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Abstract

Eye trackers have useful applications in numerous industries and fields of research.

However, while commercial eye trackers currently exist for these applications, they are

exceedingly expensive, limiting their application to high-end speciality products and

thus making them unsuitable as a low-cost solution.

For this reason, a low-cost eye tracker utilising open-source software would greatly

increase the accessibility of eye trackers to those who would benefit from the technol-

ogy. Modern technology advancements have enabled off-the-shelf video hardware such

as computer webcams and consumer video cameras to be suitable for use in an eye

tracking hardware configuration while still maintaining their low cost and high acces-

sibility. Furthermore, the development of open-source eye tracking software to operate

in conjunction with this hardware has significantly facilitated the implementation of

such hardware in the eye tracking system.

With the increasing dependence on computers and technology in everyday life, it is of

increasing importance to study software usability testing and human-computer inter-

action to enhance the user experience. This dissertation details the development of a

low-cost eye tracker using off-the-shelf hardware and open-source software to analyse

how learning tools are used by students.

Throughout this process, a low-cost head-mounted eye tracking hardware configura-

tion was designed and developed. Implementation of the hardware was achieved us-

ing the ITU Gaze Tracker software, developed by the ITU University of Copenhagen

(San Agustin, Skovsgaard, Mollenbach, Barret, Tall, Hansen & Hansen 2010). The

Gaze Analyser software was also developed to analyse and visualise fixations identified

in the raw eye tracking data.
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Chapter 1

Introduction

1.1 Background

Eye tracking is the process of measuring the gaze direction of a person to determine

their line-of-sight or point-of-regard. In essence, it determines where a person is looking.

Eye tracking technologies have useful applications in numerous industries and fields of

research such as ophthalmology, psychology and psycholinguistics, cognitive linguistics,

medical research, marketing and advertising research, product design, sport psychology

and research, security and law enforcement, road safety and even aviation cockpit design

(Tobii Technology 2013).

More recently, applications have extended to disability support, where a patient’s gaze

is used as an input for human-computer interaction (HCI) (San Agustin 2009). Eye

tracking technologies are also useful in usability testing and HCI research (Jacob &

Karn 2003). With the increasing dependence on the use of computers in everyday

lives, it is of equally increasing importance to study and analyse software usability

testing and HCI in order to improve and enhance the user experience.

Despite the applications of eye tracking technologies in HCI research and usability

testing, Jacob & Karn (2003) state that “The study of eye movements pre-dates the

widespread use of computers by almost 100 years”. In 1879, Louis Émile Javal observed

that, whilst reading, the eye does not sweep continuously from left to right across the

text, rather eye movements are defined as either fixations and saccades. A fixation
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occurs when the eye is fixed on a point of interest, typically for a duration of at least

100 milliseconds, whereas a saccade is defined by the rapid eye movement between two

fixation points (Jacob & Karn 2003). This phenomenon is displayed in Figure 1.1,

with fixations represented by shaded ellipses and saccades represented by solid lines

connecting those ellipses.

Figure 1.1: Fixations and saccades when reading text (Wikipedia 2014).

Eye tracking technologies can be applied to the use of learning tools to improve their

effectiveness. In recent times, computers have become a dependency in educational

environments, with students of all ages frequently required to use them for research,

writing, word processing, design, calculations and learning development. Learning tools

can aid students in learning new concepts or practising learnt concepts, both consciously

and subconsciously.

Wang, Chignell & Ishizuka (2006) state that, “Eye movements provide an indication of

learner interest and focus of attention. They provide useful feedback to character agents

attempting to personalise learning interactions”. Learning tools are most effective and

appealing when they are intuitive, have a well presented graphical user interface and

have minimal usability issues. The analysis of the use of learning tools by students

using eye tracking is beneficial in improving the effectiveness of these learning tools

(Wang et al. 2006).
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1.2 Motivation

Section 1.1 identified the many eye tracking applications for research; however, Jo-

hansen & Hansen (2006) questioned the need for eye trackers in their article, entitled

Do We Need Eye Trackers to Tell Where People Look?. They concluded that the valid-

ity of user’s memory of their scan paths is limited in comparison to the recorded data,

thus justifying the need for further research and developments within the field of eye

tracking.

While commercial eye tracking solutions currently exist, they are exceptionally expen-

sive and relatively inaccessible. San Agustin et al. (2010) state that “Commercial gaze

tracking systems have been available for more than 15 years, but the technology is

still a high priced niche”. Li, Babcock & Parkhurst (2006) report that “Until only

recently, eye trackers were custom made upon demand by a very few select production

houses. Even today, eye tracking systems from these sources range in price from 5,000

US dollars to 40,000 US dollars, and thus limit their application to high-end specialty

products”. Furthermore, commercially available eye trackers can be platform specific,

and difficult to use. A low-cost, open source system would allow anyone to explore eye

tracking in many new ways (Babcock & Pelz 2004).

A seemingly popular commercial remote eye tracking solution is the Tobii X2 series

from Tobii Technology, a company specialising in eye tracking and gaze interaction

technology. As of March 2013, the Tobii X2-30 can be hired for 1,100 Australian

dollars per month, or purchased outright for 20,000 Australian dollars, while the Tobii

X2-60, with superior performance characteristics such as a higher degree of accuracy,

faster refresh rate and reduced system latency can be hired or purchased for more than

twice these respective prices. These prices are also non-inclusive of GST (r3dux.org

2013, Tobii Technology 2014).

From this information, it can be deduced that the high cost of commercial eye tracking

systems makes them unsuitable for consumer use, and even unideal for some commercial

use, particularly amongst small businesses and low-budget research corporations within

the various industries that would benefit from such solutions.

Fortunately, development in camera technologies and computer peripherals over the

past decade has enabled off-the-shelf hardware such as webcams and video cameras to
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evolve to a point where they are suitable for eye tracking hardware implementations

while still maintaining their low cost and high accessibility. This has led to a growing

interest in the use of low-cost components for eye tracking systems and the emergence

of low-cost eye tracking as a field of research (San Agustin 2009).

As stated in Section 1.1, the use of eye tracking technology has its applications within

an educational environment. The development of a low-cost eye tracking system can

greatly improve the accessibility to eye trackers in the classroom for the analysis of the

use of learning tools and educational software. This analysis can lead to improvements

in the user interface of these tools and in-turn improve their effectiveness and appeal

to students (Wang et al. 2006).

1.3 Project Aim

The overall aim of this research project is to develop a low-cost eye tracking system

that can be used to analyse how learning tools are used by students.

From the information presented in Section 1.2, it is important that this research project

should have an emphasis on low-cost design and accessibility to consumers, thus the

system should utilise inexpensive off-the-shelf hardware and open source software.

Both the hardware and software implementations should be designed to perform op-

timally, maximising the degree of accuracy of the hardware and the efficiency of the

software while keeping the design simple and low-cost.

The outcome of this research project is aimed at the eye tracking system being utilised

to improve the graphical user interface and thus, the effectiveness of learning tools.

Furthermore, the design and development of the system can be used as a basis or

resource for future research and developments in low-cost eye tracking with respect to

software usability testing and HCI research.
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1.4 Research Objectives

The research objectives involved with this research project form the basis of the project.

Using the project aim presented in Section 1.3, the following research objectives were

identified:

• Outline current eye tracking solutions, identifying their uses, cost and limitations

• Identify methods of eye tracking

• Identify techniques of analysis and visualisation of eye tracking data

• Select appropriate hardware and software for use with the low-cost eye tracking

system

• Design, develop and implement the hardware and software components of the

system

• Critically analyse and evaluate the system performance, optimising where neces-

sary

The Project Specification in Appendix A presents a concise list of project objectives as

identified and stipulated prior to the commencement of the project.

1.5 Overview

The remaining sections of this report are organised as follows:

Chapter 2 presents a literature review relating to and detailing numerous aspects of

eye tracking, particularly with the use of low-cost off-the-shelf hardware.

Chapter 3 outlines the methodology for the development of the low-cost eye track-

ing system, specifying resource requirements for both the hardware and software

designs.

Chapter 4 details both the hardware and software design elements of the low-cost eye

tracking system, as well as the implementation of the hardware and software to

form the system.
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Chapter 5 evaluates the performance of the low-cost eye tracking system, recognizes

limitations in the system and identifies alternative uses for the system.

Chapter 6 summarises the dissertation, verifying the achievement of objectives for

the research project and outlining possibilities of further work on the topic.



Chapter 2

Literature Review

2.1 Outline

This chapter reviews literature relating to and detailing numerous aspects of eye track-

ing, particularly with the use of low-cost off-the-shelf hardware. The topics covered

in this literature review are separated into two main sections; eye tracking and data

analysis and visualisation.

2.2 Eye Tracking

Comprehensive knowledge of eye tracking and gaze estimation is necessary to form the

required in-depth understanding of principles for this research project. This section

discusses the fundamental concepts of eye tracking and gaze estimation, identifying

methods and techniques of execution and, subsequently, the various hardware configu-

rations and supporting software, particularly with respect to low-cost eye tracking.

2.2.1 Methods

A user’s eyes can be tracked via a number of different methods and hardware con-

figurations, with the intrusiveness and accuracy dependent on the method employed

(San Agustin 2009). Historically, these methods have involved the implementation of
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electro-oculography – a technique used to detect changes in electrical potential near the

eye as the eye moved by placing electrodes on the skin around the eyes. A more accurate,

yet more intrusive method required the use of contact lenses with an embedded coil,

where changes in electrical potential as the eye moved were able to be measured when

a voltage was induced in the coil with an electromagnetic field (Mantiuk et al. 2012).

This required the contact lenses to be wired to an appropriate measuring device, thus

making them very uncomfortable (San Agustin 2009).

A much less intrusive method of eye tracking involves the implementation of video-

oculography – a technique which makes use of video capture hardware to record the

gaze of the user. Image processing software is used in conjunction with this hardware

to extract information about different eye features to measure the point-of-regard or

line-of-sight. These eye tracking systems are arguably the most popular solution due to

their non-intrusiveness while maintaining appropriate degrees of accuracy (San Agustin

2009).

Most common video-oculography eye tracking systems measure point-of-regard using

the corneal reflection method (Goldberg & Wichansky 2003). In this method, the eye

is directly illuminated by infrared light which is reflected on the retina, causing the

pupil to appear as a concise disc in contrast to the surrounding iris. If the infrared

light source is co-axial with the camera, the camera’s sensor is able to detect infrared

light reflected on the retina, which causes the pupil to appear bright (known as the

‘bright pupil’ effect) (Poole & Ball 2005). This phenomenon can also be seen in flash

photography, when a subject’s eyes can appear red if the flash is close to the camera

lens. Conversely, if the infrared light source is off axis with the camera, the pupil will

appear dark (Figure 2.1). In some eye tracking systems, images of both the bright

pupil and dark pupil are obtained and subtracted from one another in order to detect

the pupil more accurately and make the system more robust (Morimoto et al. 1999).

The corneal reflection method also involves the formation of four Purkinje images,

which are reflections of the infrared light source from within the structure of the eye

that are visible on the external surface of the eye (San Agustin 2009) (Figure 2.3). The

first Purkinje image, also known as the corneal reflection or glint (Figure 2.2), is the

reflection from the external surface of the cornea, and is generally the most visible of

the four (San Agustin 2009). The three remaining images are reflections from internal

surface of the cornea, and both surfaces of the lens (Mantiuk et al. 2012).
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Figure 2.1: Comparison of a bright pupil (left) and a dark pupil (right) (Morimoto et al.

1999).

Figure 2.2: Bright pupil and corneal reflection due to infrared illumination (Poole & Ball

2005).

Figure 2.3: Four Purkinje images on the eye (San Agustin 2009).

Eye tracking using natural light illumination is possible to an extent, but at a loss of

accuracy. As stated by San Agustin (2009), “When only natural light is available, few

assumptions on the image data can be made. The iris is the most prominent feature

due to its high contrast with the sclera. However, it might be partially covered by the

eyelids, making its detection more difficult and inaccurate.”
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2.2.2 Hardware

Video-oculography eye tracking systems can usually be classified based on two hard-

ware configurations: remote and head-mounted. Remote configurations involve both

the camera and infrared light source being placed at a small distance from the user’s

eyes, typically near the base of the computer monitor in which the user is observing

(San Agustin 2009). Remote configurations have an advantage over head-mounted

configurations in that they are much less obtrusive for the user and do not obstruct

the user’s field of view, however, they are only able to estimate a user’s gaze within a

very limited area, making them less tolerant to head movement (Cooke 2005). Figure

2.4 shows a remote eye tracking system implemented by (San Agustin 2009) using an

off-the-shelf video camera and two off-the-shelf infrared lights.

Figure 2.4: Remote eye tracking system implemented by San Agustin (2009).

Head-mounted configurations involve both the camera and infrared light source being

mounted to a wearable accessory, such as extending from glasses frames or fitted to a

helmet or hat. Depending on the application, some head-mounted configurations may

also utilise a scene camera to record the user’s field of view (Babcock & Pelz 2004).

Contrary to remote configurations, the portable nature of the contraption allows it to

be used for mobile eye tracking applications (Cooke 2005). However, head-mounted

configurations can be somewhat obtrusive and distracting for the user due to the place-

ment of components in front of the eyes and may also cause physical discomfort if worn

for long periods of time. To reduce these effects, it is ideal that the hardware com-

ponents be as small and lightweight as possible (San Agustin 2009). Figure 2.5 shows

a head-mounted eye tracker built by Mantuik et al. (2012) using a modified low-cost

off-the-shelf webcam surrounded by three infrared LEDs for illumination. The webcam
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and LEDs are mounted to the frames of some safety glasses.

Figure 2.5: Head-mounted eye tracking system constructed by Mantiuk et al. (2012).

In order to capture the bright pupil and corneal reflection under infrared illumination,

the video recording hardware must be sensitive to infrared light (Mantiuk et al. 2012).

The sensor must also be able to capture video at an appropriate resolution to produce

suitably detailed images of the eye for processing. The required resolution is dependent

on whether a remote or head-mounted system is used, as the detail of the image of the

eye is dependent on distance between the camera and the eye.

Off-the-shelf webcams without an infrared blocking filter can generally be used in head-

mounted configurations. San Agustin et al. (2010) state that “Standard webcams usu-

ally have a low resolution and a broad field of view, but by placing the camera close to

the user’s eye we can obtain images of sufficient quality”. Most off-the-shelf webcams

contain an infrared blocking filter behind the lens, so some modification to remove this

filter may be required to enable the webcam to detect infrared light. Furthermore, it

may be necessary to insert a visible light blocking filter in its place to remove undesir-

able corneal reflections or interference caused by room lighting. Mantiuk et al. (2012)

reported that a piece of developed analogue camera film can be used as a visible light

filter due to its similar spectral characteristics to a properly designed infrared pass

filter. Other sources have claimed that a piece of the magnetic layer of a floppy disc

can also be used for this purpose (FreeTrack Forum User Gian92 2012).

In remote configurations, a video camera with optical zoom capabilities is more effective

than a webcam due to their typically higher resolution and ability to zoom into the

user’s eye. It is desirable that the video camera also have a night shot mode to make

it sensitive to infrared light without modification, as video cameras are typically more

expensive than webcams and modifications will likely void the manufacturer’s warranty

or even damage the hardware (San Agustin 2009).



2.2 Eye Tracking 12

Generally, most off-the-shelf webcams do not have built-in infrared light sources. Some

video cameras may contain small infrared light emitters, but they may not be bright

enough to create a corneal reflection on the eye for remote eye tracking applications

(San Agustin 2009). Therefore, the use of external infrared LEDs or illuminators

is usually required in both remote and head-mounted configurations to sufficiently

illuminate the eye and create a corneal reflection.

2.2.3 Software

Image processing software is required to be implemented in conjunction with the hard-

ware to extract information about the eye features and calculate the approximate gaze

position of the user. Generally utilising pupil detection and the corneal reflection

method, the algorithms within the software measure the relative movement of the

pupil and corneal reflection. This generally requires a calibration procedure where the

user looks at a set of target points on the screen to establish a mapping between the

pupil-glint vector and the corresponding screen coordinates (Mantiuk et al. 2012).

Morimoto et al. (1999) established an eye tracking technique using the corneal reflection

method. In their technique, the surface of the eye is approximated by a sphere. With

the infrared light source fixed, the corneal reflection can be taken as a reference point.

After a calibration procedure, the vector from the corneal reflection to the centre of

the pupil will describe gaze direction. A block diagram of this procedure is shown in

Figure 2.6.

After estimating the gaze direction, it is important to map the corresponding screen

coordinates to establish where the user’s gaze is positioned on the screen. In the

technique proposed by Morimoto et al. (1999), this is achieved using a simple second

order polynomial transformation computed from the initial calibration procedure. In

the calibration procedure, the user is prompted to fixate their gaze towards a number

of target points. For each point, the vector from the center of the pupil to the corneal

reflection is used to determine the coefficients in the polynomial transformation by

interpolation, which is then solved to obtain useful calibration information.
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Figure 2.6: Block diagram of the corneal reflection eye tracking system as proposed by

Morimoto et al. (1999).

ITU Gaze Tracker

In order to provide an accessible, low-cost eye tracking system compatible with off-

the-shelf hardware, some researchers and software developers have worked towards

developing their own eye tracking software to benefit both end-users and researchers

alike. A notable example of this is the ITU Gaze Tracker, developed by researchers in

the ITU GazeGroup at the IT University of Copenhagen in Denmark and released as

open-source in 2009 (San Agustin et al. 2010).

The ITU Gaze Tracker was developed with the following design considerations (San Agustin

et al. 2010):

1. The gaze tracker should be robust and accurate enough to work with at least one

gaze-communication system.

2. Use of low-cost off-the-shelf components. The hardware employed should be avail-

able in any electronics store or at online shops to allow for easy acquisition and

replacement. Furthermore, no hardware moderations should be needed.

3. The user should be given flexibility to place the different components (camera,

infrared lights, computer display) at various locations to fit specific needs. For

instance, mounting the display on a wheel chair, moving it to a table or having
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it accessible in bed should make no difference.

4. Open-source software. Developing an efficient gaze tracker from low-cost com-

ponents is a huge endeavour. No single group of developers is likely to come up

with the ultimate solution. Open source allows anybody to improve and modify

the source code to fit specific needs.

The ITU Gaze Tracker runs on the Microsoft Windows operating system and supports

both remote and head-mounted hardware configurations, making it easily accessible

and versatile with low-cost off-the-shelf hardware. It is developed in C# and utilises

OpenCV, a vision library developed by Intel and free to use under the open source BSD

licence, for image processing (San Agustin et al. 2010).

Both remote and head-mounted configurations are supported by the ITU Gaze Tracker.

For remote configurations, the software implements both pupil detection and the corneal

reflection method for increased robustness and head movement tolerance in the X and

Y plane. For head-mounted configurations, only pupil detection is utilised, therefore

any head movement will decrease the calibration accuracy.

Detection of the pupil in the ITU Gaze Tracker is performed by the OpenCV package,

with the algorithm parameters adjusted within the ITU Gaze Tracker user interface

to specify the pupil size and detection sensitivity (Mantiuk et al. 2012). Points in the

contour between the pupil and the iris are then extracted and fitted to an ellipse using

the RANSAC regression method to eliminate possible outliers (San Agustin et al. 2010).

The pupil centre is then identified using these points. Corneal reflections are detected

using a different threshold, with the assumption that corneal reflections produced by

the infrared light source are the ones closest to the pupil, thus eliminating any potential

undesirable corneal reflections caused by room lighting (San Agustin 2009).

Gaze estimation in the ITU Gaze Tracker is implemented using the interpolation tech-

nique proposed by Morimoto et al. (1999) as described previously in this section. Users

are required to perform the calibration procedure using either 9, 12 or 16 points pre-

sented in either a set or random order, with the level of accuracy in the calibration

dependent on these settings (San Agustin et al. 2010).

The ITU Gaze Tracker is able to use the user’s gaze as an input to control the cursor on

the screen. The software is able to detect the type of eye movement being performed,
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whether it be a fixation or a saccade, and input that information into a smoothing

algorithm to produce a smooth cursor on screen (San Agustin 2009). Alternatively, it

can stream gaze coordinates via UDP using the built-in network/client API, which can

be received by an external application.

2.3 Data Analysis and Visualisation

Data analysis and visualisation is an important feature of eye tracking systems utilised

in usability testing applications. This section discusses methods and algorithms for

identifying fixations within raw eye tracking data obtained from an eye tracker. From

there, it details techniques of both the analysis and visualisation of fixations identi-

fied from eye tracking data, outlining various eye tracking metrics and visualisation

techniques.

2.3.1 Fixation Identification

Section 1.1 briefly explained that whilst reading text, eye movements are defined as

either fixations and saccades. Kumar (2007) states that, “Data from an eye tracker

is noisy and includes jitter due to errors in tracking and because of the physiology of

the eye.” Therefore, in order to statistically analyse and visualise eye tracking data,

the raw eye tracking data must be filtered to identify fixations and separate them from

saccades.

