i i ++)
233 {
234 f ound id s [i i] = 255 ;
235 }
236 f o r (i i = 0 ; i i < MAX SENSORS; i i ++)
237 g s e t t i n g s . i d s [i i] = 0 ;
238 // g e t sen sors
239 whi le (num ids found < g s e t t i n g s . num sensors)
240 {
241 // We are only l o o k i n g f o r s p e c i f i c p a c k e t s ∗/
242 p = wsn re c e i v e packe t (fd) ;
243 i f (p != NULL)
244 {
245 // V a l i d a t e Addresses (dont need base or t a r g e t)
246 i f (p−>s o u r c e i d != 0x00 &&
247 p−>s o u r c e i d != 0x08)
248 {
249 // p r i n t f (” found i d number %d\ r\ r\n” , p−>s o u r c e i d) ;
250 f o r (i i = 0 ; i i < g s e t t i n g s . num sensors ; i i ++)
251 {
252 i f (p−>s o u r c e i d == found id s [i i])
253 f l a g = 1 ;
254 }
255 i f (f l a g == 0) {
256 f ound id s [num ids found] = p−>s o u r c e i d ;
257 g s e t t i n g s . i d s [num ids found] = found id s [

↪→ num ids found] ;
258 num ids found++;
259 }
260 f l a g = 0 ;
261 }
262 }
263 counter++;
264 i f (counter > 100)
265 {
266 p r i n t f (” Fa i l ed g e t t i n g senso r id ’ s : too many t r i e s \ r \n”)

↪→ ;
267 re turn 1 ;
268 }
269 }// w h i l e
270 c l o s e s e r i a l s o u r c e (fd) ;
271 re turn 0 ;
272 }

C.2 Localisation Software Code 136

273

274 void Monitoring (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem)) {

275 s e r i a l s o u r c e fd ; // f i l e d e s c r i p t o r
276 i n t i i , kk , l l ; // i t e r a t o r s
277 u i n t 1 6 t num stored = 0 ; // Number o f complete sequences s t o r e d
278 unsigned char found items [g s e t t i n g s . num sensors] ;
279 unsigned char num found = 0 ;
280 i n t s fd ; // s e r i a l f i l e d e s c r i p t o r f o r f l u s h i n g
281 s t r u c t Packet ∗ p ;
282 //−−
283 // loop through u n t i l we g e t the number o f samples we need
284 // f o r each l o c a t i o n
285 // −−
286 fd = o p e n s e r i a l s o u r c e (dev , baud , 0 , s tderr msg) ;
287 i f (! fd)
288 {
289 f p r i n t f (s tde r r , ” wsn r e c i eve packe t () : Couldn ’ t open s e r i a l

↪→ port at %s :%d\ r \n” , dev , baud) ;
290 re turn ;
291 }
292 s f d = s e r i a l s o u r c e f d (fd) ;
293

294 whi le (num stored < g s e t t i n g s . num mon samples)
295 {
296 // We are only l o o k i n g f o r s p e c i f i c p a c k e t s
297 t c f l u s h (s fd , TCIFLUSH) ;
298 p = wsn re c e i v e packe t (fd) ;
299 t c f l u s h (s fd , TCIFLUSH) ; // f l u s h d e v i c e b u f f e r .
300 i f (p)
301 {
302 f f l u s h (stdout) ;
303 // V a l i d a t e Addresses (dont need base or t a r g e t)
304 i f (p−>s o u r c e i d != 0x00 &&
305 p−>s o u r c e i d != 0x08)
306 {
307 // s h i f t r i g h t b u f f e r .
308 f o r (kk = BUFFER SIZE−1; kk > 0 ; kk−−)
309 {
310 memcpy(&Packet Buf f e r [kk] ,
311 &Packet Buf f e r [kk−1] , s i z e o f (s t r u c t

↪→ Packet)) ;
312 }
313 // put the read v a l u e i n t o the f i r s t e lement
314 memcpy(&Packet Buf f e r [0] , p , s i z e o f (s t r u c t Packet)) ;
315 // Find how many i n s t a n c e s o f each sequence number

↪→ in
316 // the b u f f e r t h e r e are . I f t h e r e are the name

↪→ amount
317 // o f i n s t a n c e s as t h e r e are sensors , then we have a
318 // f u l l s u i t e and we can s t o r e t h e s e i n s t a n c e s in

↪→ the DB
319

320 f o r (l l = 0 ; l l < BUFFER SIZE ; l l ++)
321 {
322 i f (Packet Buf f e r [l l] . seq no ==
323 Packet Buf f e r [0] . seq no &&
324 Packet Buf f e r [l l] . s o u r c e i d ==
325 Packet Buf f e r [0] . s o u r c e i d &&
326 l l > 0)
327 {
328 Packet Buf f e r [0] . seq no = 0xFFFF;
329 Packet Buf f e r [0] . s o u r c e i d = 0 ;
330 Packet Buf f e r [0] . r s s i = −128;

C.2 Localisation Software Code 137

331 }
332 i f (Packet Buf f e r [l l] . seq no ==
333 Packet Buf f e r [0] . seq no &&
334 Packet Buf f e r [l l] . s o u r c e i d
335 != Packet Buf f e r [0] . s o u r c e i d)
336 {
337 num found++;
338 found items [num found−1] = l l ; // p o i n t s
339 i f (num found == g s e t t i n g s . num sensors−1)
340 {
341 // we have a f u l l se t ,
342 num stored++;
343 num found = 0 ;
344 Packet Buf f e r [0] . r s s i −= 45 ;
345 s t o r e mon i to r (Packet Buf f e r [0] ,

↪→ num stored) ;
346 f o r (i i = 0 ; i i < g s e t t i n g s . num sensors

↪→ −1; i i ++)
347 {
348

349 Packet Buf f e r [found items [i i]] . r s s i
↪→ −= 45 ;

350 s t o r e mon i to r (Packet Buf f e r [
↪→ found items [i i]] , num stored) ;

351 }
352 }// i f (num found . . .
353 }// i f item == search v a r i a b l e . . .
354 }// f o r l l = 0 . . .
355 num found = 0 ;
356 } // v a l i d a t e a d d r e s s e s
357 }// i f l e n == p a c k e t s i z e
358 }// w h i l e num stored
359 num stored = 0 ; // r e s e t f o r next loop
360 c l o s e s e r i a l s o u r c e (fd) ;
361

362 }
363

364 // g e t time d i f f e r e n c e from timespec s t r u c t s
365 s t r u c t t imespec d i f f (s t r u c t t imespec s ta r t , s t r u c t t imespec end)
366 {
367 s t r u c t t imespec temp ;
368 i f ((end . tv nsec−s t a r t . t v n s e c)<0) {
369 temp . t v s e c = end . tv sec−s t a r t . tv s ec −1;
370 temp . tv ns e c = 1000000000+end . tv nsec−s t a r t . t v n s e c ;
371 } e l s e {
372 temp . t v s e c = end . tv sec−s t a r t . t v s e c ;
373 temp . tv ns e c = end . tv nsec−s t a r t . t v n s e c ;
374 }
375 re turn temp ;
376 }
377

378 // Test ing code f o r accuracy and response time .
379 //−−−
380 void t e s t (const char ∗dev , const i n t baud , void (∗message) (

↪→ s e r i a l s o u r c e m s g problem))
381 {
382 i n t x pos , y pos ;
383 double x , y ;
384 u i n t 3 2 t sample = 0 ;
385 u i n t 8 t num samples = 5 ;
386 u i n t 8 t i i ;
387 FILE ∗ DataFi le ;
388 t ime t rawtime ;
389 s t r u c t tm ∗ t ime in f o ;
390 const char ∗ f i l ename = ” Test Data ” ;
391 char ∗ datet ime = (char ∗) c a l l o c (50 , s i z e o f (char)) ;

C.2 Localisation Software Code 138

392 char ∗ fu l lname =(char ∗) c a l l o c (50 , s i z e o f (char)) ;
393 s t r u c t t imespec ts1 , ts2 , t s r e s ;
394 double t ime spent , t ime per sample ;
395 double e r r o r = 0 . 0 , error sum = 0 . 0 ;
396 double time sum = 0 . 0 ;
397 i n t gs knn = g s e t t i n g s . k n e a r e s t ; // save f o r l a t e r
398 i n t g s kc = g s e t t i n g s . k c e n t r o i d ; // save f o r l a t e r
399 i n t knn = 0 ;
400 i n t kc = 0 ;
401 i n t j j = 0 ;
402 //===
403 // Get time f o r f i l e name
404 time (&rawtime) ;
405 t ime in f o = l o c a l t i m e (&rawtime) ;
406 s p r i n t f (datetime , ”%d %d %d %d %02d %02d” , t ime in fo−>tm year

↪→ +1900 , t ime in fo−>tm mon+1, t ime in fo−>tm mday , t ime in fo−>
↪→ tm hour , t ime in fo−>tm min , t ime in fo−>tm sec) ;

407 s t r cpy (ful lname , f i l ename) ;
408 s t r c a t (ful lname , datet ime) ;
409 s t r c a t (ful lname , ” . csv ”) ;
410 //===
411 // Open F i l e
412 DataFi le = fopen (ful lname , ”w”) ;
413 i f (DataFi le==NULL)
414 {
415 p r i n t f (” couldnt open f i l e f o r wr i t i ng ! Ouch\ r \n”) ;
416 e x i t (1) ;
417 }
418 // Add the headings o f the columns .
419 f p r i n t f (DataFile , ”SAMPLE,ACT X POS, ACT Y POS, ”) ;
420 f o r (j j = 0 ; j j < 20 ; j j ++)
421 f p r i n t f (DataFile , ”KNN, KC, EST X POS , EST Y POS ,

↪→ TIME PER SAMPLE, ERROR, ”) ;
422 f p r i n t f (DataFile , ”\n”) ;
423 // Loop through each o f the p o s i t i o n s
424 f o r (x pos = 1 ; x pos <= g s e t t i n g s . x s i z e ; x pos++)
425 {
426 f o r (y pos = 1 ; y pos <= g s e t t i n g s . y s i z e ; y pos++)
427 {
428 sample++;
429 system (” c l e a r ”) ; // not the most e l e g a n t s o l u t i o n
430 p r i n t f (” Please put the senso r at p o s i t i o n X:%d , Y:%d\ r \ r

↪→ \n” , x pos , y pos) ;
431 f f l u s h (s td in) ;
432 p r i n t f (”Confirm with ENTER: ”) ;
433 // Get user input
434 s can f (”%∗c”) ;
435 // ta ke (num samples ∗ g s e t t i n g s . num mon samples) to

↪→ g e t l o t s
436 // o f data
437 f o r (i i = 0 ; i i < num samples ; i i ++)
438 {
439 f p r i n t f (DataFile , ”%d , %d , %d , ” , sample , x pos ,

↪→ y pos) ;
440 p r i n t f (”%d , %d , %d , ” , sample , x pos , y pos) ;
441 // loop through the p o s s i b l e a l go r i t hm parameters
442 f o r (knn = 3 ; knn <=6 ; knn++)
443 {
444 f o r (kc = 1 ; kc <=5; kc++)
445 {
446 g s e t t i n g s . k n e a r e s t = knn ;
447 g s e t t i n g s . k c e n t r o i d = kc ;
448 c l o c k g e t t i m e (CLOCK REALTIME, &ts1) ; // s t a r t

↪→ t ime

C.2 Localisation Software Code 139

449 // Calc P o s i t i o n
450 Monitoring (dev , baud , s tder r msg) ;
451 g e t p o s i t i o n (&x , &y) ;
452

453 c l o c k g e t t i m e (CLOCK REALTIME, &ts2) ; //end
↪→ t ime

454 // c a l c u l a t e p o s i t i o n err or
455 e r r o r = s q r t (pow ((x−x pos) ,2) + pow ((y−y pos

↪→) , 2)) ;
456 error sum += e r r o r ; // sum f o r average
457

458 // c a l c u l a t e response time
459 t s r e s = d i f f (ts1 , t s2) ; // time d i f f e r e n c e
460 // conver t to doub le
461 t ime spent = t s r e s . t v s e c +
462 (double) ((double) t s r e s . t v n s e c /(double)

↪→ 1000000000) ;
463 t ime per sample = t ime spent /(double)

↪→ g s e t t i n g s . num mon samples ;
464 time sum += time per sample ; // sum f o r

↪→ average
465

466 // put in CSV
467 f p r i n t f (DataFile , ”%d,%d ,%2.2 f ,%2.2 f ,%2.5 f ,

↪→ %2.5 f , ” ,
468 knn , kc , x , y , t ime per sample , e r r o r

↪→) ;
469 p r i n t f (”%d,%d ,%2.2 f ,%2.2 f ,%2.5 f , %2.5 f , ” ,
470 knn , kc , x , y , t ime per sample , e r r o r

↪→) ;
471 }
472 }
473 f p r i n t f (DataFile , ”\n”) ;
474 p r i n t f (”\n”) ;
475 }
476 f f l u s h (DataFi le) ; // save on every s e t o f samples .
477 }
478 }
479

480 // add averages to end o f f i l e
481 f p r i n t f (DataFile , ”Average Error , %2.5 f \ r \nAverage Time , %2.5 f \ r

↪→ \n” , error sum /(g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e ∗ 5
↪→ ∗ 20) , time sum /(g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e ∗ 5
↪→ ∗ 20)) ;

482 f c l o s e (DataFi le) ;
483 g s e t t i n g s . k c e n t r o i d = gs kc ; // put o r i g i n a l s back
484 g s e t t i n g s . k n e a r e s t = gs knn ; // put o r i g i n a l s back
485 re turn ;
486 }

C.2.3 Database interface db if.c

Listing C.7: AIMS Database interface module

1 //
↪→ −−−
↪→

2 // Author : Brad Goold
3 // Date : 26 Ju l 2014
4 // Email Address : W0085400@umail . usq . edu . au
5 //
6 // Purpose : I n t e r a c t i o n wi th the database and the aims a p p l i c a t i o n .
7 // performs the database q u e r i e s and r e t u r n s the r e s u l t s f o r use by
8 // the a p p l i c a t i o n
9 //

↪→ −−−

C.2 Localisation Software Code 140

↪→
10 //

↪→ −−−
↪→

11 // Inc luded L i b r a r i e s
12 //

↪→ −−−
↪→

13 #inc lude <s t d i o . h>
14 #inc lude <s t d l i b . h>
15 #inc lude <mysql . h>
16 #inc lude <uni s td . h>
17 #inc lude <s t r i n g . h>
18 #inc lude <ctype . h>
19 #inc lude <s i g n a l . h>
20 #inc lude <i n t t y p e s . h>
21 #inc lude ” s f s o u r c e . h”
22 #inc lude ” s e r i a l s o u r c e . h”
23 #inc lude <math . h>
24 #inc lude ”aims . h”
25 #inc lude ” w s n i f . h”
26 #inc lude ” d b i f . h”
27 #inc lude ” vec to r . h”
28

29 // S t a t e s o f the c e l l s f o r e v a l u a t i o n
30 char ∗ StateNames [3] = {
31 ”SAFE” ,
32 ”TRANS” ,
33 ”UNSAFE”
34 } ;
35

36 //
↪→ −−−
↪→

37 // Database in format ion
38 const char ∗ s e r v e r = ” l o c a l h o s t ” ;
39 const char ∗ user = ” root ” ;
40 const char ∗password = ”XXXXXXXXX” ; // You wont be a b l e to ac ces s i f
41 // t h i s i s not c o r r e c t .
42 const char ∗database = ”Aims” ;
43

44 // compare f u n c t i o n f o r s o r t i n g .
45 i n t cmp(const void ∗ a , const void ∗ b)
46 {
47 double ∗ x = (double ∗) a ;
48 double ∗ y = (double ∗)b ;
49 i f (∗x == ∗y)
50 re turn 0 ;
51 e l s e i f (∗x < ∗y)
52 re turn −1;
53 e l s e re turn 1 ;
54 }
55

56 //
↪→ −−−
↪→

57 // Sum s t r u c t i s used to s t o r e the er ror sums f o r each sensor
↪→ compared

58 // to the curren t v a l u e and i t s p o s i t i o n in the t a b l e (row number)
59 //

↪→ −−−
↪→

60 s t r u c t Sum {
61 double sum ; ///Sum o f e r r o r s
62 i n t pos ; // p o s i t i o n in the database (row number)
63 } ;
64

65 s t r u c t s r {
66 i n t sensor num ;

C.2 Localisation Software Code 141

67 i n t index ;
68 double r s s i ;
69 } ;
70

71 //
↪→ −−−
↪→

72 // compare f u n c t i o n f o r f i n d i n g the b e s t ranked p o s i t i o n s used by
73 // q s o r t .
74 //

↪→ −−−
↪→

75 i n t cmp1(const void ∗y1 , const void ∗y2)
76 {
77 s t r u c t Sum ∗ s1 = (s t r u c t Sum ∗) y1 ;
78 s t r u c t Sum ∗ s2 = (s t r u c t Sum ∗) y2 ;
79

80 i f (s1−>sum < s2−> sum)
81 re turn −1;
82 e l s e i f (s1−>sum == s2−>sum)
83 re turn 0 ;
84 e l s e re turn 1 ;
85 }
86

87 // compare RSSI v a l u e s f o r q s o r t
88 i n t cmp2(const void ∗ r1 , const void ∗ r2)
89 {
90 s t r u c t s r ∗ s1 = (s t r u c t s r ∗) r1 ;
91 s t r u c t s r ∗ s2 = (s t r u c t s r ∗) r2 ;
92 // p r i n t f (” c a l l e d ! s1 = %2.2 f , s2 = %2.2 f \ r\n” , s1−>r s s i , s2−>

↪→ r s s i) ;
93

94 i f (s1−>r s s i < s2−>r s s i)
95 re turn −1;
96 e l s e i f (s1−>r s s i == s2−>r s s i)
97 re turn 0 ;
98 e l s e re turn 1 ;
99 }

100

101

102 unsigned char g e t p o s i t i o n (double ∗ x pos , double ∗ y pos)
103 {
104 // Get the p o s i t i o n by matching to the database .
105 //−−
106 MYSQL ∗conn ;
107 MYSQL RES ∗ res , ∗ r e s2 ;
108 MYSQLROW row ;
109 char su f [] = ”FROM monitor ” ;
110 char middle1 [5 1 2] ;
111 char temp1 [1 2 8] ;
112 char query [5 1 2] ;
113 i n t i i , j j = 0 , kk = 0 , l l ;
114 i n t kkk = 0 ;
115 u i n t 1 6 t num f i e ld s = 0 ;
116 conn = m y s q l i n i t (NULL) ;
117 double sum1 = 0 . 0 ;
118 i n t nnodes = g s e t t i n g s . k n e a r e s t ; // n e a r e s t nodes ;
119 s t r u c t Sum sums1 [g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e] ;
120 double r e s u l t s 1 [g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e] [nnodes] ;
121 i n t zz = 0 ;
122 i n t k = g s e t t i n g s . k c e n t r o i d ; // n e a r e s t matches .
123 i n t e r r o r t h r e s h = 255 ; // f l o o r (nnodes ∗ 2 . 5) ;
124 Pos i t i on ∗ be s t k po s [k] ;
125 Pos i t i on c en t r o id ;
126 s t a t i c double l a s t x = 0 . 0 ;
127 s t a t i c double l a s t y = 0 . 0 ;
128 s t r u c t s r s r s [g s e t t i n g s . num sensors] ;

C.2 Localisation Software Code 142

129

130 // I n i t i a l i s e arrays
131 //−−−−−−−−−−−−−−−−
132 f o r (i i = 0 ; i i < g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e ; i i ++)
133 {
134 f o r (j j = 0 ; j j < nnodes ; j j ++)
135 {
136 r e s u l t s 1 [i i] [j j] = 0 . 0 ;
137 }
138 sums1 [i i] . sum = 0 . 0 ;
139 sums1 [i i] . pos = 0 . 0 ;
140 }
141 j j = 0 ;
142 i i = 0 ;
143 // Connect to the Database
144 //−−−−−−−−−−−−−−−−−−−−−−−−
145 i f (! mysq l r ea l connec t (conn , se rver ,
146 user , password , database , 0 , NULL, 0))
147 {
148 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
149 mysq l c l o s e (conn) ;
150 re turn 1 ;
151 }
152

153 // g e t v a l u e s from the l a s t ” monitor ” c a l l from the database
154 //−−
155 s p r i n t f (middle1 , ”SELECT AVG(S%02 d r s s i) ” , g s e t t i n g s . i d s [0]) ;
156 f o r (l l = 1 ; l l < g s e t t i n g s . num sensors ; l l ++)
157 {
158 s p r i n t f (temp1 , ” ,AVG(S%02 d r s s i) ” , g s e t t i n g s . i d s [l l]) ;
159 s t r c a t (middle1 , temp1) ;
160 }
161 s t r c a t (middle1 , su f) ;
162 // p r i n t f (” Query : ’%s ’\ r\n” , middle1) ;
163 i f (mysql query (conn , middle1))
164 {
165 f p r i n t f (s tde r r , ” f a u l t g e t t i n g averages \ r \n”) ;
166 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
167 mysq l c l o s e (conn) ;
168 re turn 1 ;
169 }
170

171 // Get row
172 r e s = m y s q l u s e r e s u l t (conn) ;
173 row = mysq l f e tch row (r e s) ;
174

175 // save row data in s r s array
176 i f (row != NULL)
177 {
178 f o r (l l = 0 ; l l < g s e t t i n g s . num sensors ; l l ++)
179 {
180

181 s r s [l l] . sensor num = g s e t t i n g s . i d s [l l] ;
182 s r s [l l] . r s s i = fabs (a t o f (row [l l])) ;
183 s r s [l l] . index = l l ; // index f o r t r a c k i n g sensor l a t e r
184 }
185 }
186 e l s e
187 {
188 // row corrup t or empty .
189 mysq l c l o s e (conn) ;
190 re turn EXIT FAILURE ;
191 }
192

193 // Sort the array by RSSI v a l u e s

C.2 Localisation Software Code 143

194 qso r t (s r s , g s e t t i n g s . num sensors , s i z e o f (s t r u c t s r) , cmp2) ;
195 m y s q l f r e e r e s u l t (r e s) ;
196

