
Smart Forms

A survey to state and test the most major electronic forms
technologies that are based on W3C standards

Submitted by
Radiya Abolkhairat

0050107610

Supervised by
Dr Stijn Dekeyser

A thesis submitted for the degree of
Master of Computing Technology

In major(Software and web)

Department of Mathematics and Computing
Faculty of science

The University of Southern Queensland, Toowoomba, QLD

June 17, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/211496553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to thank my supervisor, Dr. Stijn Dekeyser, for his guidance,
encouragement, support and patience over the difficult conditions that I had
to complete this research.

I also would like to say thank you to Dr. Richard Watson for his help
and recommendations.

Finally, I would like to thank my husband for his support, care and love.

1

Abstract

Smart Forms are efficient and powerful electronic forms that could be used
for the interactions between end users and web applications systems. Several
electronic forms software products that use W3C technologies are presented
to meet the demands of users. This thesis aims to study and test the major
electronic forms technologies that are based on W3C standards. It discusses
the main electronic forms features and experiments them with some essen-
tial applications. This research produces deep understanding of the most
electronic forms technologies that are based on W3C standards and their
important features, which make an electronic form smart form. In addi-
tion, it opens developments prospects for other researchers to develop some
applications ideas that could contribute in the electronic forms domain.

Contents

1 Introduction 6

2 Major electronic forms features 8
2.1 Electronic forms supported features 8

2.1.1 Data Validation . 8
2.1.2 Dynamic form modification 10
2.1.3 Calculation feature . 10
2.1.4 Access right control 11
2.1.5 Data Storage . 13
2.1.6 SVG feature . 13
2.1.7 subforms feature . 14
2.1.8 Hint information feature 14
2.1.9 Dependency update feature 14
2.1.10 Upload feature . 15
2.1.11 spell checking . 15
2.1.12 Autocomplete feature 15
2.1.13 Summary . 15

3 Technology and Literature review 16
3.1 W3C electronic forms technologies 16

3.1.1 HTML Forms . 16
3.1.2 XForms . 17
3.1.3 HTML5 Forms . 26
3.1.4 XForms VS. HTML5 forms 39

3.2 Related research . 41
3.2.1 Generation and validation of web forms using database

metadata and xforms. 41
3.2.2 Applying the xforms standard to public health case

reporting and alerting 42
3.2.3 Peer-to-peer form based web information systems . . 42
3.2.4 Json for xforms . 43
3.2.5 MVC web framework based on eXist application server

and XRX architecture 44

1

3.2.6 XFormsDBAn XForms-Based Framework for Simpli-
fying Web Application Development 44

3.2.7 Generating XForms from an XML schema 46
3.3 Summary . 46

4 Electronic forms applications 47
4.1 AJAXForms Project . 47

4.1.1 Installation . 47
4.1.2 Form supported features in AJAXForms 49
4.1.3 Why is AJAXForms involved in this research 52

4.2 eXist-db . 53
4.2.1 eXist-db data storage 53
4.2.2 eXist-db security . 53
4.2.3 Installation . 54
4.2.4 client-side functionality (xsltForms) 55
4.2.5 Server-side functionality (betterFORM) 60

4.3 Orbeon Forms . 63
4.3.1 Orbeon Forms builder 63
4.3.2 Installation . 64
4.3.3 Supported form features by Orbeon Forms 65

4.4 Microsoft Office InfoPath 2007 71
4.4.1 Installation . 71
4.4.2 connection to a web service 71
4.4.3 Form supported features in InfoPath 72
4.4.4 Data storage . 73
4.4.5 Access rights control 73
4.4.6 SVG feature . 73
4.4.7 subforms feature . 73
4.4.8 Hint information feature 73
4.4.9 dependency update feature 74
4.4.10 Upload feature . 74
4.4.11 spell checking . 74
4.4.12 Autocomplete feature 74

4.5 Summary . 74

5 Summarized comparison between tested applications 75
5.1 client and server side functionality comparison 75
5.2 Form features comparison . 75

5.2.1 Data validation . 76
5.2.2 Dynamic form modification 76
5.2.3 calculation . 76
5.2.4 Data storage . 77
5.2.5 Access rights control 77
5.2.6 SVG feature . 77

2

5.2.7 Subforms feature . 78
5.2.8 Hint information . 78
5.2.9 Dependency update feature 78
5.2.10 Upload feature . 79
5.2.11 Spell checking . 79
5.2.12 Autocomplete feature 79

5.3 Summary . 79

6 summary, conclusion and further work 80
6.1 summary . 80
6.2 conclusion . 80
6.3 further work . 81

3

List of Figures

3.1 HTML5 Form Attribute Implementation, sourced from [43] . 32
3.2 HTML5 Form input types, sourced from [43] 33

4.1 sourced from [1] . 48
4.2 permission categories(reprinted from [13]) 54

4

List of Tables

3.1 HTML5 web storage browser support, reprinted from [36] . . 37
3.2 HTML5 web SQL database browser support, reprinted from

[36] . 37
3.3 XForms VS. HTML5 Forms 40
3.4 Xfroms and HTML5 Forms supported and non-supported fea-

tures . 40

4.1 reprinted from [13] . 54
4.2 reprinted from [51] . 67

5.1 functionality type comparison 75
5.2 Data validation comparison 76
5.3 Dynamic form modification comparison 76
5.4 Calculation comparison . 76
5.5 Data storage comparison . 77
5.6 Access rights control comparison 77
5.7 SVG feature comparison . 77
5.8 Subforms feature comparison 78
5.9 Hint information comparison 78
5.10 Dependency update comparison 78
5.11 Upload feature comparison 79
5.12 Spell checking comparison . 79
5.13 Autocomplete comparison . 79

5

Chapter 1

Introduction

SmartForm is a dynamic electronic form that has powerful electronic features
such as connecting to database, calculation and validation. The electronic
form is a digital version of the paper form. Electronic forms present many
advantages that addressed problems with using paper forms such as:

• The automatic validation and calculation with electronic forms makes
entered data accurate and consistence. Using electronic forms reduce
the chance of having errors and fast filling data.

• Routing paper forms from one person to another could be costly and
time-consuming because it requires for several business processes ar-
rangements. Electronic forms can automate a dynamic workflow for
routing data form.

• Electronic forms can be connected to a network (Internat or Internet)
that make the update of the forms easy and fast.

• Electronic forms use different technologies for security that make them
safer for sensitive information than paper forms.

Different technologies are presented to improve electronic forms with
useful features such Portable Document Format (PDF), word processors,
spreadsheets forms, XForms and HTML Forms. PDF electronic forms are
based on International Standard Organization (ISO) specifications and in-
clude data, logic and presentation information to be rendered as the same
look on papers [5]. Word processors and spreadsheets are Standard of-
fice applications that can be used for creating electronic forms with limited
features [5]. The main objective of this thesis is producing a deep study
of the major electronic forms technologies and applications that are based
on World Wide Web Consortium (W3C) standards such as XForms and
HTML5 Forms.

6

Thesis structure: This thesis starts by providing background about
smart forms and the technologies that are included and excluded in the
study. Chapter 2 describes the most major features that will be tested later
to check their availability and support by electronic forms technologies and
applications. Chapter 3 reviews the primary technologies that presented
by W3C standards, and discusses the related researches that conducted to
develop or study electronic forms technologies. Chapter 4 describes some
electronic forms applications, experiments and assesses their support for the
presented features in chapter 2. Chapter 5 presents a summary that com-
pare the functionality and form features of the experimented applications
which introduced in chapter 4. The last chapter provides a conclusion and
suggestions for future work.

7

Chapter 2

Major electronic forms
features

Smart form is a part of a web application. Web application is a program
that resides on the server and transported to the client across the network
and displayed using a web browser. There are two kinds of web applications:
client and server sides. Server-side script handles how the information could
be stored or retrieved. Client-side script handles how the information could
be displayed to the user. Electronic forms have many different features that
make them smart and help the user to deal with data in easy, accurate and
secure way.
Client-side script is used on the user‘s computer and executed by the web
browser. When the server sends a requested web page to the user, that
page would be displayed by using any scripts on the client-side. Client-side
scripting is mainly used for appearance and interaction such as JavaScript.
It can be viewed and copied by the user [2].
Server-side script cannot be viewed or copied by the user because it runs
on the server. When the client sends a request for a web page to the server,
the server will execute the script for that page and sends the results to the
client to display the page. PHP is an example of server-side scripts [2].
This chapter explains the most major features of electronic forms with their
client-side and server-side implementations.

2.1 Electronic forms supported features

2.1.1 Data Validation

Validation is to check the quality of the entered data in a form fields and
determine if it is compatible with specific standards and rules. There are
several different types of data validation such as:

• Existence validation: This check is used for required fields in a form

8

to make sure they are not left empty.

• Range validation: This check is to make sure that the entered data in
a field is in a specific range.

• Data type validation: To check if the entered data is the correct type.
For instance, to make sure there is no numbers are entered in the name
field.

• Field length validation: To ensure the size of numbers or characters is
entered. For example, to make sure that the entered name is not too
long.

• Digit validation: To check if a code of series of numbers or characters
is correct. This validation uses an extra digit append to the code and
generated from the code itself using an algorithm. Examples of this
validation are bank account number and International Standard Book
Numbers (ISBN) validations [3] [17].

• Form completion validation: This validation is to check if a form is
completed by using a formula set by the forms developer. For Example,
if a form has a check box that determines if it is completed or not ,
the form completion validation would be by checking the value of that
check box [14] .

Client-side validation

When the user enters data in a form, the input date would be validated by
executing a script which is submitted to the client with the web page. If the
script detects any error, an error state is displayed to the client. The input
data is sent to the server if no error is detected. [39]

Server-side validation

When the user enters data in a form, the input data is sent to the server to
be validated. If the server-side validation script detects any errors, an error
state is sent to the client. The input data is transmitted to the next process
if no error is detected. [39]

Client-side VS server-side validation

Server-side validation is more secure and reliable than client-side because
the latter one is easy to be attacked, injected with other harm codes or
stopped by disabling the javascript code. [46]

Using only the server-side implantations fix the problem and it is enough for

9

validation, but because it is harder to setup and deal with than client-side
implementations. Moreover, the client-side one helps to reduce round trips
to the server. So, it seems that the good solution for this problem is to use
both of them. [25]

2.1.2 Dynamic form modification

The purpose of a form determines the number of fields. So, it is better to
give the user the ability to modify the form such as adding new fields and
remove them. For example, sometimes users need to add more than one
phone number. The new form modification (including, adding, or hiding
fields) would be created as a new node and then add it to the DOM. Any
modifications could be removed from the form using Dom functions as well.
[9].

client-side

The modification of the form is executed on client-side and then sending
these modifications with data after validation to the server.

server-side

The sending modifications with data are validated to check if they meet
specific requirements. For example, the server determines if the number of
adding modification is not more than expected. If so, data is not stored and
an error message is sent to the client.

2.1.3 Calculation feature

This feature is used to compute a form field based on a specific formula. This
formula uses form fields or other external values. The formula is executed
when the user finishes filling out fields and submit the form. Calculation
could be written in different ways. For instance, a calculation may be per-
formed when a certain condition is met [56]. Calculation may be performed
on different types of data. For example: [37]

• Date calculation: For example, a form calculates the date of each
sale in an organization. So, the sale representatives can perform their
activities before or after that date.

• Form serialization calculation: For example: invoices, receipts and
forms that have a unique reference number. A calculation formula
provides the form with a unique number (invoice, receipt or reference
number) based on previous stored form numbers.

10

• Numrical calculation: This calculation performs mathematical opera-
tions between numbers from form fields values or other external values.
For example, calculating the total price in an invoice form.

client and server side calculation

This feature may be implemented on either client or server side. Calculation
on the client is quicker, where there is no need for an internet connection to
do it. However, it is not secure because the script could be turned off and
the calculation may not be executed at all.

2.1.4 Access right control

Access right control refers to a set of security information that enables users
from access to resources depending on their permissions and roles. Permis-
sions are provided to users on various levels of access that depend on their
roles or jobs. For example, a profile form gives the user a table-level access
to store data at the first time of filling out the form, and then the same
user is given a row-level access to the form to update or delete details from
his/her profile.