Jacob & Karn (2003) define a fixation as “a relatively stable eye-in-head position within

some threshold of dispersion (typically approximately 2 degrees) over some minimum

duration (typically 100 to 200 milliseconds), and with a velocity below some threshold

(typically 15 to 100 degrees per second).” A saccade is defined as the fast eye movement

between two fixation points (Kumar, Klingner, Puranik, Winograd & Paepcke 2008).

Fixation identification algorithms can be distinguished as either velocity-based, dispersion-

based or area-based. Velocity-based algorithms emphasise the velocity information in

the data, identifying fixation points by the low velocity between them. Dispersion-

based algorithms emphasise the dispersion of fixation points in the data, specifying

a fixation radius and assuming that fixation points occur within that radius. Finally,
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area-based algorithms identify fixation points within specified areas of interest (Salvucci

& Goldberg 2000).

Velocity-Based Algorithms

I-VT (Velocity-Threshold Identification) identifies fixation and saccade points based

on their point-to-point velocities. Fixation points typically have a velocity of

less than 100 degrees per second, while saccade points typically have a velocity of

greater than 300 degrees per second. The I-VT algorithm requires one parameter;

the velocity threshold which is dependent on the distance from the eye to the

visual stimuli. The pseudocode for the I-VT algorithm, as outlined by Salvucci

& Goldberg (2000), is shown in Figure 2.7:

Figure 2.7: I-VT Algorithm (Salvucci & Goldberg 2000).

I-HMM (Hidden Markov Model Identification) is a complex algorithm which uses Hid-

den Markov models to determine the most likely identification for a set of points,

whether it be a fixation or a saccade. “I-HMM uses a two-state HMM in which the

states represent the velocity distributions for saccade and fixation points. This

probabilistic representation helps I-HMM perform more robust identification than

a fixed-threshold method such as I-VT” (Salvucci & Goldberg 2000). The I-HMM

algorithm requires eight parameters; two observation probability parameters and

two transition probability parameters for both states. The pseudocode for the

I-HMM algorithm, as outlined by Salvucci & Goldberg (2000), is shown in Figure

2.8:
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Figure 2.8: I-HMM Algorithm (Salvucci & Goldberg 2000).

Dispersion-Based Algorithms

I-DT (Dispersion-Threshold Identification) identifies fixation points based on the as-

sumption that, due to their low velocity, fixation points lie in close proximity to

one another. Fixations are identified as groups of consecutive points within a

particular dispersion threshold or radius. Salvucci & Goldberg (2000) utilised a

moving window technique which calculates the dispersion between the minimum

and maximum coordinates of the points within the window (Equation 2.1) and

expands the window if the dispersion is below the specified threshold. The I-DT

algorithm requires two parameters; the dispersion threshold and the duration

threshold (typically 100 milliseconds). The pseudocode for the I-DT algorithm,

as outlined by Salvucci & Goldberg (2000), is shown in Figure 2.9.

D = (xmax − xmin) + (ymax − ymin) (2.1)

I-MST (Minimum Spanning Tree Identification) connects a set of points such that the

total length of the lines between the points is minimised. The algorithm requires

construction of the minimum spanning tree using Prim’s algorithm, followed by

a search of the tree to identify fixations and saccades within the points. The I-

MST algorithm requires two parameters; the branching depth threshold and the

maximum ratio of the mean (µ) and standard deviation (σ) of the edge lengths

within the fixation points. The pseudocode for the I-MST algorithm, as outlined

by Salvucci & Goldberg (2000), is shown in Figure 2.10.
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Figure 2.9: I-DT Algorithm (Salvucci & Goldberg 2000).

Figure 2.10: I-MST Algorithm (Salvucci & Goldberg 2000).

Area-Based Algorithms

I-AOI (Area of Interest Identification) identifies only fixations that occur within spec-

ified areas of interest. It utilises a duration threshold to separate fixations within

the area of interest from saccades passing over the area of interest. The I-AOI

algorithm requires one parameter; the duration threshold (typically 100 millisec-

onds), however, it also requires identification of specific areas of interest on the

stimuli. The pseudocode for the I-AOI algorithm, as outlined by Salvucci &

Goldberg (2000), is shown in Figure 2.11.
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Figure 2.11: I-AOI Algorithm (Salvucci & Goldberg 2000).

2.3.2 Eye Tracking Metrics

Eye tracking metrics are used for the analysis and interpretation of eye tracking data.

Jacob & Karn (2003) state that, “The usability researcher must choose eye tracking

metrics that are relevant to the tasks and their inherent cognitive activities for each

usability study individually”.

After analysing 20 different usability studies that have incorporated eye tracking, Jacob

& Karn (2003) determined the six most frequently used metrics are as follows:

Overall number of fixations is an indication of the user’s search efficiency. A larger

number of fixations indicates a less efficient search as the user shifts their gaze try-

ing to locate areas of interest. This is possibly an indication of poor arrangement

of display elements

Percentage of time spent on each area of interest is a reflection of the impor-

tance of the respective area of interest. A higher percentage of time indicates

that the area of interest is of high importance.

Overall mean fixation duration is an indication of difficulty in the extraction of in-

formation from the screen. A longer duration is the result of the user experiencing

difficulty extracting information.

Number of fixations on each area of interest is closely related to the percentage

of time spent on each area of interest metric and is also a reflection of the impor-



2.3 Data Analysis and Visualisation 20

tance of that area of interest.

Mean fixation duration on each area of interest is an indication of difficulty in

the extraction of information from the respective area of interest. Much like the

overall mean fixation duration metric, a longer duration is the result of the user

experiencing difficulty extracting information.

Overall fixation rate is the number of fixations divided by the time spent fixating,

which is closely related to the overall mean fixation duration metric, thus it is an

indication of difficulty in the extraction of information from the screen.

Poole & Ball (2005) and Ehmke & Wilson (2007) also compiled their own extensive

lists of eye movement metrics for use with eye tracking data analysis. Their sources

included previous usability studies and supporting literature.

2.3.3 Visualisation

Eye tracking data can be represented using visualisations, which are graphical repre-

sentations of the eye tracking metrics. These visualisations are generally superimposed

over the original stimulus in order to assist the analyst with interpretation of the visu-

alisation and formulate conclusions about the stimulus. (Blignaut 2010). Two common

visualisation techniques utilised by commercial eye tracking systems include gaze plots

and heat maps (Tobii Technology 2010).

Gaze Plots

A gaze plot, also known as a saccade plot or scan path, is a visualisation of the sequential

organisation of the fixations detected by the eye tracking system (Cooke 2005). On a

gaze plot, fixations are displayed as ellipses, and are connected by thin lines representing

the saccade between them. Ellipses are numbered in sequential order and have a varying

radius, the size of which is directly proportional to the duration of the respective

fixation.

Gaze plots can be used to analyse how users interact with a user interface, displaying

the frequency of transitions between areas of interest and thus providing an indication



2.3 Data Analysis and Visualisation 21

of the efficiency of the program’s user interface (Jacob & Karn 2003). An example of

a gaze plot superimposed on top of an advertisement is shown in Figure 2.12.

Figure 2.12: A gaze plot produced by an eye tracking system.

Heat Maps

Blignaut (2010) states that, “Heat maps are semi-transparent, multi-coloured layers

that cover areas of higher attention with warmer colours and areas of less attention

with cooler colours”. Colour transitions are generally smoothed with a gradient for

increased readability and visual appeal. Some heat maps may only use a single colour,

with the level of attention on the respective area of interest indicated by the intensity

or opacity of that colour.

Gradient heat maps are are effectively a graphical representation of the number of

fixations on each area of interest metric, indicating the importance of the respective

area of interest. An example of an eye tracking heat map superimposed on top of an

advertisement is shown in Figure 2.13.

Heat maps can also be displayed using a grid, with each cell in the grid coloured to

represent the level of attention on the area of interest covered by that cell. Separating

each area of interest into discrete cells allows grid heat maps to be more versatile than

gradient heat maps, providing the ability visualise a number of different metrics such

as the mean fixation duration on each area of interest.
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Figure 2.13: A heat map produced by an eye tracking system.

2.4 Summary

This literature review detailed the various aspects of eye tracking, identifying methods

of eye tracking, as well as low-cost hardware configurations and open source software

solutions. It outlined algorithms used to identify fixations and saccades within raw

eye tracking data, as well as the techniques involved in data analysis and visualisation

including eye tracking metrics and graphical representations of eye tracking data.

The information presented in this literature review provided the required understanding

and knowledge base to formulate the methodology of this research project.



Chapter 3

Methodology

3.1 Outline

This chapter proposes a methodology for this research project, identifying and analysing

both the hardware and software requirements of the low-cost eye tracking system while

listing the resources necessary for implementation. With the methodology defined,

it was subsequently important to assess the consequential effects associated with this

research project and undertake a risk assessment to evaluate and mitigate the risks

involved with the project work.

3.2 Requirements Analysis

Prior to designing and developing the low-cost eye tracking system, it was important

to perform a detailed analysis of the requirements of the system. The requirements

analysis sets the basis for the system design and its implementation, specifying the

system’s required functionality and feature set. This section outlines both the hardware

and software requirements of the system, enabling the resource requirements to be

analysed and listed for each.
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3.2.1 Hardware Requirements

The first requirement of the low-cost eye tracking hardware is that it must be low-cost,

as specified by the aim of this research project. Section 2.2.2 explained the implemen-

tation of both remote and head-mounted eye tracking hardware configurations with

consideration of low-cost off-the-shelf hardware. It outlined that video cameras with

optical zoom capabilities were required for remote configurations, whereas webcams

were appropriate for use in head-mounted configurations. Generally, webcams are sig-

nificantly lower in cost compared to video cameras. With this in mind, it can be decided

that a head-mounted hardware configuration is the most appropriate solution for this

research project.

In order to minimise intrusiveness and maximise comfort of the head-mounted hardware

for the user, the camera module must be as small and lightweight as possible. To achieve

this, only the necessary components of the webcam—the webcam’s PCB containing the

sensor and the lens, and the USB cable to interface the camera to a computer—should

be implemented in the design. Therefore, the webcam must be completely disassembled,

allowing these necessary components to be removed from the webcam’s casing and thus

enabling them to be mounted to a piece of head-mounted hardware.

Section 2.2.2 described the requirement for infrared illumination in the eye tracking

hardware to create the dark pupil effect, increasing pupil definition with respect to the

iris. This illumination can be provided by infrared LEDs positioned near the webcam.

Subsequently, the webcam must be sensitive to infrared light, and must be modified

accordingly with the removal of the infrared blocking filter and, ideally, replacing it

with an infrared pass filter/visible light blocking filter to reduce the effects of ambient

light on the camera hardware.

It has been reported that both the magnetic layer of a floppy disc and overdeveloped

photographic film have similar spectral properties to an infrared pass filter, and thus

either could be suitably utilised as a low-cost replacement (FreeTrack Forum User

Gian92 2012). According to the spectral analysis performed, the magnetic layer of a

floppy disc has a filtering threshold between 550 and 600 nanometres, while photo-

graphic film has a filtering threshold between 700 and 750 nanometres. Two layers

of photographic film were also reported to produce more consistent filtering, with a

filtering threshold of 750 nanometres. Using this information, it was decided that two
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layers of overdeveloped photographic film should be used as a low-cost alternative to

an infrared pass filter in the webcam for best eye tracking performance.

The head-mounted eye tracking hardware was constructed using pre-existing low-cost

designs as a basis. Mantiuk et al. (2012) designed and constructed a head-mounted

hardware configuration by mounting a modified Microsoft LifeCam VX-1000 webcam

and a small illuminator circuit consisting of three infrared LEDs to the frames of a pair

of safety glasses, as shown in Figure 2.5 in Section 2.2.2. This procedure is detailed by

Kowalik (2010).

Resource Analysis

Using the low-cost head-mounted design by Mantiuk et al. (2012) as detailed by Kowalik

(2010) as a basis, the required hardware resources and their respective costs and sources

were identified as listed in Table 3.1. Note that all prices are expressed in Australian

dollars.

Item Qty. $/Unit Total $ Source

Electronic Components:

Microsoft LifeCam VX-1000 webcam 1 20.00 20.00 Online auction

ZD1946 3mm IR LED 3 1.25 3.75 Jaycar

220Ω 1W carbon film resistor (2 pack) 1 0.44 0.44 Jaycar

Photographic film 1 N/A N/A On-hand item

Mounting Hardware:

Protector safety glasses 1 13.70 13.70 Bunnings

10 gauge alumnium wire (1.0m) 1 1.83 1.83 Bunnings

Consumables:

10mm heat-shrink tubing (1.2m) 1 2.95 2.95 Jaycar

100x25mm cable ties (25 pack) 1 0.99 0.99 Bunnings

Insulation tape (1 roll) 1 2.20 2.20 Bunnings

General purpose adhesive 1 3.50 3.50 Bunnings

Table 3.1: Hardware resource requirements for the head-mounted system design based on

Mantiuk et al. (2012).

The specifications for the Microsoft LifeCam VX-1000 webcam and the ZD1946 infrared



3.2 Requirements Analysis 26

LED are outlined on their respective datasheets in Appendix C.

The price of the hardware listed in Table 3.1 totalled just 49.36 Australian dollars,

which includes the price of consumables—undisputedly placing it in the ‘low-cost’ price

bracket as specified by the aim of this research project.

In addition to the hardware requirements of the low-cost eye tracker, construction of

the head-mounted eye tracking hardware required the use of a large variety of tools:

Philips head screwdrivers (multiple sizes) — required for the disassembly of the

Microsoft LifeCam VX-1000 webcam to remove the PCB containing the webcam’s

sensor and lens from its casing, as well as the securing of the modified webcam

to the aluminium wire.

Plastic separation tool — facilitated the separation of the front face of the webcam

from the rear casing.

Utility knife — required to remove the plastic collar securing the USB cable to the

rear casing of the webcam. It was then utilised to dislodge the webcam’s infrared

sensor from its position behind the lens and subsequently cut the photographic

film to its required size in order to secure it behind the lens to act as an infrared

pass filter. It was also used for general purposes during the assembly procedure,

such as the cutting of heat-shrink tubing and insulation tape.

Wire cutters — utilised to trim terminals on the electronic components and trim

excess aluminium after assembly

Soldering iron, solder and solder fluid — enabled the soldering of the infrared

illumination circuit to the webcam’s 5 volt USB power supply.

Digital multimeter — utilised to test the voltage and current at various points

throughout the infrared illumination circuit, ensuring correct operation.

Ruler with 1 millimetre precision — ensured correct and precise measurements

were taken during construction and assembly.

Mallet — required to flatten one end of the aluminium wire, producing a surface to

mount the webcam
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Drill fitted with a 1 millimetre drill piece — required to produce 1 millimetre

diameter drill holes on the flattened surface of aluminium wire to mount the

webcam.

Centre punch and hammer — used to ensure the drill holes correctly aligned with

the screw holes on the webcam (approximately 26 millimetres between hole cen-

tres).

Heat gun — utilised to apply sufficient heat to shrink the heat-shrink tubing.

3.2.2 Software Requirements

The ITU Gaze Tracker, presented in Section 2.2.3, provided an ideal open-source soft-

ware solution for implementation with the low-cost eye tracking system due to its

compatibility with low-cost off-the-shelf hardware. The software’s features outlined in

Section 2.2.3 make it an integral component of the eye tracking system.

In addition to Gaze Tracker, analysis software was designed and developed for im-

plementation in the eye tracking system. The software was required to perform the

following tasks:

• Define specific session details such as trial name and test subject name

• Initiate a calibration procedure in Gaze Tracker

• Once calibrated, launch an eye tracking session via a key combination press

• Receive gaze coordinates streamed by Gaze Tracker

• Cease an eye tracking session via a key combination press

• Store gaze coordinates for the respective session to a file

• Implement a fixation identification algorithm to identify fixations within the gaze

coordinates

• Calculate relevant eye tracking metrics for the identified fixations and display a

statistical report of the analysis

• Generate visualisations of the identified fixations, including a gaze plot and heat

maps
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It was decided that I-DT fixation identification described in Section 2.3.1 would be

implemented in the software, as its implementation is relatively simple in comparison to

other fixation identification algorithms, and it only requires one user-defined parameter;

the dispersion threshold, or radius, in pixels. This parameter should be estimated

based on the size and resolution of the screen in which the eye tracking session is being

performed on, as well as the test subject’s view distance to the screen. For example,

if the test subject is gazing at a large screen from a small distance, the screen will

occupy a greater percentage of their field of view, thus a smaller dispersion threshold

should be selected. Conversely, if the test subject is gazing at a small screen from a

large distance, the screen will occupy a smaller percentage of their field of view, thus a

larger dispersion threshold should be selected (Blignaut 2009).

The eye tracking metrics to be calculated by the software were chosen from the com-

prehensive list collaborated by Jacob & Karn (2003). These metrics include:

• Overall number of fixations (defined as either on-screen or off-screen fixations)

• Overall mean fixation duration

• Overall fixation rate

• Mean saccade length

• Number of fixations on each area of interest

• Total fixation duration on each area of interest

• Mean fixation duration on each area of interest

Finally, with these metrics in mind, it was decided that the software should generate

heat maps utilising the grid technique outlined in Section 2.3.3, where each cell in the

grid arbitrarily defines areas of interest on the screen. This allows the three area of

interest-dependent metrics chosen to be easily visualised within the grid.

Resource Analysis

The following software resources were identified as requirements for the development

of the analysis software:
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MinGW GCC/C++ compiler — required for compilation of source code files

Code::Blocks IDE — provides an environment to facilitate the development of the

software, with features such as syntax highlighting, debugging and tools for de-

veloping and building entire projects.

Windows API — defined in windows.h, it enables the utilisation of Windows API

functions. In addition to this, it provides GDI graphics functions with the use of

the gdi32 library, required by the software for drawing gaze plots and heat maps.

Windows Sockets 2 API — defined winsock2.h, it provides the API functions re-

quired to implement networking functions in the software, particularly the TCP/IP

and UDP protocols required by the software to send a calibration command and

receive gaze coordinates streamed by Gaze Tracker, respectively. The wsock32

library is also required.

3.3 Assessment of Consequential Effects

The potential consequential effects that result from this research project involve both

safety issues and ethical considerations. These effects are can have negative impacts

for the user, thus the research project was undertaken with the user’s best interests in

mind. This section identifies and describes those safety issues, evaluating their severity

with respect to the user. Furthermore, the ethical aspects of the research project are

outlined and considered.

3.3.1 Safety Issues

A potential safety issue associated with this research project both prior to and after its

completion involves the use of infrared light to illuminate the user’s eye. As described in

Section 2.2.1, in order to produce the dark pupil effect to improve pupil identification,

the user’s eye must be adequately illuminated by a single or multiple infrared light

sources directed at the eye. The relatively long wavelength of infrared light (approx

780-1400nm as defined by the IR-A spectral region (Mulvey, Villanueva, Sliney, Lange,

Cotmore & Donegan 2008)) causes it to fall outside of the visible light spectrum, so

the hazard is not apparent to the user.
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Mulvey et al. (2008) state that “The ACGIH and ICNIRP recommend a maximal daily

corneal exposure of 10 milliwatts per square centimetre total irradiance for wavelengths

770 to 3,000 nanometres for day-long, continuous exposures”. Other low-cost eye track-

ers using infrared illumination have reported irradiance levels well below 10 milliwatts

per square centimetre (Babcock & Pelz 2004), however, this recommendation was still

considered when implementing infrared illumination circuit on the head-mounted eye

tracking hardware.

3.3.2 Ethical Considerations

Engineers Australia (2010) specify their ethical standards and requirements in the Code

of Ethics. It was of utmost importance that the Code of Ethics be strictly upheld at

all times throughout the duration of this research project.

Secondly, in order to track the user’s gaze, a portion their face, and more importantly;

the direction of their gaze, must be recorded by the camera for the duration of the

eye tracking session. This could be considered as a violation of the user’s privacy.

Furthermore, the eye tracking data and output generated from the session will likely

be stored for further analysis or comparison with other users. Therefore, it is important

that the user fully understands and acknowledges these requirements of the eye tracking

system and thus agrees to partake in the session.

3.4 Risk Assessment

A risk assessment of this research project was required to be performed to identify all

potential hazards and the risks they may pose. Risks can be associated with either

undertaking the project work or the completed project itself. Identification of the

hazards involved with this project, their subsequent potential risks and steps to mitigate

those risks are detailed in Appendix B.1. Table B.1 presents a risk assessment of this

research project, grading each hazard on its exposure, likelihood and severity while

using those values to determine its overall risk level.
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3.5 Project Timeline

Figure B.1 in Appendix B.2 presents a graphical timeline of the tasks undertaken

throughout the course of this research project and their approximate commencement

and completion dates. Key dates are displayed as thick vertical lines. Table B.2 lists

these key dates with their corresponding number from the timeline.

