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We present a novel forecasting method for generating agricultural crop yield forecasts
at the seasonal and regional-scale, integrating agroclimate variables and remotely-
sensed indices. The method devises a multivariate statistical model to compute bias
and uncertainty in forecasted yield at the Census of Agricultural Region (CAR) scale
across the Canadian Prairies. The method uses robust variable-selection to select the
best predictors within spatial subregions. Markov-Chain Monte Carlo (MCMC) simulation
and random forest-tree machine learning techniques are then integrated to generate
sequential forecasts through the growing season. Cross-validation of the model was
performed by hindcasting/backcasting and comparing forecasts against available historical
data (1987–2011) for spring wheat (Triticum aestivum L.). The model was also validated
for the 2012 growing season by comparing forecast skill at the CAR, provincial and
Canadian Prairie region scales against available statistical survey data. Mean percent
departures between wheat yield forecasted were under-estimated by 1–4% in mid-season
and over-estimated by 1% at the end of the growing season. This integrated methodology
offers a consistent, generalizable approach for sequentially forecasting crop yield at the
regional-scale. It provides a statistically robust, yet flexible way to concurrently adjust
to data-rich and data-sparse situations, adaptively select different predictors of yield to
changing levels of environmental uncertainty, and to update forecasts sequentially so as
to incorporate new data as it becomes available. This integrated method also provides
additional statistical support for assessing the accuracy and reliability of model-based crop
yield forecasts in time and space.
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1. INTRODUCTION
1.1. MOTIVATION
There is increasing worldwide concern over the social, environ-
mental and economic destructive potential of extreme climatic
events and cumulative environmental impacts (e.g., climate vari-
ability, invasive pests) (FAO, 2011). Extreme events associated
with climate variability disrupt water, energy and food pro-
duction, supply and availability (Jentsch et al., 2007). Climate
extremes are having a major impact on inter-annual wheat pro-
duction worldwide (USDA, 2013). Unanticipated extreme events
can be large enough in some countries to offset a significant por-
tion of the increases in average yields that arose from technology,
carbon dioxide fertilization, and other factors (Lobell et al., 2011).
Reliable crop forecasts have the potential to greatly aid decision-
makers in identifying potential risks and benefits to increase crop

production and to gauge uncertainty, particularly during times
where production is uncertain, or across regions where produc-
tion is highly variable (Hansen, 2005; Littell et al., 2011). Across
Africa, food aid imports and emergency assistance, strategic food
reserves, and the granting of private firm licences for food import
and exports all rely on crop forecasts (Jayne and Rashid, 2010).
Extreme climatic events (i.e., drought/flood, extreme cold/heat-
waves) impact major food-producing regions in Canada, United
States, Russia, China, Australia and North/South Korea, thereby
raising the prospect of higher commodity prices and localized
food shortages in the future (Global Infomation and Early-
Warning System (GIEWS), Food and Agriculture Organization of
the United Nations/FAO1). As more extreme weather events are
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anticipated to accompany a warming climate, improved methods
for forecasting crop production and its response to climate and
other agronomic factors, are becoming increasingly important to
guide agricultural producers in making more informed in-season
crop management and financial decisions (IPCC, 2013).

The benefit and value of crop forecasts varies according
to a range of criteria, namely, relevance, reliability, stake-
holder engagement, holism and accuracy (Hammer et al., 2001;
McIntosh et al., 2007). These aspects consider the type, availabil-
ity, coverage of expert knowledge and empirical data, including
the required lead-time, time-step, and duration for forecast-
ing. Utilizing available satellite remote-sensing data, alongside
observer-based field survey data provides a more rapid and less
costly approach to repeated sampling and updating of regional
or national-scale forecasts over large cropland areas of interest,
while also helping to increasing forecast accuracy, reliability and
consistency. Furthermore, crop yield and production forecasting
is gaining increasing interest in ecological science because of the
availability of large volumes of data from observational monitor-
ing networks and satellite remote-sensing platforms, increases in
computational power, and advances in multivariate optimization
methodologies. There is also increasing attention on addressing
societal needs for better (i.e., more robust) strategies for manag-
ing and exploiting natural resources sustainably, given significant
global economic, social and environmental change (Luo et al.,
2011).

1.2. CROP YIELD FORECASTING
A forecasting system has two primary functions: generation and
control, for which there are many different types of designs with
varying capabilities and levels of data and knowledge integra-
tion. Forecast generation includes acquiring data to revise the
forecasting model, producing a statistical forecast and present-
ing results to the user. Forecast control involves monitoring the
forecasting process to detect out-of-control conditions and iden-
tifying opportunities to improve forecasting performance. Some
systems use simple, calibrated reference curves or semi-empirical
equations, while others use statistical models or more complex
agro-ecosystem process models. Because of the complex inter-
play of variables affecting crop yield, a general auto-regressive,
integrated moving-average time-series (ARIMA) type model for
forecasting is often not suitable. Different levels of engagement
relate to the operational cost to survey crops in relation to gain in
forecast accuracy, available input data streams, and choice, com-
plexity and extent of innovation of a given model-data assimila-
tion approach (Hammer et al., 2001; Stone and Meinke, 2005). To
supplement our focus on crop yield forecasting in the Canadian
context, we refer interested readers to supplementary information
provided on existing operational systems for crop yield fore-
casting at various spatial and temporal scales (Supplementary
Material).

1.3. AGROECOSYSTEM DYNAMICS AND MEASUREMENT
UNCERTAINTY

Agroecosystems are systems that comprise dynamic processes
that interact and take place over multiple spatial and tempo-
ral scales. As a consequence, there are significant changes in

the leading predictors that control the underlying state for an
observed response at any point in time and space. As leading pre-
dictors change, so to, can the signal to noise ratio (SNR) of the
underlying processes, introducing loss and gain of information
for statistical estimation and forecasting. The SNR can be esti-
mated as a ratio of total variance output from a model to the total
variance of model inputs. Recently, the uncertainty associated
with temperature-driven processes in regional-scale crop mod-
els has been reported to be, on average, 12% higher than climate
model uncertainty (Koehler et al., 2013). Reducing such uncer-
tainty requires focusing not only on the climate inputs, but also
on testing structural model assumptions on crop development
that include: changing senescence, the influence that crop water
status and changing carbon dioxide levels can have on canopy
temperature and heat stress on a crop, crop growth duration and
length of day (Hoffmann and Rath, 2013).

Integrating data from different measurement platforms can
help to hedge the risk of relying on a single source of infor-
mation, especially under situations of high data sparsity and
environmental variability. Spatial-based models aid in identify-
ing particular crops, times and regions that are most affected
by environmental impacts and to assist efforts to measure and
analyze ongoing efforts to adapt (Challinor et al., 2003; Hansen,
2005; Matthews et al., 2013). Ecological models consider agroe-
cosystems as an inter-connected system of plant, soil, atmo-
spheric and other underlying, interacting processes. Statistical
models, on the other hand, typically focus on representing and
understanding individual components, specific processes and/or
scales of interactions within an agroecosystem. Nonetheless, sta-
tistical models are being increasingly developed and applied to
understand whole system dynamics and behavior and “big data”
problems. Traditionally, ecological forecasting has typically been
based on process-oriented models, informed by data in arbitrary
ways. Although most ecological models incorporate some repre-
sentation of mechanistic processes, many models are generally
not adequate to quantify real-world dynamics and provide reli-
able forecasts with accompanying estimates of uncertainty (Littell
et al., 2011). This is because such mechanistic models can be easily
over-parameterized by requiring tens to hundreds of parameters
and variables to explain an observed pattern or response “sig-
nal,” without substantially increasing the SNR by explaining a
greater fraction of unexplained “noise.” In contrast, probabilistic
approaches seek to optimize the smallest number of parameters
and variables required to explain a signal and minimize the unex-
plained noise concurrently. This ensures that the SNRs of model
predictions and forecasts decrease and are more robust to any
changes in input parameters and variables. Moreover, it may be
the case that there are limits to crop yield predictability in terms
of limits in the achievable SNR. Such limits may be not depend
on whether deterministic/probabilistic model is used, nor model
complexity in terms of the number of parameters or variables in
a model.

1.4. KNOWLEDGE GAPS
Crop yield is a complex variable that is influenced by different
climate-drivers, and underlying environmental and genetic fac-
tors prior to actual harvest. While the observed variability of
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major crop commodities can be determined using historical data
alone, many other considerations are required to calibrate and
generate predictions of future production and its uncertainty. The
advancement and changes in crop genetics, farming technology
and efficiency, improved agronomic management practices, and
ecological dynamics (i.e., soil, water and air/climate) requires one
to add a sufficient level of detail into the construction of models
that are able to more reliably forecast crop yield and produc-
tion (Challinor, 2009; Matthews et al., 2013). Moreover, statistical
methods aid in accounting for and minimizing measurement bias
within climate time-series data that is used in agricultural mod-
els and yield forecasting (Hoffmann and Rath, 2012). Applying
models at different spatial and temporal scales also contributes
additional scaling-based uncertainty, so that the accuracy of a
forecasting model at one spatial scale may not be the same, when
the same model is applied at another scale (Ewert et al., 2011).

