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ABSTRACT 

A common and important problem that arises in visual communications is the need to create an 
enhanced-resolution video image sequence from a lower resolution input video stream. This can 
be accomplished by exploiting the spatial correlations that exist between successive video 
frames using Super-Resolution (SR) reconstruction. SR refers to the task of increasing the 
spatial resolution through multiple frame processing. 

Multi-frame resolution enhancement methods are of increasing interest in digital image 
processing and there has been a substantial amount of research in developing algorithms that 
combine a set of low-quality images to produce a set of higher quality images. Either explicitly 
or implicitly, such algorithms must perform the common task of registering and fusing the low-
quality image data. While many such processes have been proposed, very little work has 
addressed their limits. 

In this context, an algorithm designed to operate in the spatial domain is used in a controlled test 
to compute a higher-resolution image by mapping a model of the image formation process using 
local sub-pixel shifts among the lower resolution and compressed images of the same scene. 
These shifts are determined by way of a rigorous least-squares area-based image-matching 
scheme that does not require control points. 

Statistical results show that the performance of the algorithm does degrade, as would be 
expected, depending on (1) the amount of noise present in the low-resolution images, (2) the 
number of low-resolution input images and (3) the magnification factor required to meet 
resolution requirements.  

INTRODUCTION 

SR is a term given to a single image product that has been produced by combining a number of 
images of the same scene, using algorithms that increase spatial resolution. Subtle sub-pixel 
shifts in each image will, when combined, allow for a composite image to be sampled at more 
points than provided by the sensor’s detector array. The composite image will also have a 
sharper point spread. SR finds applications in the following field of expertise: 

Remote sensing: where several images of the same region are available, and an improved 
resolution images is sought. This could be required for GIS applications or for stereo images 
for 3D modelling. Super resolution can be carried out locally on small areas of interest. If a 
large area is of interest, it is possible to partition the area into relatively small regions and 
carry out the SR procedure region by region. This approach not only speeds up the 
computation and lowers the memory requirements, but also simplifies the problem since any 
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geometric distortion that may exist among the low-resolution images is more uniform within 
a small region. 

Security/Forensics: where a typical single frame of a video signal is generally poor for hard 
copy printouts. Enhancement of a freeze image can be done by using several successive 
images merged together by SR. This may be helpful during judicial enquiries where video 
recordings are used as evidence to identify suspects. In fact, faces often appear very small in 
surveillance imagery because of the wide fields of view that are typically used and the 
relatively large distance between the cameras and the scene. For tasks such as face 
recognition, resolution enhancement techniques are often needed. 

Defence: images taken from satellites or drones may be very expensive, because of the cost 
of infrared cameras, and constraints over weight and volume. Improving quality is essential 
to optimise these images. Reconstruction-based SR is utilised for recognising and tracking 
targets in real time for weapons guidance systems or for improving reconnaissance photo-
interpretation of satellite imagery when seeking sensitive targets.  

Medical and scientific: CT, MRI and ultrasound are common applications. Other examples 
may include imaging used in microscopy or astronomy. Automatic vision techniques used 
with robotic assembling, or detection of defective pieces can also take advantage of SR. 

The author acknowledges the rapid advances which have been made in hardware solutions for 
image sensors to solve the problem of increasing the resolution of digital images. The work 
presented here does not detract from those advances; rather it provides a complementary 
algorithmic technique which is hardware independent. This algorithm can increase the 
resolution of any image sequence taken from any digital imaging capturing device. 

The spatial resolution of the super-resolved image is user-selectable as a grid ratio (p), that is, 
the object-space length of one (input) low-resolution pixel as related to the length occupied by a 
desired (output) high-resolution pixel. For example, a grid ratio p = 3.0 means that each of the 
high-resolution pixels of the enhanced composite is 3.0 times smaller, in each linear direction, 
than any low-resolution pixel of the input images.  

The theoretical limit for the grid ratio is dictated by sampling theory which guarantees the 
accurate reconstruction of a signal. In this case, each row of the digital image is considered to 
represent an ‘‘image signal’’.  The sampling theorem means that to mathematically represent 
fully the spatial details of an original continuous-tone image, the image must be sampled at a 
rate of at least twice that of the highest spatial frequency contained in it. 