3.6 Summary

This chapter outlined a methodology for the low-cost eye tracking system. The require-

ments of both the hardware and software in the system were identified and analysed,

providing the basis for the design and implementation of the system. Furthermore,

an assessment of the consequential effects of the system was performed, evaluating the

potential impacts of the system in terms of both ethics and safety. Finally, a risk

assessment was undertaken and approaches of mitigation of those risks were suggested.



Chapter 4

Design and Implementation

4.1 Outline

The design elements of this research project involve both hardware design and software

design. The implementation of these elements form the low-cost eye tracking system.

As stated in Section 3.2.2, the ITU Gaze Tracker software is an integral component

of the eye tracking system, thus both the hardware and software must be designed to

operate in conjunction with Gaze Tracker. This chapter details both the hardware and

software designs and their implementation with Gaze Tracker to form the eye tracking

system.

4.2 Hardware Design

As specified in Section 3.2.1, a head-mounted configuration with a modified Microsoft

LifeCam VX-1000 webcam (Figure 4.1) (Appendix C) forms the basis of the low-cost

eye tracking hardware. This section discusses the hardware design, describing how the

camera was modified for use in a head-mounted configuration and, subsequently, the

assembly procedure of the head-mounted hardware.
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Figure 4.1: Microsoft LifeCam VX-1000 webcam (Microsoft Corporation 2011).

4.2.1 Webcam Modification

The following procedure outlines the steps that were performed to modify the webcam

for use in a head-mounted configuration.

In order for the camera to be as small and lightweight as possible for use in a head-

mounted configuration, the PCB containing the webcam’s sensor and lens was required

to be removed from the its casing:

1. The screws identified at A© and B© in Figure 4.2 were unscrewed and the base of

the webcam was removed.

Figure 4.2: Webcam screw locations.

2. The front face of the webcam was separated from the rear casing as shown in
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Figure 4.3.

Figure 4.3: Removing the front face.

3. After unplugging the USB cable at A© in Figure 4.4, the screws identified at B©

and C© were unscrewed to remove the PCB containing the camera from the rear

casing of the webcam. The microphone cable at D© was also removed.

Figure 4.4: Removing the PCB.

4. The USB cable was removed from the rear casing of the webcam by removing the

plastic collar securing it to the case.

In order for the camera to be sensitive to the infrared light spectrum, the infrared

blocking filter required removal from the camera’s lens and replaced with two layers of

overdeveloped photographic film as explained in Section 3.2.1:

5. The lens was unscrewed from the lens holder on the webcam. The small infrared
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blocking filter was located behind the lens as shown at A© in Figure 4.5 and

removed using a thin, sharp blade. The broken infrared blocking filter is shown

at B©.

Figure 4.5: Removing the infrared blocking filter from the lens.

6. Two small squares of the same size as the infrared blocking filter (approximately

5 square millimetres) were cut from a piece of overdeveloped photographic film

and secured in place behind the lens with a small amount of glue as shown in

Figure 4.6.

Figure 4.6: Photographic film behind the lens.

7. The lens was reinserted into the lens holder on the webcam.

As explained in Section 3.2.1, the head-mounted configuration requires infrared illumi-

nation to create the dark pupil effect for eye tracking:
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8. Three 3 millimetre ZD1946 infrared LEDs (Appendix C) surrounding the web-

cam’s lens were soldered in series with a 22 ohm resistor and the 5 volt USB

power supply on the webcam’s USB connector, as shown by the schematic in

Figure 4.7. Assuming typical conditions, the ZD1946 infared LED has a for-

ward voltage range of 1.2 to 1.4 volts, allowing three in series to be powered by

the 5 volt USB power supply, providing sufficient illumination with a minimal-

istic implementation. A 22 ohm resistor was chosen to provide a supply current

within the ZD1946 infrared LED’s forward current range of 20 to 100 milliamps

(Equations 4.1 and 4.2) for typical conditions.

Figure 4.7: Schametic of the infrared illumination circuit.

R1min ≈
VUSB − 3VFmin

IFmax

≈ 5− 3× 1.2

0.10

≈ 14Ω (4.1)

R1max ≈
VUSB − 3VFmax

IFmin

≈ 5− 3× 1.4

0.02

≈ 40Ω (4.2)
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The final capture module which can be seen in Figure 4.10 is a lightweight, infrared sen-

sitive version of the Microsoft LifeCam VX-1000 webcam with an infrared illumination

circuit.

4.2.2 Mounting and Assembly

The following procedure outlines the steps that were performed to assemble the head-

mounted hardware, including mounting the modified webcam.

Firstly, the modified webcam was mounted to a 300 millimetre length of 10 gauge

aluminium wire:

1. A section of approximately 40 millimetres at one end of the aluminium wire was

flattened by striking it with a mallet on a hard surface (Figure 4.8).

2. To align with the mounting screw holes on the webcam, two holes of 1 millimetre

diameter were drilled at a distance of 26 millimetres between hole centres on the

flattened section of aluminium wire (Figure 4.8).

Figure 4.8: Flattened section of aluminium wire with screw holes.

3. The flattened section of the aluminium wire was wrapped in insulation tape and

a thin slice of soft foam was adhered to one side. The two holes were re-drilled

to create holes in both the tape and foam (Figure 4.9).

4. The remaining length of aluminium wire was covered in heat-shrink tubing of 10

millimetre diameter.

5. The webcam’s USB cable was gradually pushed through the heat-shrink tubing,

starting by inserting the small webcam connector into the heat-shrink tubing at
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Figure 4.9: Front (left) and back (right) of the flattened section of aluminium wire wrapped

in insulation tape with foam attached.

the non-flattened end of the aluminium wire and working it towards the flattened

end.

6. The webcam was placed on top of the foam on the flattened end of the aluminium

wire with the mounting screw holes aligned with the drilled holes. It was then

screwed into place using the original mounting screws (Figure 4.10).

7. The webcam’s USB cable was inserted into its connector on the webcam and

secured to the aluminium wire at the end of the heat-shrink tubing with a cable

tie (Figure 4.10).

Figure 4.10: The webcam mounted to the alumnium wire.

8. The heat-shrink tubing was then shrunk with a heat gun to tightly wrap the USB

cable and aluminium wire.

Secondly, the head-mounted hardware was assembled by attaching the aluminium wire

to the frames of a pair of safety glasses:
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9. The protective shield of the safety glasses was removed by releasing the clip above

the nose pad.

10. The aluminium wire was secured to the left arm of the frames using multiple

cable ties with the webcam extending forwards and facing inwards, allowing ap-

proximately 200 millimetres distance from the hinge to the tip of the flattened

end of the aluminium wire.

11. With the point of inflection near the hinge of the left arm, the aluminium wire

was bent downward at an angle of approximately 55 degrees as shown in Figure

4.11. It was also bent slightly outward at an angle of approximately 15 degrees

to reduce obstruction to the user’s field of view.

Figure 4.11: Downward bending angle of the aluminium wire at the hinge.

12. With the point of inflection approximately 30 millimetres from the edge of the

webcam, the aluminium wire was bent upward and inward at an angle of approxi-

mately 105 degrees, creating an inside angle of approximately 75 degrees as shown

in Figure 4.12. This caused the webcam to point towards the left eye region of

the frames at a distance of approximately 80 millimetres.

13. Finally, the excess aluminium wire was removed from behind the left arm of the

frames and any exposed aluminium wire was covered with heat-shrink tubing.

The final head-mounted hardware design is shown from multiple angles in Figure 4.13,

while Figure 4.14 displays the head-mounted hardware being worn.

Figure 4.15 displays an image captured by the webcam demonstrating the dark pupil

effect caused by the infrared illumination circuit in the hardware.
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Figure 4.12: Inward bending angle of the aluminium wire at the webcam.

Figure 4.13: Final head-mounted hardware design.

Figure 4.14: Head-mounted hardware being worn.
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Figure 4.15: Image captured by the head-mounted hardware.

4.3 Software Design

Eye tracking analysis software informally named Gaze Analyser was designed and de-

veloped for use in the eye tracking system. As specified in Section 3.2.2, the software

was developed using the C++ programming language and was designed to facilitate an

eye tracking session for the user; setting session details, receiving and storing gaze co-

ordinate data, identifying fixations within that data and analysing and creating visual-

isations of those fixations. This section describes the software design and development,

detailing class functions and their implementation.

4.3.1 Gaze Analyser Overview

Users interact with Gaze Analyser via a text-based user interface. Upon launching

the program, the user is presented with a text-driven menu, prompting them to either

start a new eye tracking session or exit the program. This menu is implemented in

the main() function (Appendix D.1) utilising switch-case statements to handle and

validate user input. Figure 4.16 displays Gaze Analyser’s main window presenting the

text-driven menu.

By considering the software requirements specified in Section 3.2.2, four unique classes

were identified for Gaze Analyser:

• Session class (Section 4.3.2)
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Figure 4.16: Gaze Analyser’s main window.

• Metrics class (Section 4.3.3)

• GazePlot class (Section 4.3.4)

• HeatMap class (Section 4.3.5)

Four global variables were also required by the program (Section D.3):

• res width and res height: the screen’s horizontal and vertical resolution values

in pixels respectively, initialised when the program is launched

• t fix min: the constant specifying the minimum fixation duration threshold in

milliseconds for the I-DT fixation identification algorithm implementation, set to

100 milliseconds; and

• track: the Boolean to control gaze coordinate data retrieval from Gaze Tracker

in the udp receive() function (Section D.5)

4.3.2 Session Class

Listing 4.1: Session Class Definition

/∗∗
∗ @ f i l e Sess ion . hpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Sess ion c l a s s d e f i n i t i o n
∗/
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#ifndef SESSION HPP
#define SESSION HPP

#include <s t r i ng>
#include <vector>
#include <windows . h>

#include ” Point . hpp”

class Ses s i on
{

void g e t d e t a i l s ( ) ;
void c a l i b r a t e ( ) ;
void t r a ck ing ( ) ;
unsigned int proce s s ( ) ;
void g e t l i m i t s ( std : : vector<Point>) ;
void a d d f i x a t i o n ( std : : vector<Point>) ;
Point min ;
Point max ;

public :
S e s s i on ( ) ;
˜ Se s s i on ( ) ;
s td : : s t r i n g t r i a l ;
s td : : s t r i n g s u b j e c t ;
int f i x r a d i u s ;
HDC hCaptureDC ;
std : : vector<Point> f i x p a t h ;
int t s e s s i o n ;

} ;

#endif // SESSION HPP

Refer to Appendix D.8 for the Session class implementation.

The Session class performs three main operations: initialisation of a new eye tracking

session, calibration, initiation and cessation of that eye tracking session; and the pro-

cessing of the gaze coordinate data obtained in that session to identify fixations. All

operations are handled by the default constructor for the class.

A new Session object is declared whenever the user selects the ‘Start a new eye tracking

session’ menu option in Gaze Analyser’s main window. Upon declaration of a new

Session object, the default constructor calls the get details() function to obtain the

user-specific details for that session. This function prompts the user to enter the names

of the eye tracking trial and the test subject, as well as define the desired fixation radius

in pixels for that session. The input from each of these prompts are stored in public
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class variables trial, subject and fix radius respectively. The function ensures valid

input for all three variables: checking if the trial name is not blank, the subject name

is not blank and does not already have a results file for that trial, and if the fixation

radius is greater than 0 pixels.

After obtaining the user-specific details for the Session, the default constructor calls

the calibrate() function to calibrate the eye tracker. The function calls an external

function, tcp send() (Appendix D.4), to send the ‘CAL START’ command via TCP

port 5555 on localhost; the command server for Gaze Tracker running concurrently

on the machine. It ensures the command is sent successfully, creating a calibration

window in Gaze Tracker and setting it as the foreground window. After calibration in

Gaze Tracker is complete, the function prompts the user to either accept the calibra-

tion or perform another calibration procedure to potentially achieve a more accurate

calibration.

Once the calibration is accepted by the user, the default constructor calls the tracking()

function which handles the eye tracking procedure itself. The function informs the user

that the eye tracker is ready and instructs them to press the ‘Ctrl+Alt+E’ key combi-

nation to begin an eye tracking session. When the key combination press is detected,

the eye tracking data file ‘subject data.txt’ is created in the trial directory and

the header containing the trial, subject and the time of commencement of the eye

tracking session is written to the file. The function then sets the track Boolean to

true and creates a new thread, calling an external function, udp receive() (Appendix

D.5), which ensures a connection to UDP port 6666; the data server for Gaze Tracker,

receives gaze coordinate data from the data server, writes it to a buffer and sends the

buffer to the file stream for the data file. The udp receive() function receives gaze

coordinate data until the track Boolean is set to false in its calling thread.

After creating a new thread for the udp receive() function, the tracking() function

calls an external function, screenshot() (Appendix D.6), which returns a handle to

the device context of the current desktop screen. This handle is stored in public class

variable hCaptureDC. The user is then instructed to press the ‘Ctrl+Alt+E’ key com-

bination to end the eye tracking session. When the key combination press is detected,

the track Boolean is set to false, thus ending the previously created thread and waiting

for it to finish. Finally, the footer containing the time of completion of the eye tracking

session is written to the data file.
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The default constructor then calls the process() function to process the gaze coordi-

nate data stored to the data file and identify fixations within that data, storing them

to the public class vector fix path. After opening the file, the function loops through

the file line by line until the end-of-file is reached. Lines containing gaze coordinate

data contain the string ‘STREAM DATA’ and are formatted as follows:

STREAM_DATA <timestamp> <x-coordinate> <y-coordinate>

Where the timestamp is expressed in milliseconds. If the ‘STREAM DATA’ string is

found in the current line, the timestamp, x-coordinate and y-coordinate of the respec-

tive point are stored in a Point struct (Listing 4.2).

Listing 4.2: Point Struct Definition

/∗∗
∗ @ f i l e Point . hpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Point s t r u c t d e f i n i t i o n
∗/

#ifndef POINT HPP
#define POINT HPP

struct Point
{

Point (double = 0 , double = 0 , long long = 0) ;
double x ;
double y ;
long long t ;
bool on sc r een ;

} ;

#endif // POINT HPP

The function then implements an I-DT fixation identification algorithm, as described

in Section 3.2.2. Points are added to the current set of potential fixation points until

the difference in the time stamp between the first and last points exceeds the minimum

fixation duration threshold specified by t fix min, thus initialising the current set of

potential fixation points. Points are then continued to be added to the current set of

potential fixation points until the resultant dispersion of those points exceeds double

the value of the fix radius defined by the user, in which case a fixation is identified.

Otherwise, the first point in the current set of potential fixation points is removed from
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the set and the current point is added to the set, thus shifting the current potential

fixation.

The algorithm was adapted from that proposed by Salvucci & Goldberg (2000) to

support the line-by-line processing of gaze coordinate data. The pseudocode for the

I-DT algorithm implemented in this function is displayed in Algorithm 4.1.

Algorithm 4.1 I-DT algorithm implementation

if tlast − tfirst < t fix min then
Add current point to fixation points vector

else if ((xmax − xmin) + (ymax − ymin) ≤ 2∗fix radius then
Add current point to fixation points vector
Get new min and max coordinates
if (xmax − xmin) + (ymax − ymin) > 2∗fix radius then

Remove current point from fixation points vector
Calculate fixation coordinates using fixation points vector
Add fixation to fix path vector
Clear fixation points vector
Add current point back to fixation points vector

end if
else

Erase first point from fixation points vector
Add current point to fixation points vector

end if
Get new min and max coordinates

After a fixation is identified, the coordinates at its centroid are calculated by averaging

the coordinates of all points in the fixation points vector (Equation 4.3). The duration

of the fixation is also calculated by subtracting the time of the first point in the fixation

from the time of the last point in the fixation (Equation 4.4).

(x, y)fixation =

∑n
i=1(x, y)i
n

(4.3)

Tfixation = tn − t1 (4.4)

Where n is the number of points in the fixation points vector.

The fixation’s coordinates and duration are stored in a Point struct. The Point struct

also contains an on screen Boolean—which signifies whether or not the point lies

within the boundaries of the screen as defined by the res width and res height global
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variables—and is set accordingly. The Point data is then pushed back to the fix path

vector. This is implemented in the add fixation class function.

Finally, after all gaze coordinate data has been processed, the function calculates the

duration of the eye tracking session (t session) by subtracting the time of the first

point in the session from the time of the last point in the session and returns the number

of fixations identified in the gaze coordinate data.

If fixations were identified in the gaze coordinate data (that is, if the return value of

the process() function is greater than 0), the default constructor creates new Met-

rics (Section 4.3.3), GazePlot (Section 4.3.4) and HeatMap (Section 4.3.5) objects to

generate results and visualisations for that Session.

4.3.3 Metrics Class

Listing 4.3: Metrics Class Definition

/∗∗
∗ @ f i l e Metr ics . hpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Metrics c l a s s d e f i n i t i o n
∗/

#ifndef METRICS HPP
#define METRICS HPP

#include ” Se s s i on . hpp”

class Metr ics
{

void w r i t e r e s u l t s ( std : : s t r i ng , std : : s t r i ng , int ) ;
unsigned int t s e s s i o n m i n s ;
unsigned int t s e s s i o n s e c s ;
unsigned int on ;
unsigned int o f f ;
double f i x r a t e ;
double t f i x mean ;
double saccade length mean ;

public :
Metr ics ( Se s s i on ∗) ;

} ;

#endif // METRICS HPP

Refer to Appendix D.9 for the Metrics class implementation.
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The Metrics class is responsible for the calculation of the chosen eye tracking metrics

identified in Section 3.2.2, as well as the generation of the results file for the session.

The constructor accepts a pointer to a Session class object as an argument. Using

the Session object’s public class variables, it calculates the number of on-screen and

off-screen fixations within the fix path vector. The overall fixation rate for the session

in fixations per second is calculated by dividing the number of fixations identified

(equivalent to the size of the fix path vector) by the session duration in seconds.

The mean on-screen fixation duration in milliseconds is calculated by averaging the

duration of each on-screen fixation identified. Finally, the length of each saccade in

pixels between two on-screen fixation points is calculated using Pythagoras’ theorem

and the mean on-screen saccade length is calculated (Equation 4.5).

Lsaccade =

∑n−1
i=1

√
|xi − xi+1|2 + |yi − yi+1|2

n
(4.5)

Where n is the number of on-screen fixations identified.

After calculating the eye tracking metrics, the constructor calls the write results()

function which creates the ‘subject results.txt’ file and writes the session details in-

cluding the trial name, subject name, date, screen resolution, fixation radius and session

duration. It then writes all eye tracking metrics calculated in the constructor. A sample

of the results file is displayed in Figure E.1 in Appendix E.

4.3.4 GazePlot Class

Listing 4.4: GazePlot Class Definition

/∗∗
∗ @ f i l e GazePlot . hpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ GazePlot c l a s s d e f i n i t i o n
∗/

#ifndef GAZEPLOT HPP
#define GAZEPLOT HPP

#include <vector>
#include <windows . h>

#include ” Se s s i on . hpp”
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class GazePlot {
void get upper ( std : : vector<Point>) ;
void draw ( std : : vector<Point>, int ) ;
int g e t r a d i u s ( int , int ) ;
void draw foote r ( std : : s t r i ng , std : : s t r i ng , int ) ;
unsigned int lower ;
unsigned int upper ;
HDC hGazePlotDC ;
HBITMAP hGazePlotBmp ;
HFONT hFont ;
HPEN hPurplePen ;
HPEN hGreenPen ;
HPEN hBluePen ;
HPEN hRedPen ;
HPEN hOrangePen ;
HPEN hBlackPen ;
HBRUSH hLightPurpleBrush ;
HBRUSH hLightGreenBrush ;
HBRUSH hLightBlueBrush ;
HBRUSH hLightRedBrush ;
HBRUSH hLightOrangeBrush ;
HBRUSH hWhiteBrush ;

public :
GazePlot ( Se s s i on ∗) ;
˜GazePlot ( ) ;

} ;

#endif // GAZEPLOT HPP

Refer to Appendix D.11 for the GazePlot class implementation.

As the name implies, the GazePlot class handles the drawing of the visual representa-

tions of fixations and saccades for generation of the gaze plot for the session. It utilises

the functions provided by the Windows GDI API to draw such shapes.

The constructor accepts a pointer to a Session class object as an argument. When

the constructor is called, the device context captured in the session is copied and its

respective bitmap is created for the GazePlot object. The font, pens and brushes used

in the class are also initialised.

As stated in Section 2.3.3, the radius of the ellipse representing a fixation is directly

proportional to the duration of that fixation. Before achieving this, the duration limits

for the session’s fixations are obtained. With the lower limit set to the value of the

t fix min global variable, the upper limit is obtained by finding the maximum duration
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of fixations in the session’s fix path vector with the get upper() function.

The constructor then calls the draw() function to draw the ellipses and connecting lines

to the device context. Firstly, the connecting line between each on-screen fixation point

is drawn using the MoveToEx() and LineTo() GDI functions. Secondly, the ellipse for

each on-screen fixation is drawn using the Ellipse() GDI function.

