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summary

A score type test based on the M-estimation method for a linear regression model
is more reliable than the parametric based-test under mild departures from model
assumptions, or when dataset has outliers. An R-function is developed for the
score M-test, and applied to two real datasets to illustrate the procedure. The
asymptotic power function of the M-test under a sequence of (contiguous) local
alternatives is derived. Through computation of power function from simulated
data, the M-test is compared with its alternatives, the Student’s t and Wilcoxon’s
rank tests. Graphical illustration of the asymptotic power of the M-test is pro-
vided for randomly generated data from the normal, Laplace, Cauchy, and logistic
distributions.
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1 Introduction

Robust statistical methods are essential to avoid any misleading or devastating impact on the

inference due to the presence of any outliers, and/or violation of model assumptions. This

approach is crucial when the traditional assumptions on the parametric inference are not

satisfied or there are outliers in the sample dataset. The validity of any statistical inference

depends on the appropriateness of the method applied. The commonly used Student’s

1The work was initiated when the first author was visiting University of Malaya.
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t test (introduced by Gosset, (1908)) is heavily dependent on the assumption of normal

populations, and as such it is not valid for the data obtained from any other distributions.

Moreover, the presence of outliers in the data makes the Student’s t test inappropriate.

Robust estimation methods are classified into three broad categories; M, L, and R-

estimation (Huber, 1964). The M-estimation methods can be regarded as a generalization

of maximum-likelihood estimation. The L-estimation methods are linear combinations of

the ordered statistics, and the R-estimation methods are based on ranks of the observed

data. Statistical tests were developed from/for the three categories of robust methods in

the literature. For example, a signed rank test for a one sample location problem, a rank

sum test for a two sample location problem (Wilcoxon, 1945), a rank test for linear models

(Hájek, 1962, Saleh and Sen, 1983) are among the popular tests that are based on ranks

of the observed data. Using the M-estimation method, some robust tests were proposed

in the literature. For example, Schrader and Hettmansperger (1980) proposed a test based

on the likelihood ratio criterion, Fung et al. (1985) proposed a test that kept the form of

the Student’s t-test but used the score function in the M-estimation method to make their

proposed test robust. Sen (1982) introduced a score M-test for linear models; and Yunus

and Khan (2010, 2011a, 2011b) used the score M-test to investigate the effect of the pre-

testing on the slope parameter on the final testing of the intercept parameter of the linear

regression models.

The nonparametric tests use the ranks of the observed data to formulate suitable test

based on the rank sum statistics. In the process of ranking the observed data, valuable

information, (details or magnitude) are lost, and is likely to impact on the quality of the

test. For this reason the power of the nonparametric tests, in general, are lower than the

equivalent parametric tests if the underlying distribution of the population is normal.

Any inference based on the M-procedure uses the original observed data values but

treats the outliers to eliminate or minimize their impact on the inference using appropriate

re-allocation of weights. As such, the M-procedure is less dependent on the assumptions of

the population distribution. In the above sense, the M-test is robust. Although the exact

distribution of the the M-test statistic is unavailable, its asymptotic distribution is used

to workout the power function of the test. Since the M-statistic asymptotically follows a

normal distribution its critical values are available from the normal table.

In the literature, Markatou and Hettmansperger (1990) generalized the Sen’s score M-

test to a bounded influence procedure. Heritier and Ronchetti (1994) and Silvapulle and

Silvapulle (1995) are among others who studied along the line of the generalized score M-

test. Some robust tests have robustness criteria of the class of the generalized M-estimators

(GM) which down weight high leverage points using the Mallows-type weights (see works

by Markatou and He (1994), Sinha and Wiens (2002), and Gagliardini et al. (2005)). The

asymptotic distributions of the GM-test statistics however are somehow complicated (cf.

Muller, 1998). As a result, we believe that it will be difficult to derive the asymptotic power

function under a sequence of local alternative hypotheses for these test statistics. The

concept of contiguity probability measures is used to derive the asymptotic distributions
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under the alternative hypotheses.

The derived asymptotic power functions of the score M-test are computed and graphically

presented in this paper. Our paper provides the graphical analysis of the power function

which was not the focus of many articles published earlier in this area (eg. Sen (1982)

and Heritier and Ronchetti (1994)). The mathematical formula of power function is not

reported in many articles in the area of robust statistical tests. Although the form of the

power function of the score M-test is given in Sen (1982) and Jurečková and Sen (1996),

the illustration of the power function through computation is unavailable. In our paper, the

M-test for the one location and difference between two locations are implemented for real life

data using newly defined R-functions. The associated t and rank tests are also accompanied

and compared with the M-tests. The power function of the M-test is presented graphically,

and it is compared to that of the Student’s t and Wilcoxon’s rank tests.

Since the M-test is not included in any popular statistical package, we provide the R-

code and appropriate R-function to run the M-test for any given dataset for both one and

two-sample cases. The R-function produces the observed value of the M-test statistic and

the associated p-value. These values can be easily compared to the result of the relevant

Student’s t or relevant nonparametric test.