Reference Monitor (RM)

Access control policy (rules that is taken on by a system to control access
to a resource) is implemented on the ability of users to perform operations
on information in a system. This access control policy is based on a set
of requirements on a control validation technique called Reference Monitors
(RM) [28]. Based on the residence of reference monitor, there are two kinds
of access control models: client-side and server-side [59].

• Client-side RM
In this model, Client Reference Monitor (CRM) is located in the
client‘s system and controls access to and usage of data and infor-
mation. Data can be either stored centrally or locally. Data cannot be
customized for specific users. However, users still need to prove that
they have access to limited rights to the information on the client.
[59] [64]

• Server-side RM
Server Reference Monitor (SRM) in this model is stored on the server‘s
system and controls access to data. Information is allowed to be stored
on the clients storage if it does not need to be controlled centrally. If
access to the information has to be controlled centrally, this means
that it must not be allowed to be stored on the client side. [59] [64]

11

• Client-side Vs server-side RM
CRM is less reliable and credible than SRM because CSM is more likely
to be manipulated and the information is vulnerable to be attacked
by malicious users. However, CRM is needed when the client has to
control delegation of information to other users on behalf of server.
The better solution is having both SRM and CRM working together
for better functionality and security. [59] [64]

Access control models

• Discretionary-access control (DAC)
DAC is an access control mechanism that allows the user to change
the access policy, where users are able to control access to their own
resources. In addition, users can transfer the access rights to those
resources to other users. DAC is flexible and easy to be implemented.
However, it may be not secure because malicious users may easily
change the access policy on behalf of the owner and make data acces-
sible by others.

• Mandatory Access Control (MAC)
MAC is an access control mechanism where the access to all resources
is controlled by the system administrator. It is not allowed for users to
change the access control policy. Mac is not easy to be implemented.
Yet, it is more secure than DAC.

• Role Based access control (RBAC)
RBAC provides a secure and effective way to control access to resources
based on permissions and roles. Under RBAC Roles are formed to
different job functions in a system, Users are assigned to the roles
based on their responsibilities, permissions are assigned to roles and
the user could be a member in more than one group. [10]

Electronic form access control

The electronic form could be involved in control access on different levels
such as:

1. form-level access:
A traditional user name and password form may be used to control
access to other web pages of the application or to the database itself.
Furthermore, users could have different access to different views of the
form depending on their roles and their permissions.

2. database-level access:
In this case, the roles, permissions, usernames and passwords are per-
formed on data storage itself under the database system that is re-

12

sponsible to control access. The system asks the users to enter their
credentials to be authorized to access to the database through the
form.

2.1.5 Data Storage

Dynamic electronic form needs data storage (database) to store entered data
in or retrieve data from. Electronic forms technologies use different methods
and techniques for creating and dealing with data storage. This data storage
could be one of the following:-

Client-side data storage

client-side data storage is a storage that is initiated by a specific web ap-
plication to store data related to the user on the user‘s system. This data
storage has different technologies such Cookies, IE UserData and HTML5
Web SQL database. These technologies use various techniques to create
the data storage which could be a simple text based file, an xml file or bi-
nary database file. Some of these technologies are supported natively by the
web browsers. Others need for plug-ins installation to be available on the
browser. For example, Cookies are supported by all web browsers without
need for plug-ins and Adobe Flash needs for plug-ins installation on the
browser. [61]

Server-side data storage

Server-side storage is a storage that is created and managed by using a
database server software called Data base management system (DBMS)
or Relational Data Base Management System (RDBMS). DBMS/RDBMS
allows different users and applications to access the central data storage
across a network, where data can be searched and retrieved to produce re-
ports or displayed in web pages. Examples of data base servers are MySQL,
Microsoft SQL server and Oracle. [4]

2.1.6 SVG feature

Scalable Vector Graphics (SVG) is an xml-based language that is used to
render graphical contents (vector graphics, texts and images). SVG could be
used to capture data from the user in electronic forms, where SVG supports
and captures mouse and keyboard events. Dom methods are used to handle
events in SVG.

Client-side SVG

SVG on the client-side is executed and rendered on a web browser. Some of
web browsers need to special plug-ins installation (i.e. internet explorer) for

13

SVG rendering and others are natively support SVG (i.e. firefox). When
the user releases a mouse or keyboard events, SVG captures data that is
sent to the server once the form is submitted.

server-side SVG

Data that sent by the client (including data which captured by SVG) is
validated on server-side.

2.1.7 subforms feature

Subform is a form that is included in a main form. It contains information
related to the main form. A subform could be part of more than one separate
form that helps with designing and testing large-based form applications.
The subform has its own controls, properties and events that can interact
with the parent form. Using subforms enables the user to choose which part
of the form wants to show. In addition, a secure access could be provided
on some views or subforms.

client and server sides

Subforms support the same features that supported by any electronic form
either client or server side.

2.1.8 Hint information feature

This feature is used to display information related to a specific form field.
This information would be an ephemeral message that helps the user to have
correct expectation about the data should be filled out in a form field.

client and server side

Hint information is just a message that is displayed to the user. Thus, it
would be implemented on the client-side and there is no need for the server
side implementation.

2.1.9 Dependency update feature

Using this feature enables controlling update changes between related form
fields on each keystroke. For example, a form could have an output fields
depending on entered data in one or more input fields.

client and server sides

This feature is performed on client side as there is no security requirement
to be done on server-side.

14

2.1.10 Upload feature

The upload feature enables the client to select information from its local
system to be sent to and stored on the server. The uploaded information
would be attached with the form submission.

client-side upload

On the client-side, the information is validated to check if its metadata is
correct. For example, to check if an uploaded file has a specific size and
type.

server-side upload

Before saving the uploaded information on the server, It would be validated
to check if its metadata and to make sure that it is secure.

2.1.11 spell checking

This feature is enabled in an electronic form to check if words of text data
(that is filled in text form field) are spelled correctly

client and server sides

This feature could be just implemented o client-side and there is no need for
server-side implementation, because it does not cause any type of security
risks.

2.1.12 Autocomplete feature

This feature is provided be electronic forms to help users filling the form
quickly. Autocomplete feature enables the form to give users suggestions
for the words that they may want to type in (by typing a few letters of the
word).

client and server sides

As this feature does not require any security implementations, it may be
only performed on the client-side.

2.1.13 Summary

This chapter introduced the most significant form features that are sup-
ported by electronic forms. In addition, it demonstrated the client and
server sides implementation of those features.

15

Chapter 3

Technology and Literature
review

This chapter introduces relevant technologies and efforts that are presented
and involved in the electronic forms development domain. The first section
describes the major related technologies that based on W3C standards and
could be used in electronic forms developing. The second section is about
related work that is performed by other researchers to enhance web forms.

3.1 W3C electronic forms technologies

This section presents the most current major technologies that are based
on W3C standards and used to develop electronic forms. The first section
introduces the old HTML Forms. The second section is about XForms. The
tird section is about HTML5 forms and the last section produces similarities
and differences between XForms and HTML5 Forms and their features.

3.1.1 HTML Forms

HyperText Markup Language (HTML) is a markup language that is used
for developing web applications and enables web browsers from rendering
web pages. It includes many elements and tags that are used to construct
a web page with texts, images, blocks, paragraphs, etc. HTML passed with
different versions: HTML 2.0, HTML 3.0, HTML 3.2, HTML 4, HTML 4.01
and HTML5.

HTML forms (HTML4.01 and before) is one of W3C standards for de-
veloping electronic forms. HTML forms is defined by using form element.
It is part of a web page and consists of different elements such as textbox,
checkbox, menus, etc.

16

HTML forms have limitations that encourage the W3C working group
to develop new electronic forms technologies. HTML forms depend on us-
ing scripting languages to implement the common tasks such as validation,
calculation, handling errors. In addition, it is not easy to HTML forms to
initial data and the user is not remembered by the form and has to repeat
the same data each time. Furthermore, HTML forms do not separate date
from presentation, where the collected data is a set of name and value pairs
that are presented by the form elements. Finally, HTML forms are not use-
ful to be used for form workflow because they need to translate the form
data format at each workstation.

New electronic forms technologies were presented by W3C to address
the problems that associated with the old HTML forms: HTML5 Forms
and XForms (detailed later in this chapter). HTML5 Forms improve the
markup by adding new input types and attributes, and reduce the need for
scripting that was required in the old ones. The powerful XML-centric of
XForms fixed most of the old HTML forms limitations. Moreover, XForms
remove the need for using scripts to perform the common tasks such as
validation and calculation that are included within the language structure.

3.1.2 XForms

Xforms is one of W3C standards. It designed to be the next generation of
web forms that presents a new platform-independent markup language for
user interaction, and transactional procedures between a client and server.
XForms is an XML-based application that is integrated with other markup
languages such HTML, XHTML or SVG. The major difference between
XForms and HTML forms is the separation between the presentation of
controls (user interface) and data collected by controls (data modeling),
where XForms presents the form in three parts: [19]

• An explicit data model to define data type of form data.

• The user interface that is consisted of controls presentation which is
bound to the data module.

• Using XML to exchange data with the server.

This section reviews The primary XForms versions, presents the main ben-
efits of using XForms, describes browsers support for XForms and finally
outlines the supported form features in XForms.

3.1.2.1 Major XForms versions

• XForms 1.0: Data Model was published on 6 April 2000. It is
The first XForms specifications which was the initial XForms Working

17

Draft. This draft presented a proposal of the explicit data module that
is implemented by XForms, where it described XForms datatypes and
sytax that is defines in XML schema specifications [19].

• XForms 1.0 (Third Edition) was published on 29 October 2007.
The specification of this version produced a new platform-independent
markup language (XForms processor) for user interaction between a
client and server [11].

• Xforms 1.1 was published on 20 October 2009. It enhanced the XML
processing platform introduced in XForms 1.0 by improving the user
interface and adding new submission capabilities, action handlers, util-
ity functions, more helpful datatypes and powerful action processing
ability. Moreover, it includes conditional, iterated and background
execution, and the capability to control querying data as well as to
access event context information [12]

• Xforms 2.0 was published on 29 March 2012. The specification of
this version added a number of new features such as dialogs, custom
functions, variables, a pluggable expression language with extra func-
tions (XPath 2.0), model-based switch and repeat, Attribute Value
templates, and consuming as well as submitting JSON and CSV in-
stance data [31]

3.1.2.2 The essential benefits of using XForms

The following advantages of using XForms demonstrate the primary im-
provements that are achieved by Xforms:

• Strong typing: XForms has strongly typed form data and this speeds
up the validating and submitting the form.

• Reduce scripting: the strong typing and using XML schema in
XForms reduce the need for scripts to handle events.

• Reuse existing schema: Same XML schema can be used more than
one time in the same XForms application. This eases updating of
validation constrains and avoids duplication.

• External schema addition: the form designer can provide addi-
tional constrains that are included within the XForms module to im-
prove the overall usability of the resulting Web application.

• XML submission: this enables validating and processing the re-
ceived XML instance data by the client.

18

• improved accessibility: XForms user interface is comprehensive to
be accessed by different devices because XForms separates data from
presentation, as well as user interface controls encapsulate all related
metadata like labels.

• Internationalization: the Internationalization of data is ensured by
using XML 1.0 for instance data.

• Multiple device support: XForms user interface controls are generic
and suits for various devices.

3.1.2.3 XForms browsers support

XForms is not natively supported by common web browsers and it needs
for plug-in installation to be displayed. However, there are some imple-
mentations of XForms that enables rendering XForms without the need for
plug-ins. Client-side implementations like XSLTForms (explained later in
chapter 4) and server-side implementations such as Better forms and Or-
beon form (explained later in chapter ?) that transform Xforms document
to JavaScript + HTML document allow supporting XForms without using
any plug in installation.

3.1.2.4 supported Form features in XForms

This section describes the most major electronic forms features (these fea-
tures were explained in chapter2, will be assessed in this chapter and chap-
ter3 with the tested electronic forms technologies and applications) that are
supported and not supported by XForms. The features are demonstrated
with examples from XFroms code.

