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Abstract 

 

Network capacity utilisation is the ratio of the average energy demand to the installed 

capacity required to meet peak demand. Network capacity utilisation is one of the 

biggest problems faced by network operators in Australia and around the world. As a 

response to high peak demands, network operators expand the generation and 

network capacity. This results in large investments in infrastructure that only 

operates a couple of hours annually. Investment and operation costs of the 

underutilised infrastructure are passed on to customers through increased energy 

prices. Accordingly, there is a need to control peak demand, and distributed energy 

storage systems hold promise for this application.  

The immediate objective of this research project is to improve utilisation of network 

assets in an urban area with distributed energy storage systems. The NSW network 

was analysed under both winter and summer conditions to determine the size of the 

peak demand and the unused network capacity during the off peak period that could 

be used for charging energy storage systems without creating a peak. The minimum 

number of households required to be programmed to use energy storage systems 

during peak periods in order to avoid the network peak demand and the maximum 

number of households that the network could charge in the off peak period without 

creating a peak demand were determined. A model was developed to evaluate the 

effectiveness of distributed energy storage systems on the NSW network. A power 

flow analysis was conducted to analyse the voltage regulation capabilities of 

distributed energy storage systems at demand nodes on the network.  

Analysis and simulation results showed that distributed energy storage systems are a 

viable solution to improving network capacity utilisation.  
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Chapter 1:    Introduction 

 

 

 

1.1 Electricity Network Capacity Utilisation 

 Balancing electricity supply and demand is one of the biggest issues faced by power 

companies in Australia and around the world. The fact that electrical energy is 

consumed at the same time as it is generated means that supply and demand must be 

balanced in real time. With an ever increasing peak demand, power electricity 

suppliers must ensure the grid has the required capacity to meet the demand at all 

times. 

 Electricity suppliers use different strategies to ensure energy demand does not 

exceed supply capacity. This requires installing backup power stations known as 

peaking power plants, expanding transmission and distribution infrastructure, using 

demand management strategies etc. This approach solves the problem but leaves 

power providers with billions of dollars invested in underutilised infrastructure that 

only operate for a few days a year and energy consumers with increased price of 

electricity to cover investments and running costs of the underutilised infrastructure .  

Energy demand varies from time to time and the price of electricity varies 

accordingly. When energy demand exceeds the average demand, power suppliers are 

forced to operate peaking power plants or buy more expensive power from other 

companies to supplement their supply, thus higher price of electricity. During off-

peak periods the energy demand is less and the need for costly types of generation is 

not needed, thus reduced price of electricity.  

Energy storage systems can be used to store energy during off-peak periods for use 

during peak periods. For energy providers, stored energy can be reinjected back into 

the power grid during peak periods and reduce generation costs. For consumers, 



 

 

 

energy storage systems can be used to store low cost electricity during off-peak 

periods for use during peak periods when the price of electricity is high.  

By reducing the energy demand during peak periods using distributed energy storage 

systems, the required generation capacity to meet peak demand can be reduced, 

unnecessary infrastructure expansion can be avoided and the existing network 

capacity utilisation can be improved. 

 

1.2 Project Aim 

The aim of this project is to improve utilisation of network assets in an urban area 

with distributed energy storage systems. 

 

1.3 Project Objectives  

For completion, this project was divided into a number of deliverable outcomes: 

 Research electricity network utilisation issues 

 Research energy storage technologies  

 Design an energy Storage System to meet  energy requirements  

 Analyse electricity network  

 Model effectiveness of distributed ESS  on the   network 

 Assess cost effectiveness of ESS using HOMER ENERGY software
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1.4 Overview of the Dissertation  

This dissertation is organised as follow: 

Chapter 2 discusses electricity network capacity utilisation issues and the existing 

strategies to improve network capacity utilisation. Investigations on existing 

approaches to peak demand management are to evaluate the effectiveness of 

these approaches and to recommend a basis to consider a new approach. Types 

of energy storage technologies are discussed.  

Chapter 3 details the methodology used for analysis and simulation required to achieve 

the goal of this research project.  

Chapter 4 discusses, interprets and evaluates the results of this research project. 

Chapter 5 details the analysis and simulation results of this research project  

Chapter6 summarises the work achieved, conclusions, limitations, recommendations and 

identifies further research and development.  
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Chapter 2:    Literature Review  

 

 

2.1 Introduction 

In Australia and around the world, maximising electricity network capacity 

utilisation is still a big challenge to energy providers. According to Ergon Energy 

(2013), network utilisation is an important driver of network performance and 

investment efficiency.  

Underutilisation of electricity network capacity is the result of network capacity 

expansion as response to the increasing peak energy demand. According to DEEDI 

(2011), the rising network and generation costs affect consumers through higher 

electricity prices. Despite billions of dollars spent on network capacity expansion, it 

is still argued not to be the most efficient approach to solve the peak demand 

problem. According to Productivity commission (2013, p.227), “while much of the 

recent increase in network capacity appears to be related to peak demand, it is not 

clear that increased investment was an efficient response”.  

According to DEEDI (2011), due to population growth in Queensland, the peak 

demand capacity is expected to increase from approximately 8,300 MW in 

2008/2009 to more than 12,800 MW by 2020 and more than $15 billion in capital 

infrastructure will be required to be able to keep up with the increase in peak 

demand. 

Different energy management strategies have been used alongside network capacity 

expansion as response to peak energy demand, however, peak energy demand is still 

a big threat to energy providers and a financial problem to energy consumers.  

The overall goals of this chapter are firstly to establish the significance of the general 

field of study, and then identify a place where a new contribution could be made. The 

bulk of the chapter is on critically evaluating the causes of electricity network 

capacity utilisation and the existing strategies used as response to this problem. 

Energy storage technologies were evaluated.  
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2.2 Network Capacity Utilisation Issues  

 

2.2.1 Network Capacity Utilisation 

Network capacity utilisation is defined as the ratio of the average demand to the 

installed capacity required to meet peak demand. Different measures are used to 

determine network capacity. According to Productivity Commission (2013), network 

capacity is measured by the product of total installed transformer capacity (in MWA) 

and the aggregate length of network lines (in circuit km). When comparing network 

performances, the ratio of network capacity to peak load is used as an indicative 

measure.  

According to Ergon Energy (2013), network capacity utilisation is an important 

driver of network performance and investment efficiency.  

 

2.2.2 Causes of Peak Demand 

The need for energy is not the same throughout the day. There are times of the day 

when people’s need for energy is higher than other times. According to Energy 

Action (2014), “peak demand refers to the highest amount of electricity being 

consumed at any one point in time across the entire network”. Peak demand results 

from many users using a lot of electricity at the same time. The peak demand varies 

from hour-to-hour, season to season and year to year.  

 

Daily Peak Demand  

Normally, daily peak demand occurs during the times when most people arrive home 

and simultaneously switch on televisions, air conditioners, washing machines, dryers, 

cookers, lights, computers and other household appliances. Daily peak demand 

usually occurs between 4 pm and 8pm (Energex, 2014).  
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Network Peak Demand  

Network peak demand occurs only a few times a year. Major spikes in energy 

demand result from extreme weather conditions when a much higher number of 

households and offices use high-energy appliances such as air-conditioners to cool 

down or warm up homes and workplaces at the same time as other daily appliances 

(Energex, 2014).  

 

2.2.3 Effects of Extreme Weather Conditions  

When extreme weather conditions occur, energy demand becomes very high and 

major spikes are observed due excessive use of air conditioners at work places and in 

households. As indicated on Figure 2.1, the difference between the average demand 

of three hottest days and the average demand of a full year is very significant. 

 

Figure 2.1:  Comparison between two consecutive summer days at different ambient 

temperatures (Energex, 2014). 
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2.2.4 Load Curves for Typical Electricity Grid  

 

Figure 2.2:  Load curves for typical electricity grid (World Nuclear Association, 2014). 

 

Base Load  

Base load is the amount of electricity that is demanded and produced at any time. It 

relates to the minimum level of electricity demand on an electrical supply system 

over 24 hours. Even though the electricity demand drops during the late evening and 

early morning, it never goes a certain base level. Grid operators must ensure the grid 

is able to supply the base load throughout the year, even during the lowest demand 

periods. Normally base load plants operate continuously and only stop for repair or 

when maintenance is needed (New York AREA, 2008).  

In most cases, base load is produced using nuclear, hydroelectric power or brown 

coal plants, and depending on regional availability, hydro and geothermal plants can 

also be used. These types of plants take a long time to start up and produce energy at 

a constant rate and at low cost compared with other energy production plants (Global 

Energy Network Institute, 2012).  
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When electricity demand goes beyond the base load level, intermediate or peak 

power plants are used to supply the additional demand. For most power systems, 

base load power is usually 35-40 percent of the maximum load during the year (New 

York AREA, 2008).  

 

Intermediate Load  

Intermediate load is the middle load. Intermediate load plants, also known as load 

following plants, adjust their power outputs as demand for electricity fluctuates 

throughout the day. These types of plant are easier and faster to regulate. They are in-

between base load and peaking plants in efficiency, speed of start-up and shutdown, 

construction cost, cost of electricity and capacity factor (Global Energy Network 

Institute, 2012). 

Intermediate load plants generally operate 30 to 60 percent. Wind and solar can be 

considered intermediate power sources. Due to their nature, both sources are 

intermittent due to their dependency on weather conditions. Even though wind and 

solar are not always available when needed, they can still play a big role as 

intermediate sources and help reduce the need for fossil fuel intermediate load plants 

during high demand days (New York AREA, 2008). 

 

Peak Load  

Peak load related to high electricity demand that results from unexpected extreme 

weather conditions such as very hot days during winter or very cold days during 

winter. These events lead to excessive use of air conditioners on top of normal 

appliances. When the system demand is high, peak load power plants are used. These 

types of plants have faster response times, normally within seconds to a few minutes. 

They are used as response to changes in electrical demand as they can vary the 

quantity of electrical output fairy quickly. 

Peak load power plants are generally natural gas combustion turbines but sometimes 

do run on light oil. Generally, peak load power plants only operate for between 10 to 
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15 percent of the time and use more expensive fuel, resulting in a very expensive 

operational cost (New York AREA, 2008). 

 

2.2.5 Consequences of Peak Demand  

According to Government of South Australia (2014), historically, infrastructure 

expansion such as building additional power stations or upgrading network capacity 

has been used as the primary response to increasing peak demand.  

Productivity Commission (2013) argues that peak demand is the key driver of 

investment in generation and network capacity.  

 To avoid damages that may result from energy demand exceeding network capacity 

such as damage to equipment and loss of network performance, which can result in 

partial or full system failure, utilities  must ensure the network capacity is able to 

handle the energy demand at all times (Productivity Commission, 2013). 

The additional generation and network capacity requires large investments but only 

operates on maximum peak demand days, which add up to a couple of days annually. 

According to Productivity Commission (2013), in New South Wales the 

infrastructure used to support the grid during high peak demand periods only operate 

for less than 40 hours a year, which is less than 1% of time, but accounts for about 25 

percent of retail electricity bills. To cover investment and running costs of these 

assets, costs are passed on to consumers through increased electricity prices. 

 Peak demand affects both utilities and consumers. Consumers end up paying higher 

electricity prices to cover the cost of additional infrastructure they barely use while 

utilities end up with un-necessary infrastructure and underutilised electricity network 

capacity (Productivity Commission, 2013). 
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2.3 Energy Demand Management  

Demand management involves administration of when and how electricity is used to 

ensure a reliable supply. The purpose of demand management is to offer potential 

solutions to the problem of peak demand. This is achieved by encouraging energy 

consumers to reduce their energy usage during peak hours and, where possible, shift 

some energy consuming activities to off –peak hours such as night times and 

weekends (Productivity Commission, 2013). 

 When peak energy demand is lowered, the need to invest in infrastructure expansion 

for additional generation and network capacity in order to cope with a higher peak 

demand is also reduced or avoided. Keeping the peak energy demand levels low is 

important to efficiently expand the network and keep electricity prices reasonable 

(Western power, 2014).  

Figure 2.3 shows the existing Australian and Stage Government energy efficiency 

and demand management programs.   

 

Figure 2.3: Existing Australian and State Government energy efficiency and demand 

management programs (DEEDI, 2011). 
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2.4 Types and Features of Energy Storage Technologies  

In this section the types of energy storage technologies and their features are 

discussed. Energy storage technologies are classified according to the form of energy 

used and an overview of each storage technology is given.  

 

2.4.1 Energy Storage  

According to Akhil et al. (2013), energy storage mediates between variable sources 

and variable loads.  If energy is not stored, energy generation must equal energy 

consumption.  Energy storage enables energy generated at one time to be used at 

another time. 

 

2.5 Energy Storage Systems (ESS) 

Energy Storage Systems are devices that store energy when energy production 

exceeds energy demand and used when energy demand is high. Energy generation 

and consumption happen in real time. To avoid wastage of the excess energy 

produced, a storage system is required. Moreover, renewable energy sources such as 

wind and solar depend on weather conditions and time of the day. 

 To be able to take full advantage of renewable energy sources, energy produced by 

renewable sources needs to be stored whenever it is available so that it can be used 

when it is needed (Carnegie et al., 2013). 

 

2.6 Classification of Energy Storage Systems  

Classification of energy storage systems is based on the form of energy used. 

According to (UBS, 2012), there are five main energy storage methods:  chemical, 

electrochemical, electrical, mechanical, and thermal.  Figure 2.4 indicates the 

classification of electrical storage system.  
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Figure 2.4: Classification of electrical energy storage systems according to energy form 

(IEC, 2011). 

 

2.6.1 Mechanical Energy Storage Systems 

In mechanical energy storage, different methods are used to store energy. According 

to (IEC, 2011), the most common mechanical storage systems are Pumped 

Hydroelectric Storage (PHS), Compressed Air Energy Storage (CAES) and Flywheel 

Energy Storage (FES). 

 

2.6.1.1 Pumped Hydro Storage (PHS) 

 

 Lifetime and Efficiency 

Pumped Hydro Storage plants have an efficiency range of 76% to 85% depending on 

the design. Pumped hydro plants have very long lifetimes, ranging between 50-60 

years (Akhil et al., 2013). 
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 Advantages 

The advantages of pumped hydro storage systems include: very long lifetime, 

practically unlimited cycle stability of the installation, fast response time, lower 

emissions than fossil fuel-fired generators, they are considered as renewable energy 

sources (Carnegie et al. 2013).  

 

 Disadvantages 

Disadvantages of pumped hydro storage systems include: dependence on 

topographical condition and large land use, water availability, environmental impact 

such as forest removal for large systems, disturbance of the surrounding watersheds 

and ecosystem (Carnegie et al. 2013). 

 Applications 

Pumped hydro storage systems are used for energy management via time shift, 

control of electrical network frequency; provide reserve generation, and level 

fluctuating output of intermittent energy sources (Carnegie et al. 2013). 

 

2.6.1.2 Compressed Air Energy Storage (CAES) 

Concept 

Compressed Air Energy Storage (CAES) is a system used to store energy during 

peak period for use during-off peak period. The simple version of the system uses a 

compressor to store energy as compressed air in an air-tight vessel. To covert the 

stored energy back to electricity, the cool and pressurized air is reheated and mixed 

with fuel, passed through an expansion turbine where it is combusted to drive an 

electric generator. Typical underground options for storage include: -caverns and 

abandoned mines. Compressed Air Energy Storage Systems exist in two different 

types - bulk and small.  

Bulk CAES is suitable for energy need greater than 5 hours or from one hundred to 

thousands of megawatts. Its capacity ranges from 300 MW to 400 MW over the 
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course of 10 to 30 hours. This size of CAES is suitable for regulation control and 

combination of load shifting, regulation control and spinning reserve. 

Smaller CAES are installed above the ground and have capacities in the order of 10 

to 20MW with shorter discharge time, which is typically less than 5 hours. This size 

of CAES is suitable for both short and long duration time shift applications. 

Depending on different factors such as sitting, construction, and system design, both 

types of CAES systems’ capacities and discharge time will vary. 

Three different major technologies are used in compressed air energy storage 

systems. This includes –diabatic, the most developed of the three and uses heat 

added during the expansion period in order to increase the system power capacity, 

adiabatic, which retains the heat produced by compression then returns it to the air 

when the fair is expanded for power generation, near-isothermal, which keeps the air 

temperature nearly constant by compressing and expanding slowly (Carnegie et al. 

2013). 

 

Figure 2.6: Schematic of an underground CAES (IEC, 2011). 

 

 Lifetime and efficiency 

The efficiency of Compressed Air Energy Storage system varies from one 

technology to another and geological features. For traditional large compressed air 
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energy storage systems, the efficiency is estimated between 73 and 89 percent. For 

diabatic system, the efficiency drops as the result of using energy in the compression 

and heating process. Efficiency can also be affected if air escapes into surrounding 

formations and pressure is lost (Carnegie et al. 2013).  

 

 Applications 

Compressed Air Storage Systems are mainly used for the following applications: 

load shifting, regulation control and spinning reserve.  

