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i. Abstract
This  dissertation  details  the  development  of  an  intuitive  operator  interface  for  a 
complex serial manipulator, to be used in heavy maintenance tasks. This interface 
allows  the  operator  to  control  the  manipulator  in  the  'task-space',  with  software 
handling  the  conversion  to  'joint-space'.  Testing  of  the  interfaces  shows operator 
task-space control to be most effective in reducing operator workload and improving 
the ease of use of a complex machine. These methods  are applicable in concept, to a 
wider range of manipulators and other machines.

A number of operator interfaces were developed: a Joystick Interface, a Master Arm 
interface and a 6-D Mouse Interface. The Joystick Interface made use of a task space 
to joint space transformation implemented in software. The Master Arm utilised a 
scale model to conduct the transformation. Finally,  a 3D mouse Interface utilised 
sensors  in  an  Android  Device  with  a  software  based  task  to  joint  space 
transformation. These interfaces were tested and the Joystick Interface proved most 
suitable  according to  the  operator's  subjective  opinion.  Quantitative  measurement 
also showed that it accurately reproduced the operator's commands.

The software transformation developed for the Joystick and 6-D Mouse interfaces 
utilised the Jacobian Matrix to complete the task-space to joint-space conversion. 
However, since the manipulator contained a redundant joint, an additional algorithm 
was  required  to  handle  the  redundancy.  This  additional  algorithm also  improved 
manipulator  safety,  as  it  navigated  the  arm away from singularities  which  could 
result  in  large  joint  movement.  The  novelty  of  this  algorithm  is  based  on  its 
pragmatic  approach,  and  could  be  modified  to  achieve  a  number  of  safety  or 
performance goals.

The control strategy centred on the operator specifying commands to the arm in the 
frame of the task. The developed algorithm enabled the control strategy by ensuring 
that  viable  solutions  for  joint  velocity  could  be  found in  a  manipulator  that  has 
redundant joints. Furthermore, this algorithm utilised a cost function that minimised 
the chances of large joint movements due to singularities, improving the safety of the 
device.

Overall,  the  project  has  delivered  a  viable  operator  interface  for  controlling  a 
complex,  redundant   manipulator.  This  interface  was  tested  against  a  number  of 
alternate operator interfaces. The contrasting results of the strengths and weaknesses 
of  various  interfaces  meant  that  a  number  of  key  insights  were  gained,  and  a 
pragmatic approach to redundancy management was developed. 
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iv. Glossary
The following terms acronyms are used in this dissertation:

2D – two dimensional, describing a position on a plane

3D – three dimensional, describing a position in a volume

6D – six dimensional, describes position in a volume as well as orientation

ADC – Analog to Digital Converter

CLK – Clock signal line in an SPI communications channel

CPU – Central Processing Unit

CS, CSN – Chip Select line in an SPI communications channel

GAZEBO – the Gazebo robot simulation program by the Open Source Robotics 
Foundation

HMI – Human Machine Interface 

HSEC – Health, Safety, Environment, and Community

IOIO – ioio digital acquisition board for java programs

JAVA – Java programming language

LCD – Liquid Crystal Display

MISO – Master In Slave Out line in an SPI communications channel

MOSI – Master Out Slave In line in an SPI communications channel

PID – Proportional Integral Derivative control methodology 

PLC – Programmable Logic Controller

PWM – Pulse Width Modulation

ROS – Robot Operating System

SPI – Serial Peripheral Interface, a communications standard

UI – User Interface 

USB – Universal Serial Bus

WIFI – Wireless LAN network 
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1 Introduction
This dissertation will detail the results of developing and testing an intuitive operator 
interface for controlling a seven axis, six degree of freedom serial manipulator for 
use in heavy maintenance tasks. This project is a subset of a larger project to develop 
the  said  manipulator  and  is  currently  in  the  process  of  active  development.  An 
intuitive  operator  interface  is  important  because  a  large,  seven  axis,  serial 
manipulator is inherently dangerous.  The danger is  due to the actuated joints not 
physically aligning with the intended tasks of the device. The interfaces that were 
developed in this project allow the operator to issue directions in the task-space, with 
the interface handling the conversion to the machine's joint-space. The methods used 
to achieve this are applicable to a wide range of manipulators and other machines.

This dissertation will firstly look at the background problem regarding a manipulator 
designed to separate workers from the dangers of heavy maintenance.  The heavy 
maintenance environment will be examined, along with the manipulator, in brief. The 
next section will examine simulation environments developed to better understand 
hydraulic actuators and closed-loop control methods. A realistic simulation supports 
the project as this will be the environment used to test the suitability of the interface. 

The project utilised the jacobian inverse to transform operator task-space commands 
into  the  joint-space  of  the  manipulator.  Additionally,  because  the  manipulator 
contains seven axes, the inverse of the jacobian contains a nullspace which allows an 
infinite number of solutions. An algorithm is developed to handle the effect of this 
null space on the possible joint solutions. The algorithm also allows the ability to 
enhance some performance or safety criteria. In this case, it is to minimise the chance 
of  singularity  within  the  solution.  The  method  for  redundancy  selection  is  a 
pragmatic  approach which  could be used to  select  the redundant  joint  using any 
manner of criteria. 

The final section will cover the development of the three interfaces and the results 
from testing them on the simulations. The algorithm's effectiveness is demonstrated, 
and  the  section  outlines  the  factors  that  make  one  interface  more  intuitive  than 
another interface. The testing regime included results and feedback from the target 
mine-site operators. Their feedback regarding the interface's suitability, ergonomics 
and ease of use is detailed and was invaluable in improving interface functionality.

Overall,  the project has delivered a functional operator interface for controlling a 
complex  manipulator.  A  number  of  key  insights  into  operator  interfaces  were 
discovered along with a novel and pragmatic approach to deal with the effects of 
redundant  joints  in  a  serial  manipulator.  The  interface  faithfully  reproduced  the 
operator's task-space input in the movement of the manipulator's tool.  
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2 Background
In Open Cut Strip Mining, there are a variety of machines that perform large volume 
overburden removal in order to expose coal seams for mining. The economic depth 
of these seams can be between 40 – 80 metres below the surface, as a result, the 
machines that perform these tasks are uncommonly large. These machines are known 
as draglines, and the smallest operational size has a approximate weight of about 
3000 tons. They are mobile and utilise a walking motion to change position, moving 
up  and  down  the  pit  removing  overburden.  They  have  been  in  operation  in 
Queensland since the 1970s. A small dragline digging in its natural environment is 

shown in Illustration 1.

Most major components on a Dragline are large and heavy. The machine at peak 
capacity  consumes about  1MW of energy and operates  at  close to  a 100% Duty 
cycle, in normal operation, being shut down for only 12 hours every three weeks. 
The focus of this  energy is  the digging bucket,  which has to  be heavily built  to 
withstand the energies upon it.  Typical load capacities are about 50 – 60 tons of 
material, and a fully laden bucket with supporting rigging is about 160 tons. A map 
of a standard rigging setup is located in Illustration  2. Note the prevalence of pin 
connected joints containing double clevises to secure components together.

Illustration 1: A Marion 8050 Dragline in operation, conducting pre-strip of 
overburden. To estimate scale, note the size of the standard walkways on the side of 
the machine.
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Despite being built strongly, the rigging connecting the bucket to the Hoist or Drag 
Ropes of the Dragline wears out quickly and is subject to a rigorous maintenance 
schedule.  

Illustration 2: Rigging Map for a standard rock digging bucket. Note the number of 
pins and clevises involved in securing the rigging together.
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The majority of dragline rigging components are subject to uneven wear as elements 
rub against each other. As a result, some of the most common rigging maintenance 
tasks  require  disassembly,  rotation  and  reassembly  so  that  opposite  faces  of  a 
component  are  exposed  to  wear.  Other  maintenance  tasks  simply  require  part 
replacement. Some components weigh in excess of half a ton with most weighing 
greater than 50kg for a small machine. The Lower Hoist Chains, shown being lifted 
in  Illustration  3,  weigh   680  kg  and  the  drag  socket  weighs  830  kg.  There  is 
considerable stored energy within dragline parts, and uncontrolled movement in the 
vicinity  of  humans  easily  results  in  crushing  injuries.  Other  dangers  include 
interaction with 85mm wire rope, which can contain considerable spring tension and 
has also been responsible for serious injuries. 

Illustration 3: Dragline rigging repair in action. Due to weight the majority of repair  
actions require use of a 20 ton crane for load support. Many standard rigging 
elements such as captive hooks are not used in rigging maintenance.
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One of the common dangerous maintenance tasks that are performed is the rotation 
of Lower Hoist chains. It requires personnel to get beneath a suspended hoist chain in 
order to remove the chain from the clevis on the trunion link, rotate 180 degrees and 
place  it  back  into  the  trunion  link.  The  usual  arrangement  is  shown  below  in 
Illustration 4, and has two workers performing the task. Note the full 680kg chain is 
suspended directly above them by a 20 ton crane. If there is a rigging failure or a 
failure in the crane, the workers would be directly in the path of the falling chain. 

These are the risks that maintenance workers face on a weekly basis. It represents a 
high risk to mining companies, and as such there is a desire to create a manipulator to 
separate workers from these risks. This dissertation describes just one part  of the 
overall project to design the manipulator, in particular the design of the operator's 
control interface that would make control intuitive. This objective was successful in 
designing an intuitive interface for a seven axis, six degree of freedom manipulator. 

Illustration 4: Rotation of Lower Hoist Chains requires workers to be exposed to the risk  
of catastrophic injury in the event of a falling hoist chain.
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The manipulator to be controlled is a hydraulically actuated, seven axis manipulator 
modelled loosely on the kinematics of a human arm. The first three joints act as a 

shoulder,  the fourth as an elbow and with the final  three joints  performing wrist 
functions. The Gripper is a simple open/close mechanism. The joints are actuated by 
cylinders fitted with proportional valves, and have ranges of movement from 90 – 
140 degrees. The manipulator is shown in Drawing 1. 

Drawing 1: Seven Axis, six degree of freedom manipulator arm to be controlled. The 
prototype built to reflect the modelling.
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3 Simulation
Simulation was an important part of the project, and forms the basic framework for 
the validation of the test results and also to understand the dynamics of the control 
plant. However, as it does not directly answer the question before us, much of the 
work in developing the simulations have been moved to the Appendices.

3.1 Hydraulic Actuator Modelling

Three  models  were  developed  to  simulate  hydraulic  cylinders  and  motors.  The 
models attempt to reconcile the actuator pressure, displacement and speed with the 
valve setting applied. Three models were derived and tested. The first model assumes 
that pressure remains constant, regardless of load, and that the valve regulates flow 
through the actuator. The second model assumes that the valve regulates the pressure 
in the cylinder, and that the flow is dependent on the dynamic movement of the load. 
In the third model, actuator speed, displacement and internal pressure are all treated 
as system states and valve displacement has a non-linear relationship with internal 
pressure and oil flow. The governing equations for the models are derived located in 
Appendix A.

3.2 Hydraulic Actuator Simulation and Control 

The most accurate hydraulic model was simulated to test for accuracy of response. 
The simulation results  for a valve-cylinder combination is  contained in Appendix 
B.1. The preferred model is extended to include the states of a rotary joint being 
driven by a valve-cylinder combination as described in Appendix B.2  and the results 
are contained in Appendix  B.3.  Finally,  we examined some linear and non-linear 
control  regimes  and  measured  their  performance  with  respect  to  gain  and  also 
sampling frequency in Appendix B.4.
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3.3 Simulation of Kinematic Arms

The actuators above need to be tested on a model of a manipulator arm, so that the 
actuator  dynamics,  arm  kinematics  and  ultimately  operator  interfaces  could  be 
assessed. A number of simulation environments were developed that progressively 
improved the capabilities of the simulation. These simulations included kinematic 
models, the derivation of which is contained in  Appendix C, force-dynamic factors 
and  actuators  detailed  in  Appendix  D,  visual  environments  and   serial/wireless 
interfaces are detailed in Appendix E. Finally, the adoption of GAZEBO simulation 
environment,  which  allowed  all  of  the  above  and  included  accurate  collision 
modelling, meant that the objectives of simulation could be met. The adoption of 
GAZEBO and Robot Operating System (ROS) is detailed in Appendix F.
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4 Interface Design and Development

4.1 Introduction

Most machines have operator interfaces which control the joint space. This is done to 
simplify the  hydraulic  control  and results  in  one joint  being moved by a single 
actuator, which is energised by a single control signal. Any additional control signals 
are usually present to meet some safety requirement. Regardless of whether there is a 
PLC or computer in the loop, it rarely closes it.  Most machines require the operator 
to close the loop and conduct any transformations between the task action and the 
joint-space control. The level to which the joint space aligns with the task space, 
directly corresponds to the ease and intuitiveness of the interface. 

4.2 Intuition – Task-space to Joint-space conversion

The level of intuition in an interface depends on how well the interface controls task 
space coordinates.  Task-space coordinates are those directions and movements that 
directly support the completion of a task. These may be the same or at odds to the 
Joint-space coordinates. The Joint-space coordinates are directions and movements 
achievable by the joints of the machine. In most cases, the interface only controls the 
joint-space in a machine. The level to which those joints align with the task being 
done,  will  indicate  how  easy  it  is  for  the  operator  to  complete  a  task  with  the 
machine. In rare cases, the operator interface will support the conversion between the 
task-space and joint-space if they are not aligned. If the interface does not support 
this conversion, and the operator only controls the joint-space of a machine whose 
joints do not align with the task, operation is only possible with great difficulty, risk, 
or requirement for a great deal of training and experience.

4.2.1 Common Mine Site Interfaces

In order to illustrate the points above, the dissertation will now examine three mining 
related machines and their interfaces, contrasting them by their intended task and by 
the interface provided to achieve it. Their ease of use will be evaluated by studying 
the length of operator training and importance of operator experience on effective 
and  safe  operation.  The  implications  of  this  study  on  the  Heavy  Maintenance 
Manipulator's  interface will  be inferred and applied to  the interfaces  successfully 
developed and tested on operators.

4.2.1.1 Forklift
A forklift typically has five axes to control: forward, reverse, turning, mast elevation, 
tilt  and  width  adjustment  of  the  forks  as  in  Illustration  6.  These  axes  are  a 
combination of prismatic and revolute joints, controlled directly by an accelerator, 
steering wheel and three levers corresponding directly to the joint space. When the 
task  space  is  analysed  for  a  forklift,  four  degrees  of  freedom  are  identified.  A 
forklift's task requires it to pickup and move pallets from one flat (two dimensional) 
space to another flat space at any particular height. The control interface consists of 
the steering wheel and accelerator to control the forklift's 2D position and yaw of the 
forks.  These  three  degrees  of  freedom  form a  non-holonomic relationship  when 
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compared to the  two controllable axes, steering and acceleration. This relationship 
means that any position and orientation can be achieved, subject to the path taken 
(S.M. LaValle, 2006). As a result, an operator is required to perform path planning.

The mast elevation enables movement of the forks in the third dimension, so this 
expands the task space to include the placing of items at height. A forklift, therefore, 
has four degrees of freedom in its task space, three position and one orientation. This 
allows a forklift to complete a task such as picking up a pallet from the back of a 
truck, taking it into a warehouse and setting it on some pallet racking around 4-5m in 
height. 

The  tilt  function  could  be 
described as a fifth degree of 
freedom,  however,  it  is 
probably  more  accurate  to 
describe it as an axis used in 
gripping the pallet. It allows 
the mast to be tilted back so 
the load does not slip off the 
forks.  Similarly,  the  fork 
width  function,  common on 
forklifts, is more of a gripper 
function that allows the safe 
support  of  objects  that  may 
not  all  be a  standard width. 
In this way the joint-space is 
highly aligned with the task-
space  of  the  machine, 
therefore,  direct  control  of 
joint-space by an operator is 
valid and intuitive. 

The  formal  training  requirements  for  a  forklift  are  three  days(“Training  and 
Licencing,” 2013)(“Forklift Training,” 2013), but require the operator to be at least 
18 years of age and presumably competent at path planning.

4.2.1.2 Excavator with 
Backhoe
An  excavator  conducting 
backhoe operations should also 
be  examined.  For  fixed 
operation, the operator has four 
axes  to  control:  swing,  boom 
raise and lower,  arm raise and 
lower and bucket flex, as shown 
in Illustration  6 . The four axes 
are partially aligned to the task-
space.  Bucket  digging  requires 
the bucket to subscribe an arc in 
order for it to fill with material. 

Illustration 5: Axes present in typical forklift 
(“Forklift,” n.d.)

Illustration 6: Excavator axes with backhoe 
attachment
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The digging arcs are supported by the machine's revolute joints. However, the joints 
are also required to position the bucket in both the radial and vertical space from the 
swing  axis.  The  position  of  the  bucket  is  defined  in  cylindrical  task-space 
coordinates.  Therefore,  unlike  the  forklift,  an  excavator's  task  space  does  not 
correspond directly  with  the joint-space  of  the boom-arm-bucket  arrangement.  In 
excavator/backhoe operations, the operator controls only joint space. However, the 
system is determinant, there are four joints, and four degrees of freedom in the task-
space. There is only one joint-space solution for a given bucket position and pitch.  

As the operator drives the machine in a joint-space which is not aligned with a task 
space,  he/she  has  to  convert  between  joint-space  and  task-space.  To  know what 
combination of boom angle, arm angle and bucket angle will be required to achieve a 
given bucket  position  and pitch  requires  training  and practice.  Typical  excavator 
training  times  are  five  days  for  a  full  course  certification(“Excavator  Training,” 
2013) (“Excavator Course - RIIMPO320B,” 2013).  Additionally, it has been shown 
that operator experience has a significant effect on the productivity of an excavator, 
due to an experienced operator activating more than one joint at a time. It seems that 
the  ability  to  transform  between  task-space  and  joint-space  improves  with 
experience(K. Hughes and X. Jaing, 2010, p. 419).

4.2.1.3 Dragline
A third and final example of user interface which includes different characteristics is 
that of a dragline. For fixed digging, the operator has three  controls, Drag, Hoist and 
Swing. The task-space of the machine consists of four degrees of freedom, three of 
position and one of bucket carry angle. The Bucket potentially has a full six degrees 
of freedom, if tensions in the twin ropes is ever unequal, but the task space of the 
machine is only defined in four dimensions: three cylindrical position coordinates 
and the bucket carry angle. As the operator only has three controls of a joint-space 
that consists of Drag, Hoist and Swing, the system is under-determined  (P. Ridley, 
2004, p. 17). This means the operator does not have full control of all four task-space 
degrees  of  freedom  at  any  operating  point.  The  under-determined  nature  of  the 
system manifests   itself  as  lines  of  constant  carry  angle  that  are  relatively  fixed 
(depending on bucket load distribution(P. Ridley and R. Algra, 2004, p. 1001)) as 

shown  in  Illustration  7.  Without  using 
bucket inertia to expand the task-space, 
operators  have  a  fixed  envelope  of 
where  they  can  dump  the  bucket,  i.e. 
achieve  a  carry  angle  of  -90deg  by 
releasing tension on the Dump Ropes. In 
order  to  conduct  digging,  the  bucket 
must be constrained by the ground and 
allow the Drag tension to pull the bucket 
full.  

