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Abstract 

In the prostheses technology, the development of hip joint materials for hip 

replacement in human body is probably one of the most challenging problems. Even 

the history of hip arthroplasty is over 100 years; we still have encountered enormous 

challenge, mainly deal with the quality of the prosthetic materials. Many different 

material experiments and surgical approaches have been taken around the world to 

improve the performance of the prosthesis.  

The purpose of this document is to investigate the failure of the hip replacement and 

the total hip replacement in particular. It also provides the failure analysis and 

methodology as well as exploring the design specification and material selections of 

human hip replacement prosthesis.  

 

Keywords: Total Hip Replacement, Total Hip Replacement Prosthesis, Hip 

Replacement Failure Analysis, Hip Arthroplasty, Hip Implant, Hip Implant Materials 

Selection, Cemented Implant, Cementless Implant. 
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Chapter 1- Introduction 

 

1.1 Background 

Hip replacement is also known as hip arthroplasty is a surgical procedure where the 

human hip joint is replaced by a prosthetic implant. The purpose of replacing hip joint 

is to help relieve physical pain and fix the severe damage of the hip as well as 

increase mobility for the patients.  

Hip replacement was first performed in 1960, and is considered to be one of the 

most successful operations in the medical industry. A large number of Total hip 

replacements have been performed around the world. According to the Agency for 

Healthcare Research and Quality, more than 285,000 total hip replacements are 

performed each year in the United States (AAOS, 2011) 

Over the years, the surgeons and technologists make daily efforts to improve the 

quality as well as the efficiency of the total hip replacement outcome. The ultimate 

goal is to create a hip prosthesis that is reliable and can last at least a human life 

time. The success rate of total hip replacement is reported to be greater than 95% in 

many series and a longer than 10-year follow-up. (Ulrich et al. 2007)  An increasing 

number of patients who are undergoing total hip replacement are expected to 

maintain a high level of activity as well as the life expectancy has increased which 

lead to the rising demand of these arthroplasties.  With these reasons, the number of 

revision procedures for total hip replacement is expected to be higher in the future 

even the primary operation success rate is high.  
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1.2 The Problem 

Total hip replacement (THR) surgery helps relieve the pain and improve mobility for 

the patients. Most people who have their hip joint replaced do not need more 

surgery. However, there are still some cases where patients are required revision 

surgery. 

Total hip replacement revision can be a financial burden for patients as well as the 

heath care. It is also less favourable than the primary total hip replacement. There 

are a few reasons why the THR fail and this can be classified into three groups: 

patient-related factors, implant-related factors and failures related to inadequate 

surgical technique (Ulrich et al. 2007). 

There are many complications associates with THR. The most common problem of 

THR is hip instability dislocation. This is because artificial-hip is smaller than normal 

hips. Depending on the patient’s certain position, for instance, pulling the knees up to 

the chest can cause the ball come out of the socket (NIAMS 2010).  Some other 

failures are component loosening, infection, wear and tear and periprosthetic 

fractures. 

More details of failure analysis and material selection will be provided in chapter 2, 3 

and 4 of this document.   

1.3 Project Objectives 

There are two main needs for this project: 

 Failure analysis of the prosthesis 

 Material selection for prosthesis parts 

The failure analysis will describe the failure modes of the prosthesis. Each part of the 

implant component will be examine carefully to see where the part might fail and 

what can be modified to improve the quality of each part. This leads to the need of 

understanding the right material selection used for each part of the component by 

comprehending the main function of each part and what kind of force applied on the 

parts that lead to failure.  Finally, a conceptual design will be introduced and backed 

up with some research and analysis.  
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1.4 Overview of the Project 

This dissertation aims to provide the reader an understanding of what total hip 

replacement is, the failures and materials related to total hip replacement and what 

methodology for failure analysis and materials selection should be used.  

Chapter 1 will basically provide the introduction of total hip replacement, the 

background, the current problem with THR in the world, the objective of this project 

and the overview. 

Chapter 2 will provide more in details with literature reviews of the biology as well as 

the biomechanical of hip joint. Different types of parts and implant insertion will also 

be provided. The failure modes and material selection criteria will also be mentioned. 

Chapter 3 will provide the methodology for failure analysis, risk assessment and 

some other calculation that relates to the topic. 

Chapter 4 will provide the material selection. Explanation on why certain material is 

used for certain part will be included in this chapter. 

Chapter 5 will be discussion on the content that has been covered and 

recommendation and further studies need to be taken. 

Chapter 6 will be a concise summary of this document.    

  



Page 13 of 86 
 

Chapter 2 – Literature Review 

2.1 Overview 

This chapter of literature review will establish the need to fully understand the 

structure of hip joint. Every part of the hip joint is studied in details about their 

structure and how they function. By understanding the structure and function of hip 

joint, the performance of the hip prosthesis will be analysed and compared to find out 

which part of the prosthesis perform well, which part needs to be improved and 

where on the prosthesis is more likely to fail. 

Moreover, this literature review will help gain the understanding about the hip joint 

and prosthesis to decide which materials will be used to make the prosthesis based 

on the nature of human hip joint and the human body environment.    
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2.2 Theory behind Human Hip Joint                                                                                                                                                                                                      

2.2.1 Human Hip Joint Structure 

Hip joint is one of the human body’s largest joints. It has a ball and socket structure.   

 

Figure 2.2.1: Human Hip Joint Anatomy (source: AAOS 2011) 

Figure 2.2.1 above shows the structure of human hip joint. The socket is formed by 

the acetabulum which is a part of the pelvis bone on the top. The ball is the femoral 

head which is located on the top end of the femur (thigh bone).   

To move smoothly and easily the ball and the socket are covered by a smooth tissue 

called the articular cartilage, which is located at the connection between the ball and 

the socket. Surrounding the hip joint is a thin tissue called synovial membrane. In a 

healthy hip, this membrane produces small amount of fluid that lubricates the 

cartilage and reduces almost all the friction create during the movement. The 

ligaments or the hip capsule is a group of tissues which connect the ball to the 

socket to provide stability.  
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2.2.2 Biomechanics of the Hip Joint 

McGeough (2013) stated that the hip undergoes cyclic loading that is three to five 

times that of the weight of the body. It also has to withstand loads as high as 12 

times the body weight.  

 

Figure 2.2.2: Forces acting on the hip (Harkess and Crockarell 2013) 

In order to describe and understand the forces acting on the hip joint, the body 

weight can be considered as a load applied to a lever arm extending from the centre 

of gravity (X) of the body to the centre (B) of the femoral head. From figure 2.2.2 it 

can be seen that the moment created by the body weight acting on lever arm BX has 

to be counter-balanced by the moment caused by the abductor musculature acting 

on the shorter lever arm AB. The lever arm AB is extended from the centre of the 

femoral head to the lateral aspect of the greater trochanter. The three variations A, B 

and C in figure 2.2.2 above show the different lengths of lever arm AB and BX. Case 

A is a normal human hip joint. The lever arm AB might be shorter than normal in an 

arthritic hip.  In case B, the acetabulum medicalization shortens the lever arm BX. 

The lever arm A1B1 is lengthened by the use of high offset neck. In case C, the lever 

arm A2B2 is lengthened further and the abductor musculature is also tightened by 

the lateral and distal reattachment of osteotomized greater trochanter (Harkess and 

Crockarell 2013).  

To maintain the pelvis level when standing on one leg the force generated from the 

abductor muscles must be approximately 2.5 times the body weight because the 

ratio of the length of the lever arm BX to AB is about 2.5: 1. Harkess and Crockarell 

(2013) stated that the load on the femoral head in a stance phase of gait is estimated 
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to be three times the body weight which is about the same in straight-leg raising 

situation. This load is the sum of forces created by the body weight and the abductor.  

In arthritis and other hip disorders where the femoral neck is shortened or part or all 

of the femoral head is lost, the abductor lever arm is also shortened. In an arthritic 

hip, the ratio of the lever arm of the body weight to that of the abductors (BX to AB) 

could be up to 4: 1. This ratio can be surgically changed to approach 1:1 (in figure 

2.2.2 C) by reattaching the osteotomized greater trochanter laterally (Harkess and 

Crockarell 2013). This will reduce the moment produced by the body weight and in 

theory will reduce the total load on the hip by 30%.  

Paul (cited in McGeough 2013) found the maximum force acting on the hip as in the 

table 1 below: 

Table 2.2.2: Maximum force at hip (expressed as a multiple of body weight) ( McGeough 2013)  

Activity Hip 

 Level walking slow 

 Level walking normal 

 Level walking fast 

 Upstairs 

 Downstairs 

 Up ramp 

 Down ramp 

 5 

 5 

 8 

 7 

 7 

 6 

 5 

 

Understanding the biomechanical forces on the hip helps the design process and 

increases the sustainability of the prosthesis. When knowing the maximum forces 

that can apply on certain part of the prosthesis, the design and manufacturing 

processes can be a lot easier.  With this, the prosthesis quality can be increased and 

the failure rate will be reduced.  

Depending on the type of action and the body weight condition of the patients, the 

force can apply differently. One of the cases where the hip is subjected to the high 

amount of load is the condition of jumping. In this case, the load can be about ten 

times that of the body weight. The torsional force acting on the hip can be increased 

when combining other actions such as ascending or descending stairs, moving on an 

incline surface or sit up from the chair, as well as when carrying heavy things.  

This comes to the conclusion that the forces acting on the femoral component 

adjacent to the hip can be increased by the increase of physical activity and the body 
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weight. These increasing forces can lead to loosening, bending or even breaking of 

the femoral stem. More of the failure modes and analysis will be found in the next 

chapter of this document.   

2.2.3 Common Causes of Hip Pain 

The main reason why people have their hip replaced is because of the severe hip 

pain that they cannot carry any longer. The most common cause of chronic hip pain 

is arthritis. The common forms of arthritis are: osteoarthritis, rheumatoid arthritis, and 

traumatic arthritis (AAOS, 2011). Below is the picture of a hip with osteoarthritis. 

 

Figure 2.2.3: Hip joint with osteoarthritis (AAOS 2011) 

It can be seen that with osteoarthritis, the hip joint is damaged. The cartilage is 

destroyed as well as the joint space is narrowed. The bone spurs as seen in figure 

2.2.3 above.  

AAOS 2011 reported the common types of arthritis as below: 

 Osteoarthritis. It is common for people who are 50 years of age and older. 

This is an age-related "wear and tear" type of arthritis and often in individuals 

with a family history of arthritis. The cartilage wears away which causes the 

bones to rub against each other and lead to pain and stiffness of the hip joint.  

 Rheumatoid arthritis. The symptom of this disease is that the synovial 

membrane becomes inflamed and thickened. This is an autoimmune disease. 