 

 Advantages 

Advantages of CAES include: high reliability and large capacity (IEC, 2011).  

  

 Disadvantages 

Disadvantages of CAES include: geographic limitation for large subterranean CAES, 

low round-trip efficiency and safety concerns due to high pressures necessary for 

bulk CAES, the combination of leftover, flammable hydrocarbons, heat from the 

compression process, and oxygen creates a potential for explosion (Carnegie et al. 

2013).  

 

2.6.1.3 Flywheel Energy Storage (FES) 

 

Concept 

 Flywheel energy storage system converts electricity to rotational kinetic energy. A 

rotating mass known as a rotor is used to capture energy. The charging is achieved 

by using an electric motor to accelerate the rotor to a very high speed and energy is 

maintained in the system as rotational energy. The system is able to maintain energy 

by keeping the rotational speed constant .Increasing the speed of the rotor increases 
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the amount of energy stored in the system. Discharging is achieved by allowing the 

momentum to power the motor-generator and the rotational energy is converted back 

to electricity (IEC, 2011). The inside of a flywheel is shown in figure 2.7. 

 

 

Figure 2.7: Inside of a flywheel (Global Energy Network Institution, 2012). 

 

A modern single flywheel can achieve a spinning speed of up to 16,000 rpm and 

supply a capacity up to 25kWh, which can be absorbed and injected almost instantly 

(Global Energy Network Institution, 2012).  

 Despite the capability to provide energy for up to one hour, flywheel storage 

systems are commonly considered short discharge duration technologies and  

suitable for uninterruptible power supply and quality applications (Carnegie et al. 

2013). 
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Figure 2.8: Flywheel energy storage components (Carnegie et al. 2013). 

 

 Lifetime and efficiency 

One of the advantages of flywheels is their longer lifetime compared with other 

energy storage systems. Flywheels can last decades with little or no maintenance. 

Commercial flywheel energy storage units have a lifecycle of up to 100,000 charge-

discharge cycles. On top their long life times, flywheels also have high energy 

densities (100-130Wh/kg) and large maximum power output. Flywheels have a 

round trip efficiency ranging between 70 and 80 percent and have standby losses of 1 

to 2 percent of the rated power output (Carnegie et al.2013).  

 

 Advantages 

The advantages of flywheels energy storage systems include excellent cycle stability, 

long life, little maintenance, high power density, temperature change resistance, 

environmentally friendly, instantaneous response time, small area requirement and 

easy energy content identification (IEC, 2011).  
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 Disadvantages 

Despite all the advantages, flywheels have a high level of self-discharge and suffer 

from low current efficiency (IEC, 2011). According to Carnegie et al. (2013), 

operating noise may also be a problem on sitting of a flywheel storage system.  

 

 Application 

Flywheel energy storage systems were first used to smooth steam engine generation 

in large power electric power stations. The technology has been used in power 

supply for power quality maintenance and reliability. The storage system regulates 

frequency and provides protection against transient interruptions. Flywheels were 

first considered for energy storage in 1960s.  

The flywheel storage system with a capacity of providing 340MW for 30 seconds is 

the largest and used for f in Japan.  Flywheel systems with capacities ranging 

between 100kW to 2MW with discharge times of between 5 to 10 seconds are used 

for power applications. 

 Flywheel systems with the capacity to store between 0.5 to 1kWh of energy are used 

for energy applications.  This technology is a common choice for uninterruptible 

power supply and power quality applications due to its instantaneous response time 

(Carnegie et al.2013).  

 

2.6.2 Chemical Energy Storage  

Chemical energy storage involves the storage of energy in the bonds of chemical 

compounds such as atoms and molecules. Chemical energy storage is the sole 

technology that allows storage of large amounts of energy. The technology can store 

up to the TWh range and this energy can be held for longer periods (IEC, 2011). The 

type of chemical energy storage considered in this project is hydrogen.  
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2.6.2.1 Hydrogen (H2) 

 

Concept 

This technology uses hydrogen as the energy carrier. The production of hydrogen is 

achieved by using excess electricity to produce hydrogen via water electrolytes.  This 

storage system is made up of a tank, an electrolyser and a fuel cell. The tank is used 

for hydrogen storage; the electrolyser is an electrochemical converter and is used to 

split water into hydrogen and oxygen with the help of electricity.  

Hydrogen can be stored using different approaches. This can be in the form of a gas 

under high pressure, a liquid at very low temperature, chemically boded in complex 

hybrids, or absorbed on metal hybrids. When electricity is needed, hydrogen and 

oxygen are joined together into the fuel cell for an electrochemical reaction to take 

place. This reaction produces water and releases heat and electricity is generated 

(IEC, 2011).  

 

 Lifetime and Efficiency 

The overall efficiency of AC-AC is about 40 percent (IEC, 2011).   

 

 Advantages 

Large scale storage, volumetric storage density, scope for expansion (Hydrogen and 

electricity storage, n.d). 

 

 Disadvantages 

Expensive, weight and volume, less efficient, inadequate durability, long refuelling 

times (Fuel from the water, 2014). Other disadvantages include: energy balance, C02 

reduction and technology availability (Hydrogen and electricity storage, n.d).  



 

 

Page | 20  

 

 Applications 

For peaking plants (for gas and steam turbines with power of up hundreds of MW), 

could be used as peaking plants, stationary application and industrial applications 

(IEC, 2011). Other applications include: transportation (Fuel from the water, 2014).  

 

2.6.2.2 Electrochemical energy storage 

When charging, electrochemical energy storage systems convert electrical energy 

into chemical energy. This technology consists of two different technologies- 

electrochemical batteries and electrochemical capacitors (Carnegie et al. 2013).  

 

2.6.2.3 Electrochemical batteries 

According to Carnegie et al. (2013), electrochemical batteries exist in three different 

extensive categories. This includes: conventional, high temperature, and flow 

batteries.  This section discusses the different categories of electrochemical batteries.  

 

Conventional batteries  

Conventional batteries are made of cells with two electrodes and electrolyte which 

are sealed in a container. This technology includes: Lead acid, Nickel-Cadmium, and 

Lithium-Ion (Carnegie et al. 2013). 

 

I. Lead-Acid battery (LA) 

Concept 

Lead acid batteries are the most mature of the electromechanical energy storage 

systems and are the most used battery type in the world (IEC, 2011).  Lead acid 

batteries exist in two broad categories – vented (flooded) and (VRLA) valve-

regulated (sealed).Each of these categories has its subcategories. The subcategories 
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of vented lead acid batteries are: starting, lighting, and ignition (SLI); deep-cycle and 

stationary.  The subcategories of valve-regulated lead acid batteries are: absorbed 

glass mat (AGM) valve-regulated lead acid batteries and gelled electrolyte valve-

regulated lead acid batteries. Lead acid batteries have a nominal voltage of 2V and a 

round trip efficiency ranging between 75 and 85 percent (Carnegie et al. 2013). 

The inside of a Lead-Acid is shown in Figure 2.9. 

 

 

Figure 2.9: The inside of a Lead-Acid battery (Global Energy Network Institution, 2012). 

 

 Lifetime and efficiency 

The typical lifetime of lead acid batteries varies between 6 to 15 years with a 

lifecycle of 1500 cycles at 80 percent depth discharge. The cycle efficiency of lead-

acid batteries is between 80 percent and 90 percent .The SLI flooded lead acid 

batteries are not relatively durable and last between 5 and 7 years (IEC, 2011). 

 At 100 percent depth of discharge, SLI flood batteries have a lifecycle ranging 

between 30 to 100 cycles. Deep-cycle flooded lead acid batteries have life 

expectancy ranging between 3 and 5 years. At 100 percent depth of discharge, deep-

cycle flooded lead acid batteries have a life cycle of up to 1,000 cycles. Stationary 
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flooded lead acid batteries are the strongest in this subcategory with a life expectancy 

ranging between 15 and 30 years. Absorbed glass mat valve-regulated lead acid 

batteries and gelled electrolyte valve-regulated lead acid batteries have lifetime 

ranging between 5 and 10 years (Carnegie et al. 2013).  

 

 Advantages 

The advantages of lead acid batteries include: low cost, simple to manufacture, 

reliable and well-understood technology, low self-discharge (among the lowest in 

rechargeable batteries), low maintenance requirements (no memory, no electrolyte to 

fill), can provide high discharge rates (Battery University, 2014). 

 

 Disadvantages 

Lead-acid batteries have low specific energy and power, short lifecycle, high 

toxicity, self-discharge, sensitivity to temperature, sulfation, hydration, and 

degradation. Valve-regulated lead acid batteries are sensitive to temperature, 

overcharge and discharge, corrosion and water loss .Other disadvantages of lead acid 

batteries include: cannot be stored when discharged, only suitable for standby use 

where only occasional deep discharge is needed, transportation limitations due to 

environmental concerns for flooded lead acid batteries regarding spillage in case of 

an accident (Carnegie et al. 2013). 

 

 Application 

Lead acid batteries were first used in 1870s in central electric plants for load 

levelling and peaking (Carnegie et al. 2013). 

 From 1910 to 1945, in the electrification age, this technology was used for grid 

energy. The current applications of Lead-acid batteries include: emergency power 

supply systems, stand-alone systems with PV, starter battery in vehicles, and battery 

systems for mitigation of output variations from wind power (IEC, 2011).  
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The SLI subcategory of flooded lead acid batteries is best suited for short term power 

quality applications, grid angular stability and grid voltage stability. Deep-cycle 

flooded lead acid batteries are best suited for deep discharge applications. Stationary 

flooded lead acid batteries are best suitable for power supply for controls and 

switching operations, for storing standby emergency power in utility substations, for 

use in power generation plants, for telecommunication systems, for grid frequency 

stability and for combined applications. Valve-regulated lead acid batteries are best 

suitable for uninterruptible power supplies (Carnegie et al. 2013). 

 

II. Nickel cadmium (NiCd) and other Nickel electrode batteries 

 

Concept 

Nickel cadmium is a type of rechargeable battery that uses nickel oxide hydroxide 

and metallic cadmium as electrodes. This type of batteries is known as dry cell 

batteries. Nickel based batteries perform better than lead acid batteries. They have a 

higher power delivery capabilities, higher energy density, higher lifecycle, more 

reliable and perform better even at low temperatures (IEC, 2011).  

When charging, Nickel cadmium batteries allow conversion of electrical energy to 

chemical energy. When discharging, the stored chemical energy is converted back to 

electrical energy (Bellis, 2014).  

 Nickel cadmium batteries provide a large battery systems version that use vented 

NiCd batteries and are currently only used for stationary purposes in Europe and are 

not available for customer use (IEC, 2011).  

 In the Nickel based batteries, only two have utility scale energy storage 

demonstrations or commercial installations: Nickel- cadmium and Nickel-iron. 

Nickel cadmium is still the most preferred for utility energy storage applications 

(Carnegie et al. 2013). 

Nickel ion (NiFe) batteries are robust and tolerant of conditions such as overcharge, 

over discharge, and short-circuit. Nickel ion batteries have a long lifecycle and are 
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preferred for use as backup power supply where continuous charging is not a 

problem (The Nickel Ion Battery Association, 2014). 

Nickel metal hydride batteries (NiMH) were developed with the intention to replace 

Nickel cadmium batteries. They come with all the positive features of Nickel 

cadmium batteries except a much lower maximum nominal capacity compared to 

other battery types such as lead acid and nickel cadmium batteries (IEC,2011). 

  

 Lifetime and efficiency 

Nickel cadmium batteries have a lifecycle of up to 1000 charge/discharge cycles 

(Battery University, 2014).  Nickel ion batteries have a lifetime of 30-100 years and 

charge/discharge efficiency ranging between 65 percent and 85 percent (The Nickel 

Ion Battery Association, 2014). According to Carnegie et al.( 2013), pocket plate 

industrial nickel cadmium batteries have  lifecycle ranging between 800 and 1,000 

cycles, sintered-plate nickel cadmium batteries can stand up to3,500 both at 80 

percent depth of discharge. 

 

 Advantage 

The advantages of Nickel cadmium batteries include: higher energy density, and high 

power delivery capabilities, hardness, reliable, longer lifecycle, fast and simple 

charge can be recharged even at low temperatures, easy to store and transport and 

exist in different sizes and performance options (Battery University, 2014). Nickel 

ion batteries are robust, can be overcharged for decades without damage, can be left 

discharged for years and ready for reuse whenever needed, ability to withstand 

vibrations, high temperatures and physical stress.  

 

 Disadvantage 

The disadvantages on Nickel cadmium batteries include: more expensive than lead 

acid batteries, toxic, environmentally unfriendly, low energy density compared with 
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newer systems, memory effect and high self-discharge rate (Battery University, 

2014). 

 Applications 

 

Nickel cadmium batteries are more suitable where long lifetime, high discharge rate, 

and economical price are important. The main applications are for:  two-way radios, 

biomedical equipment, professional video cameras and power tools (Battery 

University, 2014). 

 Nickel ion batteries have been used in European mining operations and are being 

reviewed for possible use in modern electric vehicle applications; wind and solar 

power systems .They are also being used in Australia for solar homes (The Nickel 

Ion Battery Association, 2014). 

 

III. Lithium ion batteries (Li-Ion) 

 

Concept 

Lithium-ion batteries store energy by allowing lithium ion to flow from the positive 

oxide electrode to the negative graphite electrode. Energy is released by reversing the 

flow of lithium ions (Carnegie et al. 2013).  

The construction of Lithium-ion batteries is a bit similar to a capacitor, using three 

different layers curled up as a way to minimize space. The first layer, which is made 

of a lithium compound, is used as the anode; the second layer, which is usually made 

of graphite, is used as the cathode. Between the two layers (anode and cathode), there 

is a separator layer, which can be made of various compounds allowing different 

characteristics, different benefits and flaws. The separator layer separates the other 

two layers for lithium-ions to pass through. The movement of the lithium ions 

between the anode and cathode is achieved by submerging the three layers in an 

organic solvent-the electrolyte.  
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During the charging process, the lithium ions pass through the micro-porous 

separator into spaces between the graphite, which allows them to gain an electron 

from the external power source. During the discharging process, a current is 

produced as the lithium atoms situated between graphite release their electrons again, 

which moves over the external circuit to the anode (Global Energy Network 

Institution, 2012). 

 The charging and discharging processes of a lithium battery is shown in figure 2-10. 

 

 

Figure 2.10: Charging and discharging of a lithium-ion battery (Global Energy Network 

Institution, 2012). 

 

Although this technology began in 1912, with the first commercially available non-

rechargeable lithium ion battery released in early 1970s, it was not until around 2000 

that lithium ion batteries made big changes. Despite being a much less mature 

technology compared to lead acid batteries, it has become the most important when it 

comes to portable and mobile applications due to considerable advantages over 

competing technologies. 

 Li-ion batteries have twice the energy density of standard NiCd and with 

improvements in its chemistry; it is expected to increase its energy density up to 
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three times that of the NiCd. Lithium ion battery technology is the fastest growing 

and the most promising battery chemistry (Battery University, 2014).  

 Li-ion battery cells have a nominal voltage of 3.7V.This means less cells are needed 

to produce the same power output as many other batteries. Multiple demonstrations 

are being carried out for utility functions (Carnegie et al. 2013). 

 

 

Figure 2.11: Principles of a Li-ion Battery (Akhil et al., 2013). 

  

 Lifetime and Efficiency 

Li-Ion batteries have a round trip efficiency ranging between 85 and 95 percent. The 

lifetime of Li-Ion is expected to range between 2,000 and 3,000 cycles or 10 to 15 

years (Carnegie et al. 2013). 

 According to IEC (2011), commercial Li-Ion batteries with a lifecycle of up to 5,000 

full cycles are available, and depending on the type of material used for the 

electrodes, higher lifecycles can be achieved.  
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 Advantages 

Advantages of Li-Ion batteries include: high energy density, higher voltages per cell 

(3.7 V compared with 2V for Lead-Acid), low energy loss (about 5% per month), 

lithium and graphite are available in large amounts, cycling tolerance, low weight, 

and low maintenance requirements (Global Energy Network Institution, 2012).  

 

 Disadvantages 

Advantages of Lithium batteries include: fragile, requires a protection circuit to 

maintain safe operation, subject to ageing even if it is not in use, transportation 

restrictions for large quantities, expensive to manufacture, not fully mature, very 

sensitive to high temperatures  (Battery University, 2014).  

Other disadvantages include: very expensive, full discharge affects the lifetime 

(Global Energy Network Institution, 2012). 

 

 Applications 

Lithium ion batteries are mostly used in consumer electronics such as laptops, mobile 

phones, electric cars and electric bicycles (IEC, 2011).  

 

IV. Sodium Sulfur Batteries (NaS) 

 

Concept 

Sodium Sulfur Batteries were developed in the 1960s. The technology uses molten 

sulphur as the positive electrode and molten sodium as the negative electrode 

(Energy Storage Association, 2014).   

Despite NaS batteries being classified as commercialised, in fact they are still in the 

early stages. Only-small scale NaS battery technology is fully developed, while the 

grid-scale version is still in early commercialisation stage and demonstrations have 
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been carried out. According to NGK (2014), the prospect of commercial utilisation 

has now been finalised.  