The position of the bucket radially and 
vertically  is   dependent  on  a 
combination  of  Drag  and  Hoist 
Tensions, which are also tied to the carry 
angle of  the bucket.  It  is  only through 

Illustration 7: Representation of lines of 
constant carry angle for a Dragline 
Bucket
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the design of the Dragline system that the carry of the bucket corresponds to the 
intended method of operation or task-space of the machine.  This system requires 
transformation by the operator from the Drag and Hoist joint-spaces to a non-linear 
position and indeterminate carry-angle task-space. Of the three machines examined, 
due  to  the  operator  interface  complexity,  dragline  operators  can  be  expected  to 
require the most training and experience for effective production.

4.2.1.4 Summary of common mine site machine interfaces

Machine Operator 
Interface 

Joint-
space/Task 
space 
correspond?

Operator 
Controls

Task 
Space 
DOF

Indeterminate 
system?

Order  of 
difficulty 
in 
operation

Forklift Joint Space Partially 3 4 Yes,  common 
non-holonomic 
for navigation

minimum

Excavator 
-fixed

Joint Space No 4 4 No medium

Dragline 
-fixed

Joint Space No 3 4 Yes maximum

Table  1:  Summary  of  common  mine  site  machinery  task-space,  joint-space  and 
operator interface relationships against difficulty of operation.  

A summary of common site operator interfaces that have been examined is contained 
in Table 1. It is obvious that the ease of effective machine operation is due, in part at 
least, to how well the operator interface corresponds to the task being undertaken. If 
the  task-space and the  operator   input  correspond,  a  large number  of  degrees  of 
freedom may be manipulated  relatively  easily.  Where  a  machine  is  controlled  in 
joint-space, particularly one which does not correspond to its task-space, the operator 
is required to close the loop and perform the conversions between the joint-space of 
the controls and the task-space of the machine. The conversion requires training and 
experience. Typically, the less the joints correspond to the task, the more training is 
required for effective and safe operation.

The next section will examine a serially-linked manipulator with a tool at the end. 
The relationship between the position of the joints (the joint-space), and the position 
of the tool in six degrees of freedom (the task-space) will also be evaluated. This 
relationship is determined by forward kinematics when converting from joint-space 
to task-space, and the change in the task-space can be estimated from the change in 
the joint-space through a mathematical device known as the jacobian.

4.3 Solving the Jacobian Matrix

When trying to control a manipulator arm, the typical problem solved by forward 
kinematics  is:  “What  is  the tool  position and orientation for  a  given set  of  joint 
angles?”. This is usually straightforward to solve. For a treatment of this problem see 
Appendix C. In most cases an operator can see where the tool is and also knows 
where it needs to be. The problem for the operator is in deciding the changes in joint 
angles  that  are  required  to  allow a  desired  change in  tool  position.  Solving  this 
problem mathematically is a more interesting question. The problem is best stated as: 
“Given an arm arrangement, how must the joint angles change to achieve a desired 
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change in tool position or orientation?” Expressed differently: “What “twitches” in 
joint angle are required to change tool position or orientation by a small amount?” 
The answer lies in the Jacobian Matrix.

For the next section, it will be assumed that the arm has only six joints. This is the 
exact number of joints to ensure that there is only one solution to our query. A full 
description  of  position  consists  of  three  values;  x,  y,  and  z,  and  full  orientation 
description consists of three values; θ , ϕ , γ . If there are six joints, any change in 
tool position or orientation must be the sum of tool changes due to variations in each 
joint. This creates six equations describing that relationship, one for each joint. This 
relationship is also known as the Jacobian. The changes in the tool become the six 
unknowns. As there are six equations and six unknowns, the system is determinate 
and there is only one solution for the unknowns. 

The  Jacobian  is  the  matrix  of  first  order  partial  derivatives  of   a  vector  valued 
function (“Jacobian Matrix,” 2013). In this case, it is a matrix of how each of the tool 
orientation and position coordinates change with slight changes in each of the joint 
angles.  Tool  change  over  joint  change  becomes  the  partial  derivative.  As  stated 
above,  it  describes  the  change  of  tool  position  as  the  sum  of  the  tool 
position/orientation changes due to changes in each joint. It is expressed below:
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]  

It can be used to determine the small changes in tool position and orientation δ x  
given small changes in joint angle δθ , both 6x1 vectors as shown below:

δ x=J δθ  

More importantly, the expression can be inverted to determine the machine operator's 
query: “What changes in joint angle are required for small changes in position or 
orientation?”

δθ=J−1
δ x  

If a vector representing small changes in orientation and position is multiplied by the 
inverse of the Jacobian, the solution is the required small changes in the joints δθ . 
This  works  quite  well,  the  inverse  of  the  6x6  matrix  can  be  computed  using 
Gaussian Elimination (“Gaussian Elimination,” 2013) or evaluated analytically using 
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the shur's complement (“Shur Complement,” 01 Sep 13). Care has to be taken when 
dealing with a determinate system to avoid singularities. Singularities are parts of the 
joint space for which a large change in joint angle only causes a small change in tool 
location. They are difficult to detect and often rely on a careful off-line analysis of all 
spaces where the singularities occur, either through analytical or numerical means.

4.3.1.1 Contemporary way for Dealing with Redundant Manipulators
The  case  has  been  examined  where  there  are  six  axes  for  the  six  position  and 
orientation  components.  However,  a  six  axis  manipulator  can  be  limited  if  a 
particular joint angle cannot be achieved. As we have already examined, there is only 
one set of joint solutions for a given position and orientation, so if a solution cannot 
be achieved because a joint cannot change as desired, the possibility of achieving the 
tool target position and orientation would be undermined.  By adding an additional 
joint to the  arm, the number of viable solutions for position and orientation can be 
increased,  however  the  system is  now over-determined,  and  one  of  the  possible 
solutions must be chosen.  In fact, there is an infinite number of angle changes over 
two or more axes (for a manipulator without limits) that can completely cancel each 
other out, this is known as the null space of the manipulator. It exists whenever there 
is a non-square matrix with full rank  that requires inversion. Therefore, if it is not 
dealt with appropriately, the manipulator may not move at all! 

This project developed a novel procedure for avoiding the null-space and attaining 
other desirable attributes.  Firstly,  we will  examine how redundancy is handled in 
contemporary  manipulators.  A jacobian  can  still  be  constructed  for  a  seven  axis 
system, it is now becomes a rectangular 6x7 matrix:
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A pseudo inverse can be calculated for this matrix and full rank of the matrix can be 
expected as each of the arm joints are physically independent elements and do not 
drive  each  other.  As  a  result  the  Moore-Penrose  pseudo  inverse  J † can  be 
calculated directly from:

J †
=J T

(JJ T
)
−1 (“Matrix PseudoInverse,” 2013, p. 2) 
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where  J T is  the  matrix  transpose.  This  pseudo  inverse  can  be  used  directly, 
however it is usually combined with a weighting matrix W to deal with singularities 
and to minimise performance metrics. There is no set formula for determining the 
weighting matrix and it  selection is  rather arbitrary.  If  W is  to be used then it  is 
typically used to weight the pseudo inverse in the method shown below:

J W
†
=W−1 JT

(JW−1 JT
)
−1 (L. Beiner and J. Mattila, 1999, p. 176) 

This weighting matrix adjusts the null space of the jacobian. It adjusts these in order 
to  achieve  some performance  metric,  such as  lower  joint  torque,  kinetic  energy, 
avoiding  joint  limits  and  so  on.  Typically,  developing  this  weighting  matrix  is 
specific to the manipulator and its current configuration, therefore can be somewhat 
computationally  involved  in  its  determination  and  requires  updating  as  the 
manipulator moves.  

4.3.1.2 Conclusion
Understanding the kinematics of an arm is useful for both simulation and control. 
The Forward Kinematics converts the joint space to the world coordinate system task 
space. The inverse kinematics is much harder to calculate, but if a starting orientation 
is  known,  then  joint  space  can  be  modified  to  achieve  a  task  space  goal.  When 
dealing with redundant joints, the contemporary methods require a weighting matrix 
which  can  be  computationally  intensive  to  determine  as  it  changes  when  the 
manipulator moves. This dissertation will now propose a more pragmatic approach to 
the elimination of the redundancy.

4.4 Novel Heavy Maintenance Manipulator Interfaces

The Heavy Maintenance Manipulator has seven joint axes that position the tool with 
six degrees of freedom, in order to maximise flexibility and range of movement. As it 
is desired that the operator's input describes the task-space, the interface is required 
to  convert  between  this  input  and  the  joint-space  of  the  machine.  A pragmatic 
algorithm for dealing with the redundant joint will be proposed.
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4.4.1 Novel Method for Resolving Manipulator Joint 
Redundancies

In this project, redundancy was handled in a novel way, avoiding the complexity of 
an overly analytical weighting matrix. The goals of this novel method were primarily 
to  minimise  the  chance  of  singularities  due  to  HSEC  consequences  of  large, 
impromptu joint changes and to provide workable solutions to the problem.

Illustration 8: Pseudo code for the determination of redundant joint and avoidance of 
singularities.
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The method treated each joint as being fixed in turn, and calculated a square jacobian 
for each of these cases using the remaining six joints. The joint-space changes were 
calculated for each of these cases, inserting a zero joint change for the joint that is 
held fixed. Finally, the set of seven joint changes results are compared and the case 
that  has  the smallest,  maximum joint  change is  chosen.  This  ensures  to  steer  us 
around the singularities which have been identified as large joint changes for a given 
tool change. This method is shown in Illustration 8.

Where seven different joints can be made redundant, there will be seven possible 
solutions (cases). It is important to note that once the seven possible solutions are 
calculated, the method for selecting the redundant joint can be based on what ever 
criteria the designer desires. In this case, the redundant joint was chosen to minimise 
the size of the joint changes required (thus singularities), but other criteria may be 
chosen to minimise joint torques, avoid limits or avoid obstacles. As the manipulator 
only has position sensors fitted, such alternative criteria could not be implemented.

In the general case, where we have a manipulator with n redundant joints, where:

n= j−m    

where  j  is the number of joints and  m   is the number of degrees of freedom. The 
operational complexity increases exponentially with the number of possible solutions 
equal to:

(m+n)
n  

This does not include the computation required to implement the selection criteria. 
Thus  the  computational  cost  can  dramatically  increase  with  every  additional 
redundant  joint.  This  may  not  be  such a  problem as  the  cost  of  computation  is 
relatively cheap.

4.4.2 Application of Task space conversion on real interfaces

Two methods for calculating the joint-space of the manipulator from the user inputs 
were used in the three main interfaces successfully developed in this project:

1. Master Arm Interface, 

2. Joystick Interface, and

3. Sensor Interface.

4.4.3 Master Arm Interface

The Master Arm Interface Interface consists of a miniature model of the arm that was 
kinematically equivalent to the manipulator. As the operator moves the Master Arm 
in what is task-space control of the tool, the joints angles on the Master Arm are 
measured and are applied as reference positions to servo joints on the manipulator, or 
Slave Arm. Thus the Slave Arm follows where the Master Arm leads. The operator 
focuses on moving the Master Arm, so as to control the tool position in task-space, as 
the Master moves, the joint-space solution is solved by mechanical movement of its 
joints.  Thus  we  have  a  user  interface  which  allows  control  in  task-space,  the 
transformation to joint-space is achieved by the mechanical replication between the 
Master and the Slave Arm. The software to achieve this is relatively minimal and acts 
mainly as a transport medium for the information from the Master to the Slave. 
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4.4.4 Joystick Interface

In the Joystick Interface, joysticks are utilised to gather user task space input. The 
joystick axes were aligned to the direction of the task-space axes being controlled. 
For example, if the operator wants to move the tool left, a joystick will need to be 
pushed left. If an up movement is required, a joystick is pushed upwards. 

In order to achieve this  effect,  software implements our task-space to joint-space 
conversion.  It  treats  the measurement  of the joystick as a  task-space change and 
calculates the appropriate changes in joint-space as described. Task-space control of 
this sort has been used on simpler manipulators before and has shown to improve the 
performance of novice and experienced operators (A. Hansson and M. Servin, 2010, 
p. 1074).

4.4.5 Sensor Interface

In the Sensor Interface, an acceleration sensor and a magnetic sensor were used to 
determine the orientation of  a  handheld device (android phone).  The touchscreen 
interface  implemented  methods  for  indicating  task-space  position  and  orientation 
change of the tool. Once these commands were input, the same software framework 
as per the Joystick Interface was used to determine the appropriate conversion to 
joint-space. 

4.5 Feedback

An  important  aspect  of  operator  interfaces  is  the  provision  of  feedback  to  the 
operator. In most existing cases this requirement includes a visual reference, either a 
light or display, for load and equipment state. In hydraulically actuated machines, 
where the operating levers directly actuate the hydraulic valves, the operator can feel 
and hear the amount of fluid flow through the valve. This assists the operator to 
assess the required spool displacement required to achieve a particular level of joint 
movement, resulting in a slower, smoother joint movement (K. Hughes and X. Jaing, 
2010, p. 419). 

In electrical interfaces, force feedback is typically not incorporated into the interface. 
This  results  in  lower  operator  fatigue  and  faster  manipulation  of  the  joints  (K. 
Hughes and X. Jaing, 2010, p. 417).  As a consequence with no other controls in 
place,  electronic joint  control  interfaces  can result  in  a  higher  level  of  wear  and 
fatigue on the mechanical structure of the machine. 

For the three successful interfaces developed, feedback consisted of:

1. lights on the interface to show the status of the interface, and

2. lights on the Slave Arm to indicate the state of the Arm.

During  the  course  of  the  project,  a  number  of  other  methods  of  feedback  were 
investigated  but  were  not  ultimately  incorporated  into  the  interface  at  this  time. 
These  require  additional  work  to  be  successfully  incorporated  into  the  operator 
interface. These methods of feedback were:

1. force feedback on Joystick Interface;

2. force feedback on Master Arm Interface; and



26

3. video Feedback of arm movement. 

These methods of feedback will be examined further.

4.5.1 Joystick Interface Force Feedback

The provision of force feedback for the Joystick Interface was applied through the 
direct connection of motors to the axes of a joystick. A PID signal adjusted the motor 
voltage, based on the position of the joystick. If a larger force were required, the 
reference for the PID would be moved so as to increase the motor signal and hence 
the force in a particular direction.  

The  configuration  ran  into  a  number  of  issues,  particularly  tuning  the  PID  to 
overcome the large amounts of backlash and friction in the gears of joystick. The 
motor, even when geared, produced only a minimal level of force that was hardly felt 
by  the  operator.  A key  issue  was  the  mechanical  cradling  of  a  2-D gimbal  that 
described x and y movement, in a structure that allowed movement in the z direction. 
The  third  joystick  axis  introduced  additional  mechanical  complexity  which  was 
difficult to solve.

Overall, the use of a PID position-controlled motor in this way was not an effective 
option for achieving force feedback. A better option would have included a current 
sensor and direct control of the motor torque. A force controlled actuator would have 
been beneficial as long as the max force of the actuator could be felt by the operator. 
This  requires  larger  motors,  heavier  gearing  or  greater  mechanical  advantage,  all 
equalling a larger, bulkier interface. The use of low pressure hydraulics could have 
been  an  option  as  well,  but  at  significant  cost  of  actuators,  valves  and  pressure 
sensors.     

4.5.2 Master Arm Interface

A version  of  the  Master  Arm Interface  was  built  that  incorporated  servo motors 
linked to actuate the joint through the use of tension springs. Position sensors were 
utilised to measure the joint angle, and an algorithm was arranged so that the force 
required on the joint was   a function of the difference in angle between the joint and 
the Servos. When there is a difference, a spring would be extended creating a torque 
on the joint. The joint actuated in this way would have a limit of about 90 degrees 
before the springs would start to experience extension regardless of the difference in 
servo/joint angle. This was not such a problem as most joints were about 120 degrees 
in range and the force due to the spring extension past 90 degrees would serve to 
apply limits to the Master Arm. 

Additionally,  to  combat  the  friction  issues  encountered  with  the  force  feedback 
Joystick, the joints were supported by small bearings. Overall, the system was let 
down by the size of the electric servos and the weight of the arm. The arm was built 
heavier than usual to support the bearings and the servos. As a result,  the servos 
working against gravity were overloaded and not effective. To apply force feedback 
on a Master Arm in this way would require both a very light arm and stronger servos 
in the heaviest loaded joints. Unfortunately, time ran out before this was achieved.
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4.5.3 Video Feedback

Video feedback is included in this section since the preferred arrangement has not 
been conclusively tested, though there are some aspects that will be shared here. The 
physical  implementation  of  video  feedback  was  achieved  with  the  ROS 
image_transport and uvc_camera library allowing output of video feed to a normal 
computer screen or to an Android Tablet. It was found during simulation that a single 
camera  is  less  effective because  there  could be no perception  of  depth thus  tool 
position  and orientation  could  only partially  be  evaluated  by an  operator.  A two 
camera arrangement improves performance with depth much easier to perceive. A 
wider  question emerges with multiple  cameras:  How should multiple  cameras  be 
mounted to best support the operator? This question is affected by a multitude of 
variables. In this we trialled two, twin video cameras in two configurations:

1. Configuration 1: A Head Camera and a Tool Camera,

2. Configuration 2: Two Head Cameras.

 

Configuration  1  has  some problems,  particularly  when there  is  little  variation  in 
background and when the Hand Camera shows objects which are not visible by the 
Head Camera. This can lead to disorientation of the operator that can not be rectified 
by an of the information presented by the cameras. If the alignment axes are coaxial 
to  the  camera,  lining  up  of  the  object  by  Configuration  1  is  supported.  This  is 
dependent on the grip that can be achieved on the object to be lined up. If it does not 
result  in  coaxial  alignment  between the  camera  axis  and  the  task  axis,  the  Tool 
Camera's utility is reduced. 

Illustration 9: Output of Camera Configuration 1, A Head Camera and Tool 
Camera
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In Camera Configuration 2, two head cameras providing some level of depth and 
height  perception via  a stereoscopic arrangement.  The left-hand camera's  field of 
view is orientated more towards the intended workspace, and provides a view that 
assists  the  estimation  of  vertical  position  and  forward  position.  The  right-hand 
camera is better suited for estimation of lateral position. These two views highlight 
one of the major problems with video feedback via cameras, namely the narrow field 
of view that does not cover the whole possible workspace. A solution would be to 
either install more cameras or develop a camera mount that revolves around the x 
and z axes (altitude-azimuth mount) to allow the camera to focus on some moveable 
point of interest. 

Using multiple  additional  cameras  would  likely  introduce  bandwidth  problems if 
they  were  streaming  concurrently.  This  could  be  contrasted  with  extra  control 
required of the camera platform. Bandwidth issues could be mitigated by automatic 
control of which cameras are streaming, and a moveable camera platform could be 
controlled to automatically focus on the tool.   