3.1.2.4.1 Data validation

Xforms has two types of validation rules:

1. Validation based on xml schema: the submitted data will be validated
using a given xml schema. [49]
Example:

<xf:model schema="schema.xsd">

<xf:instance src="instance.xml" />

<xf:bind id="zip" required="true()" type="ftype:zipType"

nodeset="ftype:zip" />

<xf:bind id="zip2" required="true()" type="ftype:zip2Type"

19

nodeset="ftype:zip2" />

</xf:model>

code source: http://en.wikibooks.org/wiki/XForms/Validation_with_

Bind

2. validation with bind: data will be validated based on specific type and
constraint. [49]
Example:

<xf:model>

<xf:instance xmlns="">

<data>

<PositiveDecimalAmount>1.0</PositiveDecimalAmount>

<NegativeDecimalAmount>-1.0</NegativeDecimalAmount>

</data>

</xf:instance>

<!-- note that the gt operator does not work and that the greater

than character must be escaped. -->

<xf:bind nodeset="PositiveDecimalAmount" type="xs:decimal"

required="false()"

constraint=". > 0"/>

<!-- note that the lt operator does not work and that the less than character

must be escaped. -->

<xf:bind nodeset="NegativeDecimalAmount" type="xs:decimal"

required="false()"

constraint=". < 0"/>

</xf:model>

code source: http://en.wikibooks.org/wiki/XForms/Validate_with_schema_

types

It seems that both of those two types of validation are at the same
powerful level. The difference between them may be that the validation
using schema is more useful with complex forms, where the form could
use more than one schema and one schema could be used by more than
one form.

3.1.2.4.2 Dynamic form modification

This feature is supported by XForms. For example controls could be
added to or removed from the form using repeate element, and then

20

http://en.wikibooks.org/wiki/XForms/Validation_with_Bind
http://en.wikibooks.org/wiki/XForms/Validation_with_Bind
http://en.wikibooks.org/wiki/XForms/Validate_with_schema_types
http://en.wikibooks.org/wiki/XForms/Validate_with_schema_types

using insert element to add the new element to DOM and delete to
remove an element from DOM.

<repeat id="repeat" nodeset="telephones/telephone" appearance="compact">

<select1 ref="@type" appearance="minimal">

<label>Type</label>

<item>

<label>Home</label><value>home</value>

</item>

<item>

<label>Mobile</label>

<value>mobile</value>

</item>

<item>

<label>Company</label>

<value>company</value>

</item>

</select1>

<input ref=".">

<label>Number</label>

</input>

<trigger>

<label>X</label>

<delete nodeset="." at="1" if="count(//telephone) > 1"

ev:event="DOMActivate" />

</trigger>

</repeat>

<trigger>

<label>New</label>

<insert nodeset="telephones/telephone" at="index(’repeat’)"

position="after" ev:event="DOMActivate" />

</trigger>

code source: http://www.agencexml.com/xsltforms/xf.xml

3.1.2.4.3 Calculation

XForms provides standard ways to support calculation without the
need to use JavaScript.
For example:
The following calculation is implemented using bind element and cal-
culate attribute:

<xf:bind nodeset="Results/sum" calculate="sum(../../Row/A)"

21

http://www.agencexml.com/xsltforms/xf.xml

type="xsd:decimal" />

code source: http://www.agencexml.com/xsltforms/spreadsheet.xml The
following calculation is by using toggle element that call case which
acts as a function to perfume sum or add operation.

<xf:toggle case="add"/>

</xf:action>

</xf:trigger>

<xf:switch>

<xf:case id="add" selected="true">

<xf:trigger>

<xf:label>=</xf:label>

<xf:action ev:event="DOMActivate">

<xf:setvalue ref="second" value="../screen"/>

<xf:setvalue ref="result" value="../first + ../second"/>

<xf:setvalue ref="screen" value="../result"/>

<xf:setvalue ref="screenbuffer" value="0"/>

</xf:action>

</xf:trigger></xf:case>

code source: http://www.agencexml.com/xsltforms/calculator.xml

3.1.2.4.4 Data Storage

Xforms supports XML database. It uses XForms data module to store
data form. In addition, XForms can provide support for JSON data
storage (see section 1.4).

3.1.2.4.5 Access rights control

Access rights control is not explicitly supported by XForms. The XML
data is accessible by default and the form responses to the access rights
that configured by the database system which is connected to the form.

3.1.2.4.6 SVG feature

SVG is supported by XForms and could be used to capture data from
the user.

<svg xmlns=http://www.w3.org/2000/svg

xmlns:xlink="http://www.w3.org/1999/xlink" width="100%" height="100%"

viewBox="0 0 450 250" onload="init()" xml:space="preserve">

22

http://www.agencexml.com/xsltforms/spreadsheet.xml
http://www.agencexml.com/xsltforms/calculator.xml

<script type="text/ecmascript">

<![CDATA[

var evtText1; var evtText2; var evtText3;

var typeInitialized = false; var text = "";

function init() {

//getting references to dynamic text elements

evtText1 = document.getElementById("evtText1");

evtText2 = document.getElementById("evtText2");

evtText3 = document.getElementById("evtText3");

}

//this function handles the keyboard events

function typeText(evt) {

//handle "keypress" for all "real characters"

if (evt.type == "keypress") {

//some browsers support evt.charCode, some only evt.keyCode

if (evt.charCode) {

var charCode = evt.charCode;

}

else {

var charCode = evt.keyCode;

}

//all real characters

if (charCode > 31 && charCode != 127 && charCode < 65535) {

text += String.fromCharCode(charCode);

}

//backspace key

if (charCode == 8) {

//shorten text

text = text.substring(0,text.length-1);

}

//enter key

else if (charCode == 10 || charCode == 13) {

stopTyping(evt);}}

//update dynamic text

evtText1.firstChild.nodeValue = text;

//suppress unwanted browser shortcuts. e.g. in Opera or Mozilla

evt.preventDefault();}

//this function adds the event listeners

function initTyping(evt) {

if (!typeInitialized) {

document.documentElement.addEventListener("keypress",typeText,false);

document.documentElement.addEventListener("click",stopTyping,false);

evtText2.firstChild.nodeValue = "Typing Active";

typeInitialized = true;}

23

//we don’t want the click event on the document level to

//immediately stop the typing mode

evt.stopPropagation();

}

function stopTyping(evt) {

document.documentElement.removeEventListener("keypress",typeText,false);

document.documentElement.removeEventListener("click",stopTyping,false);

typeInitialized = false;

evtText2.firstChild.nodeValue = "Typing Inactive";

evtText3.firstChild.nodeValue = "You typed: "+text;

}

]]>

</script>

<rect id="bgRect" x="-500" y="-500" width="1500" height="1500"

fill="yellow" stroke="none" />

<rect x="10" y="50" width="150" height="20" fill="white" stroke="black"

onclick="initTyping(evt)" />

<g font-size="10px" font-family="Arial">

<text x="10" y="130">Click in the white rectangle to start typing text.

<tspan x="10" dy="15">Click outside the textbox or press enter to stop writing

text.</tspan>

<tspan x="10" dy="15">Press backspace to delete the last character when typing

is active</tspan></text>

<text x="15" y="65" id="evtText1" pointer-events="none"> </text>

<text x="15" y="90" id="evtText2">Typing Inactive</text>

<text x="15" y="105" id="evtText3">You Typed: </text>

</g>

</svg>

code source: http://www.carto.net/svg/eventhandling/

3.1.2.4.7 Subforms feature

Subforms are implemented in XForms using the element load that
has the attributes show with the value embed and the attribute tar-
get to determine the position of the subform in the main form.

<xforms:load if="@selected != ’true’" show="embed" targetid="subform"

resource="books.xml"/>

code source: http://www.agencexml.com/xsltforms/writers.xml

3.1.2.4.8 Hint information feature

This feature is implemented in XForms using hint element.

24

http://www.carto.net/svg/eventhandling/
http://www.agencexml.com/xsltforms/writers.xml

<xf:hint>Also known as given name.</xf:hint>

code source: http://www.agencexml.com/xsltforms/input.xml

3.1.2.4.9 Dependency update feature

This feature is supported by XForms and implemented using incremental
attribute with the input element.

<xf:input ref="PersonSurName" incremental="true">

code source: http://www.agencexml.com/xsltforms/input.xml

3.1.2.4.10 Upload feature

Xforms provides upload element to attach a file with the form. The up-
loaded file is stored in the XForms data module with a specific type which is
indicated with ref attribute.

<xforms:model>

<xforms:instance xmlns="">

<data>

<attachment3 xsi:type="xsd:base64Binary"/>

</data>

</xforms:instance>

</xforms:model>

<xforms:upload ref="attachment3" incremental="true">

<xforms:label>Upload for base64Binary: </xforms:label>

</xforms:upload>

source code: http://www.agencexml.com/xsltforms/uploads.xml

3.1.2.4.11 Spell checking

XForms does not provide spell checking. However, there is an implemen-
tation of XForms (Orbeon Forms) that supports this feature (see Orbeon
Forms section in chapter4).

3.1.2.4.12 Autocomplete feature

Although this feature is not supported by XForms, it is provided by the
server-side implementation of XForms Orbeon Forms (see Orbeon Forms
section in chapter4).

25

http://www.agencexml.com/xsltforms/input.xml
http://www.agencexml.com/xsltforms/input.xml
http://www.agencexml.com/xsltforms/uploads.xml

3.1.3 HTML5 Forms

HTML5 developed by W3C and Web Hypertext Application Technology
Working Group (WHATWG). First, WHATWG group created HTML5 spec-
ification in 2004. It was titled web 2.0 on that time (HTML5 forms was called
web form 2.0 as well). In 2006, W3C started working on developing HTML5
and published the first draft for HTML5 specification in 2008 [36]. HTML5
forms adds more features (new input types and new attributes) that ad-
dress the practical limitations in HTML4 forms. For example, one of these
limitations in HTML4 form that the validation is performed using a script as-
sociated with the form, while HTML5 forms has a built-in validation feature
which cancels the need for a script [35]

This section introduces a brief description of the new input types and new
attributes that are included in HTML5 forms, and then demonstrates the
browser support of HTML5 forms, and finally discusses the supported form
features in HTML5 forms.

3.1.3.1 New HTML5 forms attributes and input types

This section presents several new attributes and input types that are devel-
oped in HTML5 forms. Those improvements add more powerful features to
the form and avoid the need to write lots of scripts. [43]

(a) HTML5 forms attributes

• Placeholder: this attribute allows to display a short description
of text when the field is empty or does not receive a focus.
example:

<input type="text" name="user-name" id="user-name"

placeholder="at least 3 characters">

• Autofocus: is used to give the field an automatic focus when the
page is rendered. Autofocus is a Boolean attribute and could be
implemented in the following ways in HTML5:
Autofocus
autofocus=””
autofocus=”autofocus”

example:

<input type="text" name="first-name" id="first-name" autofocus>

However, In XHTML5, this attribute is not Boolean and has to be
implemented using autofocus=”autofocus” style.