To capture an image’s finest dark-to-light-to-dark detail, sampling must occur so that at least 
two samples (two low-resolution pixels) fall in these detail sections (high-resolution pixels). 
This ensures that both the dark and light portions of the detail are sampled, and hence preserved, 
in the resulting digital image. The Nyquist frequency is the term referred to this sampling rate 
(Gonzalez and Woods, 2007). 

However, the achievable improvement in resolution which is possible using SR techniques may 
have certain limitations different to the above theoretical definitions. For instance, if the grid 
ratio becomes too large and noise is added to the low-resolution images or the registration 
process is inaccurate, the performance of SR algorithms deteriorates. The images they produce 
are either overly smooth or contain undesirable details.  Exploring the limits of SR to discover 
such limits is important, so that practitioners may use appropriate magnification factors, thus 
saving resources.  

Often low-resolution images have been compressed in a lossy manner, such as by the JPEG 
protocol, in order to reduce the storage. Lossy compression protocols introduce several 
distortions which can complicate the SR problem. For example, most compression algorithms 
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divide the original image into blocks which are processed independently.  At high compression 
ratios, the boundaries between the blocks become visible and lead to ‘‘blocking’’ artefacts 
(Russ, 2007). If these coding effects are not removed, SR techniques may produce a poor 
estimate of the high-resolution sequence, as coding artefacts may still appear in the high-
resolution composite (Tom and Katsaggelos, 2001).  

A number of algorithms for the enhancement of resolution in images of static objects have 
appeared in the literature (Farsiu et al., 2004; Fryer and McIntosh 2001; Scarmana and Fryer, 
2006; Hendricks and van Vliet., 1999; Zhouchen et al., 2004; Vandewalle et al. 2005).  The 
majority of this literature on algorithmic SR describes the use of three basic steps: (1) estimation 
of the motion fields or shifts among the different low-resolution images at a sub-pixel level 
(sometimes referred to as image-to-image registration or image matching); (2) projecting or 
mapping the pixels of the low-resolution images onto a higher resolution grid using the motion 
fields detected and; (3) interpolating or solving sets of equations derived from the geometric 
relationships existing between low and high-resolution pixels.  

While these three steps are crucial for obtaining a higher resolution composite, discussion on 
their limitations is rare and incomplete. Hence, this paper attempts to explore these limitations 
using a case study aimed to define the required number of low-resolution images in the presence 
of compression artefacts, added noise and/or the occurrence of potential misregistrations.  
Theoretical aspects of the proposed image enhanced process are discussed in the ensuing 
sections. 

SUB-PIXEL MOTION ESTIMATION 

The sub-pixel registration between two images of the same scene is derived from image 
registration or matching (Wolf and Dewitt, 2000).  The image registration technique used in this 
work matches the intensity values of two digital images, while simultaneously detecting, and 
locating, any geometric differences that exist between the two images.  These geometric 
differences relate to potential shifts and rotations between the frames being investigated.  

This method is known as a least squares area based matching technique and can overcome 
difficulties arising from radiometric differences in the images being matched to achieve sub-
pixel accuracies of approximately 0.1 pixels. The reader is referred to see Pilgrim (1991) for the 
theory and formulations behind this process. Three basic assumptions are made: (1) The initial 
match position and orientation are not known before the registration process begins; (2) the 
magnitude and extent of the differences that exist between the images, if any, are assumed to be 
unknown; and (3) the technique is not an approximate registration procedure, but an accurate 
one. 

The technique allows images to be registered without using control points in the registration 
procedure. For a correct detection of the shifts or offsets between two images, the images must 
contain some features that make it possible to match two undersampled images. Very sharp 
edges and small details are most affected by aliasing, so they are not reliable to be used to 
estimate these shifts. Uniform areas are useless, since they are translation invariant. The best 
features are slow transitions between two areas of grey values.   

These areas are generally unaffected by aliasing and such portions of an image need not to be 
detected specifically, although their presence is very important for an accurate registration 
result. Hence, prior to registering two or more images of the same scene it is recommended to 
remove details affected by aliasing by applying a low-pass filter to the images. The purpose of a 
low-pass filter is to “smooth” sharp edges, small details, sudden changes of intensity values and 
distortions created by compression processes (Vandewalle et al., 2005).  