Due  to  the  relatively  little  evidence  supporting  one  camera  arrangement  and the 
restrictions  on  fixed  cameras,  the  video  feedback  question  cannot  be  resolved 
without further testing. The preferred method of visual feedback at this stage will be 
to have the operator on the ground, out of harm's way, controlling the position and 
orientation of the manipulator without the help of a video feed.

4.5.3.1 System State Feedback
A light system was introduced on the operator interface and on the slave manipulator 
in order to provide direct feedback as to the state of the object. The operator interface 
light system is shown in Table 2.

Light State Interface Active Output Published

Green On Yes No

Orange Actuated Yes Yes
Table 2: Light-based feedback for operator interface.

Illustration 10: Camera Configuration 2, two head cameras providing some depth 
perception
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On the Slave Manipulator,  the light  system also identifies  the system's  state,  but 
specifically for the manipulator. The Manipulator light system is shown in Table 3.

Light State Valves Active Joint  State 
Evaluated

Red Error No Yes – errors found

Blue On No Yes

Amber Joints  Active, 
Valves Active

Yes Yes

 Table 3: Light based feedback for Slave Manipulator.

Overall, the light system is very effective in allowing understanding of a system's 
state, based on a quick glance at the light and an understanding of the state of the  
machine.

4.5.3.2 Conclusion
Feedback  in  an  interface  has  important  implications  with  respect  to  the  overall 
effectiveness  of  the  system.  Like  most  existing  machines,  the  level  of  feedback 
achieved by this interface consisted of purely visual references such as lights. Force 
feedback  was  attempted  but  was  undermined  by  the  mechanical  implementation 
factors. These factors could be alleviated through better tooling and construction of 
the  interfaces.  Video  feedback  was  also  investigated  and  holds  great  promise, 
particularly  if  stereoscopic  sensors  on  a  movable  altitude-azimuth  base  are 
implemented. More work is required to achieve an adequate level of sensor based 
feedback.
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4.6 Design and Ergonomics

4.6.1 Common Electrical Framework

For the electrical and computational support of all interfaces, a common electrical 
circuit was designed. This circuit supported both the Master Arm Interface and the 
Joystick Interface, as well as the common Actuation Button, Tool Button and Status 
Light. The circuit was centred around the input/output device IOIO, which is a digital 
acquisition board designed for use with JAVA Android devices. It provides digital, 
analog and serial interfaces to an Android application via a USB connection. Due to 
the USB connection, there is a sizeable lag penalty compared to a typical embedded 
application  for  every  input-output  operation.  There  is  however,  a  massive 
computational benefit in incorporating an Android platform, or any high-speed 32-bit 
device into an embedded application due to their  additional computational power 
when dealing with floating point arithmetic. The Android platform provides many 
connection options utilising BluetoothTM  and WIFI, though not normally a wired 
connection.  Additionally,  Android  provides  a  ready  made  visual  user  interface 
through the LCD touchscreen.

 It  was  a  very flexible  development  arrangement.  The circuit  provides  up to  six 
analog inputs  for reading thumb joysticks,  a  Serial  Peripheral  Interface (SPI)  for 
reading up to seven joint sensors, and seven Pulse Width Modulation (PWM) outputs 
for application in interfaces incorporating force feedback. It  can drive a tricolour 
LED with common anode, and has inputs for an Actuation Button and Tool Button. 
The power supply is handled by the IOIO which provides 5V and 3.3V power to the 
interfaces  from  a  12V  feed.  It  also  charged  the  Android  device  via  the  USB 
connection. The interfaces were connected via polarised 0.1” headers. Overall, the 
common circuit for interfaces improved electrical reliability and explored packaging 

Illustration 11: Common Interface Development Circuit
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options for the future. The block diagram for the circuit is shown in Illustration 12.

  

4.6.2 Master Arm Interface

4.6.2.1 Mechanical Design Considerations
The Master Arm Interface replicates the kinematics of the slave arm such that for any 
position or orientation pose, if the joint angles in the Master Arm are replicated in the 
slave arm, then a similar pose and orientation is expected from the Slave Arm. The 
test model was built out of acrylic plastic, and utilised 10 bit position controllers for 
joint angle reading. A grip was provided to reduce fatigue on the operator's hand. The 
Arm was fixed so that it would be close to the operator's left hand when seated. The 
operator  could  control  the  arm,  minimising  the  level  of  interference  with  the 
operator's body. The Master Arm was modelled as 1:1 to a human arm. 

Illustration 12: Block diagram of common interface circuit
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The larger the Master Arm, the lower the gain of the 
system. That is, the further the joint is from the tool, the 
less it will move for a given task-space movement of 
the  tool.  The effect  of  this  is  that  larger  models  will 
have  a  much  higher  level  of  precision  compared  to 
those which are miniaturised.  This in turn impacts on 
the space required to utilise one of these interfaces, as 
longer link lengths require more movement to achieve a 
given output on the Slave Arm. 

Each joint consists of a single or pair of non-lubricated 
plain bearings,  with a loose fit  tolerance.  This allows 
relative ease of movement, and had an acceptable level 
of positional accuracy. It provided a very good precision 
in the joint sensors. Tool button, actuation button and 
status light were placed in a console for operation by 
the right hand.

Overall  the mechanical  design used for testing of the 
Master Arm Interface was capable and achieved a good 
response when tested on Coal Mining Workers for both 

intuitiveness and accuracy. 

4.6.2.2 Electrical Design Considerations
Circuits specific to the Master Arm Interface are the joint encoders. These are the 
same encoders that are used on the Slave Arm. They provide a variety of outputs, but 
the SPI interface was specifically chosen as it provided measurements of absolute 
position. This eliminated the requirement for a high frequency update loop to poll the 
output  of  an  Encoder  or  interrupt  driven  interfaces.  Additionally  there  was  no 
requirement  for  post-processing  to  produce  an  angle  measurement  which  could 
experience drift from a zero position if measurements were lost.  It also minimised 
the number of wires required as a common data,  and clock bus  could be shared 
between all encoders. The output from the encoders was very stable with only small 
changes to the Lower Significant Bit of around 0.1-0.2%. 

The full SPI interface requires four wires to achieve full-duplex communications: 
Master In Slave Out (MISO), Master Out Slave In (MOSI), Clock (CLK) and a Chip 
Select  (CS)  for  every  slave  device.  For  these  encoders,  the  MOSI  line  was  not 
required as the encoder didn't receive any information during normal operation and 
the MOSI line could be dropped. 

To save data lines on the IOIO, the  CS was provided by a 74LS138 3 to 8 line 
decoder/multiplexer to service seven slave devices using only three lines from the 
IOIO. The normal Chip Select pin in the software SPI module was not utilised. The 
arrangement  used  is  shown  in  Illustration  12.  The  MISO  and  CLK  lines  were 
maintained on a common bus for all  sensors. The hardware to connect the buses 
consisted of a single polarised header. Ribbon cable was used to provide a single line 
of cabling down the arm. Each CS had its own separate line down the arm.

Illustration 13: Master 
Arm Interface showing 
Joints



33

The SPI output from an encoder is shown in Illustration 14. For each joint sensor the 
transmission begins with CSN switching LOW output. Data is then output from the 
sensor with each falling edge of an inverted CLK signal provided by the IOIO as 
master.  This is  known as  SPI mode 3,  and various other  configurations  of clock 
polarity and reading phase are possible in the protocol. The data consists of joint 
angular position, D9-D0, followed by six status bits. The  status bits highlight any 
errors in the joint encoder including mag strength, linearity, and chip readiness. A 
parity bit to ends the transmission to assist in detection of transmission errors. The 
transmission finishes when CSN is made HIGH, the next transmission can begin 
within 0.5μs with CSN being dropped LOW.

4.6.2.3  Software Design 
For this interface to work,  two software nodes are utilised,  one to read the Joint 
Sensors on the Master Arm, and the other to apply position control to the Slave Arm. 
For the master arm the software runs a simple setup routine and then engages in a 
loop. In the setup, the software reads the sensors, to determine the zero position for 
the Master Arm. Therefore,  the Arm must be positioned at  start  time to the zero 
position of the Slave Arm. The software then follows its loop of:

1. reading its sensors,

2. applying the zero position to get angle change from a starting pose, and

3. publishing these positions to a joint controller as reference positions.

The Joint Controller /controller_cpp subscribes to these reference positions and also 
to  Joint  Data  from  the  Slave  Arm.  It  applies  PID  control  and  publishes  valve 
commands to the slave_node, controlling the actuators as shown in Illustration  15. 
This forms a non-realtime control loop and is typically run on the same computer as 
the slave_node in order to avoid connection issues. 

Illustration 14: Voltage signals along the Chip Select, Clk and MISO lines for the 
Joint Encoder SPI (“AS5040 Datasheet,” 2009, p. 33)

Illustration 15: Software nodes of the Master Arm Interface. The /gazebo node stands 
in for the /Slave_node. Note that the joint state feedback for the controller node is 
done by a Service call and therefore not shown.
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4.6.3 Joystick Interface

4.6.3.1 Mechanical Design Considerations
The Joystick  Interface  utilised a  number of  twin axis  thumb joysticks  to  receive 
operator input. The Thumb Joystick is utilised on a number of commercial interfaces, 
predominately game controllers. They are spring loaded, always returning to centre, 
can be manipulated by one finger, giving the possibility of manipulating more than 
one thumb joystick with one hand. The spring also gives them a good 'feel' so that 
even if there is no direct feedback, the operator still has a sense when the joystick is 
close  to  its  limits.  The  Joysticks  are  small  and  light,  making  them  suitable  for 
portable interfaces and also to mount in a variety of configurations. This is important 
so that the joystick is aligned to the task-space of the user.

Two  options  were  tested  for 
aligning  the  joysticks  with  the 
task axes. Remembering that the 
six task degrees of freedom are 
left/right,  forward/backward, 
up/down,  roll,  pitch  and  yaw. 
They represent  the translational 
and rotational movement  about 
three axes x, y and z. The first 
option  aligned  three  joysticks 
orthogonally  to  each  other 
around  a  central  mount.  Each 
joystick  axis  therefore 
represented  either  a  translation 
or a rotation about the axis the 
joystick was aligned to as shown 
in  Illustration  16.  The  three 
joysticks  were  designed  to  be 
operated  by  one  hand,  leaving 

the  other  hand  free  for  other  tasks.  This  arrangement  had  poor  ergonomics,  in 
particular due to the limitations of reach of an operators hand. Also, it didn't equally 
divide  the  workload  between  the  available  hands,  making  a  five  fingered  hand 
control six axes!

The  second  option  divided  the  workload  between  both  hands.  The  left  hand 
controlled orientation, and the right hand controlled position. To achieve this, four 
thumb joysticks, two for position and two for orientation, were used to replicate the 
six task degrees of freedom. This gave four axes for three position axes, and four 
axes for the three orientation axes. The joystick pairs were mounted orthogonally to 
each other and the joystick axes controlled the aligned position or orientation axis. It 
allowed the operator to directly actuate his task-space intentions on the interface. It 
also divided the workload, allowing control to be achieved by only two fingers on 
each hand leaving the others to push buttons and support the interface. The interface 
had similar ergonomics as a game controller, except that it has four joysticks instead 
of two. The interface is shown in Illustration 17.   

Illustration 16: Joystick Interface Mk I, three 
thumb joysticks are mounted orthogonally in the 
same direction as the task space axes, giving 
control over the six degrees of freedom.
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4.6.3.2 Electrical Design Considerations
The electrical design is relatively simple with the thumb joysticks forming a linear 
voltage divider, read by the Analog to Digital Converters (ADC) on the IOIO. The 
IOIO has sixteen  ADCs available and six are reqired to read the Thumb Joystick 
position. The joysticks are supplied with the ADC ref voltage of 3.3V.

4.6.3.3 Software Design 
As the software is required to conduct the transformations between the task-space 
input and the joint-space control of the machine. The preferred software arrangement 
splits the hardware interfacing and the transformation algorithm into separate nodes. 
This allows the same transformation algorithm to be used with a variety of interfaces 
that publish the operator's task-space intentions.

The /Joystick_node does the hardware interfacing and runs a setup routine followed 
by a  loop. During the setup routine,  the thumb joysticks  remain in a  the neutral 
position so that this reference position may be read and recorded to become the zero 
point for the joystick axis. In the loop, the thumb joysticks are read and the zero 
point subtracted from them to get a signed value indicating a positive or negative 
direction in the task-space axis. The range of joystick movement was broken up into 
three bands representing a Deadband, Fine and Coarse movement. This minimised 
the occurrence of drift in the results and made the input more robust. The difference 

Illustration 17: Joystick Interface Mk II, arranged to be used with two hands, the 
right hand controls position and left hand controls orientation. 
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in gain from fine to coarse movement was a factor of five. The measurements of 
joystick position were then published to the /HMM_Cartesian_Interface_node  over 
the /HMMInterface/dtask_space topic.

The /HMM_Cartesian_Interface_node calculated  the  jacobian  and  dealt  with  the 
redundancy as shown in Section 4.3.  The node subscribed to the /joint_states msg 
that  was  being  published  by  the  /rate_controller_cpp.  The  /joint_states  topic 
described the position, velocity and torque of each of the joints. This was used to 
update  the  kinematic  model  in  the  /HMM_Cartesian_Interface_node to  the  same 
position  state  as  the  real  arm,  hence  ensure  the  inverse  jacobian  algorithm was 
accurate for the current pose of the arm. The node calculated the joint changes as per 
the redundancy algorithm and published them to /rate_controller_cpp which was an 
open loop velocity controller of the joint actuators. Rate_controller_cpp applied the 
joint change twitches as valve signals to the Slave Manipulator. 

4.6.4 Sensor Interface

4.6.4.1 Mechanical Considerations
The sensor interface utilises an Android device equipped with a gravity and magnetic 
sensor which allows the measurement of all the orientation axes. The touchscreen 
provides three buttons for control of the input: a forward arrow, a backward arrow 
and a button labelled “Orientation” as shown in Illustration 19. 

To achieve  position  movement,  the  operator  aligns  the  arrows  with  the  intended 
direction for movement and then presses the arrow that corresponds to the direction 
required.  Software  measures   the  orientation  of  the  device  and  determines  the 
positional  changes  due  to  a  movement  along the  line  of  action  indicated  by  the 
orientation of the device. 

When the Orientation Button is pressed, any subsequent change in orientation of the 
device becomes the change in orientation task-space. This amount is proportional to 
that physical change in orientation. A gain is applied to improve the sensitivity of the 
input.

Illustration 18: Software node arrangement of the Joystick Interface. The /gazebo node 
replicates the /Slave_node. The joint feedback is carried out via a Service call and 
therefore not shown.
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The  only  Android  device  that  was 
available  with  the  appropriate  sensors 
was  a  10inch  tablet.  This  tablet  was 
somewhat heavier than the 4 inch device 
that was desired. A 4 inch device could 
be  supported  in  the  palm  of  the 
operator's  hand and easily  manipulated 
in  order  to  change  orientation.  An 
additional  problem identified  with  this 
interface  was  that  the  Android  User 
Interface  (UI)  does  not  record  the 
pressing of multiple buttons at the same 
time. As a result, a physical Tool Open 
Button and Actuation Button were still 
required. It would be envisaged that the 
additional  buttons  would  be  integrated 
into the single device. 

4.6.4.2 Electrical 
Considerations
As the interface is already packaged in 
an  Android  Device,  only  the  Interface 
Status  Light,  Tool  Open  Button  and 
Actuation Button were required and they 
were  implemented  as  part  of  the 
common electrical arrangement.  

4.6.4.3 Software 
Considerations

Whereas the software for previous interfaces ran on one main thread, this interface 
required  two threads to share data. A user interface thread which measured sensor 
output and a ROS thread that handled ROS communications. The sensor packages 
were read each time a change was detected.  Two sensor packages were read: The 
Gravity sensor and the Orientation sensor.

The Gravity sensor measured the gravitational acceleration along three orthogonal 
axes which correspond to the x, y  and z directions. The directions are relative to the 
Android device, hence, if the device is held flat, then the readings would be x=0, y 
=0 and z=-9.8. The units of the sensor are m/s2. Pitch forward increases the y value 
and  roll  to  the  right  or  left  increases  x  value.  These  sensor  values  are  equal  to 

g sinθ , where θ is the angle around an axis. Hence there will be a sinusoidal 
output in the axes as the tablet is rotated at a constant rate. This means that the value 
from the sensor can be used directly and no further geometric functions are required.

The  Orientation  Sensor  also  measures  yaw   based  on  the  relative  position  of 
magnetic  north  to  the  tablet,  and  the  output  from  the  gravity  sensor  (“Position 
Sensors,” 2013). The units are in radians. The Sensor Interface establishes a zero 
direction of the Orientation Sensor on startup which is taken as the reference for the 
positive y-axis (forward face) of the Slave Manipulator. The direction the top of the 
Android device is facing at application initialisation becomes the positive y-axis for 

Illustration 19: Screenshot of Sensor 
Interface, showing forward, reverse button 
and orientation button
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the interface.  The difference from this reference direction is  then included in the 
amount of x and y task-space movement as per below (for a forward arrow push):

dx=(1−
gy

g
)sin(magz−magz0)

dy=(1−
gy

g
)cos(magz−magz0)

dz=
g y

g

 

Where  gy is the acceleration value along the y-axis,  magz is the current yaw 
angle and magz0 is the reference yaw angle when the application was first started. 
For  determining  task-space  orientation  change,  the  reading  when the  Orientation 
Button is pressed is stored. Task space orientation change becomes the change in 
orientation from that initial value. 

droll=mag y2−mag y1

dpitch=magx2−mag x1

dyaw=mag z2−mag z1

 

The subscript 1 refers to the reading when the Orientation Button is first pressed and 
subscript 2 refers to the sensor value at some time after with the Orientation Button 
pressed. The change in orientation, droll, dpitch and dyaw stop being evaluated once 
the Orientation Button is released and reset to new values.

4.6.4.3.1  ROS Thread.

Once the task-space directions have been evaluated, they are passed to /Sensor_node 
in a separate CPU thread via a shared memory application object. Once transferred to 
the /Sensor_node the operator's task-space control signals are published to the same 
/HMM_Cartesian_Interface_node  that  is  used  in  the  Joystick  Interface.  The 
remainder of the software is as per the Joystick Interface.

4.7 Interface Testing and Results

In order to evaluate the current range of human machine interfaces (HMI) to allow 
tele-operation  of  the  Heavy  Maintenance  Manipulator,  testing  was  conducted  to 
evaluate their effectiveness with the target operators. The three interfaces were the 
Master Arm Interface, Joystick Interface, and the Sensor Interface. These were tested 
on Mine Employees using two simulated maintenance tasks.