197 //===============
198 // Algorithm to g e t p o s i t i o n
199 // p r i n t f (” Finding c l o s e s t p o s i t i o n \ r\n”) ;
200 i f (mysql query (conn , ”SELECT ∗ from Main ; ”))
201 {
202 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
203 mysq l c l o s e (conn) ;
204 re turn 1 ;
205 }
206 r e s2 = m y s q l u s e r e s u l t (conn) ;
207 num f i e ld s = mysq l num f ie lds (r e s2) ;
208 row = mysq l f e tch row (r e s2) ;
209 // loop through each row
210 whi le (row != NULL)
211 {
212 // loop through each f i e l d in t h a t row
213 f o r (i i = 1 ; i i < num f i e ld s ; i i ++)
214 {
215 // need to use on ly rows t h a t have non−n u l l v a l u e s
216 i f (row [i i] != NULL)
217 {
218 // g e t n e a r e s t nodes on ly as c a l c u l a t e d b e f o r e
219 f o r (kkk=0;kkk<nnodes ; kkk++)
220 {
221 i f (s r s [kkk] . index == i i −1)
222 {
223 r e s u l t s 1 [j j] [kkk] = s r s [kkk] . r s s i − f abs (

↪→ a t o f (row [i i])) ;
224 }
225 }
226 }
227 e l s e
228 {
229 p r i n t f (”Main Table has NULL Fie ld !\ r \ r \n”) ;
230 e x i t (0) ;
231 }
232 kk++;
233 }
234 kk = 0 ;
235 j j ++; // i n c r e a s e row number
236 row = mysq l f e tch row (r e s2) ;
237 }
238

239 // t h i s code and be i n c o r p o r a t e d above .
240 f o r (i i = 0 ; i i < (g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e) ; i i ++)
241 {
242 f o r (j j =0; j j <nnodes ; j j ++)
243 {
244 sum1+= fabs (r e s u l t s 1 [i i] [j j]) ;
245 }
246 sums1 [i i] . sum = sum1 ;
247 sums1 [i i] . pos = i i ;
248 sum1 = 0 . 0 ;
249 }
250

251 m y s q l f r e e r e s u l t (r e s2) ;
252

253 // s o r t the sums1 array by the e rro r v a l u e
254 qso r t (sums1 , g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e , s i z e o f (s t r u c t

↪→ Sum) , cmp1) ;
255

256 // loop through the top k p o s i t i o n s

C.2 Localisation Software Code 144

257 f o r (zz = 0 ; zz < k ; zz++)
258 {
259 be s t k po s [zz] = (Pos i t i on ∗) mal loc (s i z e o f (Pos i t i on)) ;
260 s p r i n t f (query , ”SELECT ∗ FROM Main ORDER BY p o s i t i o n LIMIT %

↪→ d , 1 ” , sums1 [zz] . pos) ;
261 p r i n t f (”%s \n\ r ” , query) ;
262 i f (mysql query (conn , query))
263 {
264 f p r i n t f (s tde r r , ”%s \ r \n” , query) ;
265 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
266 mysq l c l o s e (conn) ;
267 re turn 1 ;
268 }
269

270 r e s = m y s q l u s e r e s u l t (conn) ;
271 row = mysq l f e tch row (r e s) ;
272

273 i f (row != NULL)
274 {
275 char c = row [0] [0] ;
276 // t h i s method only a l l o w s s i n g l e d i g i t x s i z e and

↪→ y s i z e
277 // and shou ld be changed
278 ∗ x pos = (double) a t o i (&c) ;
279 ∗ y pos = (double) a t o i (&row [0] [2]) ;
280

281 }
282 e l s e
283 {
284 // row corrup t or empty .
285 f p r i n t f (s tde r r , ”NULL Row in DB\ r \n”) ;
286 mysq l c l o s e (conn) ;
287 re turn EXIT FAILURE ;
288 }
289

290 // the b e s t p o s i t i o n s are put i n t o an array o f p o s i t i o n
291 // s t r u c t s f o r use by the weigh ted c e n t r o i d a l gor i thm .
292 be s t k po s [zz]−>x = ∗ x pos ;
293 be s t k po s [zz]−>y = ∗ y pos ;
294 be s t k po s [zz]−> e r r o r = sums1 [zz] . sum ;
295

296 m y s q l f r e e r e s u l t (r e s) ;
297

298 }
299

300 i f (b e s t k po s [0]−> e r r o r > e r r o r t h r e s h)
301 {
302 ∗ x pos = l a s t x ;
303 ∗ y pos = l a s t y ;
304 p r i n t f (” e r r o r too high !\ r \n”) ;
305 }
306 e l s e
307 {
308 // g e t c e n t r o i d (b e s t k p o s , k , &c e n t r o i d) ;
309 g e t w e i g h t e d c e n t r o i d (bes t k pos , k , &cen t ro id) ;
310 ∗ x pos = cen t ro id . x ;
311 ∗ y pos = cen t ro id . y ;
312 p r i n t f (”newpos = %2.4 f , %2.4 f , e=%d\ r \n” , ∗x pos , ∗y pos ,

↪→ be s t k po s [0]−> e r r o r) ;
313

314 l a s t x = ∗ x pos ;
315 l a s t y = ∗ y pos ;
316 }
317 mysq l c l o s e (conn) ;
318 p r i n t f (” l e a v i n g ge t pos \n\ r ”) ;
319 re turn 0 ;

C.2 Localisation Software Code 145

320 }
321

322 // p o p u l a t e s the main t a b l e wi th the averages from the i n d i v i d u a l
323 // t a b l e s f o r each p o s i t i o n .
324 unsigned char populate main (void)
325 {
326 MYSQL ∗conn ;
327 MYSQL RES ∗ r e s ;
328 MYSQLROW row ;
329 char query [5 1 2] ;
330 // char pos [1 6] ;
331 i n t xx , yy , i i ;
332 i n t sensor number = 255 ;
333 i n t average = 0 ;
334 // I n i t i a l i s e connect ion
335 conn = m y s q l i n i t (NULL) ;
336

337 // Connect to the Database
338 i f (! mysq l r ea l connec t (conn , se rver ,
339 user , password , database , 0 , NULL, 0))
340 {
341 // f a i l e d
342 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
343 mysq l c l o s e (conn) ;
344 re turn EXIT FAILURE ;
345 }
346

347 f o r (xx = 0 ; xx < g s e t t i n g s . x s i z e ; xx++)
348 {
349 f o r (yy = 0 ; yy < g s e t t i n g s . y s i z e ; yy++)
350 {
351 f o r (i i = 0 ; i i < g s e t t i n g s . num sensors ; i i ++)
352 {
353 sensor number = g s e t t i n g s . i d s [i i] ;
354

355 // g e t the average o f the r s s i ’ s f o r t h i s sensor at
356 // t h i s p o s i t i o n
357 s p r i n t f (query , ”SELECT AVG(r s s i) FROM s%02d pos%02d

↪→ %02d ; ” , sensor number , xx+1,yy+1) ;
358

359 i f (mysql query (conn , query))
360 {
361 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
362 mysq l c l o s e (conn) ;
363 re turn EXIT FAILURE ;
364 }
365

366 r e s = m y s q l u s e r e s u l t (conn) ;
367

368 row = mysq l f e tch row (r e s) ;
369 i f (row != NULL)
370 {
371

372 average = a t o i (row [0]) ;
373 }
374 e l s e
375 {
376 mysq l c l o s e (conn) ;
377 re turn EXIT FAILURE ;
378 }
379

380 m y s q l f r e e r e s u l t (r e s) ;
381

382 // i n s e r t t h i s v a l u e i n t o XXYY in main t a b l e
383

384 s p r i n t f (query , ”UPDATE Main SET S%02 d r s s i = %d
↪→ WHERE p o s i t i o n = %02d%02d ; ” , sensor number ,

C.2 Localisation Software Code 146

↪→ average , xx+1, yy+1) ;
385 // p r i n t f (”%s\ r\n” , query) ;
386 i f (mysql query (conn , query))
387 {
388 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
389 mysq l c l o s e (conn) ;
390 re turn 1 ;
391 }
392 }// f o r i i
393 }// f o r j j
394 }// f o r kk
395 mysq l c l o s e (conn) ;
396

397 re turn 0 ;
398 }
399

400 // c l e a r the monitor t a b l e c o n t e n t s .
401 unsigned char c l e a r mon i t o r (void) {
402 MYSQL ∗conn ;
403 char query [5 1 2] ;
404 conn = m y s q l i n i t (NULL) ;
405

406 // Connect to the Database
407 i f (! mysq l r ea l connec t (conn , se rver ,
408 user , password , database , 0 , NULL, 0))
409 {
410 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
411 mysq l c l o s e (conn) ;
412 re turn 1 ;
413 }
414 s p r i n t f (query , ”DELETE FROM monitor ; ”) ;
415 i f (mysql query (conn , query))
416 {
417 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
418 mysq l c l o s e (conn) ;
419 re turn 1 ;
420 }
421 mysq l c l o s e (conn) ;
422 re turn 0 ;
423 }
424

425 // s t o r e the v a l u e s in the monitor t a b l e .
426 unsigned char s to r e mon i to r (s t r u c t Packet P, i n t sample)
427 {
428 MYSQL ∗conn ;
429 char query [5 1 2] ;
430 conn = m y s q l i n i t (NULL) ;
431

432 // Connect to the Database
433 i f (! mysq l r ea l connec t (conn , se rver ,
434 user , password , database , 0 , NULL, 0))
435 {
436 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
437 mysq l c l o s e (conn) ;
438 re turn 1 ;
439 }
440

441 s p r i n t f (query , ”UPDATE monitor SET S%02 d r s s i = %d WHERE sample
↪→ = %02d ; ” , P. sour c e id , P . r s s i , sample) ;

442 // p r i n t f (”%s\ r\n” , query) ;
443 i f (mysql query (conn , query))
444 {
445 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
446 mysq l c l o s e (conn) ;
447 re turn 1 ;
448 }

C.2 Localisation Software Code 147

449

450 mysq l c l o s e (conn) ;
451 re turn 0 ;
452 }
453

454 // check the database i s ok and the v a l u e s and t a b l e s match the
455 // parameters
456 unsigned char check db hea l th (void)
457 {
458 MYSQL ∗conn ;
459 MYSQL RES ∗ r e s ;
460 MYSQLROW row ;
461 char query [5 1 2] ;
462 i n t i i ;
463 // I n i t i a l i s e connect ion
464 conn = m y s q l i n i t (NULL) ;
465 // Connect to the Database
466

467 i f (! mysq l r ea l connec t (conn , se rver ,
468 user , password , database , 0 , NULL, 0))
469 {
470 // f a i l e d
471 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
472 mysq l c l o s e (conn) ;
473 re turn EXIT FAILURE ;
474 }
475

476 // g e t v a l u e s from g s e t t i n g s t a b l e
477 i f (mysql query (conn , ” s e l e c t ∗ from g s e t t i n g s where item = 0”)

↪→) {
478 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
479 mysq l c l o s e (conn) ;
480 re turn EXIT FAILURE ;
481 }
482 r e s = m y s q l u s e r e s u l t (conn) ;
483

484 // Store v a l u e s in g s e t t i n g s data s t u c t u r e
485 row = mysq l f e tch row (r e s) ;
486 i f (row != NULL)
487 {
488 g s e t t i n g s . num sensors = a t o i (row [1]) ;
489 g s e t t i n g s . x s i z e = a t o i (row [2]) ;
490 g s e t t i n g s . y s i z e = a t o i (row [3]) ;
491 g s e t t i n g s . num samples = a t o i (row [4]) ;
492 g s e t t i n g s . num mon samples = a t o i (row [5]) ;
493 g s e t t i n g s . k n e a r e s t = a t o i (row [6]) ;
494 g s e t t i n g s . k c e n t r o i d = a t o i (row [7]) ;
495

496 }
497 e l s e
498 {
499 // row corrup t or empty .
500 mysq l c l o s e (conn) ;
501 re turn EXIT FAILURE ;
502 }
503

504 m y s q l f r e e r e s u l t (r e s) ;
505 // g e t v a l u e s from se nso rs t a b l e
506 i f (mysql query (conn , ” s e l e c t ∗ from s e n s o r s ”)) {
507 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
508 mysq l c l o s e (conn) ;
509 re turn EXIT FAILURE ;
510 }
511 r e s = m y s q l u s e r e s u l t (conn) ;
512

513 // Store v a l u e s in g s e t t i n g s data s t u c t u r e

C.2 Localisation Software Code 148

514 row = mysq l f e tch row (r e s) ;
515 i i = 0 ;
516 whi le (row != NULL)
517 {
518 g s e t t i n g s . i d s [i i ++] = a t o i (row [1]) ;
519 row = mysq l f e tch row (r e s) ;
520 }
521

522 m y s q l f r e e r e s u l t (r e s) ;
523

524 // check t h a t the number o f sen sor s in the t a b l e i s
525 // c o r r e c t
526 i f (i i != g s e t t i n g s . num sensors)
527 {
528 p r i n t f (”Wrong number o f s e n s o r s in the t a b l e \ r \n”) ;
529 //Wrong number o f sen sor s in the t a b l e ;
530 mysq l c l o s e (conn) ;
531 re turn EXIT FAILURE ;
532 }
533

534 // g e t the number o f columns in Main t a b l e ;
535 s p r i n t f (query , ”SELECT count (∗) FROM informat ion schema . columns

↪→ WHERE table schema = ’%s ’ AND table name = ’Main ’ ; ” ,
↪→ database) ;

536 i f (mysql query (conn , query))
537 {
538 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
539 mysq l c l o s e (conn) ;
540 re turn EXIT FAILURE ;
541 }
542 r e s = m y s q l u s e r e s u l t (conn) ;
543 row = mysq l f e tch row (r e s) ;
544 i f (row != NULL)
545 {
546

547 i f (a t o i (row [0]) != (1 + (g s e t t i n g s . num sensors)))
548 {
549 re turn EXIT FAILURE ;
550 mysq l c l o s e (conn) ;
551 }
552 }
553 e l s e
554 {
555 // row corrup t or empty .
556 mysq l c l o s e (conn) ;
557 re turn EXIT FAILURE ;
558 }
559

560 m y s q l f r e e r e s u l t (r e s) ;
561

562 // g e t the number o f t a b l e s in Database ;
563 s p r i n t f (query , ”SELECT COUNT(∗) FROM informat ion schema . t a b l e s

↪→ WHERE table schema = ’%s ’ ; ” , database) ;
564 i f (mysql query (conn , query))
565 {
566 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
567 mysq l c l o s e (conn) ;
568 re turn EXIT FAILURE ;
569 }
570

571 r e s = m y s q l u s e r e s u l t (conn) ;
572

573 row = mysq l f e tch row (r e s) ;
574 i f (row != NULL)
575 {

C.2 Localisation Software Code 149

576 i f (a t o i (row [0]) != (7 + (g s e t t i n g s . num sensors ∗
↪→ g s e t t i n g s . x s i z e ∗ g s e t t i n g s . y s i z e)))

577 {
578 mysq l c l o s e (conn) ;
579 re turn EXIT FAILURE ;
580 }
581 }
582 e l s e
583 {
584 // row corrup t or empty .
585 mysq l c l o s e (conn) ;
586 re turn EXIT FAILURE ;
587 }
588

589 m y s q l f r e e r e s u l t (r e s) ;
590 mysq l c l o s e (conn) ;
591

592 re turn EXIT SUCCESS ;
593 }
594

595 unsigned char c l e a r d a t a b a s e (void)
596 {
597 MYSQL ∗conn ;
598 char query [5 1 2] ;
599 conn = m y s q l i n i t (NULL) ;
600

601 // Connect to the Database
602 i f (! mysq l r ea l connec t (conn , se rver ,
603 user , password , NULL, 0 , NULL, 0))
604 {
605 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
606

607 re turn 1 ;
608 }
609

610 // drop the database
611 s p r i n t f (query , ”drop database %s ” , database) ;
612 i f (mysql query (conn , query))
613 {
614 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
615 mysq l c l o s e (conn) ;
616 re turn 1 ;
617 }
618 s p r i n t f (query , ” c r e a t e database %s ” , database) ;
619 i f (mysql query (conn , query))
620 {
621 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
622 mysq l c l o s e (conn) ;
623 re turn 1 ;
624 }
625 s p r i n t f (query , ” use %s ” , database) ;
626 i f (mysql query (conn , query))
627 {
628 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
629 mysq l c l o s e (conn) ;
630 re turn 1 ;
631

632 }
633

634 mysq l c l o s e (conn) ;
635 re turn 0 ;
636 }
637

638

639

640

641 unsigned char d e l e t e p o s d a t a (void)

C.2 Localisation Software Code 150

642 {
643 MYSQL ∗conn ;
644 char table name [3 0] ;
645 char query [5 1 2] ;
646 i n t i i = 0 , x pos = 0 , y pos = 0 ;
647 conn = m y s q l i n i t (NULL) ;
648 // Connect to the Database
649 i f (! mysq l r ea l connec t (conn , se rver ,
650 user , password , database , 0 , NULL, 0))
651 {
652 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
653 mysq l c l o s e (conn) ;
654 re turn 1 ;
655 }
656

657 f o r (i i = 0 ; i i < g s e t t i n g s . num sensors ; i i ++)
658 {
659 f o r (x pos = 1 ; x pos <= g s e t t i n g s . x s i z e ; x pos++)
660 {
661 f o r (y pos = 1 ; y pos <=g s e t t i n g s . y s i z e ; y pos++)
662 {
663

664 s p r i n t f (table name , ” s%02d pos%02d %02d” , g s e t t i n g s
↪→ . i d s [i i] , x pos , y pos) ;

665 s p r i n t f (query , ” d e l e t e from %s ; ” , table name) ;
666 i f (mysql query (conn , query))
667 {
668 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
669 mysq l c l o s e (conn) ;
670 re turn 1 ;
671 }
672 }
673 }
674 }
675 // p r i n t f (” Query s en t : %s\ r\n” , query) ;
676 mysq l c l o s e (conn) ;
677 re turn 0 ;
678 }
679

680 // s t o r e the packe t data in the database
681 unsigned char s t o r e (s t r u c t Packet P, u i n t 8 t x pos , u i n t 8 t y pos) {
682 MYSQL ∗conn ;
683 char table name [3 0] ;
684 char query [5 1 2] ;
685

686 s p r i n t f (table name , ” s%02d pos%02d %02d” , P. sour c e id , x pos ,
↪→ y pos) ;

687 conn = m y s q l i n i t (NULL) ;
688 // Connect to the Database
689 i f (! mysq l r ea l connec t (conn , se rver ,
690 user , password , database , 0 , NULL, 0))
691 {
692 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
693 mysq l c l o s e (conn) ;
694 re turn 1 ;
695 }
696

697 s p r i n t f (query , ” i n s e r t i n to %s (r s s i) VALUES (%d) ; ” , table name
↪→ , P . r s s i) ;

698 i f (mysql query (conn , query))
699 {
700 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
701 mysq l c l o s e (conn) ;
702 re turn 1 ;
703 }

C.2 Localisation Software Code 151

704 mysq l c l o s e (conn) ;
705 re turn 0 ;
706 }
707

708 // s t o r e the g l o b a l s e t t i n g s .
709 unsigned char s t o r e g s e t t i n g s (void)
710 {
711 MYSQL ∗conn ;
712 char query [5 1 2] ;
713 conn = m y s q l i n i t (NULL) ;
714 i n t i i ;
715

716 // Connect to the Database
717 i f (! mysq l r ea l connec t (conn , se rver ,
718 user , password , database , 0 , NULL, 0))
719 {
720 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
721 re turn 1 ;
722 }
723 // c l e a r curren t v a l u e s
724 s p r i n t f (query , ” d e l e t e from g s e t t i n g s where item = 0”) ;
725 i f (mysql query (conn , query))
726 {
727 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
728 mysq l c l o s e (conn) ;
729 re turn 1 ;
730 }
731 // i n s e r t v a l u e s from g s e t t i n g s s t r u c t
732 s p r i n t f (query , ” i n s e r t i n to g s e t t i n g s (item , x s i z e , y s i z e ,

↪→ num samples , num sensors , num mon samples , k neare s t ,
↪→ k c e n t r o i d) VALUES (0 ,%d,%d,%d,%d , %d , %d , %d) ; ” ,
↪→ g s e t t i n g s . x s i z e , g s e t t i n g s . y s i z e , g s e t t i n g s .
↪→ num samples , g s e t t i n g s . num sensors , g s e t t i n g s .
↪→ num mon samples , g s e t t i n g s . k neare s t , g s e t t i n g s .
↪→ k c e n t r o i d) ;

733 i f (mysql query (conn , query))
734 {
735 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
736 mysq l c l o s e (conn) ;
737 re turn 1 ;
738 }
739

740 // c l e a r s a l l rows in the ’ s ens ors ’ t a b l e ;
741 s p r i n t f (query , ” d e l e t e from s e n s o r s ; ”) ;
742 i f (mysql query (conn , query))
743 {
744 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
745 mysq l c l o s e (conn) ;
746 re turn 1 ;
747 }
748 i i = 0 ;
749 whi le (g s e t t i n g s . i d s [i i] != 0)
750 {
751 s p r i n t f (query , ” i n s e r t i n to s e n s o r s (item , id number) VALUES

↪→ (%d,%d) ; ” , i i +1, g s e t t i n g s . i d s [i i]) ;
752 i f (mysql query (conn , query))
753 {
754 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
755 mysq l c l o s e (conn) ;
756 re turn 1 ;
757 }
758 i i ++;
759

760 }
761 mysq l c l o s e (conn) ;
762 re turn 0 ;

C.2 Localisation Software Code 152

763 }
764

765

766 unsigned char c r e a t e t a b l e s (void)
767 {
768

769 MYSQL ∗conn ;
770 char query [2 5 6] ;
771 i n t kk , i i , j j , l l ;
772 char middle [5 1 2] , ∗ middle1 , ∗ middle2 , ∗ middle3 ;
773 char temp [1 0 0] , temp1 [1 0 0] , temp2 [5 1 2] ;
774

775 middle1 = (char ∗) c a l l o c (512 , 1) ;
776 middle2 = (char ∗) c a l l o c (512 , 1) ;
777 middle3 = (char ∗) c a l l o c (512 , 1) ;
778

779 // i n i t i a l i s e
780 f o r (i i = 0 ; i i < 512 ; i i ++)
781 middle [i i] = ’ \0 ’ ;
782