Many current model-based forecast methods are very com-
plex, operate only at the point or field scale, and/or utilize crop
phenology information or remote-sensing data, but not both.
These aspects limit the application of mechanistic, dynamic crop
and agroecosystem models when predicting at the regional-scale,
and favor a statistical (i.e., probabilistic) approach that gener-
ates predictions based on a smaller subset of leading predictors.
In summary, current challenges in using models for forecasting,
include: (1) high environmental variability, volatility/stochasticity
and spatial heterogeneity, (2) the need for forecasts to be assessed
in a dynamic framework, (3) high levels of bias and mismatch of
spatial and temporal scales between coupled ocean-atmosphere
climate- and crop growth- model forecasts, and, (4) whether
required institutional and policy arrangements exist to provide
a broader environmental-economic agricultural risk framework
to ensure crop forecasts offer a beneficial, viable option for pro-
ducers to improve their economic livelihood and adopt in the
longer term. Such arrangements must provide sufficient flexibil-
ity in agricultural management to be able to respond to different
levels of perceived, real needs and risks. Many crop forecasting
systems only consider a single source of variability. This fails to
account for crop yield variability that may be explained by the
combined effect of both agroclimate and remote sensing indices.
Furthermore, models based on remote-sensing indices alone are
only able to provide accurate forecasts late in the growing sea-
son when crop growth becomes visible. Likewise, forecasts that do
incorporate agroclimate indices, such as precipitation and tem-
perature, fail to include information from remote-sensing data
and/or do not make use of the spatial dependence of crop yields.

1.5. RESEARCH OBJECTIVE
Our research objective was to devise a probabilistic model to
forecast crop yield and to increase forecast skill in time and
space by integrating both agroclimate and satellite remote-sensing
data. This involved tracking uncertainty across large regions
and between subregions, and updating of forecasts sequentially
through growing season. This approach addresses several knowl-
edge gaps, namely: the need to utilize satellite remote-sensing
data and to incorporate spatially-dependent environmental vari-
ation influencing crop development and growth, and the need
to provide a probabilistic, adaptable approach that can more

objective tune, adjust and sequentially improve its forecasts
under changes in the amount of data available and level of
environmental variability. The model integrates state-of-the-art
Bayesian statistical forecasting techniques employing Markov-
Chain Monte Carlo (MCMC)-based simulation, robust regres-
sion, variable-selection and random forest-tree machine learn-
ing. Specifically, (1) we conducted a sensitivity analysis of the
model, comparing its performance under simulated changes in
the data that is available for forecasting, (2) compared model
performance between different subregions as the model selects
and ranks different explanatory or predictor variables to reduce
uncertainty in its forecasts, and (3) cross-validated the model
was performed by hindcasting/backcasting it and comparing
its forecasts against available historical data (1987–2011) for
spring wheat (Triticum aestivum L.). It was also validated for
the 2012 growing season, comparing its forecast skill at the
CAR, provincial and Canadian Prairie region scales against avail-
able statistical survey data. Finally, we identify ways the model
could be further enhanced, improved and made more reliable
when being applied to different crops and large crop production
areas.

2. MATERIALS AND METHODS
2.1. STUDY REGION
Our study region was the Canadian Prairies encompassing the
provinces of Alberta, Saskatchewan and Manitoba (Figure 1).
This region accounts for roughly 91% of Canada’s total wheat
production (Statistics Canada, 2012a). The boundaries of the 40
Census Agricultural Regions (CARs) spanning the study region
originated from the 2011 census of agriculture (Statistics Canada,
2012c). The Prairies are the northernmost branch of the Great
Plains of North America with a flat or rolling plains landform
and is the major region where wheat is grown in Canada and the
most altered of Canada’s ecozones. The mountains to the west
block precipitation that would otherwise fall within the region,
making the western portion very dry. Strong Chinook winds also
reduce humidity and deliver brief episodes of spring-like condi-
tions in the western regions during winter. Precipitation generally
increases eastward. Temperatures are extreme due to negligible
ocean buffering. Winter temperatures average −10 ◦C and sum-
mers average 15 ◦C and are very cold. The growing season is
defined as the period of each year when crops can be grown.
In Canada the growing season is usually determined by the days
between last and first frost (i.e., May to October). Growing season
precipitation varies between 300 and 400 mm. The dominant soils
within this region are the Chernozemic soils. The Chernozemic
soils are strongly determined by the accumulation, decomposi-
tion and transformation of soil organic matter within the topsoil
(or A horizon), whereby native grassland vegetation and climate
both influence the amount and nature of organic matter retained
within the soil. Deposition of plant material belowground in the
grassland system has been the primary factor whereby soil organic
matter accumulates (Fuller, 2010). Regional variations in climate
and vegetation distribution have formed the distinct soil zones,
namely the: Brown, Dark Brown, Black, and Dark Gray zones that
have different depths and soil organic matter content within their
surface layers (Pennock et al., 2011).
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FIGURE 1 | The major region of wheat production of the Canadian Prairies, encompassing the provinces of Alberta (AB), Saskatchewan (SK), and

Manitoba (MB).

2.2. DATA SOURCES
2.2.1. Agro-climate
Historical crop yield data from 1987 to 2011 for each of the
CARs was obtained from the Field Crop Reporting Series of the
Canadian Crop Condition Assessment Program (CCAP) of the
Agriculture Division, Statistics Canada (Statistics Canada, 2007,
2012a,b). Station-based daily minimum/maximum temperatures
and precipitation data were provided by Environment Canada
and other partner institutions through the Drought Watch pro-
gram, operated by the National Agro-climate Information Service
(NAIS) of Agriculture and Agri-Food Canada (AAFC). This
data was quality controlled and temporally-interpolated to pro-
vide a continuous, historical daily time-series from 1987 to
2012. A total of 259 climate stations were involved in the study
(Figure 1). Agro-climatic variables considered in the model were
growing-degree days (GDD) above an ambient air temperature
of 5 ◦C, soil water availability (SWA), precipitation (P), and crop
water deficit index (WDI) defined as WDI = (1 − AET/PET),
where AET and PET are actual and potential evapotranspira-
tion (Moran et al., 1994). AET and PET were computed using
the Baier and Robertson algorithm (Baier and Robertson, 1996).
Soil water availability (SWA) was defined, at any given time, as
the percentage of available soil water holding capacity (AWHC).
AWHC at the location of each climate station was determined

from soil data obtained from the Soil Landscapes of Canada
database from AAFC’s Canadian System of Soil Classification
(CANSIS, SLC Version 3.2, http://sis.agr.gc.ca/cansis/nsdb/slc/v3.

2/intro.html). Crop-specific AWHC depends on soil type and
is defined as the difference between soil water field capacity
and wilting point, estimated as the cumulative amount of soil
water to a maximum of 1 m soil depth or root-restricting soil
layer under a difference in volumetric water at hydrostatic pres-
sure of −33 and −500 kPa (Bootsma et al., 2005). Thermal-
time (i.e., GDD-based) indices are widely referenced and used
in crop development and growth response to temperature as
well as crop heat stress and as an indicator of critical temper-
ature thresholds for vernalization (e.g., 3◦C of cold time) and
for tracking crop developmental and growth. For example, in
the case of cereal crops like barley and wheat indices are used
to track the phenological stages of emergence, tillering, stem
elongation, heading/flowering/anthesis, ripening, or for oilseeds
like canola: sowing/germination, emergence, leaf initiation, stem
elongation, bud formation, flowering, pod development, matu-
rity (Ferris et al., 1998; Bootsma et al., 2005; Carew et al., 2009;
Robertson et al., 2013). Nonetheless, other indices or measures
of thermal-time requirements for crops such as biometeoro-
logical time (BMT) may be more accurate when crop end-use
quality aspects are of interest, which for wheat includes: flour
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protein, farinograph dough development time and farinograph
stability (Saiyed et al., 2009). Station-based minimum/maximum
temperatures, precipitation and AWHC were input into a crop-
specific soil water balance equation called the Versatile Soil
Moisture Budget (VSMB) to generate the corresponding agro-
climatic indices for each climate station at a daily time step (i.e.,
GDD, SWA, AET, PET) (DeJong, 1988; Baier and Robertson,
1996). More than one climate station was referenced within most
CARs, but the number of stations within a given CAR did vary.
In generating the agro-climate indices using VSMB, the start and
end of growing season is determined by the accumulation of suf-
ficient heat units and soil moisture. Daily agro-climatic values
were temporally-averaged by month. We provide a summary of
our data sources used in simulating, training and validating the
forecasting model in Table 1.

2.2.2. Satellite, remotely-sensed indices
Normalized-difference vegetation index (NDVI) was also
included as a predictor of yield. It is defined as NDVI= (ρNIR−
ρRED)/(ρNIR + ρRED), where ρNIR and ρRED are the near-
infrared and infrared portions of the electromagnetic spectrum of
(0.75–1.5 µm or 841–876 nm) and (0.6–0.7 µm or 620–670 nm),
respectively. This index is based on the contrast between the
maximum absorption in the red due to chlorophyll pigments
(0.4–0.7 µm) and the maximum reflection in the infrared by
leaf cellular structure (0.7–1.1 µm) (Habourdane et al., 2004).
The NDVI historical time-series were then combined to gen-
erate weekly composites south of 60◦ latitude (i.e., across the
agricultural land area of Canada). The values of ρVIS and ρNIR
are bounded between 0 and 1. NDVI itself varies between −1
(indicating no vegetation) and 1 (indicating dense vegetation).
Weekly NDVI imagery data was compiled from historical data
from the Advanced Very High Resolution Radiometer (AVHRR,
1 km resolution), U.S. National Oceanographic and Atmospheric
Administration (NOAA) for years 1987–2012. Further quality

control and processing in generating NDVI weekly composites
was conducted (Reichert and Caissy, 2002). NDVI values were
not crop-specific. Weekly NDVI indices from Julian week 18 to
36 (i.e., May to September) of each year were aggregated into
3-week moving means.

