

Virtual world technologies to enhance climate risk management on Australian sugar cane farms

NCCARF Climate Adaptation "Future Challenges" Conference

30th September -2nd October 2014, Gold Coast QLD

Dr Kate Reardon-Smith

Digital Futures-CRN Research Fellow (Climate Risk Management)

International Centre for Applied Climate Sciences

University of Southern Queensland, Toowoomba AUSTRALIA

Co-authors

Helen Farley², Neil Cliffe^{1,2}, Shahbaz Mushtaq¹, Roger Stone¹, Joanne Doyle², Neil Martin², Jenny Ostini², Tek Maraseni¹, Torben Marcussen¹, Adam Loch³, Janette Lindesay⁴

- 1. International Centre for Applied Climate Sciences (ICACS), University of Southern Queensland (USQ), Toowoomba QLD Australia
- 2. Australian Digital Futures Institute (ADFI), University of Southern Queensland (USQ), Toowoomba QLD Australia
- 3. School of Commerce, University of South Australia (UniSA), Adelaide SA Australia
- 4. Fenner School of Environment and Society, Australian National University (ANU), Canberra ACT Australia

Australian farmers operate in a risky environment

• Highest level of year-to-year rainfall variability globally (Nicholls et al. 1997)

Impacts on agriculture

Sources of climate variability

Climate phenomena	Frequency/Time scale
Weather patterns	Day/week
Madden-Julian Oscillation	Month/s
SOI phases based on El Nino-Southern Oscillation (ENSO)	Seasonal to interannual
Quasi-biennial Oscillation (QBO)	1-2 years
Antarctic Circumpolar Wave	Interannual (3-5 years)
Latitude of Subtropical Ridge	10.6 years
Interdecadal Pacific Oscillation (IPO)	13+ years
Decadal Pacific Oscillation (DPO)	13-18 years
Multidecadal rainfall variability	18-39 years
Interhemispheric thermal contrast (secular climate signal)	50 years

Climate change

CRICOS: QLD002448 NSW02225M TEQSA: PRV12081

Issues

- Climate change and increasing climate variability pose real challenges to productivity and profitability of farming
- Improved climate risk decision-making and management in agriculture critical
 - well-being and long-term sustainability of farming communities
 - future global food security.
- Decision-making on farms based on assumptions about seasonal conditions and weather events over the cropping season.
- Calls on science to provide information to support complex decision making to manage climate and related risk

Climate information to support adaptation in agriculture

- Targeted climate forecasts to support adaptation
- Link to agricultural systems
 - real time, downscaled regionally-targeted climate information
 - focus on relevant climate variables (e.g. temperature extremes)
 - analysis of potential impacts of climate change
 - solutions for effective adaptation to a changing environment

"... climate information has no value unless it changes a management decision."

Decision Support Systems (DSS)

- Technical support to optimise yield and profitability
- but limited uptake (Lynch *et al.* 2000; Newman *et* al. 2000; Nguyen *et al.* 2006, Hochman *et al.* 2009)
- Need for decision support to:
 - focus on human elements of decision-making
 - inform/complement existing decision-making processes

From decision support to discussion support

- Farmers make management decisions which tradeoff risks and gains in the face of future uncertainty
- the main problem is knowing what the future will be, not how to respond to it (Stone & Hochman 2004)
- challenges and opportunities at the interface of 'hard' scientific analysis of biophysical systems and 'soft' approaches to intervention in social management systems (Keating & McCown 2001)
 - Kitchen table discussions (McCown et al. 2002)
 - But little progress in developing cost-effective approaches to facilitate and deploy interventions more widely

Targeted support for on-farm decision-making

Variation of Sea-surface Temperature from Average

Seasonal forecast modelling

Farming systems science & BMPs

Understanding decision-making and adoption behaviour

Digital Futures-Collaborative Research Network (DF-CRN) Project 3

"Investigating the impact of a web-based discussionsupport agricultural-climate information system on Australian farmers' operational decision making"