783

784 conn = m y s q l i n i t (NULL) ;
785 /∗ Connect to database ∗/
786 i f (! mysq l r ea l connec t (conn , se rver ,
787 user , password , database , 0 , NULL, 0))
788 {
789 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
790 re turn 1 ;
791 }
792

793

794

795 s p r i n t f (query , ”CREATE TABLE IF NOT EXISTS g s e t t i n g s (item INT
↪→ (4) UNIQUE PRIMARY KEY , num sensors INT(4) , x s i z e INT(4)
↪→ , y s i z e INT(4) , num samples INT(4) , num mon samples INT
↪→ (4) , k n e a r e s t INT(4) , k c e n t r o i d INT(4)) ENGINE = INNODB;
↪→ ”) ;

796 i f (mysql query (conn , query))
797 {
798 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
799 mysq l c l o s e (conn) ;
800 re turn 1 ;
801 }
802

803 s p r i n t f (query , ”CREATE TABLE IF NOT EXISTS s e n s o r s (item INT(4)
↪→ UNIQUE PRIMARY KEY, id number INT(4)) ENGINE = INNODB; ”) ;

804 i f (mysql query (conn , query))
805 {
806 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
807 mysq l c l o s e (conn) ;
808 re turn 1 ;
809 }
810

811 // i n i t i a l i s e the g r i d so we can use the p o s i t i o n v a l u e s .
812 f o r (kk = 0 ; kk < g s e t t i n g s . num sensors ; kk++)
813 {
814 f o r (i i = 0 ; i i < g s e t t i n g s . x s i z e ; i i ++)
815 {
816 f o r (j j = 0 ; j j < g s e t t i n g s . y s i z e ; j j ++)
817 {
818

819 s p r i n t f (query , ”CREATE TABLE IF NOT EXISTS s%02d pos
↪→ %02d %02d(sample INT(4) AUTO INCREMENT PRIMARY
↪→ KEY, r s s i INT(4)) ENGINE = INNODB; ” ,
↪→ g s e t t i n g s . i d s [kk] , i i +1, j j +1) ;

820 i f (mysql query (conn , query)) {
821 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;

C.2 Localisation Software Code 153

822 mysq l c l o s e (conn) ;
823 re turn 1 ;
824 }
825 }
826

827 }
828 }
829

830 const char p r e f i x [] = ”CREATE TABLE IF NOT EXISTS Main (p o s i t i o n
↪→ INT(4) UNIQUE PRIMARY KEY ” ;

831 const char p r e f i x 2 [] = ”CREATE TABLE IF NOT EXISTS
↪→ C u r r e n t p o s i t i o n s (number INT(4) UNIQUE PRIMARY KEY
↪→ AUTO INCREMENT, x pos DOUBLE(9 , 2) , y pos DOUBLE(9 , 2) ” ;

832 const char s u f f i x [] = ”) ENGINE = INNODB; ” ;
833 const char s u f f i x 2 [] = ”) ENGINE = INNODB; ” ;
834 s t r c a t (middle , p r e f i x) ;
835 s t r c a t (middle2 , p r e f i x 2) ;
836 f o r (l l = 0 ; l l < g s e t t i n g s . num sensors ; l l ++)
837 {
838 // s p r i n t f (temp , ” ,S%02 d r s s i INT(4) , S%02 d l q i INT(4) ” ,

↪→ g s e t t i n g s . i d s [l l] , g s e t t i n g s . i d s [l l]) ;
839 // s p r i n t f (temp2 , ” ,S%02 d r s s i INT(4) , S%02 d l q i INT(4) ” ,

↪→ g s e t t i n g s . i d s [l l] , g s e t t i n g s . i d s [l l]) ;
840 s p r i n t f (temp , ” ,S%02 d r s s i INT(4) ” , g s e t t i n g s . i d s [l l]) ;
841 s p r i n t f (temp2 , ” ,S%02 d r s s i INT(4) ” , g s e t t i n g s . i d s [l l]) ;
842 s t r c a t (middle , temp) ;
843 s t r c a t (middle2 , temp2) ;
844 }
845 s t r c a t (middle , s u f f i x) ;
846 s t r c a t (middle2 , s u f f i x 2) ;
847

848 i f (mysql query (conn , middle))
849 {
850 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
851 mysq l c l o s e (conn) ;
852 re turn 1 ;
853 }
854 i f (mysql query (conn , middle2))
855 {
856 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
857 mysq l c l o s e (conn) ;
858 re turn 1 ;
859 }
860

861 char pre [] = ”CREATE TABLE IF NOT EXISTS monitor (sample INT(4)
↪→ UNIQUE PRIMARY KEY \0” ;

862 char su f [] = ”) ENGINE = INNODB;\0 ” ;
863 s t r c a t (middle1 , pre) ;
864 f o r (l l = 0 ; l l < g s e t t i n g s . num sensors ; l l ++)
865 {
866 s p r i n t f (temp1 , ” ,S%02 d r s s i INT(4) ” , g s e t t i n g s . i d s [l l]) ;
867 s t r c a t (middle1 , temp1) ;
868 }
869 s t r c a t (middle1 , su f) ;
870 // p r i n t f (”%s\ r\n” , middle1) ;
871 i f (mysql query (conn , middle1))
872 {
873 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
874 mysq l c l o s e (conn) ;
875 re turn 1 ;
876 }
877 // p r i n t f (” I n s e r t i n g v a l u e s i n t o monitor\ r\ r\n”) ;
878 f o r (i i = 0 ; i i < g s e t t i n g s . num mon samples ; i i ++)
879 {

C.2 Localisation Software Code 154

880 s p r i n t f (query , ” i n s e r t i n to monitor (sample) VALUES (%02d) ; ”
↪→ , i i +1) ;

881 i f (mysql query (conn , query)) {
882 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
883 mysq l c l o s e (conn) ;
884 re turn 1 ;
885 }
886 }
887 // p r i n t f (” Creat ing d i f f t a b l e \ r\ r\n”) ;
888 s p r i n t f (query , ”CREATE TABLE IF NOT EXISTS d i f f LIKE Main ; ”) ;
889 i f (mysql query (conn , query)) {
890 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
891 mysq l c l o s e (conn) ;
892 re turn 1 ;
893 }
894

895 f o r (i i = 0 ; i i < g s e t t i n g s . x s i z e ; i i ++)
896 {
897 f o r (j j = 0 ; j j < g s e t t i n g s . y s i z e ; j j ++)
898 {
899 s p r i n t f (query , ” i n s e r t i n to Main (p o s i t i o n) VALUES (%02

↪→ d%02d) ; ” , i i +1, j j +1) ;
900 i f (mysql query (conn , query)) {
901 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
902 mysq l c l o s e (conn) ;
903 re turn 1 ;
904 }
905 s p r i n t f (query , ” i n s e r t i n to d i f f (p o s i t i o n) VALUES (%02

↪→ d%02d) ; ” , i i +1, j j +1) ;
906 i f (mysql query (conn , query)) {
907 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
908 mysq l c l o s e (conn) ;
909 re turn 1 ;
910 }
911 }
912 }
913

914

915 char pre1 [] = ”CREATE TABLE IF NOT EXISTS boundary (y INT(4)
↪→ UNIQUE PRIMARY KEY, 1 VARCHAR(4) \0” ;

916 char su f1 [] = ”) ENGINE = INNODB;\0 ” ;
917 s t r c a t (middle3 , pre1) ;
918 f o r (l l = 1 ; l l < g s e t t i n g s . x s i z e ; l l ++)
919 {
920 s p r i n t f (temp1 , ” , %d varchar (4) ” , l l +1) ;
921 s t r c a t (middle3 , temp1) ;
922

923 }
924 s t r c a t (middle3 , su f1) ;
925 // p r i n t f (”%s\ r\n” , middle3) ;
926 i f (mysql query (conn , middle3))
927 {
928 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
929 mysq l c l o s e (conn) ;
930 re turn 1 ;
931 }
932 f o r (i i = 0 ; i i < g s e t t i n g s . y s i z e ; i i ++)
933 {
934 s p r i n t f (query , ” i n s e r t i n to boundary (y) VALUES (%d) ; ” , i i

↪→ +1) ;
935 i f (mysql query (conn , query)) {
936 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
937 mysq l c l o s e (conn) ;
938 re turn 1 ;
939 }

C.2 Localisation Software Code 155

940 }
941 // change a l l n u l l v a l u e s to ” s ”
942 f o r (i i = 1 ; i i <= g s e t t i n g s . x s i z e ; i i ++)
943 {
944 s p r i n t f (query , ”UPDATE boundary SET %d = IFNULL(%d , ’ s ’) ” ,

↪→ i i , i i) ;
945 i f (mysql query (conn , query)) {
946 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
947 mysq l c l o s e (conn) ;
948 re turn 1 ;
949 }
950 }
951 /∗ c l o s e connect ion ∗/
952 mysq l c l o s e (conn) ;
953 f r e e (middle1) ;
954 f r e e (middle2) ;
955 f r e e (middle3) ;
956 re turn 0 ;
957 }
958

959 unsigned char s t o r e c u r r e n t r e a d i n g (double x , double y)
960 {
961 MYSQL ∗conn ;
962 char query [5 1 2] ;
963 conn = m y s q l i n i t (NULL) ;
964

965 // Connect to the Database
966 i f (! mysq l r ea l connec t (conn , se rver ,
967 user , password , database , 0 , NULL, 0))
968 {
969 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
970 re turn 1 ;
971 }
972

973 s p r i n t f (query , ” i n s e r t i n to C u r r e n t p o s i t i o n s (x pos , y pos)
↪→ VALUES (%2.2 f ,%2.2 f) ; ” , x , y) ;

974 i f (mysql query (conn , query))
975 {
976 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
977 mysq l c l o s e (conn) ;
978 re turn 1 ;
979 }
980

981 mysq l c l o s e (conn) ;
982 re turn 0 ;
983 }
984

985 unsigned char store boundary (i n t x pos , i n t y pos , char ∗ s t a t e)
986 {
987 MYSQL ∗conn ;
988 char query [5 1 2] ;
989 conn = m y s q l i n i t (NULL) ;
990

991 // Connect to the Database
992 i f (! mysq l r ea l connec t (conn , se rver ,
993 user , password , database , 0 , NULL, 0))
994 {
995 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
996 re turn 1 ;
997 }
998 s p r i n t f (query , ”UPDATE boundary SET %d = ’%s ’ WHERE y = %d ; ” ,

↪→ x pos , s ta te , y pos) ;
999

1000 i f (mysql query (conn , query))
1001 {
1002 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;

C.2 Localisation Software Code 156

1003 mysq l c l o s e (conn) ;
1004 re turn 1 ;
1005 }
1006 mysq l c l o s e (conn) ;
1007 re turn 0 ;
1008 }
1009

1010 unsigned char g e t s t a t e (i n t x pos , i n t y pos)
1011 {
1012 MYSQL ∗conn ;
1013 MYSQL RES ∗ r e s ;
1014 MYSQLROW row ;
1015 char ∗ c = (char ∗) c a l l o c (1 , s i z e o f (char)) ;
1016 char query [5 1 2] ;
1017 conn = m y s q l i n i t (NULL) ;
1018 // Connect to the Database
1019 i f (! mysq l r ea l connec t (conn , se rver ,
1020 user , password , database , 0 , NULL, 0))
1021 {
1022 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
1023 mysq l c l o s e (conn) ;
1024 re turn 1 ;
1025 }
1026 s p r i n t f (query , ”SELECT %d FROM boundary where y = %d” , x pos ,

↪→ y pos) ;
1027 i f (mysql query (conn , query))
1028 {
1029 f p r i n t f (s tde r r , ”%s \ r \n” , query) ;
1030 f p r i n t f (s tde r r , ”%s \ r \n” , mysq l e r ro r (conn)) ;
1031 mysq l c l o s e (conn) ;
1032 re turn 1 ;
1033 }
1034

1035 r e s = m y s q l u s e r e s u l t (conn) ;
1036 row = mysq l f e tch row (r e s) ;
1037 i f (row != NULL)
1038 {
1039 ∗c = row [0] [0] ;
1040 }
1041 e l s e
1042 {
1043 // row corrup t or empty .
1044 mysq l c l o s e (conn) ;
1045 re turn EXIT FAILURE ;
1046 }
1047

1048 m y s q l f r e e r e s u l t (r e s) ;
1049 mysq l c l o s e (conn) ;
1050

1051 switch (∗ c)
1052 {
1053 case ’ s ’ :
1054 re turn SAFE;
1055 case ’ t ’ :
1056 re turn TRANS;
1057 case ’u ’ :
1058 re turn UNSAFE;
1059 d e f a u l t : // something went wrong
1060 re turn UNSAFE;
1061 }
1062 re turn UNSAFE;
1063

1064 }
1065

1066 void mon 1 (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem))

C.2 Localisation Software Code 157

1067 {
1068 double ∗ x pos = (double ∗) mal loc (s i z e o f (i n t)) ;
1069 double ∗ y pos = (double ∗) mal loc (s i z e o f (i n t)) ;
1070 Locat ionState s t a t e ;
1071 s t a t i c Locat ionState l a s t s t a t e ;
1072 s t a t i c double l a s t x p o s = 3 450 . 22 ;
1073 s t a t i c double l a s t y p o s = 3 450 . 22 ;
1074 i n t i i = 0 , j j = 0 ;
1075

1076 Monitoring (dev , baud , s tder r msg) ;
1077 g e t p o s i t i o n (x pos , y pos) ;
1078 s t a t e = g e t s t a t e (∗ x pos ,∗ y pos) ;
1079 p r i n t f (” cur rent s t a t e = %s \ r \n” , StateNames [s t a t e]) ;
1080 p r i n t f (” l a s t s t a t e = %s \ r \n” , StateNames [l a s t s t a t e]) ;
1081 switch (l a s t s t a t e)
1082 {
1083 case SAFE:
1084 {
1085 i f (s t a t e == UNSAFE)
1086 {
1087 // cant t r a n s i t i o n to UNSAFE wi thout going through
1088 // the TRANS s t a t e . . . must be a bad read ing . Keep
1089 // o l d v a l u e s
1090 p r i n t f (”Moving from SAFE to UNSAFE without being in

↪→ TRANS not a l lowed . . . keeping p o s i t i o n \ r \n”) ;
1091 ∗ x pos = l a s t x p o s ;
1092 ∗ y pos = l a s t y p o s ;
1093 s t a t e = SAFE;
1094 }
1095 break ;
1096 }
1097 case TRANS:
1098 {
1099 i f (s t a t e == UNSAFE)
1100 {
1101 // ALARM HERE
1102 p r i n t f (”\a\ r \n”) ;
1103 p r i n t f (”SENSOR IN UNSAFE AREA\ r \n”) ;
1104 }
1105 break ;
1106 }
1107 case UNSAFE:
1108 {
1109 i f (s t a t e == SAFE)
1110 {
1111 // cant t r a n s i t i o n to SAFE wi thout going through
1112 // the TRANS s t a t e . . . must be a bad read ing . Keep
1113 // o l d v a l u e s
1114 p r i n t f (”Moving from UNSAFE to SAFE without being in

↪→ TRANS not a l lowed . . . keeping p o s i t i o n \ r \n”) ;
1115 ∗ x pos = l a s t x p o s ;
1116 ∗ y pos = l a s t y p o s ;
1117 s t a t e = UNSAFE;
1118 }
1119

1120 break ;
1121 }
1122 }
1123

1124 p r i n t f (”%f , %f \ r \n” , ∗x pos , ∗ y pos) ;
1125 s t o r e c u r r e n t r e a d i n g (∗ x pos , ∗ y pos) ;
1126 f o r (j j = 0 ; j j < g s e t t i n g s . y s i z e ; j j ++)
1127 {
1128 p r i n t f (” | ”) ;
1129 f o r (i i = 0 ; i i < g s e t t i n g s . x s i z e ; i i ++)

C.2 Localisation Software Code 158

1130 {
1131 i f (i i == abs (∗ x pos)−1 && j j == abs (∗ y pos)−1)
1132 p r i n t f (”X ”) ;
1133 e l s e p r i n t f (”0 ”) ;
1134

1135 }
1136 p r i n t f (” | \ r \n”) ;
1137 }
1138 l a s t s t a t e = s t a t e ;
1139 l a s t x p o s = ∗ x pos ;
1140 l a s t y p o s = ∗ y pos ;
1141 f r e e (x pos) ;
1142 f r e e (y pos) ;
1143

1144 }
1145

1146

1147 void set boundary (const char ∗dev , const i n t baud , void (∗message) (
↪→ s e r i a l s o u r c e m s g problem)) {

1148 i n t r e t = 0 ;
1149 unsigned i n t xpos =255 , ypos =255;
1150 char ∗ s t a t e = (char ∗) c a l l o c (2 , s i z e o f (char)) ;
1151 // i n t i i = 0 ;
1152 char cho i c e = ’ y ’ ;
1153 p r i n t f (” Al l p o s i t i o n s are c u r r e n t l y s e t to SAFE, so \n”) ;
1154 p r i n t f (”you j u s t need to s e l e c t the po s t i on s that are \n”) ;
1155 p r i n t f (”UNSAFE or TRANSITIONAL and d e f i n e them as such .\n”) ;
1156

1157 whi le (cho i c e != ’ x ’)
1158 {
1159 p r i n t f (” Please input x p o s i t i o n : ”) ;
1160 // Get user input
1161 r e t = scan f (”%i ” , &xpos) ;
1162 // Clear the standard input stream
1163 s can f (”%∗[ˆ\n] ”) ;
1164 s can f (”%∗c”) ;
1165 whi le (r e t != 1 | | xpos < 1 | | xpos > g s e t t i n g s . x s i z e)
1166 {
1167 p r i n t f (” Error : need a s i n g l e i n t e g e r \n”) ;
1168 p r i n t f (”Choose a number between %d and %d : ” , 1 ,

↪→ g s e t t i n g s . x s i z e) ;
1169 // Get user input
1170 r e t = scan f (”%i ” , &xpos) ;
1171 // Clear the standard input stream
1172 s can f (”%∗[ˆ\n] ”) ;
1173 s can f (”%∗c”) ;
1174 }
1175

1176 p r i n t f (”ans = %d\n” , xpos) ;
1177 p r i n t f (” Please input y p o s i t i o n : ”) ;
1178 // Get user input
1179 r e t = scan f (”%i ” , &ypos) ;
1180

1181 // Clear the standard input stream
1182 s can f (”%∗[ˆ\n] ”) ;
1183 s can f (”%∗c”) ;
1184

1185 whi le (r e t != 1 | | ypos < 1 | | ypos > g s e t t i n g s . y s i z e)
1186 {
1187 p r i n t f (” Error : need a s i n g l e i n t e g e r \n”) ;
1188 p r i n t f (”Choose a number between %d and %d : ” , 1 ,

↪→ g s e t t i n g s . y s i z e) ;
1189 // Get user input
1190 r e t = scan f (”%i ” , &ypos) ;
1191 // Clear the standard input stream
1192 s can f (”%∗[ˆ\n] ”) ;

C.2 Localisation Software Code 159

1193 s can f (”%∗c”) ;
1194 }
1195

1196 p r i n t f (”ans = %d\n” , ypos) ;
1197

1198 p r i n t f (” (S) afe , (U) nsafe , or (T) r a n s i t i o n a l : ”) ;
1199 // Get user input
1200 r e t = scan f (”%c” , s t a t e) ;
1201

1202 // Clear the standard input stream
1203 s can f (”%∗[ˆ\n] ”) ;
1204 s can f (”%∗c”) ;
1205 ∗ s t a t e = to lower (∗ s t a t e) ;
1206 i f (∗ s t a t e == ’ s ’ | | ∗ s t a t e == ’ t ’ | | ∗ s t a t e == ’u ’)
1207 {
1208 p r i n t f (”ans = %c\n” , ∗ s t a t e) ;
1209 }
1210 e l s e
1211 {
1212 p r i n t f (”must use u , s , or t !\n”) ;
1213 ∗ s t a t e = ’ s ’ ;
1214 }
1215 s tore boundary (xpos , ypos , s t a t e) ;
1216 // Get user input
1217 p r i n t f (”\n\n Enter ’ x ’ to ex i t , any other key to keep

↪→ i nput t ing va lue s : ”) ;
1218 r e t = scan f (”%c” , &cho i c e) ;
1219 // Clear the standard input stream
1220 s can f (”%∗[ˆ\n] ”) ;
1221 s can f (”%∗c”) ;
1222 i f (r e t == 1 && cho i c e == ’ x ’)
1223 re turn ;
1224 }
1225 re turn ;
1226

1227 }

C.2.4 Centroid Algorithms vector.c

Listing C.8: AIMS Database Algorithms module

1 //
↪→ −−−
↪→

2 // Author : Brad Goold
3 // Date : 20 Sep 2014
4 // Email Address : W0085400@umail . usq . edu . au
5 //
6 // Purpose : P o s i t i o n i n g f o r AIMS. Performs c a l c u l a t i o n s on the
7 // p o s i t i o n s and implements the Centroid and Weighted c e n t r o i d

↪→ a l g o r i t h m s
8 //

↪→ −−−
↪→

9

10 //
↪→ −−−
↪→

11 // Inc luded L i b r a r i e s
12 //

↪→ −−−
↪→

13 #inc lude <s t d i o . h>
14 #inc lude <s t d l i b . h>
15 #inc lude <math . h>
16 //

↪→ −−−
↪→

C.2 Localisation Software Code 160

17 #inc lude ” vec to r . h”
18

19 #d e f i n e MAX ERROR DIFF 20 //maximum e rror d i f f e r e n c e f o r weigh ted
20 // c e n t r o i d c a l c u l a t i o n
21

22 typede f s t r u c t Vect {
23 Pos i t i on ∗ P1 ;
24 Pos i t i on ∗ P2 ;
25 double ang le ;
26 double l ength ;
27 i n t quad ;
28 double weight ; // This i s the w e i g h t i n g o f the r e d u c t i o n f o r t h i s
29 // v e c t o r . Using the er ror between the two
30 // p o s i t i o n s , we c r e a t e a we igh t f a c t o r f o r
31 // r e d u c t i o n .
32 } Vector ;
33

34 // c a l c u l a t e the l e n g t h o f the v e c t o r .
35 i n t g e t l e n v e c t o r (Vector ∗ V, double ∗ l) {
36 i f (V−>P1 == NULL | | V−>P2 == NULL)
37 re turn EXIT FAILURE ;
38 e l s e
39