• Autocomplete: enables the user to complete the form based on
earlier input. By default, this attribute is set to on and it could
be disabled by set its state to off
example:

<input type="text" name="tracking-code" id="tracking-code"

autocomplete="off">

26

• Required: this attribute is added to a form field to inform the
user that data must be entered in that field before submitting the
form. An error message is displayed automatically to the user if a
required field is left empty.
example:

<input type="text" id="given-name" name="given-name" required>

• Pattern: is used to implement a JavaScript regular expression
(regex or regexp is predefined symbols that are used to create pat-
terns to be checked if match texts or strings of texts.) to a field‘s
value. Data entered in that field is checked based on the pattern
that performed to its value.
example:

<label> Product Number:

<input pattern="[0-9][A-Z]{3}" name="product" type="text"

title="Single

digit followed by three uppercase letters."/>

</label>

• List and datalist element: list attribute enables the user to
display a list of options for a form field based on what the user
typed in. List attribute is associated with datalist element by
using the same ID and they should reside in the same document.
The new HTML5 datalist element is used to defined list of options
for form fields.
example:

<label>Your favorite fruit:

<datalist id="fruits">

<option value="Blackberry">Blackberry</option>

<option value="Blackcurrant">Blackcurrant</option>

<option value="Blueberry">Blueberry</option>

<!-- -->

</datalist>

If other, please specify:

<input type="text" name="fruit" list="fruits">

</label>

• Multiple: this Boolean attribute is used to enable the user enter
more than one value of datalist options
example:

<label>Your favorite fruit:

<datalist id="fruits">

<select name="fruits">

<option value="Blackberry">Blackberry</option>

<option value="Blackcurrant">Blackcurrant</option>

<option value="Blueberry">Blueberry</option>

<!-- -->

</select>

If other, please specify:

</datalist>

<input type="text" name="fruit" list="fruits" multiple>

</label>

27

Apart from using with the datalist element, just one more imple-
mentation for multiple attribute to enable the user send or attach
files with the e-mail.
example:

<label>Upload files:

<input type="file" multiple name="upload"></label>

• novalidate and formnovalidate: these Boolean features are
used to disable validation when a form is submitted. Novalidate
could be only used with the form element, while formnovalidate
could be used with a form field (submit or image input types).
formnovalidate example:

<form action="process.php">

<label for="email">Email:</label>

<input type="text" name="email" value="gordo@example.com">

<input type="submit" formnovalidate value="Submit">

</form>

novalidate example:

<form action="process.php" novalidate>

<label for="email">Email:</label>

<input type="text" name="email" value="gordo@example.com">

<input type="submit" value="Submit">

</form>

• Form: could be used with input, select or textarea elements. Form
attribute is used to specify an element associated with one or more
form, where the element may be written from anywhere in the
source and does not need to be a child to a form.
example:

<form action="form.php" id="apply">

First name: <input type="text" name="fname">

<input type="submit" value="Submit">

</form>

Last name: <input type="text" name="lname" form="apply">

• Formaction: is used to specify the url of a file or script that
processes the form when is submitted. This attribute is similar to
action attribute. However, the browser first checks the formaction
attribute if is presented. Formaction is used with submit button
(type=‘submit‘) or image button (type=‘image‘).
example:

<input type="submit" value="Submit" formaction="process.php">

• Formenctype: this attribute indicates how form data is encoded
when the form is submitted by using the POST method type.
It is used with type=‘submit‘ or type=‘image‘ of input element.
Formenctype is similar to the enctype attribute and it has the
default value application/x-www-formurlencoded. example:

<input type="submit" value="Submit" formenctype="application

/x-www-form-urlencoded">

28

• formmethod: determines the HTTP method (GET, POST, PUT
and DELETE) that will submit the form data. It is similar to
method attribute and can be used with submit or image input
types.
example:

<input type="submit" value="Submit" formmethod="POST">

• formtarget: indicates where to display the target window that
receives the result from submitting the form. It is similar to the
target attribute and is used only with submit and images input
types.
example:

<input type="submit" value="Submit" formtarget="_self">

(b) HTML5 forms input types

• Search: is used to define a search field. It works as google search
or any other search web site.
example:

<input type="search" name="search">

• email: this type is for defining an input type field to enter an
email address that is validated automatically.
example:

<input type="email" name="email">

• url: is to allocate an input field that is used to enter a url addresss.
This field is automatically validated by the browser when the form
is submitted.
example:

<input type="url" name="url">

• tel: is used for input types fields that allow the user to enter
telephone numbers. This field is validated automatically. However,
there is no a specific syntax is enforced for validation because phone
numbers are different around the world.
example:

<input type="tel" name="tel" id="tel">

• number: specifies an input fields enter numerical values. This
input type field may used with additional attributes that are used
to apply restrictions to the entered number. These attributes are:
min- indicates the minimum value, max- indicates the maximum
value, step- indicates the default step value of the spinbox control
and value- indicates the default value. example:

<input type="number" min="5" max="18" step="0.5" value="9"

name="shoe-size" >

• range: defines an input field that represents a numerical value
within a given range. It is similar to a number type but simpler
and more specific. Range type is displayed as a slider control and
uses the attributes min, max, step and value (see the number type)
for specifications.
example:

<input id="skill" type="range" min="1" max="100" value="0">

29

• date: is used to display a date picker that allows the user to select
a certain date.
example:

<input id="dob" name="dob" type="date">

It could use min and max attributes to apply a specific range

<input id="startdate" name="startdate" min="2012-01-01"

max="2013-01-01" type="date">

• week: is used to display a date picker that allows the user to select
a certain week and year.
example:

<input id="vacation" name="vacation" type="week">

• month: is used to display a date picker that allows the user to
select a certain month and year.
example:

<input id="expiry" name="expiry" type="month" required>

• time: is used to render a time control that enables the user to
enter or select a specific time.
example:

<input id="exit-time" name="exit-time" type="time">

• datetime: this type renders date and time picker (with time zone)
that enables the user to select a time on a specific day.
example:

<input id="entry-day-time" name="entry-day-time" type="datetime">

• datetime-local: this type renders date and time picker (with a
local time zone) that enables the user to select a time on a specific
day.
example:

<input id="arrival-time" name="arrival-time " type="datetime-local">

• color: this input type displays a color picker that allows the user
to select a color and returns its hex value. The user can either type
the hex value of the color or select from the color picker.
example:

<input id="color" name="color" type="color">

3.1.3.2 Browsers support for HTML5 forms

The previous HTML5 forms are not supported natively by old versions of
web browsers. In addition, not all modern browsers support all of them. If
a feature is not supported by a browser, it would be backed to the default
type (type = ‘text‘). This section describes different ways that are used to
check if a feature is supported by a browser or not and demonstrates how
to make a non-supported browser works as a native supported browser for a
feature. [43, 57]

3.1.3.2.1 Form detection

30

• Mark Pilgrims detection techniques: they are four techniques that
are used to detect browser support for a particular feature:

(a) check if a specific property exists on a global object such as a
window or navigator.

(b) create an element and check if a specific property exists on it.

(c) create an element, check if a specific method exists on that element
,and then call that method to check its returned value.

(d) create an element, set a property to a specific value, and then check
if the property has saved that value.

The following example uses detection technique number 4 to check if
an input type email is supported:

var input = document.createElement(’input’);

input.setAttribute(’type’,’email’);

return input.type !== ’text’;

• Modernizr: is an open source, MIT-licensed small JavaScript library
that is used to check the supported native implementations for next-
generation web technologies- is used to detect if a browser has a native
support for a certain feature or not. Modernizr is implemented in the
web page by using scriptelement at the top of the page:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>Dive Into HTML5</title>

<script src="modernizr.min.js"></script>

</head>

<body>

...

</body>

</html>

3.1.3.2.2 Form Polyfills

Mark Pilgrim techniques and Modernizr are just to check the availability
of the native implementation of HTML5 features in the browser and they do
not add any functionality that not exist. Polyfill is a plugin that is written
using JavaScript. It is used to add a support of a feature in HTML5 to
browsers (older browsers) that are not native support.

The following figures represent the current browsers that support and not
support the new attributes and input types in HTML5 forms.

31

Figure 3.1: HTML5 Form Attribute Implementation, sourced from [43]

32

Figure 3.2: HTML5 Form input types, sourced from [43]

3.1.3.3 Form supported features in HTML5 Forms

This section explains the most essential electronic forms features that are
supported and not supported by HTML5 Forms. These features are verified
and illustrated using examples from available references.

3.1.3.3.1 Data validation

HTML5 Forms implement client- side validation and provide a live object
ValidityState for each element created in a form. A reference to this object
is used to check the validity status of form controls.
The following command captures a reference to the ValidityState of a form
control named myInput [36].

var valCheck = document.myForm.myInput.validity;

The following command returns a Boolean value that demonstrates if valida-
tion constrains of a form element are met or not.

valCheck.valid

33

There are eight different status or constrains are used to implement form
validation in HTML5 forms. These validity status are checked by using ref-
erences to their ValidityState objects [36].

• using required attribute: is used to make sure that the form field is
not empty (see section1.1).

• using input types feature: is used to ensure that the value of a form
field matches the value of type attribute such as number, email, url, etc
(see section 1.1).

• using pattern attribute: garentees that the value of a form field matches
the pattern rule of the pattern value attribute (see section 1.1).

• using maxLength attribute: ensures that the value of a form field is
not too long (see section1.1).

• using min attribute: to enforce the minimum value of a numerical field
(see secion 1.1).

• using max attribute: to enforce the maximum value of a numerical
field (see section1.1).

• using step attribute: enforces the incremental step between min and
max values of a numerical field (see section 1.1).

• setCustomValidity: is used to handle errors that are set by the
application code and put the form control into the customError state.
For example: display an error message if a password confirmation field
does not match.

passwordConfirmationField.setCustomValidity("Password values do not

match.");

\end{itemize}

3.1.3.3.2 Validation attributes and functions HTML5
forms provide a few attributes and functions that help the developer to
improve validation process [36].

– willValidate attribute: renturns true if a form control will be
validated, otherwise false.

– validationMessage attribute: is used to display en error message
to inform the user that a certain form control will be validated. For
example, if a required has left empty, an error message (This field
requires a value.) will be displayed by the browser (once supported)
to the user.

– checkValidity Function: returns true if the form control‘s value
is valid, otherwise false.
Disable validation in HTML5 Forms

Validation checking in HTML5 form could be turned off using no-
validate and formonvalidate attributes as explained in section
1.1.

34

3.1.3.3.3 Dynamic form modification

This feature could be implemented using JavaScript in HTML5 Forms.
The following part of code is to dynamically add more fields to an
HTML5 form: [58]

function moreFields() {

counter++;

var newFields = document.getElementById(’readroot’)

.cloneNode(true);

newFields.id = ’’;

newFields.style.display = ’block’;

var newField = newFields.childNodes;

for (var i=1;i<newField.length;i++) {

var theName = newField[i].name

if (theName)

newField[i].name = theName + counter;

}

var insertHere = document.getElementById(’writeroot’);

insertHere.parentNode.insertBefore(newFields,insertHere);

}

The following part of code is to dynamically remove fields from an
HTML5 form: [58]

<input type="button" value="Remove review"

onclick="this.parentNode.parentNode.removeChild(this.parentNode);" />

3.1.3.3.4 Calculation

This feature is supported by HTML5 Forms. The output element is
used to perform and display the result of any calculation. The output
element is supported in Opera 9.5+, Firefox 4+, Chrome, Safari 5+,
and InternetExplorer 10 [43].
example:

<form onsubmit="return false" oninput="o.value = a.valueAsNumber +

b.valueAsNumber">

<input name="a" id="a" type="number" step="any"> +

<input name="b" id="b" type="number" step="any"> =

<output name="o" for="a b"></output>

</form>

3.1.3.3.5 Data Storage

HTML5 Forms support two kinds of data storage: web storage and
web SQL databases.

(a) Web storage: is similar to cookies. However, it is faster and more
secure because data is used just when is requested and is not sent

35

with each server request. As well as it enables to store large amount
of data, where data is stored in key/value pairs. There are two
types web storage objects: sessionStorageandlocalStorage [63,
36].

– SessionStorage: this object stores data to be available for
only one window and it is expired when that window is closed.

if (sessionStorage.clickcount)

{

sessionStorage.clickcount=Number(sessionStorage.clickcount)+1;

}

else

{

sessionStorage.clickcount=1;

}

document.getElementById("result").innerHTML="You have clicked

the button " + sessionStorage.clickcount + " time(s)

in this session.";

– localStorage: data that is stored in this object is not expired
even when the browser is closed. Stored data are available for
all windows that are related to the same domain.

if (localStorage.clickcount)

{

localStorage.clickcount=Number(localStorage.clickcount)+1;

}

else

{

localStorage.clickcount=1;

}

document.getElementById("result").innerHTML="You have clicked

the button " + localStorage.clickcount + " time(s).";

3.1.3.3.6 Browser support for web storage Browser
support for web storage should be checked before using:

function checkStorageSupport() {

//sessionStorage

if (window.sessionStorage) {

alert(’This browser supports sessionStorage’);

} else {

alert(’This browser does NOT support sessionStorage’);

}

//localStorage

if (window.localStorage) {

alert(’This browser supports localStorage’);

} else {

alert(’This browser does NOT support localStorage’);

}

}

The following table shows browsers that have support for web stor-
age:

36

Browser Details

chrome Supported in version 3.0 and greater

Firefox Supported in version 3.0 and greater

Internet Explorer Supported in version 8.0 and greater

Opera Supported in version 10.5 and greater

Safari Supported in version 4.0 and greater

Table 3.1: HTML5 web storage browser support, reprinted from [36]

(b) Web SQL database: allows HTML5 forms to store and ac-
cess data in an indexed database [36]. The following table shows
browsers support for web SQL databases:

Browser Details

chrome Supported in version 3.0 and greater

Firefox Not supported

Internet Explorer Not supported

Opera Supported in version 10.5 and greater

Safari Supported in version 3.2 and greater

Table 3.2: HTML5 web SQL database browser support, reprinted from [36]

3.1.3.3.7 JSON Object Storage JavaScript Object Notation
(JSON) is an open standard for storing and exchanging data as texts.
It could be used to represent objects as strings and vice-versa. HTML5
forms allows using JSON to serialize complex objects in and out of web
storage, where some browsers limit values to be text string data types
and modern versions of browsers contain built-in support for JSON [36].
example:

<script>

var data;

function loadData() {

data = JSON.parse(sessionStorage["myStorageKey"])

}

function saveData() {

sessionStorage["myStorageKey"] = JSON.stringify(data);

}

window.addEventListener("load", loadData, true);

window.addEventListener("unload", saveData, true);

</script>

3.1.3.3.8 Access rights control

A traditional log in form could be implemented using HTML5 forms.