 

 

Figure 2.12: NaS battery cell design and 50 kW module (Akhil et al., 2013). 

 

 Lifetime and Efficiency 

NaS batteries normally have lifecycle of about 4,500 cycles and a round trip 

efficiency of about 75 percent. NaS batteries have discharge time ranging between 6 

to7.2 hours (IEC, 2011). According to NGK (2014), the life expectancy of NaS 

batteries is 15 years. NaS batteries have power out ranging from 360kW to tens of 

MWh. The nominal discharge power of NaS batteries ranges from 50 kW to 

100MW.  

 

 Advantages 

Advantages of NaS batteries include: quick response time, relatively high density (up 

to 240Wh/kg) , a long life span (10-15 years), high efficiency (75-90 percent) 

(Global Energy Network Institution, 2012). 
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 Disadvantages 

According to IEC (2014), heat source is required to maintain operation temperatures. 

Carnegie et al. (2013), argue that NaS batteries must operate at extremely high 

temperatures and this makes them a safety hazard because they can explode when in 

contact with water, and they are toxic and relatively expensive for grid-scale 

batteries. 

 

 Applications 

NaS batteries are used in: combined power quality and time shift applications with 

high energy density, peak shaving, grid stabilisation (IEC, 2011). According to 

Carnegie et al.(2013), NaS batteries can be used for long duration energy storage, 

load levelling, arbitrage, emergency power supply, and renewable output smoothing. 

According to NGK (2014), grid-scale NaS batteries are expected to function as a 

power station to charge electric power in the base power source at low demand and 

discharge it at peak demand.  

 

V. Sodium Nickel Chloride Batteries (NaNiCl)  

 

Concept 

Sodium Nickel Batteries are also known as the ZEBRA (Zero Emission Battery 

Research). The technology used in NaNiCl batteries is quite similar to NaS batteries. 

Both technologies are molten sodium based. The positive electrode is nickel chloride 

and the negative electrode is molten sodium (Carnegie et al. 2013). 

 According to Eurobat ( 2014), this technology has been commercially available 

since mid 1990s and only the mobile application version is currently in use while the 

stationary version is still in its starting phase and demonstrations are being carried 

out .The operating temperature of NaNiCl batteries is between 270 degrees Celsius 

and 350 degree Celsius.  
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 Lifetime and Efficiency 

According to Eurobat (2013), NaNiCl batteries have a lifecycle of up to 2,000 cycles 

at a depth of discharge of 80 percent and have a lifetime of 15 years. The round trip 

efficiency of ZEBRA batteries ranges between 85 and 90 percent. 

 

 Advantages 

Advances of NaNiCl batteries include: no needs of air conditioning, high energy 

density, long lifecycle, long calendar life, no need for maintenance, remote 

monitoring of the systems, zero emission, not toxic, easily recyclable (Eurobat, 

2014). Other advantages include: quick response time, tolerance of 

overcharge/discharge and high tolerance of short circuit (Carnegie et al. 2013).  

 

 Disadvantages 

Disadvantages of ZEBRA batteries include: expensive, suitable for large capacity 

batteries only (>20kWh), limited size and capacity choices, only produced by one 

company in the world, high operating temperature, and needs preheating to raise the 

temperature up to 270 degrees Celsius for operation, which takes up to 24 hours if 

the battery is cold, uses up to 14 percent of its own capacity daily to keep the 

temperature at a good level when not in use (Electropaedia, 2014). 

 

 Applications 

Sodium Nickel Chloride batteries are used in: EV (Electric Vehicles), HEV (hybrid 

electric vehicle) buses, trucks and vans and fleet applications (Eurobat, 2014). The 

advanced versions of ZEBRA with higher energy densities under development will 

be used for storing renewable energy for load-levelling and for industrial applications 

(IEC, 2011).  
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VI. Flow Batteries 

 

Concept 

A flow battery is an electrochemical storage device that can be recharged by putting 

in fresh electrolyte to replace the used electrolyte if no power source is available. 

According to Carnegie et al. (2013), flow batteries consist of two external electrolyte 

tanks that are used to store electrolyte material. Flow batteries have the ability to 

separate power and energy, which is a special function that separates flow batteries 

from other electrochemical storage systems (Energy Storage Association, 2014). 

 According to IEC (2011), the capacity of flow batteries depends on the size of the 

storage tanks. Flow batteries exist in different classes: redox, hybrid and 

membraneless (Energy without Carbon, 2014). Redox flow batteries (RFB) hold the 

ability to separate special function of separating power and energy.  

 

 

Figure 2.13: Schematic of a Vanadium Redox Flow Battery (IEC, 2011). 
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According to Energy Storage Association (2014), the name Redox refers to chemical 

reduction and oxidation reactions that are used to store energy in liquid electrolyte 

solutions. Recharging can be easily achieved by pumping out the discharged 

electrolyte and replacing it with charged electrolyte. The easy charging of a redox 

battery has allowed it to put under consideration for mobile applications (IEC, 2011).  

Vanadium redox flow battery differs from other redox flow batteries as it uses 

vanadium in both tanks, preventing it from cross-contamination degradation, which 

is a big problem with other redox flow batteries (Wang, 2012).  

 

 

Figure 2.14: Zinc-Bromine cell configuration (Akhil et al., 2013). 

 

Hybrid flow batteries (HFB) contain a single or a number of electro-active 

components placed as a solid layer. The battery cell of hybrid flow batteries encloses 

one battery electrode and one fuel cell electrode (Carnegie et al. 2013). Examples of 

hybrid flow batteries include: Zinc-Bromine (Zn-Br) flow battery and Zinc-Cerium 

(Zn-Ce) flow battery (IEC, 2011).  

Zinc-Bromine flow battery uses two separate bromine electrolytes that react with 

Zinc on the electrodes. The lifetime of a Zinc-Bromine flow battery is calculated in 

terms of hours of operation. The cell of this type of provides a nominal voltage of 1.8 
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volts and operates at room temperature, ranging between 25 and 50 degrees Celsius 

(Carnegie et al. 2013).  

 

 Lifetime and Efficiency 

At 1,000 cycles a year, a vanadium redox battery is expected to last between 10 to 15 

years and can be extended up over 20 years through pump and stack replacement. 

The round efficiency of a vanadium redox battery ranges between 70 and 90 percent. 

Depending on the system design, Zinc Bromine flow batteries energy efficiency can 

be between 70 and 80 percent with a lifetime of around 6,000 hours, which is about 

2,000 cycles when the system is continuously operated at 100 percent depth of 

discharge (Carnegie et al. 2013).  

 

 Advantages 

The advantages of a Redox battery includes its very high power output (tens of 

kilowatts), fast recharge by replacing spent electrolyte, long life due to replacement 

of electrolyte, can be fully discharged , uses non toxic materials, very quick response 

time (Carnegie et al.2013). Other advantages include: the capacity can be easily 

increased by adding more solution, cost per kWh decreases as storage capacity 

increases, underground electrolyte tanks can be used to reduce space requirement 

(NewSouth Innovations, 2014).  

  

 Disadvantages 

Disadvantages of flow batteries include: expensive (VRFB), construction 

complexity, electrolyte leakage, relatively low power, low energy density, efficiency 

losses, toxic, large space requirement, corrosive elemental bromine in the electrolyte 

(Zn-Br) (Carnegie et al. 2013). 
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 Applications  

Flow batteries are a good choice for applications that require energy for more than 5 

hours due to cost efficiencies with large amounts of fairly inexpensive electrolyte 

material. Vanadium redox batteries are suitable for utility applications where long 

discharge durations with rated power ranging from 100 kW to 10MW is required. 

This includes: load shifting, renewable time shifting, fluctuation suppression, 

forecast hedging, spinning reserve and power quality. Zn-Br flow batteries are 

suitable for both energy and power applications such as peak shaving, load following 

and renewable time shifting (Carnegie et al. 2013). 

Table2- 9 indicates capital and operating costs of a Vanadium redox battery. 

 

2.6.3 Electrical and Magnetic Field Energy Storage 

In Electrical energy storage, energy is stored using electric field. This technology 

uses capacitors, super capacitors and superconducting magnetic energy storage to 

store energy (Wu, 2012). Unlike battery storage systems, electrical and magnetic 

field energy storage systems store energy by generating an electrical field between 

two parallel conductor plates. According to Carnegie et al. (2013), the surface area of 

the conductor plates and gap between them are the determining factors of how much 

energy can be stored in a capacitor. 

 

2.6.3.1 Double-layer capacitors (DLC) 

 

Concept 

Double- layer capacitor is also known as super capacitor due to its ability to charge 

and store energy at an exponentially higher density than standard capacitors (Thomas 

Publishing Company, 2014).  
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Figure 2.15: Capacitor conduction (Carnegie et al. 2013). 

 

 Lifetime and Efficiency 

Double-layer capacitors have a lifetime of up to 1,000,000 cycles or 10 years of 

operation. The efficiency of double-layer capacitors is typically around 90 percent.  

 

 Advantages 

Advantages of double-layer capacitors include: nearly unlimited cycle stability, 

extremely high power capability, higher energy storage capability, very fast charging 

and discharging rates, durable, no maintenance required, long lifetime, can operate 

over a range of temperatures, resilient to climate changes (IEC,2011).  

 

 Disadvantages 

Disadvantages of capacitors include: deterioration of solvent used and low energy 

density (IEC, 2011).  Other disadvantages of double-layer capacitors include: 

interdependence of the cells, sensitivity to voltage imbalances between cells and 

maximum voltage thresholds, safety issues, cells lifetimes are directly dependent on 

strict maximum voltages, lethal voltages, environmental implications (Carnegie et al. 

2013). 
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 Application 

Double-layer capacitor is suitable for applications with a large number of fast charge 

and discharge cycles. They are not suitable for long-term storage due to high self-

discharge rate, low energy density and high investment costs. They have been used in 

consumer electronics, power electronics, uninterruptible power supply to bridge short 

voltage failures, as a buffer system for acceleration and process and regression 

braking in electric vehicle (potential) (IEC,2011).  Other applications include: power 

quality, intermittent renewable fluctuation suppression (Carnegie et al. 2013). 

 

2.6.4 Superconducting Magnetic Energy Storage (SMES) 

 

Concept 

Superconducting Magnetic Energy Storage uses a superconducting coil to store 

energy in the form of a magnetic field surrounding the coil, which is made of a 

superconductor. This type of storage system consists of three main components: a 

coil, a power conditioning system (PCS) and a cooling system. Generally, some 

materials lose their electric resistance at very low temperatures and become 

superconducting. This is the principle used in superconducting magnetic energy 

storage systems. In this case, energy can be stored with very minimum loss 

(practically 90-95 percent efficiency).  

Materials that can be used as superconductors are known to work at temperatures 

below -253 degree Celsius, thus the need for a cooling system. This level of cooling 

can be achieved by liquefying helium; which is very expensive and the process 

affects the system efficiency. A lower level of cooling requirement has already been 

reduced thanks to new high-temperature superconductors, which are able to work as 

superconductors at only -163 degree Celsius. This allows the use of liquid nitrogen, 

which is comparatively cheaper (Global Energy Network Institute, 2012). Figure 2-

16 shows a Superconducting Magnetic Energy Storage. 
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Figure 2-16: Superconducting magnetic energy storage (Carnegie et al. 2013). 

 

For energy storage, the superconducting coil temperature is kept at a temperature 

below its superconducting critical temperature. In principal, a superconducting 

magnetic energy storage system can be able to stored energy independently as long 

as the cooling system is operational, but longer storage times are limited by the 

energy demand of the refrigeration system (IEC, 2011). Figure 2.17 shows the 

conceptual design of a superconducting coil. 

 

Figure 2.17: conceptual design of a superconducting coil (Global Energy Network Institute, 2012). 
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 Lifetime and Efficiency 

The round-trip efficiency of superconducting magnetic energy storage is above 95 

percent. The life expectancy does not depend on the number of cycles (Carnegie et 

al. 2013). 

 

 Advantages 

The advantages of super magnetic energy storage include: very quick response time 

(power is available almost instantaneously), high overall round-trip efficiency (85%-

90%), very high power output (IEC, 2011). According to Carnegie et al. (2013), 

other advantages include: life expectancy is independent of duty cycle, high 

reliability, permanent storage (no standby loss), lifetime is not affected by depth of 

discharge. 

 

 Disadvantages 

Disadvantages of superconducting magnetic storage include: refrigeration energy 

requirements, requires large magnetic field (Carnegie et al. 2013). According to 

Global Energy Network Institute (2012), SMES) have high energy losses (~12% per 

day), very expensive in production and maintenance, reduced efficiency due to the 

required cooling process. 

 

 Applications 

Large superconducting magnetic energy storage systems with over 10MW are used 

for particle detectors. Smaller versions are used for power quality control in 

manufacturing plants (IEC, 2011). Other applications include: uninterruptible power 

supply (Carnegie et al. 2013). 
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2.6.5 Thermal Energy Storage  

 

Concept 

Thermal energy storage involves different technologies. Thermal energy storage 

technologies allow temporary storage or removal of heat for use at a different time 

(Energy Storage Association, 2014).  

Technologies used in thermal energy storage include: storage of sensible heat, 

storage of latent heat, and thermo-chemical and absorption storage. Liquid or solid 

materials can be used as storage medium. This includes: water, thermal oil, concrete 

or ground, which are the determining factors of the capacity of the storage system 

(IEC, 2011).  

The system uses a receiver to reflect the sunlight onto a heating chamber used to heat 

liquid molten salt. Heated liquid molten salt is then stored into the heated fluid 

storage tank. When electricity is needed, the stored heated salt is then pumped out to 

a steam-generator to produce superheated steam which is used to power a steam 

turbine or generator (IEC, 2011). 

 

 

Figure 2.18: Concentrated Solar Power (CSP) plant with a thermal storage cycle  (Global Energy 

Network Institution, 2012). 
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The most common form of thermal energy storage is ice energy storage, where off-

peak electricity is used to freeze water into ice and the frozen ice is used during peak 

period for air conditioning system cooling as a way to avoid the need for grid power 

for air conditioning during peak demand periods. In this document, the focus will be 

on the molten salt thermal energy storage technology. Molten Salt thermal energy 

storage technology allows the use of thermal energy retained using a solar tower to 

generate electricity when the sunlight is not available. The system uses two tanks: a 

cool tank and a heated fluid tank (Carnegie et al. 2013).  

 

 Applications 

Disadvantages include: risk of liquid salt freezing at low temperatures, risk of salt 

decomposition at higher temperatures (Carnegie et al. 2013). 

 

 Applications 

Thermal energy storage is used for space heating or cooling, hot water production, 

electricity generation, helps overcome mismatch between demand and supply of 

thermal energy (IEC, 2011).   

 

 

2.7 Definitions and Terms 

 

Response time and Discharge duration 

Response time relates to how fast a storage system can discharge energy when it is 

needed. 

Discharge duration relates to how long can storage system supply energy in a single 

charge-discharge cycle.  
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Although for most applications the rated power (the power output of a device) and 

the discharge duration are the biggest concern, in some applications where energy is 

needed for emergency, the response time is also very important (Carnegie et al. 

2013). 

 

Depth of discharge and frequency of discharge 

Depth of discharge relates to the percentage of the full storage capacity of a system 

discharged before the storage system is recharged (Carnegie et al. 2013). 

Frequency of discharge relates to how many times a storage system power is 

discharged.  

Depending on the type of the storage technology, the depth of discharge can be 

something to worry about. Deep discharge can reduce the lifetime of some 

electromechanical batteries and cause damage to the battery cells. Other technologies 

operate best under full or 100 percent depth of discharge (Carnegie et al. 2013). 

 

Efficiency 

Efficiency relates to the energy ratio of the input to the output for a charge-discharge 

cycle. 

Energy efficiency determines how good a storage system by indicating how much 

energy will be lost through the storing and discharging process. Energy can also be 

lost when the storage system is not being used. This type of energy loss is known as 

standby loss, which is a measure of how much energy is lost before the stored energy 

is discharged (Carnegie et al. 2013). 
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Chapter 3:    Methodology 

 

 

 

3.1 Chapter Overview  

This chapter describes the design adopted by this research to achieve the aims and 

objectives as stated in chapter 1.  The first section of this chapter discusses the 

research and development methodology used in this research project, the stages by 

which the methodology was implemented, and the research design; the second 

section details the task analysis; the third section details the software used in this 

research project; finally, the last section discusses the assessment of consequential 

effects and ethical responsibilities. 

 

3.2 Research and Development Methods 

The research and development methodology used in this design project was based on 

various literatures. The aim of the design project was achieved based on knowledge 

from previous work. Different methodologies were used to achieve the goal of this 

research project.  

At energy consumers’ level, an energy audit was conducted on several households in 

order estimate the average power demand per household throughout the day. The 

collected data was used to determine the average energy required to run a typical 

household over the course of the peak demand period. From the collected data, 

power consumption graphs were generated using Microsoft Excel. Generated graphs 

helped visualise power demand patterns, the average demand (used as base load), 

determine where the peak demand occurs and the size of the peak demand. The 

results from the graphs were used to design an energy storage system to meet the 
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power and energy requirements for a typical household over the course of the peak 

period. 