The two-sided M-test and its properties are given for one population and two populations

in Section 2. Section 3 discusses the properties of the one-sided M-tests. Section 4 covers

discussions on application of M-tests on two independent datasets. Section 5 illustrates the

graphical comparisons of the power of the Student’s t, Wilcoxon’s rank and M-tests. The

final Section provides discussions and concluding remarks. The R-codes and functions for

the M-test are included in the Appendix.

2 The M-test

A linear regression model of n observable random variables, Yi, i = 1, . . . , n is given by

Yi = θ + βxi + ei, (2.1)

where the xi’s are known real constants of the explanatory variable with error term ei, and

θ and β are the unknown intercept and slope parameters respectively.

Let Y1, Y2, . . . , Yn be identically and independently distributed random variables from a

continuous distribution function F (y) = Fi(yi − θ − βxi), yi, θ, β ∈ ℜ. Also, assume that

F (yi − θ − βxi) is a symmetric (about zero) distribution function.

M-estimators for θ and β are defined as the roots of the system of equations:

n∑
i=1

ψ

(
Yi − θ − βxi

Sn

)
= 0, (2.2)

n∑
i=1

xiψ

(
Yi − θ − βxi

Sn

)
= 0, (2.3)
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where ψ is known as the score function in the M-estimation methodology. Here, Sn is an

appropriate scale statistic for some functional S = S(F ) > 0 and Sn is chosen to be the

median of the absolute deviations of the sample from its median.

The choice of a suitable robust ψ-function justifies the test statistic. Several ψ-functions

are available in the literature, among them the popular ones are the Huber’s, Hampel’s, and

Tukey’s ψ-functions.

• The Huber’s score function is defined as ψHuber(x) = x for |x| ≤ c, c sign(x) for

|x| > c, where x is any real number and c is known as the tuning constant because it

can be chosen to fine tune the estimator. The value of the tuning constant is chosen as

1.345 since this value produces a 95% efficiency relative to the mean sample (Holland

and Welsch, 1977).

• The Hampel’s score function is written as ψHampel(x) = x, for 0 < |x| ≤ a, a sign(x),

for a ≤ |x| ≤ b, a(r − |x|)sign(x)/(r − b), for b ≤ |x| ≤ r, 0 for r ≤ |x|, where x is

any real number and a, b and r are the tuning constants. The default values for these

tuning constants used in R are a = 2, b = 4 and r = 8.

• The Tukey’s score function is expressed as ψTukey(x) = x(1 − (x/k)2)2 for |x| ≤ k,

0 for x > k, where x is any real number and k is a tuning constant. The value of the

tuning constant is chosen as 4.685 since this value produces a 95% efficiency relative

to the mean sample (Holland and Welsch, 1977).

In this paper, we consider three special cases of hypotheses testing in the linear regression

model, (i) testing location of a population distribution, (ii) testing the equality of the loca-

tions of two population distributions and (iii) testing on the slope coefficient of a regression

model.

2.1 The M-test for one location

Let β = 0 in the equation (2.1), so θ is the location of the distribution of Y . Assume that

the distribution F (y − θ) is continuous. We wish to test the location of the distribution to

be a specified value, that is, H0 : θ = θ0 against H0 : θ ̸= θ0.

An appropriate M-test, to test H0 : θ = θ0 against HA : θ ̸= θ0, is based on the following

test statistic

M1n =M1n(θ0) =
n∑

i=1

ψ

(
Yi − θ0
S1n

)
(2.4)

with scale statistic S1n. At the α-level of significance, the H0 is rejected if the observed

value of the test statistic satisfies |M1n| > ℓ1n,α/2, where ℓ1n,α/2 is the upper α/2-percentile

of the distribution of M1n.

According to Sen (1996), an M-estimator is consistent if the ψ-function is bounded and

skew symmetric, and the true distribution of the population is symmetric. If F (y − θ) is
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symmetric about zero, then∫ ∞

−∞
ψ

(
Yi − θ0
S1n

)
dF (Yi − θ0) = 0.

For large samples, under H0 : θ = θ0,

n−
1
2M1n(θ0)/S

⋆
1n → N(0, 1), (2.5)

where S∗2

1n = n−1
∑n

i=1 ψ
2
(

Yi−θ̃
S1n

)
in which θ̃ is the studentized M-estimator of θ based on

Y1, Y2, . . . , Yn, and it is expressed as

θ̃ =
1

2
sup

{
a :

n∑
i=1

ψ((Yi − a)/S1n) > 0

}
+

1

2
inf

{
a :

n∑
i=1

ψ((Yi − a)/S1n) < 0

}
,

and S∗2

1n → σ2
1 as n→ ∞, (cf. Jurečková and Sen, 1996, p. 409) and

σ2
1 =

∫
ℜ
ψ2

(
Yi − θ

S1

)
dF (Yi − θ), (0 < σ1 <∞)

is the second moment of ψ(·). If ψ(x) = x (i.e. the maximum likelihood ψ-function) and

F ∼ N(0, σ2), then S1 = σ and σ2
1 = 1.