The sub-pixel registration procedure) adopted in this research determines the x- and y-shifts and 
rotations between any two images but what is really required is the relative positions of a 
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sequence of images. By calculating these shifts with respect to a single reference image, only 
one realization of the relative positions is obtained. By repeating the procedure for another 
reference image, a second estimate for the relative positions is made.  Continuing to repeat this 
process for all images in the sequence, a better estimate of the relative shifts, image to image, 
can be found.  

The statistical measure used to determine the “best” possible value for all such possible 
combinations of the motion vectors between two given low-resolution images was the vector 
median. The implementation of the vector median was considered more appropriate than, for 
instance, the vector mean. If the vector mean was taken instead of the median, then the final 
motion vector would be an entirely new vector, and not one of the vectors originally estimated. 
In addition, the mean is less robust than the median if outliers are present (Spiegel, 1999). 

MAPPING THE LOW-RESOLUTION IMAGES  

Each pixel within a grey-scale image, shown in Figure 1 as a square area, contains a single grey-
scale value representing the average intensity value, of all the details in the area it covers. The 
grey-scale value of each pixel is usually an eight-digit binary number representing a shade of 
grey from total black to total white in 256 gradations. The human eye can detect only about 32 
different levels of grey, so the digital imaging and subsequent processing constitutes at least a 
four-fold improvement over visual processes (Russ, 2007).  

In Figure 1(a), the observed data represents a portion of one single line that a camera/scanner 
records as it passes over the object. As the diagram shows, an averaging of values occurs where 
the edges of the darker object fall within the area of the camera’s pixel definition. In Figure 1(a) 
the camera records a value of 200 instead of either 250 or 166. In the recorded “low-resolution” 
data the sharp edges of the object are “lost” and the object may be unrecognisable. 

However, the relationships between the values of the pixels contain more information about the 
original shape of the object than is visible to the eye. Because the specific variation of pixel 
values was originally derived from averaging of the values in the actual scene, with appropriate 
algorithms the original shape of the object can often be recovered. Such a procedure involves 
the original pixel and the values of immediately surrounding pixels. 
 

 

                                  (a)                                                                                     (b) 

Fig. 1: (a) Pixel integration of edge areas and (b) Two low-resolution pixels (C1 and 
          C2) mapped on the higher resolution grid (X1, X2….X15, grid ratio p= 2.0). 

 

 X1 X2 X3 X4 X5 

X7 X8 X9 X10 

X11 X12 X13 X14 X15 

C1 C2

250 166 250 166

Physical 
Landform Sensor track 

Recorded data 

Pixel value returned after averaging 
for the scanned area 

200 166 166 200 250 250 

166 166 
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In the proposed technique each pixel of the low-resolution images is examined one by one and 
mapped onto a higher resolution grid. For instance, in Figure 1(b), the proportion of high-
resolution pixels that contributed to the formation of the low-resolution pixels C1 and C2 can be 
estimated in terms of grey scale values using an algebraic approach based on a weighted 
geometric mean of values (Spiegel and Stephens, 1999).   

The geometric mean uses logarithmic expressions to evaluate data covering several orders of 
magnitude, for estimating ratios and percentages, or other data sets bounded by zero.  Also, the 
intensity response of the eye is logarithmic and therefore it may sometimes be preferable to 
quantise and process images on a logarithmic scale rather than a linear scale.  From Figure 1(b) 
each of the low-resolution pixels (C1 and C2) can be expressed in terms of a weighted 
geometric mean as shown in Equation 1 below.  

                                             Log Ci = (  ai log Xi) * N-1                                         (1) 
 

In this equation C is the low-resolution input pixel. The term ai represents the partial areas of 
high-resolution pixels (Xi) affected by each low-resolution pixel. All the Xi are positive 
numbers. N is the summation of all the ai which in the case of Figure 1(b) is equal to 4. Note 
that N=p2 being p the grid ratio which determines the dimensions of the image in high-
resolution pixels with respect to the dimensions of the image in low-resolution pixels. Upon 
applying equation (1) to the cases of C1 and C2 in Figure 1(b) the following two equations can 
be constructed: 
 