4.7.1 Aim 
The  aim  of  these  experiments  is  to  gather  subjective  and  objective  evidence 
regarding the suitability and ease of use of the three interfaces.
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4.7.2 Method
4.7.2.1 Simulating Tasks with ROS and GAZEBO
Having  a  model  that  works  within  a  Force-Dynamic  simulation,  which  includes 
collision modelling, allowed  some of the tasks of the arm to be examined. These 
tasks include: picking up a pin and inserting it into a double clevis, and rotating a 
Hoist Chain. These task-based simulations allowed the study of: the arm range of 
movement, the requirements for effective grasping, and the ability of having only a 
single arm to perform the required tasks. 

4.7.2.1.1 Pin Place Task

One of the dragline rigging maintenance tasks that was focussed on was inserting a 
pin. This is a common task and was replicated by a simulation of inserting a drag pin 
into a hole in a vertical wall. This task demonstrated a number of key capabilities in 
the simulation: how an interface can accurately position and orientate the gripper, 
and how an interface can then align the gripped pin to  the target hole. This task 
required a couple of extra models beyond that of the manipulator. These included a 6 
inch pin, and a wall with a double clevis, which is similar in arrangement to a trunion 
mount on a dragline bucket. The starting layout is shown in Illustration 6.

 

Illustration 20: Starting layout for a pin placement task showing a 6" pin on a 
platform ready to be inserted into the double clevis on the wall
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4.7.2.1.2 Hoist Chain Rotation Task

This task attempted to replicate the rotation of a Hoist Chain which was being held in 
a double clevis. This required the chain to be removed from the clevis, rotated 180 
degrees and reinserted into the clevis. The task tested the interfaces and grippers as 
before, but also tested to see if the manipulator has the range of movement capable to 
complete the task using just a single arm. The layout is shown in Illustration 7. An 
interesting point to note is in the simulation of chain. 

Normal chain-links have six degrees of freedom, however to 
simplify simulation, and to improve simulation performance, 
the  joints  between  the  links  were  modelled  with  only  two 
axes.  This  saves  computational  power  and  allows  the 
simulation to run closer to real time. This gave the chain some 
of its  more common movement, but not the full movement 
that  would be observed by letting the chain fall  in a  heap. 
Illustration  22  shows the joint axes used in the simplified 
hoist chain model. In all links other than the top link, both the 
green and red axes are modelled as rotational joints. The top 
link rotates to the world via the blue axis.

If  the  full  six  degree  of  freedom movement  of  chain-links 
relative to each other is desired, a hoist chain can be modelled 
without any joints but with self-collision on. This meant that 
the simulator dynamics engine would have to determine the 
movement  of  the  links  based  on  collision  modelling.  This 
successfully modelled the chain with behaviour that was very 
realistic  but  at  a  greater  computational  cost.  The  cost  of 
modelling  the  links  using  collision  modelling  made  the Illustration 22: Hoist 

Chain model showing 
joints

Illustration 21: Starting layout of Hoist Chain Rotation Task, showing manipulator, 
Trunion Wall, and suspended Hoist Chain.
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simulation run about 250 times slower than the simplified version. The simulation 
ran at about 2% of real time, which was not suitable if being used as an environment 
for testing of operator interfaces.

4.7.2.1.3 Process 

Each of the interfaces was applied to the two maintenance situations outlined above:

• the task to place a pin into a double clevis, and 

• the task to remove and rotate a suspended hoist  chain and place into the 
clevis. 

The Joystick Interface during this testing was the Mk I joystick, with the Mk II being 
developed as a result of the test results. Operators were asked to complete the task 
and questioned for subjective information regarding the ease of use of the different 
interfaces. The comments regarding each interface were recorded after each test and 
a comparison between the interfaces was conducted using a questionnaire.  

After the intitial round of testing was completed, the results were used to redesign 
and debug the interfaces and there was a second retest of the interfaces.

4.7.3 Results

The five individuals were made available for the initial testing of the interfaces. Their 
qualifications and experience are as follows:

Serial Operator 
Trade

Machinery 
Qualifications

Computer Literacy

1 Fitter Nil. Nil

2 Boilermaker Forklift, 
Overhead 
Crane, 
Telehandler

Game Consoles

3 Fitter 20ton  Crane, 
Bucket  Truck, 
Forklift

Minimal

4 Rigger 
Supervisor

20ton  Crane, 
Elevated  Work 
Platform, 
Grader

Office suite, GSAP

5 Fitter 20 Ton Crane. Minimal

Comments Regarding the Interfaces

Interface: Positives Negatives

Master Arm • Wasn't  too  bad  to 
control.

• Could  be  improved  by 
aligning  the  Master  Arm  to  the 
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• Read the signal and did 
what you wanted.
• The  whole  concept  is 
very good and would be useful 
• Interface  was  pretty 
responsive.
• Gripper  open  button, 
could be a gripper close button. 
But having it as a gripper open 
button is safer. Probably having 
it  as  a  toggle  open,  toggle 
closed would be more suitable. 
• Easy enough. 
• May help if  the gripper 
button were on the master arm. 
• It did what you wanted it 
to do.
• Working  off  your  arm 
movements  is  the  biggest 
positive. 
• Was able to complete the 
pin-place task.
•

dominant hand. 
• The  dead-man  (actuation 
switch)  could  be  improved  by 
possibly being actuated by foot.
• Didn't  know  where  the 
limits were. 
• Delay – but can get used 
to it
• Needs a grip to handle the 
master arm.
• Delay,  if  it  could  be 
eliminated that would be handier.
• Hand grip needs to be in 
place. 
• Had difficulty  with  Joint 
5, getting it to move. 
• Getting  the  5th  Joint  to 
move was difficult
• Size  of  arm  could  be 
improved,  something  could 
attach to your arm. 
• Gripper  could  be 
redesigned,  grab once and that's 
it.  A Magnet  would  be  a  good 
alternate gripper or some sort of 
pincer
• Clamping  arrangement. 
Need a cradle and a ram setup for 
the tool. 
• Controls  not  to  be  too 
touchy,  gradual  control  that  you 
can react to. 

Joystick 
Interface 

• Doesn't  have to be held 
in place
• Would  be  good  if  you 
could get it to be responsive.
• Park  a  tele-handler  and 
use,  and possibly remove from 
the cab to  stand next  to rigger 
for better communications. 
• The interface wasn't too 
bad in finding a solution it was 
just that I would like the ability 
to switch between the computer 
controlling  joint  space  and  the 
ability  for  the  operator  to 

• Has  a  bit  of  a  longer 
training liability
• Interface is a bit tricky in 
having enough fingers to operate 
the joysticks. Could be fixed by 
having more thumbsticks for two 
hands. 
• Controls not responsive.
• The joystick arrangement 
is awkward.
• Sometimes  the  controls 
don't do what you want them to 
do  [due  to  dynamics  and  joint 
limits]
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control joint space. 
• Joystick would be better 
if  it  did what you wanted it to 
do. 
• Felt  more  responsive 
over  the  amount  of  control 
operator felt he had.

• Hardest thing is  reaching 
all the joysticks. 
• Allow  the  use  of  two 
hands  and  mount  on  block  of 
wood  with  all  joysticks  in  a 
straight line. 
• Too  busy  on  one  hand. 
Split it up with max 4 functions 
on  once  hand.  Possibly  a  two 
handed interface with 3 functions 
each  side,  position  in  one  hand 
and orientation in the other. 
• If  controlling  two  arms, 
only control one at a time, with a 
switch between them
• Joystick  mounting 
ergonomics  would  be  better  if 
mounted side by side.

Android 
Interface

• Nil positives • Not responsive, not doing 
what I want.
• Dead  man  difficult  to 
control,  needed  to  be  better 
integrated or with the foot. 
• Could not get it to rotate 
and assume the position.
• No limits or restraints. 
• Wasn't  responsive  in 
doing what you wanted it to do.
• Getting  the  hang of  it  is 
hard  [unfamiliar  industrial 
interface]
• Touchscreen  stopped 
receiving  commands  half-way 
through.
• Controlling joints  would 
be more beneficial
• Difficult due to interface.

Overall Questions
 The following questions were asked regarding the interfaces:

1. Which Interface was simplest to understand?
2. Which interface gave you more accurate control?
3. Which interface do you prefer and why?
4. Which interface do you least prefer.
5. If you had two features you would change on the preferred interface what 
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would they be?

Run Answers to Questions.

1. 1. Master Arm because one hand is doing most of the action.
2. Joystick Interface if you could use two hands like a game controller.
3.Master arm because operator movements are followed by the slave arm. 
Use of body movements is beneficial 
4. Sensor Interface because the size of the tablet makes it hard to use, 
better if smaller.

2. 1. Master Arm, or if inverse kinematics were working then the Joystick as 
it is familiar to Tele-handler Operator. 
2. Master Arm
3. Master Arm because it does what you want.

3. 1. Joystick Interface was easiest to use and most practical, you can take it 
with you for greater versatility
2. Master Arm but Joystick Interface is better if it stayed still [note at this 
time there was at time drift in the response of the signal.
3. Joystick Interface preferred for ease of use.
4. Sensor Interface  due to delay in response. 
5.Would change the joystick arrangement, such as lining elements up in a 
row if possible. 

4. 1. Master Arm [note this run was successful in placing pin in hole]
2. Master  Arm because it followed what you were doing in the physical 
space. 
3.  Master  Arm preferred  as  it  was  much  easier  to  control.  Maybe the 
Joystick Interface if there may be joysticks split between task space and 
and Joint-space control. 
4. Sensor Interface – did not have a sense of movement or sense of feel. 
5. Master Arm, handle closer to the movement of the arm. 

5. 1. Joystick Interface if it worked
2. Joystick Interface – difficulties with the simulation
3. Joystick Interface – more sensitive to movement
4. Sensor Interface, wasn't really responsive, a bit all over the place. 
5. Have a control of speed with the Joystick Interface. [NB as the djoint is 
normalised, the speed correction in the joystick is removed.]
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4.7.4 Discussion

Overall,  the Master  Arm received the best  feedback during the testing due to its 
accuracy in following the users input, albeit with some slight delay. The delay of 
about  270ms  was  distracting,  but  the  majority  of  operators  were  able  to  adapt. 
Measurements attributed this delay to the Software interface between the IOIO and 
the program, giving the SPI messaging loop a frequency of 3- 4 Hz. This was a 
problem with the IOIO Java libraries or firmware and not in the software developed 
in this project.

Illustration 23: Graph of Orientation response to Joystick Interface. Note that 
an input of the Joystick could affect one or two pose changes, this is an 
incorrect response
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The  Joystick  Interface  at  the  time  of  testing,  had  some problems  with  correctly 
evaluating  the  jacobian  for  orientation,  resulting  in  coupling  of  the  orientation 
movements as shown in Illustration 23. Note that position control was not affected. 
This  was due to  a  bug in the code that  was later  rectified so that  the  operator's 
orientation requirement was correctly achieved by the system. The rectified output is 
shown in Illustration 24.

The ergonomic issues of the Joystick Interface Mk 1 were rectified to break up the 
workload between two hands in Mk II, as has previously been discussed. Due to 
these issues, the Master Arm Interface was the most preferred interface, primarily 
due to the relative accuracy of its task-space/joint-space transformation. Operators 
noted, however, if the Joystick Interface could be improved (as it subsequently was), 
it would be preferred to the Master Arm Interface, since its small size would be better 
suited to a field work profile. The small size could be operated from within a cab 
with minimal setup required, yet be more portable, allowing it to easily transition to 
outside operation. The Master Arm Interface, by contrast, took up significant space 
and  would  be   cumbersome  in  a  machine  operator's  cab.  It  would  also  be  too 
unwieldy to be used in a portable capacity. 

This was reflected in a second round of testing with operators, where the Joystick 
Interface was clearly preferred with some minor ergonomic changes relating to the 
positioning of the actuation and tool buttons. Also, there was a suggestion that some 
type of feedback be implemented to advise the operator if a joint limit were reached, 
as  this  became the  main  reason  why the  Slave  Arm didn't  follow the  operator's 

Illustration 24:  Graph of Orientation response to Joystick Interface after bug fix, the 
output now shows a decoupling of output hence a more responsive interface
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response. Feedback could be achieved through a vibrating motor. 

The results for the second round of testing are not presented formally because only 
one operator was available for testing. That operator had previously preferred the 
Master Arm Interface in the initial round of testing. However, due to the Joystick 
Interface's improved responsiveness and ergonomic design this became the preferred 
interface.  The Joystick  Interface's  small  size,  portability  and rugged,  comfortable 
form make it ideally suited to mobile field operations.

The  Sensor  Interface  was  consistently  rejected  by  the  experimental  audience. 
Operators found it difficult to control the output of the interface, mainly, as it was an 
unfamiliar interface and took some experience to understand how it worked. The use 
of sensors as input within the interface was not immediately obvious like the joystick 
interface. This meant it was not intuitive to use as operators could not immediately 
understand how input was to be achieved.

4.7.5  Conclusions from Interface Testing

The Joystick  Interface is  the preferred method of  control  of  the Arm, due to  its 
intuitive control, compact size and general portability. The Master Arm interface was 
a close second, however the size of the interface would make it difficult to use in a 
field setting. The Sensor Interface was the least preferred because the actual method 
of input was not immediately apparent or familiar.

The response of the Joystick Interface was very accurate in replicating the operator's 
desired  task-space  movements  and  avoiding  large  joint  movements  due  to 
singularities  in  the  solution.  There  is  no  noticeable  computational  delay  in 
determining the redundancy and calculating the joint twitches required. This method 
of determining the redundant joint is pragmatic but the computational requirements 
would exponentially increase with the number of redundant joints to be solved. 
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5 Conclusion
This  dissertation  details  the  development  of  an  intuitive  operator  interface  for  a 
complex serial manipulator, to be used in heavy maintenance tasks. This interface 
allows  the  operator  to  control  the  manipulator  in  the  'task-space',  with  software 
handling  the  conversion  to  'joint-space'.  Testing  of  the  interfaces  shows operator 
task-space control to be most effective in reducing operator workload and improving 
the ease of use of a complex machine. These methods  are applicable in concept, to a 
wider range of manipulators and other machines.

A number of operator interfaces were developed: a Joystick Interface, a Master Arm 
interface and a 6-D Mouse Interface. The Joystick Interface made use of a task space 
to joint space transformation implemented in software. The Master Arm utilised a 
scale model to conduct the transformation. Finally,  a 3D mouse Interface utilised 
sensors  in  an  Android  Device  with  a  software  based  task  to  joint  space 
transformation. These interfaces were tested and the Joystick Interface proved most 
suitable  according to  the  operator's  subjective  opinion.  Quantitative  measurement 
also showed that it accurately reproduced the operator's commands.

The software transformation developed for the Joystick and 6-D Mouse interfaces 
utilised the Jacobian Matrix to complete the task-space to joint-space conversion. 
However, since the manipulator contained a redundant joint, an additional algorithm 
was  required  to  handle  the  redundancy.  This  additional  algorithm also  improved 
manipulator  safety,  as  it  navigated  the  arm away from singularities  which  could 
result  in  large  joint  movement.  The  novelty  of  this  algorithm  is  based  on  its 
pragmatic  approach,  and  could  be  modified  to  achieve  a  number  of  safety  or 
performance goals.

The control strategy centred on the operator specifying commands to the arm in the 
frame of the task. The developed algorithm enabled the control strategy by ensuring 
that  viable  solutions  for  joint  velocity  could  be  found in  a  manipulator  that  has 
redundant joints. Furthermore, this algorithm utilised a cost function that minimised 
the chances of large joint movements due to singularities, improving the safety of the 
device.

Overall,  the  project  has  delivered  a  viable  operator  interface  for  controlling  a 
complex,  redundant   manipulator.  This  interface  was  tested  against  a  number  of 
alternate operator interfaces. The contrasting results of the strengths and weaknesses 
of  various  interfaces  meant  that  a  number  of  key  insights  were  gained,  and  a 
pragmatic approach to redundancy management was developed. 
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Appendix A Hydraulic Actuator Modelling
There are a number of published ways to model hydraulic systems, each varying in 
complexity  and  accuracy.  For  this  application,  the  more  complex  models  were 
chosen  because  they  could  relate   fluid  flow  and  pressure  to  actuator  position, 
velocity and force as a function of valve spool displacement. In this section we will 
examine  three  models  of  Hydraulic  Actuators  and  discuss  their  strengths  and 
weaknesses.

A.1. Simple Models – no pressure term

In the simplest hydraulic models, actuating pressure (PL) and force in a cylinder
(F) is assumed to be constant and equal to the supply pressure of the fluid acting 

on the actuator's working area. The working area can be the area of a piston ( A)  
in a cylinder. The relationship between actuating pressure and cylinder force is given 
below:

PL=
F
A

As pressure does not change, the dynamic relationship is purely between the flow 
rate  of  the  hydraulic  liquid  (Q) and  the  resulting  physical  movement  of  the 
actuator. This is linear displacement (x) for a cylinder. The relationship is given 
by:

Q=A ẋ

for a cylinder where  ẋ is linear velocity(“Engineering System Models,” 14 Jul 
13). The speed of the actuator is therefore proportional to the flow. Typically the flow 
is controlled by a valve, in our case a proportional valve as shown in Illustration 26 
such that the flow is proportional to the position of the valve spool xv related by a 
constant k v .

Q=kv xv

All flow produces movement of the actuator due to the continuity of the system. 
Therefore flow out of the valve can be made equal to the the flow actuating the 
cylinder:

Illustration 25: Model actuator layout
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k v xv=Q=A ẋ  

The cylinder's position acts as an integrator for the valve spool position. A step input 
in  spool  location  would  produce  a  ramp  output  of  cylinder  position,  thus  the 
actuator's velocity is proportional to the spool displacement. 

This model is suitable for lightly loaded conditions where the load on the cylinder is 
not going affect the pressure actuating the cylinder. In this case, the movement of the 
cylinder is going to be equal to the flow rate. This model starts to break down when 
the pressure due to the load on the cylinder starts to approach the supply pressure of 
the oil. This model also does not take into account leakage or the compressibility of 
the fluid.

A.1.1. Hydraulic Motors versus Hydraulic 
Cylinders
Before we move on, it is important to understand the difference between hydraulic 
motors and hydraulic cylinders in the simple case outlined in Section A.1. A motor 
relies on a nominal displacement, broadly equivalent to working area in a piston. Its 
units are m3radian−1 . Additionally the pressure is now proportional to the Torque 
(T ) on the motor. The angular term θ  replaces the linear term x . Therefore 

the relationship between pressure and torque is:

PL=
T

Dm

and the relationship between oil flow and angular movement is:

Q=Dm θ̇  

The  remaining  relationships  between  oil  flow  and  valve  spool  position  remain 
unchanged.

Illustration 26: A typical 3 position 4-Way valve with flow, pressure, Pump (P), Tank 
(T) and A and B ports marked
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Most  hydraulic  motors  vary  from  cylinders  in  that  they  have  a  greater  internal 
leakage, particularly in Gear Motors and Char-lynn motors. This manifests itself as a 
volumetric  efficiency  which  becomes  worse  at  low  angular  velocity.  Volumetric 
efficiency affects the value of nominal displacement making it larger at low speeds. 
The value can be determined by examining the performance data published by motor 
manufacturers. 