2.1.1 Properties of M1n

Let α be the nominal significance level for the above test. Then the critical value ℓ1n,α/2 is

such that

P (|M1n| > ℓ1n,α/2|H0) = P (M1n > ℓ1n,α/2,M1n < −ℓ1n,α/2|H0) = α. (2.6)

Let ϕ1n = I(|M1n| > ℓ1n,α/2) be the test function designated to test H0 : θ = θ0 against

HA : θ ̸= θ0, where I(A) is the indicator function of the set A which assumes values 0 or 1.

Also, let Φ(x) be the standard normal distribution function of the random variable X and

Φ(τα/2) = 1− α/2, 0 < α < 1. From equations (2.5) and (2.6), as n→ ∞,

n−
1
2 ℓ1n,α/2/S

∗
1n → τ1α/2. (2.7)

Now let α1n = E(ϕ1n|θ = θ0) be the size of ϕ1n. Then,

α1n = P (|M1n| > ℓ1n,α/2|H0 : θ = θ0) = α

using equation (2.6). The power function of the test function ϕ1n, is defined as

Π1n(θ) = E(ϕ1n|θ) = P (|M1n| > ℓ1n,α/2| any θ)
= P

[
M1n > ℓ1n,α/2| any θ

]
+ P

[
M1n < −ℓ1n,α/2| any θ

]
. (2.8)
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Note that the size of the test α1n is a special case of the power function of the test when

the null hypothesis is true, i.e. α1n = Π1n(θ = θ0).

From the equation (5.5.29) of Jurečková and Sen (1996, p. 221), under H0, as n grows

large,

sup
{
n−

1
2 |M1n(θ0 + a)−M1n(θ0) + nγ1a| : |a| ≤ n−

1
2K
}
→ 0, (2.9)

where K is a positive constant, and

γ1 =
1

S1

∫
ℜ
ψ′
(
Yi − θ

S1

)
dF (Yi − θ)

in which ψ′ is the derivative of ψ-function.

Further, consider a sequence of local alternative hypotheses {Hn}, where

Hn : θ = θ0 + n−
1
2λ, λ > 0.

Now utilizing the contiguity of probability measures (see Hájek et al., 1999, Ch. 7) under

{Hn} to those under H0, equation (2.9) implies that n−
1
2M1n(θ0) under {Hn} is asymp-

totically equivalent to n−
1
2M1n(θ0 + n−

1
2λ) + λγ1. However, the asymptotic distribution

of n−
1
2M1n(θ0) under {Hn} is the same as the distribution of n−

1
2M1n(θ0 − n−

1
2λ) =

n−
1
2M1n(θ0)+λγ1 under H0, by the fact that the distribution of M1n(a) under θ = a is the

same as that of n−
1
2M1n(θ− a) under θ = 0 (cf. Saleh, 2006, p. 332). Therefore, for a large

sample, under {Hn} the distribution of

n−
1
2M1n → N(λγ1, σ

2
1). (2.10)

Thus, under {Hn}, the asymptotic power function of the one-sample M-test is given by

Π1(λ) = lim
n→∞

Π1n = 1− Φ(τ1α/2 − λγ1/σ1) + Φ(−τ1α/2 − λγ1/σ1) (2.11)

using equations (2.8) and (2.10). Obviously, for any large sample size, the asymptotic size

of the test for one-sample M-test is given by

α1 = Π1(λ = 0) = 1− Φ(τ1α/2) + Φ(−τ1α/2) = α.

2.2 The M-test for difference of two locations

Let two independent random samples, U1, U2, . . . , Un1 , and V1, V2, . . . , Vn2 , be drawn from

the populations of U and V such that,

P (Ui ≤ t) = P (Vj ≤ t+ β) = F (t), (2.12)

where F (t) is the cumulative distribution function (cdf) of a continuous distribution. Thus,

the two locations differ by a constant β, that is, the location of the distribution of V is

shifted by β from the distribution of U .
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We want to test H∗
0 : distribution of U and V are identical against H∗

A: V has different

location than U , and this is equivalent to test H∗
0 : β = 0 against H∗

A : β ̸= 0.

Let the two random samples from U and V be merged to form a combined random sample

Y1, Y2, . . . , Yn, such that Y1 = U1, Y2 = U2, . . . , Yn1 = Un1 , Yn1+1 = V1, . . . , Yn = Vn2 , where

n = n1 + n2. Then the predictor variable in the equation (2.1) xk = 0, for k = 1, 2, . . . , n1,

and xk = 1, for k = n1 + 1, . . . , n.