At utilities level, an analysis was conducted on the NSW network to determine the 

size of the peak demand and the available capacity to charge energy storage systems 

in the off peak period without creating a peak demand during both summer and 

winter. NSW demand data was retrieved from the Australian Energy Market 

Operator (AEMO) network demand database. The retrieved demand data was used to 

determine the network average load, the size of the peak demand under winter and 

summer conditions, the available capacity to charge energy storage systems in the off 

peak period without creating a peak demand. 

A MATLAB algorithm was used to analyse network power flow under different 

conditions. This enabled analysis of voltage levels at different nodes of the network 

to evaluate voltage regulation capability of distributed energy storage systems.   

Cost effectiveness of energy storage systems was simulated using HOMER 

ENERGY software in order to determine whether using energy storage systems is 

beneficial to energy consumers compared with purchasing energy from the electricity 

grid.  

 

3.3 Task Analysis 

 

 The project methodology was simplified into the following major steps.  

 Determine energy required to run a typical household over the course of the 

peak demand period. 

 Design an energy storage system to meet power and energy requirements for 

a typical household.  

 Determine network peak demand size. 
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 Determine network available capacity to charge energy storage systems 

without creating a peak demand in the off peak period. 

 Determine the maximum number of households that the network can charge 

during the off peak period. 

 Determine the minimum number of households required to use energy 

storage systems during peak periods in order to avoid the network peak 

demand. 

 Model the effectiveness of distributed energy storage systems on the NSW 

network.    

 Analyse power flow within the network to evaluate voltage regulation 

capability of distributed energy storage systems.  

 Simulate cost effectiveness of energy storage systems.   

 The tasks identified above were set as major sections of the project design 

and used to assess the progress of the design project.  

 

3.4 Software  

The software used in this research project includes: 

 Microsoft Excel for data processing  

 MATLAB for power flow analysis  

 HOMER ENERGY for cost effectiveness of energy storage systems 
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3.5 Assessment of consequential effects and ethical responsibilities 

 

3.5.1 Sustainability 

In this project, no manufacturing is required other than using the available resources. 

The use of this system is reflective of the current sustainability regulations and 

guidelines. 

  

3.5.2 Ethical Responsibilities 

According to Engineers Australia (2010), all members of Engineers must commit to 

practice in accordance with the following four Code of Ethics.   

1. Demonstrate integrity: Act on the basis of a well-informed conscience, be 

honest and trustworthy, respect the dignity of all persons. 

 

2. Practise competency: Maintain and develop knowledge and skills, represent 

areas of competence objectively, act on the basis of adequate knowledge. 

 

3. Exercise leadership: Uphold the reputation and trustworthiness of the 

practice of engineering, support and encourage diversity, communicate 

honestly and effectively, taking into account the reliance of others on 

engineering expertise. 

 

4. Promote sustainability: Engage responsibly with the community and other 

stakeholders, practise engineering to foster the health, safety and wellbeing of 

the community and the environment, balance the needs of the present with the 

needs of future generations.  
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3.5.3 Safety 

In this research project, prolonged use of a personal computer was involved. When 

using a computer, it is recommended that proper use of a computer is followed to 

avoid any stress related injury, degenerative eye problem or back and posture 

problems.  

 

3.5.4 Risk Assessment  

This research project involved prolonged use of a computer. The activity required 

risk assessment of a computer. The risk assessment induction was conducted to 

identify risks involved with prolonged use of a computer. In this case, factors that 

can affect a computer user were assessed. 

 

Table  3.1 : Risk Assessment for a computer 

Problem Existing control Consequences Probability 

 

 

 

 

Eye strain 

 

 

 

General 

Precautions 

 

 

 

-Visual fatigue 

 

-Blurred or double 

vision 

 

 

-Burning and watering 

eyes 

 

 

-Headaches and 

frequent changes in 

prescription glasses 

 

 

 

 

Rare 

 

 

Musculoskeletal 

 

 

General 

precautions 

 

-Upper limb disorder 

 

-Back and neck pain 

and discomfort 

 

-Tension stress 

headaches and related 

ailments  

 

 

Rare 
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Table  3-2 : Risk rating. 

 

 

Using a computer for a prolonged period of time involves potential stress related 

injury, degenerative eye problem, back and posture problems.   

 

3.6 Chapter summary  

 

The purpose of this chapter was to describe the research methodology of this 

research project. The tasks required for completion of this research project were 

outlined and the risk assessment of the project was carried out in relation to 

prolonged use of a computer.  
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Chapter 4:    Analysis 

  

 

4.1 Chapter Overview 

This chapter discusses the details of the design approach based on the knowledge 

from the literature reviewed in chapter 2 and the details provided in methodology 

chapter 3.  The discussion in this section is based on the use of distributed energy 

storage systems to avoid the network peak demand. This was achieved by developing 

an energy storage system that, when used to store the extra electricity available in the 

off peak period and discharging it during the peak period in an urban area, can help 

improve utilisation of network assets.  

 

4.2 Ideal System Design Setup 

The system design setup below is a model of a practical energy storage system 

design that could be implemented in a practical setting. 

 

Figure 4.1: Ideal set up of an energy storage system (Home Brew Power, 2014).  
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4.3 Power Demand and Energy Consumption for a Typical 

Household 

 

4.3.1 Peak Lopping  

This approach looks at the storage capacity required to help maintain energy 

consumption below the base load over the course of peak demand. In this case, the 

base load is supplied from the grid while the storage system supplies the extra energy 

to cover the area above the base load.   

 

4.3.2 Power Demand Analysis for a Typical Household  

The amount of energy required to supply the energy above the base load during peak 

period   was approximated by arranging common household appliances by their 

likely times of use under both summer and winter conditions. 

 It is good to note that the demand pattern might be different for each state of 

Australia due to climatic variations, the use of gas for heating and hot water, and 

different household appliance penetration rates.  

The list of common household appliances, their models and power ratings is shown 

in Table 4.1.   
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Table  0-1 : Power usage for common appliances likely to be used during peak demand times 

Appliances  Model  Power  (Watts)  Quantity  

Air Conditioner  LG-E18AWN-13-Eco 

Inverter RC Split System  

Cooling :1,390 

Heating : 1,540  

1  

Electric Cooker  Everdure 900X  8900  1  

Range (Electric Oven)  Everdure OBES602  3100  1  

TV  LG 42LV3500 (42”)  87  1  

Microwave Oven  Panasonic  800  1  

Refrigerator  LG 951L French Door 

Fridge  

500  1  

Washing Machine   1200  1  

Dishwasher   500  1  

Electric Hot Water  Dux Proflo 400L  3600  1  

Dryer  Simpson  39P400M  2100  1  

Slice Toaster  Chief CF CT50  870  1  

Water Kettle  Homemaker   

WK8261A  

2200  1  

Laptop Computers  Dell Optiplex 9010 43  4  

Lighting  Crompton FL8D/R  8  8  

Phones  Iphone 5C  5  4  

Average Standby 

Mode  

 81.8   
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An Excel spreadsheet of the above listed appliances was created. The appliances 

were arranged based on their expected operating times in order to approximate a load 

curve. A time interval of 5 minutes was used to account for appliances that only run 

for a short period of time such as the water kettle and the slice toaster.  

 

4.3.3  Winter Energy Requirement  

The Winter evening peak demand results from a combination of energy consuming 

activities such as warming the house, cooking, watching TV, making tea, toasting, 

running a couple of computers and keeping a couple of lights on.  The resulting 

power demand pattern is shown in Figure 4.2.  

 

 

Figure 4.2: Demand profile for a typical household during winter 
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4.3.3.1 Winter evening peak lopping  

The amount of energy to be supplied from the energy storage system during winter 

was determined by calculating the area above the average demand during the peak 

period (2:00pm to 8:00pm). The area was approximated using Riemann’s sums 

method.  

x
n

i
i

Energy xf 




 )
1

0
(                 and         ∆x =

n

ab 
    

Where:  

 ∆x                  : the width of the rectangles  

 f (xi)              : the height of the rectangles 

 n                    :  number of subintervals 

 Area interval : [a, b] 

The obtained energy require  

Energy required x
n

i
ixf 





 )
1

0
(  = 12 kWh  

 

4.3.4 Summer Energy Requirement 

Summer evening peak time power consumption is very comparable to winter evening 

peak time consumption and they both tend to occur around the same period because 

in both cases, high power consuming appliances are mostly used at times when 

people get back from work and start running multiple appliances simultaneously. The 

summer demand profile for a typical household is shown in Figure 4.3. 
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Figure 4.3: Demand profile for a typical household during summer 

 

 

4.3.4.1 Summer evening peak lopping 

The amount of energy to be supplied from the energy storage system during summer 

was determined sing Riemann sums method as indicated for the winter case. 

 Energy required = x
n

i
ixf 





)
1

0
(    11 kWh  

From the energy requirement calculations, it was observed that the winter evening 

peak lopping required more energy than the summer evening peak lopping. To 

ensure the storage system would be able to supply the required energy for peak 

lopping throughout the year, the worst case between winter and summer was set as 

the maximum energy required. The energy required was set to 12kWh. 
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4.4 Network Parameter Assessment 

 

Analysis of the network was conducted based on network demand data from the 

AEMO (Australian Energy Market Operator). AEMO stores network demand data in 

CSV format and can be easily graphed using Excel. For the purpose of this research 

project, the NSW1 Region network was considered.   

Based on graphs generated from the demand data, the size of the evening network 

peak demand was determined. Calculating the size of the peak demand was essential 

to determine the minimum number of households that would be required to switch to 

energy storage systems during peak period in order to avoid the peak demand.  

The second approach was to calculate the available network capacity to charge the 

energy storage systems in the off peak period without creating a peak demand. This 

was essential to determine the maximum number of households that would be 

charged using the available off peak capacity.  

As the aim is to avoid peak demand by using distributed energy storage systems 

charged during the off peak period, only peak and off peak times were considered. 

The New South Wales peak and off peak times were used to match the network used 

for analysis in this research project. According to Ausgrid (2014), the three different 

time periods in NSW are:  

Peak time: 2:00pm - 8:00 pm (week days)   

Off peak time: 10:00 pm -7:00   (week days) 

Shoulder: 7:00 am -2:00 pm and 8:00 am – 10:00 pm    (week days)  

The above time periods were used throughout the calculations as limits when 

determining the range of the curves for which the area was to be calculated.  
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4.4.1 Network Analysis under Winter Conditions  

The NSW winter network demand graph is shown in Figure 4.4.   

 

 

Figure 4.4: NSW1 Demand on a Typical Winter Day (AEMO, 2014) 

 

In order to estimate the network capacity available for charging the energy storage 

systems during the off peak period and the size of the peak demand, Figure 4.5 was 

altered in order to highlight the curves for which the areas were to be calculated. The 

resulting figure is shown in Figure 4.6.  
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Figure 4.5:  Winter Network Peak Demand and Available Capacity 

 

 

4.4.1.1 Winter Off Peak Charging Capacity  

The available network capacity for charging the storage systems during the off peak 

period was determined by approximating the area below the base load line that falls 

between 10:00pm -7:00am (off-peak period). This was achieved using the Riemann 

sums method. The following left-hand sum formula was used.  
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4.4.1.2 Daily energy required to recharge the storage system during winter. 

From previous calculations, the energy required to supply the evening peak demand 

during winter was determined to be 12kWh. From this, the energy from the electrical 

grid was calculated by applying the corresponding efficiencies of the equipment 

involved in the charging and discharging processes.  

Energy out of the inverter = 
9.0

12kWh
= 13kWh                                (90% inverter efficiency) 

Energy stored in the battery bank =
8.0

13kWh
=16kWh                        (80% battery efficiency) 

Energy from the electrical grid=
8.0

16kWh
= 20kWh                             (80% charger efficiency) 

 

4.4.1.3 Winter Off Peak  Charging Limit 

Based on the available capacity to charge storage systems in the winter off peak 

period, the number of maximum households that could be charged was determined.  

This was achieved by dividing the available capacity by the energy required from the 

grid to fully charge a single energy storage system.  

Maximum households to be charged = 
householdkWh

MWh

/20

250,6
 312,500 households  

 

4.4.1.4 Peak Demand Size During Winter  

To determine whether the number of households charged during the off peak period 

would supply enough energy to avoid the network evening peak demand, the 

network peak energy demand size was calculated using the Riemann left-hand sum 

method. It should be noted that only the evening peak area that falls between 2:00pm 

-8:00pm (peak period) was included in the calculation. The following left-hand sum 

formula was used.  
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x
n

i
i

Energy xf 




 )
1

0
(  2,500MWh 

 

4.4.1.5 Winter Minimum Charging Requirement  

To analyse effects of the charged energy storage systems on the grid, the minimum 

number of households required to use distributed energy storage systems during the 

evening peak period in order to avoid the peak demand was calculated. This was 

achieved by dividing the energy required to avoid the network winter peak demand 

by the energy supplied by storage systems per household.      

Minimum households required = 
householdkWh

MWh

/12

500,2
208,000 households 

 

4.4.2 Network analysis under summer conditions  

 

The NSW1 summer network demand graph is shown in figure 4.6.   

 

Figure 4.6: NSW1 Demand on a Typical Summer Day (AEMO, 2014) 
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In order to calculate the available capacity on the network to charge the storage 

systems during the off peak period and the size of the peak demand, Figure5-8 was 

altered in order to highlight the curves for which the areas are to be calculated. The 

resulting figure is shown in Figure 4.7.  

 

 

Figure 4.7:  Summer Network Peak Demand and Available Capacity 

 

4.4.2.1 Summer Off Peak Charging  Capacity  

The available network capacity for charging the storage systems during the off peak 

period was determined by approximating the area below the base load line that falls 

between 10:00pm -7:00am (off-peak period). This was achieved using the Riemann 

sums method. The following left-hand sum formula was used.   
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4.4.2.2 Daily Energy Required to Recharge the Storage System during Summer. 

From previous calculations, the energy required to supply the evening peak demand 

during summer was determined to be 11kWh. From this, the energy from the 

electrical grid was calculated by applying the corresponding efficiencies of the 

equipment involved in the charging and discharging processes.  

 

Energy out of the inverter = 
9.0

11kWh
= 12kWh                                (90% inverter efficiency) 

Energy stored in the battery bank =
8.0

12kWh
=15kWh                        (80% battery efficiency) 

Energy from the electrical grid=
8.0

15kWh
= 19kWh                           (80% charger efficiency) 

 

4.4.2.3 Summer Off Peak Charging Limit  

Based on the available capacity to charge storage systems in the summer off peak 

period, the number of maximum households that could be charged was determined.  

This was achieved by dividing the available capacity by the energy required from the 

grid to fully charge a single energy storage system.  

Maximum households to be charged = 
householdkWh

MWh

/19

300,10
 540,000 households  

 

4.4.2.4 Peak Demand Size During Summer 

To determine whether the number of households charged during the off peak period 

would supply enough energy to avoid the network evening peak demand, the 

network peak energy demand size was calculated using the Riemann left-hand sums 

method. It should be noted that only the evening peak area that falls between 2:00pm 
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-8:00pm (peak period) was included in the calculation. The following left-hand sum 

formula was used.  

x
n

i
i

Energy xf 




 )
1

0
( 7,000MWh 

 

4.4.2.5 Summer Minimum Charging Requirement  

The minimum number of households to be programmed to use energy storage 

systems during the peak period was determined by dividing the network peak 

demand by the amount of energy to be supplied by each household. 

Minimum households required = 
householdkWh

MWh

/11

000,7
636,000 households 

 

4.5 Effectiveness of Distributed ESS on the NSW1 Network 

 

4.5.1 Effectiveness During Winter 

Based on results from calculations, it was found that during wither the network 

would be able to charge up to about 312,500 households while the minimum number 

of households required to use distributed energy storage systems during peak period 

in order to avoid the peak demand was 208,000 households.   

Energy supplied by storage systems = %150100
000,208

500,312
x

households

households
 of peak.  

The charged households could supply up to about 150 percent of the winter peak 

demand. This resulted in a demand below the average load.  
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Evening Peak reduction = (Original peak – Resulting peak) 

Original peak demand = 9179 MW 

Resulting evening peak demand =7926 MW   (Below the average load, 7985MW) 

                

Evening Peak reduction = 9,179 MWh – 7,926 MW 

                                   =1,250 MW 

 Simulation of the effectiveness of distributed energy storage systems on the NSW1 

network during winter is shown in Figure 4.8. From the simulated results, it was 

observed that, charging in the off peak period did not significantly affect the average 

demand load. As the charged energy storage systems could supply up to 150 percent 

of the peak demand, the original peak demand could be totally avoided.  