A.2. Simple Models – Pressure and Force
A modification of the above models attempts to incorporate  the dynamic response of 
the  cylinder  load  on  the  model.  It  would  now be  assumed  that  the  valve  spool 
controls pressure instead of metering oil:

P=kv x v

This model then equates the pressure on the cylinder and the force on the cylinder 
due to the mass (m) and damping (d) of the load such that:

PA=m ẍc+d ẋc  

where  xc is  the linear  movement of  the  cylinder  with respect  to  time,  ẍc is 
therefore acceleration of the cylinder, and ẋc is the velocity of the cylinder. When 
equated a relationship is generated between the valve spool position and the position 
of the cylinder(“Engineering System Models,” 14 Jul 13):

k v xv A=m ẍc+ ẋc  

This is a great equation for a mathematical study as the relationship between xv  
xc  and P is linear. However there is a serious flaw in studying this equation is that 

the central assumption is wrong.  Pressure is not proportional to valve spool position. 
The relationship will be derived in the next section.

A.3. Hydraulic Valve Dynamics
The relationship between flow (subject  to  load)  QL ,  spool  position  xv  and 
pressure due to the load PL  is a non-linear one. The relationship has been derived 
from pressure-flow curves and it has been shown that flow is a function of spool 
position and load on the cylinder:

QL=QL(xv PL) (Merritt, 1967, p. 81)  

The relationship between these flows requires an examination of the flows within the 
valve and is based on the fundamental relationships in fluid dynamics, flow through 
a pipe or orifice. 
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A.3.1.1. Flow through a pipe

The laminar, incompressible, inviscid flow through a horizontal pipe whose end 
conditions can be described by the fluid's pressure, speed, density, pipe cross-
sectional area and relative height is given by Bernoulli's Equation:

P1+ρ g h1+
1
2
ρ v1

2
=P2+ρg h2+

1
2
ρ v2

2  

which, if we assume the pipe is horizontal (ie h1=h2 ) can be simplified to:

P1+
1
2
ρ v1

2
=P2+

1
2
ρv2

2  

As there is only flow through the orifices at  both ends of the pipe the following 
Continuity Equation applies:

A1 v1=Q=A2 v2

these two equations can be combined and rearranged to give a pressure and orifice-
shape dependent relationship for flow:

Q=A2√
1

1−(
A2

A1

)

2 √ 2(P1−P2)
ρ  

√
1

1−(
A2

A1

)

2  is  unchanging (providing the geometry is  fixed)  therefore is  often 

treated  as  a  metering  coefficient  Cd .  Therefore  the  flow equation  through  an 
orifice is simplified to:

Q=A2Cd √ 2(P1−P2)
ρ  

Illustration 27: Laminar incompressible flow through a pipe, showing all major 
parameters of the governing equations



55

So it can be seen from this equation that the flow is non-linearly dependent on the 
pressures at both ends of the pipe. This is not considered in the simple hydraulic 
model, and is linearly dependent on the size of A2 which if controlled or selected 
suitably in a valve could mean that flow is proportional to spool displacement xv  
if A2=wxv where w is a constant. This is how spool  position is handled in the 
simple  hydraulic  model.  At  no  stage  does  it  seem  possible  to  make  the  spool 
displacement linearly proportional to pressure so the simple pressure model seems 
the  least  accurate.  However,  a  typical  3-position,  4  way  valve  is  a  little  more 
complicated than this, which we will examine in the next section.

A.3.1.2. Flows within a valve

 Illustration 28 shows the flows within the valve in a static sense, by not including 
flows due to compressibility of the fluid. These are better handled when the valve is 
combined with an actuator. The main flows are Qs , QL which are flows external to 
the  valve,  and  Q1, Q2, Q3,Q4 which are  internal  flows,  Q1 and  Q3 are  the 
intended paths for oil flow with Q2 and Q4 are flows due to leakage around the 
spool. The continuity of the flows actuating the load QL can be derived as:

Illustration 28: 4 way, 3 position spool valve. The static flows are 
indicated by arrows. (Merritt, 1967, fig. 5–1)
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QL=Q1−Q 4  

QL=Q3−Q 2

 The pressure drop PL across the load is by definition:

PL=P1−P2  

The  flows  1  to  4  are  all  treated  as  flows  through an  orifice  which  was  derived 
previously and are equal to:

Q1=Cd A1 √ 2(Ps−P1)
ρ  

Q2=Cd A2 √ 2(Ps−P2)
ρ

Q3=Cd A3 √ 2(P2)
ρ  

Q4=Cd A4 √ 2(P1)
ρ  

Here the tank return pressure is usually 0 and can be neglected in Q3 and Q4 . If 
the return line is pressurised then it can be incorporated as being the pressure 
difference between the supply pressure and the tank pressure (Merritt, 1967, pp. 79–
81).

As discussed in the previous section, the areas of the orifices can be functions of the 
valve spool position A=A (xv) for each of the orifices. All of these equation can 
be solved to determine the relationship between the load flow through the actuator 

QL and  the  pressure  across  the  actuator  PL which  are  the  key elements  for 
determining what an actuator can push and at what speed.

A.3.1.3. Simplification – Valve symmetry and 
matching (Merritt, 1967, p. 82)
Determining the functions of the orifices with valve-spool position, can be simplified 
by design of the valve  to ensure that the ports are matched, symmetrical and as 
linear as possible. Matching of the ports ensures that for a given displacement, the 
areas of forward and return flow are the same, that is:

A1=A3  

A2=A4  

Symmetry means that the area of the opposing orifices are the same for a given spool 
stroke from null. Meaning the area exposed is the same when the valve operates in a 
forward direction to the same when it operates the opposite direction:

A1(xv )=A2(−xv)  

A3(xv )=A4 (−x v)
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If the valve is matched and symmetrical then all orifice areas are the same given a 
spool stroke in the actuating direction of the orifice (as opposed to when the orifice is 
acting as a leak flow).  

Linearisation means that the valve slot is kept at a constant width throughout the 
spool stroke, ensuring that the Area of the orifice increases proportionally with spool 
stroke, such as:

A= A (xv)=wxv  

If the valves are matched and symmetrical it can be shown that:

Q1=Q3

Q2=Q4

And by  substituting  the  relevant  flow equations  into  the  above,  and  taking  into 
account the matched and symmetrical nature of the orifices, it can be shown that:

P2=Ps−P1

Incorporating the definition of load pressure drop  PL=P1−P2 , the relationship 
between load drop, supply pressure and pressure in the cylinder lines becomes:

P1=
P s+PL

2

P2=
P s−PL

2

Using the above relationships, we can then redefine the flows through the various 
orifices in terms of supply pressure and load pressure drop:

Q1=Cd A1 √(P s−PL)
ρ  

Q4=Cd A4 √ 2(P s+PL)
ρ

and the flow through the valve that moves the load QL=Q1−Q4 becomes:

QL=Cd A1 √(P s−PL)
ρ −Cd A4 √(P s+PL)

ρ

This  demonstrates  that  the  flow through  the  larger  orifice  A1 minus  the  flow 
through the smaller orifice A4 determines the flow that moves the load. The other 
load flow equation,  QL=Q3−Q 2  can also be treated in a similar manner. These 
flows will both be equal providing the valve is matched and symmetrical. 

Now we will consider further simplification specific to our 4 way, 3 position, closed 
centre valve that due to the closed centre nature of the valve, the leakage flows can 
be neglected as being very tiny(Merritt, 1967, p. 85), such that:

A1=A4=A2=A3=0  , when xv=0  
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A1=A3=wxv , A4=A2=0 , when xv>0

A2=A4=wxv , A1=A3=0 , when xv<0

and consequently:

QL=C d wxv √(P s−PL)
ρ , when xv>0

QL=C d wxv √(P s+PL)
ρ , when xv<0

or combined using the sign of the valve spool displacement:

QL=Cd wxv √ 1
ρ (Ps−

xv

∣(xv )∣
PL)  

This demonstrates the relationship between the flow going to the actuator versus the 
valve spool position and the pressure drop due to load in the actuator. It supports the 
simplification offered in the simple model, that flow is proportional to spool position, 
which is only valid when the pressure drop due to load is small. It does not support 
the claim that pressure is proportional to spool position  highlighting that to be an 
inaccurate simplification.   

A.3.2. Valve connected to Actuator combined 
(Merritt, 1967, pp. 145–148)
In  the  previous  section  we  ignored  transient  compressibility  due  to  the  limited 
contained volume of fluid and negated the leakage internal to the valve due to the 
very small orifice through which leakage could occur. However, when considering 
the valve combined with an actuator, the volume of the fluid in the cylinder and pipes 
is  significant  and  therefore  has  a  transient  compressibility.  Also  important  is  the 
leakage between the cylinders chambers, particularly if considering a gear motor as 
they typically have a high internal port to port flow. As a result, these factors must be 
incorporated into our valve-actuator model and are shown in Illustration 29. 
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The flow from the ports of the valve to the lines to the actuator has already been 
derived:

QL=Cd wx v √ 1
ρ (Ps−

xv

∣(xv )∣
PL)  

which is rearranged to:

QL=Cd √(
Ps
ρ )wxv √(1−

xv

∣(xv)∣

PL

Ps

)  

This flow is accounted for in continuity as a flow due to compression of the fluid,
Qc , a leakage flow, Ql and the flow to move the piston or work flow, Qw . 

The compression flow is the change in volume due to the change in pressure :

Qc=
dV
dt

=
V t

4β

dPL

dt
 

It is proportional to the change in pressure, by a constant related by the total volume 
V t over the Bulk Modulus of Elasticity of a fluid β . 

The leakage flow consists of leakage between the chambers, Ci  and leakage lost 
external to the cylinder C e both represented by a coefficient  and proportional to 
the difference in chamber pressures:

Ql=(Ci+
C e

2
) PL  

which if the coefficients of leakage are combined into a coefficient of total leakage 
Ct lead to:

Illustration 29: Hydraulic valve with loaded 
actuator attached (Merritt, 1967, fig. 6–6)
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Ql=C t PL  

Finally, the flow that does work on the cylinder moves the cylinder piston of area A a 
certain speed ẋ p :

Qw=A ẋ p

By combining these elements, such that Qw equals the load flow minus the losses 
due to compressibility and leakage we get:

Qw=QL−Ql−Qc , or rearranged

QL=Qw+Ql+Qc

This leads to our second equation defining the motion of a cylinder coupled with a 
valve:

QL=A ẋ p+C t PL+
V t

4β

dPL

dt

The  final  equation  of  interest  is  Newtons  second  law  which  will  describe  what 
external loads cause a pressure drop across the cylinder chambers. In a mechanical 
system of a mass, spring and damper this could be related as:

PL A=m ẍp+d ẋ p+k x p+FL  

It is worth noting that for clarity focus is on an actuator being a cylinder as it is easier 
to visualise. However these relationships remain applicable to hydraulic motors, with 
the modification that Dm replace A  and that the angular variable θm replace 

x p .

A.3.3. Complete Hydraulic Cylinder Model.
Utilising the three equations of dynamics with respect to a hydraulic cylinder with 
valve dynamics, we will rearrange into a state-space representation describing the 
movement of the cylinder piston with respect to the valve spool movement. This 
relationship takes into account the loading on the cylinder which has been shown 
earlier to be:

QL=C d √(
Ps
ρ )wxv √(1−

xv

∣(xv)∣

PL

Ps

)  

QL=A ẋ p+C t PL+
V t

4β

dPL

dt

PL A=m ẍp+d ẋ p+k x p+FL  

Firstly the cylinder piston has a velocity. The velocity is equal to the first derivative 
of  position,  hence  we will  choose  our  first  two states  being  piston  position  and 
velocity:

ẋ p=vp

such that the last equation becomes:

PL A=m v̇ p+d v p+k x p+FL
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which when rearranged so that the v̇ p is to the left of the equation:

v̇ p=
A
m

PL−
d
m

v p−
k
m

x p+
FL

m

This gives the three states, PL , v p , x p , plus a non-linear term 
F L

m
. Now 

solving for QL , eliminating that term to determine ṖL :

A ẋ p+C t PL+
V t

4β

dPL

dt
=Cd √(

P s
ρ )wxv√(1−

x v

∣(x v)∣

PL

Ps

)  

The relationship equating ṖL :

ṖL=
−4β A

V t

v p−
4βCt

V t

PL+
4β

V t

Cd √(
P s
ρ )wxv√(1−

x v

∣(x v)∣

PL

Ps

)  

Here the change in pressure drop is linearly dependent on piston velocity and leakage 
while accounting for the relationship with the valve spool position, xv  our system 
input.  Our flow into the system is  also affected by the cylinder internal  pressure 
resisting the supply pressure. 

Having derived the necessary state space equations our goal is not to linearise the 
equations in order to apply linear control theory, but to simulate this system as it has 
been derived, then use linear and non-linear control techniques to achieve position 
control of the system. Our governing equations are listed below:

ẋ p=vp

v̇ p=
A
m

PL−
d
m

v p−
k
m

x p+
FL

m

ṖL=
−4β A

V t

v p−
4βCt

V t

PL+
4β

V t

Cd √(
P s
ρ )wxv√(1−

x v

∣(x v)∣

PL

Ps

)  

These dynamic equations and state variables will be used to facilitate simulation in 
the next section.

A.4. Conclusion
In this section three models of a hydraulic system that can be used for simulation 
have been examined. The most simple hydraulic system, is applicable if the loads on 
the  actuator  are  small  with  the  assumption  that  the  supply  pressure  will  not  be 
challenged by the loads on the cylinder. The second model used an overly simplistic 
approach to dealing with variations in pressure, where the relationship between the 
valve stroke and the pressure in the cylinder was not accurate and not supported by 
the  physics.  Finally,  the  third  model  contained  some  approximations,  but 
nevertheless  remained  consistent  to  the  governing  relationships  within  fluid 
dynamics.  It  successfully  related  cylinder  pressure,  position  and  velocity  to  the 
movement  of  the  valve  spool.  These  are  the  definitive  factors  to  be  included  if 
studying models of hydraulic systems is to have relevance. 
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Appendix B Simulation  Results  of  Hydraulic 
Actuators and control systems.

B.1. Discrete  simulation  of  linear  and  non-linear 
models
This  section  discusses  the  simulation  of  the  different  models.  The  method  of 
simulation relies on Euler integration of the state variables (Billingsley, 1999, p. 11). 
This method consists of estimating the next state value based on the expected change 
in that value over the simulation time period, that is:

xk=xk−1+ ẋk−1∗dt  

The change in state  is  derived directly from the state  equations,  furthermore this 
presents an elegance that lifts the restriction on non-linear relationships in the state-
space. Our non-linear terms derived in the previous chapter can be used directly to 
simulate  the  dynamic  changes  in  the  state  variables  of  the  cylinder.  These  state 
variables are cylinder displacement x p , cylinder velocity  v p  and the pressure 
difference between actuator chambers due to the load on the actuator PL .

B.1.1. Method
To demonstrate the effectiveness of the models, the task of propelling a mass against 
gravity by means of a hydraulic cylinder was simulated. The arrangement is shown in 
Illustration 30. Three models were compared: the simple model, the pressure model 
and the full derived model. The state equations are shown in Table 1.

Each model is simulated with each run varying the amount of mass being supported. 
The Area of the piston is 0.002 m2 and the supply pressure is 105 bar, giving a 
theoretical static maximum supported weight of 2142kg.
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Table 1

Model Description State Equations

Simple Model This  model 
assumes  that  flow 
is  a  function  of 
spool  stroke  and 
that pressure in the 
cylinder  remains 
constant  at  supply 
pressure.

PL=P s

ẋ p=
K
A p

xv

Pressure 
Model

This  model 
assumes  that 
Pressure  in  the 
cylinder  is  a 
function  of  spool 
stroke. 

PL=K xv

v̇ p=PL

A p

m
−g

ẋ p=vp

Fully  Derived 
Model

This  model 
assumes  that  flow 
is  a  function  of 
spool  stroke  and 
pressure  in 
cylinder.

ṖL=
−4β A

V t

v p−
4βCt

V t

PL+
4β

V t

Cd √(
P s
ρ )wxv√(1−

x v

∣(x v)∣

PL

Ps

)

v̇ p=
A p

m
PL−g

ẋ p=vp
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B.1.2. Results
A  comparison  between  the  different  simulated  models  and  their  response  to 
variations in the supported load is shown in Illustration 7.

 

Illustration 30: Arrangement for comparison between Hydraulic actuator models
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B.1.3. Discussion
 The Simple Model's (simstroke) response did not change as the modelled load was 
varied. All four simulation runs lie along the same line. It is worth noting that this 
line shows a strong correlation to the line of our Fully Derived Model (hydstroke) at 
low loading values. 

The Pressure Model (presstroke) exhibits non-hydraulic behaviour, that is, it shows 
constant  acceleration of the load in all cases, regardless of any ability of the value to 
supply  the  hydraulic  fluid  to  support  the  subsequent  cylinder  movement.  The 
Pressure Model would lead to an incorrect understanding of Hydraulic systems and 
highlights the dangers of choosing models which attempt to over-simplify  a real 
system so that  linear  mathematics  can  be applied.  Hydraulic  valves  and cylinder 
arrangements do not continuously accelerate their loads, typically they get to a top 
speed and stay at that speed for a given spool displacement.  

This behaviour is shown by  the fully derived model. In fact its response agrees with 
both the simple model for low loading conditions, and also show a realistic outcome 
for the condition of overloading. The condition of overloading occurs at 2142kg in a 
static sense. The simulation confirms that, with the 2000kg loaded condition showing 
a sluggish response, and the 3000kg showing an overloaded response where the fluid 
is pushed back against the intended direction. 

Illustration 31: Comparision of cylinder stroke response across different models and 
loads, for a step input.
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B.1.4. Conclusion
The fully derived model, allows us to monitor the force driving the load as well as 
the  speed of  the  stroke,  both  of  which  are  affected  by  valve  effects.  The model 
recreates overloaded conditions and also models well the slightly loaded conditions. 
The simple model only has relevance in slightly loaded conditions and the pressure 
based model should not be used at all.  It will be the preferred method for modelling 
hydraulics from now on. The derived model of an actuator and valve will be applied 
to an arrangement for changing a revolute axis.  

B.2. Hydraulic cylinder joint servo simulation
It is common for hydraulically actuated manipulators to utilise a cylinder's stroke to 
vary the angle of a revolute joint. Typically these machines are not automated due to 
the difficulties in modelling  and control as discussed in this section. 

B.2.1. Geometric Arrangement
The  geometric  arrangement  of  the  cylinder 
model is that of a three bar linkage with one of 
the  bars  having  variable  length.  Two  of  the 
bars, a and b retain a fixed length, but the side 
opposite the joint has a length of x+d. Where x 
is the stroke and d  the minimum length of the 
cylinder. The angle of the joint,  θ is related 
to the cylinder stroke by the cosine rule:

(x+d)
2
=a2

+b2
−2ab cos(θ)

hence  the  relationship  between  the  cylinder 
stroke and the angle of the joint is non-linear 
due to the square relationship and the cosine.  