Each fixation in the fix path vector can be assigned a normalised weight proportional

to its duration and relative to the maximum fixation duration using the lower and

upper limits (Equation 4.6).

Wfixation =
Tfixation − lower

upper− lower
(4.6)

This weight is then used to determine the radius of the fixation’s respective ellipse

on the gaze plot, with the minimum radius equal to the fix radius defined in the

session, and the maximum radius equal to twice the fix radius (Equation 4.7). This

is implemented in the get radius function.

rfixation = Wfixation × fix radius + fix radius (4.7)

With the ellipse radius for the fixation obtained, the fixation point is then identified as

one of the following:

• First fixation in the session, represented as a green ellipse (Figure 4.17 A©)

• Last fixation in the session, represented as a red ellipse (Figure 4.17 B©)

• First on-screen fixation since leaving the screen’s boundaries, represented as a

blue ellipse (Figure 4.17 C©)

• Last on-screen fixation before leaving the screen’s boundaries, represented as an

orange ellipse (Figure 4.17 D©)

• Regular fixation, represented as a purple ellipse (Figure 4.17 E©)

Thirdly, the function sequentially numbers each fixation using the DrawText() GDI

function.
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Figure 4.17: Gaze plot fixation ellipses.

Finally, the constructor calls the draw footer() function to draw the gaze plot’s footer

to the device context, displaying session details including the trial name, subject name,

date and fixation radius, as well as the legend displaying each type of fixation in Figure

4.17. The device context’s bitmap holding the final gaze plot is then saved to a file

using the external save bitmap() function (Appendix D.10). A sample gaze plot is

displayed in Figure E.2 in Appendix E.

4.3.5 HeatMap Class

Listing 4.5: HeatMap Class Definition

/∗∗
∗ @ f i l e HeatMap . hpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ HeatMap c l a s s d e f i n i t i o n
∗/

#ifndef HEATMAP HPP
#define HEATMAP HPP

#include <windows . h>

#include ” Se s s i on . hpp”

class HeatMap
{

void get upper ( ) ;
void draw ( ) ;
void draw foote r ( std : : s t r i ng , std : : s t r i ng , int ) ;
int c e l l s i z e ;
unsigned int ∗∗ g r id ;
unsigned int gr id width ;
unsigned int g r i d h e i g h t ;
unsigned int lower ;
unsigned int upper ;
HDC hHeatMapDC ;
HBITMAP hHeatMapBmp ;
HFONT hFont ;
HPEN hBlackPen ;
HBRUSH hWhiteBrush ;
ULONG PTR gdiplusToken ;
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public :
HeatMap( Se s s i on ∗) ;
˜HeatMap ( ) ;
void f i x c o u n t ( Se s s i on ∗) ;
void t f i x ( Se s s i on ∗) ;
void t f i x mean ( Se s s i on ∗) ;

} ;

#endif // HEATMAP HPP

Refer to Appendix D.12 for the HeatMap class implementation.

Similar to the GazePlot class, the HeatMap class handles the generation and drawing

of various types of heat maps for the session. It utilises the Windows GDI+ API

which runs on top of the GDI API and offers additional features required for heat map

generation such as brush transparency and gradient fills.

The constructor accepts a pointer to a Session class object as an argument. When

the constructor is called, the cell size for the heat map grid in pixels is calculated as

double the fix radius for the session, and the grid width and grid height are calcu-

lated based on the res width and res height global variables. The multidimensional

grid array is then created to the size of grid width and grid height and initialised

to 0 using the memset() function. For example, a screen resolution of 1920 pixels wide

by 1080 pixels high with a fix radius of 20 pixels would yield a grid of 96 cells high

by 54 cells wide, with each cell being 40 square pixels in size.

After creating and initialising the heat map’s grid, the constructor copies the device

context captured in the session and creates its respective bitmap for the HeatMap

object. The font, pens and brushes used in the class are also initialised. Finally, the

GDI+ API is initialised for use in the class member functions.

Once the class is initialised by the constructor, one of three heat maps can be generated.

These heat maps visualise the following eye tracking metrics:

1. Number of fixations on each area if interest (using the fix count() function)

2. Overall fixation duration on each area of interest (using the t fix() function)

3. Mean fixation duration on each area of interest (using the t fix mean() function)
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Where the areas of interest are arbitrarily defined as cells within the grid. It is also

important to note that the mean fixation duration on each area of interest metric is

effectively a factor of metrics 1 and 2.

To obtain the corresponding cell in the grid for a fixation point, the coordinates of

each fixation point in the session’s fix path vector are divided by the cell size and

rounded down to the nearest integer. The corresponding cell is then set according to the

metric being visualised, with the cell incremented for metric 1 or an accumulated sum of

fixation durations for metric 2. Metric 3 performs both operations with separate grids

and divides corresponding cells from each grid to obtain the final grid, thus generating

three different grids.

Once the grid is obtained, the grid’s lower and upper limits are set and obtained

respectively, with the lower limit set to 1 for metric 1, and the value of the t fix min

for metrics 2 and 3. The get upper() function loops through each cell in the grid to

obtain the upper limit.

The draw() function then draws the grid to the device context. Much like the GazePlot

class’s draw() function, each cell in the grid is assigned a normalised weight propor-

tional to its value and relative to the maximum cell value in the grid using the lower

and upper limits. While the implementation of this is identical for all three heat map

metrics, Equation 4.8 describes the calculation of the weight of a cell for duration-based

metrics 2 and 3.

Wcell =
Tcell − lower

upper− lower
(4.8)

This weight can then be used to determine the corresponding RGB colour value of the

respective cell, with the weight directly proportional to the warmth of the colour. The

gradient in Figure 4.18 displays the colour transition with increasing weight values.

Figure 4.18: Heat map weight gradient.

Finally, with the corresponding RGB colour value of the respective cell obtained, the
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function draws the cell at that colour to the device context at 50 percent transparency.

The draw footer() function is then called to draw the heat map’s footer to the device

context, displaying session details including the trial name, subject name, date and

fixation radius, as well as the legend displaying the gradient in Figure 4.18. The

device context’s bitmap holding the final heat map is then saved to a file using the

external save bitmap() function (Appendix D.10). Sample heat maps for each of the

three metrics are displayed in Figure E.3, Figure E.4 and Figure E.5 respectively in

Appendix E.

4.4 System Implementation

In order to form the eye tracking system, all hardware and software components in the

system must be implemented to operate in conjunction with one another. As stated

in Section 3.2.2, the ITU Gaze Tracker software is an integral component of the eye

tracking system. Extending on this, it must be noted that Gaze Tracker plays central

role in the system’s implementation. This section describes the implementation process

in Gaze Tracker to initialise the eye tracking system.

Figure 4.19 displays a detailed block diagram of the eye tracking system.

4.4.1 Hardware Setup

With the eye tracking hardware connected to the computer on which the eye tracking

session will be conducted, the first step in the implementation procedure is to install the

Microsoft LifeCam webcam drivers. This process is automated on a machine running

the Windows 7 operating system through the use of the Windows Update tool. After

the drivers are installed, the Microsoft LifeCam VX-1000 can be selected as an input

device in Gaze Tracker via the ‘Camera’ tab in the ‘Setup’ window. It is also important

that the ‘Mode’ should be set to ‘640 x 480 @ 30 FPS’, ensuring that the webcam is

operating at its maximum resolution to obtain optimum performance. Furthermore,

should the user wish to tweak the image parameters such as the brightness and contrast,

advanced configuration options for the camera are available. Figure 4.20 outlines the

required camera settings for the eye tracker.
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Figure 4.19: System block diagram.

Once the webcam is selected and the correct mode is set, the user can tweak the eye and

pupil detection parameters in the Tracking tab. With the ‘Headmounted’ configuration

selected, both ‘Eye’ and ‘Pupil’ tracking must be enabled in the advanced configuration

options. ‘Glint’ tracking must also be disabled, as Gaze Tracker does not incorporate
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Figure 4.20: Gaze Tracker camera settings.

corneal reflection detection for increased robustness and head movement tolerance in

head-mounted configurations.

Observations indicate that adjusting the ‘Sensitivity’ and ‘Range’ parameters for ‘Eye’

tracking in Gaze Tracker does not have a recognisable influence on eye tracking perfor-

mance, thus it is recommended that they be set to ‘Auto’. Conversely, these parameters

have a significant influence on ‘Pupil’ tracking performance. The ‘Sensitivity’ slider ad-

justs the blackness threshold for the pupil, while the ‘Range’ parameters specify the

minimum and maximum size of the pupil. The values of these parameters are likely

to vary between different room lighting conditions and test subjects respectively, and

should be adjusted accordingly prior to each eye tracking session. Figure 4.21 displays

the configuration of these parameters for a typical user environment.

4.4.2 Network Servers

In order to enable communication with the Gaze Analyser software, both the command

server and data server must be turned on in the ‘Network’ tab of the ‘Setup’ window

(Figure 4.22). The command server enables control of Gaze Tracker via commands

sent over TCP port 5555, while the data server enables the real-time streaming of

gaze coordinates via UDP port 6666. This allows the tcp send() and udp receive()
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Figure 4.21: Gaze Tracker tracking settings.

functions in Gaze Analyser to connect to Gaze Tracker and perform their respective

operations.

Figure 4.22: Gaze Tracker network settings.

One anomaly, or bug, in Gaze Tracker is that ’Smooth mouse’ must be enabled in the

advanced configuration options under the ‘Options’ tab in order for Gaze Tracker to

properly broadcast gaze coordinates. If this option is disabled, the data server will

broadcast the same point continuously, causing Gaze Analyser to identify just one

fixation within the data.

Finally, exceptions for both Gaze Tracker and Gaze Analyser must be granted in Win-

dows Firewall (or an alternative firewall package in use on the machine).
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4.4.3 Calibration

Gaze Tracker’s calibration procedure is arguably the most crucial element of the entire

eye tracking system. As stated in Section 2.2.3, the calibration procedure translates

pupil position into on-screen gaze coordinates.

The calibration procedure takes place in a full-screen window on the machine. Users

are expected to trace the position of a single point around the screen with their eyes.

Prior to performing a calibration procedure, users are able to specify various calibra-

tion parameters in the ‘Calibration’ tab in the ‘Setup’ window including the number

of calibration points displayed during the procedure, whether or not those points are

displayed in a random order, the colour of those points and the calibration window’s

background and the speed at which the points transition during the calibration proce-

dure.

Generally, a greater number of calibration points will produce a more accurate cal-

ibration, but will take a longer time to complete. The calibration procedure takes

approximately 20 seconds for 9 calibration points, 30 seconds for 12 calibration points

and 40 seconds for 16 calibration points. When the calibration procedure is complete,

the results of the calibration are presented, displaying a star rating out of 5 for the

calibration and the gaze accuracy relative to the view distance (assumed to be 600

millimetres if none is provided). The dispersion of individual gaze samples at each cal-

ibration point is also displayed, providing feedback on their accuracy and precision at

each calibration point. A calibration results screen for 9 calibration points is displayed

in Figure 4.23.

A successful eye tracker calibration generally completes the implementation process of

the hardware and software, readying it for use in an eye tracking session. A detailed

analysis of calibration accuracies with respect to various eye tracking environments is

presented in Section 5.3.

4.5 Summary

This chapter detailed all aspects of the head-mounted hardware design, sequentially

outlining the hardware design process and presenting a step-by-step procedure of the
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Figure 4.23: Calibration results screen.

Microsoft LifeCam VX-1000 webcam modification and assembly of the head-mounted

hardware contraption. Gaze Analyser’s software design and development was described

for each class, detailing class functions and their implementation. Finally, the imple-

mentation of both the hardware and software with Gaze Tracker was outlined, thus

creating a fully functional low-cost eye tracking system.



Chapter 5

Performance and Usability

Evaluation

5.1 Outline

Analysis and evaluation of system performance and usability is a critical step in the

development process. This chapter analyses and evaluates the performance and usabil-

ity of the low-cost eye tracking system detailed in Chapter 4, displaying sample output

generated from a given set of fixations and evaluating calibration accuracy for differ-

ent user environments. Limitations and shortcomings in the system are also identified

and potential approaches of mitigation are suggested. Finally, alternative uses for the

system are outlined.

5.2 Sample Output

A sample output was generated from a 30 second eye tracking session with a fixation

radius of 20 pixels using the University of Southern Queensland ‘Engineering Research

Project 2014’ StudyDesk page—a learning tool used by Engineering Research Project

students at the University of Southern Queensland—as stimulus. The session was

conducted on a 13 inch notebook screen with a resolution of 1366 pixels wide by 768

pixels high. The fixations identified in the session are listed in Table E.1. Refer to
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Appendix E for a full sample output generated by Gaze Analyser, including:

• Results/metrics text file (Figure E.1)

• Gaze plot bitmap file (Figure E.2)

• ‘Number of fixations’ heat map bitmap file (Figure E.3)

• ‘Total fixation duration’ heat map bitmap file (Figure E.4)

• ‘Mean fixation duration’ heat map bitmap file (Figure E.5)

5.3 Gaze Accuracy

The performance of the head-mounted hardware configuration and its implementation

in the ITU Gaze Tracker software can be evaluated by its gaze accuracy. Gaze accuracy

describes the angular average distance between the actual gaze point of the user and

the resultant gaze coordinates measured by Gaze Tracker. A system with a high gaze

accuracy is able to generate more valid results and visualisations than one with a low

gaze accuracy due to the smaller on-screen error in the measured gaze coordinates.

Figure 5.1 displays this phenomenon, where d describes the user’s view distance to the

screen, e describes the on-screen distance between the gaze point of the user and the

measured gaze coordinates, and φ describes the angle of accuracy.

Figure 5.1: Gaze accuracy describing the angular distance between the gaze point of the

user and the measured gaze coordinates.

After completing the calibration procedure, Gaze Tracker provides a feature to compute

the gaze accuracy of the system on the calibration results screen (Figure 4.23). Users are

able to specify their view distance to the screen in millimetres, enabling Gaze Tracker
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to compute the average angle of error of all calibration points. If no view distance is

specified, a distance of 600 millimetres is assumed. The use of this feature provides a

means of evaluating the gaze accuracy of the low-cost eye tracking system.

A gaze accuracy test was designed to evaluate the gaze accuracy of the low-cost eye

tracking system for different user environments and variables. Four variables for a

typical eye tracking session were identified:

• Whether or not the test subject is wearing glasses

• Room lighting (natural/artificial and intensity)

• Screen size

• View distance to the screen

The test involved performing five consecutive calibrations in Gaze Tracker, with each

calibration consisting of 16 calibration points. The resultant gaze accuracy calculated

by Gaze Tracker was noted after each calibration and the mean gaze accuracy of all five

results was calculated. The corresponding mean on-screen error was then calculated

using Equation 5.1, with the variables defined in Figure 5.1.

e = d tanφ (5.1)

Where φ is expressed in degrees.

A total of five test subjects were selected to participate in the gaze accuracy test. These

test subjects ranged in age from 18 to 54 years old, with three male test subjects and

two female test subjects. Two of the five test subjects wore glasses during the test.

Each test subject performed the test in their native user environment using their own

computer, producing a variety of room lighting conditions, screen sizes (both desktop

and notebook screens) and view distances. One subject also repeated the test multiple

times varying only the room lighting to evaluate the potential effects of room lighting

on gaze accuracy. Finally, a chin rest was utilised in each test to stabilise the head,

thus minimising head movement during all five calibration procedures in the test, the

need for which is explained in Section 5.4.1. Table 5.1 displays the mean gaze accuracy

and corresponding mean on-screen error for each test subject.
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Test Screen View Mean Mean

Subject Glasses Room Lighting Size Distance Accuracy Error

(mm) (mm) (◦) (mm)

A No Natural/high 23.0 550 0.68 7

Artificial/high 23.0 550 0.74 7

Artificial/medium 23.0 550 0.70 7

Artificial/low 23.0 550 0.72 7

Screen only 23.0 550 0.66 6

B Yes Artificial/medium 15.6 470 No results

C Yes Artificial/medium 15.6 440 0.74 6

D No Artificial/medium 23.0 550 0.52 5

E No Artificial/high 15.6 520 0.64 6

Table 5.1: Gaze accuracy for different user environments.

From the results in Table 5.1, there does not appear to be any observable effect on

gaze accuracy across various user environments and room lighting conditions. All tests

resulted in a mean gaze accuracy between 0.4 and 0.8 degrees. Comparably, Tobii

Technology (n.d.) reported gaze accuracies of 0.2 to 0.6 degrees for ideal conditions in

its specification of gaze accuracy and gaze precision for the Tobii X2-30 commercial eye

tracker.

It must be noted, however, that pupil detection in Gaze Tracker was not reliable for

Test Subject B, thus no calibration results were obtained. The test subject’s glasses

were fitted with strong corrective lenses, causing the pupil to appear quite small in

diameter compared to that of other test subjects. The test subject also complained of

fatigue and tiredness and, at times, part of the pupil was partially obstructed by the

lower eyelid. Either one or a combination of these reasons could be attributed to the

issue.

Finally, for all test subjects, the precision of individual gaze samples after each calibra-

tion appeared consistent with their respective calibration points. Gaze samples were

generally dispersed in a small area no larger than the physical area covered by the

calibration point, indicating good precision in the eye tracker (Figure 5.2). This in-

turn improves the effectiveness of the I-DT fixation identification algorithm for smaller

dispersion thresholds.
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Figure 5.2: Calibration point (light grey) displaying individual gaze samples (red) dispersed

over a small area, indicating good precision.

5.4 System Limitations

Being a low-cost eye tracking system developed under relatively short time constraints,

there exist some limitations and shortcomings associated with both the hardware and

software of the system. These limitations either hinder the system’s functionality or

restrict the use of the system to certain environments. This section identifies and

describes those limitations and shortcomings in the system and suggests potential ap-

proaches to mitigate them with future development.

5.4.1 Head Movement Tolerance

One significant limitation with the use of a head-mounted hardware configuration in

the ITU Gaze Tracker software is zero head movement tolerance. For optimum per-

formance, a test subject’s head must remain perfectly stationary from the initiation

of the calibration procedure to the end of the eye tracking session. Theoretically, any

deviation of the head from its position at calibration by the test subject will cause the

angle of error in the calibration to significantly increase. Observations of use indicate

that slight deviations in the order of a few millimetres only have a minor (but still

noticeable) effect on the gaze position measured by Gaze Tracker.

To mitigate the effects of head movement in the system, a height-adjustable chin rest

was constructed. A chin rest cup used for optometry applications was secured to a

telescoping aluminium tube of approximately 500 millimetres in length at full extension.

A section of approximately 40 millimetres in length at the bottom of the tube was

flattened and bent at a perpendicular angle, enabling the chin rest to be mounted to a

desk using a C-clamp. Figure 5.3 displays the chin rest mounted to a desk.

Zero head movement tolerance when using a head-mounted configuration in Gaze
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Figure 5.3: Height-adjustable chin rest to stabilise the head for eye tracking.

Tracker is attributed to the lack of a point of reference captured by the camera. Some

previous low-cost head-mounted configurations have accounted for this with the addi-

tion of a ‘scene camera’, which records the user’s field of view (Babcock & Pelz 2004);

however, this is not supported in Gaze Tracker and is perhaps more applicable to mobile

eye tracking systems.

The implementation of a remote hardware configuration in Gaze Tracker utilises the

corneal reflections on the user’s eye created by fixed infrared illuminators as a point of

reference, thus increasing eye tracking robustness and head-movement tolerance. This

approach is briefly explored in Section 6.2.

5.4.2 Cross-Platform Support

Due to their respective utilisation of the Windows API, both the ITU Gaze Tracker

and Gaze Analyser software are platform specific to the Microsoft Windows operating

system, thus the eye tracking system can only be utilised on a Windows machine. With

the relative widespread use of—and thus high accessibility to—the Windows operating

system, this is not a significant limitation of the system.

A developer willing to support cross-platform implementation of the eye tracking system
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would be required to translate the Windows API functions utilised in both Gaze Tracker

and Gaze Analyser to the native API functions of the target platform. An alternative

potential solution may involve exploring eye tracking software similar to Gaze Tracker

which supports the target system. For example, Opengazer is an open-source eye

tracking application designed for use with low-cost hardware which supports the Linux

operating system (Nel 2009).

5.4.3 Software Shortcomings

Due to the time constraints of the research project, the Gaze Analyser software is

not as feature-rich as it ideally should be for real eye tracking applications. While

the shortcomings in the software limit its usefulness in real eye tracking applications,

it provides necessary core functionality, such as fixation identification and calculation

of eye tracking metrics, and additional improvements and features utilising this core

functionality are able to be implemented with further work.

One significant limitation with Gaze Analyser is that gaze plot and heat map generation

is restricted to a static, non-changing window. A screenshot of the desktop is obtained

only at the time of initiation of the eye tracking session. Because of this, any interaction

with or manipulation of a window during an eye tracking session is not reflected in the

gaze plot or heat map.