The cartilage is damaged by chronic inflammation and this also leads to pain 

and stiffness.  
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 Post-traumatic arthritis. This type of arthritis can follow a serious hip injury or 

fracture.  

 Avascular necrosis. This causes destruction of the joint articular surfaces due 

to limiting the blood supply to the femoral head and can cause the surface of 

the bone to collapse.  

 Childhood hip disease. Even the problem occurs when the patients are young 

and successfully treated during childhood; they may still cause arthritis later 

on in life. The reason is because the hip may not grow normally which can 

affect the joint surface. 

It can be understood that all types of hip arthritis above cause the cartilage damaged 

and lead to pain and stiffness of the hip joint. To relieve the pain and increase 

mobility for the patients, total hip replacement is introduced.  
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2.3 What Is Total Hip Replacement (THR)      

2.3.1 Background of Total Hip Replacement and THR Prosthesis 

Total hip replacement, also known as total hip arthroplasty is a surgical procedure 

where the damaged bones and cartilage of the hip are removed and replaced with 

prosthetic components.  

 

 

Figure 2.3.1: Total Hip Replacement. (Left) individual component; (Centre) the components merged 
into an implant; (Right) the implant fits into human hip. (AAOS 2011) 

Figure 2.3.1 above illustrates the components of common total hip replacement 

prosthesis and how it fits into the hip joint.  The picture of the left shows the 

individual component. It consists of the femoral stem, femoral head, plastic liner, and 

the acetabular component. The picture in the centre shows the implant when all 

parts merged together. The picture on the right shows how the implant fits into the 

human body to replace the hip joint.  

The procedure of a hip replacement is very complex. First, the damaged femoral 

head is removed and replaced with the femoral stem that is placed into the hollow 

centre of the femur (thigh bone).  The femoral stem is either cemented or press fit 

into the bone. This process needs to be deliberately done because if the femoral 

stem is not attached into the femur carefully, it can cause fracture along the thigh 

bone.  

Depending on the material of the prosthesis, a metal or ceramic ball will be placed 

on the top of the femoral stem to replace the damaged femoral head which was 

removed. Next, the damaged cartilage surface of the socket (or the acetabulum of 
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the pelvis bone) is removed and replaced with a metal socket. The socket is held in 

place by screwing or cementing it into the pelvis bone.  

Lastly, a plastic, ceramic or metal spacer is placed between the new femoral head 

(ball) and the socket to create a smooth gliding between the ball-and-socket 

structures. This allows the prosthesis move freely as the human hip.  

 

2.3.2 Types of Bearing Surface Combination in Total Hip Replacement 

When performing a total hip replacement, one important decision the surgeon will 

make is which bearing type will be used. The bearing part is an extremely important 

area which allows two moving part of the THR prosthesis (femoral head an 

acelabular cup) join together to create a movable hip joint.    

The assembly between the femoral head and the acetabulum can vary according to 

the combination of the different pairs of biomaterials that are used in the 

manufacturing process. The material options for bearing is based on many variables 

such as patients age, life style, weight, needs, etc.. Each pair of material has 

different benefits and drawbacks.  

There are four types of bearing surface combinations that are used as replacement 

for the hip acetabular femoral component. These types are classified by the 

materials used for the bearing components. They are Metal-on-Polyethylene, Metal-

on-Metal, Ceramic-on-Polyethylene, and Ceramic-on-Ceramic (Rodríguez-González 

2009). These types can also be narrowed down into two classifications: hard-on-soft 

bearings and hard-on-hard bearings. The soft bearing is always towards the 

acetabular component.  

The most common pair is Metal-on-Polyethylene but recently metal-on-metal has 

been used frequently. To achieve high precision when fitting, it is recommended that 

the proximal femoral components and the acetabular heads should come from the 

same manufacturer to ensure the exact dimensions. The longevity of the implant is 

affected by the biological response to particles of wear when in all cases of pairs of 

assemblies between the femoral head and the acetabulum.  
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2.3.2.1 Metal-on-Metal (MoM) Bearings 

The first widely used MoM THR bearings were cobalt-chromium alloy bearing 

against itself. This had a very high relative rate of failure and was then replaced by 

the Charnley prosthesis which consisted of a stainless steel ball and a polyethylene 

socket (Hosseinzadeh, Eajazi, and Shahi 2012).  

Since the femoral head is relatively large, the metal bearings are made in many 

sizes between 28mm to 60 mm. The large head provides more stability and higher 

range of motion as well as reduce the risk of hip dislocation (BoneSmart n.d.). The 

metal-on-metal (MoM) hip bearings produce wear debris in one form or combination 

of the four basic wear mechanisms of adhesion, abrasion, corrosion and surface 

fatigue (Wimmer et al. 2003). Even wear is reduced in MoM bearings; it is still a 

biocompatibility problem. Various adverse local tissue reactions such as pain, solid 

mass formation and periarticular fluid accumulation have been reported to be related 

to wear debris and corrosion products of MoM bearings (Harkess and Crockarell 

2013). Low-carbon alloys should not be used in MoM bearings because it has six 

times greater volumetric wear rate than high-carbon alloys (Brown et al. cited in Ahn 

et al. 2009).  

2.3.2.2 Ceramic-on-Ceramic (CoC) Bearings  

The CoC type of bearing is recommended for active or relatively young patients. 

Ceramic is harder than metal and has smoother surface due to its high density. It is 

more resistant to scratching from wear particles and this makes it desirable for THR 

bearings. BoneSmart (n.d.) reported that ceramic has the lowest wear rate of all and 

is 1000 times less than metal-on-polyethylene. Fisher et al. (cited in Ahn et al. 2009) 

reported that volumetric wear rates of CoC bearings have been as low as 0.1 

mm3/million cycles and this type of bearing outperforms other bearings.   

2.3.2.3 Metal-on-Polyethylene (MoP) Bearings 

This type of bearing for THR is commonly used in United States. It has a metal 

femoral head which is either made by stainless steel or cobalt alloys and a 

polyethylene (plastic) acetabular cup. The benefits of this include durable, versatile 

and adequate toughness for most patients. Some limits of this bearing type can be 

wearing over time which leads to bone loss and hip revision.  
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2.3.2.4 Ceramic-on-Polyethylene (CoP) Bearings  

CoP bearings has ceramic as the material of the femoral head and polyethylene as 

the material for acetabular cup. Ceramic-on-UHMWPE (Ultra high molecular weight 

polyethylene) creates a good combination of reliable materials where ceramic 

femoral heads are the most scratch-resistant material for implant. BoneSmart (n.d.) 

reported CoP bearings have 50% less wear rates than MoP.    

2.4 Types of THR Implant Insertion 

Depending on the type of fixation used to hold the implant in place, there are three 

common ways to fit the implant into the body. They are: cemented, cementless or 

hybrid (which is a combination of both cemented and cementless components) 

(Earl's View 2011).   

2.4.1 Cemented Total Hip Replacement 

In the last 40 years, there have been many studies on the methods and the materials 

used to hold the femoral head and the acetabular components in place. The most 

common bone cement used today is polymethylmethacrylate (PMMA). PMMA is an 

acrylic polymer. Cemented fixation method relies on the stability of the interface 

between the prosthesis, the cement and the solid mechanical bond between the 

cement and the bone.  

The benefit of using cemented method is that the patients can walk without support 

immediately after surgery. Even though the cemented implants have a long track 

record of success, they are not recommended for everyone.  The bond between 

cement and bone is very reliable and durable generally. This cemented method is 

recommended for older people because they are less likely to put tresses on the 

cement that could lead to fatigue fractures (Earl's View 2011).  
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2.4.1.1 Cemented Femoral Components 

For femoral components with cemented fixation, acrylic cement becomes the 

standard (Harkess and Crockarell 2013). The cemented stem is placed in a neutral 

position within the canal to reduce the chance of thin cement mantle areas. The stem 

design needs to have various sizes available. The reason for this is to allow the stem 

to take up approximately 80% of the medullary canal cross sectional area. The 

optimal cement mantle is 4mm proximally and 2mm distally. The method used to 

create more uniform cement mantle and centralize the stem within the femoral canal 

is applying PMMA centralizers that are affixed to proximal or distal of the stem (see 

figure 2.4.1.1 below). 

 
Figure 2.4.1.1: Integral proximal PMMA spacers and additional centralizer facilitate proper stem 
position and uniform cement mantle. (Harkess and Crockarell 2013) 

The length of the stem depends on the femoral canal geometry and size. The 

materials used to manufacture cemented femoral components will be discussed in 

great details in chapter 4. 
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2.4.1.2 Cemented Acetabular Components 

 

The acetabular socket for cemented fixation method originally used thick-walled 

polyethylene cups. The external surface was grooved to increase stability within the 

cement mantle. Figure 2.4.1.2 shows a typical type of cemented acetabular 

component that use polymethyl methacrylate spacers and textured surface to 

optimize the prosthesis and cement mantle interface.  

 

Figure 2.4.1.2: Acetabular component designed for cement fixation (Harkess and Crockarell 2013).  

Harkess and Crockarell (2013) said there has not been substantial improvement on   

long-term survivorship of cemented acetabular components and therefore 

cementless fixation starts to be promoted to be used for most patients.     



Page 25 of 86 
 

2.4.2 Cementless Total Hip Replacement 

Fixation problems of femoral components with acrylic cement started to emerge in 

the mid-1970s which led to the introduction of cementless components. Biological 

fixation requires two important factors, which are the reliable intimate contact 

between the implant surface and the host bone and the immediate mechanical 

stability during surgery.  

The concept of bone ingrowth and osseointegration are widely used in cementless 

implant fixation method. Osseointegration (also called osteointegration) refers to the 

intimate contact of the bone tissues with the surface of an implant. The term bone 

ingrowth refers to the formation of bone within the porous surface structure of an 

implant (figure 2.4.2) 

  

Figure 2.4.2: A bone ingrowth is observed in the coated zones of the stem increasing the stiffness of 
the bone/ stem interface (Andrade-Campos , Ramos and Simões 2012)  
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2.4.2.1 Cementless Femoral Components 

The implant designs for the cementless method are larger and longer than those 

used with cement. The surface of these implants should be conducive to attract new 

bone growth. In order to allow the new bone actually grows into the surface of the 

implants, the surface has to be textured or have a surface coating. The durable 

fixation for cementless stem designs is dependent on the bone ingrowth into the 

porous coating.   

Porous coatings have been created by either fibre mesh or beads which are implied 

by diffusion or sintering bonding process. The fatigue strength of the implant may be 

reduced because these two bonding processes require heating of the underlying 

substrate. The pore size of between 100 and 400 µm is considered to be the 

optimum for bone ingrowth into a porous surface (Harkess and Crockarell 2013). So 

far porous coatings have demonstrated durable fixation for many cementless stem 

designs. For example, femoral stem and acetabular component designs use 

tantalum and other high porous metals for cementless fixation because they may 

improve the initial stability of the implant due to their high coefficient of friction 

against cancellous bone. Porous tantalum implant surface has been reported to have 

extensive and rapid bone growth.  