2.3. FORECASTING METHODOLOGY
The integrated methodology includes possible crop-specific input
data, and additional auxiliary indices that can be integrated
and involved various modules and different computational steps
(Figure 2). The forecast model was coded using the R Statistical
Language (Version 2.15.3, R Development Core Team) (R
Foundation, 2013) and made use of the following R library pack-
ages: MASS, robustbase, impute, WGCNA, np, mnormt, mcmc,
tmvtnorm, Caret, and randomforest. The model’s leading, tuning
parameters and their library association, description and default
values are summarized in Table 2.

2.3.1. Model calibration and training
The forecasting equations are based on Bayesian theory, and are
an adaptation of a Bayesian auxiliary variable approach of Tanner
and Wong (1987). These equations are used to jointly estimate
and predict the underlying “environmental” state (i.e., prescribed
by a set of agro-climate variables), the set of model parameters,
including any additional auxiliary variables (e.g., remotely-sensed
indices). Our statistical problem involves the prediction of future
state and response, so is hereafter termed forecasting. Some ambi-
guity or discrepancy in terminology exists in the ecological and
statistical sciences in regard to forecasting to better distinguish
relevant terminology. Here, we adopt the terminology of Luo
et al. (2011) in defining forecasting, prediction, projection, and
prognosis, where forecasting involves a probabilistic statement on
future states of an ecological system after data are assimilated into
a model, prediction generates future states of an ecological sys-
tem based on logical consequences of model structure, projection

Table 1 | Data integrated for simulating, training and validating the forecasting model across 1987–2012.

Type Source Original scale Re-scaling (temporal/spatial averaging)

CROP YIELD DATA

Historical field-reporting survey (kg/ha) Statistics Canada Monthly, CARa None

CLIMATE DATA

Precipitation (mm/day)
Min/max air temperature (◦C)

Environment Canada Daily, station/point-based Daily-averaged, spatially-averaged across
all stations within a given CAR with equal
weighting

AGRO-CLIMATE INDICES

Crop water deficit index (WDI) (no units)
Growing degree days (GDD) (days) Soil water
availability (SWA) (no units)

AAFC, NAISb VSMBc model Daily, station/point-based Monthly-averaged, Spatially-averaged
across all stations within a given CAR with
equal weighting

REMOTE SENSING INDEX

Normalized-difference vegetation index (NDVI)
(no units)

NOAA- AVHRRd Weekly, 1 km Three-week averages from week 18 to 36
Spatially-averaged to CAR scale

aCensus agricultural region (CAR).
bAgriculture and agri-food canada (AAFC), National agro-climate information service (NAIS).
cVersatile soil moisture budget (VSMB).
d National oceanographic and atmospheric administration (NOAA)—advanced very high resolution radiometer (AVHRR).
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FIGURE 2 | Major components of the sequential, spatial-based

Bayesian forecasting model of regional-scale crop yield. Model
parameters that are tuned and fixed within each model component are
identified to the right. The procedure consists of calibration and a
prediction steps. Hindcasting/ backcasting via leave-one-out
cross-validation (LOOCV) is performed using the input data as training
data. Sequential-based forecasting is accomplished via the
random-forests learning algorithm. This methodology is able to integrate
other possible auxiliary historical indices, such as regionally-downscaled
indices derived from El-Nino Southern Oscillation (ENSO) index, Pacific
Decadal (PDO), and the Pacific North American (PNA) climate

teleconnection index. Forecast indices generated from complex
agroecosystem models, such as WOFOST (WOrld FOod STudies,
Wageningen UR) agricultural production model and APSIM, the
Agricultural Production Systems sIMulator. Forecast indices derived from
downscaled future CCCma-CanRCM4 denotes CanRCM4 regional climate
model (RCM) scenario output produced by the Canadian Centre for
Climate Modeling and Analysis (CCCma) for the North American region
with a horizontal grid resolution of approx. 25 km and available at:
http://www.cccma.ec.gc.ca/data/canrcm/CanRCM4/ could, in the future,
also be integrated for generating regional yield forecasts. Adapted from
Kouadio and Newlands (2014), with permission.

generates future states of an ecological system conditioned upon
scenarios, and prognosis is a subjective judgment of future states
of an ecological system. There are numerous methodological and
practical advantages conferred by introducing auxiliary variables
in an estimation and forecasting problem: (1) when computing
the likelihood density of the observed data, f (y|θ) is analytically

intractable, (2) when the inclusion of the auxiliary variables
simplifies or improves the computation using Markov-Chain
Monte-Carlo (hereafter, MCMC), whereby, f (y|x, θ) is a more
complete data likelihood, and can be computed faster than the
observed data likelihood, f (y|θ), (3) when a statistical problem
involves latent or hidden variables, (4) when underlying states
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Table 2 | Leading parameters (name, R library association,

description, setting) of the integrated forecasting model.

Parameter Description Setting (default)

rank Maximum num. of predictors
(Equation 1)

5 (5)

penalty.weights Penalty weights (assumed equal)
for predictors (Equation 1)

Real vector

CORR trim
(calibration)

Threshold to remove highly
correlated variables

0.95 (0.95)

num.neighbors Num. neighbors, building empirical
prior distributions

3

bootstrap.n Num. bootstrap re-sampling of
neighboring CAR residuals

100

boot.n Num. of bootstrap samples,
building empirical prior
distributions

100 (500)

init.beta Starting vector, MCMC chain real vector

beta.cov Covariance vector, MCMC
proposal distribution (MVN)

real vector

mcmc.n,
mc.size

Length (size) of MCMC chain 1000 (5000)

ntree No. of regression trees to grow 500 (500)

mtry No. of variables randomly sampled
as candidates at each split

3 (3)

nodesize Minimum size of terminal nodes
(increases growth of smaller trees)

5 (5)

maxnodes Maximum no. of terminal nodes 4 (max possible)

nPerm No. of permutations of data per
tree

1 (1)

α (1− α) % confidence level (i.e.,
0.10 is 90 %)

0.10 (0.10)

burn.in burn-in size for MCMC 0 (0)

acf.threshold autocorrelation threshold, batch
means size (MCMC SE errors)

0.05 (0.10)

fold No. cross-validation folds 5 (5)

CV trim
(forecasting)

Threshold upper percentile for
outlier detection

0 (0.04)

kmax Maximal number of refinement
steps, S-estimation

5000 (5000)

refine.tol Relative convergence tolerance
(cross-validation), S-estimation

0.00001 (0.00001)

max.it Maximum no. IRWLS iterations,
M-estimation,

5000 (5000)

rel.tol Relative convergence tolerance
(cross-validation), M-estimation

0.00001 (0.00001)

maxit.scale Maximum number of adaptive
scale iterations.

500 (500)

No. denotes number.

MVN denotes multivariate normal distribution.

IRWLS denotes iteratively re-weighted least-squares.

MCMC denotes Markov-Chain Monte-Carlo.

are controlled by dynamic processes occurring at multiple spatial
and temporal scales (i.e., hierarchical problem), (5) when spa-
tial interpolation and/or upscaling of point- or site-based data is
impractical due to data sparsity and/or high spatial heterogene-
ity, and fine- and coarser-grained information must instead be
integrated, (6) a response has a strong spatial dependence and
estimation and forecasting is needed across a large spatial region,
(7) when auxiliary variables track a response variable faster (i.e.,
near-real time), reducing delay, and (8) to improve a sequential
forecast, by conditioning it at a given fixed or variable time-step.

2.3.2. Bayesian inference
Bayesian inference uses Bayes’ rule to update the probability esti-
mate for a hypothesis as additional evidence is learned, given by;

p(H|E) ∝ p(E|H)p(H), (1)

where H is any hypothesis whose probability is influenced by data
or observational evidence E, p(H) is the prior probability (proba-
blity of H before E is observed), p(H|E) is the posterior probability
of H after E is observed. p(E|H) is the probablity of observing E
given H, also called the likelihood, where p(E) is the marginal
likelihood or evidence. Bayes’ rule therefore states that the “pos-
terior probability is proportional to the prior times likelihood,”
or similarly, “posterior is prior times likelihood over evidence.”
The posterior is the result of updating our prior information with
data (i.e., learning). Since the denominator does not depend on
any H, it acts as a proportionality or normalization constant,
and is obtained by averaging the “prior times likelihood” (i.e.,
numerator) over all possible hypotheses, H, such that,

p(H|E) = p(E|H)p(H)

p(E)
; p(E) =

∫
H

p(E|H)p(H)dH, (2)

If we observe data, y, from a sampling density (i.e., distribution of
the data), p(y|θ), where θ is a vector of parameters, and assign θ

a prior p(θ), then, following from Equations (1, 2), the posterior
density of θ is then;

p(θ |y) = p(y|θ)p(θ)

p(y)
∝ p(y|θ)p(θ);

p(y) =
∫

θ

p(y|θ)p(θ)dθ. (3)

We introduce underlying state variables, q, (referred to as
a Bayesian data augmentation, auxiliary or latent variable
approach). The resultant joint posterior probability, taking into
account both the θ parameters and the state variables, is given by;

p(θ, q|y) ∝ p(y|q, θ)p(q|θ)p(θ) (4)

The posterior of model parameters is then;

p(θ |y) =
∫

q
p(θ, q|y)dq (5)
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Because the necessary integration to obtain the posterior distri-
bution is analytically intractable, MCMC using the Metropolis-
Hastings algorithm is typically used to obtain a sample from the
joint posterior distribution of q and θ (Albert, 2009).