40 ∗ l = s q r t (pow ((V−>P2−>x − V−>P1−>x) , 2) + pow ((V−>P2−>y − V−>P1
↪→ −>y) , 2)) ;

41 re turn EXIT SUCCESS ;
42 }
43

44 // g e t t i n g quadrant REMEMBER not c a r t i e s i a n coords . . . they r e l a t e to
45 // the database entry t a b l e .
46 i n t ge t quad vec to r (Vector ∗ V, i n t ∗ q) {
47 i f (V−>P1 == NULL | | V−>P2 == NULL)
48 re turn EXIT FAILURE ;
49 e l s e
50 {
51 i f (V−>P2−>x > V−>P1−>x && V−>P2−>y < V−>P1−>y)
52 ∗q = 1 ;
53 e l s e i f (V−>P2−>x <= V−>P1−>x && V−>P2−>y <= V−>P1−>y)
54 ∗q = 2 ;
55 e l s e i f (V−>P2−>x >= V−>P1−>x && V−>P2−>y >= V−>P1−>y)
56 ∗q = 4 ;
57 e l s e i f (V−>P2−>x <= V−>P1−>x && V−>P2−>y >= V−>P1−>y)
58 ∗q = 3 ;
59 }
60

61 re turn EXIT SUCCESS ;
62 }
63

64 // c a l c u l a t e s the ang l e o f the v e c t o r . Pass in a p o i n t e r to the
↪→ v e c t o r

65 // s t r u c t and a p o i n t e r to the doub le p r e c i s i o n ang le . This i s
↪→ u s u a l l y

66 // the ang le l o c a t e d i n s i d e the v e c t o r s t r u c t , but f o r
67 // i n t e r o p e r a b i l i t y , the p o i n t e r must be passed in s e p a r a t e l y .
68 i n t g e t a n g l e v e c t o r (Vector ∗ V, double ∗ ang le) {
69 i f (V−>P1 == NULL | | V−>P2 == NULL)
70 re turn EXIT FAILURE ;
71 e l s e
72 {
73 ∗ ang le = atan (fabs (V−>P2−>y − V−>P1−>y) / fabs (V−>P2−>x − V

↪→ −>P1−>x)) ;
74 }
75 re turn EXIT SUCCESS ;
76

77 }
78

C.2 Localisation Software Code 161

79 // pass in a p o i n t e r to an array o f P o s i t i o n s t r u c t s , the s i z e and a
↪→ P o s i t i o n

80 // f o r the re turn v a l u e o f the c e n t r o i d
81 i n t g e t c e n t r o i d (Pos i t i on ∗∗ polygon , unsigned i n t num el , Po s i t i on

↪→ ∗ P) {
82 i n t i i ;
83 double sum x = 0 . 0 ;
84 double sum y = 0 . 0 ;
85

86 i f (num el == 0 | | polygon == NULL)
87 {
88

89 re turn EXIT FAILURE ;
90 }
91

92 f o r (i i = 0 ; i i < num el ; i i ++)
93 {
94 // p r i n t f (” polygon [%d]−>x = %2.4 f ” , i i , po lygon [i i]−>x) ;
95 sum x += polygon [i i]−>x ;
96 sum y += polygon [i i]−>y ;
97 }
98 P−>x = sum x/num el ;
99 P−>y = sum y/num el ;

100 re turn EXIT SUCCESS ;
101 }
102

103 // c a l c u l a t e s the w e i g h t i n g f a c t o r f o r the v e c t o r .
104 i n t c a l c w e i g h t v e c t o r (Vector ∗ V, double ∗ w, i n t b e s t e r r o r)
105 {
106 i f (V == NULL | | w == NULL)
107 re turn EXIT FAILURE ;
108

109 // i n t i i ;
110

111 ∗w = 1−(((double)V−>P2−>e r r o r − (double)V−>P1−>e r r o r) /(
↪→ b e s t e r r o r + MAX ERROR DIFF)) ;

112 i f (∗w < 0 . 5)
113 ∗w = 0 . 5 ;
114 e l s e i f (∗w >= 1 . 0 1)
115 {
116 p r i n t f (”ERROR! negat ive weight in c a l c u l a t i o n s !\ r \n”) ;
117 }
118

119 re turn EXIT SUCCESS ;
120 }
121

122 void p r i n t v e c t o r (Vector ∗ V)
123 {
124 p r i n t f (” Pr in t ing Vector\n”) ;
125 p r i n t f (”===============\n”) ;
126 p r i n t f (”P1 = (%2.2 f ,%2.2 f) , add = \n” , V−>P1−>x , V−>P1−>y) ;
127 p r i n t f (”P2 = (%2.2 f ,%2.2 f) , add = \n” , V−>P2−>x , V−>P2−>y) ;
128 p r i n t f (”P1 e r r o r = %d\n” , V−>P1−>e r r o r) ;
129 p r i n t f (”P2 e r r o r = %d\n” , V−>P2−>e r r o r) ;
130 p r i n t f (” l ength = %2.2 f \n” , V−>l ength) ;
131 p r i n t f (” weight = %2.8 f \n” , V−>weight) ;
132 p r i n t f (” quadrant = %d\n” , V−>quad) ;
133 p r i n t f (”===============\n”) ;
134 }
135

136 // Weighted Centroid .
137 // C a l c u l a t e s the we ighe ted c e n t r o i d based on the parameters d e f i n e d
138 // in g s e t t i n g s .
139 i n t g e t w e i g h t e d c e n t r o i d (Pos i t i on ∗∗ polygon , unsigned i n t num el ,

↪→ Pos i t i on ∗ Centroid)
140 {

C.2 Localisation Software Code 162

141 i n t j j = 0 , kk = 0 ;
142 i n t be s t match e r ro r = 0 ;
143 Vector ∗ V = (Vector ∗) mal loc (s i z e o f (Vector)) ;
144 Pos i t i on ∗ temp pos = (Pos i t i on ∗) mal loc (s i z e o f (Pos i t i on)) ;
145 temp pos−>x = 0 ;
146 temp pos−>y = 0 ;
147 temp pos−>e r r o r = 2 3 5 3 . 2 ; // Just garbage to i n i t i a l i s e
148

149 i f (polygon == NULL | | num el < 1 | | Centroid == NULL)
150 re turn EXIT FAILURE ;
151 // s e t the b e s t e r ro r to the f i r s t e lement in the array passed
152 // in . This shou ld be the c l o s e s t p o s i t i o n to the t a r g e t as
153 // c a l c u l a t e d .
154 bes t match e r ro r = polygon [0]−> e r r o r ;
155

156 // loop through each o f the p o i n t s and s e t the p o s i t i o n s o f
↪→ t h o s e

157 // i n t o the temporary v e c t o r V. This w i l l l oop through n(n−1)/2
158 // d i f f e r e n t v e c t o r s as t h i s d e f i n e s the number o f edges in a n
159 // s i d e d polygon .
160 // p o i n t to the s u c c e s s i v e p o i n t s in the array . Each time V i s

↪→ s e t
161 // wi th new P ’ s , move P2 back towards P1 depending on the we igh t
162 // c a l c u l a t e d .
163 f o r (kk = 0 ; kk < num el−1; kk++){
164

165 f o r (j j = kk ; j j < num el−1; j j ++)
166 {
167

168 V−>P1 = polygon [kk] ;
169 V−>P2 = polygon [j j +1] ;
170 i f (V−>P1 == NULL | | V−>P2 == NULL)
171 e x i t (9) ;
172

173 c a l c w e i g h t v e c t o r (V, &V−>weight , be s t match e r ro r) ;
174 g e t l e n v e c t o r (V, &V−>l ength) ;
175

176 V−>l ength = V−>l ength ∗ (V−>weight) ;
177 g e t a n g l e v e c t o r (V, &V−>ang le) ;
178 ge t quad vec to r (V, &V−>quad) ;
179

180 switch (V−>quad)
181 {
182 case 1 :
183 {
184 temp pos−>x = V−>l ength ∗ cos (V−>ang le) ;
185 temp pos−>y = −1∗(V−>l ength ∗ s i n (V−>ang le)) ;
186 break ;
187 }
188 case 2 :
189 {
190 temp pos−>x =−1∗(V−>l ength ∗ cos (V−>ang le)) ;
191 temp pos−>y =−1∗(V−>l ength ∗ s i n (V−>ang le)) ;
192 break ;
193 }
194 case 3 :
195 {
196 temp pos−>x =−1∗(V−>l ength ∗ cos (V−>ang le)) ;
197 temp pos−>y = V−>l ength ∗ s i n (V−>ang le) ;
198 break ;
199 }
200 case 4 :
201 {
202 temp pos−>x = V−>l ength ∗ cos (V−>ang le) ;
203 temp pos−>y = V−>l ength ∗ s i n (V−>ang le) ;
204 break ;

C.2 Localisation Software Code 163

205 }
206 }// s w i t c h
207

208 V−>P2−>x = V−>P1−>x + temp pos−>x ;
209

210 V−>P2−>y = V−>P1−>y + temp pos−>y ;
211

212

213 }
214 // p r i n t f (” count = %d\n” , count) ;
215 }
216 g e t c e n t r o i d (polygon , num el , Centroid) ;
217 re turn EXIT SUCCESS ;
218 }

C.2.5 Raw Keyboard keybd.c

Listing C.9: AIMS Raw keyboard input module

1 //
↪→ −−−
↪→

2 // Author : Brad Goold
3 // Date : 10 Oct 2014
4 // Email Address : W0085400@umail . usq . edu . au
5 //
6 // Purpose : Provide a more e l e g a n t menu i n t e r f a c e by t a k i n g in the

↪→ raw
7 // keyboard input .
8 // Pre :
9 // Post :

10 //
↪→ −−−
↪→

11

12

13 //
↪→ −−−
↪→

14 // Inc luded L i b r a r i e s
15 //

↪→ −−−
↪→

16 #inc lude <s t d i o . h>
17 #inc lude <s t d l i b . h>
18 #inc lude <s t r i n g . h>
19 #inc lude <uni s td . h>
20 #inc lude <sys / s e l e c t . h>
21 #inc lude <termios . h>
22 #inc lude ”keybd . h”
23

24 s t r u c t termios o r i g t e r m i o s ;
25

26 void re s e t t e rmina l mode ()
27 {
28 t c s e t a t t r (0 , TCSANOW, &o r i g t e r m i o s) ;
29 }
30

31 // s e t the termina l mode .
32 void s e t con io t e rmina l mode ()
33 {
34 s t r u c t termios new termios ;
35 /∗ t a ke two c o p i e s − one f o r now , one f o r l a t e r ∗/
36 t c g e t a t t r (0 , &o r i g t e r m i o s) ;
37 memcpy(&new termios , &o r i g t e r m i o s , s i z e o f (new termios)) ;
38 /∗ r e g i s t e r c leanup handler , and s e t the new termina l mode ∗/
39 a t e x i t (r e s e t t e rmina l mode) ;
40 cfmakeraw(&new termios) ;
41 t c s e t a t t r (0 , TCSANOW, &new termios) ;

C.3 Matlab Data Analysis Code 164

42 }
43

44 // ac t on keyboard event
45 i n t kbhit ()
46 {
47 s t r u c t t imeva l tv = { 0L , 0L } ;
48 f d s e t fd s ;
49 FD ZERO(& fds) ;
50 FD SET(0 , &fd s) ;
51 re turn s e l e c t (1 , &fds , NULL, NULL, &tv) ;
52 }
53

54 // read in the char .
55 i n t getch ()
56 {
57 i n t r ;
58 unsigned char c ;
59 i f ((r = read (0 , &c , s i z e o f (c))) < 0) {
60 re turn r ;
61 } e l s e {
62 re turn c ;
63 }
64 }

C.2.6 AIMS Makefile

Listing C.10: AIMS Makefile

1 TARGET = aims
2 LIBS = −lm $ (s h e l l mysq l con f i g −− l i b s) l ibmote . a − l r t
3 CC = gcc
4 CFLAGS = −g −Wall $ (s h e l l mysq l con f i g −−c f l a g s)
5

6 .PHONY: d e f a u l t a l l c l ean
7

8 d e f a u l t : $ (TARGET)
9 a l l : d e f a u l t

10

11 OBJECTS = $ (patsubst %.c , %.o , $ (wi ldcard ∗ . c))
12 HEADERS = $ (wi ldcard ∗ . h)
13

14 %.o : %.c $ (HEADERS)
15 $ (CC) $ (CFLAGS) −c $< −o $@
16

17 .PRECIOUS: $ (TARGET) $ (OBJECTS)
18

19 $ (TARGET) : $ (OBJECTS)
20 $ (CC) $ (OBJECTS) −Wall $ (LIBS) −o $@
21

22 c l ean :
23 −rm −f ∗ . o
24 −rm −f $ (TARGET)

C.3 Matlab Data Analysis Code

C.3.1 Baseline Testing Analysis Code

Listing C.11: Baseline Test Analysis Matlab Code

1 f unc t i on [e r r o r s real mean] = i m p o r t f i l e (f i leToRead1 , tx)
2 %IMPORTFILE(FILETOREAD1)
3 % Imports data from the s p e c i f i e d f i l e
4 % FILETOREAD1: f i l e to read
5

C.3 Matlab Data Analysis Code 165

6 % Auto−generated by MATLAB on 20−Oct−2014 17 :06 :16
7 % ∗∗ Modif ied to s u i t a p p l i c a t i o n by Brad Goold 20−Oct−2014 ∗∗∗∗
8

9 % Import the f i l e
10 newData1 = importdata (f i l eToRead1) ;
11

12 % Create new v a r i a b l e s in the base workspace from t h o s e f i e l d s .
13 vars = f i e ldnames (newData1) ;
14 f o r i = 1 : l ength (vars)
15 a s s i g n i n (’ base ’ , vars { i } , newData1 . (vars { i }))
16 end
17

18 A = ze ro s (315 ,11) ;
19 count = 1 ;
20 f o r i i = 2 : 1 : 1 2
21 A(: , count) = newData1 . data (: , i i) ;
22 count = count + 1 ;
23 % %newData1 (: , i i) ;
24 end ;
25 real mean = ze ro s (1 ,11) ;
26

27 count = 2 ;
28 j j = 1
29 f o r i i = 1 : 1 : 3
30 f i g u r e ;
31 h i s t (A(: , i i) , 20) ;
32 f i l ename = s p r i n t f (’ h ist weighted TX%s k%dv%d ’ , tx , i i , j j) ;
33 t i t = s p r i n t f (’ D i s t r i b u t i o n o f Nearest %d and %d cen t ro id

↪→ v e r t i c e s f o r weighted a lgor i thm at TX power %s ’ , i i , j j ,
↪→ tx) ;

34 t i t l e (t i t) ;
35 saveas (gcf , f i l ename , ’ png ’) ;
36 c l o s e a l l ;
37 real mean (1 , i i) = r a y l s t a t (r a y l f i t (A(: , i i))) ;
38 count = count + 1 ;
39 end
40

41 count = 2 ;
42 i i = 6
43 f o r j j = 4 : 1 : 7
44 f i g u r e ;
45 h i s t (A(: , j j) , 20) ;
46 f i l ename = s p r i n t f (’ h ist weighted TX%s k%dv%d ’ , tx , i i , count) ;
47 t i t = s p r i n t f (’ D i s t r i b u t i o n o f Nearest %d and %d cen t ro id

↪→ v e r t i c e s f o r weighted a lgor i thm at TX power %s ’ , i i , count
↪→ , tx) ;

48 t i t l e (t i t) ;
49 saveas (gcf , f i l ename , ’ png ’) ;
50 c l o s e a l l ;
51 real mean (1 , j j) = r a y l s t a t (r a y l f i t (A(: , j j))) ;
52 count = count + 1 ;
53 end
54 count = 2 ;
55 i i = 6
56 f o r j j = 8 : 1 : 1 1
57 f i g u r e ;
58 h i s t (A(: , j j) , 20) ;
59 f i l ename = s p r i n t f (’ h i s t c ent ro id TX%s k%dv%d ’ , tx , i i , count) ;
60 t i t = s p r i n t f (’ D i s t r i b u t i o n o f Nearest %d and %d cen t ro id

↪→ v e r t i c e s f o r c en t r o id a lgor i thm at TX power %s ’ , i i , count
↪→ , tx) ;

61 t i t l e (t i t) ;
62 saveas (gcf , f i l ename , ’ png ’) ;
63 c l o s e a l l ;
64 real mean (1 , j j) = r a y l s t a t (r a y l f i t (A(: , j j))) ;
65 count = count + 1 ;

C.3 Matlab Data Analysis Code 166

66 end
67

68 f i g u r e ;
69 f i l ename = s p r i n t f (’ rayleigh mean TX%s . csv ’ , tx) ;
70 c svwr i t e (f i l ename , real mean) ;
71 f i g u r e ;
72

73 hold on ;
74 c o l = { ’ r ’ , ’ g ’ , ’ b ’ , ’ k ’ , ’ y ’ } ;
75 f o r kk = 1 :3
76 g = f i n d (A(: , kk)==0) ;
77 c = numel (g) ;
78 i f (c == 0)
79 probplot (’ r a y l e i g h ’ ,A(: , kk)) ;
80 end
81 end
82

83 hold o f f ;
84

85 f i l ename = s p r i n t f (’ prob plot KNN C1 TX%s ’ , tx) ;
86 saveas (gcf , f i l ename , ’ png ’) ;
87 c l o s e a l l ;
88 hold on ;
89 c o l = { ’ r ’ , ’ g ’ , ’ b ’ , ’ k ’ , ’ y ’ } ;
90 f o r kk = 4 :7
91 g = f i n d (A(: , kk)==0) ;
92 c = numel (g) ;
93 i f (c == 0)
94 probplot (’ r a y l e i g h ’ ,A(: , kk)) ;
95 end
96 end
97

98 hold o f f ;
99

100 f i l ename = s p r i n t f (’ prob plot Weighted K6 TX%s ’ , tx) ;
101 saveas (gcf , f i l ename , ’ png ’) ;
102 c l o s e a l l ;
103 c l o s e a l l ;
104 hold on ;
105 c o l = { ’ r ’ , ’ g ’ , ’ b ’ , ’ k ’ , ’ y ’ } ;
106 f o r kk = 8:11
107 g = f i n d (A(: , kk)==0) ;
108 c = numel (g) ;
109 i f (c == 0)
110 probplot (’ r a y l e i g h ’ ,A(: , kk)) ;
111 end
112 end
113

114 hold o f f ;
115

116 f i l ename = s p r i n t f (’ prob plot Centroid K6 TX%s ’ , tx) ;
117 saveas (gcf , f i l ename , ’ png ’) ;
118 c l o s e a l l ;
119

120

121

122 e r r o r s = A;

C.3.2 Residential Testing Analysis Code

Listing C.12: Baseline Test Analysis Matlab Code

1 f unc t i on [e r r o r s real mean] = i m p o r t f i l e (f i leToRead1 , alg , tx)
2 %IMPORTFILE(FILETOREAD1)
3 % Imports data from the s p e c i f i e d f i l e
4 % FILETOREAD1: f i l e to read
5

6 % Auto−generated by MATLAB on 20−Oct−2014 17 :06 :16

C.3 Matlab Data Analysis Code 167

7 % Modif ied to s u i t A p p l i c a t i o n by Brad Goold 20−Oct−2014
8

9 % Import the f i l e
10 newData1 = importdata (f i l eToRead1) ;
11

12 % Create new v a r i a b l e s in the base workspace from t h o s e f i e l d s .
13 vars = f i e ldnames (newData1) ;
14 f o r i = 1 : l ength (vars)
15 a s s i g n i n (’ base ’ , vars { i } , newData1 . (vars { i }))
16 end
17

18 A = ze ro s (315 ,20) ;
19 count = 1 ;
20 f o r i i = 9 : 6 : 1 2 3
21 A(: , count) = newData1 . data (: , i i) ;
22 count = count + 1 ;
23 % %newData1 (: , i i) ;
24 end ;
25 real mean = ze ro s (1 ,20) ;
26 count = 1 ;
27 f o r i i = 3 : 1 : 6
28 f o r j j = 1 : 1 : 5
29 f i g u r e ;
30 h i s t (A(: , count) , 20) ;
31 f i l ename = s p r i n t f (’ h i s t %s TX%s k%dv%d ’ , alg , tx , i i , j j) ;
32 t i t = s p r i n t f (’ D i s t r i b u t i o n o f Nearest %d and %d cen t ro id

↪→ v e r t i c e s f o r %s a lgor i thm at TX power %s ’ , i i , j j , a lg
↪→ , tx) ;

33 t i t l e (t i t) ;
34 saveas (gcf , f i l ename , ’ png ’) ;
35 c l o s e a l l ;
36 real mean (1 , count) = r a y l s t a t (r a y l f i t (A(: , count))) ;
37 count = count + 1 ;
38 end
39 end
40

41 f i g u r e ;
42 f i l ename = s p r i n t f (’ ray l e igh mean %s TX%s . csv ’ , a lg , tx) ;
43 c svwr i t e (f i l ename , real mean) ;
44 f i g u r e ;
45

46 hold on ;
47 c o l = { ’ r ’ , ’ g ’ , ’ b ’ , ’ k ’ , ’ y ’ } ;
48 f o r kk = 1:20
49

50 g = f i n d (A(: , kk)==0) ;
51 c = numel (g) ;
52 i f (c == 0)
53

54

55 probplot (’ r a y l e i g h ’ ,A(: , kk)) ;
56

57 end
58

59 end
60

61 hold o f f ;
62

63 f i l ename = s p r i n t f (’ p r o b p l o t %s TX%s ’ , alg , tx) ;
64 saveas (gcf , f i l ename , ’ png ’) ;
65 c l o s e a l l ;
66 e r r o r s = A;

Appendix D

Setting Up Development

Platform

The document in this chapter was written by the author to enable further research

workers of this project to set up the identical platform that was used to produce the

system in this disseration. The document has been tested and the all links and steps

provided were valid at the date of publishing. The files required can be sourced from

the author at ‘w0085400 at umail dot usq dot edu dot au’ or ‘brad [underscore] goold

at dodo.com.au’.

169

Setting up an Ubuntu 12.04 VM
with TinyOS, nesC and Eclipse

Juno
Along with this documentation should be a folder with some binary
packages and a few scripts. This procedure cannot be completed
without access to these files.