37

The form can access data based on the roles and permission that per-
formed on the server database. I found a technical report (http://www.script-
tutorials.com/access-control-with-bit-masks/) that represents an exam-
ple to perform user access rights using bit masks. This example is im-
plemented with PHP script that defines create, read, edit and delete
permissions.

The following code is part of PHP script that is used to define access
rights to users:

<?php

// define bit mask for access rights

define(’CAN_READ’, 1 << 0);// 000001

define(’CAN_CREATE’,1 << 1);// 000010

define(’CAN_EDIT_OWN’, 1 << 2);// 000100

define(’CAN_DELETE_OWN’, 1 << 3);// 001000

define(’CAN_EDIT_ANY’, 1 << 4);// 010000

define(’CAN_DELETE_ANY’, 1 << 5);// 100000

...

// different sets of permissions

$sUserPerm= CAN_READ;

$sWriterPerm= CAN_READ | CAN_CREATE | CAN_EDIT_OWN | CAN_DELETE_OWN;

$sModeratorPerm= CAN_READ | CAN_EDIT_ANY | CAN_DELETE_ANY;

$sAdminPerm= CAN_READ | CAN_CREATE | CAN_EDIT_OWN | CAN_DELETE_OWN |

CAN_EDIT_ANY | CAN_DELETE_ANY;

...

functionisCanReadCreate($sRule) {

return($sRule& (CAN_READ | CAN_CREATE));

}

...

// check functions

functionisCanRead($sRule) {

return($sRule& CAN_READ) ?’You can Read
’:’’;

}

...

3.1.3.3.9 SVG feature

HTML5 support inline SVG. The same example in section 2.1.4.6 In
HTML5 Forms is used to demonstrate how SVG could be used to cap-
ture data from the user.

3.1.3.3.10 Subforms feature

HTML5 forms do not provide any element or type to implement sub-

38

forms. However, there is a tool called Zend Framewoek(is an open
source framework and object-oriented application. It is used for devel-
oping web applications using PHP5) can be used to embed subforms in a
HTML5 form (http://webdeveloper.eu5.org/2013/04/22/subforms-example-
in-zend-framework-1-x/).

3.1.3.3.11 Hint information feature

This feature is provided in HTML5 forms and implemented with place-
holder attribute (see section 1.1).

3.1.3.3.12 Dependency update feature

I could not find a reference related to this feature in HTML5 forms.
However, in my opinion, it seems that HTML5 forms do not provide an
element or attribute to support this feature but it could be implemented
using JavaScript.

3.1.3.3.13 Upload feature

This feature is available in the previous version of HTML and it is
supported in HTML5 forms.

<p>

Please select a file:

<input type="file" name="info_file" size="40">

</p>

3.1.3.3.14 Spell checking

HTML5 forms support spell checking feature with spellcheck at-
tribute. Spellchecking is enabled when spellcheck attribute is true and
when it is false, the spell checking is disabled. This feature is supported
in Internet Explorer 10, Firefox, Opera, Chrome, and Safari [62].

<input type="text" size="30" spellcheck="true">

<textarea spellcheck="false"></textarea>

3.1.3.3.15 Autocomplete feature

HTML5 forms provide autocomplete (see section 1.1) attribute that
is used to enable this feature.

3.1.4 XForms VS. HTML5 forms

This section produces the following tables that outline similarities and
differences between XForms and HTML5 Forms:

39

XForms HTML5 Forms
Built-in validation (no need for a script). Bult-in validation (no need for a script).
Non-supported natively by web browsers (need for
plug in installation.)

supported nativelt by modern web browsers (Old
browser and non-supported browsers need for
Polyfill plug in to add the support for HTML5
froms).

XForms is an XML-based. It cannot be standalone
and has to be integrated with other markup lan-
guage such as XHTML or SVG.

HTML5 Forms is a standalone technology and it
could be embedded with XML or SVG.

XForms is more powerful and suitable for design-
ing complex forms with XML data.

HTML 5 Forms is simpler and more suitable for
designing simple forms.

Table 3.3: XForms VS. HTML5 Forms

Form feature Electronic form technology
XForms HTML5 Forms

Data validation supported (built-in validation) supported (built-in validation)
Dynamic form modification supported not directly supported and could

be implemented with JavaScript
Calculation supported (by using output ele-

ment)
supported (by using standard el-
ements)

Data storage supported (XML database and
JSON support may be added)

supported (web storage and web
SQL database)

Access rights control not supported (XForms consid-
ers XML data is accessible and
relies on access rights in a con-
nected database system)

not directly supported (could be
performed with a script or relies
on access rights in a connected
database system)

SVG supported and could be used to
capture data

supported and could be used to
capture data

Subform supported and is implemented by
using load element

not directly supported (could be
add to HTML5 Form by using
a tool called Zend Framewoek
that uses PHP5 scripting)

Hint information supported with hint element supported with placeholder at-
tribute

Dependency update feature supported with incremental at-
tribute

not supported

Upload supported with upload element supported with type attribute
Spell checking not directly supported (XForms

implementation Orbeon Forms
provides this feature)

supported with spellcheck at-
tribute

Autocomplete not directly supported (XForms
implementation Orbeom Forms
provides this feature)

supported with autocomplete
attribute

Table 3.4: Xfroms and HTML5 Forms supported and non-
supported features

40

3.2 Related research

This section reviews some research conducted to study and improve
electronic forms and related technologies. The first [20] proposed a
prototype system that uses metadata database and XML technologies
to automate a dynamic electronic form. The second [27] produced a
demonstration system to explore the effectiveness of using XForms tech-
nology in communication in public health. In addition, it discusses the
advantages of XForms, its advanced features, and its suitability for us-
ing in public health. The third [18] focused on presenting two concepts:
enabling creation of forms that include access rules which control read
and update rights to data objects and allowing an automatic deriva-
tion of workflow process from access rules that are contained in the
form. The fourth [15] studied the possibility of adding JSON support
in XForms data instances, where implementation is performed using
a client-side implementation of XForms (XSLTForms) and an exter-
nal JSON API in XForms page. The fifth [26] presented an MVC
web framework based on XML technologies. The next [33] research
designed a markup declarative language called XFormsDB to imple-
ment XFormsDB framework that is used for developing interactive
multi-user applications. Finally, a research paper [32] introduced a new
semi-automatic transformation method to generate XForms + XHTML
document from an input XML schema.

3.2.1 Generation and validation of web forms using
database metadata and xforms.

Elsheh and Ridley [20] proposed a system that generates automatically
an XML document using a metadata SQL database, and then trans-
forming that XML document into XHTML on the server side or XForms
on the client side using XSLT stylesheets.

The system was developed using Java Servelt and XML technologies
such as XSLT, XPath and CCS. The database was created with Post-
greSQL and MySQL DBMSs, and JDBC was used to connect the
database and express database metadata. Each XML node is gener-
ated from database metadata for each single column in the database
tables. The generated XML document is transformed to a dynamic
XForms document (each XML node is transformed to a specific elec-
tronic form element) using two templates of XSLT. One template is
used to copy the XML document to the instance data in the produced
XForms model, and the other one is used for XForms element binding.
The limitation of this research is that it was implemented for generating
a simple XML schema, which is transformed to a simple XForms.

This work presented an important improvement in electronic forms
technologies by using W3C standards such as XML, XSLT and XPath.
Thus, this research is considered one of the major contributions that
related to my research.

41

3.2.2 Applying the xforms standard to public health
case reporting and alerting

A demonstration project [27] is implemented to illustrate the conve-
nience of using XForms for information exchange between provider and
public health systems for notifiable condition reporting and alerting.
The developed project benefits of using Retrieve Forms for Data Cap-
ture RFD (a method that is used for gathering data within one system
to meet the requirements of an external system and enabling interop-
erability with other implemented RFD systems) with XForms, where
XForms has an XML feature that is used to define form data, store and
transport form instance data. Moreover, it has advanced form controls
that ease form development and reduce the need for scripting.

However, the project had limitations in implementing XForms. The
first limitation is that XForms does not have native support for web
browsers and need for plug-in installation for the common browsers
such as Internet Explorer and Mozilla Firefox. The second is that
hand-coding XForms is considered time-consuming where there is no
an editor providing sufficient support for XForms.

The research claimed that XForms is still immature to be used for noti-
fiable condition reporting and patient-specific public health alerting. It
debated that HTMl5 does not replace XForms, while HTML5 provides
simpler support for more complex multimedia form elements. Both
of them (HTML5 and XForms) support advanced form validation and
controls.

This research described how XForms can be used to improve the elec-
tronic form system in public health. In addition, it produced a con-
tributed discussion about Xforms that is related to my research.

3.2.3 Peer-to-peer form based web information sys-
tems

A research paper [18] produced a type of peer-to-peer web information
system that enables users to create electronic forms and use them to
capture data to be stored in a distributed database. Users also with
this system are able to generate reports from their own forms or their
peers‘ forms if they have right to access them. In addition, the sys-
tem constructs a graph that represents a workflow to allow the system
automating the workflow process depending on the access rights which
associated with the forms.

XForms is used in developing the proposed system. XForms has many
features such as using XML output, client-side validation and Model-
View-Controller (MVC) that helped to address the practical problems
that are associated with using HTML in designing the system. The pro-

42

posed system added some fundamental features that were not present
in XForms:

(a) Database connection: The proposed system enables users to
create an XML schema or extend other forms‘s schema, as well
as allowing read and write access to the database, while XForms
require an existed XML schema to read and write data to and from
the database.

(b) Access rules: access rules in the proposed system are included
explicity in the form definition, whereas XForms does not include
any access rules to control access rights to data stored in an XML
document or a database.

(c) Workflow design: The proposed system allows derivation of a
workflow process using the access rules that are included in the
form definition, whilst the idea of workflow is not associated with
XForms.

The research approached an electronic form system with an improved
workflow and access rules. One of the major W3C standards (XForms)
is used to develop the system. Furthermore, it suggested some features
that could be added to XForms, which is one of the related technologies
that is explored in my research.

3.2.4 Json for xforms

Couthures [15] presented an implementation using XSLTForms to ac-
cess JavaScript Object Notation (JSON) data on different domains via
JSONP (JSONwith padding is a script that is used to request data
from a server on various domains) without cross-domain limitations.
This proposed implementation enables storing JSON objects into XML
documents and allowing the use of XPath by adding a minimal number
of extra attributes and elements that should be named without con-
flicting with ordinary JSON names.

JSONP support is implemented in twofold:

– Request submission: using the script element within an HTML
document to execute and specify the src attribute that allows
adding parameters. The unlimited cross-domain allows loading
external JavaScript libraries. A function with Callback name is
sent to the server to be integrated it in its response.

– Response processing: the response is the parameter of the call-
back function call which is performed by the received JavaScript
source. This function is responsible to store the received JSON
data object into its internal XML document.

This work has a contribution to the electronic forms development field
by adding JSON support to the XForms, which is a fundamental state
of electronic forms technologies in my research.

43

3.2.5 MVC web framework based on eXist appli-
cation server and XRX architecture

This research paper [26] discussed the creation of a prototype MVC
web framework application (named iu5) based on using a native XML
database (eXist-db software), XForms REST XQuery (XRX) archi-
tecture and a client-side implementation of XForms (XSLTForms) that
is embedded in eXistdb. Moreover, it developed a simple XML data
module for data storing and an XQuery generator for the application
infrastructure.

XSLTForms was used in the proposed application because it is flexible
and simple to work with dynamic created XForms documents. XSlT-
Forms XForms processor receives XForms document from a web server
and converts it to HTML + CSS + JavaScript document. It performs
data validation and then sends an XML-fragment back to the web
server. The XQuery script runs on the web server and is responsible to
send XForms documents to the XSLTForms processor on eXist-db and
also sends and receives XML data to and from XSLTForms.