We assume that the parameters, θ , have a multivariate normal
distribution (MVN) as the conjugate prior density. The Monte-
Carlo standard errors and confidence intervals are computed
using the method of batch-means (i.e., that generally requires
posterior samples of at least 1000) (Jones et al., 2006).

For sequential-based forecasting, we adopt a state-space mod-
eling framework, and express the probability densities above,
as functions of a set of observed, p(yt |xt, θ), and underlying
process, p(xt |xt−1, θ) discrete states of a dynamic system, for a
sequence of times t = (1, . . . , T), that evolve from an initial
state, p(x1, θ).

If we denote and discretize any auxiliary explanatory variables,
denoted as zt , then, Equation (4), can be re-expressed (Tanner
and Wong, 1987; King, 2012), as;

p(θ, z|y, x) ∝ p(y|x, θ, z)p(x|θ, z)p(z|θ)p(θ) (6)

where,

p(y|x, θ, z) =
T∏

t= 1

p(yt |xt, θ, zt); p(x|θ, z) =
T∏

t= 1

p(xt |zt);

p(z|θ) = p(z1)
T∏

t= 2

p(zt |zt− 1). (7)

The xt denote environmental states (i.e., a vector X of agro-
climate variables or indices), and zt denote states of additional
auxiliary explanatory variables (i.e., a vector Z of remotely-sensed
variables or indices). At each iteration of an MCMC algorithm,
the model parameters and auxiliary variables are updated. One
can further identify different spatial regions, s, such that xt ← xs,t

and zt ← zs,t .
The posterior predictive or forecast density is either the repli-

cation of y given the model (denoted yrep) or the prediction of a
new and unobserved y, (denoted ynew), given the model. This is
the likelihood of the replicated or predicted data, averaged over
the posterior distribution p(θ |y), given by;

p
(
yrep|y) = ∫

θ

p
(
yrep|θ) p(θ |y)dθ; or

p
(
ynew|y) = ∫

θ

p
(
ynew|θ) p(θ |y)dθ (8)

We assume a linear model that, in matrix notation, for a general
response vector, Y, is given by;

Y = Dβ + ε, (9)

under the distributional assumptions,

Y |β, σ 2, D ∼ Nn(μ,�) ∼ Nn(Dβ, σ 2I) (10)

where D is the design matrix, β is a vector of unknown
model parameters, and ε is a vector of independently and

identically-distributed normal random errors with mean zero and
variance σ 2. Our design matrix, D, involves two sets of explana-
tory variables, such that D=(X|Z), having columns x1, . . . , xnp

augmented with columns z1, . . . , znq . Nn denotes the MVN of
dimension, n, with mean μ, variance-covariance matrix � and
I the identity matrix.

Crop yield within each CAR region was modeled as a
multivariate regression equation with spatially-varying coeffi-
cients (Banarjee et al., 2004),

E(Y|β, X, Z) = ŷi,j = (γi,0 + γi,1 × j)+ αiyi,j− 1 +
np∑

l= 1

β
(l)
i,j x(l)

i,j

+
n∑

l= np+ 1

β
(l)
i,j z(l)

i,j (11)

where ŷi,j denotes the estimated or expected value of yi,j, the
crop yield for year j (i.e., to distinguish calibration yearly time-
step from the forecast monthly time-step, denoted by t), where

j = (2, . . . , T), within a given CAR, i, where i = (1, . . . , C). x(l)
i,j

and z(l)
i,j denote the l predictor variables for i at time j. The

total number of predictor (i.e., np agro-climate and nq auxil-

iary remotely-sensed) is n = np + nq. The coefficients, β
(l)
i,j are

spatially and temporally-varying. Uncertainty, εs,i is independent
and normally distributed (random error) with mean zero and
variance σ 2

i . The regression coefficients, γi,0 (yield intercept), and
γi,1 (technology trend coefficient) are used to de-trend the yield
data and α is a lag-1 autoregressive term. The technology trend
accounts for historical increases in yield from genetics, man-
agement practices to improve soil fertility, water conservation
and minimize soil erosion and nutrient leaching. The technol-
ogy trend in yield was assumed to be linear. The inter-annual
autocorrelation in yield was assumed to vary across CARs.

For the ith region, the design matrix, for fixed i, is given

by Di =
(

X1
i , X2

i , . . . , X
np

i |Z
np+1
i , Z

np+2
i , . . . , Zn

i

)
, which is asso-

ciated with the full/complete model parameter vector, �i =(
γ0, γ1, α, βi, σ

2
i

)
. In matrix notation,

Di =

⎛
⎜⎜⎜⎜⎜⎝

x(1)
i,2 x(2)

i,2 · · · x
(np)
i,2 z

(np+1)
i,2 z

(np+2)
i,2 · · · z(n)

i,2

x(1)
i,3 x(2)

i,3 · · · x
(np)
i,3 z

(np+1)
i,3 z

(np+2)
i,3 · · · z(n)

i,3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

x(1)
i,T x(2)

i,T · · · x
(np)
i,T z

(np+1)
i,T z

(np+2)
i,T · · · z(n)

i,T

⎞
⎟⎟⎟⎟⎟⎠
(12)

2.3.3. Robust regression
Robust regression is a specialized technique used in the model
to ensure it is less sensitive to outliers and may be applied to
situations of unequal variance (Khan et al., 2007, 2010). This
technique was applied to account for heteroscedasticity and out-
liers in the historical data during model training and calibration.
Heteroscedasticity occurs when the variance of an explanatory
or predictor variable is dependent on its value. Robust regres-
sion also provides a flexible and general technique for modeling

Frontiers in Environmental Science | Interdisciplinary Climate Studies June 2014 | Volume 2 | Article 17 | 8

http://www.frontiersin.org/Interdisciplinary_Climate_Studies
http://www.frontiersin.org/Interdisciplinary_Climate_Studies
http://www.frontiersin.org/Interdisciplinary_Climate_Studies/archive


Newlands et al. Integrated model for yield forecasting

based on residuals, because it is less influenced by the presence
of outliers. Variable-selection is then employed for prediction in
the case where there are no significant outliers. Robust regres-
sion is a compromise between excluding outliers entirely from
the analysis and treating all the data points equally, as it is done
in ordinary least squares (OLS) regression. The idea of robust
regression is to weigh the observations differently based on how
well-behaved the observations are. Several approaches to robust
estimation have been proposed, including R-estimators and L-
estimators. However, M-estimators are more widely used because
of their generality, high breakdown point, and efficiency. M-
estimators are a generalization of maximum likelihood estimators
(MLEs). Standard MM-type regression estimates use a bi-square
re-descending score function and returns a highly robust and effi-
cient estimator (with 50% breakdown point and 95% asymptotic
efficiency for normal errors). The tuning parameters of lmrob,
the R package we used to implement robust regression, comprises
an MM-type robust linear regression estimator that consists of an
initial S-estimate, followed by an M-estimate via regression that
enables one to specify a breakdown point and asymptotic effi-
ciency consistent with normal distributional assumptions (Koller
and Stahel, 2011).

2.3.4. Bootstrap least-angle regression
Bootstrap robust least angle regression (B-RLARS) was applied
in selecting the leading m ≤ nq potential predictors from
z1, z2, . . . , znq after adjusting for the effects of x1, x2 . . . , xnp .
Let z1,∗, z2,∗, . . . , zm,∗ denote the leading nq ranked variables.
A final, reduced model, with m∗ ≤ nq predictors, is obtained
with robust leave-one-out cross validation (LOOCV), by select-
ing auxiliary predictors from z1,∗, z2,∗, . . . , znq,∗, after adjust-
ing for the influence of x1, x2 . . . , xnp (Khan et al., 2007,
2010).

Let the complete model design matrix, as DC,T,(np+m∗)
following the selection of best-fit predictors. Let � be the
vector of model parameters corresponding to the joint distri-
bution of DC,T,(np+m∗) (recall the model parameter vector is

�i =
(
γ0, γ1, α, βi, σ

2
i

)
). The conditional likelihood function of(

y2, y3, . . . , yn
)

given y1 is then;

f
(

y2, . . . , yn|y1,�, DC,T,(np+m∗)
)

= f
(
y2|y1

)
f
(
y3|y1, y2

) · · · f (yn|y1, y2, . . . , yn− 1
)

(13)

= N

⎛
⎝γ0 + 2γ1 +

np∑
l= 1

β
(l)
2 x(l)

2 +
n∑

l= np+ 1

β
(l)
2 z(l)

2 + αy1, σ
2

⎞
⎠

× N

⎛
⎝γ0 + 3γ1 +

np∑
l= 1

β
(l)
3 x(l)

3 +
n∑

l= np+ 1

β
(l)
3 z(l)

3 + αy2, σ
2

⎞
⎠

× · · · × N

(
γ0 + nγ1 +

np∑
l= 1

β(l)
n x(l)

n

+
n∑

l= np+ 1

β(l)
n z(l)

n + αyn−1, σ
2

⎞
⎠ ,

where the CAR subscript, i, was omitted. Given that
(
y2, ..., yn

)
is

independent of � given y1, �, and DC,T,(np+m∗), it follows that;

p
(

y2, . . . , yn, DC,T,(np+m∗)|y1, �, �
)

= p
(

y2, . . . , yn|y1, �, DC,T,(np +m∗)

)
p
(

DC,T,(np+m∗)|�
)

.