For cementless femoral components, the femur must be prepared to match precisely 

the stem that is to be inserted and the implant design must be so accurate and 

professional so that the implant components are able to fit as closely as possible 

inside the femoral endosteal cavity.  To enhance implant fixation, many designs of 

cementless femoral component have been used combinations of various types of 

surface modification such as hydroxyapatite coating, porous coatings, plasma 

spraying and grit blasting (Harkess and Crockarell 2013). The coating type and 

extent is controversial but it is agreed that the proximal boundary should be 

circumferential. Furthermore, the circumferential porous coating of the proximal 

aspect of the stem limits the osteolysis development in the early stage and creates 

an affective barrier to the ingress of particles.  

The cementless method requires a longer time to heal than the cemented method, 

mainly because the stability of the cementless method depends on the growth of 

new bone to make it firm. When performing the cementless method, a very precise 
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approach must be taken so that the implant channel must match the shape of the 

implant itself as close as possible. If the gap between the implant and the channel is 

larger than 1mm to 2mm, the new bone growth cannot bridge this gap. Berry and 

Lieberman (2012) mentioned that gaps which are greater than 2mm are not 

compatible with bone formation.  

 

Figure 2.4.2.1: Troy Press-fit / HA Coated Cementless Femoral Stem (Covision Orthopaedics 2012) 
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Figure 2.4.2.1 shows a press-fit hydroxyapatite (HA) coated cementless femoral 

stem. This particular femoral stem uses cast titanium as the primary material. More 

analysis on materials selection for femoral stems will be provided in chapter 4.  

Cementless THR is usually recommended for younger patients who are more active 

and have good bone quality where new bone growth can be predictably achieved. 

Compared with cemented implants, surgeons need to be more precise when 

applying the surgical techniques and instrumentation as well as choosing the 

suitable type and size of implant.   

2.4.2.2 Cementless Acetabular Components 

Most cementless acetabular components use porous coating to encourage bone 

ingrowth which provides stability overtime for cementless fixation method. The 

porous coating is applied on the entire circumference of the acetabulum. For press-fit 

method, the acetabular cup is allowed to have 1 to 2mm larger than the reamed 

acetabulum. Fixation devices such as pegs or screws are used to facilitate bone 

ingrowth and the most extensive ingrowth has been reported in acetabular 

components that are fixed with at least one screw (Harkess and Crockarell 2013).  

 

Figure 2.4.2.2: Cementless acetabular cups with different types (Yoon, Park and Lim 2013). 

There are many types of cementless acetabular components. Figure 2.4.2.2 show 

some of the common types: A is the threaded type, B is expansion type and C is 

hemispherical type. When using cementless implants, the interaction between the 

bone and implant, bone quality and implant materials are the main factors that 

determine the survival rate and how successful the long-term follow-up fixation is. In 

general, this type of implant has shown high success rate in primary THR and 

relatively good performance on long-term follow-up (Yoon, Park and Lim 2013). 
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2.4.3 Hybrid Total Hip Replacement 

This technique was introduced in the early 1980s (Harris 1996) and the long term 

results are being measured. The hybrid method is a combination between the 

cemented and cementless method. The hybrid THR usually has the acetabular 

socket inserted to the pelvis bone without cement and the femoral stem inserted to 

the femur with cement (see figure 2.4.3). This technique takes the advantage of 

excellent track records of cementless hip socket and cemented stems (Earl's View 

2011).  

 

Figure 2.4.3: The structure of a hybrid THR (Joint Replacement Institute n.d) 

The cementless acetabular component of hybrid THR is fixed into the pelvis bone by 

screws and its surface has porous coating to attract bone ingrowth. The cemented 

femoral stem of hybrid THR uses acrylic cement to bond the prosthesis with femur.    
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2.5 Total Hip Replacement Failure Modes 

The rate of primary total hip replacement is increasing over the past decades and 

expected to rise more in the future. It is estimated that there will be nearly 100,000 

revision hip procedures in United States by 2030 (Kurtz S et al 2007).  The 

percentage of which each type of failure mode occurs varies from study to study and 

depends on numerous factors such as patient’s age, gender, type of implants, etc…  

Based on the research and analysis of Bozic et al. (2009) who used The Healthcare 

Cost and Utilization Project Nationwide Inpatient Sample database of 51,345 revision 

THR procedures from October 2005 to December 2006 in the United States, the 

most common cause for revision surgery were instability and dislocation (accounting 

for 22.5%), followed by aseptic loosening (19.7%) and periprosthetic infection 

(18.4%).  Similar studies also reported that instability contributed to 35%, aseptic 

loosening to 30%, osteolysis and wear to 12%, infection to 12% and periprosthetic 

fracture to 2% of the revisions (Springer BD et al 2009). 

The purpose of this section is to describe the mechanisms of failure of the revision 

THR. The most common failure modes will be mentioned in details in this chapter.  
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2.5.1 Instability  

Instability is one of the most common modes of Total Hip Replacement (THR) failure 

and leads to revision surgery. A sample database of revision THRs performed in a 

period of 15 months across the United States reported that instability and dislocation 

is the most common cause of THR failure which contributes to 2 to 5% in primary 

THR (Sanchez-Sotelo and Berry 2001) and up to 22.5% of revision THR (Bozic et al. 

2009). Instability can be divided into 2 classes, they are dislocation and subluxation.  

Dislocation is when there is a complete separation between the femoral head and 

the acetabular component and it is a major complication after THR surgery. Lee et 

al. (2008) described hip prosthesis dislocation is when the prosthetic femoral head 

escapes from the acetabulum of the prosthesis in a THR or from the natural 

acetabular cavity of the pelvis bone in a bipolar hemiarthroplasty. In other words, 

dislocation is when the ball comes out of the socket completely. Hamilton and 

McAuley (cited in Miki et al. 2012) reported that dislocation is believed to be related 

to prosthesis or bone impingement and to insufficient soft tissue tension.   

Dislocation still remains a major complication of THR. Harkess and Crockarell (2013) 

said “The prevalence of dislocation after total hip arthroplasty is approximately 3%”. 

There have many published studies on the dislocation topic of THR, specifically 

about its causes and treatments; however the results produced from these studies 

have been conflicting (Charissoux, Asloum & Marcheix 2014).   
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Figure 2.5.1: Hip Implant Dislocation (AAOS 2011) 

Figure 2.5.1 above shows the dislocation of the hip. The femoral head component is 

completely outside of the acetabular component. Dislocation in THR can be divided 

as either early or late depending on the time after primary THR. A late dislocation 

can have occurred at a minimum of 5 years after the primary THR and still comprise 

nearly one third of all dislocations (Knoch et al. 2002) 

Huten and Langlais (cited in Charissoux, Asloum & Marcheix 2014) provided the 

three categories of dislocations which are based on the time to occurrence. They 

are: 

 Early dislocations: This is the most common case which occurs within the first 

3-6 months after THR due to inadequate healing and accounts for 50% to 

70% of all dislocations.  

 Secondary dislocations: This occurs between 3-6 months and 5 years after 

THR and contributes from 15% to 20% of all dislocations. The common cause 

for this is the resumption of previous activities.  

 Late dislocations occur more than 5 years after THR and account for 32% of 

all dislocations. The mean time to occurrence is 11.3 years. The common 

cause of late dislocation is often related to polyethylene wear.  
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Subluxation refers to a partial separation of the femoral head from the acetabular 

component. In this case, the ball starts to come out of the socket but it does not stay 

fully outside. Hip subluxation is also called partial dislocation.   

Depending on the implant design and position, the THR’s desired range of motion is 

set on implantation. Therefore if the joint motion is excessive this can lead to 

impingement of the femoral neck on the acetabular cup. When this occurs, the 

rotation centre of the hip implant will move to the rim of the cup instead of locating at 

the femoral head centre. At this point, if the motion continues, it will lead to 

subluxation of the femoral head. Kluess et al. (2007) also reported that the material 

failure of THR components such as brittle fracture of ceramic components and 

excessive wear of polyethylene liners can be caused by recurrent impingement due 

to high localised contact stresses at the impingement site.   

There are various factors that have been associated with increased risk for 

instability. These are component positioning, design specifications, surgical 

approach, soft-tissue laxity, anatomic abnormalities and patient noncompliance. The 

epidemiological factors that negatively affect stability are previous hip surgery, 

osteonecrosis or inflammatory arthritis preoperative diagnosis, prior hip fracture, 

advanced age and female sex (Harkess and Crockarell 2013). However, there is no 

objective method for determining the cause of dislocation (Miki et al 2012).  

The rate of postoperative dislocation is affected by the choice of surgical approach. 

For example, the dislocation rate when a posterolateral approach was used is found 

to be 6.9% compared with 3.1% when an anterolateral approach was used (Berry et 

al., cited in Harkess and Crockarell 2013). Revision THR and other previous surgery 

on the hip make postoperative dislocation occur more common. A 7.4% dislocation 

rate is reported in a group of 1548 revision total hip procedures by Alberton et al. 

(cited in Harkess and Crockarell 2013) with at least 2-year follow-up.  

The placement of the components is the most common reason for instability. This 

occurs when using an improper femoral neck length or malpositioning of the 

acetabular component. The safe zone for appropriate version of acetabulum is 

described as having acetabular inclination of 40±10 degrees and anteversion of 

15±10 degrees (Lewinnek et al. 1978).  The surgical technique and implant design 
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can result in different rates of instability. Kelley et al. (1998) found that appropriately 

used larger femoral head sizes have been shown to result in lower dislocation rates.  

Patient noncompliance is another factor that associates with dislocation. Dislocation 

can occur if the recommended range of motion is exceeded. In posteriorly 

approached hips, patients are recommended to avoid any flexion more than 90 

degrees and to minimize adduction and internal rotation movements (Jacofsky & 

Hedley 2012) 

 

2.5.2 Component loosening 

Component loosening is the second most frequent long term complication after 

primary THR and contributes to 19.7% of THR revisions (Bozic et al. 2009). 

Component loosening may be diagnosed by clinical function. The implant failure is 

only indicated if these radiolucent lines are progressive and patients presents with 

pain (Jacofsky & Hedley 2012). Acetabular and femoral loosening commonly lead to 

revision and are considered to be the most serious long-term complications of THR.  

The diagnosis criteria of femoral and acetabular component loosening have not been 

universally accepted (Harkess and Crockarell 2013).  