 

Figure 4.8: Effectiveness of Distributed Energy Storage Systems on the NSW Network during 

winter. 
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4.5.2 Effectiveness during summer  

During summer the network could charge up to about 540,000 households. The 

minimum number of households to be programmed to use energy storage systems 

during peak period was 636,000 households.  Percentagewise, charged storage 

systems could supply up to: 

Energy supplied by storage systems = %85100
000,636

000,540
x

households

households
 of peak.  

Evening Peak reduction = Original peak – Resulting peak 

Original peak demand = 9,132 MW 

Resulting evening peak demand =7,922 MW             (Same as the average load)       

Evening Peak reduction = 9,132MW – 7,922MW  =1,210 MW 

 Simulation of the effectiveness of distributed energy storage systems on the NSW1 

network during summer is shown in Figure 5-10.  As the charged energy storage 

systems could supply up to 85% of the peak demand, the original evening peak 

demand could be totally avoided.  

 

          Figure 4.9: Effectiveness of Distributed Energy Storage Systems on the NSW Network 

during summer. 
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From the graph, it can be observed that, all the off peak capacity was used to charge 

the storage systems, which caused the demand to rise up and create a new average 

demand, which hardly noticeable. Even though, the charged storage systems could 

only supply up to about 85 percent of the peak demand, the simulated results 

indicated that the resulting demand during the peak period still would fall a bit below 

the resulting average demand. This resulted from the fact that the original peak 

demand significantly decreased while the average demand increased.  

The effectiveness of distributed energy storage systems is marked by the difference 

in levels between the red curve and the blue curve. This indicates where the charging 

and discharging occurred.  

 

4.6  Network Capacity Utilisation Improvement  

Network demand data collected from AEMO (Australian Energy Market Operator) 

for the day 19
th

 September 2014 was used to represent network demand under winter 

conditions and the data collected for day 1
st
 January 2014 was used to represent 

network demand under summer conditions. The information was used to analyse 

possible improvement on the network capacity utilisation based on the peak demand 

reduction results. Network capacity utilisation was determined based on the 

definition given in section 2.2.1.  

The network installed capacities to meet the peak demand on the chosen days for 

analysis were obtained from EMAO database. The scheduled capacity was used as 

the network installed capacity. The following formula was derived from the capacity 

utilisation definition and used to determine the network utilisation factor. 

Capacity utilisation = 
apacityInstalledC

andAverageDem
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4.6.1 Winter Capacity Utilisation Improvement  

 

4.6.1.1 Original Network Capacity Utilisation During Winter    

Calculation of network capacity utilisation before application of distributed energy 

storage systems.  

Average network demand = 7,900 MW 

Scheduled capacity to meet demand = 9,629 MW 

Capacity utilisation = %82
629,9

9000,7


MW

MW
 

Originally, the network capacity utilisation was calculated to be 82 percent of the 

scheduled capacity to meet the peak demand.  

 

4.6.1.2 Resulting Network Capacity Utilisation During Winter  

Calculation of network capacity utilisation after application of distributed energy 

storage systems.   

Resulting average network demand = 8,012 MW 

Resulting highest network demand = 8,747 MW 

From previous calculations, a 1,250 MW reduction in winter generation capacity was 

found.  

Resulting generation capacity to meet  peak demand = (9,629 -1,250) MW 

                                                                           = 8,379 MW 

 

Capacity utilisation = %100
379,8

747,8


MW

MW
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With the reduction in peak demand, the network capacity utilisation could be 

improved from the original 82 percent up to 100 percent of the scheduled capacity 

under winter conditions.  

 

4.6.2 Summer Capacity Utilisation Improvement  

 

4.6.2.1 Original network Capacity Utilisation During Summer   

Calculation of network capacity utilisation before application of distributed energy 

storage systems.  

Average network demand = 7,788 MW 

Scheduled capacity to meet demand  = 11,384 MW  

Capacity utilisation = %68
384,11

788,7


MW

MW
 

Originally, the network capacity utilisation during summer was calculated to be 68 

percent of the scheduled capacity.  

 

4.6.2.2 Resulting Network Capacity Utilisation During Summer 

Calculation of network capacity utilisation after application of distributed energy 

storage systems.   

          Resulting average network demand = 7,953 MW 

highest network demand = 8,883 MW 

With the highest demand reduced to 8,883 MW, the scheduled capacity to meet the 

highest demand would reduce accordingly. From previous calculations, a 1,210 MW 

reduction in summer generation capacity was found. 

Resulting generation capacity to meet  peak demand is = ( 11,384-1,210) MW  
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                                                                                        = 10,174 MW 

                Capacity utilisation = %78
174,10

953,7


MW

MW
 

 

With the reduction in peak demand, the network capacity utilisation could be 

improved from the original 68 percent up to 78 percent under summer conditions.  

 

4.7 Power Flow Analysis  

Network load flow analysis was conducted in order to analyse the effectiveness of 

distributed energy storage systems when used for voltage regulation. This was 

achieved using Newton –Raphson load flow method. The system used for analysis 

reasons consists of a Single Wire Earth Return (SWER) transmission line feeding 

two distribution lines (feeders).  The network is shown in Figure 4.2.  

 

The following parameters were considered at a given bus in the network: 

 

Table  0.2 : Network parameters 

PARAMETERS VALUE 

Base power   (Sbase) 400kVA 

Base voltage  (Vbase) 19kV 

Transmission transformer  400 kVA     (22kV/19kV) 

Feeder  transformer   200kVA      (22kV/19kV) 

Length of transmission line  100 km  

Length of feeders   50 km  

Demand  50 % of transformer  

Upper voltage level  1.06 p.u 

Lower voltage level  0.94 p.u   (+/- 6%) 
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 A fixed power generation that injects active power ( Pg) and reactive 

power (Qg) into the bus 

 A fixed demand with active power Pd and reactive power Qd  

A MATLAB algorithm based on the Newton Raphson load flow method was used to 

analyse voltage changes at different nodes on the network. The MATLAB algorithm 

computes voltages at each node of the network under different load conditions.  

 The network consists of seven nodes, with nodes 5 and 7 representing load nodes. 

For the purpose of this research project, the focus was on the change in voltage at 

nodes 5 and node 7 during peak periods. The initial bus voltage was set at 1.05 p.u .  

The MATLAB algorithm was used to analyse the voltage change at all the seven 

nodes of the network when energy storage systems are not used and when energy 

storage systems are used on nodes 5 and 7.   

 

4.7.1 Power Flow Under No -load Conditions  

When no load is applied at nodes 5 and 7, Pd  and Qd =0 ;  the results generated by 

the MATLAB algorithm are shown in Table 4.3.  

Table 0.3 : Node voltages under no load conditions 

Node number  Voltage  (p.u) 

Node  1 1.05 

Node  2 1.05 

Node  3 1.0497 

Node  4 1.0489 

Node  5 1.0489 

Node  6 1.0489 

Node  7 1.0489 
 

The obtained results indicated that, under no load conditions, voltage levels at all 

nodes of the network are almost the same as the initial voltage of 1.05 p.u. 
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4.7.2 Power flow under load conditions  

. With 50 % of transformer size as load during peak periods, the load at nodes 5 and 

7 were set to 100kVA. 

Apparent power (S) at nodes 5 and 7 = up
kVA

kVA
.25.0

400

100
  

With a power factor (p.f) of 0.9  

Pd= upxupfSxp .23.0)9.0().25.0(.  p 

Qd= upS .12.0sin.   

The values of Pd and Qd were applied at nodes 5 and 7. The results generated by the 

MATLAB algorithm are shown in Table 4.4. 

  

Table  0.4 : Node voltages with 100 kVA load 

Node number  Voltage  (p.u) 

Node  1 1.05 

Node  2 1.0287 

Node  3 0.9838 

Node  4 0.8865 

Node  5 0.8661 

Node  6 0.8865 

Node  7 0.8661 

 

With a load of 100kVA applied at nodes 5 and 7, the obtained results indicated that 

the network suffered a low voltage problem as the voltage levels dropped below the 

lower voltage level of 0.94 p.u as indicated by the red colour in Table 4-4.  

 

4.7.3 Power Flow with Power Generated by ESS  

Power generated by distributed energy storage systems was applied at nodes 5 and 7. 

With a combined power generation capacity of 25kVA by distributed energy storage 

systems applied at nodes 5 and 7: 
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SESS(5) = SESS(7)= 25 kVA                        (SESS(x)  : apparent power generated by ESS 

at node x) 

Apparent power (S) generated by ESS at nodes 5 and 7 = up
kVA

kVA
.063.0

400

25
  

Pg= upxupfSxp .06.0)9.0().063.0(.   

Qg= upS .03.0sin.   

The values of Pg and Qg were applied at nodes 5 and 7. The results generated by the 

MATLAB algorithm are shown in Table 4.5. 

 

Table  0.5 : Node voltage with 25 kVA generated by ESS 

Node number  Voltage  (p.u) 

Node  1 1.05 

Node  2 1.0351 

Node  3 1.0037 

Node  4 0.9357 

Node  5 0.9214 

Node  6 0.9357 

Node  7 0.9214 

 

With 25kVA generated from energy storage systems, the results showed improved 

voltage levels from 0.8661p.u to 0.9214 p.u. Despite the improvement in voltage 

levels, more power generation was still required to lift the voltage levels up to the 

lower level of 0.94 p.u.  

The generation capacity by distributed energy storage systems was increased to 

40kVA.  

SESS(5) = SESS(7)= 40 kVA                        (SESS(x)  : apparent power generated by ESS 

at node x) 

Apparent power (S) generated by ESS at nodes 5 and 7 = up
kVA

kVA
.10.0

400

40
  

Pg= upxupfSxp .09.0)9.0().10.0(.   

Qg= upS .04.0sin.   
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MATLAB results for increased generation of 40kVA by distributed energy storage 

systems are shown in Table 4-6. 

 

Table  0.6 : Node voltages with 40kVA generated by ESS 

Node number  Voltage  (p.u) 

Node  1 1.05 

Node  2 1.0375 

Node  3 1.0117 

Node  4 0.9565 

Node  5 0.9444 

Node  6 0.9565 

Node  7 0.9444 

 

Obtained results showed that, for this particular system, increasing the power 

supplied by energy storage systems at demand nodes 5 and 7 increased voltage levels 

back to a level that falls within the acceptable range ( 0.94 p.u < 0.9444 p.u < 1.06 

p.u ).  

To further increase the voltage levels to more balanced levels within the limits, the 

distributed energy storage systems generation capacity was increased to 50kVA.  

SESS(5) = SESS(7)= 50 kVA                        (SESS(x)  : apparent power generated by ESS 

at node x) 

Apparent power (S) generated by ESS at nodes 5 and 7 = up
kVA

kVA
.13.0

400

50
  

Pg= upxupfSxp .12.0)9.0().13.0(.   

Qg= upS .06.0sin.   

MATLAB results for a further increase in generation of 40kVA by distributed energy 

storage systems are shown in Table 4.7.The obtained results from MATLAB 

algorithm are shown in Table 4.7. 
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Table  0-7 : Node voltages with 50kVA generated by ESS 

Node number  Voltage  (p.u) 

Node  1 1.05 

Node  2 1.0407 

Node  3 1.0211 

Node  4 0.9789 

Node  5 0.9700 

Node  6 0.9789 

Node  7 0.9700  

 

Figure 4.10 shows the state of voltage levels at all the seven (7) network nodes under 

different conditions against the limit levels. Figure 4.10 gives a summary of 

MATLAB algorithm results as detailed from Table 4-3 through to Table 4.7. As 

shown in the figure, under no load condition, the voltage levels are well maintained 

at the upper end of the limits. With a 100 kVA load at demand nodes 5 and 7, the 

voltage levels drop significantly well below the lower end of the limits. Regulation 

of voltage levels improved with increase in power generation by distributed energy 

storage systems.  

 

 

Figure 4.10: Voltage regulation by distributed energy storage systems 
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4.8 Design of an ESS to Meet Peak Demand Energy Requirements 

In this section, an energy storage system to meet the design project energy 

requirements was designed. The size of a battery bank to store the amount of energy 

required to supply the peak demand was determined.  

 

4.8.1 Sizing Battery Banks 

 

4.8.1.1 Maximum Power Demand  

The maximum power demand is the highest amount of power drawn at a particular 

time over the peak period. As the aim of the design project is based on supplying the 

extra energy above the base load, the maximum power was obtained by calculating 

the difference between the highest peak and the base load. From the winter and 

summer demand data, the highest power demand was found to be 9kW.  

Inverter maximum power demand= 9kW  

 

4.8.1.2 Battery Maximum Power Out 

In order to determine the maximum power to be delivered by the inverter, The 

Battery power out was obtained by dividing the inverter maximum power demand by 

the efficiency of the inverter. An inverter efficiency of 90 % was considered.  

 

Battery Maximum Power Out = (Inverter Maximum Demand) / (Inverter Efficiency) 

                                                  =
9.0

9kW
    

                                                  ≈10kW 
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4.8.1.3 Battery Bank Discharge Rate 

The battery discharge rate was obtained by dividing the battery power out by the 

battery voltage. To keep the size of components small and the cost of the system low, 

a current lower discharge rate was targeted. At the same current, power can be 

doubled by doubling the voltage. In this report, a 48V system was chosen.  

From the relationship between Power, Voltage and Current: 

Amps (A) =
)(

)(

VVolt

WPower
 

Discharge Rate = Amps
V

kW
200

48

10
  

 (Required under peak power conditions).  

 

4.8.1.4 Energy To Be Stored For Peak Time 

There are different types of losses that occur during the charging, storage, 

discharging and conversion of energy. The total energy required from the storage 

system must take into account these losses.  These losses were added to the 

calculated energy needed to supply the peak demand. 

 

4.8.1.5 Energy Out Of Inverter 

The amount of energy that the inverter delivers to the grid is affected by the inverter 

efficiency. To be able to get the required energy from the inverter, the energy loss 

due to inverter efficiency was considered. A general inverter efficiency of 90% was 

considered.  

Energy out of the Inverter = 
9.0

12kWh
 ≈13kWh 
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4.8.1.6 Energy Stored In The Battery Bank 

Due to battery efficiency, not all the energy stored into the battery will available for 

use. To account of this type of energy loss, a general battery efficiency of 80% was 

considered.  

Energy stored in the battery = 
8.0

13kWh
≈ 16kWh 

This is the energy that the battery system needs to be able to deliver at its depth of 

discharge. This is the adjusted energy required per day.   

   16kWh   ≥ Energy at x % DoD. 

 

 

 For Lead Acid, a DoD of 30% was considered.  

Energy stored in the battery =
3.0

16kWh
 ≈ 53kWh 

 For Nickel-Ion, a DoD of 60% was considered.  

Energy stored in the battery =
6.0

16kWh
 ≈ 27kWh 

 Li-Ion, a DoD of 60% was considered.  

Energy stored in the battery =
6.0

16kWh
 ≈ 27kWh 
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4.8.1.7 Battery Bank Capacity 

The battery bank size was chosen based on two criteria. These being energy storage 

and power delivery capability. From the calculations above we can deduce the 

following: 

a) From peak demand calculations: 

Using a C5 discharge rate: 

AH Capacity= (200Ampsx5hr) =1,000AH 

 Energy rating= (1,000AH x 48V) = 48kWh 

 

b) From energy storage calculations: 

Energy required for AGM Lead Acid = 53kWh 

AH Capacity = 
V

kWh

48

53
≈1100AH 

Energy required for Ni-Ion and Li-ion=27kWh  

AH Capacity = 
V

kWh

48

27
≈560AH 

 

 

4.8.1.8 Battery Bank Specifications  

 

Battery bank specifications based on calculation results are shown in Table4-8. As 

indicated in the table, the AGM L.A technology requires nearly twice the capacity 

and storage of Lithium-Ion or Nickel-Ion. This is mainly due to the fact that the 

depth of discharge (DoD) for Lead Acid was limited at only 30 percent while the 

depth of discharge for Nickel-Ion and Lithium-Ion was limited at twice as much (60 

percent). 
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Table  0-8 : Battery Bank Specifications 

 

4.8.1.9 Battery Selection 

Battery selection was based on the C10h capacity rating. The C-rate corresponds to 

the period over which the battery bank was to be discharged. In this design project, 

the C-rate considered represents the evening peak demand period from 5pm to about 

9pm, which is 5 hours. To account for variations in energy demand, battery banks 

were oversized using a C10h rating instead of the actual C5h rating.    

 

4.9 Cost Effectiveness Analysis Using HOMER ENERGY Software 

 

4.9.1 Assumptions and Model Inputs 

 

4.9.1.1 Load Profile 

The load profile is based on average daily power consumption for a typical 

household. The data used was obtained by conducting an energy audit based on 

power demand pattern by time of use of common appliances over 24 hours.  

The baseline, which is a one-year time series representing the average electric 

demand in kW for each time step of the year, was used in HOMER. The hourly load 

profile was obtained by creating a set of 24 hourly values of electric load, to 

represent the average hourly demand over 24 hours. HOMER synthesizes data by 

Technology  DoD  Energy to Store  Discharge Rate  Capacity  System Voltage  

AGM L.A  30%            55kWh  200 Amps  1150AH  48V  

NiFe  60%  30kWh  200Amps  650AH  48V  

LiFe  60%  30kWh  200Amps  650AH  48V  
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adding random values to the entered values for daily variability and time-step-to-

time-step variability. The hourly load profile is shown in Figure 4.11. 