Consider a M statistic,

M∗
2n(θ̃, 0) =

n2∑
j=1

ψ

(
Vj − θ̃

S2n

)
=

n∑
k=1

xkψ

(
Yk − θ̃

S2n

)
, (2.13)

where ψ is the score function and S2n is an appropriate scale statistic for some functional

S2 = S2(F ) > 0. The median of the absolute deviations of the sample Y from its median

is used as an estimate of S2n. Note that θ̃ is the constrained M-estimator of θ when β = 0,

that is, θ̃ is the solution of
∑n

k=1 ψ (Yk − a) = 0 and conveniently be expressed as

θ̃ =
1

2
sup

{
a :

n∑
k=1

ψ

(
Yk − a

S2n

)
> 0

}
+

1

2
inf

{
a :

n∑
k=1

ψ

(
Yk − a

S2n

)
< 0

}
.

From Sen (1982) and Yunus and Khan (2011a), under H∗
0 : β = 0,

M2n =
1

S∗
2n

√
n1n2/n

n2∑
j=1

ψ

(
Vj − θ̃

S2n

)
→ N(0, 1) as n→ ∞, (2.14)

where S∗2

2n = n−1
[∑n

k=1 ψ
2
(

Yk−θ̃
S2n

)]
.

2.2.1 Properties of M2n

Consider a local sequence of alternative hypotheses {Kn}, where

Kn : β = n−
1
2 η, η > 0. (2.15)

Following similar steps as in the one-sample case, the asymptotic power function of the

M-test for the two-sample problem under {Kn} is given by

Π2(η) = lim
n→∞

Π2n(β) = 1− Φ(τ2α/2 − ηγ2
√
n1n2/nσ2) + Φ(−τ2α/2 − ηγ2

√
n1n2/nσ2)(2.16)

using the asymptotic results of Jurečková and Sen (2006), and Yunus and Khan (2011a),

where

γ2 =
1

S2

∫
ℜ
ψ′
(
Yk − θ − βxk

S2

)
dF (Yk − θ − βxk), (2.17)

in which ψ′ is the derivative of the ψ-function and

σ2
2 =

∫
ℜ
ψ2

(
Yk − θ − βxk

S2

)
dF (Yk − θ − βxk), (0 < σ2 <∞) (2.18)
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is the second moment of ψ(·).
The asymptotic size of the test is given by

α2 = Π2(0) = 1− Φ(τ2α/2) + Φ(−τ2α/2) = α (2.19)

from equation (2.16).

2.3 The M-test for testing the slope coefficient

A convenient form of the M-test statistic for testing H0 : β = β0 against HA : β ̸= β0 for

the model in (2.1) is given by

Mn =M⋆
n(θ̃m, β0) =

n∑
i=1

xiψ

(
Yi − θ̃m − β0xi

Sn

)
say, (2.20)

where θ̃m is the constrained M-estimator of θ when β = β0, that is, θ̃m is the solution of

M⋆
n(a, β0) = 0 and it may be conveniently be expressed as

θ̃ = [sup{a :M†
n(a, β0) > 0}+ inf{a :M†

n(a, β0) < 0}]÷ 2, (2.21)

where M†
n(a, b) =

∑n
i=1 ψ

(
Yi−a−bxi

Sn

)
, a and b are any real numbers. Then H0 is rejected if

|Mn| > ℓn,α/2 at the α level of significance, where ℓn,α/2 is the upper α/2-percentile of the

distribution of Mn.

It follows from the equation (2.6) of Yunus and Khan (2011a) that under H0,

n−
1
2Mn

d→ N(0, σ2
0C

⋆2) as n→ ∞, (2.22)

where C⋆ = limn→∞
∑n

i=1 x
2
i − nx̄2n, x̄n = n−1

∑n
i=1 xi, and

σ2
0 =

∫
ℜ ψ

2
(

Yi−θ−βxi

S

)
dF (Yi − θ − βxi) (0 < σ0 <∞)

is the second moment of ψ(·). Let

S⋆
n
2 = n−1

n∑
i=1

ψ2

(
Yi − θ̃m − β0xi

Sn

)
, (2.23)

(cf. Jurečková and Sen, 1996, p. 409) and S⋆
n
2 → σ2

0 as n→ ∞.

2.4 Properties of Mn

Now consider a sequence of local alternative hypotheses {Qn}, where

Qn : β = β0 + n−
1
2 ν, ν > 0. (2.24)

Using equations (2.22), and (5.5.29) of Jurečková and Sen (1996), and the contiguity

probability measures, under {Qn}, the distribution of n−
1
2Mn

d→ N(νγC⋆2, σ2
0C

⋆2) (cf.

Yunus and Khan, 2011a).
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Following similar steps as in the one-sample case, the asymptotic power function of the

M-test for testing the slope coefficient of the regression model under {Qn}, is given by

ΠM (ν) = 1− Φ(τα/2 − νγC⋆σ−1
0 ) + Φ(−τα/2 − νγC⋆σ−1

0 ), (2.25)

where

γ =
1

S

∫
ℜ
ψ′
(
Yi − θ − βxi

S

)
dF (Yi − θ − βxi)

and ψ′ is the derivative of ψ-function. Here τα/2 is the critical value of the standard normal

distribution at the α/2 level of significance.