Component loosening is a multifactorial process and can be classified into implant-

specific factor, surgical factor and patient-specific factor. Patient-specific factors 

include the level of activity of the patient, gait mechanics, body mass index, etc… 

Implant-specific factors consist of material choices, bearing couple, and the implant 

design. Surgical factors include component composition, component fixation, 

reconstruction of the joint mechanics and initial stability as well as the experience of 

the surgeon.   

When loosening happens at the early state, the cause might be related to poor initial 

fixation and design. Late loosening is related to the wear of the prosthetic 

components which is the major problem (McGee et al. 2000).  

Technical factors that contribute to implant failures should always be considered to 

minimize the incidence of femoral or acetabular component loosening. Jacofsky & 

Hedley (2012) stated that for cemented components, the surgical factors include a 



Page 35 of 86 
 

cement mantle that is too thin or failure to pressurize the cement adequately. In 

cementless components, surgical factors can be inadequate removal of soft 

cancellous bone in the femoral neck, missed occult fracture, component undersizing 

and component malpositioning.  

In conclusion, aseptic loosening is a multifactorial process and it depends on patient-

specific factor, surgical techniques and implant design. Advanced implant design and 

surgical techniques will need to be studied more in the future to improve the result 

and reduce the component loosening.  

 

2.5.3 Infection  

High morbidity and cost associated with periprosthetic hip infection makes it the most 

devastating complication after primary THR. It is estimated that infection makes up to 

15% if all revision surgeries (Bonzic KJ et al 2009).  

There are 3 categories of infection: acute (early), chronic (late) and acute 

hematogenous (Jacofsky & Hedley 2012). Acute periprosthetic infection is an early 

postoperative infection and attributed to an intraoperative contamination. It usually 

occurs within 4 to 6 weeks and can goes up to 12 weeks after surgery. After this 

period of time, the infection is defined as chronic infection. The infected prosthesis 

which may be the result of seeding from a blood borne pathogen into the joint is 

called acute hematogenous infection.  

Trampuz A and Zimmerli W (2005) stated that the infected hip joint can present with 

either quite vague symptoms, such as malaise or decreased function of the affected 

joint or it can have the signs of infection such as pain, fever, swelling, tenderness or 

erythema. The most common complaints received from patients with infected hip are 

pain.       

In conclusion, infection in prosthetic hip is one of the most devastating complications 

of THR and it is critical to minimize the incidence of infection through antibiotic 

prophylaxis. The extending operative time, hospital stay and prolonged use of 

urinary catheters should be avoided. Once the infection is suspected, early surgical 

treatment should be done to eliminate the infection more efficiently than delayed 

treatment.  
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2.5.4 Periprosthetic Fracture 

Periprosthetic fracture is a problematic complication after THR. There are two parts 

where periprosthetic fractures occur: femur and acetabulum. As the population ages, 

the subsequent bone loss around the prosthesis also increases. Periprosthetic 

fractures can lead to the failure of the arthroplasty. The fractures can occur at 

different stages of the arthroplasty. 

Most periprosthetic fractures occur around the femoral stem. This is the most 

common periprosthetic fracture and requires some form of treatment. The fractures 

of the hip socket (acetabulum) are less common (AAOS 2013). 

2.5.4.1 Periprosthetic Acetabular Fractures 

Periprosthetic fracture of the acetabulum is an uncommon complication and a very 

rare event compared to femoral fracture. There are very few reports about 

periprosthetic fracture of the acetabulum. The majority of acetabular periprosthetic 

fractures occur intraoperatively, and most are undisplaced cracks that have little or 

no influence on cup stability (Wolff and Berry 2009). Gras et al. (2010) concluded the 

characteristics of fracture are very similar and involves the upper part of the posterior 

column and the medial wall. Peterson and Lewallen (1996) mentioned about two 

types of periprosthetic fracture of the acetabulum, they are: type 1 with well-fixed cup 

component and type 2 is with loosening of the THR cup-component.  

The treatment for type 1 fracture is proposed by conservative approach and it is 

considered to be the least risky option when loosening is excluded. For type 2 

fracture, it is necessary to have operative procedure with revision and exchange of 

the acetabular cup and the use of cables, plates and screw to assist fracture fixation 

(Gras et al. 2010). This study also mentioned that for acetabular fracture, 

percutaneous screw fixation is good for fracture healing because this provides 

preservation of soft tissue and untouched fracture hematoma for later THR revisions.  

Very few reports of acetabular fracture that is associated with cemented acetabular 

components. McElfresh and Coventry (cited in Wolff and Berry 2009) reported that 

there was only one periprosthetic fracture of the acetabulum out of 5400 THRs using 

this cemented technique. However, in the case of the cementless acetabular 

component, a large amount of hoop stresses may be produced with press-fit designs 

which increase the chance of incidence. Therefore this requires a proper surgery 
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technique and attention to the host bone quality when inserting the components to 

prevent this complication. Other factors that can lead to this intraoperative fracture 

are over-reaming of acetabulum which weakens the host bone and great 

discrepancy between reamed size and cup size which may cause excessive hoop 

stresses.  

A very informative summary of causes and treatments for acetabular periprosthetic 

fracture was done by Gelalis et al. (2010). This report provides the references for 

acetabular periprosthetic fracture.  The authors had reviewed the available studies 

about this type of fracture and included in a table. A reproduced version of it can be 

found below in table 2.5.4.1 

Table 1.5.4.1: Cause and treatment for acetabular periprosthetic fractures, reproduced from Gelalis et 
al. (2010) 

Authors Number 
of 
cases 

Cause of 
fracture 

Treatment type Reference 

Chatoo et al. 1 Aseptic 
loosening, 
osteolysis 

Revision of acetabular 
component, osteosynthesis 

cited in 
Gelalis et 
al. (2010) 

Andrews et 
al. 

1 Stress fracture Restriction of weight bearing As above 

Harvie P. et 
al 

1 Trauma Skeletal traction and delayed 
revision with original components 
in situ 

As above 

Woolson 1 Trauma 
(fracture-
dislocation) 

Skin traction, delayed revision 
arthroplasty and osteosynthesis 

As above 

Old et al. 1 Forward bending 
(fracture-
dislocation) 

Closed reduction, abduction 
orthosis 

As above 

Sanchez-
Sotelo et al 

3 Osteolysis Revision arthroplasty As above 

Miller 9 Infection or 
periprosthetic 
osteolysis, 
forward bending, 
fall 

Removal of prosthesis As above 

Peterson et 
al. 

11 Fall or blunt 
trauma, 
unknown 

Non-operative, acute or delayed 
revision arthroplasty 

As above 

Sharkey et al 13 Intraoperatively 
during cup 
insertion 

Augmentation screws, autograft, 
restriction of weight bearing, 
immobilisation, cup revision, 
spica cast 

As above 
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2.5.4.2 Periprosthetic Femoral Fractures 

Periprosthetic fractures may occur intraoperatively (during THR procedure) or 

postoperatively (after THR procedure). It presents with pain, swelling, deformity, 

instability to use the limb, etc… To diagnose fracture, physical examination should 

be performed and radiographic evaluation should be conducted. The bone quality 

should be scanned for any fracture. Berry (cited in Difazio and Incavo 2005) reported 

in a review of the Mayo Clinic Joint Registry that intraoperative femur fractures occur 

in primary THR at 1% rate and in revision THR at 7.8% rate. The presence of thin 

cortices from implant migration and osteolysis increase the risk of fracture in revision 

surgery than primary procedures. Females and elderly patients or those with 

inflammatory arthritides, bony deformity or deficiency are at risk for periprostheic 

fractures. The mean time interval from primary THA to fracture and from revision to 

fracture was reported by Lindahl et al. (2005) was 7.4 years (range, 1-262 months) 

and 3.9 years (range, 1-229 months) respectively. A same–level fall (at the position 

of sitting or standing) is the most frequent cause of fracture which accounts for 75% 

in the primary THR and 56% in the revision THR. 

Intraoperative fractures can occur during the primary THR or revision THR. Wolff and 

Berry (2009) stated that femoral fractures may occur during femoral bone 

preparation, femoral prosthesis implantation, or hip reduction in primary hip setting. 

During a THR procedure, femoral fracture can likely occur in one or more of several 

stages. Fractures can occur in the early stage when the hip is dislocated. A 

moderate rotational force can create fracture in the fragile bone of elderly patients, or 

those with arthritis and osteoporosis. Fractures can also occur during broaching and 

insertion of the femoral component. The chance of fracture is influenced by the bone 

quality. Poor bone quality is a risk factor which increases the probability of fracture.   

Postoperative periprosthetic fractures may occur after a few days or even years after 

the primary surgery. The main risk factors associated with this type of fracture are 

osteolysis and implant loosening.  
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2.5.4.3 Classification of Femoral Fractures 

A new classification system for periprosthetic femoral fractures is called the 

Vancouver classification. The Vancouver classification system divides periprosthetic 

fractures into 3 categories based of the location of fracture. This system has been 

confirmed to be valid and reliable in terms of fracture location, implant stability and 

bone stock by Brady et al. (2000).  

Type A is fracture in proximal metaphysis without extending into the diaphysis. Type 

B is fracture around or just below the stem. These fractures involve the proximal 

diaphysis but can be treated with long stem fixation (Harkess and Crockarell 2013). 

Type C is fracture well below the tip of the stem and may include the distal femoral 

metaphysis. Each type is then subdivided into 3 subtypes. Subtype 1 is simple 

perforations, subtype 2 is nondisplaced and subtype 3 is displaced. Figure 2.5.4.3a 

below shows the 3 types A, B and C of intraoperative periprosthetic femoral fracture. 

 

Figure 2.5.4.3a:  Intraoperative periprosthetic fractures of femur (Harkess and Crockarell 2013) 
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The goal for periprosthetic fracture treatment is to enhance the arthroplasty function 

and achieve anatomic alignment, preservation and fracture union (Difazio and Incavo 

2005). Reconstructive surgeons develop the treatment strategies based on the 

Vancouver classification system algorithm. Treatment decisions for fracture depends 

on the location of fracture, quality of bone stock, stability of fracture and implant, 

patient’s age and surgeon’s experience. Depending on the level and displacement of 

the fracture, some of the treatment options were mentioned in Harkess and 

Crockarell (2013) such as long stem revision, bone grafting, cerclage, or open 

reduction and internal fixation. 

 

Figure 2.5.4.3b: X-ray taken shows the periprosthetic fracture (left) and the fracture has been treated 
with plate, screws and cable (right) (AAOS 2013) 

Most cases of fractures require surgery. If the implant is still attached firmly to the 

femur, an internal fixation treatment is introduced. The bone fragments are first 

repositioned and held together with special screws, cables or by attaching metal 

plates to the outer surface of the bone as in figure 2.5.4.3b above (AAOS 2013).  In 

some other cases, the stem of the implant is loose and to treat the periprosthetic 

fracture, the old implant has to be removed and replaced by a new implant. This is 

called joint revision.  