You need to have some knowledge of Linux, VirtualBox and command
line tools if you want to successfully complete this installation. Some of
the steps here assume you know what is being implemented.

The first step is to download the Ubuntu 12.04 LTS 32-bit ISO image from
Ubuntu.com. Once downloaded, create a virtual machine in VirtualBox. Point the
CD/DVD drive to the ISO image and set the check box to “live CD” and run the
VM. Make sure you set the network to NAT or Bridge to allow internet to your VM.
Also if you would like to share folders, set up the folder sharing now and we will
install the guest editions on the VM later. Follow the install procedures.

1. Boot the new Ubuntu in the VM and open the terminal
2. “sudo apt-get update && sudo apt-get upgrade”
3. “sudo apt-get install build-essential linux-headers-`uname –r` dkms”
4. “sudo apt-get install terminator default-jdk emacs subversion”
5. Add the following line to the /etc/apt/sources.list

“deb http://tinyos.stanford.edu/tinyos/dists/ubuntu lucid main”
6. “sudo apt-get update && sudo apt-get install tinyos-2.1.2”
7. “chown –R <username>:<username>/opt/tinyos-2.1.2”

where <username> is your user name such as “brad”
8. Copy the supplied file called “tinyos.sh” to the /etc/profile.d/ directory.
9. Log out and then back in again to get the environment variables loaded.
10.You should be able to complete the next command

“cd $TOSROOT/support/sdk/java”
11.Install the tinyos java jni:

“sudo tos-install-jni”
12.“make”

“make install”

At this stage you should be able to go to the /opt/tinyos-2.1.2/apps/Blink
directory and execute “make telosb”. It should compile successfully, although
giving a warning that the compiler version is not correct. We will fix this later.

Now to update the VirtualBox guest additions (that you should hopefully have
downloaded from VirtualBox). You will need to make sure the guest additions
have been installed on the Host pc before proceeding.

1. Click on Devices in the VirtualBox menus, and click on “insert virtualbox
guest additions CD”

170

2. Install the guest additions
3. We need to add your user to the vboxsf group so you can access the

shared folders.
Open the terminal and type:
“sudo gpasswd –a <username> vboxsf”

4. Reboot

Now we need to update the gcc compiler to 4.6.3.

The easiest way to do this is to set the drag and drop settings in the devices
menu to “Host to Guest” and drag and drop all of the files supplied with this
document into the ~/Downloads folder

Double click on each of the files below starting from the first one and working
down. This installs all of the dependencies for the compiler, then the compiler
itself. The packages listed here are only available in higher versions of Ubuntu,
but this is the latest LTS version, which is the most stable. Each double click
should open the package manager and should allow you to install the package. It
may tell you that it will “upgrade”, this is OK.

1. Libmpfr4-3.1.1-2
2. Libmpc3
3. Msp430libc-20120224
4. Msp430mcu-20120406
5. Gcc-msp430-4.6.3
6. Reboot
7. Check that the compiler is the correct version by typing
8. “gcc -- version”
9. Reboot

Now to install eclipse and the yeti2 plugin.

This is just a case of extracting the supplied eclipse tar.gz file.

1. Extract the tarball to /opt/. You will need to change the owner of the /opt/
directory in order to create the folder.

2. Copy the eclipse.desktop file (provided with this document) to the folder
/usr/share/applications/

3. Open this folder in the file manager and locate the eclipse configuration
file. Drag this file to the launcher bar on the left of the screen.. it should
drop itself there permanently.

4. Click on the eclipse launcher to test eclipse opens.
5. Click help -> install new software

Click on Add and type into the location box:
“http://tos-ide.ethz.ch/update/site.xml”
This may take a few minutes to update.

6. Click on all the checkboxes except for the one that has to do with Cygwin
and windows. Then click “install”

7. Eclipse will ask to restart, do so.
8. Click on window->preferences->tinyOS->TinyOS-2.xUnix, then click the

button “update default”. Apply.
9. Click on window-> open perspective->other->TinyOS

171

Ok, so this should be it. Try to import a project by following the following steps.

1. Click on file->import->tinyOs-filesystem.
2. Find /opt/tinyos-2.1.2/apps/blink and click open
3. Click on the project on the left and open the “src” folder.
4. On the bottom right of the screen is a box with the build directives. Right

click on the line that shows the Blink application and click “build”
The console box at the bottom of the screen should show a successful
compilation.