The  following  values  are  applied  in  the 
analysis:

• a= 0.2 m,

• b= 0.4 m,

• d = 0.3 m;

additionally the stroke of the cylinder is limited 
to 0.3 m max.

This  means  that  the  geometric  relationship 
between  stroke  and  joint  angle  will  always 
remain  within  geometric  possibilities.  To 
ensure this is the case, Boundary conditions are applied to the stroke length such 
that:

xmax=0.3 , v x=0.3=0  and

xmin=0 , v x=0=0

Illustration 32: Cylinder Joint 
Servo Arrangment
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When dealing with force in this example, a simplifications is that constant force is 
experienced  regardless  of  the  joint  angle.  However,  if  this  simplification  is  not 
suitable,  the actual derivation of force for this arrangement is now given. 

To assess the effect of a load on a cylinder driven joint, the angular position and 
torques must be related to the force some way. Given the arrangement in Illustration 
32, if a mass is located at the connection of the cylinder rod and link b, with gravity 
g acting straight down, a relationship between the torque due the weight of the mass 
and the mass rotational inertia can be developed that acts on the cylinder piston. 

The torque by the cylinder on the joint is the product of the force of the cylinder by 
an effective lever arm l which is the perpendicular distance from the line of action of 
the cylinder to the centre of the joint. The relationship is:

l=a sinβ  

Therefore the torque on the joint from the cylinder, T1 is given by:

T 1=APL l
T1=APL a sin β

 

Similarly  when  incorporating  the  torque  from  the  inertia  of  the  mass  T2 the 
relationship between joint angular acceleration and linear acceleration of the cylinder 
must be determined. This is again dependent on the effective lever arm and given by:

ω̇=v̇ a sinβ  

And incorporating the expression for angular inertia:

T 2=mb2
ω̇

T2=mb2 v̇ a sinβ
 

The torque due to the gravitational acceleration of the mass, T3, is defined, dependent 
entirely on the joint angle:

T3=m gb sinθ  

The sum of all  torques  should be zero,  but  noting that  T3 and T2  act against  the 
cylinder extending (ie its positive axis).

0=T1+T 2+T3

mb2 v̇ a sinβ=APLa sinβ−mgbsinθ

v̇=
APL a sinβ

mb2 a sinβ
−

mgb sinθ

mb2 a sinβ

v̇=
APL

mb2 −
gsinθ

b a sinβ

 

now  sinβ=1−cosβ and  cosβ=
b2

−(x+d)
2
−a2

−2(x+d)a
 so  substituting  to  remove 

a sin β :

v̇=
APL

mb2 −
(gsinθ)(−2(x+d)a)

(b a)(−2(x+d )a−b2
+(x+d)

2
+a2

)
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This replaces the third state equation for finding v̇ .

B.2.2. Results

Illustration  33 shows the relationship  between cylinder  stroke and speed and the 
resulting angle created by the geometry. The valve setting is a step input. The max 
stroke in this case is 0.3m, at which point the cylinder stops moving, stroke and angle 
are held constant and velocity terms change to zero.

B.2.3. Discussion
The stroke response curves are the same as those in Illustration  31. The cylinder 
stroke response is fairly linear with time, as the cylinder is not overloaded. The joint 
angle response, however shows that the change in joint angle increases with stroke 
length. This effectively is a variable gain that is dependent on stroke length. Also 
angular velocity is accelerating with increasing stroke length. This is due to the non-
linear geometric arrangement between stroke length and joint angle.   This makes 

Illustration 33: Response to a step input of a cylinder driven joint
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sense as a small change in stroke length will make a large change in angle when the 
angle α is small. 

B.3. Hydraulic motor joint servo simulation
In this section we will look at the effect of coupling a hydraulic motor to a revolute 
joint via a pulley or gearbox.

B.3.1. Arrangement
The hydraulic motor is coupled via a gearbox, to the 
joint.  The  arrangement  of  the  joint  is  shown  in 
Illustration  34.   Now  disregarding  the  issues  of 
backlash, and assuming all components are rigid, the 
position and velocity  output  of the motor  should be 
linear  with  the  position  and  velocity  output  of  the 
joint. 

The motor angular position and velocity are θm ,ωm  
and are related to joint angular position and velocity 
θ j ,ω j by  the  gear  ratio  of  the  gearbox  by  a 

proportional amount. This is reflected in the simulated 
response  of  the  system.  The  loading  of  the  joint  is 
purely  inertia  with  a  constant  element  representing 
rolling friction of the bearing. However it is much easier to transfer joint loading to 
the motor as both are angular in nature with the conversion simply a proportional 
relationship governed by the gear ratio.

B.3.2. Response 
Illustration  35 shows the response curves for a motor  driven joint,  and it  clearly 
shows the linear relationship between the actuator states and the joint states. This is 
worth noting because motor torque is also linearly dependent on the joint torque. 
This was of particular use when modelling joint torques in the simulations.

Illustration 34: Hydraulic motor driven 
joint
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B.3.3. Discussion
This result is expected as the mathematics show a linear relationship between motor 
states  and joint  states  in  a  motor  driven joint.  However  in  industry,  the  cylinder 
driven joint is most common in many manipulator tasks, from HIAB cranes to earth 
excavators and backhoes. These  applications require positioning of joints, and whilst 
they  are  open  loop controlled  it  is  the  joint  position  which  is  important  not  the 
cylinder  stroke.  This  task  is  handled  by  human  operators  who  normally  require 
training to ensure safe operation. If closed loop control is required, then the non-
linear relationship between the cylinder stroke and the joint angle will need to be 
handled. 

In a motor driven joint, the joint's angle is linearly dependent on the angle of the 
actuator. Joint torque is linearly dependent on motor torque. This potentially means 
that  the  control  of  the  joint  could  be  more  easily  simulated  and  more  easily 
controlled. This will be apparent when we examine the manipulator simulation.

B.4. Hydraulic Actuator Control
This section will examine a variety of control regimes on our cylinder driven joint 
model. Linear control through PID and State-space  and non-linear Sliding Mode 
Control and Bang-Bang control will be simulated and discussed. The objective of all 
control regimes will be  joint position control. We will compare rise time, settling 
time, steady state error and the effect of control loop sampling. 

Linear control parameters will be determined through trial and error tuning of the 
situation.  The tuning rules will  be explained alongside each control  regime.  This 
method is chosen because we are not linearising the governing equations, hence the 
methods from linear  control  theory are difficult  to  implement.  The linear  control 
examples will be tuned qualitatively and simulated.

Illustration 35: Response to a step input of a motor driven joint. Gear ratio of 4:1 
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Once the control regimes have been simulated, the effect of sampling in the control 
loop will be examined. It will determine whether the control regime requires a high 
performance  control  system,  or  whether  an  agricultural  pace  of  control  can  be 
permitted.

B.4.1. PID Control
In PID control, the output of the system y (t) is  compared to the input reference 

r (t)  to determine an error e (t) :

e (t)=r (t)− y ( t)  

This error is then manipulated to determine the control signal to go into the system, 
in  our  case  the  signal  that  actuates  the  valves  on  the  hydraulic  actuator.  The 
manipulation of the error signal is  what   gives the control regime its  name. The 
control signal u(t)  is made up of a linear combination of the error (proportional), 
the  rate  of  change  of  the  error  (derivative)  and  the  sum  of  all  previous  errors 
(integral). The relationship is described below:

u(t)=pe (t)+i∫ e (t)dt+d
de (t )

dt
 

where p is the proportional gain, i is the integral gain and d the derivative gain. To 
determine the best combination of these gains analytically relies on linearising the 
governing  equations  and  then  modifying  them  using  pole  placement  techniques. 
However with an inherently non-linear system the resulting configuration still has to 
be tuned to the hardware as there is no linearising a fixed geometric configuration. 
Tuning is completed via some rules of thumb in particular Zeiger-Nichol's Quarter 
Wave Damping  (“Quantitative PID tuning procedures,” 2013).  This is  a  common 
PID control technique and consists of the following steps  (“Tuning PID Controls,” 
2013):

1. Turn the integral and derivative modes off and enable the closed loop control 
with proportional mode only;

2. Increment  the  proportional  gain  by  a  quarter  of  the  previous  value  and 
monitor the output for oscillations;

3. Continue  until  the  outputs  successive  peaks  are  about  one  quarter  of  in 
amplitude of the previous peak;

4. Enable the integral mode and increment the gain to eliminate the output error;

5. Finally enable and add derivative control only if the control loop output needs 
better performance.

So we will follow the steps provided and tune our response cylinder driven servo 
joint:
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B.4.1.1. PID Tuning Steps 1-3 – Setting Proportional 
Gain

In Illustration  36 the effect  of changing the proportional gain against  the desired 
response is demonstrated. An explanatory note of the chart; this diagram will need 
colour graphics to show up. In the legend the code P1I0D0 regard the different levels 
of gain for the PID controller, in this case proportional is given a level of 1 with zero 
integral and derivative gain. The control response that has overshoot whose second 
and third oscillations are  about  a  quarter  of  the previous  peak is  desired.  It  was 
assessed that this was achieved at the P=42 mark. Note that the P=22 response, the 
second oscillations are only abour 10% of the previous peak. In contrast the P=100 
response is a little too energetic with the subsequent peaks being about 50%. The 
problem with too much gain is when the drive no longer shortens the rise time, but 
only serves to increase the settling time and and additional proportional gain will 
only require greater additional derivative gain to dampen. This will decrease stability. 
So the quarter amplitude selection of P42 seems to meet the quarter amplitude decay 
requirements without excessively contributing to settling time. After about the third 
peak  the  oscillations  no  longer  decrease  in  amplitude  but  oscillate  about  the 
reference.

Illustration 36: Joint Angle Response to a step input, for differing levels of 
proportional gain in a cylinder driven Servo Joint
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B.4.1.2. PID Tuning Steps 4 – Setting Integral Gain
In this  step,  the  steady state  error  is  examined to  see  if  any integral  gain  could 
eliminate this error. The steady state error for this system, is very small due to the 
stiffness of the system. The system essentially gets maximum drive for very small 
values of control signal. In this case Integral gain is set to a very small amount of  
I=1e-4. This leaves a tiny bit of error which is slowly eliminated, that is difficult to 
see on the scale of the graph. 

This is proven in Illustration  37, where a larger integral gain of I = 1e-2, causes a 
decrease in the response due to the integral of the initial error. This eventually drives 
itself back to zero error. The flat part of the response is due to the cylinder reaching 
its limits. Overall, the integral error is really not needed in this situation and is better 
if it is left extremely small or zero. For the remainder of the testing we have settled 
on an integral gain value of I=1e-5. 

B.4.1.3. PID Tuning Step 5 – Adding Derivative Gain 
to improve response
Derivative gain has the effect of dampening oscillations. Our response is affected by 
oscillations and could be considered underdamped. Adding derivative gain can be 
used  to  limit  the  oscillations  seen  above and prevent  overshoots  without  greatly 
affecting rise time. This is the critically damped case. If used in excess the system 
will become sluggish and is known as overdamped. 

During  tuning,  Derivative  Gain  was  increased  to  a  point  where  there  was  no 
overshoot of the reference. As is shown in Illustration 38, with D=0.1, there is still 
overshoot, the overshoot  isn't  eliminated until D=1 and this  could be considered 
critically damped. As an example of over damping the system, the derivative gain is 

Illustration 37: Response to a step input for different levels of Integral Gain
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increased to D=10.

Overall, the PID tuning of the system is effective at controlling a hydraulically driven 
servo joint when using a continuous control signal. The response to a ramp input is 
also very good, primarily due to the high level of gain. However, there is one effect 
that hasn't  been considered and that is  the effect  of sampling rate  on the control 
system. As this control system will be digitally implemented on a a computer, the 
computer will only have discrete time instances when it will receive the feedback and 
adjust the control signal Effectively due to the time step of our simulation so far, the 
controller sampling rate is 10kHz as the controller is updated every simulation time 
step. What will happen when the sampling rate is reduced to an agricultural 10Hz?

Illustration 38: Effect of Derivative Gain on Joint Response to step 
input
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B.4.1.4. Effect of Sampling time on Joint Response.

Illustration  39 shows  our  original  10kHz system tuning  under  a  10Hz sampling 
regime. The highly oscillatory nature of the response indicates that the proportional 
gain is  too  high.  The selection  of  a  lower gain  seems to make the  system more 
controllable, however the effect of disturbance can upset systems that rely on high 
proportional gain tempered with decent derivative or integral gain. 

Illustration 39: Response to a  step input of a PID tuned system at a sampling rate  
of 10Hz

0 0.2 0.4 0.6 0.8 1 1.2

1

1.5

2

2.5

3

PID Tuning at Lower Sampling Rates

Sampling Rate = 10Hz

 ref Theta P42I1e-5D1 Theta P0.3I0D0 Theta P0.3I0D0.01

Time (s)

Jo
in

t A
ng

le
 (

ra
d)

Illustration 40: Effect of changing sample frequency for a PD system with 
derivative gain
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This is exhibited by the change in response of the system tuned with P=0.3, I=0 and 
D =0.01, when  sampled at different rates as per Illustration 40. This response curve 
shows that by reducing the sample frequency, performance is degraded and becomes 
unstable as indicated by the increasing oscillation around the 2 second mark.  This 
can be contrasted with the response of a system that has no derivative gain and only 
proportional gain. It maintains its stability in even lower sampling environments as is 
shown in Illustration  41. Thus, for a lower sampled system, maintaining a control 
loop with only proportional control is a way of ensuring that the system remains 
stable under the effect of a variety of noise and disturbance.

 

Ultimately,  the  performance  of  the  control  loop  is  dependent  on  the  sampling 
frequency of the system with higher frequencies being preferred. Additionally 10Hz 
which is quite low is shown to be suitable as a sampling rate. The effect of low 
sampling rates is to degrade servo performance. It is therefore important to ensure 
that the sampling rate is sufficiently high to allow higher gains to be used in order to 
maintain the required performance of the system.

B.4.2. State Space Feedback 
In State Space Feedback the system's states are measured or approximated and a gain 
matrix  is  applied  before  they  are  compared  to  the  reference.  This  is  shown  in 
Illustration  42 which depicts  a system where state rate of change  ẋ is a linear 
combination of input δ adjusted by the input matrix B and the states transformed 
by the plant matrix A. The output θ is also dependent on state values modified by 

Illustration 41: Effect of reducing the sampling rate on a control loop with only 
proportional gain

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

System Response of a Proportional control loop

Effect of lower sampling rates

 ref Theta 10Hz P0.3I0D0 Theta 9Hz P3I0D0  Theta 2Hz P0.3I0D0

Time(s)

Jo
in

t A
ng

le
 (

ra
d)



78

an output matrix  C. In this way the system's states must describe all aspects of the 
system. In a closed loop system the states are transformed by a feedback gain matrix 
K and linearly combined with a reference to determine the input term.  Therefore the 
open loop state space response is given by linear control representation as:

ẋ=Ax+B δ  

θ=Cx  

In the closed loop, the states are multiplied by the gain matrix K, and then subtracted 
from the reference value to arrive at δ , such that:

δ=θdes−Kx ,

therefore the open loop response then becomes:

ẋ=Ax+B(θdes−Kx)  

This  is  not  entirely  accurate  for  the  system  given  that  it  contains  non-linear 
components for working with the inputs. B would be non-linear and a combination of 
both inputs and states. Additionally, the model terms describing the load has some 
non-linear elements, such as friction, gravity that are not dependent on any state. 
Additionally the joint state variables are related to the cylinder state variables via 
non-linear geometric terms as described in Section B.2

Nevertheless our model does define a relationship between states x  and their rate 
of change ẋ .

If the state to be controlled is not a 
derivative of another state, for 
example, position in a second order 
system where the next state is 
velocity. Then the equivalent PID 
gains would only be proportional and 
derivative with no integral gain being 
possible. Hence, elimination of steady 
state error, for which integral control 
is used, is achieved through a scaling 
of the reference which is applied 
before the summation of the 
feedback(“State Space Controller,” 2013). 

Given the manipulator's  dynamic equations,  a canonical  form cannot  be arranged 
without linearising the system about some point in the operating space. As a result 
the state equations are:

ẋ p=vp  

v̇ p=
A p

m
PL−g  

ṖL=
−4β A

V t

v p−
4βCt

V t

PL+
4β

V t

Cd √(
P s
ρ )wx v√(1−

x v

∣(x v)∣

PL

Ps

)  

Illustration 42: Generic State Space system 
with feedback
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where  the  states  are:  x1=x p ,  x2=v p ,  x3=PL  and  u=x v .  Also  to  be 
included is the output relationship (roughly equivalent to what the output matrix  C 
does) which is also non-linear:

θ=cos−1((x+d)
2
−a2

−b2

2ab )  and 

θ̇=
θk−θk−1

dt
 

As  this  state-space  representation  is  non-linear,  the  typically  state-space  control 
techniques  of  applying  the  feedback  gains  to  the  characteristic  equation  is  not 
possible  without  extensive  linearisation,  the  motive  for  not  doing  this  has  been 
discussed previously.  Therefore the state feedback gains need to be tuned until  a 
desired response is achieved. 

The aim is to control joint angle, building on the work of the PID control section,  
quarter amplitude tuning is again implemented. Starting with zero gain for feedback 
of all states, the proportional gain (ie the gain for the position state) is increased until 
the system overshoots and dies off with each successive peak 25% of the preceeding 
one. Now there is no integral adjustment to be made, if needed steady state error can 
be eliminated by scaling the reference as detailed above. The final element to adjust 
is the feedback gain of the velocity state to eliminate oscillation.

When the proportional  and integral  gains  of the PID system are applied as  state 
feedback  gains  for  position  and  velocity  the  curves  are  very  similar.  Taking 

k1=42 and  k2=0.5 the simulation outputs the curve shown in Illustration  43, 
which is very similar to that in Illustration 38 showing critical damping.  

Illustration 43: Response curve showing angle, velocity and reference, with gains 
similar to those in the PID critically damped system
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B.4.2.1. Discussion
Overall, the response of the state-space system is very similar to that of the PID 
control system. When comparing both systems there are significant differences in 
implementation, yet there is strong agreement between the responses of the servo 
system for similar levels of gain. 

B.4.3. Variable Structure Control
Variable Structure Control was a control regime developed in the 1950s, where  a 
number of control methods are used in different parts of the error space, with non-
linear transitions between them. For example, in a system where position control is 
desired, the drive signal may be maximum at large errors, towards zero error.  At 
some pre-determined point the  signal may change to a PID control regime or other 
control regime which may have more desirable properties such as stability, settling 
time, or steady-state error. Hence, as a whole, the system is able to enjoy the best of 
both worlds; maximum drive and accuracy(Bengiamin and Kauffman, 1984, p. 3). 
Two  control  regimes  derived  from Variable  Structure  Control  are  Sliding  Mode 
Control and Bang-Bang Control. 