Under a fully Bayesian approach, prior distributions for both �

and � must be specified. We assumed a separation of variables,
such that, p (�,�) = p (�) p (�), and constructed an empiri-
cal prior distribution for � by residual bootstrapping the data
from neighboring CARs. Information from neighboring CARs
was also considered, employing an approach previously outlined
and cross-validated by Bornn and Zidek (2012). This boostrap-
ping procedure was as follows: the neighboring CARs of each
given CAR were identified and the calibrated yield regression
equation was fit to the given CAR and other surrounding, neigh-
boring CARs simultaneously. The fitted models from the set of
CAR neighbors were then cross-validated using the data for the
given CAR. The top k ranked CARs, which could comprise a
single or multiple neighbors to a given CAR, were then finally
selected based on obtaining the minimal cross-validation error.
This method was found to generate a more meaningful prior dis-
tribution of the model parameters by providing additional spatial
covariance support (i.e., considers the residual spatial covari-
ance between CARs). The joint posterior density function can be
expressed as;

p(ynew|y) =
∫

θ

p
(
ynew|β, σ 2) p

(
β, σ 2|y) dβdσ 2 (14)

The model predicted future values of the model variables (i.e.,
forecasted) within a given CAR using only the information from
selected model predictors. This assumed a Gaussian prior distri-
bution for each predictor variable, as a conjugate prior for the
joint multivariate Gaussian posterior likelihood distribution. It
is well-known that choosing a conjugate prior ensures that the
resulting posterior distribution is of the same distribution fam-
ily as the prior (with a closed-form solution), and helps to avoid
over-fitting on small training samples. However, the selected pre-
dictor variables were determined not to be good predictors of
one another and were uncorrelated (results not shown here). For
this reason, the forecast method instead uses the entire set of
available variables when selecting the best subset of predictors
that jointly estimates the unobserved values of future variables.
This was first accomplished for each CAR using the multi-variate
adaptive regression splines (MARS) non-parametric algorithm,
but was later substituted to use the Random Forests algorithm
(Chipanshi et al., 2012; Newlands and Zamar, 2012; Kouadio and
Newlands, 2014). The random forests algorithm proved to be
more computationally efficient and accurate because it created
multiple bootstrapped regression trees without pruning and aver-
ages the outputs, very effective in reducing variance and error in
high dimensional data sets (Breiman, 2001; Chen et al., 2012).
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Also, by incorporating non-parametric Bayesian priors, we real-
ized that our methodology would be more flexible and generally
applicable in modeling with a wide set of variables and indices. It
would also not have to assume a conjugate prior, which in many
realistic or real-world cases is inappropriate. Model complexity is
automatically determined by the model selection method we used
because it specifies a maximum number of predictors (R-LARS
followed by robust cross-validation).

2.4. SENSITIVITY ANALYSIS AND VALIDATION METHODOLOGY
Dynamic sensitivity analysis was conducted by simulating the
model for different input settings of the leading parameters. We
also experimented by including and withholding precipitation
(P) as an input variable (i.e., a variable with high stochastic-
ity) to evaluate the change this had on forecast error. Ranges for
these simulations were set by considering both default values pro-
vided in statistical literature linked with the R library code and
values prescribed from the application of various algorithms to
real-world data, as in the case of the random forest algorithm
parameters.

The goal of cross-validation was to estimate the expected
level of fit of a model to a data set that was independent of
the data that were used to train the model. We cross-validated
our model forecasts against historical data (1987–2011) by back-
casting/hindcasting involving statistical bootstrapping and then
leave-one-out cross-validation (LOOCV). The LOOCV selects
a single (i.e., year) observation from the original full record
as a sample of validation data, and the remaining observations
as the training data. This was repeated such that every obser-
vation that exists in the sample (i.e., year) was used once as
validation data. We performed an additional test of this cross-
validation procedure by removing more than just 1 year of data
at a time. This considered samples (K) of 1–5 years, following a
K-fold cross-validation procedure. This additional test evaluated
how robust the forecasts were to removal of training data/loss
of input information termed forecast degeneracy. The model
was also forecasted for the 2012 growing season and its out-
put was compared to available statistical survey data across a
range of spatial scales. In 2012, a total of 64% of land across the
Great Plains/Midwestern United States is under abnormally dry
to exceptional drought conditions (United States Department of
Agriculture (USDA) Drought Monitor). NOAA has reported that
the January–June period in 2012 was the warmest first half of any
year on record for the contiguous United States, and the warmest
the area has ever experienced since the dawn of record-keeping in
1895 (United States National Climatic Data Center, NCDC). In
2012, nearly 50% of corn and 37% of the soybeans grown in the
United States were rated poor to very poor, with three-quarters of
US cattle acreage in drought-affected areas. As this year exhibited
such extreme conditions, it provided data with high environmen-
tal variability and a strong test of the accuracy and robustness of
the model’s forecasting methodology.

3. RESULTS
3.1. OBSERVED VARIABILITY
The observed variability of the agroclimate and remotely-sensed
vegetation variables was considerable when pooled across CARs

and years within the study region (Figure 3). In these box-plots
(and throughout this paper), the solid line indicates the median
error, with ends of the box indicating the upper and lower quar-
tiles as a measure of data spread spanning 50% of the dataset and
eliminating the influence of outliers. The whiskers are the two
lines outside of the box that extend to the highest and lowest data
values. An increasing trend in growing season mean-monthly pre-
cipitation (mm) (see inset a) was evident, explained by frequent
and larger convective-driven storm events deliver rainfall across
the region, accompanying increased summer temperature. Over-
winter precipitation and accompanying spring thaw in May raised
crop available water and reduces the soil capacity to store available
water (inset b) until later in the season, when rainfall decreases
(inset a) and significant soil water evaporative losses typically
occur. This pattern of variability was consistent with the observed
increase of crop water deficit index (WDI) (inset c). Lower/upper
quartiles for GDD ranged between 180 and 450 GDD over the
growing season, with 180 on average accumulated by end of May.
Over the years in the climate station record, many of the CARs
experienced extreme rainfall (as outliers in the box-plot of dis-
tribution quartiles). CARs also experience extreme temperatures
in the middle of the growing season, signified by numerous out-
lier values in June from the plot of the GDD index (degree days
above 5◦C) (inset d). The variability of AVHRR-based NDVI
(Figure 3, inset E) identified many outlier CARs that are situated
far outside of the main distribution quartiles, indicating a gen-
eral tendency for over-estimation of NDVI early in the growing
season, and under-estimation mid-season, likely due to surface
water backscatter.

3.2. MODEL SENSITIVITY
The sensitivity of forecasts was tested by simulating the model
under changes in the: (1) number of predictors, (2) threshold
for removing correlation variables (CORR trim), (3) threshold
for the upper percentile for identifying outliers in cross-validation
(CV trim), and (4) chain-size specified in the MCMC-simulation
sampling from the joint posterior distribution (Equation 14)
(Figure 4). These results tracks the change in CAR-based root-
mean-square error (RMSE) uncertainty in forecasted yield versus
each of the leading design parameters, whereby CORRtrim must
be greater than 0.93 and a CV trim must be a value between 0.01
and 0.04 to minimize RMSE. These parameters were regionally-
calibrated or tuned and set to 0.95 and 0.04, respectively. MCMC
chain-size did not have a large effect on the median, or 10%
and 90% percentiles or forecast RMSE uncertainty. The sensi-
tivity to MCMC chain-size did not appear to change through
the growing season, as the curve slopes were mostly flat for July,
August and September. Therefore, we set the chain-size to a rea-
sonable, mid-point value of 1000 to reduce run-time without
any substantial loss of precision. A minimum of four predictors
minimized RMSE. The inclusion of additional predictors, such
as standard deviation of each of the predictor variables, did not
make a significant difference (i.e., neither raised nor lowered fore-
cast uncertainty). An additional sensitivity test of model on the
effect of including precipitation (P) on forecast uncertainty was
conducted (Figure 5). Selected regression results are summarized
for two CARs that generated the best and worst regression fits
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FIGURE 3 | Observed distribution and variability of agro-climate and

NDVI variables, through the growing season (May–September) based on

historical data, 1987–2011. (A) Average total monthly precipitation

(mm/month), (B) average soil water availability (SWA) (as % AWHC) (no units),
(C) average crop water deficit index (WDI) (no units), (D) sum of growing degree
days (GDD) (degree-days), and, (E) 3-week averaged AVHRR NDVI (no units).

(Figure 6). Scatterplots of observed versus predicted yield (A,B),
residual versus predicted yield (C,D), and the relative impor-
tance or proportion of observed variance explained by each of
the best-fit selected predictors (E,F) were generated. Model error
reduces when considering from one to up to three predictors.
Model accuracy increased when NDVI was included with the
agroclimate variables (i.e., WDI, GDD, SWA) and year. Based
on these findings, the default maximum number of model pre-
dictors was set to be five to regionally-calibrating yield across
all the CARs in the study region. This sensitivity analysis iden-
tified whether all or a subset of these variables are necessary
to obtain a best-fit in each CAR. For instance, with both agro-
climate and NDVI indices as predictors, WDI, year and NDVI
were selected in CAR 4741. When we constrained model input
to NDVI only, RMSE for this region became very large, and is
why CAR 4741 appears as an outlier for the “NDVI,” and is no
longer an outlier in the “agroclimate and NDVI indices” cross-
validation run (see Figure 5, right inset). This was also the case
for CAR 4607 and 4609, where NDVI and year were the only pre-
dictors selected by the variable-selection algorithm of the forecast
model. Further sensitivity-checks were made by re-running the
forecast model and examining the change of RMSE of the output
for different values of other design parameters listed in Table 2. In
many instances, no appreciable effect was measured to support or
justify changing the default settings obtained from the scientific
literature, as was the case for the random forest tree algorithm.
Although planting date did vary across our region (mostly by 15
days min to max), it was not selected as a leading covariate of yield

and when forced into the model also did not have a significant
effect on RMSE uncertainty, so we fixed this variable.