The research is relevant to my work because it contributed to the elec-
tronic forms developing domain by presenting an MVC framework ap-
plication. This prototype system is developed by using eXist-db sys-
tem, which is detailed later in this thesis and based on W3C standards
such as XSLTForms (client-side implementation of XForms), XRX and
XML.

3.2.6 XFormsDBAn XForms-Based Framework for
Simplifying Web Application Development

A Master‘s Thesis [33] proposed developing an extension of XForms
called XFormsDB declarative markup language, implementing a pro-
totype and extensible XRX framework called XFormsDB framework
which is powerful and useful for designing multi-user applications, and
finally validating the developed language and the implemented frame-
work by designing two web applications samples. This project is re-
leased as an open source application and can be found on the web site
(https://code.google.com/p/xformsdb/).

The XFormsDB markup language is a declarative programming lan-
guage. This language has a syntax and processing model that are
similar to XForms with including to a few additions. For example,
XFormsdb language supports authentication (by adding login and lo-
gout elements, and user requests) and access control (by adding xformsdb:secview
and xformsdb users.xml document).

The XFormsDB framework is a comprehensive web server that is im-
plemented to demonstrate and prove the feasibility and capabilities of

44

the XFormsDB markup language. It is developed with several open-
source application software and libraries: Apache ANT, Apache Tom-
cat, Eclipse IDE for Java EE Developers, eXist-db, Orbeon Forms
and 3DM 0.1.5beta1. XFormsDB framework web pages are designed
using different Web standards and technologies: XHTML, XForms,
XFormsDB, XML, CSS, XQuery, XPath and JavaScript. The XFormsDB
framework supports three major types of web browsers by providing
each one of them with a devoted web page at the same time: a web
browser with XForms1.1, a web browser with AJAX support and a
web browser with a (X)HTML support. The persistent data is stored
in two various types of XML-based: XML document and eXist-db
Native XML Data (NXD). XFormsDB framework performs two sep-
arate server-side transformation process. The first is for transform-
ing XHTML+XFormsDB to XHTML+XForms 1.1 and performed by
the XFormsDBTransformer class that is divided to seven basic steps
and consists of four XSLT transformations. The second transformation
process is performed using a server-side XForms implementation (Or-
beon Forms), it transforms the output of the first transformation pro-
cess XHTML + XForms1.1 document to XHTML + CSS +JavaScript.
XFormsDB framework uses the declarative XFormsDB markup lan-
guage to help web developers and non-programmers users to develop
interactive web application.

Two sample multi-user web applications are designed with XFormsDB
framework. Those applications are used to verify the capabilities of
the XFormsDB. The first application sample is a Personal Informa-
tion Management (PIM): Contacts which is a simple web application
that allows users to store, view and managing their personal informa-
tion. This web application is developed to test the ease of using specific
user interfaces functions such as storing and update data. The sec-
ond application sample is Personal Information Management (PIM):
Blog which is an online journal for publishing personal information,
such as thoughts, comments, and experiences. This web application is
developed to verify the capability of XFormsDB for designing current
real-life web applications, including multiple web pages and complex
data source queries.

There are a few limitations that indicated with this thesis. Firstly,
synchronized updates issue in the XFormsDB framework. Performing
simple insert and delete operations in a large XML document requires
submitting back and forth, as well as updating an XML document may
disclose sensitive information to the users. Secondly, the update query
request of the XFormsDB may result in a large XML fragment because
the used XPath expression must reference to the root element. Finally,
transactions cannot be grouped and are a bit slow, where submitting
any request depends on the successful submitting of the previous one.

This thesis presented an XRX framework application that is registered
as an open source project, which has an essential contribution in elec-

45

tronic forms developing. It developed a declarative markup language
(XFromsDB) by using some of the technologies that are stated in my
research such as XForms, eXist-db and Orbeon Forms.

3.2.7 Generating XForms from an XML schema

This research [32] implemented an XForms editor that automates a
translation of a given XML schema (XSD) to an XForms form. It per-
forms a semi-automatic transformation algorithm that allows the form
developer to decide which elements and attributes declarations will be
included in the form and how they will be displayed, collected together
and validated. This algorithm is implemented using an object-oriented
language that based on XML parsing technologies such as DOM.

The proposed semi-transformation algorithm consists of two phases.
The first algorithm phase traverses the input XML schema from the
root to the leaves to derive an XML document, and then generating an
XForms instance node that includes all the possible XML elements and
attributes from the given XML schema. The second algorithm phase
traverses the derived XForms instance in the first phase from the root
to the leaves. It creates the binding parts and UI components based
on types of nodes in the given XML schema whether simple types or
complex types.

This work is an algorithm that contributed in the electronic forms im-
provements by automating XForms form based on a given XML schema.
Xforms is an electronic form technology which one of W3C recommen-
dations based a W3C standard XMl, and explored with different im-
plementations in my research.

3.3 Summary

This chapter involved technologies and researches that are related to the
electronic forms development and based on W3C Standards. Firstly, it
reviewed the primary related technologies (XForms and HTML5 Forms)
that are based on W3C standards and have an essential contribution to
electronic forms developing. Secondly, it discussed related work about
electronic forms enhancement.

46

Chapter 4

Electronic forms
applications

This chapter describes some major software that use electronic forms
technologies based on W3C standards such as XForms and XML tech-
nologies. These software are experimented and tested. The following
sections represent the software, their characteristics and functionali-
ties, details of the installation and the supported form features. The
following software are introduced respectively: AJAXForms, eXist-db
(XSLTForms and betterForm), Orbeon Forms and finally InfoPath.

4.1 AJAXForms Project

AJAXForms is a server-side implementation of XForms 1.0. It is a
JAVA program that transforms XHTML/Xforms documents to HTML/JavaScrip
and it is supported by just Firefox, Opera and IE browsers. The trans-
formation is made at compile time and transforms in the client, where
the client and server exchange the model data trough XML documents
using AJAX [1].

AJAXForms is mainly based on XSLT 1.0 transformation in addition
to using an XPath engine (Jaxen) to perform XPath expressions [6].
This program consists of two components: [1]

– A compiler that performs the transformation.

– JavaScript library to be used by the compiled files.

4.1.1 Installation

AJAXForms requires the following software:

– (JRE 5.0). Java Runtime Environment version 5.

– Apache Ant:
It is an open source Java and command-line tool that based on
XML. It uses an XML file (that has a default name buld.xml) to

47

Figure 4.1: sourced from [1]

build, compile and run Java applications. Ant requires Java Devel-
opment Kit (JDK), Where the required version of Java depending
on the Ant version. It supports Linux, MacOS X, Windows XP
and Unix platforms.
I installed apache-ant-1.8.4 that requires JDK 1.4 or higher on
Windows7 machine.

Installing Ant:

(a) The downloaded file is extracted into the directory (apache-
ant-1.8.4.

(b) setting the required environmental variables: JAVA HOME to
JDK1.5 directory, ANT HOME to apache-ant-1.8.4 direc-
tory and then adding ANT HOME/bin to the current Path.

(c) Some Ant tasks requires the library dependencies that is ob-
tained by running ant -f fetch.xml -Ddest=system.

(d) Building Ant in the directory apache-ant-1.8.4 by running:
build -Ddist.dir= -ant-1.8.4 >dist

Installing AJAXForms
I downloaed the zipped template from (http://ajaxforms.sourceforge.
net/docs/comousar.html), and then unzipped into ajaxform direc-
tory in apache-ant-1.8.4 directory.

Runing AJAXForms with Ant
Build.xml and build.properties are used by the apache ant to build the
application and they reside in ajaxforms directory. Lib directory con-
tains the required libraries.
Any web content or XForms files are stored in web directory.
XForms documents are transformed using ant command that uses build.xml
by default.
The compiled files are built in the build directory.

48

http://ajaxforms.sourceforge.net/docs/comousar.html
http://ajaxforms.sourceforge.net/docs/comousar.html

I had an issue with using AJAXForms application. Where apache ant works
well but when running ant command, I have an error with the transformation.
As a result, the XForms content in the resulted web pages are not displayed.
I could not fix this issue and I could not find any support to fix it, because
there is no activity or support for AJAXForms application since 2006.

4.1.2 Form supported features in AJAXForms

Form features in AJAXForms are tested based on the online samples
that are running on the AJAXForms web site (http://ajaxforms.sourceforge.net/index.html)
and investigating the code of the examples that are shipped with AJAX-
Forms template. The following sections demonstrate the form feature
that are provided and not provided by AJAXforms.

4.1.2.1 Data validation

This feature is tested using an online form sample bind, and it seems
that AJAXForms supports validation.

<xf:model>

<xf:instance>

<root type="mal">

<value type="value2">value1</value>

</root>

</xf:instance>

<xf:bind id="text" nodeset="value" required="true()">

<xf:bind id="type" nodeset="@type" required="true()"/>

</xf:bind>

</xf:model>

code source: http://ajaxforms.sourceforge.net/samples/bind.xform

4.1.2.2 Dynamic form modification

Based on testing the online form samples Balance and Bookmarks,
It seems that this feature is supported by AJAXForms.

<xf:repeat id="repeatBookmarks" nodeset="bookmark" appearance="compact">

...

<xf:trigger>

<xf:label>Delete</xf:label>

<xf:delete nodeset="." at="1" ev:event="DOMActivate"

if="count(//section) > 1" />

</xf:trigger>

</xf:repeat>

<xf:trigger>

<xf:label>New section</xf:label>

<xf:insert nodeset="//section" at="last()" position="after"

ev:event="DOMActivate" />

49

http://ajaxforms.sourceforge.net/samples/bind.xform

</xf:trigger>

code source: http://ajaxforms.sourceforge.net/samples/bookmarks.
xform

4.1.2.3 calculation

Calculation feature is tested using calculator sample on the web site.
However some operations in this example are not working properly, it
seems that is supported by AJAXForms.

<xf:trigger>

<xf:label>=</xf:label>

<xf:action ev:event="DOMActivate">

<xf:setvalue ref="/equation/second" value="/equation/screen"/>

<xf:setvalue ref="/equation/result" value="/equation/first - /equation/second"/>

<xf:setvalue ref="/equation/screen" value="/equation/result"/>

<xf:setvalue ref="/equation/screenbuffer" value="0"/>

</xf:action>

</xf:trigger>

</xf:case>

<xf:case id="multiply" selected="false">

<xf:trigger>

<xf:label>=</xf:label>

<xf:action ev:event="DOMActivate">

<xf:setvalue ref="/equation/second" value="/equation/screen"/>

<xf:setvalue ref="/equation/result" value="/equation/first * /equation/second"/>

<xf:setvalue ref="/equation/screen" value="/equation/result"/>

<xf:setvalue ref="/equation/screenbuffer" value="0"/>

</xf:action>

</xf:trigger>

code source: http://ajaxforms.sourceforge.net/samples/calculator.
xform

4.1.2.4 Data storage

AJAXForms template is shipped with index.xform example. This ex-
ample enables to get and put in an XML file data.xml. Thus, AJAX-
Forms supports XML data storage.

4.1.2.5 Access Rights control

I could not find any example or reference to verify which type of access
control is supported by AJAXForms.

4.1.2.6 SVG feature

There is no example or reference is found to verify if this feature is
supported or not by AJAXForms.

50

http://ajaxforms.sourceforge.net/samples/bookmarks.xform
http://ajaxforms.sourceforge.net/samples/bookmarks.xform
http://ajaxforms.sourceforge.net/samples/calculator.xform
http://ajaxforms.sourceforge.net/samples/calculator.xform

4.1.2.7 subforms feature

AJAXforms web site has an example Repeat that shows how to im-
plement subforms in AjAXForms.

<xf:model>

<xf:instance>

<data select="colors">

<items name="colors">

<item value="red">red</item>

<item value="green">green</item>

<item value="blue">blue</item>

</items>

<items name="numbers">

<item value="one">one</item>

<item value="two">two</item>

<item value="three">three</item>

<item value="four">four</item>

</items>

</data>

</xf:instance>

</xf:model>

...