- Digital technologies:
 - alternative for delivery & communication of agricultural information
 - complement and expand the reach of conventional ag extension
- Sophisticated digital platforms & application in learning environments offer new opportunities for knowledge exchange

Objective

• To develop digital tools for cost-effective delivery of timely, targeted, contextualised agri-climate information and knowledge services

Strategy

- Create and trial a virtual discussion-support system that integrates climate information with farm management decision-making.
- Assess the effectiveness of the virtual discussion-support system in building capacity for improved decision-making and effective climate change response in a target group of farmers

Second Life

- A virtual world
- User-created content and virtual marketplace
- Avatars can be customised & manipulated
- Machinima (animated video clips) created
 - storyboarding
 - scripted conversations
 - recorded soundtracks
 - screen capture software (e.g. FRAPS)
 - folio (background sounds)

CRICOS: QLD002448 NSW02225M TEQSA: PRV12081

"Sweet success" machinima

- Contextualized settings Qld sugar cane farm & landscape
- Customised avatars Australian sugar farmers
- Back stories incorporate decision-making types (Jorgensen et al. 2007)
- Decision making scenarios
- Scripted conversations incorporating industry BMPs

"Sweet Success" scenarios

- Four machinima developed:
 - Harvesting (v2)
 - Fertiliser application
 - Irrigation
 - Planning

Evaluation

- Workshops (4), group discussions and semi-structured interviews (20-24 pre and post workshop) plus qualitative analysis
- 2. Online surveys 300-400 canegrowers
 - Responses to machinima
 - Farming background
 - Approach to risk
 - Decision-making style

Research questions

- Potential for machinima to provide a relevant engaging technology rich learning environment?
- Effectiveness as a discussion support and capacity building tool?
- Readily adapted for different farming systems and locations by using culturally appropriate clothing, language and settings?
- Able to be disseminated widely and cost-effectively?
- Contribution to sustainable land management?

Future challenges

- Availability of suitable technology for dissemination into rural areas in Australia and elsewhere, including developing countries (~ 600 million farmers, globally)
- Ensuring the relevance of the system to diverse cultures, traditions, farming systems.
- Customising, in conjunction with stakeholders, to ensure acceptance by Australian & international farming communities
- Investigating whether such discussion support systems influence decision-making and result in measurable changes in terms of onground outcomes
- How best to deliver (e.g. <u>WAMIS</u>)

Acknowledgements

- This project is supported through the Australian Government's Collaborative Research Networks (CRN) program. Digital Futures is the CRN theme for the University of Southern Queensland.
- Research partners:
 - University of South Australia
 - Australian National University
 - Top Dingo <u>http://www.topdingo.com/</u>
 - CANEGROWERS Australia <u>http://www.canegrowers.com.au/</u>

CRICOS: QLD00244B NSW02225M TEQSA: PRV12081

Literature cited

- Hochman, Z. *et al.* (2009). Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet[®] helps farmers monitor and manage crops in a variable climate. *Crop and Pasture Science* 60(11), 1057-1070.
- Jørgensen, L.N. *et al.* (2007). Decision support systems: barriers and farmers' need for support. *EPPO bulletin* 37(2), 374-377.
- Keating, B.A. & McCown, R.L. (2001). Advances in farming systems analysis and intervention. *Agricultural Systems* 70(2), 555-579.
- Lynch, T. *et al*. (2000). Intelligent support systems in agriculture: how can we do better? *Animal Production Science* 40(4), 609-620.
- McCown, R.L. *et al.* (2002). Probing the enigma of the decision support system for farmers: learning from experience and from theory. *Agricultural Systems* 74(1), 1-10.
- Newman, S. *et al.* (2000). Success and failure of decision support systems: Learning as we go. *Journal of Animal Science* 77(E-Suppl), 1-12.
- Nicholls, N. et al. (1997). Australian rainfall variability and change. Weather 52(3), 66-72.
- Stone, P. & Hochman, Z. (2004, September). If interactive decision support systems are the answer, have we been asking the right questions. In New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress.
- Webster, P.J. *et al.* (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. *Science* 309(5742), 1844-1846.