3.3. MODEL VALIDATION
The spatial pattern of model forecast uncertainty (RMSE) across
all the CARs was generated for different combinations of the input
predictors (Figure 7). Change in RMSE for many of the CARs
was dependent on how the model was constrained in selecting
only the prescribed maximum number and type of predictor vari-
able. Combining both NDVI and agroclimate predictors enabled
minimal uncertainty in most CARs (i.e., within 150–250 kg/ha).
However, there were CARs in northern Alberta (4860), central
Saskatchewan (4730), and south-eastern Manitoba (4609 and
4610) for which uncertainty could not be appreciably reduced
further.

Mean percent departures between historically observed and
2012 forecasted yield varied between under-estimation of 1–4%
at the mid-point (i.e., July) of the May-October crop growing
season, to over-estimation of less than 1% at end of season (i.e.,
September) (Table 3). This compares to a slightly higher mean
percent departure based on independent, field crop-reporting
yield data in 2012, of under-estimation of 3.6% mid-season,
to less than 1% of over-estimation end-season (Table 4). Yield
was forecasted for 2012 to be 3386, 2471, 2559 kg/ha in Alberta,
Saskatchewan and Manitoba, respectively. Across the Canadian
Prairies, forecasted yield was 2803 kg/ha, varying between 2513
and 3092 at the 90% confidence level (Figure 8). Further inspec-
tion of yield variability within the two CARs with the highest
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FIGURE 4 | Sensitivity of forecasted error in yield (RMSE, kg/ha) (y-axes)

to leading model design parameters (x-axes). The solid line, dotted, and
dashed lines track the median yield across: all CARs, CAR 4841 (low sensitivity
case), and CAR 4731 (high sensitivity case), respectively, for: (A) maximum
number of predictors (trim factor to 0.04 and number of predictors varies from
1 to 10), (B) CORR trim factor (i.e., threshold for removing correlated variables),
with the maximum number of predictors set to 5, (C) CV trim factor (i.e., a
parameter of the lmrob() R library algorithm of the robustbase package that is a
percentage for the upper percentile of observations to drop based on their

cross-validated errors). The correlation trim factor was set to 0.04 on this
sensitivity run, and number of predictors was set to 5 and the x-axis is in log
scale, and (D) shows two panels divided by the solid horizontal line—the upper
panel shows the range defined by the difference between the 10% and 90%
percentiles of forecast yield in relation to changes in the MCMC chain size
(mcmc.n). This considered all CARs and years of historical input data (i.e.,
1987–2011). The three lines are the results for July (dotted), August (dashed),
and September (solid). The lower panel tracks RMSE in forecasted yield
corresponding to the same monthly forecasts in the upper panel.

forecast error (i.e., CV > 18%) for CARs (4610 and 4860)
revealed that they exhibit unique patterns that departed from our
model assumptions and variability observed within other CARs
(Figure 9). Sample autocorrelation functions (ACFs) of historical
crop yield that track the strength of the inter-annual dependence
in yield between successive years, revealed an extended (i.e., 3-
year duration) correlation with a decaying or tapering pattern
for CAR 4610, indicating an autoregressive random process of
order 3, AR(3), with a positive coefficient. For CAR 4860, an
alternating and tampering pattern was identified, indicating an
autoregressive process of order 1, AR(1), with a negative slope
coefficient.

The RMSE uncertainty associated with the median forecast
within CARs was 330 kg/ha, varying between 280 and 360 kg/ha
at the 25% and 75% percentile, respectively, from LOOCV anal-
ysis of forecasts across all historical years. For the 2012 growing
season, the median was less at 270 kg/ha, ranging between 230

and 300 kg/ha. When cross-validating the model forecasts, the
number of years that were left out was varied from 1 to up to 5
years at a time (Figure 10). While we utilized a LOOCV proce-
dure with 1 year left out at a time. The additional cross-validation
results from the K-fold cross-validation led support for this speci-
fication, indicating that specifying any higher number of years left
out at a time, only reduced the model’s forecast accuracy (RMSE
error) by less than 5%.

4. DISCUSSION
4.1. MODEL PERFORMANCE
Model forecasts were sensitive to both the choice of design
parameters and the set of input explanatory (predictor) vari-
ables. Agroclimate variables contributed significantly to improv-
ing overall multivariate regression fits across most CARs. The
CARs, where the model performed the worst, only had NDVI
and year as explanatory variables. However, NDVI did explain
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FIGURE 5 | Sensitivity of forecast error (i.e., Root-mean-squared error

variance, RMSE) for different combinations of selected agroclimate

variables and NDVI. (A) Forecasted yield in 2012, and (B) cross-validated
(LOOCV) (i.e., backcasted) forecast yield. The predictors sets considered in
each run were: Precipitation (P); agroclimate variables of crop water deficit

index (WDI), growing degree-days (GDD), soil water availability (SWA), where
∗ denotes P is not included, and ∗∗ denotes P is included; NDVI; WDI, GDD,
SWA, and NDVI. Note: seeding date was assumed fixed, and year, t, was
included as an additional input variable in all the sensitivity runs. The ID’s of
outlier CARs are indicated.

a significant portion of the observed yield variance in time and
space (Figure 6). Because the sensitivity of forecasts to changes in
the leading model design parameters was successfully minimized.
This suggests that selecting the best predictors of yield within
each CAR region, thresholding the detection of cross-correlation
between predictors (so as to avoid multi-collinearity), combining
information between neighboring CAR regions, and using robust
regression to detect outliers, significantly improved robustness of
the model’s forecasts across the Canadian Prairies (i.e., a large
study region).

A simple linear regression model to predict Canadian spring
wheat crop yield and applied at the provincial scale achieved 53–
77% accuracy relying solely on agro-climate indices (i.e., growing
degree day (GDD), precipitation (P), actual/potential evapotran-
spiration (AET, PET) and crop water deficit index WDI) (Qian
et al., 2009). At the provincial scale, percent departure values for
2012, and LOOCV results across the entire region (all CARs)
supports that our integrated model forecasts attains a higher
overall or forecast skill (CV < 10% or accuracy > 90%), even
accuracy does vary between CARs. With further adjustment to
our model to allow for alternating autocorrelation with nega-
tive slope coefficients, we infer the two CARs with the highest
uncertainty would also be greatly improved. Seeded area, irriga-
tion and/or pests could also explain why these two CARs depart
from all others, warranting further investigation. Also, without
using agroclimate data, and using only satellite remote-sensing
data (i.e., NDVI) was shown to predict hstorical wheat yield rang-
ing between 47 and 80% accuracy at the CAR scale and across
the Canadian Prairies (Mkhabela et al., 2011). Our findings show
that while NDVI is a strong predictor of yield, combining agro-
climate and NDVI indices substantially increases the accuracy
and confidence in regional forecasts. One can also better dis-
criminate between key ecological variables (i.e., temperature and
available soil water) driving yield variability in time and space,
which would otherwise, not be possible when only considering a
single index.

Globally, wheat accounts for 20% of calories consumed. It
is one of the most important crops, alongside rice and maize
(corn). Our integrated model forecasted spring wheat yield for
2012 of 2803 kg/ha (Canadian Prairies) and associated uncer-
tainty of 2513–3092 at the 90% confidence level agrees to close
to 0.1% of end-of-season field survey yield, and 4% at the start
of the growing season. This forecasted yield for 2012 compares
reasonably well to independent crop insurance data for 1965–
2007 on spring wheat yield across the Prairies accounting for
a progressive increase of 0.8–1%/year technology-trend in yield
during the period of 2007–2012. Crop insurance data indicated
highest and lowest average yields of 4589 and 80.9 kg/ha in
2005 and 1988, respectively, and an overall historical average
of 1991.2 kg/ha (Robertson et al., 2013). Total factor productiv-
ity (TFP) growth rate in crop production (1980–2004) for the
Canadian Prairies was estimated to be 1.77%, where technology
change contributes close to 83%, in addition to the smaller con-
tributions from scale effects and changes in the degree of technical
efficiency (e.g., improved machinery or crop genetics). TFP has,
historically, increased the most in Manitoba, explained in part by
reduced use of summer fallow, but historically has lagged within
Alberta (Stewart et al., 2009). Also, Canadian Plant Breeder Rights
(PBR) qualifying wheat cultivars and improved soil quality have
increased wheat yield by 37.2 (1%) to 54.5 kg/ha (2%) within the
Canadian Prairies (Carew et al., 2009). Our forecast model could
also better account for technology-change, rather than assuming
a fixed, linear rate of productivity growth within each CAR based
on historical data and trends. Instead, a more detailed equation
involving percent of wheat seeded area, spatial cultivar diversity
index, average cultivar age and annual cropland planted could
be introduced (Carew et al., 2009) in addition to the year time
trend already considered (that captures advances in non-genetic
technology). However, this could make our regional-scale model
too complex. The model generated robust forecasts of spring
wheat yield for this extreme year 2012 based on historical data.
It was also able to pinpoint two CARs in southern Manitoba
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FIGURE 6 | Selected diagnostic results from the multivariate regression

of crop yield for the best overall fit (CAR ID 4840, left panels) and worst

overall fit (CAR ID 4609, right panels). Scatterplots of observed versus
predicted yield (A,B), residual versus predicted yield (C,D) and the relative

importance or proportion of observed variance explained by each of the
best-fit selected predictors (E,F) are provided. NDVI-30-32(28-30) denotes the
3-week moving average NDVI for Julian weeks 30–32, and WDI-7 denotes
monthly-average of water deficit index in July.

that experienced extreme growing conditions in 2012, but also
identify that yield within this area exhibits extended correlation
with a duration of up to 3 years—very likely attributed to the
impact of “persistent” drought and flooding conditions. While
TFP has increased most in Manitoba, monthly rainfall variabil-
ity is high within these two CARs, varying between 17 and 20%.