Numerous risk factors for sustaining a periprosthetic fracture are female gender, 

increased age, history of trauma, osteoporosis, etc… Studies concluded that 

cementation of components increases femoral stability and reduce risk of 

periprosthetic fracture (Jacofsky & Hedley 2012). In cementless THR procedure 
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intraoperative femoral fractures occurs very common.  This type of fracture was 

reported by Berry (cited in Harkess and Crockarell 2013) in 5.4% of cementless 

primary arthroplasties and in 21% of cementless revision procedures. 

In conclusion, the complication of periprosthetic fracture is a common mode of failure 

for THR. As the patients get older, the occurrence of these fractures also increases.  

 

2.5.5 Wear and Tear from Hip Implant 

Another common complication of THR is wear and tear of the sockets. Wear is 

unavoidable in any material application.  According to the report (Lombardi AV et al.,  

2004),  Metal‐on‐metal  bearings  do  produce  significantly  less  volumetric  wear  

than metal‐on‐polyethylene  bearings  in  laboratory  experiments  and  probably  in  

real  human body.  

The wear particles can be absorbed by surrounding tissue and cause inflammation 

and swelling in and around the joint. Depending on the material used to make the 

implant components, there are different types of debris. Different materials can 

cause different long-term complications. For example, Metal-on-Metal hips where 

both the femoral component and the cup are made of metal will create debris that 

primarily made of cobalt and titanium ions. This type of debris can cause a condition 

known as metallosis. On the other hand, when the bearing surface combination is 

metal-on-plastic, it will create polyethylene particles that can lead to a condition 

known as osteolysis. 

The wear problem can be very dramatic. If metal ions from the wear spread from the 

surrounding tissues into the blood, the blood ion levels will go up and can cause 

physical conditions such as mental cognitive problems, severe headaches and 

problems with the nervous system as well as emotional imbalance. Some other 

cases, the wear particles can react with the human system and result as the body is 

toxic.  
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2.6 Materials Criteria used for Implant Components  

There have been many advances in the design and implantation of artificial hip joints 

over the past half-century, with the purpose of resulting in a high percentage of 

successful long-term outcomes. Different materials have been used and tested to 

produce the optimum outcome for the prosthesis that last longer in the human body 

without causing any bad results. 

The materials used in a THR implant have four characteristics in common (AAOS 

2007): 

 Biocompatible. This means the materials have to be friendly with the human 

body without causing any local or a systemic rejection response. 

 Resistant to corrosion, degradation, and wear. The human body is a moist 

environment therefore the material has to be resistant to corrosion. They also 

need to retain their strength and shape for a long time. Having the material 

that is resistant to wear is extremely significant in preventing the further 

destruction of bone and surrounding tissue caused by the wear particles when 

the implant components rubs against each other.  

 Having mechanical properties that are similar to the hip joint properties. They 

need to be strong enough to withstand the body weight when performing 

different activities such as running, walking, and other daily activities. They 

also need to be flexible enough to handle stress without breaking, and smooth 

enough to create comfort for the patients.  

 Having high standard and quality. This aims to make the prosthesis last 

longer in the human body without having further revision surgery.  
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Chapter 3 – Failure Analysis of THR 

3.1 Overview 

This chapter will look at the methodology undertaken to identify the failure analysis of 

the prosthesis. As a part of completing this work, the risk assessment and 

assessment of consequential effects, implications and ethics were undertaken and 

included in appendix D and E. 

For the analysis of complicated failure modes such as dislocation, wear, 

periprosthetic fracture and loosening, the method is to review the available published 

papers and resources to assist the find.  

For finding stress analysis of THR, the model used for this analysis is called 

“Thompson Hemiarthroplasty Prosthesis”. The goal is design a 3D model of this 

prosthesis on Creo Parametric software for finite element analysis (FEA). There are 

currently not many studies found on the topic of Thompson prosthesis finite element 

analysis. Therefore this report might be useful for further studies of this model. The 

outcome should produce stress distribution along the prosthesis for all cases such as 

walking, running, jumping, jogging etc… It is then to compare with literature reviews 

to produce the failure analysis and material selection recommendation.  

Thompson hemiarthroplasty is a popular hip prosthesis which was introduced in 

1950s. This prosthesis still remains popular today because of its simplicity which 

allows trainee surgeons to use for faster operation for the medically-unfit patients 

(Lloyd and Calder 2006).  

The model used for this report is chosen from a common Thompson prosthesis 

design in the market. The dimension of this model is shown in the 2D drawing in 

figure 3.1 below. Some of the key dimensions of this prosthesis are femoral head 

diameter (43mm) and stem length (140.68mm).  
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Figure 3.1: Thompson Hemiarthproplasty prosthesis dimension  
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3.2 Finite element analysis (FEA) of Thompson Model 

The hip prosthesis must be attached securely and properly inside the femur to be 

able to perform at its best. As mentioned before, there are two methods used to 

secure the fixation of the prosthesis in the skeleton. These two methods are 

cementless and cemented techniques. Regardless of the fixation methods, the 

design of the stem should be able to eliminate the high stresses at the fixation areas 

to minimize the chance of short-term fracture and long-term fatigue failure.  

To ensure the safety of the prosthesis design, both static and dynamic analyses 

should be conducted. Kayabasi and Erzincanli (2006) said prosthesis is often 

designed according to the results of static analysis. These analyses are conducted 

under body weight.  

The following model is developed in Creo Parametric. This shows where the forces 

are acting on the prosthesis. The assembly of Thompson prosthesis model is as in 

figure 3.2a and 3.2b below. 
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Figure 3.2a: The 3D assembly of Thompson Prosthesis in Creo Parametric  

All parts of Thompson prosthesis were modelled and assembled in Creo Parametric 2.0. The 

assembly is them simulated for computational calculations.   
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Figure 3.2b: The 3D model of Thompson prosthesis and the insertion of it in femur bone 
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To obtain the FEA for the model, materials used for each part must be assigned. For 

the purpose of this study, the materials used for prosthesis and bone are described 

in table 3.2 below. 

Table 3.2: Material properties used in the FE models 

Part Material 
Young’s Modulus 

(GPa) 

Poisson’s 

ratio 

Femoral stem and 

femoral head 
Stainless steel 200 0.27 

Acetabular cup Ceramic 346 0.31 

Bone Bone 10 0.15 

 

Experimental determination of cortical bone’s Poisson’s ratios has been done by a 

few studies but the results vary with respect to methods. Different determination 

methods produce different values of Poisson’s ratio. For example, Ashman et al. 

(1984) used the ultrasonic continuous wave technique and found Poisson’s ratio 

values ranged between 0.27 and 0.45. Reilly and Burstein (1975) used 

extensometers and found the Poisson’s ratio value to be between 0.29 and 0.63. 

Another variation of Poisson’s ratio values was found between 0.12 and 0.29 by 

using ultrasonic method (Pithioux, Lasaygues, and Chabrand 2002). For the FEA of 

this document, the Poisson’s ratio value for bone was chosen to be at 0.15. The 

maximum force acting on the hip used based on the theory of table 2.2.2 in chapter 2 

above. 
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Kayabasi and Erzincanli (2006) stated that the static load represents a person’s 

weight. The abductor muscle load is applied at an angle of 20 degree to the proximal 

area of the greater trochanter. The iliotibial-tract load is applied to the bottom of the 

femoral bone in the vertical direction along the femur. The femur’s distal end is 

constrained not to move in horizontal direction. For safety purpose, the maximum 

equivalent stress on the hip prosthesis must be lower than the endurance limit of the 

prosthesis materials. A maximum or an infinite fatigue life is requiring excellent 

design for the hip implant should satisfy.  

 

3.3 Finite element analysis (FEA) Results of Thompson Model 

Table 3.3: Stress analysis results on Thompson prosthesis for various cases 

Cases Maximum Stress (MPa) 

Standing 1.884e+01 

Walking 1.450e+02 

Jogging 2.320e+02 

Running 2.901e+02 

Go upstairs 1.988e+03 

Go downstairs 2.157e+03 

Weight lifting 2.203e+03 

 

This result will be discussed later in chapter 5. Refer to appendix B for the result 

images.   
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3.4 Femoral Head and Acetabular component analysis 

A recent FEA of femoral head and acetabular component was performed by Kluess 

et al. (2007). This study aimed to understand the impact of the femoral head size on 

dislocation, impingement and stress distribution in THR. This study used four 

different combinations between cobalt-chromium femoral heads and ultra-high 

molecular weight polyethylene liners. The dimensions used in this test are recorded 

in the table 3.4 below. 

Table 3.4: Component parameters used in Kluess et al. (2007) FEA 

Name of components Size 

Femoral head diameters 28, 32, 36, 40 mm 

Liner’s wall  thickness 7 mm each 

Head inset of acetabular component 2 mm 

Prosthetic neck diameter 14 mm 

Lubrication gap between prosthetic head 

and liner 
24 μm 

  

The computation calculations were performed using ABAQUS V 6.4 and Patran 

2004. After performing the computational calculations and testing the component in 

mechanical testing devices, the relationship between the femoral head size and 

failure modes begins to emerge.  

Kluess et al. (2007) found that by increasing the femoral head size, the contact 

stresses at the liner during subluxation is decreased. The head diameter of 40 mm 

produced 1.25 MPa of contact pressure, which is less than half of what is produced 

by a 28 mm head diameter (3.25 MPa). This study also found that larger femoral 

heads produce higher maximum resisting moments and increased impingement-free 

range of motion. The results found by Kluess et al. (2007) also agree well with those 

of Peter et al. (2007), Howie et al. (2012) and Jameson et al. (2011)   
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Figure 3.4: Stress plots of two implants with 28 and 40 mm head size (Kluess et al. 2007). 

This figure shows stress plots comparison between a 28 mm head diameter and a 

40 mm head diameter. It can be seen that an excessive contact stresses in the liner 

is located at the prosthetic neck with. Also, stresses decrease with higher liner 

diameters at the egress site. Jameson et al. (2011) reported with the use of large 

femoral head sizes, a significant reduction in dislocations has been noticed. Howei et 

al. (2012) said a larger 36-mm articulation resulted in a significantly decreased 

incidence of dislocation compared with a 28-mm femoral head articulation in the first 

year after THR. Peters et al. (2007) also discussed a 38 to 56 mm MoM bearing 

head size has low dislocation rates (0.4%) at short-term follow-up. 
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3.5 Femoral Stems analysis 

For cemented femoral components, the success rate depends on many factors. 