<xf:repeat nodeset="items[@name = /data/@select]/item" id="repeat"

appearance="compact">

<xf:switch>

<xf:case id="input">

<xf:input ref="."><xf:label>Input</xf:label></xf:input>

<xf:trigger>

<xf:label>Output mode</xf:label>

<xf:toggle case="output" ev:event="DOMActivate"/>

</xf:trigger>

</xf:case>

<xf:case id="output">

<xf:output ref="."><xf:label>Output</xf:label></xf:output>

<xf:trigger>

<xf:label>Input mode</xf:label>

<xf:toggle case="input" ev:event="DOMActivate"/>

</xf:trigger>

</xf:case>

</xf:switch>

code source: http://ajaxforms.sourceforge.net/samples/repeat.
xform

4.1.2.8 Hint information feature

The online sample Actions demonstrates that hint information feature
is provided by AJAXForms.

51

http://ajaxforms.sourceforge.net/samples/repeat.xform
http://ajaxforms.sourceforge.net/samples/repeat.xform

<xf:help>

This action causes the processing of xforms-rebuild

to happen, bypassing the normal event flow.

 model

</xf:help>

code source: http://ajaxforms.sourceforge.net/samples/actions.
xform

4.1.2.9 Dependency update feature

The online sample form Incremental illustrates that this feature is
implemented using incremental attribute.

<xf:label>Incremental</xf:label>

<xf:input ref="text" incremental="true"><xf:label>Input</xf:label></xf:input>

<xf:select ref="select" incremental="true">

code source: http://ajaxforms.sourceforge.net/samples/incremental.
xform

4.1.2.10 Upload feature

No example on the web site or shipped with the AJAXForms, and I
could not find another reference to verify if this feature is provided by
AJAXForms.

4.1.2.11 Spell checking

I could not find if this feature is provided by AJAXForms because the
project is not working properly as mentioned in section 1.1. As well as
there is no samples on the web site or references about this feature and
AJAXForms.

4.1.2.12 Autocomplet feature

Even this feature is not verified if supported or not supported by AJAX-
Forms, where no samples are provided on the website and I could not
find any reference about that.

4.1.3 Why is AJAXForms involved in this research

AJAXForms has no development and activity since 2006. However, it
was a starting point to develop another application called XSLTForms
project. XSLTForms is implemented as client-side in Exist-db that is
detailed in the next section. AJAXForms is the project ancestor of
XSLTForms, where XSLTForms adds the following changes: [7]

(a) There is a unique XSLT stylesheet for each Java source code, html
documents have IDS that generated based on their tag name and
position.

52

http://ajaxforms.sourceforge.net/samples/actions.xform
http://ajaxforms.sourceforge.net/samples/actions.xform
http://ajaxforms.sourceforge.net/samples/incremental.xform
http://ajaxforms.sourceforge.net/samples/incremental.xform

(b) XSLT must transform Xpath expressions in JavaScript.

(c) Full xforms1.1 support.

(d) Full XML schema support while AJAXForms only support simple
types of XML schema [1].

4.2 eXist-db

eXist-db is an open source xml database management system(native
xml database). It is built based on Java and it can be embedded inside
other applications or run as stand-alone server. [38] Exit-db is a pow-
erful environment that supports web2.0 technology standard such as:
XSLT, XPath, XQuery, and HTTP interfaces. It supports two types of
xforms implantations: client-side implementation (xsltForms) (see sec-
tion 1.4) and server-side implantation (Betterform) (see section 1.5).
[21]

4.2.1 eXist-db data storage

eXist-db has hierarchical collections of schema-less storage of xml doc-
uments. Users can query various parts of these collections or all docu-
ments that are stored in the database using an extended XPath syntax.
Most of path expression queries are only processed using index infor-
mation Based on path join algorithms. [21]

Using eXist database system is by logging in to the eXist database sys-
tem administration from the local eXist homepage (web-based inter-
face) and then select Admin from Administration section to enter the
appropriate username and password. In addition, Exist-db provides a
GUI admin client based on Java which allows users to perform admin-
istrative tasks such as security management. eXist-db system includes
some simple XQuery web applications that help users to experiment
and query the eXist-db database using sample XML documents. [22]

4.2.2 eXist-db security

eXist-db database system supports access control management for users
and groups based on UNIX permissions that are read, write and exe-
cute (which is update for exist-db) for owner, group and others. Users‘
accounts information (e.g usernames and passwords) and groups are
stored in the database (in the xml file /db/system/users.xml located in
collection/db/system and generated during database setup). [13] [24]

Each database user has one or more group, and each resource is owned
by one user and a group (who created it). The owner, group and others
may have different permissions under eXist-db database and only the
owner who is able to change these permissions. [13] [24]

53

Figure 4.2: permission categories(reprinted from [13])

Category Description

Owner These permissions for the owner of a resource

Group These permissions for members of the group of a resource

World These permissions for other users

Table 4.1: reprinted from [13]

4.2.3 Installation

All recent versions of Linux, Mac OS X, and Windows are compitable
with eXist-db. It needs at least 512 MB of RAM and about 200 MB of
disk space and requires Java 6 or 7 either Java Runtime Environment
(JRE) or Java Development Kit (JDK). [22]

I used version 1.6 of Java Development Kit (JDK) and downloaded the
latest stable release of eXistdb installer from existdb web site (http:
//exist-db.org) and started installation on a Linux virtual machine.

The following command is used to start the installer on Linux:

java -jar eXist-setup-1.4.2-rev16251.jar

The installation asks the user to enter a password for the eXist ad-
minstrator user (admin).

Before starting running eXistdb, there are some environmental vari-
ables should be set:
Export JAVA HOME=/home/jdk1.6.0-21
Export PATH=PATH:/home/jdk1.6.0-21

After finishing eXist-db installation, it starts running using its embed-
ded Jetty webserver (jetty is an open source HTTP server and servelt
container based on Java) by using the default port number 8080.

Start running eXist-db is by launch the file (startup.sh) in (bin) eXist
directory path and stop it is by launch the (shutdown.sh) in the same
directory.
[22]

Entering http://localhost:8080/exist/index.xml in the web browser opens
the eXist-db local homepage if the server runs correctly.

54

http://exist-db.org
http://exist-db.org

4.2.4 client-side functionality (xsltForms)

xsltForms is an open source engine (LGPL license). It is a client-side im-
plementation of XForms 1.1 to convert xForms to XHTML + JavaScript
(AJAX) using XSLT transformation, where there is no need for plugins
installation. eXist-db is shipped with xsltForms package that includes
a script library to generate an optimized AJAX code. Any designed
xsltForms are stored in eXist/webapp/xforms path.

4.2.4.1 Supported form features by xsltForms

This section outlines the form features that are supported and not sup-
ported by XSLTForms. These features are verified and tested using
some form samples that are implemented eXist-db software.

4.2.4.1.1 Data validation

This feature is tested and found that it is supported by eXist-db on
the client-side (xsltForms).

XsltForms support the same validation rules in xforms (see chapter3
XForms section for tested examples) [16]. However, most xsltForms
validation is using bind method because using validation based on xml
schema is more complex for xsltForms [60].

4.2.4.1.2 Dynamic form modification

Dynamic adding and removing form fields are tested on eXist-db client-
side (xsltForms) and found that they are supported.
For example:
The following part of code for deleting

<trigger>

<label>X</label>

<delete nodeset="." at="1" if="count(//telephone) > 1"

ev:event="DOMActivate" />

</trigger>

The following part of code for adding

<trigger>

<label>New</label>

<insert nodeset="telephones/telephone" at="index(’repeat’)"

position="after" ev:event="DOMActivate" />

</trigger>

code source: http://www.agencexml.com/xsltforms/xf.xml

55

http://www.agencexml.com/xsltforms/xf.xml

4.2.4.1.3 Calculation

xsltForms support the same calculation ways that are provided by
XFroms :
For example:
The following calculation example is by using bind element and cal-
culate attribute:

<xf:bind nodeset="Results/sum" calculate="sum(../../Row/A)"

type="xsd:decimal" />

<xf:bind nodeset="Results/avg" calculate="avg(../../Row/B)"

type="xsd:decimal" />

<xf:bind nodeset="Results/min" calculate="min(../../Row/C)"

type="xsd:decimal" />

[8] code source: http://www.agencexml.com/xsltforms/spreadsheet.
xml

The following calculation example is by using toggle element.

<xf:trigger>

<xf:label>+</xf:label>

<xf:action ev:event="DOMActivate">

<xf:setvalue ref="first" value="../screen"/>

<xf:setvalue ref="screenbuffer" value="0"/>

<xf:toggle case="add"/>

</xf:action>

</xf:trigger>

</td>

<td>

<xf:switch>

<xf:case id="add" selected="true">

<xf:trigger>

<xf:label>=</xf:label>

<xf:action ev:event="DOMActivate">

<xf:setvalue ref="second" value="../screen"/>

<xf:setvalue ref="result" value="../first + ../second"/>

<xf:setvalue ref="screen" value="../result"/>

<xf:setvalue ref="screenbuffer" value="0"/>

</xf:action>

</xf:trigger></xf:case>

code source: http://www.agencexml.com/xsltforms/calculator.xml

4.2.4.1.4 Data storage

XsltForms supports XML database. An xsltform is tested to generate, get
and put data in an XML database under Exist-db database system. The
tested example hello2.xml is shipped with eXist-db package.

56

http://www.agencexml.com/xsltforms/spreadsheet.xml
http://www.agencexml.com/xsltforms/spreadsheet.xml
http://www.agencexml.com/xsltforms/calculator.xml

<xf:model>

<!-- Try to load the default instance from the db. If no person exists in the db,

the query returns an empty <person/> element. Without that we

would receive an error. -->

<xf:instance id="default" src="../rest/db?_query=<person>

{/person/name}</person>

&_wrap=no"/>

<!-- Template data: will be copied into the default instance if the db does not

yet contain a person. -->

<xf:instance id="template">

<person xmlns="">

<name></name>

</person>

</xf:instance>

<xf:submission id="put-to-db" method="put" replace="none"

action="../rest/db/simple-xforms.xhtml">

<xf:toggle case="case-busy" ev:event="xforms-submit"/>

<xf:toggle case="case-submit-done" ev:event="xforms-submit-done"/>

<xf:toggle case="case-submit-error" ev:event="xforms-submit-error"/>

</xf:submission>

<xf:submission id="get-from-db" method="get" replace="instance"

action="../rest/db?_query=/person&_wrap=no">

<xf:toggle case="case-busy" ev:event="xforms-submit"/>

<xf:toggle case="case-submit-error" ev:event="xforms-submit-error"/>

<xf:toggle case="case-submit-done" ev:event="xforms-submit-done"/>

</xf:submission>

4.2.4.1.5 access rights control

Access control is supported by xsltForms weather by using a traditional user-
name and password form or when the form accesses a secure resource in the
database to get or put data. In the last case, the eXist-db asks users to prove
their credentials (username and password), where eXist has a Cocoon (it is
an open source project based on Java and is used to build dynamic internet
applications, it relies on using XML and XSLT transformation [34]) action
that presents a login interface page. This login is not required each time
because the entered username and password are stored in a created HTTP
session [24].

4.2.4.1.6 SVG feature

xsltForms supports using SVG to capture data in the form. The following
part of code is used to test this feature.

//this function handles the keyboard events

57

function typeText(evt) {

//handle "keypress" for all "real characters"

if (evt.type == "keypress") {

//some browsers support evt.charCode, some only evt.keyCode

if (evt.charCode) {

var charCode = evt.charCode;

}else {

var charCode = evt.keyCode;

}

//all real characters

if (charCode > 31 && charCode != 127 && charCode < 65535) {

text += String.fromCharCode(charCode);}

//backspace key

if (charCode == 8) {

//shorten text

text = text.substring(0,text.length-1);}

//enter key

else if (charCode == 10 || charCode == 13) {

stopTyping(evt);}}

...

<rect id="bgRect" x="-500" y="-500" width="1500" height="1500" fill="yellow"

stroke="none" />

<rect x="10" y="50" width="150" height="20" fill="white" stroke="black"

onclick="initTyping(evt)" />

<g font-size="10px" font-family="Arial">

<text x="10" y="30" font-size="12px" font-weight="bold">Demonstration of adding

and removing Event Listeners</text>

<text x="10" y="130">Click in the white rectangle to start typing text.