 

Figure 4.11: Hourly Load Profile 

 

4.9.1.2 Solar Radiation Profile (Sydney)  

Solar radiation data was obtained from NASA. The geographical position of Sydney 

is: latitude 33
0
 52

’ 
S, longitude 151

0
 13’ E. The scaled annual average solar radiation 

for Sydney of 4.45 kWh/m
2
/ d. Homer uses the latitude value calculates the average 

daily radiation from the clearness index. Figure 4.12 shows solar radiation profile 

over a one year period.    

 

Figure 4.12: Solar Radiation Profile for Sydney (NSW) 
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4.9.1.3 Economics  

An annual interest of 6% was assumed. The real interest is determined by the 

difference between the nominal interest rate and the inflation rate. The project 

lifetime of 20 years was considered. As the NSW network was considered for this 

design project, the NSW tariff was used to determine the cost of electricity.  

 

4.9.1.4 System schematic 

The list of equipment considered in the optimization is shown in Figure 4.13.The 

system includes a photovoltaic system, a converter, a battery bank and the load. 

 

 

Figure 4.13:  System schematic 

 

4.9.1.5 Solar Power Feed-in Tariffs 

 

In NSW, feed-in rates are paid based on the solar system set up. This can be either 

Net or Gross Metering System.  

Under a Net Metering System, electricity generated by the solar system is used first 

and if the system generates more than what is needed, the excess is fed into the 

electricity grid. A feed-in tariff per kWh is used to determine the cost, which is paid 

as credits on the customer’s bill. 
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Under a Gross Metering System, all the electricity generated by the solar system is 

fed into the electricity grid and the feed-in tariff per kWh is used to determine the 

cost, which is also paid as credits on the customer’s bill. In this case, the electricity 

purchased from the electricity grid is not reduced by the electricity produced by the 

solar system.  

The history of feed in tariffs for the Ausgrid area is shown in Table 4-9. 

 

Table  0.9 : History of feed in Tariff   (Ausgrid, 2011) 

 

 

As of 2014, a voluntary feed-in tariff of 6c/kWh is offered for energy exported on the 

Ausgrid distribution zone (Origin Energy, 2014).  This rate was used in HOMER as 

sellback rate. 

   

4.9.1.6 Grid Inputs Profile 

 

           The rates at which electricity is charged in NSW during peak, off peak and 

shoulder periods were used to determine the cost of electricity. The rates were 

scheduled to determine when to charge and when not to charge the battery bank.  The 
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rates used were from Origin Energy Domestic TOUT effective 15 September 2014 

(NSW Residential Energy Price Fact Sheet, 2014).  

 

Table  0.10 : Grid Input Profile 

Rate Power 

Price 

Sellback 

Rate 

Demand 

Rate 

Applicable 

$/kWh $/kWh $/kW/mo.  

Off Peak 

Rate 

0.137 0 0 Jan-Dec All week 00:00-07:00, 

22:00-24:00 

Peak Rate 0.537 0.06 0 Jan-Dec Weekdays 14:00-20:00 

Shoulder 

Rate 

0.224 0.06 0 Jan-Dec Weekdays 07:00-14:00, 

20:00-22:00 

Jan-Dec Weekends 07:00-22:00 

 

 

4.9.1.7 Photovoltaic Inputs  

Different sizes of photovoltaic systems were input for HOMER to search for the 

most optimal system. The photovoltaic arrays considered included a 1.5Kw, 2Kw, 

3kW, 4kW and 10kW. A derating factor of 90% was applied to the electric 

production from each panel. This factor accounts for reduced output in real-world 

operating conditions compared to operating conditions at which the array was rated. 

A lifetime of up to 25 years was considered. 

 

4.9.1.8 Batteries 

For the purpose of this research project, three main types of battery storage 

technologies were considered. This includes Lead Acid, Nickel Ion and Lithium Ion. 

For Lead Acid technology the Trojan L16 battery was considered, for the Nickel Ion 

technology the L1000AH was considered, and for the Lithium Ion technology the 

Smart Battery SB300 was considered.  
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Battery selection was based on different techniques. This included the battery 

capacity at the desired C-rating or the capacity available at the system discharge rate 

of 200 Amps.  

 

4.9.1.9 Converters  

As the system contains both AC and DC elements, a converter is required. This 

allows conversion of DC electricity to AC electricity. Inverter and rectifier 

efficiencies were assumed to be 90 percent for all sizes considered. The sizes 

considered were 5kW, 8Kw and 16kW.   

 

4.10 Simulation Results and Discussion  

 This section discusses simulation results. The discussion is based on the system 

performance and the cost analysis based on simulation results.  

 

4.10.1 Results  

The simulation results shown in Figure 4.14 were obtained from the system set up 

detailed in Figure 4.13. The simulation results in Figure 4.14 indicate possible 

system configurations and a list of configurations sorted by lifecycle cost.  

 

Figure 4.14: Simulation results 
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Simulated results can be used to compare possible system design options. The results 

indicated that purchasing electricity from the electric grid offers the least Net Present 

Cost and a levelized cost of electricity per kWh of 0.293. 

Installing a photovoltaic system of 5kW without using a battery bank produced more 

energy than required with the excess energy being sold to the electricity grid at a 

voluntary feed-in tariff rate of 6c/kWh.  Installing a 3kW photovoltaic system with a 

battery bank reduced the net energy purchases from 4,380kWh/year to only 

509kWh/year.  Using a battery bank to store electricity purchased from the electric 

grid was found to be the least cost effective option with the highest operating cost, 

total net present cost as well as cost of energy per kWh. This is mainly due to energy 

losses occurred during the charging and discharging processes.  

 

4.10.1.1 Effects of Feed-in Tariffs on System Cost-effectiveness  

For comparison reasons, former   NSW Solar Bonus Schemes were used. The same 

system set up was used with the only difference being the feed-in tariff in order to 

analysis the effects of tariffs on simulation results.  

Under the NSW Solar Bonus Scheme of 20c/kWh feed-in tariff, simulation results 

indicated that installing a photovoltaic system without a battery bank was most cost-

effective than purchasing electricity from the electric grid. However, at this feed-in 

tariff, purchasing from the electric grid still performed better than systems with 

battery banks. Simulation results at the NSW Solar Bonus Scheme (20c/kWh) are 

shown in Figure 4.15. 

 

Figure 4.15: Simulation results at NSW Solar Bonus Scheme (20c/kWh) 
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 Under the NSW Solar Bonus Scheme of 60c/kWh, simulation results indicated that 

any system with a photovoltaic system would offer more benefits than relying on the 

electricity grid.  

 

Figure 4.16: Simulation results under the NSW Solar Bonus Scheme (20c/kWh) 

 

 

4.11 Payback Period  

Economic merit of the energy storage system was evaluated by calculating the 

payback period. This relates to the number of years of energy cost savings required 

to recover the initial investment cost of the energy storage system. Different cases 

were considered to evaluate the payback period. This included: 

 Storage system without a photovoltaic system installed  

 Storage system with a photovoltaic system installed 

 

4.11.1 Storage system without a photovoltaic system  

For a system without a photovoltaic system installed, the electricity to charge the 

storage systems is purchased during the off peak period at the off peak rate and 

discharged during the peak period to supply the extra energy required to keep the 

grid demand at the base load.  

Based on energy requirement calculations, to be able to supply the required 12kWh 

during peak period, it requires 20kWh from the electric grid to charge the storage 

systems, with 8kWh lost in the charging and discharging process. If the storage 

system is to be charged daily, the total energy purchases per year will be 7,300 kWh. 
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If all the energy is purchased during the off peak period at the off peak price of 

0.137$/kWh, the total cost of electricity to operate the storage system would be 

$1,000/ year. 

 

4.11.1.1 Payback Period Without a PV System Installed 

   

System initial investment=$16,500  

Annual energy supplied from battery bank = (12kWh/day x365days) = 4,300kWh 

Annual cost of energy during peak period = (0.537$/kWh x 4,300kWh) =$2,309 

Annual avoided cost of energy = ($2,309-$1000) =$1,309 

Payback period = 
year/309,1$

500,16$
years13  

 

4.11.2 Storage System With Photovoltaic System  

 If a 4 kWh PV system was installed, the energy required from the electric grid to 

charge the storage system would be significantly reduced. From the simulation 

results, a 4 kW photovoltaic system produced 5,774 kWh/ year (details in Appendix 

C). With the PV system as an additional energy source, only the difference would be 

required from the electric grid. 

   

4.11.2.1 Payback Period With a PV System Installed 
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System initial capital = $23, 057  

Energy required from the grid per year = (7,300kWh – 5,774kWh) 

                                                        = 1,526 kWh/ year 

Cost of char energy from the electric grid = (0.137$ /kWh) x (1,526 kWh/year) 

                                                            = $209  

Annual cost of energy if purchased during peak period : 

                                               = (0.537$/kWh x 4,300kWh)      

                                               =$2,309 

Annual avoided cost of energy = ($2,309-$209) =$2,100 

Payback period = 
year/100,2$

057,23$
years11  

 

 

4.12 Effectiveness of PV Systems as a Secondary Energy  

Based on results obtained from households without PV systems and households with 

PV systems installed, it was found that including a PV system as a backup source of 

energy to charge the energy storage system reduced the amount of energy required 

from the electric grid as well as the overall payback period of the system.  

At the utility level, having consumers producing some of the required energy and 

relying less on the electric grid to charge the battery banks reduces the stress on the 

electric grid during the charging hours and leaves more energy available for the 

network to accommodate more households.  
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4.12.1  Effectiveness of PV systems during winter 

With an annual production of up to 5,774 kWh from a 4kW PV system, the winter 

energy demand per household was significantly reduced. 

  

Energy from the electric grid during winter =20kWh/day 

Annual energy consumed =20kWhx365days=7,300kWh 

Annual energy from the electric grid = (7,300kWh - 5,774kWh) =1,526kWh/ year 

New daily energy required from the grid =

1,526 /

365 /

kWh year

days year

 
 
 

= 4kWh/day 

As temperature effect is very significant during winter, PV performance is not the 

same as during summer due fewer hours of sunlight and cloudy days. For that reason, 

twice the required energy was considered. 

Levelized daily energy required from the grid = 8kWh/day 

Available network capacity during winter =6,250 MWh 

Maximum households to be charged         =
6,250

8 /

MWh

kWh household

 
 
 

 

                                                              = 781,250 households  

Additional households to be accommodated = (781,250 -312,500) 

                                                               = 468,750 households 

With the demand from the electric grid reduced down to only 8 kWh/day, the electric 

grid would be able to charge up to two and a half times as many households as when 

there was no PV system installed. With only 208,000 households required to use 

storage systems during winter in order to avoid the evening peak demand, the 

charged storage systems are able to supply more than twice the size of the peak 

demand.  
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4.12.2 Effectiveness of PV Systems During Summer 

With the extra 5,774 kWh produced by the photovoltaic system, the summer energy 

demand per household could also be significantly reduced. 

Energy from the electric grid during summer =19kWh/day 

Annual energy consumed =19kWhx365days=6,935kWh 

Energy from the electric grid = (6,935kWh – 5,774kWh) = 1,161kWh/ year 

Resulting daily energy required from the grid =
1,161 /

365 /

kWh year

days year

 
 
 

=3 kWh/day 

Available network capacity during summer =10,300 MWh 

Maximum households to be charged =
10,300

3 /

MWh

kWh household

 
 
 

 

                                                    = 3,433,000 households 

Additional households to be accommodated = (3,433,000 – 540,000)  

                                                             =2,893,000 households 

 

During summer, installing a 4kW PV system reduced the energy required from the 

grid down to only 3kWh/day. The available off peak capacity was able to charge 

more than six times as many households as when no PV system was installed. More 

than five times more household would be accommodated as compared with the care 

where no PV system was considered.  

With only 636,000 households required to use storage systems during peak periods to 

be able to avoid the summer evening peak demand, the charged households were 

able to supply more than five times the size of the summer peak demand. 
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Chapter 5:    Results and Performance Evaluation 

 

 

5.1 Chapter Overview  

 

This chapter discusses main results of this research project. Details of main findings 

for each section of the research project are provided. This chapter also discusses the 

effectiveness of distributed energy storage system on the NSW1 electricity network 

and the cost effectiveness of distributed energy storage systems.  

 

5.2 Main Cause of Network Underutilised Network Capacity  

From the research conducted, it was found that underutilisation of network capacity 

is caused by high peak demand.  Balancing supply with demand requires upgrades of 

network generation, transmission and distribution capacity in order to keep up with 

the increasing peak demand. When experiencing extreme weather conditions, major 

spikes in demand are also observed due to extensive use of air conditioning systems 

on top of regular appliances as people try to cool down or warm their work places 

and homes. These high peak demands are handled using back up infrastructure. 

Extreme weather conditions are only experienced a couple of hours or days a year, 

meaning the additional capacity is only used for a couple of hours or days annually. 

    

5.3   Energy Storage Technology 

Selection of energy storage technology to be used for this project was based on the 

different factors such as space requirement, simplicity, capacity, safety and cost. 

Based the requirements for this research project, battery technology was selected for 

energy storage. Three main technologies were compared for cost effectiveness. This 

included: Lead Acid, Nickel Ion and Lithium Ion technologies.  
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5.4   Energy Requirement  

An energy audit was conducted to approximate how much energy would be required 

to supply the demand above the base load. Under winter conditions, it was found that 

about 12kWh would be required from the battery bank to supply the evening demand 

while about 6kWh would be required to supply the morning peak demand. Under 

summer conditions, about 11kWh would be required from the battery bank to supply 

the evening peak demand while 7kWh would be required to supply the afternoon 

peak demand. The obtained results are summarised in Table 5.1.  

Table  5.1 : Energy requirement 

Season Peak  Period  Energy required 

 

Winter  

Morning Peak 6kWh 

Evening Peak 12kWh 

 

Summer  

Afternoon Peak 7kWh 

Evening Peak  11kWh 

 

 

5.5   Battery Bank Specifications   

Based on energy requirement, an energy storage system was designed. Specifications 

of the energy storage system are shown in Table 5.2. 

 

Table 5.2 : Battery Bank Specifications 

Technology DoD Energy to Store Discharge Rate Capacity System 

Voltage 

AGM L.A 30% 55kWh           200 Amps 1150AH 48V 

NiFe 60% 30kWh            200Amps 650AH 48V 

LiFe 60% 30kWh 200Amps 650AH 48V 
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As indicated in Table 5.2, the depth of discharge for AGM Lead Acid technology 

was limited at 30 percent while a depth of discharge of 60 percent was considered for 

Nickel Ion and Lithium Ion technologies. The depth of discharge is important for 

extending the lifecycle of batteries. Due to a limited depth of discharge for Lead 

Acid, the storage size and the battery bank capacity required are nearly double the 

size required for Nickel Ion and Lithium Ion technologies.  

 

 

5.6   Network Analysis Results  

The NSW1 network was considered for this research project. An assessment was 

conducted to determine the size of the demand above the base load and the available 

capacity to charge energy storage systems during the off peak period. Both winter 

and summer conditions were considered.   

Under winter conditions, the size of the evening demand above the base load was 

found to be about 2,500MWh. The available capacity to charge energy storage 

systems during the off peak period was found to be about 6,250MWh. The minimum 

number of households to be programmed to use energy storage system during peak 

period was found to be about 208,000 households. The maximum number of 

households that the network could charge without creating a peak demand in the off 

peak period was found to be about 312,500 households. Charged energy storage 

systems could supply up to 150 percent of the peak demand. As the network could 

charge more than the minimum number of households required to be programmed to 

use energy storage systems during peak periods in order to avoid the peak demand, it 

was found to be possible to avoid the evening peak demand and the generation 

capacity could be reduced by 1,250MWh. With reduced power generation capacity 

requirement, the network capacity utilisation was improved from 82 percent to 100 

percent of the scheduled capacity.  

Under summer conditions, the size of the evening demand above the base load was 

found to be about 7,000MWh. The available capacity to charge storage systems 
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during the off peak period was found to be about 10,300MWh. The minimum 

number of households to be programmed to use energy storage system during peak 

periods was found to be about 636,000 households. The maximum number of 

households that the network could charge without creating a peak demand in the off 

peak period was found to be about 540,000 households. Charged energy storage 

systems could supply up to 85 percent of the peak demand. With only 85 percent of 

the peak demand supplied, it was still possible to avoid the peak demand and reduce 

the generation capacity by 1,210 MW. This was mainly due the fact that the average 

demand increased due to off peak charging, which resulted in the resulting demand 

falling within the resulting base load limit. With reduced power generation capacity 

requirement, the network capacity utilisation was improved from 68 percent to 78 

percent of the scheduled capacity. Network analysis results are shown in Table 5.3.  

 

Table  5.3 :  Summary of the network assessment. 