A desirable feature of eye tracking analysis tools that was not implemented in Gaze

Analyser is the ability to process and generate output for entire datasets of a trial.

Currently, data is processed and output is generated on only a per-test subject ba-

sis. Accurate generation of visualisations for entire datasets of a trial would also be

dependent on consistent window placement across all eye tracking sessions in that trial.

Finally, while it’s not a limitation, the text-based user interface of Gaze Analyser may

be considered aesthetically unappealing and unintuitive for novice users; however, a

graphical user interface would not increase or improve the software’s functionality.
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5.5 Alternative Uses

While the eye tracking system was designed and developed to analyse how learning

tools are used by students, alternative avenues of use for the system can be identified.

The fact that the system is able to track a user’s gaze position over an entire screen

opens up numerous opportunities for software usability testing and HCI analysis. It

could also be used to analyse a user’s gaze position with respect to on-screen stimulus,

such as an advertisement or slide presentation.

With the aid of the eye mouse feature in the ITU Gaze Tracker software, applications

of the eye tracking system extend to gaze interaction and disability support. Users are

able to utilise gaze direction as an input, controlling the position of the mouse cursor

by simply fixating on areas of interest on the screen. This feature has significantly

benefited severely disabled people whose only means of communication are via their

eye movements. Assistive software such as GazeTalk, Dasher and StarGazer introduce

various methods of eye-typing, providing a platform of communication for these people

(San Agustin et al. 2010).

5.6 Summary

This chapter analysed and evaluated the performance and usability of the low-cost

eye tracking system, displaying sample output generated from a given set of fixations

and evaluating calibration accuracy for different user environments. It was shown that

the system maintained excellent gaze accuracies across different user environments and

room lighting conditions, however, usability experiences varied for one test subject.

Limitations and shortcomings in the system were also identified and potential ap-

proaches of mitigation were suggested. Finally, alternative uses for the system were

outlined, extending the potential applications of the system.



Chapter 6

Conclusions and Further Work

6.1 Achievement of Project Objectives

Prior to the commencement of this research project, a concise list of project objectives

were identified and stipulated. These objects are outlined in the Project Specification

in Appendix A. This section summarises the dissertation by evaluating the achievement

of those project objectives.

Firstly, background information on eye tracking was researched and, subsequently, eye

tracking applications throughout various industries and fields of research, as well as

the cost and accessibility issues of commercial eye trackers, were outlined. This set the

motivation behind the development of the low-cost eye tracking system, as addressed

in Chapter 1.

Succeeding that, in-depth research was conducted in the form of a comprehensive litera-

ture review in Chapter 2, detailing all aspects of the research project. This included the

methods of eye tracking with respect to low-cost hardware and open-source software,

as well as various algorithms to identify fixations within the data in order to perform

analysis and visualisations.

The knowledge gained from the literature review enabled the analysis of both the hard-

ware and software requirements of the low-cost eye tracking system, thus the method-

ology for the design and development of the system was formed in Chapter 3. This led

to the identification and selection of a low-cost hardware configuration and supporting
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open-source software in the ITU Gaze Tracker. Further software requirements were

also identified for the analysis and visualisation of eye tracking data.

From there, the low-cost eye tracking system was designed and implemented as detailed

in Chapter 4. A head-mounted hardware configuration was constructed and assembled

by suitably modifying a low-cost webcam and mounting it to a pair of safety glasses

for a total cost of 49.36 Australian dollars. Data analysis software informally named

Gaze Analyser was also designed and programmed to identify fixations within the eye

tracking data, calculate eye tracking metrics and generate visualisations. The hardware

and software were then implemented via Gaze Tracker to form the system.

Finally, the system’s performance and usability was critically evaluated in Chapter

5. Sample output was generated from a given set of fixations. Gaze accuracy testing

was conducted to evaluate the performance of the hardware and its implementation in

Gaze Tracker for various user environments and variables. Limitations in the system

were also identified and explained, including head movement tolerance, cross-platform

support and shortcomings in the software. Potential approaches of mitigation were

suggested for these limitations. Lastly, potential alternative applications of use for the

system were explored.

6.2 Further Work

The completion of this research project enables numerous possibilities of further work on

the topic of low-cost eye tracking. Many of these possibilities stem from the limitations

identified in Section 5.4.

To address the lack of head movement tolerance using a head-mounted hardware con-

figuration with Gaze Tracker, a low-cost remote configuration could be implemented as

explained in Section 5.4.1. Potential solutions were briefly explored prior to undertak-

ing the requirements analysis of this research project. A low-cost remote configuration

would make use of an appropriate high definition webcam modified to utilise a lens

with a longer focal length to produce a more focused and detailed image of the eyes.

An M12 threaded lens with a 16 millimetre focal length and an M12 lens holder fitted

to the webcam’s PCB could prove to be successful in achieving this. Infrared illumi-

nators would also be required to create the dark pupil effect, as with a head-mounted
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configuration.

Further to this, functionality of Gaze Analyser could be improved and extended in order

to address shortcomings in the software. Support for the generation of visualisations for

window events such as scrolling would significantly increase the potential applications

of the software, although this feature could be challenging to implement. Support for

the generation of results for entire datasets of a trial would also improve the software’s

usefulness in eye tracking studies, allowing for a more comprehensive analysis of eye

tracking data.

The eye tracking system could also be adapted to support multiple platforms. While

the most obvious candidates for cross-platform support include alternative desktop

operating systems such as Linux and Mac OS, the recent surge in popularity of mobile

devices and tablets provide motivation for the development of a low-cost eye tracking

system compatible with these devices.

Finally, if the limitations and shortcomings in the system are addressed as described

in this section, the eye tracker could be utilised in numerous eye tracking studies by

researchers from fields that would benefit from a low-cost solution.
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tools.

4. Identify appropriate hardware and software for use with the system, such as the ITU Gaze Tracker
software and a supported webcam.

5. Identify methods of eye tracking analysis (e.g. heat maps, pupil path mapping, recognising trends
between students)

6. Design the system.
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B.1 Risk Assessment

Hazard: Eye Strain

Extended use of a computer can cause strain on the eyes due to maintaining focus on

the screen, light emitted by the screen and movement of the eye around the screen. As

this project involves testing an eye tracking system, further eye strain may be caused

by deliberate eye movements made while testing.

Risk: Headaches

Mitigation: Take regular short breaks from using a computer, look out a window,

perform eye exercises

Hazard: Repetitive Movement

Repetitive movements such as typing for extended periods can cause repetitive strain

injury and aching in the joints and muscles.

Risk: Repetitive strain injury, joint and muscle aches

Mitigation: Take regular short breaks from using a computer, ensure appropriate seat

position and eye level, use ergonomic peripherals, stretch and exercise the affected

areas

Hazard: Use of Hand Tools

Hand tools such as knives, scissors, screwdrivers and soldering irons can cause signifi-

cant wounds due to skin penetration by sharp blades or points, particularly if handled

incorrectly. Furthermore, the intense heat emitted by a soldering iron can cause signif-

icant burns to the user.

Risk: Minor to moderate wounds, incisions or burns
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Mitigation: Always handle tools correctly and with care, ensure all blades are pro-

tected with a guard, organise tools appropriately and replace them in their correct

position immediately after use. Ensure soldering iron is switched off and mounted

in its holder when not in use

Hazard: Infrared Light Exposure

This project involves direct illumination of the eye using infrared light. As reported in

Section 3.3.1, maximum recommended irradiance levels for infrared light is 10mW/cm2.

This hazard applies to both execution of project work and post-completion of the

project.

Risk: Eye strain or soreness, temporary or permanent blurred vision, temporary or

permanent retina damage causing partial blindness

Mitigation: Always ensure infrared light configuration is below the maximum rec-

ommended irradiance level of 10mW/cm2, check datasheets and specifications of

lights before use, do not use the eye tracker for extended periods of time

Hazard: Workload

Being engaged in full-time employment while undertaking project work, as well as other

courses and external commitments simultaneously can cause high workload.

Risk: Stress, failure to meet deadlines

Mitigation: Efficient and effective time management, plan project work in advance

Hazard: Psychological Stress

Psychological stress can be caused by a number of factors including high workload,

personal issues, work-related commitments or approaching deadlines. It can be clas-

sified as acute (short-term) or chronic (long-term). Acute stress can be beneficial for

productivity, however, if prolonged it can lead to chronic stress.
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Risk: Psychological illness such as anxiety and depression, vulnerability of the immune

system leading to physical illness, lack of sleep

Mitigation: Stress management techniques (depending on the individual), efficient

and effective time management, take regular short breaks from stress inducing

activities

Hazard Exposure Likelihood Severity Risk Level

Eye strain Frequently Almost certain Minor Moderate

Repetitive movement Frequently Likely Moderate Moderate

Use of hand tools Occasionally Unlikely Moderate Moderate

Infrared light exposure Occasionally Unlikely Major Moderate

Psychological stress Rarely Possible Moderate Moderate

Workload Occasionally Likely Minor Moderate

Table B.1: Risk assessment table.

B.2 Project Timeline
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* One megapixel = 1,000,000 pixels. Lower resolution available when sending video via instant messaging. 

Results stated herein are based on internal Microsoft testing. Individual results and performance may vary. Any device images shown are not actual size. This document is provided for informational purposes only and is subject to change 
without notice. Microsoft makes no warranty, express or implied, with this document or the information contained herein. Review any public use or publications of any data herein with your local legal counsel. 

©2011 Microsoft Corporation. The names of actual companies and products mentioned herein may be trademarks of their respective owners. 

Rev. 1103A Microsoft
®
 LifeCam VX-1000 Page 1 of 1  

Version Information   

Product Name Microsoft
®
 LifeCam VX-1000 

Product Version Microsoft LifeCam VX-1000 

Webcam Version Microsoft LifeCam VX-1000  

Product Dimensions   

Webcam Length 2.09 inches (53.1 millimeters) 

Webcam Width 2.18 inches (55.5 millimeters) 

Webcam Depth/Height 2.70 inches (68.8 millimeters) 

Webcam Weight 3.36 ounces (95.3 grams) 

Webcam Cable Length 72.0 inches +6/-0 inches (1828 millimeters +152/-0 millimeters) 

Compatibility and Localization 

Interface Full-speed USB compatible with the USB 2.0 specification 

Operating Systems Microsoft Windows
®
 7, Windows Vista

®
, and Windows XP with Service Pack 2 (excluding Windows XP 64-bit) 

Top-line System Requirements Requires a PC that meets the requirements for and has installed one of these operating systems:  
• Microsoft Windows 7, Windows Vista, or Windows XP with Service Pack 2 (excluding Windows XP 64-bit) 
• Intel Pentium

®
 III 550 MHz (Intel Pentium 4 1.4 GHz recommended)  

• 256 MB of RAM  
• 300-700 MB hard drive space 
• Display adapter capable 16-bit color depth or higher 
• 2 MB or more video memory 
• Windows-compatible speakers or headphones 
• USB port 1.1 (USB 2.0 recommended) 
• CD ROM drive  
• Broadband internet access required, access fees may apply 
• Microsoft LifeCam software version 2.07 

 

Internet functions (post to Windows Live™ Spaces, send in e-mail, video calls), also require: Internet Explorer 6/7 browser software required for 
installation; 25 MB hard drive space typically required (users can maintain other default Web browsers after installation)  

 

The Microsoft LifeCam The Microsoft LifeCam VX-1000 has basic Video & Audio Functionality with Windows Live Messenger, AOL® Instant 
Messenger™, Yahoo!® Messenger, Skype, and Microsoft Office Communicator 

Compatibility Logos • Works with Microsoft Windows Vista 
• Certified USB logo 

Software Localization Microsoft LifeCam software, version 2.07 may be installed in Simplified Chinese, Traditional Chinese, English, French, German, Italian, Japanese, 
Korean, Brazilian Portuguese, Iberian Portuguese, or Spanish.  If available, standard setup will install the software in the default OS language.  
Otherwise, the English language version will be installed. 

Windows Live™ Integration Features 

Video Conversation Feature Windows Live call button delivers one touch access to video conversation 

Call Button Life 10,000 actuations 

Webcam Controls & Effects LifeCam Dashboard provides access to animated video special effect features and webcam controls 

Blogging Feature Add photos to Windows Live Spaces with one mouse click 

Imaging Features 

Sensor CMOS VGA sensor technology 

Resolution • Motion Video: 0.31 megapixel (640 x 480 pixels)* 
• Still Image: 0.31 megapixel (640 x 480 pixels) without interpolation* 

Field of View 55° diagonal field of view 

Imaging Features • Manual focus 
• Automatic image adjustment with manual override 

Product Feature Performance 

Audio Features Integrated microphone  

Microphone technology Omni directional microphone 

Mounting Features • Desktop and CRT universal attachment base 
• Notebook and LCD universal attachment base 

Storage Temperature & Humidity -40 °F (-40 °C) to 140 °F (60 °C) at <5% to 65% relative humidity (non-condensing) 

Operating Temperature & Humidity 32° F (0° C) to 140° F (60° C) at <5% to 80% relative humidity (non-condensing) 

Certification Information  

Country of Manufacture People's Republic of China (PRC) 

ISO 9001 Qualified Manufacturer Yes 

ISO 14001 Qualified Manufacturer Yes 

Restriction on Hazardous Substances This device complies with all applicable worldwide regulations and restrictions including, but not limited to: EU directive 2002/95/EC on the Restriction of 
the Use of Certain Hazardous Substances in Electrical and Electronic Equipment and EU Registration Evaluation and Authorization of Chemicals 
(REACH) regulation regarding Substances of Very High Concern.  

FCC ID This device complies with part 15 of the FCC Rules and Industry Canada ICES-003. Operation is subject to the following two conditions: (1) This device 
may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired 
operation. Tested to comply with FCC standards. For home and office use. Model number: 1080, LifeCam VX-1000. 

Agency and Regulatory Marks • ACA/MED Declaration of Conformity (Australia and New Zealand) 
• ICES-003 report on file (Canada) 
• EIP Pollution Control Mark, EPUP (China) 
• CE Declaration of Conformity, Safety and EMC (European Union) 
• WEEE (European Union) 
• VCCI Certificate (Japan) 
• CITC Letter (Kingdom of Saudi Arabia) 
• MIC Certificate (Korea) 
• GOST Certificate (Russia) 
• FCC Declaration of Conformity (USA) 
• UL and cUL Listed Accessory (USA and Canada) 
• CB Scheme Certificate (International) 

Windows Hardware Quality Labs (WHQL) ID: 1389818 Microsoft Windows 7 

  



 
 

◆◆◆◆PACKAGE DIMENSIONS 

 
◆◆◆◆ABSOLUTE MAXIMUN RATING: (Ta=25℃℃℃℃) 

Part No. PD（mw） VR（V） Topr Tstg 

ZD1946  100 5 -35 ℃ to 85 ℃ -35 ℃ to 85 ℃ 

PARAMETER Power Dissipation Reverse Voltage Operating Temperature 
Range Storage Temperature Range

Lead Soldering Temperature { 1.6mm ( 0.063 inch ) From Body } 250℃±5℃For 3 Seconds 

◆◆◆◆ELECTRO-OPTICAL CHARACTERISTICS: (Ta=25℃℃℃℃) 
VF（V） IR（uA） λP（nm） 2θ1/2（Age） Ie（mw/sr） 

Part No. 
Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max

L-316EIR1C  1.2 
1.4 1.6 

  10  940   30  6 12  

                

                

TEST 
CONDITION 

 

IF=20mA 
IF=100mA 

VR= 5V IF= 20mA IF =20mA IF= 20mA 

BC=BLUE CLEAR 
1. All dimension are in millimeter (inches). 
2. Tolerance is ±0.25mm( 0.01”)unless otherwise specified. 
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D.1 main.cpp

/∗∗
∗ @ f i l e main . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Main f u n c t i o n f o r Gaze Analyser
∗ Contro l s program with t e x t−dr iven menu and switch−case

s ta tements
∗ To be used in conjunc t ion wi th ITU Gaze Tracker
∗
∗ @return 0 on program e x i t
∗/

#include <iostream>
#include <sstream>
#include <s t r i ng>
#include <windows . h>

#include ” g l o b a l . hpp”
#include ” Se s s i on . hpp”

using namespace std ;

int main ( )
{

s t r i n g input ;
int mode ;

r e s w idth = GetSystemMetrics (SM CXSCREEN) ;
r e s h e i g h t = GetSystemMetrics (SM CYSCREEN) ;

CreateDirec tory ( ” .\\Data\\” , NULL) ;

cout << ”Gaze Analyser 1 .0 a\n” ;
cout << ”−−−−−−−−−−−−−−−−−−\n” ;

while (TRUE) {
cout << ”\n” ;
cout << ” 1 : Sta r t a new eye t rack ing s e s s i o n \n” ;
cout << ” 2 : Exit \n” ;
cout << ” Enter your s e l e c t i o n : ” ;

g e t l i n e ( cin , input ) ;
cout << ”\n” ;
i s t r i n g s t r e a m ss ( input ) ;
s s >> mode ;

switch (mode) {
case 1 : { // New eye t r a c k i n g s e s s i o n

cout << ”New eye t rack ing s e s s i o n s t a r t e d .\n” ;



D.2 global.hpp 87

cout << ”\n” ;
Se s s i on s e s s i o n ;

} break ;

case 2 : // Exi t program
cout << ” Press Enter to e x i t the program . ” ;
c in . get ( ) ;
return 0 ;

default :
cout << ” I n v a l i d input ! Expected inputs : 1−2.\n” ;
break ;

}
}

}

D.2 global.hpp

/∗∗
∗ @ f i l e g l o b a l . hpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Globa l v a r i a b l e d e f i n i t i o n
∗/

#ifndef GLOBAL HPP
#define GLOBAL HPP

extern int r e s w idth ;
extern int r e s h e i g h t ;
extern bool t rack ;
extern const int t f i x m i n ;

#endif // GLOBAL HPP

D.3 global.cpp

/∗∗
∗ @ f i l e g l o b a l . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Globa l v a r i a b l e d e c l a r a t i o n
∗/

#include ” g l o b a l . hpp”

int r e s w idth ; // Reso lu t ion width ( px )
int r e s h e i g h t ; // Reso lu t ion h e i g h t ( px )
bool t rack ; // Track boo lean f o r t r a c k i n g

thread
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const int t f i x m i n = 100 ; // Minimum f i x a t i o n durat ion
cons tant

D.4 tcp send.cpp

/∗∗
∗ @ f i l e t c p s e n d . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Sends command v i a the TCP por t d e f i n e d in PORT
∗
∗ @return 0 i f s u c c e s s f u l , 1 i f u n s u c c e s s f u l
∗/

#include <iostream>
#include <s t r i ng>
#include <windows . h>
#include <winsock2 . h>

#define IP ” 1 2 7 . 0 . 0 . 1 ”
#define PORT 5555

using namespace std ;

int tcp send ( s t r i n g command)
{

SOCKET s ;
SOCKADDR IN s e r v e r ;
int s end l en ;
WSADATA wsa ;

// I n i t i a l i s e Winsock
i f (WSAStartup(MAKEWORD(2 ,2 ) , &wsa ) != 0) {

cout << ” Error i n i t i a l i s i n g Winsock . Error code : ” <<
WSAGetLastError ( ) << ”\n” ;

return 1 ;
}

// Create TCP s o c k e t
s = socket (AF INET , SOCK STREAM, IPPROTO TCP) ;
i f ( s == INVALID SOCKET) {

cout << ” Error opening socke t . Error code : ” <<
WSAGetLastError ( ) << ”\n” ;

WSACleanup ( ) ;
return 1 ;

}

// Prepare SOCKADDR IN s t r u c t u r e
s e r v e r . s i n f a m i l y = AF INET ;
s e r v e r . s i n addr . s addr = ine t addr ( IP ) ;
s e r v e r . s i n p o r t = htons (PORT) ;
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// Connect s o c k e t
i f ( connect ( s , ( sockaddr ∗) &server , s izeof ( s e r v e r ) ) ==

SOCKET ERROR) {
cout << ” Error connect ing socke t . Error code : ” <<

WSAGetLastError ( ) << ”\n” ;
c l o s e s o c k e t ( s ) ;
WSACleanup ( ) ;
return 1 ;

}

// Send command
s end l en = send ( s , command . c s t r ( ) , command . l ength ( ) , 0) ;
i f ( s end l en == SOCKET ERROR) {

cout << ” Error sending command . Error code : ” <<
WSAGetLastError ( ) << ”\n” ;

c l o s e s o c k e t ( s ) ;
WSACleanup ( ) ;
return 1 ;

}

// Close s o c k e t and c l ean up
c l o s e s o c k e t ( s ) ;
WSACleanup ( ) ;
return 0 ;

}

D.5 udp receive.cpp

/∗∗
∗ @ f i l e u d p r e c e i v e . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Receives data sen t from UDP por t d e f i n e d in PORT.
∗ To be c a l l e d in a new thread .
∗ Receives w h i l e t r a c k boo lean i s t r u e .
∗
∗ @param ∗arg : a p o i n t e r to the ofs tream to w r i t e to
∗/