Lennon, McCormack and Prendergast (2004) said loosening is the cause of majority 

of cemented femoral components. This study and Morgan et al. (2003) discussed 

that femoral prosthesis loosening is possibly caused by the fatigue failure in bone 

cement mantle. Understanding loosening mechanism will help improve the 

performance and success rate of cemented femoral stems. The common and 

important question around this is whether the cement damage is at the cement-bone 

interface, stem-cement interface or the voids. Race et al. (2003) concluded that the 

early cement cracks failure is concentrated at cement-bone interface with formation 

of micro-cracks. The results found in this study suggest that the cracks associated 

with cement-bone interface were 31±6.2%, which is more than stem-cement 

interface (11±5.2%) and voids (6.1±4.8%). However, Stolk et al. (2002) discussed 

that the most important interface is between stem and cement because the 

difference in stiffness between stem and cement produces high localized strain in the 

cement mantle. Berry and Lieberman (2012) stated that the cemented femoral 

component failure rate was high when cemented revisions were used due to cement-

bone interface mechanical failure.  
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3.6 Dislocation Analysis 

Harkess and Crockarell (2013) suggested that the prosthesis-cement interface with 

debonding and subsequent cement fracture is where the failure of cemented stems 

occurs. The stability of the stem is greatly affected by the shape of the stem. For 

example, stems with circular shapes tend to have less rotational stability. The 

rotational stability of stems can be improved by having the stem designs with 

irregular surface types such as grooves or a longitudinal slot. Other noncircular 

shapes, such as an ellipse or a rounded rectangle also increase the stability of the 

stem within the cement mantle. However, if debonding process occurs, the 

roughened or textured surface stems produce more debris with motion than smooth 

or polished surface stems. The design of stem is recommended to be collarless, 

polished and tapered in two planes (Harkess and Crockarell 2013). This is to 

maintain compressive stresses and allow small subsidence amount inside the 

cement mantle.  

In the case of Thompson Prosthesis, the stem has a complicated irregular shape 

which includes six different surfaces (refer to figure 3.1). This design of stem 

therefore has higher stability compared to other stem designs with circular shapes.    
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3.7 Periprosthetic Fracture 

Cook et al. (2008) and Harris et al. (2010) reported that periprosthetic femoral 

fractures occur in 0.1–6% after THR surgery. These fractures are often associated 

with loosening of femoral component. In some cases, the treatment for periprosthetic 

fractures is non-operative but typically extensive surgery is required.   

The methodology for testing periprosthetic fracture is to use Vancouver classification 

for femoral fracture as a measurement and finite element analysis as the 

computational calculation. In this section, type B1 of Vancouver fracture is 

discussed.  

As discussed earlier in chapter 2, type B fracture is the fracture that occurs around or 

below the stem. A FEA for Vancouver B1 periprosthetic fractures was done by Chen 

et al. (2012). This study used an artificial femur as the basis for solid model, U2 

femoral stem for prosthesis stem and cable plate wires and screws as fixation 

method. The purpose here is to test the stability of different fixation methods to repair 

Vancouver type B1 periprosthetic fracture. The model was constructed as in figure 

3.7 below 

 

Figure 3.7: Analysis models of FEA performed by Chen et al. (2012). 
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Model A uses 3 wires at proximal and 2 bicortical screws at distal. Model B uses 3 

wires and 2 unicortical screws at proximal and 2 bicortical screws at distal. Model C 

uses 3 wires at proximal, 2 bicortical screws and 3 wires at distal. Finally, model D 

uses 3 wires and 2 unicortical screws at proximal and 2 bicortical screws and 3 wires 

at distal. The results of this study is shown in table 3.7 below 

Table 3.7: Results of maximum stress and bone displacement from FEA of 4 models (Chen et al. 
2012) 

Model Maximum Stress (MPa) Bone displacement (mm) 

A 284.785 2.5888 

B 209.364 2.1916 

C 242.304 2.5755 

D 191.795 2.1725 

 

From the results in table 3.7, it is very clear that model D provides better outcome. 

Both maximum stress and bone displacement in model D are lower compared to the 

other three models. By using both proximal and distal screws, the fixation is 

reinforced. This method is also known as ‘The locking-plate concept’. Cronier et al. 

(2010) concluded that this locking-plates method has shown immeasurably beneficial 

to the extent where conventional fixation methods have reached their limits.   
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Chapter 4 – Materials Selection for THR  

The challenge in materials selection for total hip replacement prosthesis is that the 

design requires many different essential properties which are very difficult to find in 

only one material. The method for finding materials selection used here is to review 

other analyses on materials selection and compile the results of what the most 

suitable materials are used right now.  

Luckey and Kubli (1983) mentioned the five areas must be considered carefully to 

determine a good implant material, which are mechanical properties, design and 

functionality, corrosion resistance, tissue reaction, and surgical implications.  

An ideal biomaterial is expected to have a very high biocompatibility which means 

there is no adverse tissue response when inserting inside the human body 

environment. It also must have high wear and fatigue resistance, low elastic 

modulus, high mechanical strength and a density as low as that of bone. This 

chapter will look into the materials selection for THR prosthesis parts based on 

literature review and analysis.  
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4.1 Materials Selection for Femoral Stem  

Since femoral component replaces a major portion of femur bone, it needs to have a 

Young’s modulus similar to that of cortical bone and be able to handle the stress 

which acts on the top of the femur and transmits through the cortical bone in a 

healthy hip as in figure 4.1a below. 

 

Figure 4.1a: How the stress transmits through femur bone 

A dilemma that designers have to face when choosing the material for cementless 

femoral stem is the balance when choosing high-stiffness and low-stiffness femoral 

implant materials. When replacing the hip joint with prosthesis components, high-

stiffness materials are used to ensure an acceptable range of implant-bone 

micromotions. The disadvantage of using high-stiffness materials is that they can 

significantly change the stress distribution of the host bone compared to before 

surgery. The loads that were originally transferred through bone before total hip 

replacement (THR) are now carried mainly by the hip implant. Huiskes, Weinans and 

Van (1992) and Head, Bauk and Emerson (1995) suggested that there is a mismatch 

in stiffness between the femoral implant and the bone. The loads that are carried by 

the implant will result in stress shielding and bone remodelling around the implant 
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subsequently. To respose to this problem, the body will increase osteoclast activity 

that will cause bone resorption. Bone resorption and subsequent weakening of the 

complete reconstruction may be caused by this stiffness mismatch. An option for 

solving this problem is to use implants with low bending stiffness to reduce 

periprosthetic stress shielding.  

The challenge in optimizing cementless implants is to choose the materials that have 

the balance between high-stiffness characteristic to reduce micromotions and low-

stiffness characteristic to reduce periprosthetic bone remodelling.  

Although ceramic is responsible for 70 wt% of bone material (Capes and McCloskey 

2006), however, femoral stem component cannot use ceramics because they are too 

brittle. Polymers are also not a good choice due to the incapability of sustaining 

fatigue. Metals are used in general because of high yield strength and good fatigue 

resistance. The drawback of using metals, however, is the stress shielding which can 

be produced because of high stiffness. This will be explained further more in this 

chapter. 

Some metals have excellent biocompatibility and mechanical properties therefore 

they are used as biomaterials. The number one disadvantage of using metals in an 

in-vivo environment is its corrosion tendency. Corrosion will lead to material 

disintegration which will weaken the implant and produce harmful corrosion-related 

products to the surrounding tissues.  

Vanadium-steel alloy was the very first metal alloy used for human body (Oldani and 

Dominguez 2012). However, this alloy has inadequate corrosion resistance and is no 

longer in use. Stainless steel was then used widely for implant fabrication because of 

its excellent corrosion resistance. Nowadays, some of the implants still use stainless 

steels because they are easy to produce and relatively cheap. Nevertheless, they 

can cause extreme adverse reactions after surgery for people who have allergies to 

nickel, which is an element, can be found in stainless steels. Titanium was 

introduced into the medical field for implant fabrication in the late 1930s (Oldani and 

Dominguez 2012) and early 1940s (Van Noort 1987).  
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.  

 

Figure 4.1b: Materials Selection Maps showing some of the most commonly considered metals for 
femoral stem replacements (reproduced from Capes and McCloskey 2006) 
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The first materials selection map on the top of figure 4.1b compares modulus and 

density of different types of bone and the common used materials. It can be seen 

clearly that steels have the highest Young’s modulus and much higher than that of 

bone. This means that stress shielding will be a serious issue if choosing steels for 

designing femoral components. The American Iron and Steel Institute (AISI) type 

316L is the primary stainless steel that is currently recommended for manufacturing 

implant devices (Newton and Nunamaker 1985). Many studies including 

Manivasagam, Dhinasekaran and Rajamanickam (2010), Hornberger, Virtanen,  and 

Boccaccini (2012) and Raval and Choubey (2005)  have shown  a concern about the 

biocompatibility of 316L stainless steel and its corrosion resistance in vivo. Even 

though stainless steels are highly resistant to corrosion in nature, but localized 

corrosion can be found in these alloys when using in certain environment such as 

human body. These studties also mentioned that the corrosion products under 

corrosive attacks could be very harmful for humans. Aksakal, Yildirim and Gul (2004) 

reported that allergens such as cobalt, nickel, chrome and their compounds are 

found in stainless steel’s corrosion products. Morais et al. (1998, 1999) claimed that 

316L stainless steel releases toxic corrosion products to osteogenic cells. The 

differentiation and proliferation of these cells are also affected. Beyond a certain 

concentration of this may disturb the normal behavior of marrow cell culture.     

Surgical implants also require the biomaterials that have an elastic modulus close to 

that of bone. The compatibility of Young’s modulus between the implant and bone is 

extremely important for hip implants’ long-term performance and expected life. This 

vital significance is now realized by many medical engineers when designing 

implants. Cuppone et al. (2004) found that the Young’s modulus of the cortical bone 

in the middle of the femoral shaft has a value of 18.6±1.9 GPa. This number is close 

to the find of Luckey and Kubli (1983), which is approximately 16.5 GPa. The 

modulus of elasticity of titanium alloys is about 110 GPa. This is much lower than the 

Young’s modulus of stainless steels (about 210 GPa) and Co-base alloys (240 GPa) 

(Dadvinson & Gergette, 1987). The modulus-density materials selection map in 

figure 4.1b clearly shows that titanium and its alloys have the closest Young’s 

modulus value to bone. Moreover, this figure also shows that the density of titanium 

alloys is also closest to that of bone. Even the modulus of elasticity of titanium is 

considerably higher than that of bone; it is still unlikely to have any major significance 
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(Van Noort 1987). This means between the three materials here, titanium alloys are 

the ideal biomaterial for this criteria. 