Appendix E

Test Data

Table E.1: Baseline Test Data

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

1 4.12 1.00 4.12 0.86 5.22 2.14 2.41 4.84 1.58 3.07 2.69

1 4.12 3.61 4.12 0.87 5.28 1.96 2.87 5.64 1.58 3.07 2.69

1 4.12 1.00 4.12 0.86 5.39 1.75 2.35 4.68 1.58 3.07 2.69

1 4.12 1.00 4.12 0.86 5.34 1.83 2.95 5.53 1.58 3.07 2.69

1 4.12 1.00 4.12 0.86 5.38 1.82 2.87 5.88 1.58 3.07 2.69

2 0.00 0.00 0.00 1.60 1.13 2.07 0.67 3.88 1.25 0.95 1.12

2 0.00 0.00 0.00 1.69 2.57 2.06 0.74 4.28 1.25 0.95 1.12

2 0.00 0.00 0.00 1.68 1.41 2.11 0.78 3.88 1.25 0.95 1.12

2 0.00 0.00 0.00 1.65 1.09 2.07 0.80 2.78 1.25 0.95 1.12

2 0.00 0.00 0.00 1.60 1.16 2.09 0.82 3.88 1.25 0.95 1.12

3 1.00 1.00 2.00 2.25 0.33 0.92 1.02 5.57 3.05 1.49 1.41

3 1.00 1.00 5.83 2.25 0.53 0.92 1.00 5.57 3.05 1.49 1.41

3 1.00 1.00 2.00 2.25 0.47 0.94 1.00 5.57 3.05 1.49 1.41

3 1.00 1.00 1.00 2.25 0.51 0.94 1.03 5.57 3.05 1.49 1.41

3 1.00 1.00 5.83 2.24 0.61 0.94 1.03 5.57 3.05 1.49 1.41

4 0.00 3.16 2.83 1.80 0.54 2.01 3.09 2.72 3.64 3.15 3.04

4 2.24 3.16 2.83 1.64 0.59 2.06 2.93 2.43 3.64 3.15 3.04

4 0.00 3.16 2.83 1.69 0.56 2.20 3.15 1.46 3.64 2.13 2.69

4 3.61 3.16 2.83 1.69 0.56 2.07 2.95 2.43 3.64 2.13 2.69

4 0.00 3.16 5.39 1.69 0.56 2.18 2.86 2.04 3.64 3.15 2.69

5 6.08 6.08 1.41 0.64 2.97 1.04 1.01 2.78 3.26 1.66 0.71

5 6.08 4.00 1.00 0.58 2.88 0.97 1.01 3.13 3.26 1.66 0.71

5 6.08 4.00 2.00 1.14 2.86 0.96 0.99 4.10 3.50 1.66 0.71

5 6.08 4.00 5.83 0.58 2.84 1.01 0.98 4.40 3.51 1.66 0.71

5 6.08 6.08 2.24 0.58 2.83 1.04 0.89 4.10 3.51 1.66 0.71

6 2.24 1.41 2.00 1.58 2.05 0.59 1.85 2.51 0.25 1.41 2.55

6 2.00 1.41 2.00 1.56 2.02 0.69 1.80 2.51 0.25 1.41 1.58

6 2.00 1.41 2.00 1.57 2.03 0.71 1.83 2.78 0.25 1.41 1.58

6 2.00 1.41 2.00 1.56 2.01 0.56 1.82 2.95 0.25 1.41 1.58

6 2.00 1.41 2.00 1.56 1.67 0.61 1.82 2.78 0.25 2.11 1.58

7 1.00 1.00 1.00 0.70 0.95 0.91 0.86 2.41 0.75 1.05 1.50

7 1.00 1.00 1.00 0.71 0.98 1.08 0.73 2.09 0.75 1.05 1.50

7 1.00 1.00 1.00 1.29 0.94 0.79 0.85 2.41 1.52 1.05 1.50

7 1.00 1.00 1.00 1.29 0.95 0.88 0.79 2.41 1.52 1.05 1.50

7 1.00 1.00 1.00 0.63 0.96 1.15 0.78 2.41 0.75 1.05 1.50

8 0.00 0.00 0.00 1.18 0.55 1.09 2.40 2.13 0.75 3.54 2.50

8 2.00 0.00 0.00 1.21 0.54 1.11 2.43 2.06 0.75 1.66 2.50

8 0.00 0.00 0.00 1.21 0.59 1.40 2.34 1.89 0.75 1.66 2.50

8 0.00 0.00 2.24 1.23 0.57 1.41 2.26 1.00 0.75 1.66 2.50

Continued on next page

173

Table E.1 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

8 2.00 0.00 1.00 1.18 0.55 1.11 2.28 2.06 0.75 3.54 2.50

9 1.41 1.00 1.00 5.12 2.98 5.97 3.24 3.61 5.83 4.77 3.64

9 7.07 7.07 2.00 5.12 2.97 6.59 3.20 3.61 5.83 4.77 3.64

9 1.41 7.07 2.00 5.23 2.99 6.20 3.23 3.61 5.83 4.77 1.41

9 1.41 1.00 3.61 5.53 2.97 5.91 3.09 4.22 5.83 2.13 3.64

9 1.41 1.00 0.00 5.33 3.03 5.76 3.14 3.61 5.83 3.61 3.64

10 1.00 7.07 7.62 2.83 4.93 4.50 1.51 5.39 3.78 2.69 8.54

10 1.00 5.10 7.62 2.83 5.02 4.55 1.47 5.88 3.78 4.86 2.12

10 1.00 5.10 7.62 2.85 4.92 4.55 1.53 5.88 3.78 2.69 4.03

10 1.00 7.07 3.16 2.85 4.90 4.55 1.92 5.39 3.78 4.53 5.59

10 1.00 5.10 7.62 2.83 4.78 4.53 1.82 5.88 3.78 3.33 4.03

11 0.00 0.00 4.24 3.16 2.43 2.37 1.98 2.91 2.80 0.75 1.50

11 0.00 0.00 0.00 3.21 2.37 2.31 2.09 2.91 1.82 0.75 1.50

11 4.12 6.08 5.10 3.21 2.39 2.65 1.98 2.91 2.55 0.75 1.50

11 0.00 6.08 5.10 2.77 2.39 2.68 1.83 2.91 2.80 0.75 1.50

11 0.00 6.08 5.10 2.73 2.43 2.67 1.98 2.91 3.54 0.75 1.50

12 3.16 3.16 1.00 1.25 5.14 3.37 3.08 2.41 3.82 1.33 2.12

12 3.16 3.16 3.16 1.66 4.97 2.44 3.08 2.41 3.82 0.75 2.12

12 3.16 3.16 1.00 1.66 5.00 2.26 2.46 2.41 3.82 4.86 2.12

12 4.00 3.16 1.00 1.66 5.04 3.21 2.41 2.41 2.15 2.85 2.12

12 4.00 3.16 1.00 1.66 4.91 3.60 2.54 2.13 3.82 2.85 2.12

13 4.24 2.24 2.24 3.54 1.88 2.19 1.40 2.61 1.35 3.07 1.50

13 5.66 2.24 2.24 3.54 1.69 2.14 1.33 2.88 1.35 3.07 2.12

13 4.24 2.24 2.24 3.54 1.74 2.76 1.32 3.61 1.35 3.07 2.12

13 5.39 2.24 2.24 2.61 1.66 2.14 1.34 2.97 1.35 2.13 3.54

13 3.61 4.00 2.24 3.00 1.66 2.18 1.63 3.40 1.35 2.13 1.58

14 1.41 2.24 2.83 1.67 1.10 1.41 1.66 2.28 0.35 1.67 2.55

14 1.41 2.24 2.83 1.58 1.07 1.46 1.66 1.46 0.25 2.67 2.55

14 2.24 2.24 2.83 1.58 1.08 1.51 1.61 1.00 0.35 2.67 2.55

14 2.24 0.00 2.83 1.54 1.20 1.53 1.64 1.46 2.06 2.67 2.55

14 2.24 1.41 3.16 1.62 1.07 1.47 1.63 1.17 0.79 2.67 2.55

15 3.16 3.61 3.16 1.64 1.33 2.24 1.33 1.90 2.70 1.95 1.80

15 3.16 3.61 3.16 1.68 1.73 2.31 2.66 1.00 1.60 1.05 3.35

15 3.16 3.61 3.16 1.68 1.33 2.76 1.23 1.90 1.27 1.05 3.35

15 3.16 3.61 3.16 1.84 1.51 2.35 1.24 1.00 1.82 1.05 3.35

15 3.16 3.61 3.16 1.76 1.74 2.17 1.27 1.98 1.60 1.95 3.35

16 0.00 1.00 0.00 0.33 0.38 0.57 0.47 3.41 0.35 0.33 0.50

16 0.00 1.00 0.00 0.38 0.51 0.54 0.60 3.00 0.35 0.33 0.50

16 0.00 1.00 0.00 1.61 0.53 0.60 0.60 3.28 0.00 0.33 0.50

16 0.00 1.00 0.00 0.39 0.38 0.49 0.59 2.56 0.00 0.33 2.12

16 0.00 1.00 0.00 0.38 0.33 0.19 0.43 3.74 0.00 0.33 1.12

17 1.00 1.00 1.00 0.49 0.41 1.03 3.23 3.05 2.85 0.47 6.32

17 1.00 1.00 0.00 0.47 0.43 1.19 4.96 3.23 2.85 0.47 3.16

17 1.00 1.00 0.00 0.49 0.42 0.93 2.52 4.62 2.85 0.47 3.16

17 1.00 1.00 0.00 0.47 0.41 1.05 4.30 4.20 2.85 0.47 5.59

17 1.00 1.00 1.00 0.50 0.42 1.22 3.59 3.05 2.85 0.47 6.32

18 1.00 2.24 2.24 3.04 3.49 3.04 2.95 3.03 2.51 3.16 1.80

18 1.00 1.00 2.24 1.49 3.43 3.01 2.50 3.54 2.51 4.34 4.03

18 2.24 1.00 2.24 2.83 3.47 2.98 2.42 3.13 2.25 4.34 4.12

18 1.00 1.00 2.24 3.04 3.55 2.95 1.94 3.85 2.51 3.16 4.03

18 1.00 1.00 2.24 3.04 3.55 3.04 2.37 2.68 2.51 4.34 5.41

19 6.71 5.00 1.41 0.81 6.03 5.82 4.08 4.43 3.01 1.80 0.71

19 6.71 5.00 1.41 0.76 5.93 5.84 4.08 3.94 3.01 3.07 0.71

19 6.71 5.00 1.41 0.74 5.86 5.82 4.07 5.19 3.01 1.80 0.71

19 6.71 7.00 3.61 0.71 6.01 5.84 3.96 3.93 2.02 3.16 0.71

19 5.00 8.00 1.41 0.68 4.89 5.80 3.84 4.12 2.02 2.69 0.71

20 6.71 4.00 4.00 3.42 2.19 2.73 4.63 3.79 6.80 3.40 1.00

20 6.40 4.00 4.00 3.35 3.21 2.59 4.74 2.61 6.80 3.40 1.00

20 6.40 4.00 4.00 3.82 3.23 3.44 4.18 3.28 4.98 3.40 1.00

20 6.40 4.00 4.00 3.83 2.24 3.68 4.04 5.19 4.03 3.40 1.00

20 6.40 4.00 4.00 3.83 3.23 2.92 4.67 3.26 6.80 4.34 1.00

21 1.00 1.00 1.00 0.06 0.43 1.51 1.14 1.84 1.27 0.67 0.71

21 1.00 1.00 1.00 0.06 0.48 1.47 1.12 0.57 3.01 0.67 0.71

Continued on next page

174

Table E.1 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

21 1.00 1.00 1.41 0.06 0.42 1.51 1.11 1.61 1.27 0.67 0.71

21 1.00 1.00 1.00 0.03 0.39 1.51 1.13 1.44 1.27 0.67 0.71

21 1.00 1.00 1.41 0.06 0.43 1.51 1.04 2.91 1.27 0.95 0.71

22 0.00 0.00 0.00 1.89 0.58 0.69 0.59 1.80 1.03 0.00 1.12

22 0.00 4.12 0.00 0.43 0.45 0.26 0.55 1.70 1.03 0.00 1.80

22 0.00 2.24 0.00 0.43 0.88 0.18 0.62 2.61 1.03 0.00 1.12

22 0.00 4.12 0.00 0.42 0.52 0.27 0.68 2.61 1.03 1.05 1.12

22 0.00 1.41 0.00 0.42 0.88 0.30 0.72 1.70 1.03 0.00 0.50

23 4.12 4.12 1.41 3.91 3.83 3.45 3.47 2.33 2.93 0.75 0.71

23 4.12 4.12 1.41 3.91 3.78 3.22 3.31 1.44 1.35 3.68 0.71

23 4.12 4.12 4.24 3.91 3.81 3.15 3.50 1.90 3.51 0.95 1.12

23 4.12 4.12 4.24 1.80 3.45 3.39 3.51 1.60 2.76 2.03 0.71

23 4.12 4.12 1.41 4.00 3.80 3.40 3.47 1.90 1.68 2.98 1.50

24 2.24 3.16 3.16 3.49 2.14 2.10 1.26 0.45 1.03 1.05 0.50

24 2.24 3.16 3.16 3.47 1.02 2.14 2.05 0.89 1.03 0.67 0.50

24 2.24 3.61 4.24 3.46 1.08 2.51 2.15 1.08 1.03 0.67 1.80

24 2.24 3.16 3.16 3.47 1.20 2.52 2.57 0.89 1.03 0.67 3.64

24 1.41 3.16 3.61 3.51 0.78 1.76 1.35 0.89 1.03 0.47 1.80

25 1.00 4.24 0.00 1.75 3.46 2.19 1.10 0.40 0.75 1.05 1.12

25 1.00 5.00 0.00 0.39 2.95 1.38 1.35 0.89 0.75 1.05 1.12

25 1.00 4.24 0.00 0.34 4.58 2.27 1.91 1.65 0.75 1.05 1.12

25 0.00 4.24 0.00 1.61 3.01 2.28 1.31 1.28 0.75 1.05 1.12

25 1.00 4.24 0.00 1.63 3.09 2.28 2.05 1.00 0.75 1.05 1.12

26 5.00 1.41 3.61 0.45 1.66 0.95 1.94 4.95 3.75 1.41 3.00

26 5.00 1.41 1.00 0.44 1.66 1.20 2.06 4.95 3.75 1.95 2.12

26 2.24 1.41 3.61 3.16 1.62 0.74 2.10 5.65 3.75 1.41 3.00

26 5.00 1.41 3.61 3.16 1.65 1.13 2.06 4.71 3.75 0.67 4.61

26 1.41 1.41 5.66 0.44 1.59 1.13 2.15 4.71 2.66 1.41 6.80

27 0.00 2.24 0.00 0.47 1.80 3.54 1.57 5.80 2.57 4.02 1.12

27 0.00 1.00 1.41 0.44 1.96 3.36 1.97 5.22 2.51 4.24 2.92

27 0.00 1.00 0.00 0.50 1.93 2.43 1.70 5.20 2.57 4.02 2.92

27 0.00 1.00 0.00 0.44 1.90 1.97 1.89 5.20 2.36 4.02 2.92

27 0.00 1.00 0.00 0.42 1.96 2.43 1.92 5.89 1.77 4.02 2.92

28 8.00 7.28 2.24 8.38 8.19 3.80 5.09 2.61 5.84 5.59 1.80

28 8.25 7.28 2.24 8.38 6.41 3.74 4.89 3.01 5.84 5.59 1.80

28 8.25 7.28 8.25 8.38 6.44 2.21 4.79 1.34 5.84 5.59 1.80

28 8.25 7.28 2.24 8.37 6.34 3.74 5.25 1.34 5.84 5.59 4.92

28 8.00 7.28 3.00 6.01 6.52 3.71 5.19 2.20 5.84 5.59 1.80

29 7.07 1.00 4.12 1.14 1.76 2.86 1.95 1.80 2.61 2.54 5.85

29 7.28 1.00 3.61 1.81 1.61 3.48 2.17 1.72 2.61 2.54 4.03

29 7.07 7.07 7.07 1.07 1.53 3.40 1.96 2.44 2.93 2.54 4.03

29 7.07 1.00 7.07 1.47 1.54 3.31 1.97 1.00 2.61 2.54 4.03

29 7.28 1.00 4.12 1.14 1.54 3.44 2.02 1.79 2.61 2.54 4.03

30 0.00 1.41 1.00 2.56 1.36 1.69 1.42 0.82 2.57 3.90 2.50

30 0.00 1.41 1.00 2.47 1.30 1.79 1.47 0.57 1.90 3.90 2.24

30 0.00 1.41 1.41 2.55 1.35 1.68 1.40 0.60 2.57 3.48 2.24

30 0.00 1.41 1.00 2.47 1.27 1.72 1.42 0.60 2.57 3.48 2.50

30 0.00 2.00 1.41 2.38 1.33 1.76 1.37 0.57 2.57 3.90 2.50

31 4.47 3.16 2.00 0.97 1.41 1.10 1.10 2.04 1.12 1.37 1.50

31 4.47 3.16 2.00 0.97 1.49 0.86 1.16 3.06 1.12 0.33 1.50

31 4.47 3.16 2.00 0.97 1.44 0.95 1.07 2.24 0.75 0.33 1.50

31 4.24 3.16 2.00 1.03 1.41 0.99 0.75 2.78 1.12 0.33 1.50

31 4.47 3.16 2.00 1.03 1.44 0.63 0.88 2.24 1.12 1.37 1.50

32 3.16 3.16 2.24 1.53 1.43 1.19 0.93 1.52 1.06 0.67 1.58

32 0.00 3.16 2.24 1.47 1.06 1.21 0.75 1.52 1.06 1.20 1.80

32 3.16 3.16 2.24 1.43 1.04 1.02 0.58 1.52 1.06 0.67 0.50

32 0.00 3.16 2.24 1.46 1.02 1.22 0.96 1.81 1.06 1.20 1.00

32 3.16 3.61 2.24 1.47 1.06 0.99 0.96 1.52 1.06 1.20 1.58

33 2.00 1.41 4.47 1.21 2.80 2.33 2.62 0.85 2.30 2.68 5.22

33 3.16 1.41 4.47 1.23 2.99 2.20 2.57 1.00 3.04 2.68 5.22

33 3.16 1.41 4.47 1.17 3.25 2.04 2.52 1.00 3.04 3.73 3.50

33 3.16 1.41 3.61 1.18 2.41 2.16 2.52 1.26 3.04 2.68 3.50

33 1.41 2.00 3.61 1.25 2.42 2.54 2.41 1.26 3.04 2.68 5.22

Continued on next page

175

Table E.1 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

34 5.00 3.61 2.24 1.57 1.24 1.62 1.39 0.63 0.56 0.95 2.00

34 5.00 3.61 2.24 1.65 1.40 1.44 1.37 5.00 1.03 1.37 1.12

34 5.00 2.24 2.24 1.59 1.24 1.63 1.57 3.93 1.06 1.37 2.00

34 5.00 2.24 2.24 1.74 1.25 1.63 1.42 5.06 1.06 1.37 2.00

34 1.41 3.61 2.24 1.54 1.32 1.71 1.49 5.00 1.06 1.70 1.80

35 1.41 1.41 3.61 1.49 1.93 2.62 2.98 3.80 2.25 3.07 1.50

35 1.41 1.41 3.61 1.13 1.96 2.64 2.97 3.85 1.46 2.61 1.50

35 2.00 1.41 3.61 1.54 2.80 2.64 2.98 3.85 2.25 3.07 1.80

35 1.41 1.41 3.61 1.61 1.74 2.61 2.97 3.80 2.25 3.07 1.80

35 1.41 1.41 5.00 1.14 1.75 2.57 2.98 3.80 1.46 3.07 1.50

36 1.00 0.00 8.54 0.84 3.78 3.31 6.89 2.04 4.12 4.38 1.00

36 5.83 3.16 8.54 0.85 4.16 2.60 6.15 2.20 4.12 4.34 1.00

36 1.00 0.00 8.54 0.84 4.44 2.26 6.44 3.16 3.01 6.67 1.00

36 1.00 0.00 8.54 0.84 4.13 2.21 7.24 3.49 5.34 4.38 1.00

36 1.00 0.00 0.00 0.59 3.95 2.27 5.99 3.86 2.30 4.38 1.00

37 2.24 3.16 1.00 0.72 2.58 1.59 1.33 3.86 2.30 1.20 0.71

37 2.24 4.12 1.00 0.72 2.34 1.57 1.32 3.13 2.30 1.20 0.71

37 3.00 4.12 1.00 0.72 2.52 1.56 1.29 4.08 2.30 1.20 0.71

37 2.24 4.12 3.00 4.07 2.46 1.95 1.33 4.31 2.30 1.20 0.71

37 2.24 4.12 3.00 3.70 2.11 1.69 1.39 5.00 2.30 1.20 0.71

38 3.61 1.41 5.00 3.24 5.86 3.11 3.49 4.44 2.61 0.75 3.20

38 3.61 1.41 5.00 3.20 4.84 3.12 3.26 4.20 2.61 0.75 3.20

38 3.61 1.41 5.00 3.29 5.90 3.10 3.03 4.20 2.61 2.40 3.20

38 1.41 2.00 3.16 3.24 5.86 3.11 2.97 4.20 2.61 0.75 3.20

38 3.61 1.41 5.00 3.24 5.00 3.11 3.08 3.01 2.61 2.40 1.58

39 5.83 5.83 1.00 1.33 0.91 1.11 0.43 1.72 1.35 1.37 2.00

39 5.83 5.83 1.00 1.54 1.27 1.10 0.40 2.26 1.25 1.05 2.00

39 5.83 5.83 1.00 1.30 1.03 1.13 0.92 2.26 0.90 1.05 2.00

39 3.16 0.00 1.00 1.27 1.25 1.06 0.36 2.26 0.35 1.37 1.00

39 5.83 5.83 1.00 1.56 1.25 1.08 0.38 2.26 0.50 1.05 2.00

40 2.00 2.00 0.00 0.63 1.57 0.77 1.10 1.89 0.25 0.75 1.12

40 2.00 2.00 0.00 0.67 0.96 0.77 1.18 1.41 0.56 1.20 1.58

40 2.00 2.00 0.00 0.64 2.54 0.77 1.17 2.09 0.25 0.75 1.12

40 2.00 2.00 0.00 3.03 2.56 0.77 1.16 1.41 0.56 0.75 1.12

40 2.00 2.00 0.00 0.76 0.93 0.77 0.77 1.41 0.56 0.75 1.12

41 2.24 2.00 2.24 2.46 0.47 2.60 2.51 0.40 3.36 3.34 2.50

41 2.24 2.00 3.61 2.50 2.00 2.77 2.95 1.13 3.36 3.34 2.50

41 2.24 2.00 3.61 2.52 0.41 2.83 2.66 1.34 2.70 3.34 2.50

41 2.24 2.00 2.24 3.48 0.44 2.78 2.57 0.40 3.36 3.34 2.50

41 2.24 3.61 2.24 2.44 0.78 2.69 2.58 1.26 3.36 3.34 2.50

42 1.41 2.24 4.47 3.10 2.25 2.17 1.66 2.00 1.77 2.00 2.50

42 1.41 3.61 4.47 2.14 2.25 2.23 1.77 1.80 2.00 2.00 2.50

42 4.47 4.24 4.47 2.32 1.83 1.90 1.70 1.20 2.00 2.00 2.50

42 4.47 2.24 4.47 2.32 2.08 2.23 1.91 1.20 2.00 2.00 2.50

42 4.47 3.61 1.41 2.33 2.06 2.33 1.88 2.00 1.77 2.00 1.80

43 1.41 1.41 1.41 0.75 1.88 3.69 1.00 0.89 1.12 1.20 0.71

43 0.00 1.41 1.41 0.71 1.88 3.85 0.93 2.01 1.12 1.20 0.71

43 1.41 1.41 1.41 0.66 1.87 3.36 0.97 2.61 1.12 1.20 0.71

43 0.00 1.41 1.41 0.66 1.84 3.89 1.00 1.40 1.12 1.20 0.71

43 0.00 1.41 1.41 0.83 1.84 3.85 0.91 2.00 1.12 1.20 0.71

44 3.16 3.16 3.16 4.43 5.33 1.92 5.71 3.06 3.01 5.38 3.54

44 6.32 1.41 3.16 4.01 5.04 1.73 5.65 2.41 4.47 4.96 6.50

44 6.32 1.41 7.28 4.35 5.02 1.66 5.72 2.81 3.01 5.38 6.50

44 4.12 1.41 1.00 2.92 4.94 1.75 5.80 3.01 4.47 5.38 3.54

44 1.00 1.41 7.28 3.90 4.15 1.75 5.76 3.61 4.47 5.39 3.54

45 3.61 3.00 3.00 2.05 3.60 3.53 2.68 5.76 3.01 2.69 4.27

45 4.47 3.00 3.00 3.92 2.26 3.19 2.44 5.37 2.02 2.75 4.00

45 4.47 1.00 3.00 2.05 3.94 3.53 2.58 4.68 3.01 2.00 4.03

45 1.41 3.00 3.00 3.78 3.64 3.85 2.60 5.41 1.82 3.07 4.03

45 1.41 3.00 3.00 3.72 3.40 3.93 2.51 5.19 1.82 3.07 4.00

46 2.24 8.06 1.00 0.68 6.76 1.72 1.60 3.62 1.68 1.37 3.61

46 2.24 8.06 1.00 0.49 6.92 1.40 1.55 3.62 1.68 1.88 2.12

46 2.24 5.39 1.00 1.00 6.76 1.42 1.75 4.51 1.68 3.15 2.12

Continued on next page

176

Table E.1 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

46 2.24 2.24 1.00 1.48 6.91 1.75 1.63 4.24 1.68 1.88 1.12

46 2.24 5.39 1.00 5.05 6.86 1.77 1.83 4.24 1.68 2.98 2.12

47 1.00 1.00 1.00 0.45 0.19 0.70 0.45 2.41 1.60 0.75 2.50

47 1.00 1.00 1.00 0.43 0.20 0.24 0.49 3.31 1.60 0.00 2.50

47 1.41 1.00 1.00 0.40 0.16 0.71 0.42 3.05 1.60 0.75 2.50

47 1.41 1.00 1.00 0.46 0.17 0.82 0.20 3.44 1.60 0.75 2.50

47 7.21 1.00 1.00 0.45 0.21 0.82 0.44 3.44 1.60 0.75 2.50

48 3.16 3.61 2.24 0.52 1.96 1.06 1.57 1.90 1.46 2.11 2.92

48 3.16 4.47 5.66 0.53 2.05 1.04 1.70 2.01 1.46 2.11 2.92

48 3.16 3.61 5.66 0.52 1.96 1.05 1.70 2.04 1.46 2.11 2.92

48 4.47 3.61 5.66 0.53 1.96 1.09 1.75 2.04 1.46 2.11 2.92

48 3.16 4.47 5.66 0.53 1.87 1.07 1.71 2.04 1.46 2.11 2.92

49 0.00 2.83 2.24 3.30 1.87 2.09 2.48 3.82 1.60 2.42 3.54

49 0.00 2.83 2.24 3.15 0.93 2.02 2.62 3.26 1.27 2.42 2.83

49 0.00 0.00 2.24 2.07 0.98 1.97 2.18 3.69 1.60 2.42 2.92

49 0.00 2.83 2.24 2.08 0.95 2.02 2.66 3.41 1.27 2.24 2.92

49 0.00 2.24 2.24 2.02 1.14 2.32 2.53 3.69 1.58 2.42 2.92

50 2.00 4.24 5.39 3.54 0.23 0.43 1.60 2.00 3.16 2.87 4.03

50 2.00 2.00 5.39 3.50 0.12 0.23 1.61 3.11 3.35 2.24 4.03

50 2.24 5.39 5.39 3.51 0.59 0.49 1.67 3.61 3.82 2.24 3.81

50 5.66 2.00 5.39 3.49 0.56 0.60 1.58 3.28 3.61 2.87 3.81

50 5.66 2.00 5.39 3.48 0.14 0.60 1.71 2.61 3.61 1.95 4.03

51 0.00 0.00 0.00 0.74 0.03 0.35 0.47 1.71 0.90 0.33 0.71

51 0.00 0.00 4.24 0.72 0.00 0.36 0.46 1.28 1.46 0.33 0.71

51 0.00 0.00 4.24 0.68 0.00 0.31 0.74 2.42 1.25 0.33 0.71

51 0.00 0.00 4.24 0.74 0.00 0.28 0.46 2.24 1.46 0.33 0.71

51 0.00 0.00 0.00 0.75 0.00 0.52 0.46 2.16 1.25 0.33 0.71

52 1.00 1.41 1.41 0.41 0.24 0.42 0.58 3.16 0.50 0.47 0.50

52 1.00 1.41 1.41 1.67 0.22 0.36 0.74 3.26 0.50 1.49 1.80

52 1.00 0.00 1.41 0.40 0.22 0.36 0.63 3.01 0.50 1.49 0.50