#include <fstream>
#include <iostream>
#include <windows . h>
#include <winsock2 . h>

#include ” g l o b a l . hpp”

#define BUFLEN 512
#define PORT 6666

using namespace std ;
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void udp rece ive ( void ∗ arg )
{

SOCKET s ;
SOCKADDR IN s e r v e r ;
SOCKADDR IN s i o t h e r ;
char buf [BUFLEN] ;
int r e c v l e n ;
int s l e n ;
WSADATA wsa ;
o fstream ∗ f i l e ;

s l e n = s izeof ( s i o t h e r ) ;

// I n i t i a l i s e Winsock
i f (WSAStartup(MAKEWORD(2 ,2 ) , &wsa ) != 0) {

cout << ” Error i n i t i a l i s i n g Winsock . Error code : ” <<
WSAGetLastError ( ) << ”\n” ;

return ;
}

// Create UDP s o c k e t
s = socket (AF INET , SOCK DGRAM, 0) ;
i f ( s == INVALID SOCKET) {

cout << ” Error opening socke t . Error code : ” <<
WSAGetLastError ( ) << ”\n” ;

WSACleanup ( ) ;
return ;

}

// Prepare SOCKADDR IN s t r u c t u r e
s e r v e r . s i n f a m i l y = AF INET ;
s e r v e r . s i n addr . s addr = INADDR ANY;
s e r v e r . s i n p o r t = htons (PORT) ;

// Bind s o c k e t
i f ( bind ( s , (SOCKADDR ∗) &server , s izeof ( s e r v e r ) ) ==

SOCKET ERROR) {
cout << ” Error binding socke t . Error code : ” <<

WSAGetLastError ( ) << ”\n” ;
c l o s e s o c k e t ( s ) ;
WSACleanup ( ) ;
return ;

}

f i l e = ( ofstream ∗) arg ;

// L i s t e n f o r data
while ( t rack ) {

f f l u s h ( stdout ) ;
memset ( buf , ’ \0 ’ , BUFLEN) ;
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r e c v l e n = recvfrom ( s , buf , BUFLEN, 0 , (SOCKADDR ∗) &
s i o t h e r , &s l e n ) ;

i f ( r e c v l e n == SOCKET ERROR) {
cout << ” Error read ing from socket . Error code : ”

<< WSAGetLastError ( ) << ”\n” ;
c l o s e s o c k e t ( s ) ;
WSACleanup ( ) ;
return ;

}

∗ f i l e << buf << ”\n” ;
}

// Close s o c k e t and c l ean up
c l o s e s o c k e t ( s ) ;
WSACleanup ( ) ;

}

D.6 screenshot.cpp

/∗∗
∗ @ f i l e s c r e e n s h o t . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Captures the curren t desk top screen to a d e v i c e c o n t e x t
∗
∗ @return hCaptureDC : d e v i c e c o n t e x t o f the desk top screen
∗/

#include <s t r i ng>
#include <windows . h>

#include ” g l o b a l . hpp”

using namespace std ;

HDC sc r e en sho t ( )
{

HWND hDesktopWnd ;
HDC hDesktopDC ;
HDC hCaptureDC ;
HBITMAP hCaptureBmp ;

// Capture desk top screen
hDesktopWnd = GetDesktopWindow ( ) ;
hDesktopDC = GetDC(hDesktopWnd) ;
hCaptureDC = CreateCompatibleDC ( hDesktopDC ) ;
hCaptureBmp = CreateCompatibleBitmap (hDesktopDC , res width

, r e s h e i g h t ) ;
Se l e c tOb j e c t (hCaptureDC , hCaptureBmp) ;
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BitBlt ( hCaptureDC , 0 , 0 , res width , r e s h e i g h t , hDesktopDC
, 0 , 0 , SRCCOPY | CAPTUREBLT) ;

// Clean up
ReleaseDC (hDesktopWnd , hDesktopDC ) ;
DeleteObject (hCaptureBmp) ;

return hCaptureDC ;
}

D.7 Point.cpp

/∗∗
∗ @ f i l e Point . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Point s t r u c t implementat ion
∗/

#include ” Point . hpp”

/∗∗
∗ Point c o n s t r u c t o r
∗
∗ @param x : X c o o r d i n a t e o f p o i n t
∗ @param y : Y c o o r d i n a t e o f p o i n t
∗ @param t : Time stamp or durat ion o f p o i n t
∗/

Point : : Point (double x , double y , long long t ) : x ( x ) , y ( y ) , t ( t
) {}

D.8 Session.cpp

/∗∗
∗ @ f i l e Sess ion . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Sess ion c l a s s implementat ion
∗/

#include <cmath>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <s t r i ng>
#include <vector>
#include <proce s s . h>
#include <windows . h>
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#include ” g l o b a l . hpp”
#include ” Se s s i on . hpp”
#include ” Metr ics . hpp”
#include ”GazePlot . hpp”
#include ”HeatMap . hpp”

using namespace std ;

int tcp send ( s t r i n g ) ;
void udp rece ive ( void ∗) ;
HDC sc r e en sho t ( ) ;

/∗∗
∗ Gets the d e t a i l s o f the curren t s e s s i o n from user input
∗/

void Ses s i on : : g e t d e t a i l s ( )
{

s t r i n g input ;

// Prompt f o r t r i a l name and check f o r v a l i d input
do {

cout << ” Enter the name o f the t r i a l : ” ;
g e t l i n e ( cin , t r i a l ) ;
i f ( t r i a l . l ength ( ) == 0) {

cout << ” T r i a l name cannot be blank !\n” ;
}

} while ( t r i a l . l ength ( ) == 0) ;

// Create d i r e c t o r y f o r t r i a l
CreateDirec tory ( ( ” .\\Data\\”+t r i a l+”\\” ) . c s t r ( ) , NULL) ;

// Prompt f o r t e s t s u b j e c t name and check f o r v a l i d input
do {

cout << ” Enter the name o f the t e s t s u b j e c t : ” ;
g e t l i n e ( cin , s u b j e c t ) ;
i f ( s u b j e c t . l ength ( ) == 0) {

cout << ” Test s u b j e c t name cannot be blank !\n” ;
}
else i f ( i f s t r e a m ( ( ” .\\Data\\”+t r i a l+”\\”+s u b j e c t+”

R e su l t s . txt ” ) . c s t r ( ) ) ) {
cout << ” Test s u b j e c t ” << s u b j e c t << ” a l ready

e x i s t s f o r t r i a l ” << t r i a l <<” !\n” ;
}

} while ( s u b j e c t . l ength ( ) == 0 | | i f s t r e a m ( ( ” .\\Data\\”+
t r i a l+”\\”+s u b j e c t+” R es u l t s . txt ” ) . c s t r ( ) ) ) ;

// Prompt f o r f i x a t i o n r a d i u s and check f o r v a l i d input
do {

cout << ” Enter the d e s i r e d f i x a t i o n rad iu s in p i x e l s :
” ;

g e t l i n e ( cin , input ) ;
i s t r i n g s t r e a m ss ( input ) ;
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s s >> f i x r a d i u s ;
i f ( f i x r a d i u s <= 0) {

cout << ” I n v a l i d f i x a t i o n rad iu s !\n” ;
}

} while ( f i x r a d i u s <= 0) ;
}

/∗∗
∗ S t a r t s a c a l i b r a t i o n and conf irms i t wi th the user
∗/

void Ses s i on : : c a l i b r a t e ( )
{

s t r i n g input ;
s t r i n g w n d t i t l e = ” CalibrationWindow ” ;

HWND hCalWnd = NULL;

// Prompt to c a l i b r a t e eye t r a c k e r
input = ”n” ;
do {

i f ( input == ”n” ) {
cout << ” Press Enter to c a l i b r a t e the eye t r a c ke r .

” ;
c in . get ( ) ;
while ( tcp send ( ”CAL START” ) == 1) {

cout << ” Error c a l i b r a t i n g the eye t r a c ke r .
Ensure Gaze Tracker i s running and pre s s
Enter to t ry again . ” ;

c in . get ( ) ;
}
while (hCalWnd == NULL) {

hCalWnd = FindWindow(NULL, w n d t i t l e . c s t r ( ) ) ;
}
SetForegroundWindow (hCalWnd) ;

}
else {

cout << ” I n v a l i d input ! Expected inputs : Y/n .\n” ;
}
cout << ”Would you l i k e to accept t h i s c a l i b r a t i o n ? (Y

/n) : ” ;
g e t l i n e ( cin , input ) ;

} while ( input != ”Y” ) ;
cout << ” Ca l i b ra t i on accepted .\n” ;

}

/∗∗
∗ S t a r t s eye t r a c k i n g on C t r l+Al t+E hotkey press , opens f i l e

f o r w r i t i n g and runs r e c e i v e f u n c t i o n in a thread .
∗ Stops eye t r a c k i n g on C t r l+Alt+E hotkey press , w a i t s f o r

thread to complete and c l o s e s f i l e .
∗/

void Ses s i on : : t r a ck ing ( )
{
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MSG msg ;
o fstream f i l e ;
t ime t now ;
HANDLE hThread ;

// Wait f o r hotkey p r e s s to s t a r t eye t r a c k i n g
cout << ”Eye t r a c ke r ready . Press Ctr l+Alt+E in the

d e s i r e d a p p l i c a t i o n to begin eye t ra ck ing s e s s i o n .\n” ;
RegisterHotKey (NULL, 1 , MODCONTROL | MOD ALT, 0x45 ) ;
while ( GetMessage(&msg , NULL, 0 , 0) && msg . message !=

WMHOTKEY) {}

// Open f i l e to w r i t e to
f i l e . open ( ( ” .\\Data\\”+t r i a l+”\\”+s u b j e c t+” Data . txt ” ) .

c s t r ( ) ) ;
f i l e << ” T r i a l :\ t \ t ” << t r i a l << ”\n” ;
f i l e << ” Subject :\ t ” << s u b j e c t << ”\n\n” ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

time(&now) ;
f i l e << ”Eye t rack ing s t a r t e d ” << ctime(&now) ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

// S t a r t eye t r a c k i n g
t rack = TRUE;
hThread = (HANDLE) beg inthread ( udp rece ive , 0 , &f i l e ) ;
hCaptureDC = sc r e en sho t ( ) ;

// Wait f o r hotkey p r e s s to s to p eye t r a c k i n g
cout << ”Eye t rack ing s e s s i o n a c t i v e . Press Ctr l+Alt+E to

end eye t rack ing s e s s i o n .\n” ;
while ( GetMessage(&msg , NULL, 0 , 0) && msg . message !=

WMHOTKEY) {}

// Stop eye t r a c k i n g
t rack = FALSE;
WaitForSingleObject ( hThread , INFINITE) ;
CloseHandle ( hThread ) ;

// Close f i l e
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

time(&now) ;
f i l e << ”Eye t rack ing ended ” << ctime(&now) ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

f i l e . c l o s e ( ) ;
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}

/∗∗
∗ Processes eye t r a c k i n g data f i l e , d e t e c t s f i x a t i o n s in the

c o o r d i n a t e s and adds f i x a t i o n s to the f i x p a t h v e c t o r
∗
∗ @return Number o f f i x a t i o n s i d e n t i f i e d
∗/

unsigned int Ses s i on : : p roce s s ( )
{

i f s t r e a m f i l e ;
s t r i n g l i n e ;
s t r i n g temp ;
i s t r i n g s t r e a m ss ;
unsigned long long t s t a r t = 0 ;
vector<Point> f i x p o i n t s ;
Point cur rent ;

f i l e . open ( ( ” .\\Data\\”+t r i a l+”\\”+s u b j e c t+” Data . txt ” ) .
c s t r ( ) ) ;

// Process f i l e data to determine f i x a t i o n s
while ( ! f i l e . e o f ( ) ) {

g e t l i n e ( f i l e , l i n e ) ;
i f ( l i n e . f i n d ( ”STREAM DATA” ) != s t r i n g : : npos ) {

// Set s t r i n g stream to current l i n e and o b t a i n
curren t c o o r d i n a t e s

s s . c l e a r ( ) ;
s s . s t r ( l i n e ) ;
s s >> temp >> cur rent . t >> cur rent . x >> cur rent . y ;

// I n i t i a l i s e t s t a r t
i f ( t s t a r t == 0) {

t s t a r t = current . t ;
}

// I−DT f i x a t i o n i d e n t i f i c a t i o n a l g or i t hm
i f ( f i x p o i n t s . s i z e ( ) == 0 | | f i x p o i n t s . back ( ) . t−

f i x p o i n t s . f r o n t ( ) . t < t f i x m i n ) {
f i x p o i n t s . push back ( Point ( cur rent . x , cur r ent .

y , cur r ent . t ) ) ;
}
else i f ( (max . x−min . x )+(max . y−min . y ) <= 2∗

f i x r a d i u s ) {
f i x p o i n t s . push back ( Point ( cur rent . x , cur r ent .

y , cur r ent . t ) ) ;
g e t l i m i t s ( f i x p o i n t s ) ;
i f ( (max . x−min . x )+(max . y−min . y ) > 2∗ f i x r a d i u s

) {
f i x p o i n t s . pop back ( ) ;
a d d f i x a t i o n ( f i x p o i n t s ) ;
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f i x p o i n t s . c l e a r ( ) ;
f i x p o i n t s . push back ( Point ( cur rent . x ,

cur r ent . y , cur rent . t ) ) ;
}

}
else {

f i x p o i n t s . e r a s e ( f i x p o i n t s . begin ( ) ) ;
f i x p o i n t s . push back ( Point ( cur rent . x , cur r ent .

y , cur r ent . t ) ) ;
}
g e t l i m i t s ( f i x p o i n t s ) ;

}
}
f i l e . c l o s e ( ) ;

// Add l a s t f i x a t i o n not i d e n t i f i e d by a l go r i t hm
i f ( ( ( max . x−min . x )+(max . y−min . y ) ) <= 2∗ f i x r a d i u s &&

f i x p o i n t s . back ( ) . t−f i x p o i n t s . f r o n t ( ) . t >= t f i x m i n )
{

a d d f i x a t i o n ( f i x p o i n t s ) ;
}

// C a l c u l a t e s e s s i o n time
t s e s s i o n = current . t−t s t a r t ;

return f i x p a t h . s i z e ( ) ;
}

/∗∗
∗ Get minimum and maximum c o o r d i n a t e s o f f i x a t i o n p o i n t s

v e c t o r
∗
∗ @param f i x p o i n t s : F i x a t i o n p o i n t s v e c t o r
∗/

void Ses s i on : : g e t l i m i t s ( vector<Point> f i x p o i n t s )
{

unsigned int i ;

min = Point ( f i x p o i n t s [ 1 ] . x , f i x p o i n t s [ 1 ] . y ) ;
max = Point ( f i x p o i n t s [ 1 ] . x , f i x p o i n t s [ 1 ] . y ) ;

for ( i = 1 ; i < f i x p o i n t s . s i z e ( ) ; i++) {
i f ( f i x p o i n t s [ i ] . x < min . x ) {

min . x = f i x p o i n t s [ i ] . x ;
}
else i f ( f i x p o i n t s [ i ] . x > max . x ) {

max . x = f i x p o i n t s [ i ] . x ;
}
i f ( f i x p o i n t s [ i ] . y < min . y ) {

min . y = f i x p o i n t s [ i ] . y ;
}
else i f ( f i x p o i n t s [ i ] . y > max . y ) {
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max . y = f i x p o i n t s [ i ] . y ;
}

}
}

/∗∗
∗ Adds a f i x a t i o n to the f i x p a t h v e c t o r
∗
∗ @param f i x p o i n t s : Vector o f the p o i n t s w i t h i n the

p o t e n t i a l f i x a t i o n
∗/

void Ses s i on : : a d d f i x a t i o n ( vector<Point> f i x p o i n t s )
{

unsigned int i ;
double x sum = 0 ;
double y sum = 0 ;
Point f i x ;

// C a l c u l a t e c e n t r o i d o f f i x a t i o n
for ( i = 0 ; i < f i x p o i n t s . s i z e ( ) ; i++) {

x sum += f i x p o i n t s [ i ] . x ;
y sum += f i x p o i n t s [ i ] . y ;

}
f i x . x = f l o o r ( x sum/ f i x p o i n t s . s i z e ( ) ) ;
f i x . y = f l o o r ( y sum/ f i x p o i n t s . s i z e ( ) ) ;

// C a l c u l a t e f i x a t i o n durat ion
f i x . t = f i x p o i n t s . back ( ) . t−f i x p o i n t s . f r o n t ( ) . t ;

// Determine i f f i x a t i o n i s on screen
i f ( f i x . x >= 0 && f i x . x < r e s w idth && f i x . y >= 0 && f i x . y

< r e s h e i g h t ) {
f i x . on sc r een = TRUE;

}
else {

f i x . on sc r een = FALSE;
}

f i x p a t h . push back ( f i x ) ;
}

/∗∗
∗ Sess ion c o n s t r u c t o r
∗ C a l l s c l a s s f u n c t i o n s
∗ Dec lares Metrics , GazePlot and HeatMap o b j e c t s i f

f i x a t i o n s are i d e n t i f i e d
∗/

Ses s i on : : S e s s i on ( )
{

g e t d e t a i l s ( ) ;
cout << ”\n” ;
c a l i b r a t e ( ) ;
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cout << ”\n” ;
t r a ck ing ( ) ;

i f ( p roce s s ( ) > 0) {

Metr ics met r i c s ( this ) ;

GazePlot gazep lo t ( this ) ;

HeatMap f ix count heatmap ( this ) ;
f ix count heatmap . f i x c o u n t ( this ) ;

HeatMap t f ix heatmap ( this ) ;
t f i x heatmap . t f i x ( this ) ;

HeatMap t f ix mean heatmap ( this ) ;
t f ix mean heatmap . t f i x mean ( this ) ;

cout << ”Eye t rack ing s e s s i o n complete . See the ” <<
t r i a l << ” d i r e c t o r y f o r the r e s u l t s .\n” ;

}
else {

cout << ”No f i x a t i o n s were detec ted ! Ensure the eye
t r a c ke r i s plugged in and c a l i b r a t e d in Gaze
Tracker .\n” ;

}
}

/∗∗
∗ Sess ion d e s t r u c t o r
∗ Cleans up
∗/

Ses s i on : : ˜ Se s s i on ( )
{

DeleteObject ( hCaptureDC ) ;
}

D.9 Metrics.cpp

/∗∗
∗ @ f i l e Metr ics . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Metrics c l a s s implementat ion
∗/

#include <cmath>
#include <ctime>
#include <fstream>
#include <iomanip>
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#include ” g l o b a l . hpp”
#include ” Se s s i on . hpp”
#include ” Metr ics . hpp”

using namespace std ;

/∗∗
∗ Writes s e s s i o n d e t a i l s and metr ic s to f i l e
∗
∗ @param t r i a l : Sess ion t r i a l name
∗ @param s u b j e c t : Sess ion s u b j e c t name
∗ @param f i x r a d i u s : F i x a t i o n r a d i u s
∗/

void Metr ics : : w r i t e r e s u l t s ( s t r i n g t r i a l , s t r i n g subjec t , int
f i x r a d i u s )

{
ofstream f i l e ;
t ime t now ;

time(&now) ;
tm ∗ ltm = l o c a l t i m e (&now) ;

// Write r e s u l t s to f i l e
f i l e . open ( ( ” .\\Data\\”+t r i a l+”\\”+s u b j e c t+” R e su l t s . txt ” ) .

c s t r ( ) ) ;
f i l e << f i x e d ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

f i l e << ” Gaze Analyser
Resu l t s \n” ;

f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

f i l e << ” Se s s i on D e t a i l s \n” ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

f i l e << ” T r i a l :\ t \ t \ t ” << t r i a l << ”\n” ;
f i l e << ” Subject :\ t \ t ” << s u b j e c t << ”\n” ;
f i l e << ”Date :\ t \ t \ t ” << ltm−>tm mday << ”/” << s e t f i l l ( ’ 0

’ ) << setw (2) << ltm−>tm mon+1 << ”/” << ltm−>tm year
+1900 << ”\n” ;

f i l e << ” Screen r e s o l u t i o n :\ t ” << r e s w idth << ”x” <<
r e s h e i g h t << ”\n” ;

f i l e << ” Fixat ion rad iu s :\ t ” << f i x r a d i u s << ” px\n” ;
f i l e << ” Se s s i on durat ion :\ t ” << t s e s s i o n m i n s << ” : ” <<

s e t f i l l ( ’ 0 ’ ) << setw (2) << t s e s s i o n s e c s << ” min\n” ;
f i l e << ”\n” ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;
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f i l e << ” Metr ics \n” ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

f i l e << ”On−s c r e en f i x a t i o n s :\ t \ t \ t ” << on << ” ( ” <<
s e t p r e c i s i o n (1 ) << 100∗(double ) on /( on+o f f ) << ”%)\n” ;

f i l e << ”Off−s c r e en f i x a t i o n s :\ t \ t \ t ” << o f f << ” ( ” <<
s e t p r e c i s i o n (1 ) << 100∗(double ) o f f /( on+o f f ) << ”%)\n” ;

f i l e << ” Overa l l f i x a t i o n ra t e :\ t \ t \ t ” << s e t p r e c i s i o n (1 )
<< f i x r a t e << ” f i x a t i o n s / s \n” ;

f i l e << ”Mean on−s c r e en f i x a t i o n durat ion :\ t ” <<
s e t p r e c i s i o n (0 ) << t f i x mean << ” ms\n” ;

f i l e << ”Mean on−s c r e en saccade l ength :\ t \ t ” <<
s e t p r e c i s i o n (0 ) ;

i f ( on == 1) {
f i l e << ”0 p i x e l s \n” ;