Season Winter Summer 

Evening Peak Demand Size 2,500MWh 7,000MWh 

Network Available Capacity 6,250MWh 10,300MWh 

Min. Households Required 208,000 households 636,000 households 

Max. Households to be charged 312,500 households 540,000 households 

Percentage of peak demand 

supplied 

150% 85% 

Evening Peak Reduction 1,250MWh 1,210MWh 

Capacity Utilisation 

Improvement   

From 82 % to 100% From 68% to 78 % 
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5.6.1 Effects of PV Systems  

Installing a PV system was found to be very effective and allowed total avoidance of 

peak demand under both winter and summer conditions. A 4 kW PV system was 

considered for analysis. Calculation results are summarised in Table 5.4.  

 

Table  5.4 : Effects of a 4 kW PV system on the network 

Season Winter Summer 

Maximum number of households 

to be charged 

781,250 households 3,433,000 

households 

Additional households to be 

accommodated by the network 

468,750 households 2,893,000 

households 

Evening Peak demand reduction More than twice the 

peak demand  

More than five times 

the peak demand.  

 

 

 

5.7 Voltage Regulation Results 

 

Power flow analysis was conducted using a MATLAB algorithm. For the purpose of 

this research project, the main focus was on demand nodes 5 and 7. Voltage levels at 

these nodes were observed in order to analyse voltage regulation capability of 

distributed energy storage systems. An upper voltage level of 1.06 u.p was used and 

a lower voltage level of 0.94 p.u was used. The aim was to maintain voltage levels at 

demand nodes within these limits.  

The network was first analysed under no load condition. The obtained results showed 

that, when no load is applied at the distribution nodes 5 and 7, the voltage levels at 

all the network nodes remained almost the same. The second analysis analysed the 

network when suppling 100kVA load at the demand nodes 5 and 7. Under this 

condition, the results showed significant decrease in voltage levels. The voltage at 
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nodes 5 and 7 dropped from 1.0489 p.u to 0.8661 p.u, which indicated a low voltage 

condition.  The second analysis analysed the network with an apparent power of 

25kVA generated by distributed energy storage systems and applied at the demand 

nodes 5 and 7. The results showed improved voltage levels at nodes 5 and 7 from 

0.8661 p.u to 0.9214 p.u, which was still below the lower voltage level limit. The 

power generated by distributed energy storage systems was increased to 40kVA. The 

results showed more improvement in voltage levels from 0.9214 to 0.9444 p.u, 

which was a bit above the lower voltage level limit and within the acceptable voltage 

level range. Finally, to further improve the voltage level, an even larger generation of 

50kVA from distributed energy storage systems was considered. Results indicated 

well balanced voltage levels between the limit levels. The voltage regulation results 

as observed at demand nodes 5 and 7 are summarised in Table 5-5. 

 

Table  5-5 : Voltage regulation results summary 

Condition  Voltage level at demand  nodes 5 

and 7 

No load  supplied  1.0489 

With a S=100kVA supplied  0.8661 

With S=  25kVA  generated by ESS 0.9214 

With S= 40kVA   generated by ESS 0.9444 

With S=50kVA  generated by ESS 0.9700 
 

 

5.8   Economic Analysis Results  

HOMER ENERGY simulation results are shown in Figure 5.1.  

 

Figure 5.1: Economic analysis results  
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Simulation results indicated that purchasing from the electric grid offered the 

cheapest total TNP (Net Present Cost) for the lifetime of the project (20 years) 

compared with other options. Simulation results are based on the current NSW 

voluntary feed-in tariff of 6c/kWh. Installing a PV system without a storage system 

was found to be the second best option. Any combination involving an energy 

storage system was found to be among the least preferred option. Feed-in tariff was 

found to have a big impact on cost effectiveness for systems that include a PV 

system. A comparison was conducted between the previous 60 c/kWh and 20c/kWh 

NSW Solar Bonus Schemes with the current voluntary feed-in tariff of only 6c/kWh. 

Simulation results are shown in Table 5.6.  

 

Table  5-6 : Effects of feed-in tariff on system cost effectiveness 

Scheme  Voluntary feed-in 

tariff   (6/c /kWh) 

NSW Solar Bonus 

Scheme (20c/kWh) 

NSW Solar Bonus 

Scheme (60c/kWh) 

 

 

Cost effectiveness  

Grid Grid + PV Grid + PV 

Grid + PV Grid Grid + PV + Storage 

system 

Grid + PV + Storage 

system  

Grid + PV + 

Storage system 

Grid 

Grid + Storage 

system  

Grid + Storage 

system 

Grid + Storage 

system 

   

As indicated in the comparisons table above, as the feed-in tariff increases, the cost 

effectiveness of systems change. At the current voluntary feed-in tariff of 6c/kWh , 

purchasing from the grid was preferred. As the feed-in tariff was increased to 

20c/kWh, a combination of the electric grid and a PV system was preferred. Further 

increase in feed-in tariff simply solidified the performance of a combination of the 

electric grid and a PV system and increased the performance of a combination of a 

combination of the grid, a PV system and a storage system. As marked by the colour 

code, the choice for the electric grid dropped with increase in feed-in tariff. As the 

feed-in tariff was increased, any combination with a PV system performed better. A 

storage system that only relies on the electric grid for charging was the least 

preferred.  



 

 

Page | 97  

 

From the comparison results, Table 5-6 also showed how the decrease in feed-in 

tariffs has affected cost effectiveness of energy storage systems compared with 

previous NSW Solar Bonus Schemes (20c/kWh and 60c/kWh) that have been 

discontinued.  

 

 

5.9 Results Discussion   

The results presented in this chapter are indicative of the feasibility of distributed 

energy storage systems to improve utilisation of network assets in an urban area. To 

best understand the benefits of distributed energy storage systems in improving 

network capacity utilisation, a comparison between the network performance when 

no storage systems are applied and when storage systems are applied is required. 

Although there might be variations in network demand, the performance of 

distributed energy storage systems has shown greater potential in improving network 

capacity utilisation under both summer and winter conditions. With significant 

improvements under seasons with great variations in power demand, the system 

proved to reliable solution throughout the year. Distributed energy storage systems 

have shown excellent performance in controlling voltage levels at demand nodes as 

well as the rest of the nodes on the network.  

Although distributed energy storage systems performed well in generation capacity 

reduction and voltage control, the technology also has some disadvantages. The main 

problem with energy storage systems is the investment cost due to high cost of 

batteries. With reduced prices of batteries, distributed energy storage systems can be 

widely implemented at low cost.  
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5.10 Chapter Summary  

 In this chapter, the system performance and simulation results were discussed. Using 

distributed energy storage systems to improve network assets utilisation in an urban 

area proved to be an effective solution. The cost effectiveness of energy storage 

systems is still affected by the cost of battery technologies.  
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Chapter 6:    Conclusions  

 

 

 

6.1 Summary 

The aim of this research project was to improve network capacity utilisation with 

distributed energy storage systems. To accomplish the aim of this project it became 

necessary to reach some prerequisite goals. An energy audit was conducted to 

determine how much energy is required to supply the demand above the base load 

for a typical household. Based on peak period energy and power requirements, and 

energy storage system was designed.    

The NSW1 network was analysed to determine the size of the evening peak demand 

and the available capacity to charge energy storage systems during the off peak 

period. The maximum number of households that the network was able to charge 

during the off peak period was determined and the minimum number of households 

required to use energy storage systems during peak periods to avoid the peak demand 

were determined. The effectiveness of distributed energy storage systems on the 

network was evaluated by modelling the resulting demand pattern. A MATLAB 

algorithm was developed to conduct a power flow analysis to evaluate voltage 

regulation capabilities of distributed energy storage systems at demand nodes on the 

network. Cost effectiveness of energy storage systems was evaluated using HOMER 

ENERGY software.  

 

6.2 Conclusions  

Analysis and simulation results show that distributed energy storage systems are a 

potential solution to improving network capacity utilisation. Distributed energy 

storage systems performed well under both winter and summer conditions and were 

able to reduce the generation capacity required to meet the peak demand. Adoption 
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of distributed energy storage systems can help avoid or delay the need for network 

capacity upgrades and improve utilisation of existing network assets.  

 

6.3 Recommendations  

To more accurately evaluate the performance of distributed energy storage systems 

on the network, more accurate network parameter are required. The average network 

demand over 24 hours was considered as the base load. It is recommended that actual 

network parameter such as the base load and installed capacity are used for more 

accurate results.  

 

6.4 Future Research and Development  

The completion of this project leaves other major sections for further work. The 

future work includes: 

 Investigation of other effectiveness of distributed energy storage systems on 

the electricity grid. 

 Determination of a more accurate load profile 

 Implementation of the designed storage system for performance analysis on a 

single household. 

 Finding of more accurate network parameter.  
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Appendix B 

 

MATLAB Code for Power Flow Analysis  

% Matlab code adopted from Sayde and changed by Tony B. Sunzu 
% Simple SWER line 7 nodes 
% PF = 0.9;   %0.9 power factor for simulation 
% 
% Initialise transformer parameters in VA  

%============================================================== 

                     
clear all 
home 
Sbase = 400000;       % Base Power  
Vbase = 19000;        % Base voltage in V 
Ibase = Sbase/Vbase;  % Base current  
Zbase =  Vbase/Ibase; % Base Impedance 
S400 = 400e3;         % (400kVA) Size of transformer 
S200 = 200e3;         % (200kVA) Size of transformer 
S25 = 25e3;           % (25kVA) Size of transformer 
S10 = 10e3;           % (10kVA) Size of transformer 
%% 
%400 kVA isolation transformer 
Zt_400percent = 0.05; XRt_400 = 4.5; Rtesx_400 = 3;   % 400kVA 

isolation transformer (22kV/19kV) 
Zt_400ohm = Zt_400percent*(19e3^2)/S400; 
Rt_400ohm = sqrt(Zt_400ohm^2/(1+XRt_400^2)); 
Xt_400ohm = XRt_400*Rt_400ohm; 
noload_loss400= 960; %W 
MSC400= ((noload_loss400/Vbase^2)/(1/Zbase));     
%Per unit values 
Zt_400 = (Rt_400ohm+Rtesx_400 + Xt_400ohm*i)/Zbase;  

  
Zt_200percent = 0.05; XRt_200 = 4.5; Rtesx_200 = 3;    % 200kVA 

isolation transformer (22kV/19kV) 
Zt_200ohm = Zt_200percent*(19e3^2)/S200; 
Rt_200ohm = sqrt(Zt_200ohm^2/(1+XRt_200^2)); 
Xt_200ohm = XRt_200*Rt_200ohm; 
noload_loss200= 960; %W 
MSC200= ((noload_loss200/Vbase^2)/(1/Zbase));           %Magnetising 

Shunt Conductance 
% Per unit values 
Zt_200 = ((Rt_200ohm+Rtesx_200) + (Xt_200ohm*i))/Zbase;  

  
% 25 kVA rural transformer 
Zt_25percent = 0.0375; XRt_25 = 2; Rtesx_25 = 30;       % 25kVA 

rural transformer (19kV/0.4kV) 
Zt_25ohm = Zt_25percent*(19e3^2)/S25; 
Rt_25ohm = sqrt(Zt_25ohm^2/(1+XRt_25^2)); 
Xt_25ohm = XRt_25*Rt_25ohm; 
noload_loss25 = 133; %W 
MSC25= ((noload_loss25/Vbase^2)/(1/Zbase));             % 

Magnetising Shunt Conductance.  
% Per unit values 
Zt_25 = (Rt_25ohm + Rtesx_25 + Xt_25ohm*i)/Zbase;  
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% 10 kVA rural transformer 
Zt_10percent = 0.0375; XRt_10 = 2; Rtesx_10 = 30;       % 10kVA 

rural transformer (19kV/0.4kV) 
Zt_10ohm = Zt_10percent*(19e3^2)/S10; 
Rt_10ohm = sqrt(Zt_10ohm^2/(1+XRt_10^2)); 
Xt_10ohm = XRt_10*Rt_10ohm; 
noload_loss10 = 133; %W 
MSC10= ((noload_loss10/Vbase^2)/(1/Zbase));             

%MagnetisingShuntConductance 
% Per unit value 
Zt_10 = (Rt_10ohm + Rtesx_10 + Xt_10ohm*i)/Zbase;  

  
%%---------------------------------------------------- 
% ----Initialise conductor Parameters----------------- 
%----------------------------------------------------- 
%SCAC (7m) 
R1_SCAC = 6.03;                 %(ohms/km) 
X1_SCAC = 1.061938;             %(ohms/km) 
L1_SCAC = X1_SCAC/(2*pi*50);    %(H/km) 
BC1_SCAC = 2.73*10^-6;          %(mhos/km) 
XC1_SCAC = (BC1_SCAC)^(-1);     %(ohms/km) 
C1_SCAC = 1/(2*pi*50*XC1_SCAC); %(F/km) 

  
%SULTANA (7m, GMD = 1.8m) 
R1_SUL = 1.14;                  %(ohms/km) 
X1_SUL = 0.414938;              %(ohms/km) 
L1_SUL = X1_SUL/(2*pi*50);      %(H/km) 
BC1_SUL = 2.92*10^-6;           %(mhos/km) 
XC1_SUL = BC1_SUL^(-1);         %(ohms/km) 
C1_SUL = (2*pi*50*XC1_SUL)^(-1);%(F/km) 

  
R0_SUL = 1.28295;               %(ohms/km) 
X0_SUL = 1.83424;               %(ohms/km) 
L0_SUL = X0_SUL/(2*pi*50);      %(H/km) 
BC0_SUL = 1.39*10^-6;           %(mhos/km) 
XC0_SUL = BC0_SUL^(-1);         %(ohms/km) 
C0_SUL = (2*pi*50*XC0_SUL)^(-1);%(F/km) 

  
%BANANA (7m, GMD = 1.8m) 
R1_BAN = 0.56;                  %(ohms/km) 
X1_BAN = 0.383938;              %(ohms/km) 
L1_BAN = X1_BAN/(2*pi*50);      %(H/km) 
BC1_BAN = 3.03*10^-6;           %(mhos/km) 
XC1_BAN = BC1_BAN^(-1);         %(ohms/km) 
C1_BAN = (2*pi*50*XC1_BAN)^(-1);%(F/km) 

  
R0_BAN = 0.70295;               %(ohms/km) 
X0_BAN = 1.80324;               %(ohms/km) 
L0_BAN = X0_BAN/(2*pi*50);      %(H/km) 
BC0_BAN = 1.41*10^-6;           %(mhos/km) 
XC0_BAN = BC0_BAN^(-1);         %(ohms/km) 
C0_BAN = (2*pi*50*XC0_BAN)^(-1);%(F/km) 

  
%% 
tol= 1e-8 ; % convergence condition in terms of pu active power 

mismatch and reactive power mistmatch at each bus 
maxiter = 100 ; % maximum nunber of iterations(prevents looping 

forever in the event of convergence not happening) 
%Impedance matrix Z (P.U) 
%% 
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z1_2=Zt_400;                                           % z1_2 

=(400KVATransformer resitance+earth stake resistance+j*tranformer 

reactance  
z2_3=((R1_BAN*100)+(X1_BAN*100*i))/Zbase;              % z2_3 = pu 

series 100km BAN conductor  
z3_4=((R1_SCAC*50)+(X1_SCAC*50*i))/Zbase;              % z3_4 = pu 

series 50km SCAC  
z4_5=Zt_200;                                           % z4_5 

=(200KKVA Transformer resitance+earth stake resistance)+j*tranformer 

reactance  
z3_6=((R1_SCAC*50)+(X1_SCAC*50*i))/Zbase;              % z3_6 = pu 

series 50km SCAC  
z6_7= Zt_200;                                          % z6_7 

=(200KVA Transformer resitance+earth stake resistance+j*tranformer 

reactance     

  
%%------------------------------------------------------------------

------- 
% Shunt Admitence 
%-------------------------------------------------------------------

------- 
y1_1= 0+0i;                                                     % 

400KKVA Transformer at bus 1 
y2_2= MSC400+ 0.5*(100*(BC1_BAN/(100*pi*(1/Zbase))))*i;         % 

100km BAN +400KKVA Transformer at bus 2. 
y3_3= 

0.5*((100*(BC1_BAN/(100*pi*(1/Zbase))))+(50*(BC1_SCAC/(100*pi*(1/Zba

se))))+(50*(BC1_SCAC/(100*pi*(1/Zbase)))))*i; % 100km BAN+ 50km 

SCAC+ 50km SCAC at bus 3. 
y4_4= MSC200+ 0.5*((50*(BC1_SCAC/(100*pi*(1/Zbase)))))*i;       % 

50km SCAC+ 200KKVA Transformer at bus 4. 
y5_5= 0+ 0i;                                                    % 

Load at bus 5. 
y6_6= MSC200+ 0.5*((50*(BC1_SCAC/(100*pi*(1/Zbase)))))*i;       % 

50km SAC+ 200KKVA Transformer at bus 6. 
y7_7= 0+ 0i;                                                    % 

Load at bus 7. 