 

logC1 = (0.25logX1+0.5logX2+0.25logX3+0.5logX6+logX7+0.5logX8+ 
                           0.25logX11+0.5logX12+0.25logX13)/ 4.                                          (2) 
 

 logC2 = (0.25logX3+0.5logX4+0.25logX5+0.5logX8+logX9+0.5logX10+ 
                          0.25logX13+0.5logX14+0.25logX15)/ 4.                                           (3) 
 
 

The high-resolution pixel coordinate system defines the position of all the unknown high-
resolution pixels and is the system onto which the low-resolution images are mapped. Once the 
first low-resolution pixel (C1) is related to the high-resolution coordinate system the process 
moves on to the next low-resolution data pixel (i.e., from C1 to C2, see also equation 3). The 
sequence of equations 2, 3, etc. may be thought of as “observation equations” where the 
unknowns are the values of the high resolution pixels (Xi).  These equations can be solved by 
traditional least squares techniques (for example, Petrie and Kennie, 1990).   

In Figure 1(b), a 3x5 high-resolution pixel array of unknowns would require several 1x2 pixel 
arrays of low-resolution images to have enough information to calculate one high-resolution 
image.  To solve for a higher grid ratio, that is, greater than p=2.0, more low-resolution images 
would be required. While this example is simplistic, when (say) five suitably overlapping 
images each of modest size 500 x 500 are considered, it becomes apparent that 500 x 500 x 5 = 
1.25 million observation equations could be formed. If a grid ratio of 2 is chosen, then the 
resolution enhanced image will be of size 1000 x 1000 and will require the solution of 1 million 
unknowns. 

However, since we are dealing with potentially noisy data, the required number of low-
resolution images will also depend on the correct distribution of the shifts as determined by the 
sub-pixel registration program and the signal-to-noise ratio. As a result, the tests described in 
this paper are aimed (1) to assess the accuracy of the area based least squares matching 
technique (2) to determine the required number of low-resolution images necessary to solve for 
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a high-resolution composite, and (3) to determine the influence that varying grid ratios, the 
computed shifts and added random noise may have on the accuracy of the final resolution 
enhanced composite. 

NUMBER OF LOW-RESOLUTION IMAGES 

In the first test, the number of low-resolution images depended entirely (1) on the geometry of 
the low-resolution/high-resolution grid ratio, and (2) on the magnitude of the image shifts, or 
offsets, in the x and y coordinate directions (with no rotations or noise added).  

A black and white photograph of a poster was taken with a 5 megapixel digital camera and a 
section (320x240) was cropped from this photograph to show only the area of interest shown in 
Figure 3(a). The image was saved as BUILDING.TIF and required a memory space of about 82 
KB. An image thus obtained was considered to be an image that would preserve the basic 
integrity of its gray scale information, and could then be used for statistical purposes.  

A second image of the BUILDING was obtained by compressing the BUILDING.TIF file using 
a JPEG standard of compression and a DCT (Discrete Cosine Transform) decorrelator. The size 
of this BUILDING.JPEG image was also 320x240 and the storage capacity requirement of 
about 10 KB for a compression ratio of approximately 8.   

In order to compare these two images statistically they were subtracted and the differences used 
to compute the overall root-mean square (r.m.s.) of +/- 9.77 intensity values, with maximum and 
minimum differences of +49 and -35 respectively. These figures are just indicative of the 
amount of information that may be lost when an image is compressed. Figure 3(b) shows 
graphically the results of subtracting the original .TIF image file and its compressed JPEG 
version.  

The main drawback of algorithms with a DCT basis is that each 8x8 block of a given image is 
coded independently from its neighbours. This creates problems of continuity between blocks 
after decompression. This occurrence is referred to as the blocking effect, but it may be invisible 
to the eye for low compression ratios (< 4). The blocking effect is especially obvious in flat 
areas of an image (Gonzalez and Woods, 2007).  
 

                                 (a)                                                                    (b) 
 

Fig. 3: (a) The original BUILDING.TIF file and (b) an image of differences between 
               BUILDING.TIF and its .JPEG compressed version. 
 

Figure 4(b) shows the enhanced composite obtained by combining 48 (64x48) of these 
downsampled and compressed images (see one example in Figure 4(a)). The r.m.s. value of the 
differences between the higher resolution composite of Figure 4(b) and the original image 
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BUILDING.TIF was +/- 8.22 pixels intensity values with maximum and minimum differences 
of +31 and -28 respectively. These figures were obtained for a grid ratio of 5.0 and represent a 
15% improvement in the r.m.s. values obtained previously by subtracting the original image 
BUILDING.TIF and its compressed version BUILDING.JPEG. 