Both Sliding Mode Control and Bang-Bang Control are non-linear control systems 
that rely on a switching regime to change between different control configurations 
states. These states are typically driven close to their maximum input. As a result 
show little response change to variations in the disturbances on the system and can 
handle  noise  quite  well.  This  quality  makes  them  useful  in  real  world  control 
arrangements where  robustness –  the ability to maintain a response in the face of 
disturbance, is key. They are discussed together because the switching mode is the 
same, only the magnitude of drive that differs. Due to the rapid propagation of force 
throughout a hydraulic  system, variable  structure controllers  of such systems can 
exhibit very good response characteristics.

B.4.4. Sliding Mode Control
Sliding  Mode  Control  drives  itself  backwards  and  forwards  across  a  particular 
switching line to drive to a zero error. The switching line is the mode and the system 
appears to slide down when the response is plotted on a phase plane (x versus v). 
Control regimes that rely on this effect to ensure zero error are known as Sliding 
Mode Controllers.(S. Lorenzo and M. Shaker, 1988, p. 1059) The drive in a sliding 
mode controller is proportional to the error, but changes sign according to whether it 
is  greater  or  less  than  the  switching  function,  typically  a  linear  function  with  a 
negative gradient passing through the origin of the phase plane.

Sliding Mode Controllers exhibit a phenomenon known as “chattering” that occurs 
near the origin, it is apparent when the drive has driven to  a significantly small error, 
that  it  begins   to  oscillate  across  the  switching  line.  This  can  be  eliminated  by 
changing  structure  at  small  errors  to  include  integral  values(Bengiamin  and 
Kauffman,  1984,  p.  3).  When  using  actuators  with  suitable  load  holding 
characteristics at zero drive, deadband at a suitable error level can be applied to the 
signal in order to eliminate chattering. This requires deadband to be suitably small to 
ensure accurate positioning of the joint, and a sufficient holding torque to ensure the 
joint is held true. 
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B.4.4.1. Control Algorithm
The control regime is best illustrated on what is known as the Phase Plane. This is a 
graph which the velocity state is plotted on the y-axis and the position state is plotted 
on the x axis. The switching line is represented as a line through the origin that has a 
negative slope as shown in Illustration 44. The system is driven by two gains either 
side of the switching line k1, and k2. The gains operate to position the response 
toward the nearest switching line.

The switching line is given by:

σ=Cx+ ẋ

when σ=0 . Therefore the drive, u, from the system is given by 

u=ψ x  

where 

ψ={k1 , x σ>0
k2 , x σ<0} (Bengiamin and Kauffman, 1984, p. 3)

The  response  of  the  system  can  be  manipulated  by  changing  the  slope  of  the 
switching line C, the forward gain  k1 and the reverse gain  k2 .  By having a 
steeper switching line the response is  faster, however the response may not travel 
down that line if the switching gains are not increased sufficiently. Examples of the 
system switching down different switching lines is shown in Illustrations  45 to  48. 
The sampling rate doesn't have too great an effect on the viability of the sliding mode 
controller any thing faster than 10 Hz will result in a reasonably effective control 
situation.   

Illustration 44: The phase plane 
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One of the key reasons why 10Hz control loops can be tolerated is because of the 
lower gains that are being used to set the drive,  k1=1, k2=−1 . When the gains 
approach  infinity,  such  that  the  drive  is  either  1  or  -1  then  the  Sliding  Mode 
Controller changes into a Bang-Bang Controller and the effect of sampling period is 
not nearly so tolerant.

Illustration 45: Time plot  of system switching down 
a sliding mode of -1 with small gains 1 and -1. 

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

2

2.5

Time plot of Sliding Mode Controller

C=-1, K1=1, K2 =-1

 ref  theta  thetaspeed

Time (s)

A
ng

le
 (

ra
d)

Illustration 46: Phase Plane Plot of system switching 
down a sliding mode of -1 with small gains 1 and -1
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Illustration 47: Time plot of system switching down 
a sliding mode of -10 with small gains 1 and -1
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Illustration 48: Phase Plane Plot of system switching 
down a sliding mode of -10 with small gains 1 and -1
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B.4.5. Bang Bang Control
As previously stated, the Bang Bang controller is a Sliding Mode Controller, with 
infinite gain. When sliding down the mode the controller uses the full drive available. 
The benefits  of a  Bang-Bang Controller  are  a simpler  physical  setup and a very 
robust control regime. This regime rejects noise and disturbances well  due to the 
maximum drive applied by the actuators. For example Illustration 51 shows a Bang-
Bang Controller operating down a sliding mode with C = 100.

The sliding mode is defined as before:

   σ=Cx+ ẋ

but now the drive is not proportional to the error, but full drive, u as given below:

u={ 1 , x σ>0
−1, x σ<0}

The response curves of Bang-Bang Controllers are very similar to that of Sliding 
Mode  Controllers,  however  steeper  sliding  modes  can  be  achieved  ensuring  the 
responses are very good. The penalty for working with such high gains, is that the 
control loop is more critical. The effects of control loop update rate on performance 

Illustration 50: Sliding Mode Controller operating at 
20Hz control rate. 
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Illustration 49: Sliding Mode Controller operating at 
10Hz control rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0

1

2

3

Sliding Mode Controller 10 Hz

C=-10, K1 = 1, K2 =-1, 10Hz Control Loop

 ref  theta  thetaspeed  drive

Time (s)

A
ng

le
 (

ra
d)

, A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)



84

using the Sliding Mode are examined from Illustrations 50 and 49. 

In Illustration  51, we can see that the Bang-Bang controller on our system is quite 
sensitive to the sampling frequency of the control loop, note the changing scale on 
these graphs. Note that this relationship is particular to the choice of valve size. In 
order to accept a lower sampling requirement, a smaller valve should be chosen. This 
is particularly important as at 200Hz the dynamic limits of a typical solenoid valve 
driver are approached.

B.4.6. Discussion
In examining sliding mode controllers we have looked at two basic implementations 
of them. The Sliding Mode Controller with a proportional gain, and a Bang-Bang 
Controller  with  infinite  gain.  They  are  both  robust  as  long  as  the  sampling 
requirements can be met due to their fundamental instability(J. Billingsley, 2009, p. 
74). Each  of  these  examples  suffer  from “chattering”  which  can  be  seen  in  the 
angular  velocity  time  plots,  but  there  are  a  couple  of  methods  to  eliminate  this 
problem. Chattering and the effect it has mechanically on the actuators, is dependent 
on sampling frequency, the system's response times, and the drive value applied.

When applied directly to hydraulic proportional valves, sliding mode controllers can 
result in a high number of actuation cycles, if the sampling loop frequency is low. 
These cycles can quickly use valve life. If the sampling frequency is higher than the 
valve response frequencies, this effect can be reduced. For common valves these start 
at around 200Hz. 



85

The drive value can also have an effect, the full drive of a Bang-Bang controller, will  

ensure that the valve opens completely if the control frequency is within the valve's 
dynamic  range.  However  when  using  the  proportional  drive  of  a  sliding  mode 
controller, as small error values, the drive signal may not be sufficient to ensure that 
the  valve  opens  at  all,  due  to  the  mechanical  deadband within  the  valve  due  to 
friction and profile design. This has the effect of imposing a deadband on the valve. 

Illustration 51: Effect of changing sampling rates on a Bang Bang Controller. For this system with 
drives at this gain would require a control loop towards 1KHz.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0

1

2

3

Sampled Bang-Bang Controller

Control loop 1000Hz

 ref  theta  thetaspeed

Time (s)

A
ng

le
 (

ra
d)

, A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-10

-8

-6

-4

-2

0

2

4

6

8

10

Response of a Bang Bang Controller

10 Hz control Loop

 ref  theta  thetaspeed

Time (s)
A

ng
le

 (
ra

d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0

1

2

3

Bang Bang Controller

Sampling 100Hz

 ref  theta  thetaspeed

Time (s)

A
ng

le
 (

ra
d)

, A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)



86

Deadband,  particularly  that  imposed  in  software,  is  probably  the  most  effective 
method for avoiding chatter at low frequency. It does require some consideration of 
design specifications such as acceptable joint position error and holding torque. Both 
of which depend on a suitably fast control loop to ensure that deadband is applied 
within the appropriate limits. 
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Appendix C Forward Kinematics

C.1. Basis for use
Forward  kinematics  describes  the  methods  for  determining  the  position  and 
orientation of a particular point on a jointed mechanism in respect to another point. 
Given the joint positions, lengths of links and types of joints involved, the difference 
in position and orientation can be determined. It forms the basis for much of the 
simulation and control algorithms that are developed to work with manipulator arms. 

C.2. Method
Assuming the only place an arm can bend is at its joints, calculating the forward 
kinematics  for  an  arm  consists  of  determining  the  transformation  matrices  that 
transform the coordinate frame of the previous link, to the coordinate frame of the 
current link, and continuing this for every link of the manipulator from the Base to 
the  Tool.  The  Transformation  from  the  Base  Frame  (which  can  be  the  world 
coordinate system) to the Tool is then the product of every link transformation matrix 
from the Base to the Tool. We will have a look at a worked example. 

In calculating the forward kinematics of links connected by revolute joints, there are 
two  types  of  transformations  that  allow  the  conversion  of  one  link's  coordinate 
system  into  the  frame  of  an  adjoining  link.  These  transformations  include  a 
Translation, and a Rotation. Both of these can be expressed in a 4x4 Transformation 
Matrix, where the top-left  9 elements are the Rotation Matrix R, a 3x3 Matrix. The 
three  righthanded  elements  are  the  Translation  Vector  x,  a  3x1  vector  which 
determines  the  amount  of  displacement  in  the  x,  y  and  z directions  a  point  is 
translated. The bottom row is always {0,0,0,1} as shown below:

T m
n

=[R x
0 1 ]   

A Transformation matrix which only describes translation, would keep R  as identity 
and would thus be represented as:

T m
n

=[
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

]  

The rotation matrix describes rotations about roll, pitch and yaw (RPY). RPY can 
become problematic and suffer from  gimbal lock  when they are used to describe 
rotations around all three axes which share an origin. In forward kinematics this isn't 
such a problem as each joint only consists of a single axis. 

The three rotation  transformation  matrices  that  will  be encountered will  describe 
rotations about the x-axis, y-axis and z -axis:
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Tθ x
=[

1 0 0 0
0 cos (θx) −sin (θx) 0
0 sin (θx) cos (θx) 0
0 0 0 1

]  

Tθ y
=[

cos (θ y) 0 sin (θy ) 0
0 1 0 0

−sin (θy ) 0 cos (θ y) 0
0 0 0 1

]  

Tθ z
=[

cos (θz) −sin(θz) 0 0
sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1

]  

Each  link  coordinate  frame  is  typically  differs  from  the  previous  frame  by  a 
translation from the previous joint to the new joint and a rotation through the joint. 
There are  many systems in place to  maintain a  coherent  transformation structure 
down the arm. Denavit-Hartenberg (DH) methods are one, but it is often easier to 
choose a resting pose where all the angles in the arm are considered at their “zero” 
position. By maintaining orthogonality of this chosen resting pose with the world 
coordinate frame, the above transformations can be used directly. The transformation 
used is the one corresponding to the world axis the joint axis is parallel to. As the 
joint angles are all 0, the rotation transformations are straightforward to calculate.

C.3. Forward Kinematic Example: 
In this example the forward kinematics will be calculated from the world coordinate 
frame, located top right in Illustration 8 down the arm through the next seven joints 
(there are eight shown in the diagram, we will neglect the one at the gripper). Each 
axes glyph shows the intended rotation with a small circle around one of the axes in 
the same colour of the axis. Red being the x-axis, green for y-axis and blue for z-
axis. Due to the choice of “rest” position, all of the joints are aligned with the axes of 
the world coordinate frame, for all joints equal to zero. 
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For the First Transformation, from the World Frame to the First Link translation is 
applied from the origin to the first Joint. This translation is 900mm down the x-axis, 
0mm along the y-axis and 279 mm higher on the z-axis. The translation Matrix is 
therefore:

 T1
world

=[
1 0 0 900
0 1 0 0
0 0 1 279
0 0 0 1

]
The Second Transformation is for any rotation through the first joint, of an angle 
θ1 ,  whose axis  is  aligned with  the z-axis.  To calculate  the transformation  the 

rotation transformation matrix for rotation about the z-axis is used:

T Shoulder
1

=[
cos (θ1) −sin(θ1) 0 0
sin(θ1) cos (θ1) 0 0

0 0 1 0
0 0 0 1

]  

So the coordinates have been translated from the origin to the location at the centre 
of the first axis, and subsequently been rotated through that axis. The coordinates are 
now in the frame of Link 1. The total transformation from world frame to the Link1 
Frame, T Shoulder

World  is the product of the two:

T Shoulder
World

= T 1
World T Shoulder

1  

Illustration 52: Forward Kinematic example, showing a Base with a seven axis 
manipulator attached showing axis directions. Z-blue, Y-green, X-red.
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T Shoulder
World

=[
cos (θ1) −sin(θ1) 0 900
sin (θ1) cos(θ1) 0 0

0 0 1 279
0 0 0 1

]  

This method can be continued to determine the transformations between a link and 
its preceding link.  For the next link a translation 422mm in the x direction, 0mm in 
the y-direction and 0mm in the z-direction is required. The joint at that point rotates 
about an x-axis by an angle θ2 the transformation 

For an arm of seven joints  the result  will  comprise of seven such transformation 
matrices. Each made up of a translation and rotation that transform the coordinate 
system between link frames. Therefore to determine the relationship of the tool to the 
world coordinate frame would require multiplying all the transformations from the 
world frame to the tool frame.

T Tool
World

= T Shoulder
World T LShoulder

Shoulder TUpprArm
LShoulder T ForeArm

UpprArm T WristZ
ForeArm TWristX

WristZ TTool
WristX  

The transformation matrix T Tool
World will be a 4x4 matrix whose values correspond 

with  world  position  and  orientation  according  to  the  equivalent  matrix  elements 
listed below.

T Tool
World

=[
cγcϕ −sγcβ+c γsϕ sβ s γsβ+c γsϕ cβ x
sγ cϕ c γcβ+sγ sϕ sβ −cγ sβ+sγ sϕ cβ y
−sϕ cϕ sβ cϕcβ z

0 0 0 1
]  

where x, y, z is the position of the tool, and the rotation matrix a combination of 
world coordinate,  roll  β ,  pitch  ϕ ,  and yaw  γ .  There are many ways to 
extract the roll pitch and yaw from the rotation matrix, but the best ones rely on the 
use  of  the  inverse  tangent  function,  atan2().  Atan2()  is  beneficial  as  it  will  also 
determine the quadrant of the angle lies in. Roll β is determined below: 

β=tan−1(m32

m33
)

β=tan−1( cϕ sβ

cϕ cβ
)

β=tan−1( sβ

cβ
)

 

Yaw γ  is determined by a similar formula:
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γ=tan−1(m32

m33
)

γ=tan−1( cϕ sγ

cϕ cγ
)

γ=tan−1( sγ

cγ
)

 

To determine Pitch requires the use of the pythagorean identity sin2
θ+cos2

θ=1 . 
There a two good options for extracting pitch:

option 1: 

 

ϕ=tan−1( −m31

m11∗cos γ+m21∗sinγ )
ϕ=tan−1( sϕ

cϕc γc γ+cϕ sγ sγ
)

ϕ=tan−1(
sϕ

cϕ(cγ
2
+sγ

2
) )

ϕ= tan−1( sϕ

cϕ
)

 

option 2:

ϕ=tan−1(
−m31

√m11
2
+m21

2 )
ϕ=tan−1( sϕ

√cϕ
2 cγ

2
+cϕ

2 sγ
2 )

ϕ=tan−1(
sϕ

cϕ√c γ

2
+sγ

2 )
ϕ=tan−1( sϕ

cϕ
)

 

So now the coordinate transformation can be calculated from the world to the end 
effector using the joint angles. The position coordinates and RPY angles for the tool 
in the world frame can be extracted. 

C.4. Conclusion 
Hence the location of the tool frame can be  determined if the position of the joints 
are available for calculation. This is forward kinematics, determining the position of 
the tool given the joint positions, lengths of links and types of transforms. It forms 
the basis for much of the simulation and control algorithms that are developed to 
work with manipulator arms. 
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Appendix D Arm Dynamics - Recursive Newton 
Euler Algorithm
Previous sections have focused on the determination of what position and orientation 
a tool will have for a given joint angle (Appendix C), and also what change in joint 
angle  will  allow  us  to  achieve  a  given  change  in  tool  position  and  orientation 
(Section 4.3). However for a more comprehensive simulation that incorporates forces 
and weights, arm dynamics need to be incorportated into the simulation. The inverse 
dynamics algorithm, determining the joint forces from the orientation and speed of 
the kinematic chain was taken from Featherstone’s published version of the RNEA 
(R. Featherstone, 2008, chap. 1–5). This version differs from many classical versions 
in that it utilises spatial vectors for force and speed that combine both the angular and 
linear components into 6D vectors. The benefit of this is that all the classical angular 
and  linear  calculations  can  be  represented  in  a  single  line  of  code.  The  entire 
algorithm, if there is access to suitable Matrix libraries, can be represented in as little 
as  22  lines  of  source  code(R.  Featherstone,  2010,  p.  93).  The  algorithm  in 
pseudocode is shown in Figure 2.

Illustration 53: The Recursive Newton Euler Algorithm Pseudocode. (R. Featherstone, 
2010, p. 93)  

A full explanation of the algorithm is probably best left to a reference on the subject. 
However a brief overview of the algorithm is presented below. 
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The algorithm works on a kinematic  tree that represents NB  bodies  and NJ joints 
where NB = NJ for a tree with no closed loops. The tree can be represented by a graph 
which shows the bodies as dots and the joints as linkages such as below:

In  this  representation  the  bodies  are  numbered  0  to  NB,  with  0  being  the  base 
providing absolute reference. And the linkages  are similarly numbered 1 to NJ such 
that the joint “1” links the body “1” to its “parent”, 0. In a serial kinematic tree with 
no closed loops a body can have only one parent, but a body can have any number of  
children. In the algorithm the parent of Body i is λ(i). Other variables such as XJ and 
XT  which  are  spatial  transformation  matrices,  and  Ii is  the  spatial  inertia  tensor 
(includes both angular and linear inertia terms). A graphical representation of this 
relationship is shown below. 

Illustration 55: Coordinate Frames and Transforms associated with Joint i. (R. 
Featherstone, 2010, p. 90)

Illustration 54: Tree Graph of serial manipulator
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Algorithm Flow

From the program flow it can be seen that the program first starts at the base and 
works its way out to primarily evaluate the positions, velocities and accelerations on 
the joints, which are in turn based on the parent’s position, velocity and acceleration. 
As the program steps through this loop it is utilising data already evaluated in the 
previous iteration (for the body’s parent marked with a subscript  λ(i)). This is the 
recursive  aspect  of  the  algorithm  and  the  reason  for  its  efficiency  and  low 
complexity. The forces calculated in this loop are calculated for the forces on this 
body alone and include centripetal, coriolis and other external forces. Gravity was 
modelled  by  an  acceleration  of  g  in  the  negative  z  direction  acting  on  the  base 
therefore (Illustration  53, line 2) would be included in all acceleration calculations 
due to the recursive calculation of acceleration. However it should be noted that the 
forces are not recursively generated in this loop. 