  

  
%%------------------------------------------------------------------

------- 
% v contains the bus voltage matrix; entries for v are complex 

numbers in pu 
%     1      2      3     4     5     6    7 
v=[  1.05   1.0    1.0   1.0   1.0   1.0  1.0].'; 

  
%%   
% nn= 0; 
% mm =-0.05 
% .... contains initial estimates for load(PQ) buses and specified 

values for slack bus (ie bus 1) 
% If all v's are initially set to 1, we refer to the start of the 

iterative 
% ... process as a flat start. 
% v(1) is not calculated, the rest of the v's are. 
%Pg contains the user specified generator active power at each 

bus;entries for Pg are real numbers;Pg(1) can be any value.  
%The value entered does not matter because Pg(1), unlike the other 

Pg's is re-calculated by the power flow program since bus 1 is the 

slack bus. 
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% Values in Pg are positive for generated active power or injected 

active power. 
%       1       2      3      4      5         6        7       
Pg=[    0       0      0      0      0         0        0];% values 

are pu 

     

     
%% 
%Qg contains the user specified generator reactive power at each 

bus.    
%Entries for Qg are real numbers. 
%Qg(1) and entries for voltage controlled buses can be any value 

because these are re-calculated by the power flow program ; 
%Positive for generated reactive power 
%       1       2       3       4      5      6      7      
Qg=[    0       0       0       0      0      0      0];      % 

values are pu 

  

  
%% 
%Pd contains the user specified load active power at each 

bus;entries for Pd should be real numbers 
%       1      2     3       4       5           6       7 
Pd=[    0      0     0       0       0        0          0];       % 

values are pu positive for power consumed by load  

  

  
    %% 
% Qd = zeros(n:6); 

  
%       1     2      3     4      5         6       7 
Qd =[   0     0      0     0      0         0       0];  

  
% for nn = -50:2     
%     n = length(nn) 
%     for i = 1:n 
%     %Qd contains the user specified load reactive power at each 

bus;entries for Qd should be real numbers 
% %           1      2      3       4             5        6     
%     Qd =[   0      0      0       nn*0.02   0        0 ]./0.5;      

%....values are pu; positive lagging power factor load 
%  
%     end 

  
% PgB83 = Sbatt*pfsys; 
% QgB83 = Sbatt*sin(acos(pfsys)); 
%% 
%%%%%%% calculation of the Y matrix; 
Y= zeros(7,7); 

  
Y(1,1)= y1_1 + (1/z1_2);                         Y(1,2)= -1/(z1_2); 

Y(2,1)=Y(1,2); 
Y(2,2)= y2_2 + (1/z1_2)+(1/z2_3);                Y(2,3)= -(1/z2_3); 

Y(3,2)=Y(2,3) 
Y(3,3)= y3_3 + (1/z2_3)+ (1/z3_4)+ (1/z3_6);     Y(3,4)= -(1/z3_4); 

Y(4,3)=Y(3,4); Y(3,6)= -(1/z3_6); Y(6,3)=Y(3,6);  
Y(4,4)= y4_4 + (1/z3_4)+(1/z4_5) ;  Y(4,5)= -(1/z4_5); 

Y(5,4)=Y(4,5); 
Y(5,5)= y5_5 + (1/z4_5);   
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Y(6,6)= y6_6 + (1/z3_6)+(1/z6_7);   Y(6,7)= -(1/z6_7);Y(7,6)=Y(6,7); 
Y(7,7)= y7_7 + (1/z6_7); 

  
%%  
iter=0;% set to zero to start from scratch, choose other than zero 

value to continue from last iteration; 
maxpqmm=10*tol; 
while (iter<maxiter) & (maxpqmm > tol)  
if iter ~= 0 
   load psa9p12sr 
else 
end 

   
jaco11=zeros(7,7);%jaco11,jaco21,jaco12,jaco22 are as per eq 9.45 in 

textbook 
jaco21=zeros(7,7);% size is set to 5 because five buses are involved 
jaco12=zeros(7,7); 
jaco22=zeros(7,7); 
jsize=12;% size of the jacobian= 2*(number of buses)-2(due to slack 

bus)-number of voltage controlled buses 
jaco=zeros(jsize,jsize);% jaco combination of jaco11,jaco12,jaco21 

and jaco22 as per textbook equation 9.45 

  
% calculation of power mismatches  

  
for j=1:7 
   P(j)=0; 
   Q(j)=0; 
   for k=1:7 
   vvy=v(j,1)'*v(k,1)*Y(j,k); 
%P(j)is estimation of injected active power into bus j based on 

current estimates of bus voltages (eq 9.4 in textbook, n=j and i=j) 
   P(j)=P(j)+real(vvy); 
%Q(j)=-abs(v(j,1))*abs(v(j,1))*imag(Y(j,j));%Q(j) is estimation of 

injected reactive power into bus j based on current estimates of bus 

voltages (eq 9.4 in textbook, n=j and i=j) 
   Q(j)=Q(j)-imag(vvy); 
   end 
end 

  
pmm=Pg-Pd-P;%pmm is active power mismatch based on equation 9.8 in 

textbook 
qmm=Qg-Qd-Q; % qmm is reactive power mismatch based on equation 9.9 

in textbook 
pqmm(1:6)=pmm(2:7); % do not consider active power mismatch for 

slack bus ; pqmm is combination of active and reactive power 

mismatches 
pqmm(7:jsize)=qmm(2:7); % do not consider reactive power mismatch 

for voltage controlled buses  
pqmm=pqmm; %allows display of active and reactive power mismatch in 

workspace so user can decide whether to continue iterating 

  
%evaluation of the jacobian 
for j=1:7 
   for k=1:7 
      vvy=v(j,1)'*v(k,1)*Y(j,k); 
      if j~=k 
      jaco11(j,k)=-imag(vvy);%based on equation 9.52 of textbook 
      jaco21(j,k)=-real(vvy);%based on equation 9.55 of textbook 
      jaco12(j,k)=-jaco21(j,k);%based on equation 9.58 of textbook 
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      jaco22(j,k)=jaco11(j,k); %based on equation 9.62 of textbook 
   else 
   end 
   end 
end 

  
for j=1:7 
   jaco11(j,j)=-sum(jaco11(j,:)); % based on equation 9.53 of 

textbook, note jaco11(j,j)=0 
   jaco21(j,j)=-sum(jaco21(j,:)); % based on equation 9.56 of 

textbook, note jaco21(j,j)=0 
   

jaco12(j,j)=jaco21(j,j)+2*abs(v(j,1))*abs(v(j,1))*real(Y(j,j));%base

d on equation 9.61 of textbook  
   jaco22(j,j)=-jaco11(j,j)-

2*abs(v(j,1))*abs(v(j,1))*imag(Y(j,j));%based on equation 9.63 of 

textbook 
end 

  
jaco(1:6,1:6)=jaco11(2:7,2:7); % slack bus not to be considered 
jaco(7:jsize,7:jsize)=jaco22(2:7,2:7); % voltage controlled buses 

not to be considered 
jaco(1:6,7:jsize)=jaco12(2:7,2:7); % slack bus and voltage 

controlled buses not to be considered 
jaco(7:jsize,1:6)=jaco21(2:7,2:7); % slack bus and voltage 

controlled buses not to be considered 

  

  
% evaluation of angle and voltage corrections 

  
avcor= inv(jaco)*pqmm'; % based on equation 9.45 
%avcor(jsize+1:48,1)=0; % voltage corrections for voltage controlled 

buses set to zero 

  
% evaluation of new angles and new voltages 

  
newangle(2:7)=angle(v(2:7,1))+avcor(1:6,1); % based on equation 9.49 

of textbook 
newmag(2:7)=abs(v(2:7,1)).*(ones(6,1)+avcor(7:12,1)); % based on 

equation 9.50 of textbook 

  
for j=2:7 
v(j,1)=newmag(j)*exp(i*newangle(j)); 
end 

  
iter=iter+1; 

  
save psa9p12sr v pqmm iter 

  
pqmm = abs(pqmm); 

  
maxpqmm= max(pqmm); 

  
end 

  
if (iter== 200) & ( maxpqmm > tol ) 

     
    warning (' failed to converge') 
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end 

  
absv=abs(v) 
kWResistivelosses = sum(P) 
kVAReactivelosses = sum(Q) 
TotActPd= sum(Pd) 
TotalReactQd= sum(Qd) 
TotalNetworkCustLoad= sqrt(sum(Qd)*sum(Qd) + sum(Pd)*sum(Pd)) 
TotalNetworkPower= 

sqrt((sum(Qd)+sum(Q))*(sum(Qd)+sum(Q))+((sum(Pd)+sum(P))*(sum(Pd)+su

m(P)))) 

  
%% 

  
rho = zeros(1,7); 
delvp = zeros(1,6); 
delvq = zeros(1,6); 
delp = 0; 
delq = 0; 
delvpq = zeros(2,7); 
A = zeros(6,6); 
A11 = zeros(6,6); % extract submatrices 
A12 = zeros(6,6); 
A21 =  zeros(6,6); 
A22 =  zeros(6,6); 
newA21 = zeros(7,7); 
newA22 = zeros(7,7); 
A2 = zeros(7,1); 
A1 = zeros(1,6); 
A21x = zeros(7,6); 
A22x = zeros(7,6); 
newA21 = zeros(7,7); 
newA22 = zeros(7,7); 
A = inv(jaco); % some square matrix 
ii=6; % partition indices: row 24, column 24 
jj=6; 
A11 = A(1:ii,1:jj); % extract submatrices 
A12 = A(1:ii,jj+1:end); 
A21 = A(ii+1:end,1:jj); 
A22 = A(ii+1:end,jj+1:end); 

  
delvp = diag(A21);                  % voltage sensitivity with 

respect to active power, P 
delvq = diag(A22);                  % voltage sensitivity with 

respect to reactive power, Q 

  
A21x = [A1; A21]; 
newA21 = [A2 A21x] 

  
A22x = [A1; A22]; 
newA22 = [A2 A22x] 

  
DiagA21= diag(newA21) 
DiagA22=diag(newA22) 
absv 
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Appendix C 

 

HOMER ENERGY 

 

 

System Report - Cost Effectiveness 

  

System architecture 

PV Array 4 kW 

Grid 9 kW 

Battery 40 Trojan L16P 

Inverter 5 kW 

Rectifier 5 kW 

 

Cost summary 

Total net present cost $ 29,621 

Levelized cost of energy $ 0.308/kWh 

Operating cost $ 572/yr 
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Net Present Costs 

Component 

Capital Replacement O&M Fuel Salvage Total 

($) ($) ($) ($) ($) ($) 

PV 6,557 0 0 0 -409 6,148 

Grid 0 0 -2,470 0 0 -2,470 

Trojan L16P 10,000 5,584 229 0 0 15,813 

Converter 6,500 3,630 0 0 0 10,130 

System 23,057 9,214 -2,240 0 -409 29,621 

 

Annualized Costs 

Component 

Capital Replacement O&M Fuel Salvage Total 

($/yr) ($/yr) ($/yr) ($/yr) ($/yr) ($/yr) 

PV 572 0 0 0 -36 536 

Grid 0 0 -215 0 0 -215 

Trojan L16P 872 487 20 0 0 1,379 

Converter 567 316 0 0 0 883 

System 2,010 803 -195 0 -36 2,583 

 

Electrical 

Component 

Production Fraction 

(kWh/yr) 
 

PV array 5,774 61% 
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Grid purchases 3,707 39% 

Total 9,481 100% 

 

Load 

Consumption Fraction 

(kWh/yr) 
 

AC primary load 4,380 52% 

Grid sales 4,015 48% 

Total 8,395 100% 

Quantity Value Units 

Excess electricity 0.0000165 kWh/yr 

Unmet load 0.00000184 kWh/yr 

Capacity shortage 0.00 kWh/yr 

Renewable fraction 0.558 
 

 

PV 

Quantity Value Units 

Rated capacity 4.00 kW 

Mean output 0.659 kW 

Mean output 15.8 kWh/d 

Capacity factor 16.5 % 

Total production 5,774 kWh/yr 

Quantity Value Units 

Minimum output 0.00 kW 

Maximum output 3.88 kW 

PV penetration 132 % 

Hours of operation 4,381 hr/yr 
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Levelized cost 0.0928 $/kWh 

 

Battery 

Quantity Value 

String size 8 

Strings in parallel 5 

Batteries 40 

Bus voltage (V) 48 

Quantity Value Units 

Nominal capacity 86.4 kWh 

Usable nominal capacity 60.5 kWh 

Autonomy 121 hr 

Lifetime throughput 43,000 kWh 

Battery wear cost 0.252 $/kWh 

Average energy cost 0.174 $/kWh 

Quantity Value Units 

Energy in 1,480 kWh/yr 

Energy out 1,249 kWh/yr 

Storage depletion 11.1 kWh/yr 

Losses 220 kWh/yr 

Annual throughput 1,355 kWh/yr 

Expected life 10.0 yr 
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Converter 

Quantity Inverter Rectifier Units 

Capacity 5.00 5.00 kW 

Mean output 0.72 0.16 kW 

Minimum output 0.00 0.00 kW 

Maximum output 3.65 4.69 kW 

Capacity factor 14.3 3.3 % 

Quantity Inverter Rectifier Units 

Hours of operation 4,924 304 hrs/yr 

Energy in 6,969 1,584 kWh/yr 

Energy out 6,272 1,425 kWh/yr 

Losses 697 158 kWh/yr 
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Grid 

Rate: Off Peak Rate 

Month 

Energy 
Purchased 

Energy 
Sold 

Net 
Purchases 

Peak 
Demand 

Energy 
Charge 

Demand 
Charge 

(kWh) (kWh) (kWh) (kW) ($) ($) 

Jan 217 0 217 6 30 0 

Feb 175 0 175 6 24 0 

Mar 203 0 203 6 28 0 

Apr 198 0 198 6 27 0 

May 226 0 226 6 31 0 

Jun 209 0 209 6 29 0 

Jul 224 0 224 6 31 0 

Aug 220 0 220 6 30 0 

Sep 185 0 185 6 25 0 

Oct 192 0 192 6 26 0 

Nov 197 0 197 6 27 0 

Dec 183 0 183 6 25 0 

Annual 2,428 0 2,428 6 332 0 

 

Rate: Peak Rate 

Month 

Energy 
Purchased 

Energy 
Sold 

Net 
Purchases 

Peak 
Demand 

Energy 
Charge 

Demand 
Charge 

(kWh) (kWh) (kWh) (kW) ($) ($) 
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Jan 0 71 -71 0 -14 0 

Feb 0 62 -62 0 -12 0 

Mar 0 63 -63 0 -13 0 

Apr 0 57 -57 0 -11 0 

May 0 54 -54 0 -11 0 

Jun 0 49 -49 0 -10 0 

Jul 0 56 -56 0 -11 0 

Aug 0 72 -72 0 -14 0 

Sep 0 66 -66 0 -13 0 

Oct 0 70 -70 0 -14 0 

Nov 0 66 -66 0 -13 0 

Dec 0 69 -69 0 -14 0 

Annual 0 753 -753 0 -151 0 

 

Rate: Shoulder Rate 

Month 

Energy 
Purchased 

Energy 
Sold 

Net 
Purchases 

Peak 
Demand 

Energy 
Charge 

Demand 
Charge 

(kWh) (kWh) (kWh) (kW) ($) ($) 

Jan 101 281 -180 3 -36 0 

Feb 104 251 -147 3 -29 0 

Mar 103 276 -174 3 -35 0 

Apr 110 244 -134 3 -27 0 

May 122 227 -105 3 -21 0 

Jun 116 256 -140 3 -28 0 

Jul 124 249 -125 3 -25 0 

Aug 109 293 -183 3 -37 0 

Sep 101 307 -206 3 -41 0 

Oct 89 308 -219 4 -44 0 

Nov 97 279 -182 3 -36 0 

Dec 103 292 -189 3 -38 0 

Annual 1,278 3,262 -1,983 4 -397 0 
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Rate: All 

Month 

Energy 
Purchased 

Energy 
Sold 

Net 
Purchases 

Peak 
Demand 

Energy 
Charge 

Demand 
Charge 

(kWh) (kWh) (kWh) (kW) ($) ($) 

Jan 318 351 -33 6 -20 0 

Feb 279 312 -33 6 -18 0 

Mar 305 340 -34 6 -20 0 

Apr 309 301 8 6 -11 0 

May 348 280 68 6 -1 0 

Jun 325 305 20 6 -9 0 

Jul 348 305 43 6 -6 0 

Aug 329 364 -36 6 -21 0 

Sep 285 372 -87 6 -29 0 

Oct 281 379 -98 6 -32 0 

Nov 294 344 -50 6 -23 0 

Dec 285 361 -75 6 -27 0 

Annual 3,707 4,015 -308 6 -215 0 

 

Emissions 

Pollutant Emissions (kg/yr) 

Carbon dioxide -195 

Carbon monoxide 0 

Unburned hydocarbons 0 

Particulate matter 0 

Sulfur dioxide -0.845 

Nitrogen oxides -0.413 

 

 