3 The one-sided tests

The adoption of the above two-sided M-test to a one-sided test is straightforward. Suppose

we test H0 : β = 0 against HA : β > 0, then we work with M1n and the corresponding

critical value ℓ1n,α in (2.7), and obtain P (M1n > ℓ1n,α|H0) = α. It follows that the power

function for a one-sided M-test for testing the location of one population is given by

Π1n(θ) = P [M1n > ℓn,α| any θ] . (3.1)

As n → ∞, we find that the asymptotic power of a one-sided test for testing about the

location of population is given by

Π1(λ) = lim
n→∞

Π1n(µ) = 1− Φ(τ1α − λγ1σ
−1
1 ). (3.2)

In the same manner, the asymptotic power of a one-sided test for testing the equality of

location parameter of two populations is given by

Π2(η) = 1− Φ(τ2α − ηγ2
√
n1n2/nσ2) (3.3)

and that for testing on the slope coefficient is given by

ΠM (ν) = 1− Φ(τα − νγC⋆σ−1
0 ). (3.4)

4 Applications on data

In this section, the R-codes to compute the value of the M-test statistic, its p value, confi-

dence interval for θ and asymptotic power of the test are discussed. In the Appendix the

R-function for the M-test is included. Users can choose to run a one-sided or two-sided

test. The R-codes that produce the M-test statistic, p-value, confidence interval, σ1 and

γ1 for one-sample test are given in Listing 1, while the R-codes that give the asymptotic

power of the two-sample M-test are given in Listing 2. Examples of how to use the proposed
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R-functions for one-sample M-test are given in Listing 3. For the two-sample M-test, the R-

codes that produce the M-test statistic and its p-value, the asymptotic power and examples

of using the M-test on data are given in Listings 4, 5, and 6. The formula and R-codes in

this paper are based on the Tukey’s ψ-function. The M-test for both one and two locations

as well as its applications on two different datasets are included here.

4.1 One-sample M-test: Birth rate of 56 states in United States
in 2010

For the illustration of the M-test of one location we consider the birth rate dataset obtained

from National Vital Statistics Report (Table 12. Birth rates, by age of mother: United

States, each state and territory, 2010). Birth rate of 56 states in United States were measured

for year 2010. The mean and median of birthrate is 13.38 and 12.6 respectively. It is

observed from the normal Q-Q plot and the histogram given in Figures 1(a) and (b) that

the distribution of the data is not normal. In facts, these figures reveal some outliers.

The observed value of the test statistic for the t-, R- and M-tests (Student’s t, Wilcoxon’s

rank and M-tests) along with the p-values are calculated for testing H0 : µ = 13.5 against

HA : µ ̸= 13.5 at the 5% significance level and are given in Table 1. We find that the t-test

could not reject H0 at the 5% significance level as the p-value is 0.7143. However, the R-

and M-tests reject the null hypothesis as the p-values are 0.0557 and 0.0338, respectively

(see Table 1). For this dataset, one may have a different null hypothesis, that is, to test µ

at a particular value, say µ0, as µ0 can take any real number in this two-sided testing. We

obtain p-value for each testing on the H0 : µ = µ0, and then we plot p-value against µ0 in

Figure 1(c). We observed that the M-test is comparable in performance to the R-test, but

not to the t-test. Figure 1(d) shows the asymptotic power curves of the M- and t-tests for

the birth rate dataset. Obviously, asymptotic power of the M-test is higher than that of the

t test. Existing R-codes wilcox.test and t.test were used to find the statistics and p-values

for the R- and t-tests, respectively, while coding for the M-test is given in the appendix.

Table 1: Test results for the birth rate data

t-test R-test M-test

T-statistic p-value R-statistic p-value M-statistic p-value

-0.368 0.7143 499 0.0557 -14.069 0.0338
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Figure 1: Graphs of Q-Q plot and asymptotic power curves for birth rate dataset, where
δ1 = |µ− µ0|.

Table 2: Test results for the iodine versus LOCM data

t-test R-test M-test

T-statistic p-value R-statistic p-value M-statistic p-value

0.56 0.5783 0.80 0.4247 0.77 0.4425
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Figure 2: Graphs of Q-Q plot and histogram for iodine dose and LOCM dose.

4.2 Two-sample M-test: Iodine versus LOCM

A nephrotoxicity of iso-osmolar iodixanol is compared with a nonionic low-osmolar contrast

media (LOCM) to find out which of them is more effective in reducing the risk of contrast

media-induced nephropathy. In the study by Heinrich et al. (2009), serum creatinine levels

are assessed before and after an intervascular application of iodixanol and LOCM.

The average of iodine and LOCM dose (mg/dL) are taken from 22 studies. We consider

to test H∗
0 : the distributions of iodine dose and LOCM dose are identical against H∗

A: the

location of the distribution of iodine dose is different from the location of the distribution of

LOCM dose. It is observed that there is one outlier in each normal Q-Q plot for the iodine

dose and LOCM dose (see Figure 2). In the testing, we find H∗
0 is not rejected at the 5%

significance level using the t, rank and M-tests, respectively with p-values 0.5783, 0.4247

and 0.4425 (see Table 2).