                                     (a)                                                                          (b) 
 

Fig. 4: (a) One of the 100 downsampled and compressed images (64x48) used to   
   reconstruct the image (320x240) in (b), for a grid ratio equal to 5.0. 

 

Table 1 indicates the number of images that were required to reconstruct an enhanced composite 
of the BUILDING (320x240) for varying grid ratios. From this table it appears evident that the 
required number of low-resolution images to fill one high-resolution image increases 
exponentially as the grid ratio increases linearly. Adding more images to this process did not 
improve significantly the r.m.s. results. In this controlled experiment the number of images 
required to solve for a given grid ratio could be approximated to 2p2 (p is the grid ratio). In 
addition, the accuracy of the reconstruction process deteriorates as the grid ratio increases.  

The reconstruction of a digital image with the minimum number of low-resolution images is 
possible, but it should not be expected to always achieve a high accuracy, especially for high 
grid ratios (i.e., >4).  High grid ratios require large numbers of low-resolution images, meaning 
that these low-resolution images must be relatively close to one another. This implies the 
detection of image shifts whose dimensions may be lower than the actual accuracy achievable 
by the sub-pixel registration process (i.e., 0.1 pixels). Hence, it is important that the distribution 
of the computed shifts between the low-resolution images be as complete and as far apart as 
possible.  

Ratio No. of images r.m.s. Max. (+) Min. (-) 

2.0 9 5.17 12 17 
3.0 17 6.49 18 22 
4.0 33 7.71 26 25 
5.0 58 8.22 41 28 

Tab. 1: r.m.s. of differences of pixels intensities between the original image BUILDING.TIF 
and the image composites reconstructed using low-resolution images and compressed images 
for varying grid ratios. 
 

The distribution of the shifts also has implications in reducing or minimising the influence of 
noise in the final high-resolution composite (Hendriks and van Vliet, 1999). In this context, the 
ensuing sections investigate the way the enhancement process performs in the presence of 
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potential noise and where the computed sub-pixels image shifts rather than pre-assigned shifts 
are used.  
 

 
 
IMAGE ENHANCEMENT AND NOISE 

If an image is acquired directly in a digital format, the mechanism for gathering the data (such 
as a CCD detector) can introduce noise. Specific types of noise models in images is beyond the 
scope of this paper and further information on noise patterns and characteristics can be found in 
(Russ, 2007). In order to establish the number of images needed to reconstruct a high-resolution 
image of the BUILDING in the presence of potential noise and computed sub-pixel 
registrations, the proposed enhancement algorithm was repeated in a second test in which 
random 'salt & pepper' noise was added to each of the images of the low-resolution data sets 
used in the first experiment.  

The percentage of the total number of pixels (typically 1%, 3% and 5%) was changed to either 
totally black or white. The effect is similar to sprinkling white and black dots on the image as 
shown in Figure 5(a). The figure relates to a grid ratio equal to 5.0 with 5% added random 
noise. One example where salt and pepper noise arises is in transmitting images over noisy 
digital links (Chapman and Chapman, 2000). 
 

(a)                                                                     (b) 

Fig. 5: (a) one of the 100 degraded (64x48), noisy and compressed images used to 
                       reconstruct the enhanced composite in (b) (320x240). 
 

In this second test the calculated shifts between images, rather than the known shifts, were used.  
All the possible combinations of these shifts were computed, and the median was adopted in the 
mapping of the low-resolution pixels onto each high-resolution grid system. Table 2 shows the 
results of the differences between the sub-pixel shifts of the low-resolution and noisy images as 
compared to the known shifts (for space limitations only the results for 5 images are shown in 
Table 2). Although the data in this table relate to a grid ratio equal to 5.0 (the worst case 
scenario) very similar yet proportional results were found for the other ratios (i.e., 2.0, 3.0, 4.0). 