52 1.00 0.00 1.41 0.41 0.23 0.47 0.73 2.42 0.50 0.47 1.80

52 1.00 0.00 1.41 0.37 0.23 0.36 0.88 1.97 0.50 0.47 0.50

53 1.00 3.16 3.16 1.51 1.00 0.82 0.41 3.56 2.02 2.03 1.12

53 3.16 3.16 3.16 1.57 1.00 0.88 0.25 3.61 3.16 2.11 1.58

53 1.00 3.16 1.00 5.59 1.00 0.85 0.48 2.56 3.16 2.11 1.12

53 3.16 3.16 3.16 5.51 1.00 0.88 0.37 4.05 3.16 2.11 1.12

53 1.00 3.16 3.16 3.04 1.00 0.88 0.42 5.01 3.16 2.11 1.12

54 3.00 3.16 0.00 3.37 6.27 4.68 4.05 2.42 2.85 1.49 4.12

54 3.00 3.16 0.00 4.31 6.27 4.64 4.10 3.82 2.26 3.80 5.02

54 3.00 3.16 8.06 3.57 6.23 4.67 3.52 2.41 2.26 0.47 5.50

54 3.00 3.16 0.00 4.12 6.27 4.69 4.12 3.72 2.75 3.07 4.12

54 3.00 3.16 8.06 4.12 3.71 4.71 3.34 4.84 2.26 3.43 5.50

55 2.24 1.41 3.61 3.82 1.72 2.32 2.09 4.69 2.15 3.34 2.12

55 2.24 1.41 3.61 4.12 1.74 2.43 2.32 4.74 4.16 3.54 2.50

55 2.24 1.41 2.24 3.99 1.73 2.63 2.14 5.39 2.24 3.54 2.50

55 2.24 1.41 2.83 3.91 1.74 2.60 2.18 4.94 2.15 3.54 2.12

55 2.24 1.41 3.61 3.35 1.75 2.42 2.33 4.67 2.15 3.54 2.12

56 5.00 0.00 0.00 2.25 2.04 2.57 2.85 6.49 2.46 1.66 1.80

56 5.00 0.00 0.00 2.64 2.17 2.57 2.91 4.53 2.46 1.88 3.64

56 5.00 1.00 0.00 3.99 1.97 2.47 3.02 3.69 0.79 2.13 6.52

56 5.00 1.00 0.00 2.25 1.97 2.56 3.01 3.82 5.10 2.13 6.52

56 5.00 0.00 0.00 2.09 1.97 2.51 2.79 3.82 2.46 2.13 6.52

57 2.24 2.24 4.47 1.83 0.82 1.99 1.41 5.52 1.82 2.54 2.92

57 2.24 2.24 4.47 2.20 0.81 1.93 1.24 4.67 2.12 2.54 2.69

57 2.24 2.24 4.47 1.41 0.75 1.93 1.35 4.67 1.82 2.54 2.69

57 2.24 2.24 4.47 2.76 0.77 1.93 1.37 6.08 2.12 2.54 2.69

57 2.24 2.24 4.47 1.80 0.79 1.97 1.49 6.08 1.25 2.54 2.69

58 5.39 5.39 4.24 4.36 2.73 3.89 3.10 2.88 3.09 2.87 2.24

58 5.83 7.07 4.24 6.17 2.93 3.37 3.01 4.00 3.09 2.87 2.24

58 7.81 1.41 0.00 6.13 2.90 3.27 2.98 2.86 3.09 2.87 2.24

58 7.07 1.41 4.24 5.27 2.92 3.42 2.99 2.86 3.09 2.87 2.24

58 5.39 1.41 0.00 6.53 2.88 3.35 3.09 3.28 3.09 2.87 2.24

59 5.00 1.41 5.83 4.08 1.86 1.58 1.74 1.72 3.01 2.40 2.69

Continued on next page

177

Table E.1 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

59 3.00 1.41 3.61 4.03 1.84 1.44 1.25 1.26 3.36 2.40 3.91

59 5.00 1.41 5.83 3.58 1.84 1.82 1.78 3.13 3.36 2.40 2.50

59 5.00 1.41 5.83 3.66 1.84 1.82 1.92 0.72 3.36 2.40 2.69

59 5.00 1.41 5.83 3.19 1.84 1.55 1.21 0.72 3.72 2.40 2.69

60 0.00 0.00 0.00 1.70 1.43 1.13 0.88 2.00 0.79 2.40 2.00

60 0.00 0.00 0.00 1.72 1.43 1.10 0.88 2.28 0.79 2.40 2.00

60 0.00 0.00 0.00 1.17 1.43 1.16 0.89 2.44 0.79 2.40 3.16

60 0.00 0.00 0.00 1.72 1.43 1.18 0.89 2.44 0.79 3.15 1.50

60 0.00 0.00 0.00 1.14 1.43 1.10 0.86 2.28 0.79 3.15 3.16

61 1.00 1.00 1.00 1.37 1.01 1.06 0.96 3.61 1.58 1.37 2.06

61 1.00 1.00 1.41 0.59 1.04 1.14 0.95 2.61 1.80 1.37 3.00

61 1.00 1.00 1.00 0.54 1.06 1.10 0.94 3.11 1.80 0.75 2.06

61 1.00 1.00 1.00 0.99 1.02 1.12 0.98 2.41 2.46 1.05 3.00

61 1.00 1.00 1.00 1.61 1.00 1.11 1.00 3.11 2.46 1.05 1.12

62 7.62 5.10 2.83 5.61 4.49 6.15 4.00 2.44 5.83 4.24 1.80

62 3.00 5.10 2.83 5.42 4.59 4.60 2.12 2.41 6.95 4.24 3.54

62 7.62 1.41 2.83 5.48 5.08 6.06 2.09 2.34 5.59 4.27 2.00

62 1.41 1.41 2.83 5.45 5.16 6.09 2.11 2.34 6.95 4.24 1.80

62 5.00 4.12 2.83 5.55 5.03 6.09 2.10 2.41 6.95 4.24 1.80

63 3.61 8.60 3.61 3.84 2.52 3.93 3.12 4.83 3.36 3.34 3.81

63 3.61 8.60 3.61 3.82 2.57 4.13 3.15 3.54 3.36 3.43 3.81

63 3.61 4.12 3.61 3.85 2.46 4.07 3.07 4.22 2.70 3.43 1.80

63 3.61 8.60 3.61 3.84 2.66 3.86 2.63 3.33 3.36 3.34 3.54

63 6.40 8.60 3.61 3.85 2.52 4.20 2.53 3.00 3.36 5.37 3.81

Table E.2: Residential Test Data

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

1 7.21 8.60 8.60 5.77 6.72 6.04 5.42 6.50 6.13 6.66 7.27

1 7.21 7.81 8.60 6.95 7.20 6.46 6.43 3.54 4.22 3.95 4.12

1 7.21 7.21 8.60 6.80 7.01 7.09 7.21 5.22 4.12 4.92 5.10

1 7.21 7.21 5.39 6.95 6.57 6.80 7.03 6.73 7.21 6.37 7.55

1 8.60 5.39 8.60 7.07 7.20 7.29 7.17 5.00 6.01 5.15 6.28

2 1.00 7.07 2.83 2.49 2.01 2.53 2.31 7.21 6.62 6.05 5.16

2 1.00 4.47 2.83 2.51 2.10 2.52 2.56 7.21 6.62 6.05 5.44

2 4.47 4.47 2.83 2.54 2.09 2.60 2.88 5.70 6.62 5.67 4.53

2 1.00 4.47 4.47 2.96 3.37 3.30 3.76 7.21 6.62 6.72 5.94

2 3.00 7.07 4.47 3.01 2.98 3.28 2.81 3.54 3.80 3.61 4.56

3 6.40 1.41 2.24 1.83 2.08 2.89 2.75 2.50 4.07 3.75 4.24

3 3.61 1.41 2.83 1.86 3.00 2.32 2.54 3.20 2.60 2.36 2.44

3 2.83 7.21 2.83 4.53 3.24 2.46 2.74 2.83 2.36 3.40 3.96

3 2.83 7.21 2.24 1.85 3.06 1.78 2.29 4.47 4.07 3.91 2.84

3 2.83 1.41 2.83 1.36 1.43 2.51 2.73 2.50 4.07 3.40 3.22

4 1.00 3.61 2.00 1.57 1.93 2.05 1.87 0.50 2.36 1.46 1.00

4 1.00 1.00 2.00 1.49 1.64 2.33 1.89 3.91 2.36 2.30 2.41

4 3.16 2.24 2.24 1.50 1.64 2.35 1.57 1.12 1.20 2.47 2.28

4 3.16 3.16 2.24 1.53 1.70 2.17 2.32 1.12 1.05 1.25 1.71

4 3.16 3.16 2.00 1.48 2.28 1.88 2.37 1.80 2.43 3.40 3.54

5 1.00 5.00 4.00 2.01 2.42 1.52 2.09 2.50 2.13 2.85 3.05

5 1.00 2.24 5.00 2.84 2.72 4.01 4.23 2.50 2.13 2.36 2.51

5 2.24 3.61 3.61 4.27 3.47 4.11 3.87 2.50 2.13 1.25 2.00

5 2.24 2.24 2.24 3.38 3.24 3.84 3.60 1.58 2.13 2.30 1.56

5 2.24 2.24 0.00 3.54 3.77 4.30 3.82 2.50 2.13 2.83 2.88

6 3.61 0.00 3.00 1.01 0.49 0.69 1.37 1.80 2.00 1.52 2.00

6 3.61 3.61 0.00 0.60 1.31 2.29 3.21 2.69 2.60 2.14 0.72

6 3.61 3.00 5.39 1.34 2.31 2.17 2.20 1.41 0.94 1.27 1.61

6 3.00 3.16 2.00 1.34 1.37 0.76 2.05 1.12 0.94 0.50 2.28

6 3.00 3.00 3.16 0.56 0.84 1.18 1.38 2.24 0.94 1.35 2.04

7 1.00 1.00 2.83 2.00 1.90 2.02 1.85 1.58 1.37 2.02 2.09

7 2.24 2.83 6.32 1.46 2.19 2.39 1.82 1.58 1.67 1.06 1.13

7 1.00 4.12 6.32 2.70 2.83 2.32 1.72 0.00 1.05 1.00 2.41

Continued on next page

178

Table E.2 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

7 2.83 6.32 1.41 1.89 1.45 2.06 1.80 1.58 1.37 1.00 1.00

7 1.00 3.16 1.00 0.71 2.51 1.84 1.95 1.80 1.41 1.25 1.56

8 4.12 1.00 2.24 2.66 2.59 3.28 2.94 0.71 1.49 2.14 1.84

8 2.24 4.00 4.12 2.54 4.36 1.66 2.41 2.00 0.75 1.35 0.72

8 3.16 2.24 3.00 3.89 1.49 1.79 2.01 2.69 1.80 0.79 0.63

8 1.41 3.00 3.16 2.50 2.08 2.43 3.52 3.16 1.94 2.80 2.63

8 4.12 5.10 1.00 2.68 2.45 2.21 1.90 1.58 1.89 2.14 2.47

9 2.00 1.41 1.41 2.46 2.49 2.18 2.75 2.50 2.69 2.15 2.28

9 2.00 3.16 2.00 2.26 2.08 2.29 1.90 1.50 3.73 3.25 3.16

9 1.41 1.00 2.00 1.17 1.30 1.23 1.15 2.50 2.69 2.66 2.88

9 1.41 1.41 2.00 1.63 1.23 1.33 1.34 0.50 1.20 2.80 1.26

9 1.00 1.00 1.41 1.41 2.02 2.25 2.08 3.54 3.33 2.47 2.28

10 1.41 1.41 1.00 2.91 1.91 2.58 1.96 3.35 2.60 2.02 1.89

10 3.61 3.61 3.61 1.67 1.98 2.10 2.26 2.50 2.98 3.01 2.72

10 6.40 8.06 8.06 1.62 1.79 1.94 2.24 2.92 2.69 2.30 3.05

10 6.40 8.06 8.06 2.78 2.50 2.45 3.12 2.50 0.94 1.41 2.00

10 3.61 3.61 8.06 2.18 2.09 2.58 3.11 2.92 2.36 3.95 1.89

11 6.40 7.07 5.00 2.79 2.81 3.43 2.93 2.69 2.69 2.26 2.83

11 3.61 7.21 2.00 2.66 3.51 3.35 3.47 1.12 1.89 2.36 1.08

11 6.71 7.21 2.00 2.24 2.67 3.37 3.40 2.12 3.77 3.54 2.56

11 7.21 7.21 2.24 0.61 0.41 0.17 0.40 5.32 3.54 2.66 2.83

11 0.00 0.00 1.00 1.66 1.64 2.24 2.73 2.12 3.77 3.18 2.56

12 1.00 1.00 0.00 3.00 3.32 2.93 2.49 3.00 3.28 2.46 3.05

12 1.00 2.00 0.00 3.27 2.71 2.51 2.30 0.71 0.75 1.27 1.22

12 1.00 2.00 2.00 0.04 1.44 0.86 1.94 3.00 2.03 2.50 2.51

12 1.00 1.00 1.00 1.19 0.37 1.03 1.28 1.12 2.24 2.06 2.40

12 1.00 1.00 2.24 2.92 1.52 1.39 1.07 1.80 1.80 2.30 2.00

13 1.00 0.00 3.00 0.81 0.76 0.94 0.63 2.50 2.00 1.12 1.89

13 2.00 1.00 3.00 2.73 2.33 2.26 2.05 2.00 2.03 1.77 0.80

13 3.00 3.00 3.00 2.48 1.65 2.00 1.95 2.50 2.00 1.35 1.02

13 3.00 3.00 2.00 2.58 1.62 1.39 1.23 2.69 2.75 2.51 1.40

13 3.00 3.00 3.00 2.71 2.06 2.18 1.76 1.58 2.03 1.27 1.22

14 4.00 4.00 3.61 2.46 2.57 2.60 2.56 4.12 4.35 2.83 1.65

14 3.00 3.00 3.61 2.52 3.37 2.92 3.30 2.50 3.33 2.12 2.51

14 2.83 3.61 3.61 3.24 3.23 2.91 3.15 2.50 3.33 3.35 2.33

14 2.83 5.66 1.00 3.14 3.40 3.70 2.42 3.54 3.67 3.25 3.45

14 2.24 2.24 3.61 3.35 3.52 3.24 3.80 2.50 2.43 1.35 1.84

15 1.41 1.41 1.41 1.07 1.31 1.44 1.56 4.12 1.80 2.61 2.33

15 1.41 2.24 1.41 1.13 1.25 1.35 1.41 4.00 2.69 2.93 2.33

15 2.00 2.24 1.41 3.15 1.74 1.74 1.61 2.50 1.94 1.77 1.84

15 1.41 1.41 1.41 1.63 1.70 1.67 2.23 4.00 2.69 2.93 2.61

15 1.41 5.83 5.83 1.58 1.76 1.46 1.76 2.50 2.85 2.24 2.61

16 1.00 2.00 2.00 1.42 1.39 1.28 0.99 3.54 2.33 1.35 0.80

16 1.00 1.00 2.00 1.26 1.07 1.02 0.87 1.58 0.75 1.46 0.89

16 1.00 1.00 3.61 1.48 1.10 0.96 0.86 1.50 1.70 1.35 1.02

16 1.00 3.61 3.61 3.33 2.68 2.64 2.23 1.50 0.47 0.90 0.72

16 1.00 2.00 1.00 2.90 3.29 1.75 0.76 1.50 1.00 0.71 0.45

17 0.00 3.16 0.00 5.02 3.46 3.52 1.66 1.50 1.05 1.50 1.20

17 0.00 0.00 1.00 0.95 0.71 3.69 2.06 0.50 1.00 0.79 0.57

17 0.00 3.00 1.41 0.91 0.44 0.40 0.43 1.80 1.05 1.50 1.41

17 1.41 1.00 0.00 0.06 0.30 0.16 0.29 1.50 2.03 1.50 1.41

17 0.00 1.00 1.00 1.50 0.88 0.65 0.55 3.00 3.35 2.37 2.41

18 1.00 2.24 2.24 1.59 1.85 1.80 1.91 0.50 0.75 1.82 1.84

18 1.00 2.24 2.24 1.58 1.40 1.55 1.26 1.12 1.67 1.41 1.61

18 1.00 1.00 1.00 1.54 0.50 1.42 1.59 1.12 0.75 1.12 2.16

18 1.00 1.00 1.00 1.08 0.80 0.73 1.13 1.58 1.89 2.46 1.56

18 1.00 0.00 1.00 0.56 0.94 0.98 1.08 1.80 1.67 1.90 2.00

19 3.16 4.12 4.12 3.66 2.89 2.44 2.48 3.64 3.14 3.55 2.34

19 4.12 4.12 7.62 1.52 2.48 1.72 2.18 3.91 3.89 3.55 2.56

19 1.00 4.12 2.24 1.75 1.73 1.70 1.15 2.06 3.14 2.57 2.42

19 4.12 0.00 0.00 0.40 0.71 0.62 1.36 2.83 3.14 2.57 2.42

19 4.12 4.12 2.00 1.90 1.66 1.91 1.96 1.41 1.70 1.25 1.34

20 4.12 0.00 0.00 3.33 3.02 2.08 1.89 1.58 1.37 1.12 1.41

Continued on next page

179

Table E.2 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

20 0.00 3.16 3.16 1.92 1.54 1.88 1.59 2.06 0.94 0.50 0.82

20 3.16 0.00 3.16 2.50 1.72 2.11 2.08 1.12 0.33 1.03 0.82

20 2.24 0.00 0.00 0.52 0.70 1.12 1.54 0.50 1.20 0.50 0.82

20 0.00 0.00 0.00 0.64 0.42 0.61 0.45 1.58 1.37 1.00 1.17

21 0.00 0.00 0.00 1.06 0.77 1.23 1.12 1.80 1.20 1.12 1.41

21 0.00 3.00 0.00 0.88 0.56 0.85 0.88 1.80 0.75 1.46 1.28

21 0.00 0.00 0.00 1.09 0.52 0.44 0.55 2.12 0.47 0.56 0.60

21 0.00 0.00 0.00 0.39 0.25 0.69 0.95 0.50 0.67 1.06 0.89

21 0.00 0.00 0.00 0.27 0.59 0.85 1.06 0.00 0.75 0.79 1.26

22 3.61 2.24 3.61 2.36 1.95 2.21 1.09 2.55 3.16 2.14 1.84

22 2.24 3.61 2.24 1.09 2.82 1.83 2.13 1.12 1.80 1.27 1.81

22 4.12 2.24 4.47 2.50 1.52 2.85 1.94 0.50 1.80 0.79 0.72

22 3.61 4.00 3.61 3.62 0.78 1.45 1.92 1.00 1.20 1.12 0.82

22 3.61 2.24 3.61 3.58 1.35 1.62 1.72 1.50 2.11 1.27 1.26

23 4.47 3.16 4.47 1.41 1.22 1.02 1.02 2.24 2.98 3.55 3.39

23 4.47 4.47 4.47 1.00 0.98 1.47 0.88 3.64 4.03 3.02 3.40

23 4.47 2.24 4.47 3.11 1.98 1.13 2.47 3.64 2.13 2.85 3.49

23 2.00 3.16 2.24 0.62 1.63 2.01 1.56 3.91 3.43 3.16 3.39

23 2.83 2.83 2.83 0.88 1.37 1.11 1.97 3.91 3.28 3.20 2.95

24 2.24 2.24 4.47 2.24 1.12 1.42 0.76 2.83 2.87 0.90 0.72

24 1.41 1.41 3.16 1.50 0.46 1.49 1.58 1.80 1.49 0.90 1.17

24 2.24 4.47 3.16 1.46 3.72 2.88 1.88 2.24 1.67 1.60 2.72

24 2.24 3.16 2.24 1.55 2.28 2.38 2.21 3.04 1.89 1.68 1.97

24 3.16 4.47 3.16 3.28 2.73 3.08 2.31 2.24 2.03 2.25 2.63

25 4.24 1.41 4.24 2.47 1.90 1.65 0.68 1.50 1.37 0.79 0.63

25 2.00 1.00 2.00 0.46 0.84 0.37 0.45 0.50 1.00 1.35 1.44

25 1.00 2.00 1.00 0.46 1.40 0.85 0.67 0.50 1.33 0.90 2.51

25 2.24 3.61 1.00 0.54 2.32 1.95 2.22 1.12 0.75 0.35 0.28

25 2.00 2.00 2.00 1.05 1.12 2.04 1.98 0.50 0.75 0.71 0.45

26 1.41 2.24 1.41 1.16 1.97 1.66 1.53 3.35 3.00 3.05 3.69

26 2.00 1.41 2.24 1.12 1.03 1.05 1.01 1.50 1.49 0.75 1.65

26 1.41 2.24 2.24 0.77 1.07 1.32 1.49 2.06 1.67 1.35 0.80

26 1.41 1.00 1.00 1.04 0.41 0.37 1.57 3.81 1.20 1.35 0.80

26 2.24 1.00 1.41 3.06 1.32 0.44 0.50 4.74 2.75 2.55 2.00

27 2.00 2.00 1.00 0.53 0.63 0.93 1.01 1.12 0.67 0.90 1.00

27 1.00 1.00 1.00 0.56 0.62 0.99 1.07 1.12 1.67 1.12 1.00

27 1.00 1.00 2.00 1.13 0.77 1.11 1.03 1.12 1.67 1.12 1.00

27 2.00 2.00 1.00 0.49 1.10 1.14 0.59 2.06 1.33 1.12 2.01

27 8.25 2.83 2.83 0.93 0.64 0.87 0.96 2.06 1.33 1.12 1.79

28 2.83 2.83 2.83 2.00 1.64 1.43 1.49 2.83 3.07 2.06 2.34

28 2.83 2.83 2.83 1.92 1.52 1.40 1.64 2.83 1.67 1.95 1.28

28 2.83 2.83 2.83 2.07 2.22 1.96 1.73 1.50 1.67 1.95 1.84

28 2.83 2.83 2.83 1.98 1.87 1.77 1.70 2.50 2.24 1.35 1.84

28 2.83 2.83 2.83 1.89 1.67 1.57 1.75 1.50 1.67 2.76 2.33

29 3.16 3.16 1.41 0.46 0.84 0.85 1.04 2.55 0.67 1.03 1.41

29 1.00 3.16 3.16 1.21 1.71 1.78 1.52 1.50 0.67 1.35 1.81

29 3.16 3.16 3.16 1.16 1.22 0.81 0.42 0.50 0.00 1.03 0.60

29 1.41 2.24 2.24 1.05 1.57 1.26 1.14 1.12 0.00 0.56 1.08

29 2.24 1.00 2.24 1.63 1.03 1.62 1.76 0.50 1.37 1.50 1.22

30 2.00 2.00 2.00 1.79 1.97 1.63 1.59 2.50 1.67 0.25 0.63

30 2.00 2.00 2.24 2.50 1.30 2.38 1.96 1.58 1.00 0.25 1.22

30 2.00 2.00 2.24 1.53 2.66 1.65 1.79 1.12 1.00 0.25 0.63

30 2.00 2.00 3.00 2.51 2.71 2.14 1.74 1.58 0.47 0.25 0.63

30 2.00 2.00 2.00 3.04 2.33 1.61 1.84 2.24 1.89 1.95 1.52

31 3.16 1.41 1.41 3.52 1.90 1.89 1.97 1.41 0.94 1.00 1.46

31 1.41 1.41 3.16 1.58 2.84 1.66 1.21 1.41 0.75 1.25 1.17

31 2.24 2.00 3.00 1.45 1.69 1.72 1.80 1.41 0.75 0.56 1.46

31 1.41 3.16 1.41 3.02 2.63 2.37 1.84 1.50 0.75 2.25 2.42

31 3.16 2.24 3.16 2.48 1.81 2.67 2.18 2.55 0.94 2.00 1.34

32 3.00 2.24 2.24 0.78 0.45 0.91 0.80 2.69 1.00 2.06 1.00

32 4.12 2.24 0.00 1.40 0.45 1.80 1.23 2.92 2.60 1.90 1.61

32 4.12 2.24 2.24 1.07 0.37 0.62 1.05 2.24 2.60 2.61 2.72

32 4.12 0.00 0.00 1.12 0.47 1.94 0.53 2.83 2.60 2.85 2.24

Continued on next page

180

Table E.2 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

32 4.12 0.00 3.00 0.54 1.34 2.17 1.03 2.06 2.03 2.61 1.70

33 4.47 4.47 4.47 0.91 2.15 1.61 1.84 0.50 0.33 0.71 2.53

33 4.47 4.47 4.47 4.37 2.54 2.45 2.59 1.80 1.67 2.66 2.13

33 4.47 4.47 3.61 2.24 4.18 3.20 2.92 1.00 0.75 1.25 1.20

33 4.47 5.10 3.61 4.03 2.29 2.33 2.22 3.20 3.90 3.29 3.23

33 4.47 5.10 3.61 3.22 3.27 1.83 2.11 1.12 1.05 3.51 2.56

34 1.00 1.00 2.24 0.66 0.82 0.47 0.50 2.92 3.33 1.90 1.02

34 2.24 2.83 2.83 1.29 1.32 1.21 1.03 3.54 2.75 2.51 2.88

34 2.24 2.24 2.24 2.03 1.66 0.92 1.34 1.50 3.16 2.50 2.41

34 2.24 2.24 2.24 0.81 1.06 1.92 1.05 2.69 2.75 2.50 2.47

34 2.83 2.24 2.24 0.28 0.80 1.17 1.04 1.50 2.24 1.95 2.72

35 4.47 7.07 1.41 3.04 5.52 2.99 4.05 2.12 2.36 1.52 2.01

35 5.83 1.41 1.41 2.53 1.89 1.40 1.97 1.80 2.36 1.58 1.26

35 6.32 2.24 4.24 2.64 1.87 0.93 0.84 1.00 1.37 2.30 1.56

35 1.41 1.41 1.41 1.01 1.62 1.94 1.61 3.04 0.47 0.79 0.20

35 1.41 1.41 1.41 1.02 1.64 1.68 0.88 4.12 2.67 2.24 2.00

36 2.00 5.00 2.00 2.95 2.35 2.11 2.24 3.54 2.60 1.95 1.71

36 2.00 2.00 1.00 0.24 0.09 0.73 1.05 2.69 1.80 1.52 1.97

36 1.00 1.00 1.00 2.02 1.34 1.05 0.92 2.24 0.94 1.12 1.02

36 1.00 1.00 1.00 0.59 0.96 1.87 1.25 1.80 1.67 1.58 1.84

36 1.00 3.61 1.00 0.31 0.44 1.04 1.21 1.50 0.94 1.06 1.34

37 2.24 2.83 2.83 1.49 2.28 2.88 3.04 2.50 2.36 2.50 1.97

37 2.24 4.12 2.83 2.96 2.36 2.52 2.90 2.50 2.36 1.68 1.97

37 2.24 2.24 2.83 3.02 2.45 2.43 3.07 2.50 2.36 1.68 1.97

37 2.24 2.83 2.83 3.05 2.53 2.56 2.85 2.50 2.36 2.36 1.97

37 2.24 2.83 4.12 2.89 2.60 2.55 2.15 2.50 1.70 1.68 1.34

38 1.41 1.00 1.41 0.64 2.20 2.05 1.67 1.00 1.05 0.35 0.63

38 1.41 1.41 1.41 1.52 1.94 1.32 0.83 2.06 1.37 0.35 1.22

38 1.41 1.41 2.24 2.11 1.12 1.57 2.30 1.00 0.00 1.25 0.82

38 1.41 1.41 2.24 0.68 0.30 0.95 1.21 1.00 0.00 0.35 0.40

38 1.41 1.00 2.24 1.97 2.59 2.32 0.90 1.00 0.00 0.35 1.61

39 2.24 2.00 1.41 1.58 1.70 1.57 1.47 2.06 1.05 2.15 2.86

39 2.24 2.24 1.41 1.44 1.56 1.34 1.17 1.58 1.67 1.25 0.63

39 2.00 2.24 1.41 1.57 1.65 1.47 1.39 1.58 1.94 1.60 1.44

39 2.00 1.00 1.41 1.37 1.57 1.27 1.23 1.58 1.94 2.15 1.26

39 2.24 1.00 2.00 1.60 1.66 1.61 1.41 1.58 1.94 1.82 2.24

40 2.83 2.83 2.83 2.45 2.05 2.05 1.98 5.70 4.63 3.02 2.34

40 2.83 2.83 2.83 2.52 1.69 2.02 2.11 1.80 0.67 1.52 2.34

40 2.83 2.83 2.83 1.99 1.91 1.76 1.68 4.03 4.07 4.14 4.47

40 2.83 1.00 2.83 1.90 1.57 1.44 1.31 1.58 1.20 1.75 2.34

40 2.83 2.83 2.83 1.80 1.48 1.26 1.33 1.58 1.20 1.75 2.34

41 5.00 2.24 4.00 3.02 2.75 2.58 2.39 1.41 1.37 0.75 1.41

41 5.00 3.61 4.00 3.38 3.05 4.00 3.79 0.71 1.05 1.27 1.40