5 Power Comparison

In this Section, simulated data sets is used to obtain the asymptotic power of the M-test

for situations in which samples were drawn from several symmetrical distributions. The

asymptotic power of the M-test is compared to those of the commonly used t- and R-tests

in the simulation.
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5.1 Test on the location of a population

Consider Xi = µ+ ei, i = 1, 2, . . . , n where µ is the location parameter and Xi is a random

response with error ei. For the simulation, wet set µ = 2, α = 0.05, and n = 100.

Four symmetric distributions, namely the (i) normal, (ii) Laplace, (iii) Cauchy, and

(iv) logistic, of error terms are considered to compare the asymptotic power of the tests.

For the normal case, ei is generated from a normal distribution with mean 0 and variance

1. For the Laplace and Cauchy cases, ei is generated respectively from a Laplace and

Cauchy distribution with location 0 and scale 1, while for the logistic case, ei is from logistic

distribution with location 0 and scale 1/
√
3.

Asymptotic power of the M-test is computed using the function given in the equation

(2.11) for the two-sided test. The estimate of γ1 in the equation (2.11) is taken as γ̂1 =
1

n (MAD/0.6745)

∑n
i=1 ψ

′
huber

(
Xi−µ̃

MAD/0.6745

)
, where MAD is the median absolute deviation

of the sample of X. The σ1 in the equation (2.11) is estimated by S∗
1n using ψ = ψhuber.

The simulation is run 10,000 times to get 10,000 simulated sets of values of error terms.

Using Xi = 2 + ei, i = 1, 2, . . . , n, we obtain 10,000 simulated datasets of size n = 100.

Then, these datasets are used to compute S∗
1n and γ̂1. The average of asymptotic power of

the test for the 10,000 simulated datasets is computed at a particular value of δ1 = |µ−µ0|.
After 10,000 repetitions, the value of δ1 was increased and the process repeated. The curves

of the asymptotic power of the tests for increasing values of δ1 are plotted in Figure 3.

It is depicted in Figure 3(a) that asymptotic power of the M-test is as much as that of

the t-test, and power of both tests are slightly higher than that of the R-test when data is

generated from normal distribution. However, the asymptotic power of the R- and M-tests

is larger than that of the t-test when sample data is generated from the Laplace and Cauchy

distributions ((b) and (c)). It is observed that M-test is comparable in terms of power to

the R-test when the distribution of data is Cauchy (heavy tails) or Laplace (light tails). All

the tests have similar power when sample data is generated from logistic distribution ((d)).

5.2 Test on the equality of location of two populations

Consider two independent random samples, U1, U2, . . . , Un1 and V1, V2, . . . , Vn2 , from the

random variables U and V , where the two distributions are identical except for the difference

in the location. Let β be the difference between the two locations of the two populations.

In the simulation study, we set α = 0.05 and n1 = n2 = 100, so n = n1 + n2 = 200.

Four distributions, namely the (i) normal, (ii) Laplace, (iii) Cauchy, and (iv) logistic, of

U and V are considered to compute the asymptotic power function of the M-test. For the

normal case, U is generated from a normal distribution with location/mean 2 and variance

1 and V is generated from a normal distribution with location/mean 2 + β and variance

1. For the Laplace, Cauchy and logistic cases, U is generated respectively from a Laplace,

Cauchy or logistic distribution with a location parameter 2 and a scale parameter 1 and

V is generated respectively from a Laplace, Cauchy, or logistic distribution with a location

parameter 2 + β and a scale parameter 1. Obviously the two samples of U and V have
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Figure 3: Graphs of the power function for increasing δ1, where δ1 = |µ− µ0| at α = 0.05.
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(b) Asymptotic power when samples
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Figure 4: Graphs of the power function for increasing δ2, where δ2 = |β − β0| at α = 0.05.
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identical distribution if β = 0.

Asymptotic power of the two-sided M-test is computed using the form of asymptotic

power function given in equation (2.16). The estimate of γ2 in the equation (3.3) is taken as

1
n MAD/0.6745

∑n
k=1 ψ

′
(

Yk−θ̂m−β̂mck
MAD/0.6745

)
and σ2 is estimated by

√
1
n

∑n
k=1 ψ

2
(

Yk−θ̂m−β̂mck
MAD/0.6745

)
,

where θ̂m and β̂m are the M-estimates for parameters θ and β of the simple regression model

in (2.10), andMAD is the median absolute deviation of the sample of Y . In the simulation,

the Hampel’s, Huber’s, and Tukey’s ψ-functions are considered to obtain the asymptotic

power of the M-test.

The simulation is run 10,000 times to get 10,000 simulated sets of values of both samples

datasets. Then, these datasets are used to compute S∗
2n, and γ̂2. After 10,000 repetitions,

the value of the δ2 was increased and the process repeated. The asymptotic power curves

for increasing values of δ2 were plotted in Figure 4.