The mechanical strength requirement for surgical implants must be greater than that 

of bone. The ultimate strength of bone ranges from 83 MPa to 117 MPa, whereas 

titanium alloys have the yield strength from 207 and 1379 MPa (Luckey and Kubli 

1983). Having high yield strength is a critical factor when choosing biomaterials for 

medical applications such as hip implants because the body weight is supported on 

this highly stressed point. Some titanium alloys are currently used in the industry can 

have up to 828 MPa of minimum yield strength. In the toughness- modulus materials 

selection map in figure 4.1b,  titanium and its alloys (Ti6Al4V) has the highest 

fracture energy (KJ/m2) compared to steels and Co-Cr. The excellent strength to 

weight ratio and high resistance to creep deformation make titanium a good material 

choice for fabricating femoral stems over stainless steel and cobalt alloys. Table 4.1 

below shows the mechanical properties of the common titanium alloys.  

Table 4.1: The comparison between different grades of titanium alloys (Luckey and Kubli 1983) 

Materials 
Ultimate 
Tensile 

Strength (MPa) 

Yield Strength 
(MPa) 

 
Elongation (%) 

Reduction of 
Area (%) 

Grade 1 241 172 24 30 

Grade 2 345 276 20 30 

Grade 3 448 379 18 30 

Grade 4 552 483 15 25 

Ti6Al4V  

(Grade  5) 
862 793 10 25 

 

Titanium was reported by Van Noort (1987) to be the only metal biomaterial to 

osseointegrate. This review also concluded, “Titanium and its alloy are well tolerated 

by the biological environment and rank among the best metallic materials for clinical 

use”. Titanium implants are well tolerated by animals (Both, Beaton and Davenport 

1940) and reported by Hille 1966; Laing 1977; Williams and Meachim 1974 (cited in 

Luckey and Kubli 1983) that there is little or no inclination toward corrosion in vivo 

(within the living organism) or in vitro (outside of a living organism) tests.   
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The most common titanium base alloys for implant biomaterials are commercially 

pure titanium (Ti CP) and extra low interstitial Ti-6Al-4V (ELI). These alloys remain 

essentially unchanged when inserted into the human body environment and are 

classified as “biologically inert biomaterials” (Oldani and Dominguez 2012). Titanium 

alloys do not enter into the chemistry of human body as quickly as other biomaterials 

may. For example, nickel hypersensitivity has been induced by some stainless steels 

in the surrounding tissues. However, titanium alloys do not promote any adverse 

reactions and are tolerated well inside the body even when the body is able to 

recognize them as foreign and tries to isolate them. Therefore, the expected life span 

of the prosthetic components is substantially extended.  

The titanium alloy Ti-6Al-4V has the composition of 6% aluminium and 4% vanadium 

by weight is often used more than commercial purity titanium alloy as it provides 

more fatigue resistance and increases toughness. It is also significantly stronger 

than CP Ti while having the same thermal properties and stiffness. Furthermore, Ti-

6AI-4V alloy is easy to weld and machine than the titanium pure form.  

The Ti6Al4V alloy also has some disadvantages such as its low wear resistance 

which can be a problem in articulations surfaces. The price of titanium is more 

expensive than stainless steel but a smaller mass of titanium would be used when 

making implants than steel.  

For cemented femoral stems, high strength superalloy is recommended as the 

material selection (Harkess and Crockarell 2013). Cobalt-chrome alloy is preferred 

by the designers because of its high modulus of elasticity. This characteristic might 

help reduce the stresses within the proximal cement mantle.   

For cementless femoral stems, Harkess and Crockarell (2013) recommended the 

use of cobalt-chromium alloy or titanium alloy. These two materials have been 

proven to have satisfactory outcome so far. Since the design is for cementless 

fixation method that requires a surface coating, cobalt-chromium alloy is combined 

with a sintered beaded surface and titanium alloy is combined with one of the 

surface enhancement material.    

Similar to the properties of titanium alloys and their popularity in medical devices, 

Cobalt–chromium (Co–Cr) alloys have also been extensively used for medical 
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implants because of their excellent biocompatibility, high corrosion resistance and 

mechanical properties. However, many designers have recommended titanium as 

the material choice for cementless femoral component because of its lower modulus 

of elasticity (compared to cobalt-chromium and stainless steel), high fatigue strength 

and superior biocompatibility.  

 

4.2 Bone Ingrowth Coating Materials for Cementless Implants 

The survival rate of cementless implant components depends totally on the growth of 

host bone into and onto the implant surface; otherwise implant loosening will occur 

(Jasty et al. 1997). Mai et al. (2010) concluded that having surface texture for 

cementless femoral stems is one of the most important factors for long-term fixation. 

A minimization of micro-motions at the implant-bone interface must be taken into 

account in order to facilitate bone ingrowth. As mentioned earlier in chapter 2, high 

porous metals are used for the coating of cementless implant components. Tarala, 

Janssen and Verdonschot (2011) used finite element analysis and found that the 

tantalum with an inner CoCrMo core produces high performance implant design. 

This study also confirmed that tantalum coatings perform slightly better with respect 

to Epoch stem and considerably better with respect to a Ti alloy stem.   

The high protective effect of using tantalum coating is also proven in recent studies. 

Dorn, Neumann and Frank (2014) performed a simulator test to find out the 

corrosion behaviour of tantalum coating for both cobolt-chromium and titanium 

modular necks. The tests were done in one dry assembly and two wet assemblies. 

One wet assembly was contaminated with calf serum and the other was with both 

calf serum and bone particles.  

Figure 4.2 below shows the results of the corrosion behaviour test performed by 

Dorn, Neumann and Frank (2014) in the serum-plus-bone-fragment assembly for 

titanium modular neck (left) and tantalum-coated cobalt–chromium modular neck 

(right). Titanium modular neck shows some marked depositions on large portions of 

the surface and almost no visible grooves on the surface. This indicates that there 

are corrosive material attacks when testing titanium modular neck in wet assembly. 

However there are no visible depositions or corroded areas on the surface of 

tantalum-coated cobalt–chromium modular neck. The surface has a metallic shine, 
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except where the contact marks are. This study proves that corrosive attacks happen 

on titanium surfaces in vitro and no signs of corrosion in dry assembly. In contrast, 

no traces of chemicla attacks or  corrosion on tantalum-coated cobalt–chromium 

surfaces in both wet and dry assemblies. This study again confirmed the protective 

effect of tantalum coating and suggested that the risk of implant failure due to 

corrosion may be reduced when implementing tantalum coating as surface coating.  

 

Figure 4.2: The results of corrosion behavior test between titanium modular necks (left) and tantalum-
coated cobalt–chromium modular necks (right) in the serum-plus-bone-fragment assembly (Dorn, 
Neumann and Frank 2014). 
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4.3 Materials Selection for Bearing Surfaces 

The conventional metal on polyethylene bearing surfaces generates particulate 

polyethylene debris. The main concern is the biological response to the debris that 

leads to aseptic loosening of the implants and osteolysis. Recent research is trying 

to focus on finding the alternative bearing surface materials with the expected 

outcome is to produce less particulate debris from these bearings. A review from 

Kumar, Arora and Datta (2014) said the bearing surfaces such as metal-on-metal, 

ceramic-on-polyethylene and ceramic-on-ceramic have shown to reduce friction 

rates and therefore lower wear rates compared to conventional metal-on-

polyethylene bearings. This review also mentioned about the promising and 

encouraging results from ceramic-on-highly crosslinked polyethylene, ceramic-on-

ceramic and metal-on-highly crosslinked polyethylene articulations for active and 

young patients. The metal-on-metal bearing surfaces have been shown significant 

safety concerns in clinical experience until now.  

The criteria for choosing ideal bearing surfaces for hip implants (Minakawa et al 

1998) are: 

 Having low biological and tissue reaction to wear debris 

 Having high resistance to third body wear 

 Generating small volume of wear debris 

 Having low coefficient of friction 

 Be able to permit adequate fluid film lubrication during stance phase without 

increasing wear (this is achieved by having enough deformation of articular 

surfaces).  

In the last decades, cobalt-chromium femoral head articulating with an ultra-high 

molecular weight polyethylene (UHMWPE) acetabular component has been the most 

acceptable bearing surface couple for hip prosthesis (Kumar, Arora and Datta 2014). 

This combination of bearing surface has proven to produce the most consistent 

results in THR (Black 1997).     

UHMWPE was first used as a bearing surface for acetabular component in 1958. 

The early wear is the major issue of metallic heads combined with UHMWPE. 

Factors such as implant geometry, material properties, sterilization and limited shelf 
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life influence this early wear (Sandiford et al. 2012). Chronic inflammatory response 

to foreign body is the consequence of wear debris generated by metal on UHMWPE 

bearings. Ultimately, this response leads aseptic loosening and fixation failure 

because of osteolysis in periprosthetic bone (Maloney et al. 1990, Vernon-Roberts 

and Freeman 1977 and Willert 1977).  

Over the years, polyethylene wear particles cause periprosthetic osteolysis to occur 

at certain level, depends on the wear rates. Green et al. (1998) and Dumbleton, 

Manley and Edidin (2002) found that osteolysis occurs more commonly when the 

wear rate is greater than 0.1mm/year and less commonly when the wear rate is less 

than 0.05mm/year.  

A discovery in 1998 was the use of highly crosslinked polyethylene (HXPE) for the 

first time clinically. This significantly improved the performance of UHMWPE bearing 

surface and reduced the wear rate substantially. Kurtz and Dorr et al. (cited in 

Kumar, Arora and Datta 2014) said the crosslinking of polyethylene uses gamma 

radiation and thermal treatment to decrease wear rates (both adhesive and abrasive) 

and increase oxidation resistance. Follow-up studies and simulator studies from 10-

22 years by D'Antonio et al. (2005), Atienza and Maloney (2008) and Digas et al. 

(2007) have shown an insignificant amount of wear during the expected life span of 

the highly crosslinked UHMWPE acetabular components. These clinical findings 

reported that wear reduction can be provided by using HXPE. Atienza and Maloney 

(2008) claimed that up to 42% to 100% of volumetric wear has been decreased 

when compared to conventional metal on polyethylene articulations in vitro hip 

simulator wear studies. Harkess and Crockarell (2013) said a reduction between 

80% and 90% in wear with HXPE has been shown in test data from contemporary 

hip simulators. The early to intermediate in vivo clinical results found that the HXPE 

wear properties are surpassing to conventional UHMWPE properties. Alternate 

cross-linking and free radical quenching techniques have been developed for 

second-generation HXPE materials to further minimize wear and oxidation. 
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Chapter 5 – Discussion and Recommendation 
 

The results in table 3.3 of finite element analysis for Thompson Prosthesis model 

indicate certain level of activities can affect the stress distribution along the 

prosthesis differently. Maximum stress acting on the hip implant found to be when 

running and jogging. The high stresses acting on implant when performing these 

activities also mean the hip joint will carry a relatively high stress at the same time. 