For the set of images free of noise (random noise 0%) the shifts or offsets were accurately 
determined by the matching algorithm.The slight variations were to be expected as the matching 
process always introduces an amount of uncertainty into these shifts. After noise was added, the 
matched offsets became gradually less accurate, which could be attributed to the presence of 
noise as well as the surface fitting nature of the least squares solution used to solve for such 
shifts in the x and y directions. 
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Table 3 indicates the number of images that were actually required to optimise the 
reconstruction of an enhanced composite of the BUILDING (320x240) for the various grid 
ratios. Similarly to the results of Table 1 the required number of low-resolution images to fill 
one high-resolution image increases exponentially as the grid ratio increases linearly.  

 Noise 0% Noise 1% Noise 3% Noise 5% 
Images dx dy dx dy dx dy dx dy 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.005 0.009 0.018 0.021 0.008 0.037 0.018 0.093
3 0.016 0.003 0.029 0.060 0.012 0.065 0.032 0.107
4 0.020 0.021 0.032 0.024 0.050 0.060 0.047 0.092
5 0.008 0.030 0.030 0.027 0.028 0.037 0.083 0.111

… … … … … … … … … 
r.m.s 0.011 0.018 0.027 0.032 0.054 0.045 0.063 0.081

 
 

Tab. 2: Sub-pixel shift differences from true with increased noise (grid ratio p=5.0).  
 

 

Ratio (p) No. of images r.m.s. Max. (+) Min. (-) 
2 19 10.17 23 27 
3 40 12.49 48 33 
4 69 13.08 63 47 
5 104 15.22 71 54 

 
Tab. 3: r.m.s. of differences of pixels intensities between the original image BUILDING.TIF      
           and the image composites reconstructed using low-resolution, compressed and noisy  
           images for increasing grid ratios. 
 
From table 3 the number of images required to solve for a given grid ratio could be 
approximated to 4p2. Beyond this number of images no improvement was observed in the r.m.s. 
In addition, the accuracy of the reconstruction process deteriorates sharply as the grid ratio 
increases. It should be noticed that the enhancement process is also responsible for reducing or 
attenuating noise, that is, the pronounced grainy appearance present in the low-resolution 
images (see the images in Figure 5).  

The accuracy of the enhancement for varying levels of random noise and solving for an 
enhanced image across a range of grid ratios determined that not only the level of noise present 
in the images affected the accuracy of the enhancement, but also the size of the grid ratio being 
applied was relevant. As the grid ratio increased from 2.0 to 5.0, the accuracy of the 
enhancement was increasingly degraded (see Table 3). 

The tests of this section could have been carried out by first removing the noise from the low-
resolution and degraded images using a dedicated filter (i.e., a median filter). Indeed, there are 
number methods for noise removal presented in the literature (Russ, 2007). However, the 
sequential application of one of these filters followed by a SR technique rarely provides good 
results (Tom and Katsaggelos, 2001). It is suggested that information removed during pre-
processing might have been useful for resolution enhancement.  

CONCLUSIONS 
 

This objective of this paper was to explore the performance of an object domain SR algorithm 
for images of static scenes under local translations, and added noise. The notable findings from 
the experimentation, which involved JPEG compressed imagery, include: 
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 The amount of noise in the low-resolution images affects the precision of the resultant 
enhanced image. However, the precision and accuracy of the results can be improved by 
using more than the minimum required number of low-resolution images in order to 
reconstruct a higher-resolution composite.   

 Although the number of low-resolution images is unlimited, tests results indicated that 
using a number of low-resolution images greater than 4p2 (p=grid ratio) would not improve 
significantly the accuracy of the enhanced composite. 

 The image registration process can accurately determine the relative shifts between two 
images. However, changing and repeating the procedure using different reference frames 
may determine improved estimates of such shifts. 

 To minimise the influence of noise, it is important that the distribution of the shifts between 
the low-resolution images to be as representative and as far apart as possible. 

 As the grid ratio increases, the accuracy of the final enhanced composite decreases.  
 The proposed enhancement process can reconstruct high-resolution image with a substantial 

attenuation of JPEG compression artefacts (i.e. blocking effects).  
 

Refinements to the proposed algorithm are being undertaken to increase the accuracy achievable 
for larger grid ratios (>5.0) and the inclusion of rotation within the degraded input images. To 
extend the range of applications that could benefit from utilising this device independent 
algorithm is another goal.  In addition, the author is currently investigating the possibility of 
adapting this enhancement process to a generalized scheme whereby both sensor and object are 
dynamic and the illumination is non-uniform. 
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