41 4.47 4.00 4.00 3.10 2.30 2.19 2.47 0.71 0.75 2.25 1.40

41 4.47 5.00 5.00 3.56 3.56 3.39 3.12 1.41 1.37 0.35 0.57

41 5.00 5.00 5.00 4.00 4.57 4.21 3.90 1.41 1.05 1.25 0.63

42 4.24 2.24 3.00 0.96 1.19 0.30 0.68 2.50 2.54 2.85 1.56

42 3.00 2.24 1.00 1.76 0.49 0.11 0.49 3.61 2.60 1.46 1.56

42 4.24 2.24 1.00 1.85 0.82 1.05 1.28 1.12 2.24 1.12 1.52

42 4.24 2.24 3.00 1.66 0.63 0.19 0.15 3.61 2.60 2.50 2.00

42 4.24 2.24 3.00 0.50 0.47 0.22 0.75 0.71 0.94 1.46 1.56

43 4.00 4.00 4.00 3.67 2.99 2.65 2.72 0.50 2.13 2.83 2.28

43 4.00 4.00 4.00 2.46 2.27 2.15 2.21 0.50 2.13 2.83 2.24

43 4.00 4.00 4.00 3.80 3.21 3.07 2.66 1.41 2.75 2.30 2.24

43 4.00 4.00 4.00 2.90 2.27 2.16 2.34 0.50 2.13 1.35 1.98

43 4.00 4.00 4.00 2.70 2.55 2.39 2.42 0.50 0.75 1.25 1.08

44 1.00 3.16 0.00 0.48 2.20 2.20 2.05 3.81 3.40 3.51 3.61

44 3.00 1.41 3.00 3.60 3.45 3.20 3.69 2.06 2.75 2.93 3.10

44 1.00 4.12 4.12 2.99 3.56 2.65 2.83 3.81 4.27 3.91 3.01

44 3.00 4.12 2.83 1.67 2.06 3.77 3.26 5.32 3.61 2.70 2.84

44 4.12 4.12 3.61 4.58 3.14 1.92 1.84 4.74 3.80 3.34 4.12

45 3.16 1.00 0.00 0.71 1.96 1.96 2.04 2.50 1.33 3.18 2.15

45 3.00 3.00 4.47 3.53 3.63 3.05 2.84 1.50 1.67 2.30 2.53

Continued on next page

181

Table E.2 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

45 3.16 3.16 4.47 3.79 3.26 3.17 2.76 0.50 1.05 1.77 2.33

45 3.00 3.00 4.47 3.67 3.37 2.63 2.42 0.50 2.87 2.30 2.44

45 3.16 4.47 0.00 4.29 4.04 2.69 3.53 2.50 1.67 2.30 2.53

46 2.00 2.00 2.00 2.63 1.93 1.61 1.01 1.50 1.80 1.35 1.41

46 2.00 1.00 1.00 0.94 1.00 0.96 1.13 1.58 1.67 1.77 1.65

46 0.00 1.00 2.24 0.93 1.48 1.04 1.05 1.80 1.00 1.25 1.00

46 1.00 1.00 1.00 0.86 0.97 0.91 1.00 1.58 1.70 1.52 1.02

46 0.00 1.00 2.24 1.14 1.39 1.32 1.30 1.12 1.67 0.75 1.00

47 1.00 1.00 1.00 0.73 0.31 0.35 0.18 0.50 0.00 0.56 0.82

47 1.00 1.41 1.00 0.51 0.54 0.20 0.27 1.12 1.41 2.06 1.84

47 1.41 1.00 1.00 1.08 0.29 0.15 0.23 0.71 0.33 0.50 0.45

47 1.00 1.00 1.00 0.73 0.49 0.35 0.16 1.12 0.75 0.75 0.45

47 1.00 1.00 1.00 0.49 0.35 0.05 0.20 1.12 0.94 0.35 0.20

48 1.41 1.41 1.41 0.60 0.57 0.72 1.05 1.12 1.05 0.56 0.45

48 1.00 1.41 2.24 0.61 0.41 0.59 0.53 1.12 1.20 1.03 0.45

48 0.00 1.00 0.00 0.49 0.44 0.53 0.42 1.58 2.33 1.03 1.34

48 0.00 0.00 1.00 0.75 0.57 0.61 0.56 1.58 1.33 0.25 0.28

48 2.24 1.41 2.24 0.79 0.76 0.81 0.62 4.72 1.05 0.79 2.15

49 1.00 1.41 0.00 0.68 0.91 1.09 0.42 3.91 2.36 1.60 1.34

49 2.24 0.00 0.00 2.16 1.87 2.04 2.21 0.50 0.75 2.02 1.41

49 0.00 0.00 0.00 0.63 1.56 1.88 1.86 4.61 0.67 0.25 3.30

49 0.00 0.00 0.00 2.12 1.80 1.69 1.80 3.20 3.07 2.30 2.33

49 0.00 0.00 0.00 0.57 1.05 1.19 0.79 0.71 0.75 0.25 1.26

50 3.16 1.00 1.00 0.03 0.33 1.11 1.01 1.00 0.47 1.00 1.17

50 1.00 1.00 1.00 0.73 1.82 0.74 1.37 0.71 0.33 0.56 1.79

50 4.00 1.00 1.00 0.07 0.31 1.22 1.03 0.71 0.33 1.25 0.63

50 1.00 1.00 1.00 0.03 0.30 1.12 0.98 0.00 0.33 1.25 0.72

50 1.00 1.00 1.00 0.07 0.38 0.81 1.19 1.58 2.33 1.27 1.41

51 5.00 4.47 5.00 2.18 2.48 3.02 2.94 3.20 3.28 3.91 4.00

51 3.00 3.16 4.12 4.74 3.47 3.78 3.59 3.20 3.07 3.20 3.67

51 5.00 5.00 5.00 3.27 3.08 3.22 3.29 2.69 2.11 1.95 1.84

51 5.00 5.00 5.00 3.20 3.64 3.35 3.74 2.24 2.60 1.41 1.44

51 5.00 5.00 5.00 3.28 3.15 3.31 3.50 2.24 1.37 1.60 2.97

52 2.24 2.24 2.24 1.91 2.41 2.15 2.43 3.20 2.69 3.02 3.16

52 2.24 1.00 2.24 1.97 1.80 2.38 2.42 3.20 2.11 2.93 3.03

52 2.24 2.24 2.24 2.73 3.08 2.01 1.76 4.12 3.90 3.16 2.86

52 2.24 2.24 2.24 1.88 1.77 2.32 1.81 2.69 2.11 1.58 1.00

52 2.24 2.24 2.24 2.92 1.78 2.40 2.94 1.58 1.33 1.82 1.40

53 4.12 5.10 5.10 2.54 3.48 1.63 1.70 1.12 2.75 3.29 2.81

53 4.12 1.00 3.00 2.75 3.04 2.43 3.46 1.00 1.37 2.50 2.41

53 5.00 3.00 3.00 3.15 3.55 2.12 2.90 2.00 1.05 1.25 1.84

53 5.10 5.10 5.10 3.29 1.55 2.48 2.65 2.00 1.80 1.25 1.56

53 4.00 4.12 3.61 3.21 2.81 2.89 1.96 2.55 2.54 3.25 3.23

54 0.00 4.47 4.47 1.04 1.43 1.33 2.26 0.71 0.94 0.56 1.41

54 4.47 1.00 1.41 1.70 2.55 1.96 2.81 0.71 0.94 0.56 0.89

54 1.00 1.00 1.00 0.54 1.90 1.97 1.69 1.12 0.75 1.35 1.22

54 1.00 0.00 1.00 2.70 2.47 2.45 2.51 1.12 0.75 0.25 0.45

54 1.00 1.00 0.00 0.40 1.28 1.82 2.04 0.50 0.75 0.56 0.45

55 2.00 3.16 1.00 1.41 1.18 1.92 2.18 1.41 1.20 1.06 1.28

55 2.00 2.00 6.32 2.36 2.85 5.35 3.69 1.41 1.67 1.46 1.79

55 2.00 2.00 7.81 1.59 1.46 2.11 1.85 2.12 3.14 3.35 3.69

55 2.00 1.00 1.00 1.92 1.94 2.70 2.37 2.55 2.60 2.30 1.98

55 1.00 1.00 1.00 1.52 1.49 2.27 2.39 2.12 1.94 3.40 3.05

56 2.24 2.24 4.00 1.27 1.96 1.22 1.95 4.03 5.47 4.37 5.12

56 2.24 2.24 2.24 0.97 0.66 0.79 1.19 3.04 2.36 2.80 3.23

56 0.00 0.00 0.00 0.48 0.69 0.67 0.86 3.04 2.54 2.06 2.16

56 2.24 0.00 0.00 0.54 0.83 1.12 1.13 2.12 1.41 1.90 2.16

56 1.00 0.00 0.00 0.95 1.74 1.61 1.03 2.12 2.60 2.70 2.16

57 2.00 2.00 2.00 1.10 0.99 1.60 1.25 1.12 1.41 2.02 2.15

57 1.00 1.00 2.00 1.12 1.04 1.27 1.45 1.12 1.41 2.02 1.61

57 1.00 1.00 1.00 0.52 1.00 1.17 1.39 1.58 1.41 2.02 1.61

57 2.00 2.00 1.41 1.11 1.02 1.21 1.11 1.12 1.41 1.68 1.56

57 1.00 2.00 1.41 2.09 2.01 1.57 1.57 2.24 1.41 2.02 1.61

Continued on next page

182

Table E.2 – continued from previous page

Sample k3 k4 k5 wc62 wc63 wc64 wc65 c62 c63 c64 c65

58 6.40 6.08 7.81 6.66 6.06 5.66 5.16 3.00 2.00 2.76 2.47

58 7.81 7.81 5.66 6.65 6.32 5.43 5.77 0.50 2.00 2.06 1.61

58 7.81 7.81 5.66 6.73 5.36 4.52 4.50 3.54 2.75 3.29 3.10

58 6.40 7.81 7.81 6.67 6.36 4.54 4.79 4.47 3.43 3.35 3.44

58 6.08 7.81 7.81 4.72 4.77 5.74 5.58 3.81 3.80 3.69 3.22

59 0.00 3.16 0.00 3.89 2.72 3.14 3.55 3.20 2.98 2.66 2.83

59 1.41 1.41 0.00 1.46 2.69 3.76 2.90 1.58 1.70 2.47 3.26

59 2.83 2.83 2.83 2.94 3.39 1.30 1.80 0.71 4.68 3.58 2.83

59 2.83 0.00 2.83 3.22 2.90 2.87 3.07 3.81 2.11 2.30 2.83

59 0.00 2.83 0.00 2.86 2.83 2.33 2.43 2.83 2.69 2.46 1.84

60 2.24 1.00 2.24 3.82 2.35 2.72 2.27 1.00 0.94 0.79 1.08

60 5.83 3.16 1.00 2.83 1.80 2.12 2.36 0.71 0.75 0.79 1.60

60 5.00 2.24 2.24 2.72 3.30 3.09 3.96 1.50 0.75 0.79 1.60

60 5.00 1.00 2.24 2.85 4.19 3.98 2.97 1.50 0.33 2.24 2.78

60 2.24 2.24 1.00 2.09 2.00 2.83 2.51 1.50 0.75 0.75 1.90

61 2.83 2.83 2.00 1.78 1.82 2.17 2.60 5.00 2.60 4.07 2.42

61 2.24 2.83 2.83 2.50 3.05 3.01 2.64 2.50 1.20 1.35 2.83

61 2.83 2.00 2.83 3.44 1.83 1.85 1.35 2.24 2.13 1.35 4.88

61 2.83 1.00 1.00 1.80 1.92 1.25 1.39 2.24 1.80 3.40 3.33

61 2.83 2.00 2.00 1.11 1.96 1.26 1.47 3.00 4.47 3.81 3.10

62 2.00 2.24 2.24 2.00 2.37 2.82 3.10 4.03 2.33 2.25 1.81

62 5.10 5.10 6.08 4.98 3.78 4.20 3.93 1.00 0.75 2.26 2.40

62 5.10 6.08 6.08 4.44 3.78 3.44 3.03 1.58 1.05 1.50 1.26

62 2.00 2.00 2.00 3.17 3.10 3.53 2.99 2.06 1.37 2.51 2.40

62 2.24 2.24 2.24 3.29 3.02 2.63 3.37 3.81 0.75 0.90 1.56

63 4.12 2.00 1.00 1.44 0.76 0.94 1.34 0.50 1.70 2.61 2.06

63 4.00 1.00 1.00 1.50 1.17 1.77 1.31 1.80 1.49 2.02 2.06

63 3.00 1.00 1.00 1.27 0.86 0.74 1.04 2.06 1.70 1.68 1.52

63 3.00 0.00 1.00 1.37 0.95 0.84 0.78 1.80 2.54 2.02 2.06

63 1.00 3.00 1.00 0.56 0.78 1.65 1.93 2.06 2.54 2.46 2.06

183

Table E.3: Orientation Test of RSSI for TelosB mote

Angle

Sample

No.

0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5

1 -69 -70 -72 -69 -75 -89 -86 -80 -85 -83 -79 -83 -81 -88 -80 -79

2 -70 -69 -71 -70 -75 -87 -86 -79 -82 -78 -77 -79 -80 -86 -87 -81

3 -69 -69 -70 -71 -75 -88 -80 -77 -83 -81 -77 -83 -83 -82 -84 -79

4 -71 -71 -71 -74 -77 -84 -82 -79 -86 -82 -80 -81 -88 -79 -88 -78

5 -71 -70 -71 -76 -76 -85 -84 -79 -85 -84 -84 -84 -84 -79 -83 -81

6 -71 -69 -73 -71 -76 -88 -85 -79 -80 -82 -85 -87 -86 -77 -77 -77

7 -71 -70 -71 -71 -75 -86 -85 -78 -74 -86 -82 -86 -87 -77 -76 -79

8 -70 -67 -71 -71 -75 -84 -86 -78 -79 -81 -77 -84 -90 -79 -74 -77

9 -69 -69 -71 -71 -86 -79 -88 -79 -80 -81 -77 -78 -87 -80 -77 -77

10 -67 -70 -70 -72 -86 -85 -81 -79 -78 -80 -79 -78 -89 -78 -78 -71

11 -68 -71 -70 -73 -83 -86 -83 -80 -80 -82 -79 -79 -84 -78 -77 -70

12 -69 -70 -69 -74 -86 -86 -82 -77 -78 -86 -80 -80 -85 -77 -78 -71

13 -69 -70 -70 -74 -87 -83 -84 -79 -81 -88 -84 -83 -82 -77 -80 -71

14 -69 -70 -70 -76 -87 -80 -80 -83 -84 -83 -84 -88 -81 -77 -79 -71

15 -70 -70 -71 -77 -86 -78 -81 -85 -83 -79 -84 -88 -84 -77 -84 -71

16 -69 -71 -71 -75 -85 -78 -80 -84 -80 -78 -84 -83 -81 -77 -80 -71

17 -69 -74 -70 -75 -87 -79 -82 -83 -82 -79 -85 -81 -79 -78 -76 -72

18 -69 -73 -70 -73 -87 -80 -79 -86 -85 -82 -82 -79 -80 -80 -73 -72

19 -70 -71 -71 -73 -86 -83 -80 -88 -81 -77 -80 -79 -78 -79 -75 -72

20 -71 -71 -73 -72 -84 -87 -77 -86 -81 -75 -79 -81 -79 -76 -75 -71

21 -69 -71 -73 -72 -80 -84 -79 -86 -80 -75 -80 -77 -81 -77 -77 -72

22 -68 -71 -72 -73 -78 -84 -79 -82 -81 -76 -83 -80 -86 -79 -78 -72

23 -69 -72 -73 -74 -80 -83 -77 -83 -80 -77 -87 -85 -83 -79 -77 -74

24 -70 -73 -75 -71 -78 -82 -75 -82 -77 -79 -82 -88 -78 -78 -75 -73

25 -70 -71 -75 -73 -77 -86 -73 -85 -80 -84 -81 -87 -80 -75 -75 -71

26 -70 -72 -72 -73 -78 -84 -75 -85 -86 -87 -82 -85 -80 -75 -77 -71

27 -71 -73 -73 -74 -79 -86 -75 -86 -83 -78 -79 -81 -80 -75 -75 -71

28 -72 -72 -73 -75 -79 -85 -74 -86 -81 -79 -78 -81 -80 -76 -75 -71

29 -73 -70 -74 -74 -80 -84 -74 -84 -82 -77 -80 -81 -79 -75 -76 -71

30 -73 -71 -75 -75 -82 -81 -75 -82 -84 -84 -83 -83 -79 -75 -75 -71

31 -72 -73 -75 -74 -82 -79 -77 -84 -84 -86 -84 -83 -81 -74 -75 -71

32 -71 -72 -73 -74 -80 -78 -80 -77 -81 -84 -83 -82 -80 -75 -73 -71

33 -72 -71 -73 -73 -82 -79 -85 -79 -82 -86 -84 -82 -78 -75 -73 -70

34 -71 -71 -71 -73 -80 -80 -78 -82 -84 -88 -84 -81 -76 -75 -75 -70

35 -71 -71 -71 -73 -82 -79 -77 -75 -81 -83 -84 -79 -76 -76 -74 -69

36 -71 -72 -71 -75 -84 -80 -82 -78 -79 -77 -84 -77 -79 -77 -72 -69

37 -71 -73 -71 -74 -83 -82 -79 -82 -84 -83 -86 -74 -82 -79 -73 -70

38 -70 -74 -71 -73 -86 -78 -79 -76 -86 -85 -82 -74 -84 -77 -75 -70

39 -68 -73 -71 -75 -86 -77 -78 -77 -83 -88 -80 -76 -85 -78 -74 -71

40 -69 -73 -71 -77 -84 -79 -79 -75 -86 -84 -79 -79 -84 -79 -75 -73

41 -70 -73 -72 -81 -81 -80 -79 -76 -84 -80 -88 -82 -80 -78 -75 -72

42 -70 -74 -73 -80 -82 -79 -80 -77 -84 -81 -79 -86 -79 -79 -77 -71

43 -69 -74 -73 -81 -79 -80 -82 -77 -82 -86 -78 -87 -77 -80 -76 -70

44 -68 -73 -73 -75 -78 -78 -84 -77 -83 -84 -78 -87 -77 -82 -75 -69

45 -69 -72 -73 -75 -84 -80 -84 -77 -83 -80 -79 -87 -78 -81 -75 -67

46 -69 -73 -71 -78 -85 -82 -84 -79 -84 -84 -80 -86 -78 -83 -77 -67

47 -69 -73 -71 -77 -82 -88 -86 -80 -87 -83 -77 -82 -79 -86 -76 -69

48 -70 -74 -71 -76 -79 -87 -83 -84 -86 -82 -76 -81 -78 -86 -77 -69

49 -69 -75 -71 -77 -83 -83 -82 -82 -85 -84 -75 -78 -78 -88 -77 -69

50 -69 -76 -71 -82 -83 -79 -78 -83 -88 -81 -78 -79 -81 -85 -75 -71

51 -69 -77 -72 -79 -82 -78 -77 -82 -85 -77 -77 -85 -87 -84 -76 -71

52 -67 -77 -71 -76 -80 -79 -77 -88 -86 -76 -77 -83 -84 -82 -74 -72

53 -69 -75 -72 -73 -81 -83 -79 -83 -87 -79 -76 -80 -85 -75 -72 -71

54 -70 -76 -73 -72 -79 -84 -80 -81 -87 -87 -81 -79 -88 -75 -74 -71

55 -69 -75 -75 -73 -80 -84 -79 -85 -89 -79 -84 -82 -82 -75 -75 -71

56 -69 -75 -75 -73 -80 -84 -80 -86 -88 -77 -85 -85 -77 -75 -75 -69

57 -71 -77 -72 -74 -80 -83 -78 -85 -84 -87 -88 -85 -77 -76 -76 -68

58 -69 -77 -72 -75 -82 -84 -78 -87 -84 -88 -79 -83 -80 -77 -76 -70

59 -69 -73 -71 -73 -84 -81 -78 -80 -87 -85 -81 -83 -79 -77 -77 -71

60 -70 -71 -71 -75 -85 -84 -77 -79 -88 -82 -84 -85 -83 -80 -78 -71

Continued on next page

184

Table E.3 – continued from previous page

Angle

Sample

No.

0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5

61 -71 -71 -71 -77 -81 -80 -79 -81 -87 -87 -86 -86 -83 -82 -81 -70

62 -71 -71 -71 -75 -79 -79 -77 -83 -80 -79 -88 -86 -79 -79 -78 -70

63 -70 -73 -70 -75 -81 -79 -75 -84 -77 -83 -84 -86 -79 -79 -79 -70

64 -70 -73 -70 -75 -83 -80 -80 -82 -79 -81 -87 -86 -79 -81 -82 -70

65 -71 -72 -71 -75 -83 -79 -79 -79 -82 -85 -83 -81 -81 -82 -79 -70

66 -71 -73 -73 -74 -83 -83 -80 -86 -82 -85 -79 -79 -83 -79 -79 -69

67 -71 -73 -72 -74 -82 -84 -77 -83 -87 -82 -77 -80 -84 -79 -77 -70

68 -70 -71 -72 -74 -82 -82 -79 -89 -80 -76 -79 -83 -87 -80 -75 -70

69 -71 -71 -71 -75 -87 -83 -77 -86 -77 -79 -80 -79 -87 -84 -75 -71

70 -70 -71 -69 -74 -84 -82 -79 -86 -76 -85 -80 -82 -82 -84 -74 -71

71 -69 -70 -69 -73 -86 -81 -82 -86 -75 -89 -79 -80 -77 -85 -73 -70

72 -69 -69 -71 -72 -83 -84 -81 -86 -77 -83 -82 -78 -84 -86 -73 -69

73 -68 -70 -71 -72 -83 -83 -84 -88 -81 -80 -79 -78 -85 -86 -77 -70

74 -69 -71 -71 -72 -83 -85 -81 -83 -82 -79 -83 -81 -84 -85 -78 -70

75 -68 -72 -71 -73 -86 -84 -80 -85 -80 -87 -81 -80 -85 -88 -78 -72

76 -66 -72 -71 -73 -85 -85 -83 -83 -87 -80 -82 -84 -86 -84 -78 -71

77 -66 -72 -70 -73 -86 -84 -84 -86 -84 -85 -85 -79 -84 -79 -80 -71

78 -67 -74 -71 -73 -87 -83 -85 -84 -82 -85 -83 -78 -84 -79 -81 -71

79 -68 -74 -71 -73 -88 -86 -88 -88 -78 -84 -84 -83 -77 -80 -82 -72

80 -69 -75 -70 -73 -85 -86 -87 -86 -77 -77 -88 -84 -79 -83 -80 -71

AVERAGE-

69.6

-

72.2

-

71.6

-

74.2

-

82.0

-

82.5

-

80.3

-

82.1

-

82.4

-

82.0

-

81.4

-

82.0

-

81.7

-

79.5

-

76.9

-

71.5

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Chapter 1 Introduction
	1.1 Project Aims
	1.2 Objectives, Parameters and Constraints
	1.3 Market Research
	1.3.1 Market Definitions
	1.3.2 Market Size
	1.3.3 Market Segmentation
	1.3.4 Market Trends
	1.3.5 Market Forecasts
	1.3.6 Market Research Summary

	1.4 Overview of the Dissertation
	1.5 Chapter Summary

	Chapter 2 Technology and Tools
	2.1 Chapter Overview
	2.2 Current Technology in Child Safety Monitoring
	2.3 Application Areas
	2.4 Introduction to Wireless Sensor Networks
	2.5 Crossbow TelosB Wireless Sensors
	2.5.1 Hardware components
	2.5.2 IEEE802.15.4 Communications
	2.5.3 Wireless Sensor Software Development (TinyOS and nesC)

	2.6 Interfacing a C application using the MySQL API
	2.7 Chapter Summary

	Chapter 3 Review of Literature
	3.1 Chapter Overview
	3.2 Wireless Sensing Network Indoor Localisation Techniques
	3.2.1 Range Based Localisation
	3.2.2 Range Free Localisation
	3.2.3 Hybrid Localisation

	3.3 Localisation for Health and Safety Applications
	3.4 Information Logistics - Communication and Routing
	3.5 Chapter Summary

	Chapter 4 Localisation Protocol and Algorithm Design
	4.1 Chapter Overview
	4.2 Profiling/Fingerprinting Localisation
	4.3 Centroid Algorithm
	4.4 Weighted Centroid Algorithm
	4.5 Collection Tree Routing Protocol (CTP)
	4.6 Chapter Summary

	Chapter 5 System Design and Implementation
	5.1 Chapter Overview
	5.2 System Architecture
	5.3 System Hardware
	5.4 System Software
	5.4.1 User interface
	5.4.2 Profiling Function
	5.4.3 Localising Function
	5.4.4 Defining Safe/Unsafe areas function
	5.4.5 Graph Function
	5.4.6 Semi-Automated Accuracy Testing Function
	5.4.7 Setup Function

	5.5 Software Modules for Distributed Sensor Motes
	5.5.1 Target Node Function
	5.5.2 Static Nodes
	5.5.3 Root Node (Base Station)

	5.6 Chapter Summary

	Chapter 6 Evaluation And Testing
	6.1 Chapter Overview
	6.2 Evaluation Design
	6.2.1 Evaluation Metrics
	6.2.2 Design of Testing Procedures
	6.2.3 Boundary Test Design

	6.3 Testing and Results
	6.3.1 Localisation Testing
	6.3.2 Comparison of Localisation Tests
	6.3.3 Sensor Orientation
	6.3.4 System Response Time
	6.3.5 Boundary and Alert Test

	6.4 Chapter Summary

	Chapter 7 Conclusions and Further Work
	7.1 Research Objectives - Key Findings and Conclusions
	7.2 Closing Summary

	References
	Appendix A Project Specifications
	Appendix B Datasheets
	Appendix C Code Listings
	C.1 TelosB mote code
	C.1.1 AIMSAppC.nc
	C.1.2 AIMSC.nc
	C.1.3 AIMS.h
	C.1.4 AIMS_BEACON.h

	C.2 Localisation Software Code
	C.2.1 Main Application aims.c
	C.2.2 WSN interface wsn_if.c
	C.2.3 Database interface db_if.c
	C.2.4 Centroid Algorithms vector.c
	C.2.5 Raw Keyboard keybd.c
	C.2.6 AIMS Makefile

	C.3 Matlab Data Analysis Code
	C.3.1 Baseline Testing Analysis Code
	C.3.2 Residential Testing Analysis Code

	Appendix D Setting Up Development Platform
	Appendix E Test Data