Therefore it is generally recommended that patients need to follow surgeon’s advice 

after THR and avoid activities that cause too much stress which will lead to failure. 

The risk of dislocation and the postoperative range of motion are influenced by the 

size of the femoral head and the diameter of the femoral neck. Larger femoral head 

sizes show lower dislocation rates.  

For periprosthetic fractures, most of the incidences happen at the femur bone. The 

bone quality is one of the most important factors that affect the rate of failure. When 

performing the press-fit method for femoral stem, surgeons need to be very careful, 

especially with elderly patients or patients who have low bone density.  

For cemented THR, Cement-bone interface is believed to be where the early 

damage of cemented THR components occurs. Using centralizers that are affixed to 

proximal or distal part of the cemented femoral stem will create uniform cement 

mantle, centralize the stem and therefore improve the fixation. For cemented 

acetabular component, using surface textures will improve the bond between cement 

and the implant. 

The materials selection for cemented THR is high strength superalloy. Cobalt-

chrome alloy is ideal because of its high modulus of elasticity which helps reduce the 

stresses within the proximal cement mantle.   

For cementless THR, using high porous coatings such as Tantalum will produce 

extensive and rapid bone ingrowth which promotes high quality fixation. When 

performing cementless method for patients, surgeons need to make sure that the 

gap between the implant and the channel is not more than 2mm, otherwise new 

bone growth cannot reach this gap and loosening will occur. This means the shape 



Page 68 of 86 
 

of the implant and the implant itself must be as close as possible. The acetabular 

cup for cementless fixation is allowed to have 1 to 2mm larger than the reamed 

acetabulum for press-fit approach.  

The materials selection for cementless THR is titanium and its alloys because of its 

lower modulus of elasticity (compared to cobalt-chromium and stainless steel), high 

fatigue strength and superior biocompatibility. Ti-6Al-4V is preferred than commercial 

titanium because it is slightly stronger and has more fatigue resistance and 

toughness.  

For surface bearing, cobalt-chromium femoral head articulating with an ultra-high 

molecular weight polyethylene (UHMWPE) acetabular component has been the most 

acceptable bearing surface couple for hip prosthesis.  

Cementles fixation is considered to be an alternative for younger and active patients 

since the success of cemented THR and long-term follow-up is shown for elderly 

patients but produces higher rate of aseptic loosening and osteolysis for younger 

and active patients.  

In comparison between the two implant types: cemented and cementless, it is no 

one right answer to choose which one more than another. The choice, however, is 

made based on the function of the joint, the patient’s expectation, patient’s health 

and especially their quality of the bone, the objective of the surgery, and the 

surgeon's experience as well. Different surgeons will prefer one method more than 

the other. It is vital to have agreeable discussion between surgeons and patients to 

produce a desirable outcome for the patient’s hip replacement.    

The recommended ideal design for THR should utilize all the recommendation in this 

chapter in terms of materials and fixation methodology.     
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Chapter 6 – Conclusion 

Total hip replacement is an enormous topic which there is never-ending more 

research and improvement. This document has provided some basic and advance 

information about background of THR, failure analysis and materials section. There 

are a number of limitations to the analysis of this document that should be taken into 

consideration. There several modes of failure and for each failure type, there are 

different ways or methodologies to analyse the situation.  

In general, this THR topic has raised agreements and conflicts between researchers 

and their findings. The reference list below is the main source of where the majority 

of information and analysis in this document come from.  The author has done what 

could be done in a limited time and resource and included a personal disclaimer in 

the appendix section.  

Total hip replacement has been the most successful orthopaedic surgeries 

performed all the time. There is a promising future for this arthroplasty to perform 

even better for patients. The need to study this topic and testing new materials to 

improve the current design are always necessary.    
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Appendix B – FEA results of Thompson Prosthesis 

 

Some current results of Stress analysis of prosthesis 
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Appendix C – A personal disclaimer from author 

 

Disclaimer 

This document is produced by a 4th year mechanical engineering student for the 

final year dissertation as a requirement to complete his Bachelor of Mechanical 

Engineering Degree.  

All efforts have been made to ensure accuracy, but the author will not be held 

responsible for any remaining inaccuracies. This document can be used as a 

reference for further study and research about Total Hip Replacement topic. 

However it is not a professional medical paper that is certified, qualified or approved 

by any medical organisation.   

Medical doctors, surgeons, researchers and other professions must not rely solely 

on the findings of this document for their practice. It is highly recommended to look 

further into other documents and resources, including the ones listed in the reference 

list in the end of this document to learn more about the topic.   
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Appendix D - Risk Assessment 

Part 1 - Potential risks 

 

Even this project mainly focuses on research and literature review, there are still 

some risks that can arise when researching, development the conceptual design as 

well as the future risks that might involve when people rely on the finding of this 

project.  

Risk assessment helps identify the potential risks that are likely to occur and the 

consequence of it and it is very important in any project especially in engineering 

project. Developing the risk management strategy will eliminate the likelihood and 

the consequence of an unfortunate event to occur. A practical approach must be 

taken for risk assessment.  

The procedure that will be used here is taken from the ENG3003 Engineering 

Management: Study Book 2 (2014). Risk assessment consists of 4 steps: 

Step 1: Hazard Identification  

Step 2: Risk Assessment  

Step 3: Risk Control  

Step 4: Monitor & Review 

The first step in a risk assessment is to identify the different possible hazards. The 

following are the possible hazard that might occur during testing the prosthesis 

model: 

 Electrical hazards from power supplies in the laboratory. 

 Operation of machines that used to test the parts. 

 Handling materials with sharp edge or cutting chips. 

 Stripping or falling in the laboratory.  

 Heavy things fall on feet. 

Similarly there are also some hazards that might occur when researching literature 

review for the project as well as the risks involved if other people rely on the quality 
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of this project for use in the future.  Comparing to the quality and expectation of a 

professional document in the total hip replacement industry, this report might have 

the following limits. 

 Inaccurate information provided in report 

 Insufficient practical testing 

Part 2 -Risk assessment and management 

 

This section will cover the last three steps of a risk assessment process which is risk 

assessment (step 1), risk control (step 3), monitor and review (step 4).  

In order to perform a risk assessment, a risk assessment matrix will be used in table 

6.1 below. For each of the hazards mentioned in the section above, the 

consequences involved in each hazard will be rated based on the damage it might 

have on human resources and finance. The risk level is based upon the 

consequence it might have and the likelihood of this event to occur. The result is 

then recorded in table 6.2 below.  

Risk assessment matrix 

Likelihood 

Consequences 

1 – Low 2 – Minor 3 – Moderate 4 – Major 5 - 
Catastrophic 

5- Almost 
Certain 

M H E E E 

4 – Likely M H H E E 

3 – Moderate L M H H H 

2 – Unlikely L L M M M 

1 – Rare L L L L L 

Recommended action 

E: Extremely High Risk – Must Not Proceed The Task 

H: High Risk – Must Require Special Procedure/Supervision   

M: Moderate Risk – Risk management Plan/ Work Method Statement/Workplace Safety 
Required  

L: Low Risk – Follow Normal Procedure 
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Risk assessment result table 

Risk Consequence Risk level Current control Additional 
control 

required 

Electrical 
hazards from 
power supplies 
in the 
laboratory. 
 

When testing 
prosthesis and 
using electronic 
machines might 
represent some 
electronic shock 
hazard. 

Low risk Be careful of the 
electricity wiring 
system and 
power boards 
when using.   

Low risk- no 
further control 
required 

Operation of 
machines that 
used to test the 
parts. 
 

Cutting, 
Puncturing, 
fingers/hands 
between doors,   

Moderate risk Ensure machine 
operators 
trained.  
Follow 
instruction in 
machine user 
manuals and 
wear safety 
gears when 
operating 
machine. 

Moderate risk – 
report to site 
supervisor about 
injuries or 
machine 
damage 

Handling 
materials with 
sharp edge or 
cutting chips. 
 

Small Cuts in 
fingers/hands 
when handling 
chips or sharp 
edges not 
carefully.  

Low risk Wear 
appropriate 
safety gears. 

Low risk- no 
further control 
required 

Stripping or 
falling in the 
laboratory.  
 

Laboratory floor 
can be slippery 
and causes 
falling, 

Low risk Be mindful of 
your steps when 
moving around 
and wear 
appropriate 
safety shoes  

Low risk- no 
further control 
required 

Heavy things fall 
on feet. 
 

Prosthesis parts 
can drop on feet 
if not handled 
properly 

Low risk Wear 
appropriate 
safety shoes 

Low risk- no 
further control 
required 

Inaccurate 
information 
provided in 
report 
 

Report 
produced by 
university 
student might 
have some limit 
in 
professionalism 
and accuracy 

Low risk Check other 
reliable sources 
and seek for 
more experts’ 
advice when 
consider using  
the findings in 
this report 

Low risk- no 
further control 
required 

Insufficient 
practical testing 
 

There are 
limiting practical 
resources when 
producing this 
report. It’s 
mainly based on 
previous 
researches 

Low risk Check other 
reliable sources 
and seek for 
more experts’ 
advice when 
consider using  
the findings in 
this report 

Low risk- no 
further control 
required 
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Appendix E – Assessment of consequential effects, 

implications and ethics 
 

Part 1 - Consequential effects and implementations 

 

Consequential effects play an important role in any engineering and spatial science 

technical activity. In this project, the main consequential effects need to be 

concerned is the accuracy of the findings of this project and the feasibility and 

practicality of the conceptual design and recommendations. Since this project is 

about total hip replacement on human body, therefore there needs to have further 

intensive studies, researches and testing before implementing anything 

recommended in this project.    

 

Part 2 - Ethical responsibility 

 

As engineering practitioners, the benefits of community and the creation of 

engineering solution for sustainable future are our priority. We use our knowledge 

and skills to serve the community ahead of other sectional or personal interests.  

According to the code of ethics (Engineers Australia, 2010), engineers need to 

demonstrate the following four regulations: 

 Demonstrate of integrity 

 Practise competently 

 Exercise leadership 

 Promote sustainability 

To demonstrate integrity, it is important to do the right and appropriate things in a 

professional manner. Integrity is also about being honest and trustworthy, accepting 

responsibility and be prepared to explain the work and reasoning as well as 

respecting the dignity of other people.  
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Competent practice is about maintaining and developing knowledge and skills and 

act on the basic of adequate knowledge (Engineers Australia 2010).  

Leadership in engineering practice needs to be exercised. Practising leadership is 

about support and encourages diversity, uphold trustworthiness and reputation of the 

practice of engineering and communicate effectively and honestly.  

Finally, in engineering practice, sustainability needs to be promoted to balance the 

needs for now and the needs for future generations. The health and well-being of the 

community and environment need to be engaged responsibly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-----------------------------------------The End ------------------------------------------ 