}
else {

f i l e << saccade length mean << ” px\n” ;
}
f i l e << ”\n” ;
f i l e << ”
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n” ;

f i l e . c l o s e ( ) ;
}

/∗∗
∗ Metrics c o n s t r u c t o r
∗ C a l c u l a t e s eye t r a c k i n g metr ic s f o r s e s s i o n
∗
∗ @param s e s s i o n : Sess ion c l a s s p o i n t e r
∗/

Metr ics : : Metr ics ( Se s s i on ∗ s e s s i o n )
{

unsigned int i ;
unsigned int t sum = 0 ;
double saccade length sum = 0 ;
int saccade count = 0 ;

on = 0 ;
o f f = 0 ;

t s e s s i o n m i n s = se s s i on−>t s e s s i o n /1000/60;
t s e s s i o n s e c s = se s s i on−>t s e s s i o n /1000%60;

// C a l c u l a t e metr ic s
for ( i = 0 ; i < s e s s i on−>f i x p a t h . s i z e ( ) ; i++) {

i f ( s e s s i on−>f i x p a t h [ i ] . on sc r een ) {
on++;
t sum += se s s i on−>f i x p a t h [ i ] . t ;
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i f ( i < s e s s i on−>f i x p a t h . s i z e ( )−1 && se s s i on−>
f i x p a t h [ i +1] . on sc r een ) {
saccade length sum += ( s q r t (pow( abs ( s e s s i on−>

f i x p a t h [ i ] . x−s e s s i on−>f i x p a t h [ i +1] . x ) , 2)
+pow( abs ( s e s s i on−>f i x p a t h [ i ] . y−s e s s i on−>
f i x p a t h [ i +1] . y ) , 2) ) ) ;

saccade count++;
}

}
else i f ( ! s e s s i on−>f i x p a t h [ i ] . on sc r een ) {

o f f ++;
}

}

f i x r a t e = 1000∗ s e s s i on−>f i x p a t h . s i z e ( ) /(double ) s e s s i on−>
t s e s s i o n ;

t f i x mean = f l o o r ( t sum /(double ) on +0.5) ;
saccade length mean = f l o o r ( saccade length sum /(double )

saccade count +0.5) ;

w r i t e r e s u l t s ( s e s s i on−>t r i a l , s e s s i on−>subjec t , s e s s i on−>
f i x r a d i u s ) ;

}

D.10 save bitmap.cpp

/∗∗
∗ @ f i l e save b i tmap . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ Saves a bitmap to a f i l e
∗
∗ @param hDC: handle to the d e v i c e c o n t e x t o f the bitmap
∗ @param hBmp: handle to the bitmap
∗ @param f i l ename : d e s i r e d f i l ename with e x t e n s i o n
∗/

#include <s t r i ng>
#include <windows . h>

#include ” g l o b a l . hpp”

using namespace std ;

void save bitmap (HDC hDC, HBITMAP hBmp, s t r i n g f i l ename )
{

BITMAP bmp;
unsigned int bmp size ;
char ∗bmp bits ;
BITMAPFILEHEADER bmfh ;
BITMAPINFO bmi ;
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HANDLE hFi l e ;
DWORD dwBytesWritten ;

// I n i t i a l i s e bitmap
GetObject (hBmp, s izeof (BITMAP) , &bmp) ;
bmp size = ( (bmp. bmWidth∗24+31) /32) ∗bmp. bmHeight ∗4 ;
bmp bits = new char [ bmp size ] ;

// Set bitmap f i l e header s t r u c t
bmfh . bfType = 0x4d42 ;
bmfh . bfReserved1 = 0 ;
bmfh . bfReserved2 = 0 ;
bmfh . b f S i z e = s izeof (BITMAPFILEHEADER)+s izeof (

BITMAPINFOHEADER)+bmp size ;
bmfh . b fO f fB i t s = (DWORD) s izeof (BITMAPFILEHEADER)+(DWORD)

s izeof (BITMAPINFOHEADER) ;

// Set bitmap i n f o header s t r u c t
bmi . bmiHeader . b i S i z e = s izeof (BITMAPINFOHEADER) ;
bmi . bmiHeader . biWidth = bmp. bmWidth ;
bmi . bmiHeader . b iHe ight = bmp. bmHeight ;
bmi . bmiHeader . b iP lanes = 1 ;
bmi . bmiHeader . biBitCount = 24 ;
bmi . bmiHeader . biCompression = BI RGB ;
bmi . bmiHeader . b iS izeImage = 0 ;
bmi . bmiHeader . biXPelsPerMeter = 0 ;
bmi . bmiHeader . biYPelsPerMeter = 0 ;
bmi . bmiHeader . biClrUsed = 0 ;
bmi . bmiHeader . b iClrImportant = 0 ;

// Get bitmap b i t s
GetDIBits (hDC, hBmp, 0 , bmp. bmHeight , bmp bits , &bmi ,

DIB RGB COLORS) ;

// Write f i l e
hFi l e = Crea teF i l e ( f i l ename . c s t r ( ) , GENERIC WRITE,

FILE SHARE READ, NULL, CREATE ALWAYS,
FILE ATTRIBUTE NORMAL, NULL) ;

Wri teFi l e ( hFi le , &bmfh , s izeof (BITMAPFILEHEADER) , &
dwBytesWritten , NULL) ;

Wri teFi l e ( hFi le , &bmi , s izeof (BITMAPINFOHEADER) , &
dwBytesWritten , NULL) ;

Wri teFi l e ( hFi le , bmp bits , bmp size , &dwBytesWritten , NULL
) ;

CloseHandle ( hF i l e ) ;

// Clean up
delete [ ] bmp bits ;

}
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D.11 GazePlot.cpp

/∗∗
∗ @ f i l e GazePlot . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ GazePlot c l a s s implementat ion
∗/

#include <cmath>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <s t r i ng>
#include <vector>
#include <windows . h>

#include ” g l o b a l . hpp”
#include ”GazePlot . hpp”

using namespace std ;

void save bitmap (HDC, HBITMAP, s t r i n g ) ;

/∗∗
∗ Gets upper l i m i t o f f i x a t i o n d u r a t i o n s
∗
∗ @param f i x p a t h : F i x a t i o n path v e c t o r
∗/

void GazePlot : : get upper ( vector<Point> f i x p a t h )
{

unsigned int i ;

// S t a r t wi th upper e q u a l to lower
upper = t f i x m i n ;

for ( i = 0 ; i < f i x p a t h . s i z e ( ) ; i++) {
i f ( f i x p a t h [ i ] . on sc r een && f i x p a t h [ i ] . t > upper ) {

upper = f i x p a t h [ i ] . t ;
}

}
}

/∗∗
∗ Draws scan path to d e v i c e c o n t e x t
∗
∗ @param f i x p a t h : F i x a t i o n path v e c t o r
∗ @param f i x r a d i u s : F i x a t i o n r a d i u s
∗/

void GazePlot : : draw ( vector<Point> f i x pa th , int f i x r a d i u s )
{
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unsigned int i ;
unsigned int e l l i p s e r a d i u s ;
o s t r ing s t r eam ss ;
s t r i n g text ;
RECT t e x t r e g i o n ;

// Draw saccades as l i n e s
for ( i = 0 ; i < f i x p a t h . s i z e ( ) ; i++) {

i f ( i == 0 | | ! f i x p a t h [ i −1] . on sc r een ) {
MoveToEx( hGazePlotDC , f i x p a t h [ i ] . x , f i x p a t h [ i ] . y

, NULL) ;
}
else i f ( f i x p a t h [ i ] . on sc r een ) {

Se l e c tOb j ec t ( hGazePlotDC , hPurplePen ) ;
LineTo ( hGazePlotDC , f i x p a t h [ i ] . x , f i x p a t h [ i ] . y ) ;

}
}

// Draw f i x a t i o n s as e l l i p s e s
for ( i = 0 ; i < f i x p a t h . s i z e ( ) ; i++) {

i f ( f i x p a t h [ i ] . on sc r een ) {

// F i r s t f i x a t i o n
i f ( i == 0) {

Se l e c tOb j ec t ( hGazePlotDC , hGreenPen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightGreenBrush ) ;

}

// Last f i x a t i o n
else i f ( i == f i x p a t h . s i z e ( )−1) {

Se l e c tOb j ec t ( hGazePlotDC , hRedPen) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightRedBrush ) ;

}

// F i r s t on−screen f i x a t i o n
else i f ( ! f i x p a t h [ i −1] . on sc r een ) {

Se l e c tOb j ec t ( hGazePlotDC , hBluePen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightBlueBrush ) ;

}

// Last on−screen f i x a t i o n
else i f ( ! f i x p a t h [ i +1] . on sc r een ) {

Se l e c tOb j ec t ( hGazePlotDC , hOrangePen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightOrangeBrush ) ;

}

// Regular f i x a t i o n
else {

Se l e c tOb j ec t ( hGazePlotDC , hPurplePen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightPurpleBrush ) ;

}
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// Draw f i x a t i o n e l l i p s e
e l l i p s e r a d i u s = g e t r a d i u s ( f i x p a t h [ i ] . t ,

f i x r a d i u s ) ;
E l l i p s e ( hGazePlotDC , f i x p a t h [ i ] . x−e l l i p s e r a d i u s ,

f i x p a t h [ i ] . y−e l l i p s e r a d i u s , f i x p a t h [ i ] . x+
e l l i p s e r a d i u s , f i x p a t h [ i ] . y+e l l i p s e r a d i u s ) ;

// Write f i x a t i o n number
t e x t r e g i o n = {( long ) f i x p a t h [ i ] . x , ( long ) f i x p a t h

[ i ] . y , ( long ) f i x p a t h [ i ] . x , ( long ) f i x p a t h [ i ] . y
} ;

s s . s t r ( ”” ) ;
s s << i +1;
t ex t = s s . s t r ( ) ;
DrawText ( hGazePlotDC , text . c s t r ( ) , −1, &

t e x t r e g i o n , DT CENTER | DT NOCLIP |
DT SINGLELINE | DT VCENTER) ;

}
}

}

/∗∗
∗ C a l c u l a t e s the r a d i u s o f the e l l i p s e r e p r e s e n t i n g a

f i x a t i o n
∗
∗ @param t : F i x a t i o n durat ion
∗ @param f i x r a d i u s : F i x a t i o n r a d i u s
∗ @return E l l i p s e r a d i u s in p i x e l s
∗/

int GazePlot : : g e t r a d i u s ( int t , int f i x r a d i u s )
{

double weight ;

i f ( upper == lower ) {
weight = 0 ;

}
else {

weight = (double ) ( t−lower ) /( upper−lower ) ;
}

return f l o o r ( f i x r a d i u s ∗weight )+f i x r a d i u s ;
}

/∗∗
∗ Draws f o o t e r to d e v i c e c o n t e x t
∗
∗ @param t r i a l : Sess ion t r i a l name
∗ @param s u b j e c t : Sess ion s u b j e c t name
∗ @param f i x r a d i u s : F i x a t i o n r a d i u s
∗/

void GazePlot : : d raw foote r ( s t r i n g t r i a l , s t r i n g subjec t , int
f i x r a d i u s )
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{
os t r ing s t r eam ss ;
s t r i n g text ;
t ime t now ;

time(&now) ;
tm ∗ ltm = l o c a l t i m e (&now) ;

// Draw f o o t e r background
Se l e c tOb j ec t ( hGazePlotDC , hBlackPen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hWhiteBrush ) ;
Rectangle ( hGazePlotDC , 0 , r e s h e i g h t +1, res width ,

r e s h e i g h t +160) ;

// Draw s e s s i o n d e t a i l s
TextOut ( hGazePlotDC , 20 , r e s h e i g h t +10, ”Gaze Plot ” , 9) ;
TextOut ( hGazePlotDC , 20 , r e s h e i g h t +50, ( ” T r i a l : ”+t r i a l ) .

c s t r ( ) , 7+ t r i a l . l ength ( ) ) ;
TextOut ( hGazePlotDC , 20 , r e s h e i g h t +75, ( ” Subject : ”+

s u b j e c t ) . c s t r ( ) , 9+s u b j e c t . l ength ( ) ) ;
s s << ltm−>tm mday << ”/” << s e t f i l l ( ’ 0 ’ ) << setw (2) <<

ltm−>tm mon+1 << ”/” << ltm−>tm year +1900;
t ex t = s s . s t r ( ) ;
TextOut ( hGazePlotDC , 20 , r e s h e i g h t +100 , ( ”Date : ”+text ) .

c s t r ( ) , 6+text . l ength ( ) ) ;
s s . s t r ( ”” ) ;
s s << f i x r a d i u s ;
t ex t = s s . s t r ( ) ;
TextOut ( hGazePlotDC , 20 , r e s h e i g h t +125 , ( ” F ixat ion rad iu s

: ”+text+” px” ) . c s t r ( ) , 20+text . l ength ( ) ) ;

// Draw leg end
TextOut ( hGazePlotDC , re s w idth /2+20 , r e s h e i g h t +10, ”

Legend” , 6) ;
Se l e c tOb j e c t ( hGazePlotDC , hGreenPen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightGreenBrush ) ;
E l l i p s e ( hGazePlotDC , re s w idth /2+20 , r e s h e i g h t +50,

r e s w idth /2+60 , r e s h e i g h t +90) ;
TextOut ( hGazePlotDC , re s w idth /2+70 , r e s h e i g h t +60, ” F i r s t

f i x a t i o n ” , 14) ;
Se l e c tOb j e c t ( hGazePlotDC , hRedPen) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightRedBrush ) ;
E l l i p s e ( hGazePlotDC , re s w idth /2+20 , r e s h e i g h t +100 ,

r e s w idth /2+60 , r e s h e i g h t +140) ;
TextOut ( hGazePlotDC , re s w idth /2+70 , r e s h e i g h t +110 , ” Last

f i x a t i o n ” , 13) ;
Se l e c tOb j e c t ( hGazePlotDC , hBluePen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightBlueBrush ) ;
E l l i p s e ( hGazePlotDC , re s w idth /2+260 , r e s h e i g h t +50,

r e s w idth /2+300 , r e s h e i g h t +90) ;
TextOut ( hGazePlotDC , re s w idth /2+310 , r e s h e i g h t +60, ”

F i r s t on−s c r e en f i x a t i o n ” , 24) ;
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Se l e c tOb j ec t ( hGazePlotDC , hOrangePen ) ;
Se l e c tOb j e c t ( hGazePlotDC , hLightOrangeBrush ) ;
E l l i p s e ( hGazePlotDC , re s w idth /2+260 , r e s h e i g h t +100 ,

r e s w idth /2+300 , r e s h e i g h t +140) ;
TextOut ( hGazePlotDC , re s w idth /2+310 , r e s h e i g h t +110 , ”

Last on−s c r e en f i x a t i o n ” , 23) ;
}

/∗∗
∗ GazePlot c o n s t r u c t o r
∗ I n i t i a l i s e s c l a s s
∗ C a l l s c l a s s f u n c t i o n s to draw gaze p l o t
∗
∗ @param s e s s i o n : Sess ion c l a s s p o i n t e r
∗/

GazePlot : : GazePlot ( Se s s i on ∗ s e s s i o n )
{

// I n i t i a l i s e d e v i c e c o n t e x t and bitmap
hGazePlotDC = CreateCompatibleDC ( s e s s i on−>hCaptureDC ) ;
hGazePlotBmp = CreateCompatibleBitmap ( s e s s i on−>hCaptureDC ,

res width , r e s h e i g h t +160) ;
Se l e c tOb j e c t ( hGazePlotDC , hGazePlotBmp ) ;
Bi tBl t ( hGazePlotDC , 0 , 0 , res width , r e s h e i g h t , s e s s i on−>

hCaptureDC , 0 , 0 , SRCCOPY) ;

// I n i t i a l i s e g r a p h i c s o b j e c t s
hFont = CreateFont (20 , 0 , 0 , 0 , FW BOLD, FALSE, FALSE,

FALSE, DEFAULT CHARSET, OUT DEFAULT PRECIS,
CLIP DEFAULT PRECIS , DEFAULT QUALITY, DEFAULT PITCH | |
FF DONTCARE, NULL) ;

hPurplePen = CreatePen (PS SOLID , 3 , RGB(128 , 0 , 128) ) ;
hGreenPen = CreatePen (PS SOLID , 3 , RGB(0 , 128 , 0) ) ;
hBluePen = CreatePen (PS SOLID , 3 , RGB(0 , 0 , 128) ) ;
hRedPen = CreatePen (PS SOLID , 3 , RGB(128 , 0 , 0) ) ;
hOrangePen = CreatePen (PS SOLID , 3 , RGB(255 ,140 , 0) ) ;
hBlackPen = CreatePen (PS SOLID , 3 , RGB(0 ,0 , 0) ) ;
hLightPurpleBrush = CreateSol idBrush (RGB(221 , 160 , 221) ) ;
hLightGreenBrush = CreateSol idBrush (RGB(144 , 238 , 144) ) ;
hLightBlueBrush = CreateSol idBrush (RGB(173 , 216 , 230) ) ;
hLightRedBrush = CreateSol idBrush (RGB(240 , 128 , 128) ) ;
hLightOrangeBrush = CreateSol idBrush (RGB(255 , 222 , 173) ) ;
hWhiteBrush = CreateSol idBrush (RGB(255 , 255 , 255) ) ;
Se l e c tOb j e c t ( hGazePlotDC , hFont ) ;
SetBkMode ( hGazePlotDC , TRANSPARENT) ;

// Set lower to minimum f i x a t i o n durat ion
lower = t f i x m i n ;

get upper ( s e s s i on−>f i x p a t h ) ;
draw ( s e s s i on−>f i x pa th , s e s s i on−>f i x r a d i u s ) ;
d raw foote r ( s e s s i on−>t r i a l , s e s s i on−>subjec t , s e s s i on−>

f i x r a d i u s ) ;
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save bitmap ( hGazePlotDC , hGazePlotBmp , ” .\\Data\\”+se s s i on
−>t r i a l+”\\”+se s s i on−>s u b j e c t+” GazePlot .bmp” ) ;

}

/∗∗
∗ GazePlot Des t ruc tor
∗ Cleans up
∗/

GazePlot : : ˜ GazePlot ( )
{

DeleteObject ( hFont ) ;
De leteObject ( hPurplePen ) ;
DeleteObject ( hGreenPen ) ;
DeleteObject ( hBluePen ) ;
DeleteObject (hRedPen) ;
DeleteObject ( hOrangePen ) ;
DeleteObject ( hBlackPen ) ;
DeleteObject ( hLightPurpleBrush ) ;
DeleteObject ( hLightGreenBrush ) ;
DeleteObject ( hLightBlueBrush ) ;
DeleteObject ( hLightRedBrush ) ;
DeleteObject ( hLightOrangeBrush ) ;
DeleteObject ( hWhiteBrush ) ;
DeleteObject ( hGazePlotBmp ) ;
DeleteDC ( hGazePlotDC ) ;

}

D.12 HeatMap.cpp

/∗∗
∗ @ f i l e HeatMap . cpp
∗ @author Thomas Bradford ( thomas . bradford91@gmail . com)
∗
∗ HeatMap c l a s s implementat ion
∗/

#include <ctime>
#include <iomanip>
#include <sstream>
#include <s t r i ng>
#include <vector>
#include <gd ip lu s . h>
#include <windows . h>

#include ” g l o b a l . hpp”
#include ”HeatMap . hpp”

#define TRANSPARENCY 128

using namespace Gdiplus ;
using namespace std ;
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void save bitmap (HDC, HBITMAP, s t r i n g ) ;

/∗∗
∗ Gets upper l i m i t o f g r i d array
∗/

void HeatMap : : get upper ( )
{

unsigned int i ;
unsigned int j ;

upper = lower ;

for ( j = 0 ; j < g r i d h e i g h t ; j++) {
for ( i = 0 ; i < gr id width ; i++) {

i f ( g r id [ i ] [ j ] > upper ) {
upper = gr id [ i ] [ j ] ;