More climate stations and rainfall data for these two CARs might
therefore help to reduce forecast error in this region.

4.2. MODEL LIMITATIONS
Our model currently does not consider crop genetics and does
not input cultivar-specific data on yield or their developmental
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FIGURE 7 | Spatial maps of forecast error (RMSE) for different

combinations of predictors. The predictors sets considered in each run
were: (A) WDI, GDD, SWA, P, (B) WDI, GDD, and SWA (i.e., no P), (C)

NDVI, and, (D) WDI, GDD, SWA, NDVI. Note: seeding date was
assumed fixed, and year, t, was included as an additional input variable
in all the sensitivity runs.

Table 3 | Forecasting of 2012 spring wheat crop yield (kg/ha) across the Canadian Prairie provinces (AB—Alberta, SK—Saskatoon,

MB—Manitoba, All—Prairies).

Obs. A B C

Pred. (L90, U90),% Pred. (L90, U90),% Pred. (L90, U90),%

AB 3200 3232 (2753, 3711), +1.00 3225 (2722, 3727), +0.780 3235 (2774, 3696), +1.09

JUL SK 2403 2410 (1941, 2879), +0.291 2555 (2220, 2891), +6.33 2347 (1917, 2778), −2.33

MB 3031 2736 (2258, 3213), −9.73 2327 (1863, 2791), −23.2 2633 (2226, 3039), −13.1

All 2772 2744 (2270, 3218), −1.01 2673 (2214, 3132), −3.57 2698 (2260, 3136), −2.67

AB 3200 3399 (3065, 3733), +6.22 3301 (2934, 3669), +3.16 3371 (3015, 3728), +5.34

AUG SK 2403 2403 (2049, 2757), 0.00 2417 (2057, 2778), +0.583 2450 (2162, 2738), +1.96

MB 3031 2578 (2214, 2943), −15.0 2550 (2236, 2865), −16.0 2549 (2212, 2886), −16.0

ALL 2772 2776 (2427, 3124), +0.144 2745 (2389, 3101), −0.974 2785 (2466, 3104), +0.469

AB 3200 3397 (3060, 3733), +6.16 3312 (2991, 3633), +3.50 3386 (3064, 3707), +5.81

SEP SK 2403 2394 (2056, 2732), −0.375 2492 (2209, 2775), +3.70 2471 (2216, 2726), +2.83

MB 3031 2579 (2211, 2947), −14.9 2555 (2232, 2877), −15.7 2559 (2224, 2894), −15.6

ALL 2772 2771 (2429, 3112), −0.036 2787 (2485, 3089), +0.541 2803 (2513, 3092), +1.12

The relative change in forecast error is benchmarked through the growing season (JUL—July, AUG—August, SEP—September), by varying the quality and quantity

of the input data: (A) agro-climate only, (B) NDVI only, and (C) agro-climate and NDVI. Percent departure (%) between model (Pred.) and observed (Obs.) crop yield,

and lower (L90) and upper (U90) 90% confidence intervals are provided. Departure values are reported to three significant figures.

and growth requirements, and does not select agroclimate or
remotely-sensed predictors according to such cultivar-specific
requirements. So, there is a further need to better understand how
cultivar differences and genetics × management × environment

interactions (i.e., G × M × E) could be used to temporally
segment or partition input remote-sensing data for early, mid
and late-season (or quick, medium and slow maturing) varieties.
Mapping crop suitability spatially for different crop varieties
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Table 4 | Comparison of model forecasts (using both agro-climate and NDVI indices) to Statistics Canada field crop-reporting survey data

(CCAP), upscaled to the provincial scale.

Survey data Forecast model

SEP JUL AUG SEP

AB (3200; 7,429,900) (3235; 7,596,497), +1.10 (3371; 7,824,064), +5.34 (3386; 7,852,666), +5.81

SK (2400; 8,068,000) (2347; 7,791,587), −2.21 (2450; 8,266,783), +2.08 (2471; 8,386,307), +2.96

MB (3000; 2,946,000) (2633; 2,572,017), −12.2 (2549; 2,685,150), −15.03 (2559; 2,682,153), −14.7

All (2800; 18,539,900) (2698; 18,047,675), −3.64 (2785; 18,855,267), −0.536 (2803; 19,000,476), +0.107

Model forecasts of spring-wheat crop yield (Y) (kg/ha) and production (P) (tonnes or metric tons, here denoted MT) in 2012 are provided for months within the

growing season. Percentage departure (D %) between observed and forecast crop yield is computed. Entries are provided as (Y,P), (D %). Note, for wheat:

1 bu/ac = 67.25 kg/ha = 0.0673 t/ha (metric t). Departure values are reported to three significant figures.

FIGURE 8 | Left: Crop yield forecast for 2012—spatial distribution of

model error (CV %) for all CARs in the study region in forecasting

spring wheat crop yield in 2012, with: (A) agroclimate indices (WDI,

GDD, SWA), (B) NDVI, (C) WDI, GDD, SWA, P, NDVI. Right: (D)

Forecasted error in 2012, pooled across all CARs for the different input
cases (A–C).

could also enable a determination of the best spatial resolution to
integrate agroclimate, remote-sensing vegetation and phenology
indices in generating regional-scale forecasts.

Recent advances in multivariate time series segmentation
methods, such as that described in Graves and Pedrycz (2009)
could then be applied to historical remote sensing data to
help automate the identification of transition points between
stages directly from spatially-referenced, longitudinal time-series
of yield obtained from culitvar crop-breeding field trials. We
aim to further explore how the performance of our forecast
model could be improved by considering crop genetics by includ-
ing an auxiliary index based on APSIM agroecosystem model

forecasts across a series of site-specific long-term cropping sites
across the Canadian Prairies. The use of auxiliary indices derived
from more complex models of agroecosystem soil, water, air
and agronomic management interactions could offer further
potential reductions in forecast uncertainty, and an ability to
extend our seasonal forecasts and link them to longer-term yield
forecasts.

Given that our model does not yet integrate crop phenol-
ogy, cultivar differences, pest infestations, the interpretation and
broader application of our current model to other regions and
crops is limited. However, representing such differences at a
regional-scale is still a big challenge due to lack of such data
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FIGURE 9 | Identified patterns of autocorrelation functions (ACFs) of historical crop yield for CARs with high RMSE forecast error. (A) CAR 4860 with
AR(3) process with positive slope, and (B) CAR 4610 with AR(1) process with negative slope.

FIGURE 10 | (A) Variation in model hindcast/backcast error from
leave-one-out cross-validation (LOOCV) (RMSE in kg/ha) for three different
combinations of input predictors: (I) Agro-climate indices (WDI, GDD, SWA),
(II) Remote-sensing index (NDVI), and (III) Agroclimate and NDVI index (WDI,
GDD, SWA, NDVI). A year effect is included in all cases. For case (III), the
CAR 4610 is an outlier (as per the 2012 model forecast output results shown
in Figure 5). Unlike the single year model forecast results for 2012, the

LOOCV procedure that considers all possible combinations of missing data
(i.e., years) in the historical input data, also identifies CAR 4609 as an outlier.
(B) Variation in model forecast error (i.e., skill) in terms of “degeneracy” in
the input data, simulated by increasing the number of years at a time that
were left out in the LOOCV cross-validation procedure. Results correspond to
a total of 1000 MCMC runs. CAR 4606 was excluded as it had only 7 years of
missing data.

across large regions, so applying our model to other areas could
generate useful insights for decision-makers, where a lack of
data exists. Building a component to spatial track pest infes-
tations from pest monitoring data, like that of wheat midge
(Sitodiplosis mosellana), a common agricultural pest within most
areas of the world where non-resistant wheat varieties are still
grown, could also improve the reliability of the forecast model.
With further improvement and extension of input data, and
refinement of its design, we anticipate our forecast model could

provide reliable and robust regional-scale crop yield forecasts.
Alongside using our model to forecast crop yield, participa-
tory workshops and stakeholder knowledge-sharing and engage-
ment is critical for enabling open discussion of any real and
perceived differences in model and farmer forecast skill. Such
approaches have proved invaluable for improving forecast mod-
els and their relevance, impact and broader applicability (Pease
et al., 1993; Potgieter et al., 2003; Roncoli, 2006; Crane et al.,
2010).
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4.3. IMPROVING FORECAST SKILL
Several key improvements for our forecasting methodology and
use of statistical algorithms for variable- and model- selection
could be further explored. A more general autocorrelation func-
tion, which can account for extended patterns, could be tested.
Also, heavier penalties for selecting predictor variables whose
values are available late in the growing season could also be
tested. This would make the selection of the best set of pre-
dictors through the growing season to be less constrained and
dependent on historical patterns and thus more responsive to
future environmental changes affecting yield. Also, tuning of the
random forest algorithm parameters could be explored using
the tuneRF R library set of algorithms. Even though future
changes may be uncertain and depart significantly from histor-
ical trends, the necessity of an adequate length and quality of
historical data does impose a requirement to partially- or fully-
calibrated model-based forecasts using our integrated methodol-
ogy. Recently, the accuracy in forecasting crop yield (i.e., wheat,
barley and canola) also using NDVI remote-sensing and agro-
climate data and employing multivariate linear regression and a
variety of machine learning techniques other than the random
forest tree algorithm, such as model-based recursive partitioning
(MOB) and Bayesian neural networks (BNN) has been investi-
gated (Johnson, 2013). Hierarchical clustering across the CAR
regions was used for variable-selection. Based on a Mean Absolute
Error (MAE)-based forecast skill score, reportedly multiple lin-
ear regression (MLR) achieves the highest skill for spring wheat
and canola, while BNN and MOB are able to further increasing
skill for barley. This may indicate that if new auxiliary agroclimate
or remote-sensing indices are utilized which are non-linearly
related or introduce a non-normal (e.g., highly skewed or multi-
modal) probability prior distribution, or regional-scale climate
and yields become more non-linearly related in the future, fore-
casting algorithms that are able to better deal with non-linearity
may need to be substituted to ensure quality in crop forecasts.
Here, substituting our MCMC algorithm with an integrated
nested Laplace approximation (INLA) that could offer a compu-
tationally cheaper alternative. The INLA algorithm would enable
representing agro-climate, remote-sensing or other predictors as
functions that can be each fit to a different model with a different
form of spatial dependence and degrees of non-linearity.