The second loop utilises the forces already generated in the previous loop. It works 
from the endmost body to the base and adds up the forces on each joint including the 
forces on the child(s) joint. This is where the force determination is recursive. The 
force for the joint is calculated in the six spatial dimensions of the body coordinates. 
This term is therefore useful in design of the joints as it includes all the loads that 
will be exerted on the bearings. The item  τi isolates the force that is acting in the 
direction that the joint is not constrained. This will be the force that will load the 
actuator.

D.1. Incorporating the RNEA into Actuator Modelling

As the actuator modelling determines what angular joint states are achieved, and the 
RNEA simply takes those states and returns the torque on each joint, incorporating 
the joint torques into our actuator models was about extracting the information from 
one of the models and feeding it into the other to get solutions that would better 
model the situation as shown in Illustration  8. Firstly the Joint States of position, 
velocity and acceleration were substituted into the RNEA. The RNEA was computed 
and  the  Joint  Torques  were  computed.  These  Torques  were  substituted  into  the 
actuator dynamics as an external force on the actuator. Note that in doing this, we 
used the Joint Servo with  motor actuators, as the relationship between joint torque 
and actuator torque was more linear. Finally, the Joint Servo actuators were updated 
and new angular joint states were evaluated.
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Illustration 56: Program Flow for incorporating RNEA 
dynamics into the Actuator and Control Loop modelling
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Appendix E Custom Manipulator Arm Simulations

E.1. Visualising the Manipulator with Processing
Processing is an open source development environment and programming language 
that is supported by a large community of users to develop software that has a strong 
graphical context. The language is based on Java and it gives instant access to 2D 
and 3D renderers based on openGL (open Graphics Library)  libraries for modern 
hardware-accelerated  graphics.  As  a  result  it  is  easy  to  get  into  processing  and 
develop visually complex programs, which was what was needed to start visualising 
this manipulator.

A screenshot from one of the processing simulations is shown in Illustration  24. It 
shows a model of the arm, floating above a workspace which consists of a ground 
plane, and three walls, painted with bitmaps. The forward kinematics are calculated 
to give the position of the tool in relation to the centre of the base. 

There  were  about  ten  Processing   simulation  sketches  developed  throughout  the 
project, prior to the ACARP funding. Some of the simulations received input from 
sensors, such as accelerometers over an RS232 interface, others used keyboard and 
mouse  input  to  change  the  model.  It  is  a  very  effective  environment  for  small 
programs but can get a little difficult to handle when a program becomes much larger 
say, over 300 lines. Additionally debugging of errors is extremely difficult as there is 
no debug feature in processing to find errors in code.

One of the key aspects to test was the visual feedback interface was the effect of 
distributing cameras about the machine and using these as feedback to an operator, in 
separate viewports. Whilst this may have been possible using third-party libraries, 
there were difficulties in getting the libraries to work. 

The models only had kinematics simulated and the jacobian evaluated. There was no 
dynamics  of any type incorporated into the models.  The forward kinematics was 
simulated using the jacobian to implement task space movement of the tool. Noting 
at this stage the arm was only a six axis representation of a human arm. The shoulder  

Illustration 57: Screenshot from Processing 
Simulation

Base

Tool
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had three joints, an elbow and a wrist that only had two joints. 

Technically,  six  axes  is  the  minimum required  for  a  manipulator  to  assume any 
position  in  any  orientation.  Determining  the  end-position  from the  angles  of  the 
joints is termed Forward – Kinematics, and is relatively straightforward. Determining 
the joint angles required for a particular end-position  is a bit more difficult and is 
termed inverse kinematics.

E.2. Visualising the Arm with Open Scene Graph

E.2.1. What is Open Scene Graph
Open  Scene  Graph  is  a  commercial  grade,  open  source,  graphics  simulation 
environment that is built on openGL but incorporates a number of abstractions so 
that users can concentrate on the simulation and sidestep the detail about the render. 
It  enjoys  widespread  use  across  industrial,  gaming  and  virtual  reality 
industries(“Welcome to OpenSceneGraph website,”  2012).  This essay will  not  go 
into the detail of OSG, as there are sufficient tutorials on the website and across the 
web to do that, but will instead just outline some of the fundamental concepts that 
were important to understand in the development of the simulation for the HMM.

The first key concept is that of a scene graph itself. The scene graph represents a 
number of  nodes that are used to describe the scene to render.  A node may be a 
drawable object (such as a geometric model of an aircraft),  a primitive such as a 
pyramid, or a lightsource. Nodes also cover the various transformation objects, such 
as a transformation matrix or simply a scaling or translation object. The scene graph 
is  represented  by  a  tree,  with  the  root  world  at  the  top,  working  through  the 
transformations as the branches and the objects to be rendered as the leaves(“Scene 
Graph,” 2012)
of the tree. An example of a scene graph is shown below in Illustration 6.

Illustration 58: A Tree representing a simple scene 
graph(“Scene Graph,” 2012)
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Program Flow in OSG
Typically the scene graph is setup prior to render and is then rendered using the view 
command. To get the scene to actually do something, then the scene graph must be 
changed, usually by modifying one of the nodes. The view command incorporates a 
loop which continously calls various callbacks that must be specified prior to starting 
the viewer loop.

Two of the key callbacks OSG implements are an Update Callback and an Event 
Callback that are called at each frame render and traverses the graph from root to 
leaves. The Update callback gives the program the opportunity to identify each node 
and modify the node if required. This callback was especially useful for rendering the 
kinematics  of  the  HMM  arm  by  applying  the  new  transform  to  the  arm,1 thus 
changing the visual scene in the render. 

The Update callback is also useful for modifying user data such as the hydraulic 
actuator modelling, and the Arm Inverse Dynamic modelling using RNEA. To do this 
the classes and types of user data were applied to the UserData node of the root node. 
This node gets traversed like all the rest, and identifed by its class type, (determined 
by  a  successful  cast  to  the  ArmDataType),  changes  to  the  UserData  and  to  the 
transformation nodes dependent on it were applied.(“Changing Models,” 2012)

The Event Callback was used to apply a keyboard input to the system. It works by 
detecting a keypress or mouse movement since the last call to the event callback. By 
interrogating the type of input into the system, the appropriate action can be taken. 
This appropriate action was communicated to the Update Callback (which operates 
separately) through a pointer to information within the Update Callback  (“Update 
Callback,” 2012)
 This was used to allow keystrokes to set the arm position for arm dynamics testing, 
and setting of the desired arm position for actuator modelling. 

E.2.2. Key Concepts in OSG.

There were some key issues experienced whilst rendering to OSG, such as which 
way is up? The Default viewer will initially render a scene with z-axis up, x-axis to 
the right and y-axis into the screen. This corresponded well with the model which 
also has z-axis towards the sky, x- axis to the RHS and the front towards the positive 
y axis. 

As already mentioned, normal transformation matricies have to be transposed prior 
to submitting them to an osg::MatrixTransform transformation. This was completed 
by  incorporating  a  transpose()  method  with  my  matrixes  which  were  of  the 
osg::Matrixf type.

1A point to note was that the transform matrix that is used in OSG is the transpose of the 
transformation matrix usually encountered. (This appears to be a decision of the original OSG 
developer.)
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E.2.3. Importing of geometric models in OSG

OSG primarily sources its drawable nodes from geometric models imported into the 
scene graph rather than developed from primitives. The import file type, .osg, can be 
exported  from  some  CAD  programs.  As  a  result,  and  in  order  to  utilise  the 
productivity benefits of developing the models in a commercial modelling program, 
BlenderTM with an .osg plugin was utilised in order to correctly reference the models 
exported from the CAD program as an .STL file, apply textures and then export from 
blender as an .osg file. The referencing in Blender consisted of ensuring the origin 
was  in  the  correct  place,  (such  as  at  the  parent  joint)  and  that  the  model  was 
orientated to the global axes correctly. This ensured that the models would show up 
at the right place with the correct orientation, when the transformation matrix was 
applied to them.  

Enabling Multiple View Ports with OSG

OSG enables the creation of multiple viewports which can display different aspects 
of the scene graph. These were enabled by defining an osg::view object, complete 
with  Camera  Object,  including  projection  maxtrix,  position  and  orientation,  and 
adding these to the default osg::viewer, which renders all view objects. This  allowed 
the rendering of a world scene, a head camera angle, and a hand camera angle. As 
shown in Illustration 6. 
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E.2.4. Blender
Blender is another open source CAD modelling program that is primarily targeted 
toward  animation.  As  such  its  mechanical  design  capabilities  are  almost  zero  in 
comparison to the latest professional CAD packages available. The interface is not 
intuitive  as  it  has  little  resemblance  to  the  typical  user  interfaces,  but  once  it  is 
mastered it can provide some powerful animation capabilities. 

However  for  this  simulation  development  Blender  was  used  solely  to  reference 
models developed in a commercial CAD program to the appropriate origin and to 
ensure  the  orientation  was  correct.  It  was  also  possible  to  apply  materials  and 
textures to the models that would show up in OSG. Blender could import the .STL 
file developed in CAD, which is a vertex representation of the surfaces of the model, 
reference it, and export as an .osg file for use in a scene graph in OSG. This is how 
Blender was used in this simulation.

Illustration 59: Screenshot from OSG-based simulator showing three viewports, 
Overview (top), Head (bottom left) and Tool (bottom right)
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E.3. Conclusion
OSG simulation effectively rendered the scene and allowed interfacing with a variety 
of user interfaces. It also allowed dynamic simulation of arm actuators loaded by the 
forces  produced on the  arm.  It  was used to  develop and demonstrate  the human 
interfaces to be used for operator control and feedback. However because collision 
modelling was not implemented, it was difficult to accurately recreate a work task 
environment. This limitation was removed through the adoption of Robot Operating 
System as a software framework.
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Appendix F Application of ROS and GAZEBO in 
simulation of manipulators

The dynamics of hydraulic servos has been examined, in order to test the effects of 
different control regimes.  When the hydraulic servos are substituted into a serially 
linked arm on a manipulator, it important to know how controllable the arm becomes 
and whether a human operator can handle it. To answer this question and to provide a 
feedback mechanism for testing interfaces without a real arm, a variety of simulation 
environments were developed. Initially some custom environments were developed 
that  incorporated  arm dynamics.  The methodology for  implementing  manipulator 
dynamics  is  listed  in  Appendix  D There  were  two  custom  visual  simulations 
developed,  these  are  detailed  Appendix  E Finally,  the  custom  simulations  were 
dropped in favour of the GAZEBO 3D robotic simulator. A very sophisticated, open 
source  simulator  with  dynamic  and  collision  modelling,  interfaces  directly  with 
Robot  Operating  System (ROS).  It  is  a  highly  customisable  environment  and  is 
suitable for all types of Robotic Simulation.

F.1. Robot Operating System
Robot  Operating  System  (ROS)  is  a  world  class,  open  software  tool  set  for 
developing complex code  arrangements as collections of simpler programs. It was 
developed by the incubator company Willow Garage to drive their  PR1, PR2 and 
TurtleBot platforms. It has since been taken up by many robotics companies as the 
software  framework  including  traditional  NC  robot-building  companies  like 
ABB(“ROS Industrial,” 2013), iRobot and Rethink Robotics.  It is an open-source 
software  framework,  whose  development  was  transferred  to  the  Open  Source 
Robotics Foundation (OSRF) early in 2013. 

ROS works  by linking multiple  small  programs, known as nodes,  via formatted 
messages  over  defined  topics  carried  by  any  TCP  network.  Messages  sharing 
information  are  published  and  subscribed  to  between  nodes  in  a  synchronous 
method. This allows powerful computers in a cloud network to interact and support 
mobile and remote robots with low internal computational power. The scope of ROS 
is immense and can support any conceivable architecture of intelligent robotics in 
development  today.  Best  of  all,  open  source  and  available  for  commercial 
application.  This  is  inline  with  Willow  Garage's  objectives  to  make  intelligent 
robotics development widespread (“Overview,” 2011).

ROS comes packaged with a 3D dynamics simulator known as GAZEBO. However 
the  latest  versions  have  split  the  two environments  into  standalone  but  mutually 
supporting programs. It handles a far greater range of simulation capabilities than 
was developed internally, as it includes a true dynamic environment for modelling of 
collisions and joint torques. The programming overhead for using GAZEBO is not 
high,  as  the  same  nodes  that  communicate  to  GAZEBO  can  be  reused  to 
communicate to actual hardware. The key to using GAZEBO is the robot model. 
This is described in an Universal Robot Description Format (URDF) , which is a 
ROS format used by a variety of other ROS packages. URDF use has recently been 
depreciated in GAZEBO, for Simulation Description Format (SDF) preferred as it 
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includes many features for building environments not available in URDF. Both are 
written in XML and are typically human readable.  They describe everything relating 
to the model, including joint positions, collision  models,  3D models, inertia and 
mass, sensors and plug-ins programs that allows software to be run on the simulated 
model.     

F.1.1. ROS Message Framework
In ROS, nodes are linked together via topics and services. Each passes a formatted 
message,  but  fundamentally  have  different  message  flows.  Over  a  topic  there  is 
usually one publisher and one or more subscribers. Messages are published over a 
topic at a set rate typically 1 – 100Hz, though the actual throughput, depends on the 
size of the message and the bandwidth of the link. Messages sent over a topic usually 
represent a stream of information, such as joint states, or video. Services on the other 
hand,  are  typically  asynchronous  and  follow  a  request  –  reply  sequence.  The 
initiating node is the service client that issues the request that is processed by the 
receiving node which contains the service server. When developing code the names 
of the topics and services are used to control which nodes are talking to each other, as 
a particular message type may be used over a number of different topics or servers. 
ROS message traffic is not real-time, that is message publication may be delayed 
depending on the work load of the issuing computer, router bandwidth and message 
size, as a result it is good practice to ensure that time-stamps are applied to messages 
and servers, so that the temporal validity of the information can evaluated by the 
subscriber.  

Illustration 60: Example of a ROS communications network showing all nodes (ellipses) all topics 
available (rectangles) and messages currently being sent (arrows)
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Illustration  60 gives  an  example  of  a  ROS network which  includes  a  GAZEBO 
simulation. The ellipses represent software nodes and the boxes represent message 
topics. The arrows represent messages, so where two nodes are linked by arrows 
through a topic, illustrates a publisher/subscriber link. The direction of the arrows 
shows which node publishes a message and which node subscribes (consumes) the 
message. Service Servers and Service Clients are not illustrated here as their links are 
usually not permanent. Note that the /gazebo node represents all the plugins that are 
attached  to  the  models  being  simulated.  In  this  case,  it  includes  the  program 
describing actuator dynamics and message interface of the slave manipulator arm, 
and two camera sensors, one of which is publishes to a node that outputs the image 
data to screen. 

F.1.2. Developing Manipulator Dynamics 
Developing  a  manipulator  model  with  ROS  and  GAZEBO  is  a  combination  of 
describing the manipulator with a URDF file and writing a plugin program which 
will provide software control over the model. The plugin can communicate directly 
with the simulated model, whilst providing the ROS interfaces that external nodes 
can communicate with as shown in Illustration 60.  Such a setup, allows a GAZEBO 
model to present the same interface as a real device, allowing external elements, in 
our case the Human Interface devices, to remain unchanged whether working with a 
simulated model or with a real manipulator. Whilst this could be achieved with a 
normal programming environment such as OSG, the standardised and modular nature 
of the software make it as easy to specify the output from a joystick, the joint state of 
a manipulator or streaming video from a camera sensor. It also supports distributing 
the software network over multiple computers and processing cores.  

The key parts of the model to ensure the arm is correctly simulated involve:

1. specifying a visual reference for the links of the arm;

2. specifying  the  kinematic  tree,  in  terms  of  joints  and links  which  is  taken 
directly from the kinematics already developed.

3. Specifying the inertia and centre of gravity values for the links of the arm.

4. Specifying  the  collision  models  for  the  links  of  the  arm.  To  reduce 
computational complexity, collision models for most links are simply boxes 
around the links, except for the grippers where the collision model is a 3D 
object.

5. The gripper  links  (left,  right  and palm)  are  specified  as  a  gripper  object, 
which allows simplification of the modelling by treating gripper pickups not 
wholly through collisions but through the implementation of a joint between 
the gripper and object, given a certain number of collisions have occurred 
between the gripper elements and the object.

6. The  plugin  specifying  the  interface  between  the  simulation  and  the  ROS 
system, as well as actuator dynamic modelling of the hydraulic actuators.   
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F.1.3. Plugins
In the simulated model developed in GAZEBO, the ROS plugin did a number of 
things:

1. implemented the ROS Interface for the slave device;

2. interfaced actuator dynamics with the simulated model. 

The ROS interface consisted of a subscriber and an a service server. The subscriber 
over  topic  /gazebo/valve_signals  of  messages  of  type  motorcomd.  Motorcomd 
messages contained eight 32-bit float values which specifying the directional valve 
setting. They had a range from 0 to 1, with 0.5 specifying a closed valve, for each of 
the actuators including those on the gripper. This replicated the signal that will be 
applied to the proportional valve driver as a pulse width modulated signal. 

The Service Server allows querying of joint position by a string and returns a list of 
joint positions expressed as integers ranging from 0 – 1023, with a zero position of 
512. It forms the feedback link for the system control system. This is representative 
of the output that is presented from the 10 bit, absolute rotary encoders, and allows 
us to test how best to deal with the data presented from the sensors. 

The plug-in interacts with the simulation by receiving a software object describing 
the  simulated  model's  attributes.  This  gives  the  plugin  access  to  the  simulated 
model's  attributes  and  provides  functions  to  query  and  change  them  within  the 
program.  Objects  representing  the  model's  joints  are  extracted  from  this  model 
object, and are used to query joint angle and velocity measurements and to apply 
joint  torques.  The  same  actuator  software  objects  developed  in  the  custom 
simulations  are  reused.  Hydraulic  motor  objects  are  used as  actuators  due to  the 
linear relationship between joint torque and motor torque. Velocity values are taken 
from the Joint objects and applied to the hydraulic motor models. Also applied is the 
valve spool  position,  taken from the  /gazebo/valve_signals  topic  and the actuator 
model is computed.   The result of the computation is an actuator torque which is 
applied directly to the model's joint objects. 

F.2. Conclusion
Use of GAZEBO and ROS represents worlds best practice in the use of simulation 
modelling.  The  result  contains  everything  that  is  required  to  successfully  test 
operator interfaces, to examine key aspects of the Manipulator design, particularly 
the control and software modelling,   and range of movement and gripper design. 
GAZEBO's  modelling  of  maintenance  tasks  provided a  safe  environment  for  the 
evaluation of the operator interfaces and led to very constructive feedback. In Part 4 
our  3-dimensional  dynamic  simulation,  powered by GAZEBO, will  be used   to 
support the development of the operator interfaces to be used with this manipulator, 
by providing a safe environment for testing.  
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