}
}

}
}

/∗∗
∗ Draws heat map to d e v i c e c o n t e x t
∗/

void HeatMap : : draw ( )
{

unsigned int i ;
unsigned int j ;
unsigned int img x ;
unsigned int img y ;
double weight ;
unsigned int R;
unsigned int G;
unsigned int B;

Graphics s c r e en (hHeatMapDC) ;

for ( j = 0 ; j < g r i d h e i g h t ; j++) {
for ( i = 0 ; i < gr id width ; i++) {

i f ( g r id [ i ] [ j ] > 0) {

// C a l c u l a t e normal ised we igh t o f current c e l l
i f ( upper == lower ) {

weight = 0 ;
}
else {

weight = (double ) ( g r id [ i ] [ j ]− lower ) /( upper
−lower ) ;

}
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// Colour i s b l u e wi th i n c r e a s i n g green as
we igh t approaches 0.25

i f ( weight <= 0 . 2 5 ) {
R = 0 ;
G = f l o o r (255∗weight /0 . 25 ) ;
B = 255 ;

}

// Colour i s green wi th d e c r e a s i n g b l u e as
we igh t approaches 0.5

else i f ( weight <= 0 . 5 ) {
R = 0 ;
G = 255 ;
B = c e i l (255∗(1−weight / 0 . 5 ) ) ;

}

// Colour i s green wi th i n c r e a s i n g red as
we igh t approaches 0.75

else i f ( weight <= 0 . 7 5 ) {
R = f l o o r (255∗weight /0 . 75 ) ;
G = 255 ;
B = 0 ;

}

// Colour i s red wi th d e c r e a s i n g green as
we igh t approaches 1

else i f ( weight <= 1) {
R = 255 ;
G = c e i l (255∗(1−weight ) ) ;
B = 0 ;

}

// C a l c u l a t e corresponding p i x e l v a l u e o f top
l e f t corner o f c e l l

img x = res w idth ∗ i / g r id width ;
img y = r e s h e i g h t ∗ j / g r i d h e i g h t ;

// Set brush c o l o u r and f i l l t he r e c t a n g l e
Sol idBrush colourBrush ( Color (TRANSPARENCY, R,

G, B) ) ;
s c r e en . F i l l R e c t a n g l e (&colourBrush , img x ,

img y , c e l l s i z e , c e l l s i z e ) ;
}

}
}

}

/∗∗
∗ Draws f o o t e r to d e v i c e c o n t e x t
∗
∗ @param t r i a l : Sess ion t r i a l name
∗ @param s u b j e c t : Sess ion s u b j e c t name
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∗ @param f i x r a d i u s : F i x a t i o n r a d i u s
∗/

void HeatMap : : d raw foote r ( s t r i n g t r i a l , s t r i n g subjec t , int
f i x r a d i u s )

{
os t r ing s t r eam ss ;
s t r i n g text ;
t ime t now ;
RECT t e x t r e g i o n ;

time(&now) ;
tm ∗ ltm = l o c a l t i m e (&now) ;

Graphics f o o t e r (hHeatMapDC) ;

// Draw f o o t e r background
Rectangle (hHeatMapDC , 0 , r e s h e i g h t +1, res width ,

r e s h e i g h t +160) ;

// Draw s e s s i o n d e t a i l s
TextOut (hHeatMapDC , 20 , r e s h e i g h t +50, ( ” T r i a l : ”+t r i a l ) .

c s t r ( ) , 7+ t r i a l . l ength ( ) ) ;
TextOut (hHeatMapDC , 20 , r e s h e i g h t +75, ( ” Subject : ”+

s u b j e c t ) . c s t r ( ) , 9+s u b j e c t . l ength ( ) ) ;
s s << ltm−>tm mday << ”/” << s e t f i l l ( ’ 0 ’ ) << setw (2) <<

ltm−>tm mon+1 << ”/” << ltm−>tm year +1900;
t ex t = s s . s t r ( ) ;
TextOut (hHeatMapDC , 20 , r e s h e i g h t +100 , ( ”Date : ”+text ) .

c s t r ( ) , 6+text . l ength ( ) ) ;
s s . s t r ( ”” ) ;
s s << f i x r a d i u s ;
t ex t = s s . s t r ( ) ;
TextOut (hHeatMapDC , 20 , r e s h e i g h t +125 , ( ” F ixat ion rad iu s :

”+text+” px” ) . c s t r ( ) , 20+text . l ength ( ) ) ;

// Draw leg end
TextOut (hHeatMapDC , re s w idth /2+20 , r e s h e i g h t +10, ”Legend

” , 6) ;
LinearGradientBrush linGrBrush1 ( Gdiplus : : Point ( r e s w idth

/2+20 , 0) , Gdiplus : : Point ( r e s w idth /2+148 , 0) , Color
(255 , 0 , 0 , 255) , Color (255 , 0 , 255 , 255) ) ;

LinearGradientBrush linGrBrush2 ( Gdiplus : : Point ( r e s w idth
/2+148 , 0) , Gdiplus : : Point ( r e s w idth /2+276 , 0) , Color
(255 , 0 , 255 , 255) , Color (255 , 0 , 255 , 0) ) ;

LinearGradientBrush linGrBrush3 ( Gdiplus : : Point ( r e s w idth
/2+276 , 0) , Gdiplus : : Point ( r e s w idth /2+404 , 0) , Color
(255 , 0 , 255 , 0) , Color (255 , 255 , 255 , 0) ) ;

LinearGradientBrush linGrBrush4 ( Gdiplus : : Point ( r e s w idth
/2+404 , 0) , Gdiplus : : Point ( r e s w idth /2+532 , 0) , Color
(255 , 255 , 255 , 0) , Color (255 , 255 , 0 , 0) ) ;

f o o t e r . F i l l R e c t a n g l e (&linGrBrush1 , r e s w idth /2+20 ,
r e s h e i g h t +50, 128 , 70) ;
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f o o t e r . F i l l R e c t a n g l e (&linGrBrush2 , r e s w idth /2+148 ,
r e s h e i g h t +50, 128 , 70) ;

f o o t e r . F i l l R e c t a n g l e (&linGrBrush3 , r e s w idth /2+276 ,
r e s h e i g h t +50, 128 , 70) ;

f o o t e r . F i l l R e c t a n g l e (&linGrBrush4 , r e s w idth /2+404 ,
r e s h e i g h t +50, 128 , 70) ;

s s . s t r ( ”” ) ;
s s << lower ;
t ex t = s s . s t r ( ) ;
t e x t r e g i o n = {( int ) r e s w idth /2+20 , ( int ) r e s h e i g h t +125 , (

int ) r e s w idth /2+20 , ( int ) r e s h e i g h t +125};
DrawText (hHeatMapDC , text . c s t r ( ) , −1, &t e x t r e g i o n ,

DT CENTER | DT NOCLIP | DT SINGLELINE) ;
s s . s t r ( ”” ) ;
i f ( lower == upper ) {

s s << ” I n f ” ;
}
else {

s s << upper ;
}
t ex t = s s . s t r ( ) ;
t e x t r e g i o n = {( int ) r e s w idth /2+532 , ( int ) r e s h e i g h t +125 ,

( int ) r e s w idth /2+532 , ( int ) r e s h e i g h t +125};
DrawText (hHeatMapDC , text . c s t r ( ) , −1, &t e x t r e g i o n ,

DT CENTER | DT NOCLIP | DT SINGLELINE) ;
}

/∗∗
∗ HeatMap c o n s t r u c t o r
∗ I n i t i a l i s e s c l a s s
∗
∗ @param s e s s i o n : Sess ion c l a s s p o i n t e r
∗/

HeatMap : : HeatMap( Se s s i on ∗ s e s s i o n )
{

unsigned int i ;
GdiplusStartupInput gd ip lusStar tupInput ;

// Set g r i d s i z e
c e l l s i z e = 2∗ s e s s i on−>f i x r a d i u s ;
g r id width = c e i l ( r e s w idth / c e l l s i z e ) ;
g r i d h e i g h t = c e i l ( r e s h e i g h t / c e l l s i z e ) ;

// I n i t i a l i s e g r i d
g r id = new unsigned int ∗ [ g r id width ] ;
memset ( gr id , 0 , g r id width ∗ s izeof (unsigned int ) ) ;
for ( i = 0 ; i < gr id width ; i++) {

g r id [ i ] = new unsigned int [ g r i d h e i g h t ] ;
memset ( g r id [ i ] , 0 , g r i d h e i g h t ∗ s izeof (unsigned int ) ) ;

}

// I n i t i a l i s e d e v i c e c o n t e x t and bitmap



D.12 HeatMap.cpp 114

hHeatMapDC = CreateCompatibleDC ( s e s s i on−>hCaptureDC ) ;
hHeatMapBmp = CreateCompatibleBitmap ( s e s s i on−>hCaptureDC ,

res width , r e s h e i g h t +160) ;
Se l e c tOb j e c t (hHeatMapDC , hHeatMapBmp) ;
Bi tBl t (hHeatMapDC , 0 , 0 , res width , r e s h e i g h t , s e s s i on−>

hCaptureDC , 0 , 0 , SRCCOPY) ;

// I n i t i a l i s e g r a p h i c s o b j e c t s
hFont = CreateFont (20 , 0 , 0 , 0 , FW BOLD, FALSE, FALSE,

FALSE, DEFAULT CHARSET, OUT DEFAULT PRECIS,
CLIP DEFAULT PRECIS , DEFAULT QUALITY, DEFAULT PITCH | |
FF DONTCARE, NULL) ;

hBlackPen = CreatePen (PS SOLID , 3 , RGB(0 ,0 , 0) ) ;
hWhiteBrush = CreateSol idBrush (RGB(255 , 255 , 255) ) ;
Se l e c tOb j e c t (hHeatMapDC , hFont ) ;
Se l e c tOb j e c t (hHeatMapDC , hBlackPen ) ;
Se l e c tOb j e c t (hHeatMapDC , hWhiteBrush ) ;

// I n i t i a l i s e GDI+
GdiplusStartup(&gdiplusToken , &gdip lusStartupInput , NULL) ;

}

/∗∗
∗ HeatMap d e s t r u c t o r
∗ Cleans up
∗/

HeatMap : : ˜ HeatMap ( )
{

unsigned int i ;

for ( i = 0 ; i < gr id width ; i++) {
delete [ ] g r i d [ i ] ;

}
delete [ ] g r i d ;

DeleteObject ( hBlackPen ) ;
DeleteObject ( hWhiteBrush ) ;
DeleteObject (hHeatMapBmp) ;
DeleteDC (hHeatMapDC) ;

GdiplusShutdown ( gdiplusToken ) ;
}

/∗∗
∗ Fuction to draw a ’ number o f f i x a t i o n s ’ heat map
∗
∗ @param s e s s i o n : Sess ion c l a s s p o i n t e r
∗/

void HeatMap : : f i x c o u n t ( Se s s i on ∗ s e s s i o n )
{

unsigned int i ;
unsigned int g r i d x ;
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unsigned int g r i d y ;
RECT t e x t r e g i o n ;

// Set g r i d v a l u e s
for ( i = 0 ; i < s e s s i on−>f i x p a t h . s i z e ( ) ; i++) {

i f ( s e s s i on−>f i x p a t h [ i ] . on sc r een ) {
g r i d x = f l o o r ( s e s s i on−>f i x p a t h [ i ] . x/ c e l l s i z e ) ;
g r i d y = f l o o r ( s e s s i on−>f i x p a t h [ i ] . y/ c e l l s i z e ) ;
g r i d [ g r i d x ] [ g r i d y ]++;

}
}

// Set lower to the minimum number o f f i x a t i o n s
lower = 1 ;

get upper ( ) ;
draw ( ) ;
d raw foote r ( s e s s i on−>t r i a l , s e s s i on−>subjec t , s e s s i on−>

f i x r a d i u s ) ;

// Draw s p e c i f i c f i x a t i o n count d e t a i l s to f o o t e r
TextOut (hHeatMapDC , 20 , r e s h e i g h t +10, ”Heat Map (Number

o f F ixa t i on s ) ” , 30) ;
t e x t r e g i o n = {( int ) r e s w idth /2+20 , ( int ) r e s h e i g h t +125 , (

int ) r e s w idth /2+532 , ( int ) r e s h e i g h t +125};
DrawText (hHeatMapDC , ”Number o f f i x a t i o n s ” , −1, &

t e x t r e g i o n , DT CENTER | DT NOCLIP | DT SINGLELINE) ;

save bitmap (hHeatMapDC , hHeatMapBmp , ” .\\Data\\”+se s s i on−>
t r i a l+”\\”+se s s i on−>s u b j e c t+” HeatMap Fixations .bmp” ) ;

}

/∗∗
∗ Fuction to draw a ’ t o t a l f i x a t i o n durat ion ’ heat map
∗
∗ @param s e s s i o n : Sess ion c l a s s p o i n t e r
∗/

void HeatMap : : t f i x ( Se s s i on ∗ s e s s i o n )
{

unsigned int i ;
unsigned int g r i d x ;
unsigned int g r i d y ;
RECT t e x t r e g i o n ;

// Set g r i d v a l u e s
for ( i = 0 ; i < s e s s i on−>f i x p a t h . s i z e ( ) ; i++) {

i f ( s e s s i on−>f i x p a t h [ i ] . on sc r een ) {
g r i d x = f l o o r ( s e s s i on−>f i x p a t h [ i ] . x/ c e l l s i z e ) ;
g r i d y = f l o o r ( s e s s i on−>f i x p a t h [ i ] . y/ c e l l s i z e ) ;
g r i d [ g r i d x ] [ g r i d y ] += se s s i on−>f i x p a t h [ i ] . t ;

}
}
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// Set lower to the minimum f i x a t i o n durat ion
lower = t f i x m i n ;

get upper ( ) ;
draw ( ) ;
d raw foote r ( s e s s i on−>t r i a l , s e s s i on−>subjec t , s e s s i on−>

f i x r a d i u s ) ;

// Draw s p e c i f i c t o t a l f i x a t i o n durat ion d e t a i l s to f o o t e r
TextOut (hHeatMapDC , 20 , r e s h e i g h t +10, ”Heat Map ( Total

F ixat ion Duration ) ” , 34) ;
t e x t r e g i o n = {( int ) r e s w idth /2+20 , ( int ) r e s h e i g h t +125 , (

int ) r e s w idth /2+532 , ( int ) r e s h e i g h t +125};
DrawText (hHeatMapDC , ” Fixat ion durat ion (ms) ” , −1, &

t e x t r e g i o n , DT CENTER | DT NOCLIP | DT SINGLELINE) ;

save bitmap (hHeatMapDC , hHeatMapBmp , ” .\\Data\\”+se s s i on−>
t r i a l+”\\”+se s s i on−>s u b j e c t+” HeatMap Duration .bmp” ) ;

}

/∗∗
∗ Fuction to draw a ’mean f i x a t i o n durat ion ’ heat map
∗
∗ @param s e s s i o n : Sess ion c l a s s p o i n t e r
∗/

void HeatMap : : t f i x mean ( Se s s i on ∗ s e s s i o n )
{

unsigned int i ;
unsigned int j ;
unsigned int g r i d x ;
unsigned int g r i d y ;
RECT t e x t r e g i o n ;

// I n i t i a l i s e two g r i d s
unsigned int f i x c o u n t g r i d [ g r id width ] [ g r i d h e i g h t ] ;
memset ( f i x c o u n t g r i d , 0 , g r id width ∗ g r i d h e i g h t ∗ s izeof (

unsigned int ) ) ;
unsigned int t f i x g r i d [ g r id width ] [ g r i d h e i g h t ] ;
memset ( t f i x g r i d , 0 , g r id width ∗ g r i d h e i g h t ∗ s izeof (

unsigned int ) ) ;

// Set g r i d v a l u e s f o r number o f f i x a t i o n s and t o t a l
f i x a t i o n durat ion

for ( i = 0 ; i < s e s s i on−>f i x p a t h . s i z e ( ) ; i++) {
i f ( s e s s i on−>f i x p a t h [ i ] . on sc r een ) {

g r i d x = f l o o r ( s e s s i on−>f i x p a t h [ i ] . x/ c e l l s i z e ) ;
g r i d y = f l o o r ( s e s s i on−>f i x p a t h [ i ] . y/ c e l l s i z e ) ;
f i x c o u n t g r i d [ g r i d x ] [ g r i d y ]++;
t f i x g r i d [ g r i d x ] [ g r i d y ] += se s s i on−>f i x p a t h [ i

] . t ;
}
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}

// Set g r i d v a l u e s f o r mean f i x a t i o n durat ion
for ( j = 0 ; j < g r i d h e i g h t ; j++) {

for ( i = 0 ; i < gr id width ; i++) {
i f ( f i x c o u n t g r i d [ i ] [ j ] > 0) {

g r id [ i ] [ j ] = f l o o r ( t f i x g r i d [ i ] [ j ] /
f i x c o u n t g r i d [ i ] [ j ]+0 .5) ;

}
}

}

// Set lower to the minimum f i x a t i o n durat ion
lower = t f i x m i n ;

get upper ( ) ;
draw ( ) ;
d raw foote r ( s e s s i on−>t r i a l , s e s s i on−>subjec t , s e s s i on−>

f i x r a d i u s ) ;

// Draw s p e c i f i c mean f i x a t i o n durat ion d e t a i l s to f o o t e r
TextOut (hHeatMapDC , 20 , r e s h e i g h t +10, ”Heat Map (Mean

Fixat ion Duration ) ” , 33) ;
t e x t r e g i o n = {( int ) r e s w idth /2+20 , ( int ) r e s h e i g h t +125 , (

int ) r e s w idth /2+532 , ( int ) r e s h e i g h t +125};
DrawText (hHeatMapDC , ” Fixat ion durat ion (ms) ” , −1, &

t e x t r e g i o n , DT CENTER | DT NOCLIP | DT SINGLELINE) ;

save bitmap (hHeatMapDC , hHeatMapBmp , ” .\\Data\\”+se s s i on−>
t r i a l+”\\”+se s s i on−>s u b j e c t+” HeatMap MeanDuration .bmp”
) ;

}
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Sample Output

------------------------------------------------------------------------

Gaze Analyser Results

------------------------------------------------------------------------

Session Details

------------------------------------------------------------------------

Trial: Sample

Subject: Thomas

Date: 29/10/2014

Screen resolution: 1366x768

Fixation radius: 20 px

Session duration: 0:30 min

------------------------------------------------------------------------

Metrics

------------------------------------------------------------------------

On-screen fixations: 54 (90.0%)

Off-screen fixations: 6 (10.0%)

Overall fixation rate: 1.9 fixations/s

Mean on-screen fixation duration: 485 ms

Mean on-screen saccade length: 139 px

------------------------------------------------------------------------

Figure E.1: Sample eye tracking results and metrics calculated using the low-cost eye

tracking system.
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No. x y T On-Screen

1 122 174 1197 Yes

2 168 166 171 Yes

3 212 161 167 Yes

4 411 159 585 Yes

5 673 149 1110 Yes

6 129 266 292 Yes

7 81 294 1463 Yes

8 71 336 705 Yes

9 85 367 536 Yes

10 94 399 1125 Yes

11 98 426 484 Yes

12 297 281 504 Yes

13 330 285 534 Yes

14 504 415 1007 Yes

15 333 328 220 Yes

16 614 328 199 Yes

17 360 341 219 Yes

18 796 332 379 Yes

19 345 390 657 Yes

20 366 409 172 Yes

21 423 408 168 Yes

22 475 403 194 Yes

23 341 464 821 Yes

24 4636 -8400 203 No

25 2193 43 203 No

26 2224 97 156 No

27 2235 142 579 No

28 2226 158 164 No

29 1101 374 153 Yes

30 1243 302 468 Yes

No. x y T On-Screen

31 1232 284 649 Yes

32 1281 293 224 Yes

33 1322 298 294 Yes

34 1222 401 1270 Yes

35 1252 419 251 Yes

36 1297 421 344 Yes

37 1233 470 687 Yes

38 1280 481 301 Yes

39 1298 493 443 Yes

40 1268 516 240 Yes

41 1247 544 408 Yes

42 1285 561 1080 Yes

43 1282 582 307 Yes

44 1264 617 313 Yes

45 1282 651 735 Yes

46 1273 665 168 Yes

47 422 589 203 Yes

48 371 609 395 Yes

49 558 627 157 Yes

50 368 535 500 Yes

51 342 536 128 Yes

52 590 534 538 Yes

53 642 530 282 Yes

54 677 524 841 Yes

55 418 1333 243 No

56 364 216 251 Yes

57 318 200 252 Yes

58 634 192 289 Yes

59 697 192 666 Yes

60 284 211 419 Yes

Table E.1: Fixations identified in the sample eye tracking session.
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Figure E.2: Sample gaze plot generated using the low-cost eye tracking system.

Figure E.3: Sample ‘fixation count’ heat map generated using the low-cost eye tracking

system.
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Figure E.4: Sample ‘fixation duration’ heat map generated using the low-cost eye tracking

system.

Figure E.5: Sample ‘mean fixation duration’ heat map generated using the low-cost eye

tracking system.
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