From Figure 4, we find that the M-test based on the Hampel’s, Huber’s, and Tukey’s

ψ-functions are more robust against departures from the normal distribution assumption as

their powers are larger than that of the Student’s t-test. The power of M-test based on the

Hampel’s ψ-function are close to that of the Student’s t-test when sampling is done from

the normal distribution. The M-test based on the Huber’s and Tukey’s ψ-functions have

larger power than that of the Hampel’s when the samples are from the Laplace and Cauchy

distributions.

6 Concluding remarks

The use of M-test removes any chance of misleading test outcome due to the violation of

assumptions or existence of outliers. Furthermore, the asymptotic power of the M-test is at

least as large as that of the Student’s t or relevant nonparametric test when the assumptions

are not met and even if there are no outliers. Clearly for the users it is advantageous to use

the M-test to avoid any risk of using a test whose underlying assumptions may have been

violated and hence the validity of the test outcomes becomes untenable.

In many cases the ordinary users of statistical tests do not bother to check the validity

of the assumptions. For those users M-test is a better option as it provides much needed

protection against the adverse consequences of the presence of outliers or departure from

the assumptions on the population distribution.

6.1 Acknowledgements

The authors are thankful to the editor and referees for their valuable suggestions and com-

ments. The work of the second author was partially funded by the University of Malaya

Research Grant (UMRG), no. RG169/11AFR, when the study was conducted.

16



References

[1] Fung K.Y., Lee H. and Tajuddin, I. (1985). Some Robust Test Statistics for the Two-
Sample Location Problem. Journal of the Royal Statistical Society Series D (The Statis-
tician), 34, 2, 175-182.

[2] Gagliardini, P., Trojani, F. and Urga, G. (2005). Robust GMM tests for structural
breaks. Journal of Econometrics, 129, 139-182.

[3] Gosset, W.S. (1908). The probable error of a mean. Biometrika, 6,125.
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R-Codes

(i) M-test for testing the location of a population

m.test1<-function(X, alternative = c("two.sided", "less", "greater"),

mu.not, sig.level){

n<-length(X)

library(MASS)

mad.X<-mad(X)

fit<-rlm(X~1)

r1<-(X-mu.not)/mad.X

r2<-(X-fit$coef)/mad.X

Mstat<-sum(psi.huber(r1,deriv=0)*r1)

sigma <-sqrt((1/n)*sum((psi.huber(r2,deriv=0)*r2)^2))

gamma <-(1/n)*(sum(psi.huber(r2, deriv = 1)))/mad.X

standardized.Mstat<-Mstat/(sigma*sqrt(n))

if (alternative =="greater")

{

p.value<-1-pnorm(standardized.Mstat)

}

if (alternative =="less")

{

p.value <-pnorm(standardized.Mstat)

}

if (alternative =="two.sided"){

p.value <-if (standardized.Mstat>=0)

2*(1-pnorm(standardized.Mstat)) else
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2*pnorm(standardized.Mstat)

}

interval <-c(fit$coef-(qnorm(1-sig.level/2))*sqrt(1/n)*mad.X,

fit$coef+(qnorm(1-sig.level/2))*sqrt(1/n)*mad.X)

list(Mstat=Mstat, standardized.Mstat=standardized.Mstat,

p.value=p.value,M.estimate = fit$coef, interval=interval,

sigma=sigma, gamma=gamma)

}

}

(ii) The asymptotic power of the M-test for testing the location of one

population

power.m.test1<-function(n, alternative=c("one.sided","two.sided"),delta,

sigma, gamma, sig.level){

lambda<-delta*sqrt(n)

if (alternative =="one.sided"){

power<-1-pnorm(qnorm(1-sig.level)- lambda*gamma/sigma)}

if (alternative =="two.sided"){

power<-1-pnorm(qnorm(1-sig.level/2)-

lambda*gamma/sigma)+pnorm(-qnorm(1-

sig.level/2)- lambda*gamma/sigma)}

list(power=power)

}

(iii) Examples

X = c(12.6, 16.2, 13.7, 13.2, 13.7, 13.2, 10.6, 12.7, 15.2, 11.4, 13.8,

14.0, 14.8, 12.9, 12.9, 12.7, 14.2, 12.9 ,13.8, 9.8, 12.8, 11.1, 11.6,

12.9, 13.5, 12.8, 12.2, 14.2, 13.3, 9.8, 12.2, 13.5, 12.6, 12.8, 13.5,

12.1, 14.2, 11.9, 11.3, 10.6, 12.6 ,14.5, 12.5, 15.4, 18.9, 9.9, 12.9,

12.9, 11.0, 12.0, 13.4, 11.3, 15.1, 21.4, 22.2, 20.0)

fit1<-m.test1(X, alternative = "two.sided", mu.not=13.5, sig.level=0.05)

power.m.test1(length(X),alternative="two.sided",delta=1 ,fit1$sigma,

fit1$gamma,0.05)