There are also several key improvements to the input data
that could be undertaken. Assimilating additional climate station
data within certain CARs that exhibit strong spatial heterogene-
ity (compared to other CARs) in temperature and precipita-
tion could provide further reductions in forecast uncertainty.
This could help reduce uncertainty, in addition to accounting
for autocorrelation in these variables, within the two CAR’s in
southern Manitoba that showed highest RMSE that we specu-
late is due to localized drought and flooding conditions that
have occurred there. Validating the agroclimate index for soil
water availability (SWA) that was derived from the VSMB soil
water model against other independent data would be informa-
tive before testing other available remotely-sensed indices (i.e.,
other than NDVI), such as EVI2 (Enhanced Vegetation Index)
for this region could improve forecasting there. Integration of
EVI2 remote-sensing index would incorporate the blue portion

of the light spectrum and help to better track crop yield by
reducing sensitivity of the NDVI to this backscatter. Also, sum-
mer storms can deliver large amounts of rainfall in the Canadian
Prairies and even in semi-arid environments, sufficient long peri-
ods of sustained high rainfall can raise the water table (upper
level of saturated soil-water zone) causing groundwater flood-
ing and prolonged conditions of excess surface water, ponding
and runoff. Integrating other remotely-sensed indices could be
used to track waterlogging (excess water) between the develop-
ment stages of tillering and anthesis. This would increase the
reliability of the forecast model to recognize, respond and fore-
cast yield under extreme conditions of increase rainfall intensity
expected to occur in the future due to increased climate vari-
ability. Currently, precipitation was removed as a direct, leading
predictor given it did not improve forecast accuracy because of
its high variance. Instead, precipitation was indirectly factored
into the WSI index. Nonetheless, precipitation, early in the grow-
ing season, can have a leading influence on attainable yield (He
et al., 2013). For example, Bolton and Friedl (2013) have recently
reported that significant precision in predicting corn yield in the
United States can be achieved using the Normalized Difference
Water Index (NDWI) (R2 = 0.69 in semi-arid areas) as well
as the two-band EVI2 of NASA’s MODerate-resolution Imaging
Spectroradiometer (MODIS) onboard NOAA’s Terra satellite,
predicting corn and soybean yield better than NDVI. From 2000
onwards, NDVI data, available the MODIS could also be uti-
lized (MODIS, 250 m resolution, Level-2 Gridded (L-2G) surface
reflectance data (collection V005)) (NASA, 2012). A statistical
regression-based comparison of MODIS with AVHRR 16-day
(i.e., bi-weekly) NDVI composite data indicates that for the row
crop and small grains land cover classes, over 90% of the variation
observed in MODIS NDVI is associated with variation in AVHRR
NDVI values (Gallo et al., 2004). Findings from this comparison
also indicate that there remains some residual cloud contami-
nation in both data sets that contributes to outliers. Therefore,
replacing AVHRR NDVI with MODIS NDVI post-2000 may not
reduce the occurrence of outliers, unless cloud contamination
is dealt with first. For this reason, AVHRR was deemed ade-
quate for the purposes of our modeling, pending further quality
control (i.e., explanation and subsequent reduction) of NDVI
residual variance. Cloud removal, cropland area and boundary
masking and other quality control measures for MODIS NDVI
are described in Davidson et al. (2009). Leaf area index (LAI),
soil-adjusted vegetation index (SAVI) could also be integrated
and help track yield across different developmental stages based
on existing evidence they correlate well with the different crop
phenological stages (Kumar et al., 1999; Graves and Pedrycz,
2009). Other combined and improved spectral indices have been
developed, validated to better incorporate non-linearity between
NDVI and crop biophysical parameters and under water-limited
conditions (Habourdane et al., 2004; Eitel et al., 2008; Smith et al.,
2008). Further work could also optimize the model to the time
period within the growing season that is the most sensitive and
most significant for establishing final yield. So, instead of refer-
encing WSI across the entire season, WSI for the most sensitive
time period of crop growth could be used. It is important to high-
light that inclusion of remote-sensing indices is not to complete
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replace field crop survey data in training and validating seasonal
crop forecasts, but to supplement, improve and add value to such
forecasts in both a spatial and temporal context.

5. CONCLUDING REMARKS
Our forecast modeling findings demonstrate that forecast skill at
the regional-scale can be improved with an integrated approach
involving the integration of different auxiliary indices (e.g., agro-
climate and remotely-sensed) within a probabilistic, Bayesian
framework that incorporates both data and model structural
uncertainty. The need for improved operational forecasting meth-
ods is particularly urgent because forecasting models are so crucial
for guiding and informing agricultural crop production, man-
agement and policy decisions. Models also provide forecasts with
extended “early-warning” or lead-time, enabling stake-holders to
better respond to potential impacts and emerging risks. Recent
results from the world’s largest standardized inter-comparison of
ensemble-based model projections of climate change impacts on
wheat crop yield calibrated against >300 field data-sets, reveals
net-uncertainties of 20–30% CV when partially calibrated, and
2–7% CV for fully-calibrated models (Asseng et al., 2013). Such
uncertainty is explained, in part, due to observed variability
in climate, soil water holding capacity, sowing date and agro-
nomic management (i.e., fertilizer application) (Asseng et al.,
2013; Carter, 2013). Our findings indicate that by coupling satel-
lite, remote-sensing with agroclimate data, forecast uncertainty
in model-based crop yield forecasts can be further reduced to
within the range of 1–4% (i.e., for spring wheat in the Canadian
Prairies). This integrated methodology offers a consistent, gen-
eralizable approach for sequentially forecasting crop yield at the
regional-scale. It provides a statistically robust, flexible way to con-
currently adjust to data-rich and data-sparse situations, adaptively
select different predictors of yield to changing levels of environ-
mental uncertainty, and to update forecasts sequentially so as to
incorporate new data as it becomes available. It also provides
additional statistical information (i.e., bias, variance, sensitivity
and cross-validation statistics) for better assessing the reliability
of generated crop yield forecasts in time and space.

We aim to further apply our integrated forecast method-
ology to generate crop forecasts across Canada by embed-
ding it within an operational forecasting system called the
Integrated Canadian Crop Yield Forecaster (ICCYF). This oper-
ational decision-support tool with provide forecasts for all major
Canadian crops with national coverage across all major agricul-
tural areas. This will require the validation of our model for
other major Canadian crops such as barley, canola and soybean.
Operational crop outlooks likely will delivered by AAFC and
publically-released in partnership with Statistic Canada’s Crop
Condition Assessment Program. With further extension and val-
idation testing of this forecasting methodology to other major
Canadian grain and oilseed crops (e.g., barley and canola), this
method will provide a reliable approach for generating more
rapid and lower cost crop forecasts each year, within the grow-
ing season, and across Canada’s agricultural extent. Alongside
our continued research work, further international collabora-
tive efforts will seek to improve the design of a consistent and
reliable international framework for crop yield and production
forecasting and outlook reporting that integrates remote-sensing

and agroclimate predictors (Nikolova et al., 2012). Our findings
reported here demonstrate that our integrated methodology can
provide robust and accurate regional-scale forecasts of spring
wheat yield. It offers a flexible, scalable approach for integrating
additional auxiliary indices, independent of spatial or tempo-
ral scale. In this way, it can integrate remotely-sensed vegetation
or finer-scale indices based on field site data. Oursensitivity and
cross-validation model findings also provide rigorous analytical
testing of the relative benefits of using and combining difference
and diverse sources of information in terms of better explaining
and reducing uncertainty in model-based forecasts. This inte-
grated method also provides additional statistical support for
assessing the accuracy and reliability of model-based crop yield
forecasts in time and space. We aim, in the future, to collab-
orate internationally in applying and validating the integrated
forecasting methodology to other countries and continents that
experience different regional climate and cropping conditions.
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statistical libraries provided by the R Statistical Software (R
Development Core Team, 2013). ArcGISTM , (ESRITM , Version
10, 2010) was used to visualize model output, processing spatial
data and generating crop outlook maps. A user-guide is available
with the R code for non-commercial and academic research.
With further extension and testing of the forecasting method to
other major crops and across Canada’s agricultural extent, it is
anticipated that a web-based portal will, in the future, deliver
seasonal, operational crop outlook reports.
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