(iv) M-test for testing the equality of location of two populations

m.test2<-function(X, Y, alternative = c("two.sided", "less", "greater"),

psi.function =c("psi.huber", "psi.bisquare", "psi.hampel"),sig.level){

library(MASS)
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n1<-length(X)

n2<-length(Y)

n<-n1+n2

Z<-c(X,Y)

ci<-c(rep(0,n1),rep(1,n2))

vec.unit<-rep(1,n)

if(psi.function =="psi.huber")

{

fit.full<-rlm(matrix(c(vec.unit,ci),ncol=2),Z)

psi.full<-psi.huber(fit.full$res/mad(fit.full$res),deriv=0)*

(fit.full$res/mad(fit.full$res))

sigma.full<-sqrt(sum(psi.full*psi.full)/n)

fit.null<-rlm(Z~1) #fit.null$s !=mad(Z)

psi.null<-psi.huber((Z-fit.null$coef)/mad(Z),deriv=0)*

((Z-fit.null$coef)/mad(Z))

sigma.null<-sqrt(sum(psi.null*psi.null)/n)

gamma <-(1/n)*(sum(psi.huber(fit.full$res/mad(fit.full$res),

deriv = 1)))/mad(fit.full$res)

}

if(psi.function =="psi.bisquare")

{

fit.full<-rlm(matrix(c(vec.unit,ci),ncol=2),Z, psi=psi.bisquare)

psi.full<-psi.bisquare(fit.full$res/mad(fit.full$res),deriv=0)*

(fit.full$res/mad(fit.full$res))

sigma.full<-sqrt(sum(psi.full*psi.full)/n)

fit.null<-rlm(Z~1, psi=psi.bisquare)

psi.null<-psi.bisquare((Z-fit.null$coef)/mad(Z),deriv=0)*

((Z-fit.null$coef)/mad(Z))

sigma.null<-sqrt(sum(psi.null*psi.null)/n)

gamma <-(1/n)*(sum(psi.bisquare(fit.full$res/mad(fit.full$res),

deriv = 1)))/mad(fit.full$res)

}

if(psi.function =="psi.hampel")

{

fit.full<-rlm(matrix(c(vec.unit,ci),ncol=2),Z, psi=psi.hampel)

psi.full<-psi.hampel(fit.full$res/mad(fit.full$res),deriv=0)*

(fit.full$res/mad(fit.full$res))

sigma.full<-sqrt(sum(psi.full*psi.full)/n)

fit.null<-rlm(Z~1, psi=psi.hampel)

psi.null<-psi.hampel((Z-fit.null$coef)/mad(Z),deriv=0)*
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((Z-fit.null$coef)/mad(Z))

sigma.null<-sqrt(sum(psi.null*psi.null)/n)

gamma <-(1/n)*(sum(psi.hampel(fit.full$res/mad(fit.full$res),

deriv = 1)))/mad(fit.full$res)

}

M.stat <-sum(ci*psi.null)/sqrt(n*(sigma.null^2)*n1*n2/(n^2))

if (alternative =="greater")

{

p.value<-1-pnorm(M.stat)

}

if (alternative =="less")

{

p.value <-pnorm(M.stat)

}

if (alternative =="two.sided")

{

p.value <-if (M.stat>=0) 2*(1-pnorm(M.stat)) else 2*pnorm(M.stat)

}

list(Mstat=M.stat, p.value=p.value, sigma=sigma.full, gamma=gamma)

}

(v) The asymptotic power of the M-test for testing location of

two populations

power.m.test2<-function(n1, n, alternative=c("one.sided","two.sided"),

delta, sigma, gamma, sig.level){

lambda<-delta*sqrt(n)

if (alternative =="one.sided"){

power <-1-pnorm(qnorm(1-sig.level)-

sqrt(n1*(n-n1)/(n^2))*lambda*gamma/sigma)}

if (alternative =="two.sided"){

power<-1-pnorm(qnorm(1-sig.level/2)-sqrt(n1*(n-n1)/(n^2))*lambda*

gamma/sigma)+pnorm(-qnorm(1-sig.level/2)-sqrt(n1*(n-n1)/(n^2))*

lambda*gamma/sigma)}

list(power=power)

}

(vi) Examples

iodi.dose<-c(32.5, 40, 46, 43.6, 44.8, 124.5, 40, 33.9, 52, 17, 47.36,

23.4, 34.4, 27.84, 58.43, 38.9, 25.8, 33.6, 61.7, 32.96, 63.7, 56)
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locm.dose<-c(39.4, 40, 56, 49.5, 51.1, 117.6, 40.4, 36.1, 57, 16, 45.84,

24, 35.7, 27.65, 74.22, 46.5, 26.1, 35.3, 68.4, 36.05, 76.4, 60.9)

X<-iodi.dose

Y<-locm.dose

delta<- 2

n1<-length(X)

n<-length(c(X,Y))

fit2<-m.test2(X, Y, alternative = "two.sided", 0.05)

power.m.test2(n1,n, alternative="two.sided", delta, fit2$sigma,

fit2$gamma, 0.05)
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