<tspan x="10" dy="15">Click outside the textbox or press enter to stop writing

text.</tspan>

<tspan x="10" dy="15">Press backspace to delete the last character when typing

is active</tspan></text>

code source: http://www.carto.net/svg/eventhandling/

4.2.4.1.7 subforms feature

Subform is supported by xsltForms and tested using the following example:

<h3>Writers (Subforms)</h3>

<xforms:repeat nodeset="writer" appearance="compact">

<p>

<xforms:output ref="@firstname"/> <xforms:output ref="@lastname"/>

<xforms:trigger>

<xforms:label><xforms:output value="choose(@selected != ’true’,’Show’,’Hide’)"/>

Books</xforms:label>

<xforms:action ev:event="DOMActivate">

<xforms:load if="@selected != ’true’" show="embed" targetid="subform"

resource="books.xml"/>

58

http://www.carto.net/svg/eventhandling/

<xforms:unload if="@selected = ’true’" targetid="subform"/>

<xforms:setvalue ref="@selected" value=". != ’true’"/>

</xforms:action>

</xforms:trigger>

<xforms:group id="subform"/>

</p>

</xforms:repeat>

code source: http://www.agencexml.com/xsltforms/writers.xml

4.2.4.1.8 Hint information feature

This feature is tested and found that is provided by xsltForms.

<p>Enter your first name, and last name.</p>

<xf:input ref="PersonGivenName" incremental="true">

<xf:label>Input First-Name:</xf:label>

<xf:hint>Also known as given name.</xf:hint>

</xf:input>

code source: http://www.agencexml.com/xsltforms/input.xml

4.2.4.1.9 Dependency update feature

This feature is enabled in xsltForms using incremental attribute for an
element. This attribute reflects any update or change in that element on
another element.

<xf:input ref="PersonSurName" incremental="true">

<xf:label>Input Last Name:</xf:label>

<xf:hint>Also known as sur name or family name.</xf:hint>

</xf:input>

Output Last Name: <xf:output ref="PersonSurName"/>

code source: http://www.agencexml.com/xsltforms/input.xml

4.2.4.1.10 upload feature

This feature is not supported by xsltForms.

4.2.4.1.11 Spell checking

This feature is not provided by XSLTForms.

4.2.4.1.12 Autocomplete feature

Autocomplete feature is verified and found that is not supported by XSLT-
Forms.

59

http://www.agencexml.com/xsltforms/writers.xml
http://www.agencexml.com/xsltforms/input.xml
http://www.agencexml.com/xsltforms/input.xml

4.2.5 Server-side functionality (betterFORM)

Betterform is a declarative server-side implantation of xforms 1.1 that is com-
patible with all modern browsers without plugins installation. It transforms
XForms documents on the server to XHTML + Javascript (AJAX) to provide
the user with an attractive interface without the need for writing any script
code. betterFORM is activated once the eXist-db installed. Furthermore, it
is configured by default to execute XForms documents that are stored in the
database weather using the web interface or the admin client interface [23].

betterFORM has add-ons that help to ease working with XForms: [23]

• Dashboard is a simple browser to the database. It enables the user to
create new collections or upload files into the database.

• FeatureExplorer: It is a live documentation of XForms. It eases
working with XForms by providing many working examples along with
relevant links to the XForms specifications. Moreover, it offers a live
CSS reference that helps with styling forms.

• TimeTracker: It is a small application that gives the user some hints
how to write a single-page application with eXist-db and Betterform.

4.2.5.1 Supported form features in betterFORM

This section verifies which form features are provided and not provided by
betterFORM using eXist-db software.

4.2.5.1.1 Data Validation

Data validation is supported by betterFORM by using the validation rules
of XForms(see chapter3 XForms section). The server-side implementation of
XForms (betterFORM) makes the validation more secure and reliable.

4.2.5.1.2 Dynamic form modification

betterFORM supports adding and removing form elements that are tested
using the same previous example in section 3.2.4.1.2.

4.2.5.1.3 Calculation

betterFORM supports calculation form feature. This feature is tested us-
ing the same examples in section 3.2.4.1.3.

4.2.5.1.4 DataStorage

betterFORM can get, put data and generate an XML document and save
it into eXist-db database.
The following example from Wikipedia is used to test this feature:

60

<xf:model>

<xf:instance id="data-instance" src="data.xml" xmlns="" />

<xf:submission id="read-from-file" method="get"

action="data.xml" replace="instance" instance="data-instance" />

<xf:submission id="save-to-file" method="put"

action="data.xml" replace="instance" instance="data-instance" />

</xf:model>

</head>

<body>

<xf:input ref="Element1">

<xf:label>Elementu 1:</xf:label>

</xf:input>

...

<xf:submit submission="read-from-file">

<xf:label>Reload</xf:label>

</xf:submit>

<xf:submit submission="save-to-file">

<xf:label>Save</xf:label>

</xf:submit>

code source: http://en.wikibooks.org/wiki/XForms/Read_and_write_with_
get_and_put

4.2.5.1.5 Access rights control

betterFORM files are stored in a collection called (betterform) in the eXist-
db database. So, any access to this collection including the access to the
dashboard requires users to enter their credentials depending on their roles
and groups. In this case, Cocoon(see section 1.4.5) login interface is repre-
sented by the eXist-db system. In addition, a form may developed under
betterFORM to be used as a login interface (with username and password)
to control access to other resources.

4.2.5.1.6 Svg feature

Many SVG with XForms examples are tested and they are not displayed.
Thus, it seems that this feature is not supported by betterFORM.

4.2.5.1.7 subforms feature

betterFORM supports subformms. Contact example (shipped with Better-
form package) is tested to illustrate subforms and cross-module submission in
Betterform. Cross-module submission allows passing instances between sub-
forms. It could be used to reuse the validation constraints between modules
to prevent duplicating the bind constraints.

61

http://en.wikibooks.org/wiki/XForms/Read_and_write_with_get_and_put
http://en.wikibooks.org/wiki/XForms/Read_and_write_with_get_and_put

<xf:submission id="update-subform" resource="model:address#instance(’default’)

/address" method="post" replace="none" ref="address[index(’addresses’)]">

<!--<xf:message ev:event="xforms-submit-done" level="ephemeral">

Masterform has updated Subform.

</xf:message>-->

</xf:submission>

...

<xf:submission id="s-update-master" resource="model:master#instance(’contact’)

/data/address[index(’addresses’)]" replace="none" method="post">

<xf:message ev:event="xforms-submit-done" level="ephemeral">Subform has updated

Master.</xf:message>

</xf:submission>

4.2.5.1.8 Hint information

Hint information feature is provided by betterFORM and is tested using
the same example in section 3.2.4.1.8.

4.2.5.1.9 Dependency update feature

Incremental attribute is used to enable this feature in betterFORM (see
section 3.2.4.1.9 for tested example).

4.2.5.1.10 upload feature

betterFORM allows upload feature and is tested using the following example:

<xforms:instance xmlns="">

<data>

<attachment1 xsi:type="xsd:anyURI"/>

<attachment2 xsi:type="xsd:hexBinary"/>

</data>

</xforms:instance>

</xforms:model>

...

<xforms:upload ref="attachment1" incremental="true">

<xforms:label>Upload for anyURI: </xforms:label>

</xforms:upload>

<xforms:output value="attachment1">

<xforms:label>Value: </xforms:label>

</xforms:output>

...

<xforms:upload ref="attachment2" incremental="true">

<xforms:label>Upload for hexBinary: </xforms:label>

</xforms:upload>

62

<xforms:output value="attachment2">

<xforms:label>Value: </xforms:label>

</xforms:output>

code source: http://www.agencexml.com/xsltforms/uploads.xml

4.2.5.1.11 Spell checking

betterFORM does not provide any control or component that supports this
feature..

4.2.5.1.12 Autocomplete feature

This feature is not supported by betterFORM.

4.3 Orbeon Forms

Orbeon PresentationServer (OPS) is an open source Ajax-based XForms en-
gine, so no need for client-side plugins installation. Orbean form is based
on XML technology and supports XForms1.1 specification. It includes an
XML pipeline engine that processing XML data using XML pipeline language
(XPL)(XPL is a declarative language that is built up from small components
called XML processors. XPL is used to process XML documents via those
XML processors. In addition, it is used to perform advanced functions such
as document aggregation, conditionals (”if” conditions), loops, schema val-
idation, and sub-pipelines [54]). Moreover, Orbeon Forms performs XSLT
transformations using built-in components and is shipped with examples and
documentation that help the user to design web forms. Electronic forms
could be programmed by writing required Xforms, XML and XSLT tags un-
der orbeon form or built with a visual web-based means that is provided by
orbeon form as well. [53]

4.3.1 Orbeon Forms builder

Orbeon form builder is a web-based application that provides a visual envi-
ronment for building electronic forms. The following features of form builder
help with designing web forms: [52]

• Easy layout: form builder has a clear and easy layout (sections and
grids).

• Data validation: form builder supports data type validation, as well
as it enables to import an XML schema for validation.

• HTML and PDF output: Forms that built with form builder can
be automatically produced in HTML or PDF format.

63

http://www.agencexml.com/xsltforms/uploads.xml

• Internationalization: Form builder could be used to full design forms
in multiple languages.

• Form Runner: Orbeon form runner is a runtime environment that is
used to test designed forms.

• XPath expressions: It is an advanced feature of form builder that
enables query XML data using control details dialog.

• Services and actions: Form builder provides an editor to implement
simple action and call simple services.

(a) HTTP service
FormBuilder has a built-in HTTP service editor to create simple
REST services that enable the form from calling the service to send
and receive xml documents.

(b) Database service
It an editor that enables the user to create a template of SQL query
or update. The datasource for this service is JDNI name(Java
Naming and Directory Interface (JNDI) is Java API that enables
applications from accessing directory services using a name such
as db in the following example).
Example:
SELECT * FROM orbean address book WHERE id = <sql:para
type=“xs:string“select=““/>

The parameters have to have placeholders in the form of XML
elements. “type“ is similar to SQL type.
This quey template runs in the database and returns data in XML
format, where names of database column are changed to lowercase
(if not). The elements of the returned xml document as follows:

– Root element <response >

– <row>element for each row in the database.

– Under <row >element there is an element for each column in
the database.

4.3.2 Installation

Orbeon Forms needs at least 1GB of RAM and it may be installed on any
recent versions of Mac OS, Linux or windows. Orbeon form requires Java5
or greater and a servelt1.4 container or greater.
I installed version 1.5 of Java development Kit (JDK) and apache-tomcat-
6.0.24 using windows7 machine.

Installing apache tomcat

• Downloading apache-tomcat-6.0.24 zipped file from http://tomcat.

apache.org, and extracting into apache-tomcat-6.0.24 directory.

• setting the environmental variable CATALINA HOME to the direc-
tory apache-tomcat-6.0.024.

Setup Orbeon Forms

64

http://tomcat.apache.org
http://tomcat.apache.org

• Downloading Orbeon form 3.9 from http://www.orbeon.com/forms/

download.

• Extracting the archive into orbeonform directory.

• Copying the file orbeon.war from orbeon form directory into tom-
cat home/webapps.

Start running Orbeon form

• starting tomcat by running the file tomcat home/bin/startup.bat.

• Open the URL http://localhost:8080/orbeon to display Orbeon form
welcome page.

• Shutdown.bat file stops Tomcat server.

I had an issue with Orbean Forms that gives the error java heap space
error when I run any tool in Orbean form such as Form builder. This prob-
lem is fixed by setting the variable CATALINA OPTS in apache-tomcat-
6.0.24/bin/catalina.bat file.
set CATALINA OPTS=-Xms512m -Xmx512m [30]

4.3.3 Supported form features by Orbeon Forms

The following sections experiment form samples with Orbeon Forms. These
samples are designed with electronic forms features to check their availability
and support by Orbeon Forms.

4.3.3.1 Data validation

Orbeon Forms supports data validation that is implemented with the same
XForms validation rules. Validation may be programmed or implemented
using Form builder. It is tested using controls form example that shipped
with Orbeon Forms package.

4.3.3.2 Dynamic form modification

This feature is tested and found that is supported by Orbeon Forms. The
following part of code (from bookcast example that shipped with Orbeon 521
Forms package) demonstrates adding and removing form elements.

<xforms:trigger appearance="minimal">

<xforms:label>

</xforms:label>

<xforms:insert ev:event="DOMActivate" context="instance(’books-instance’)"

nodeset="book" at="1" position="before" origin="instance(’book-template’)"/>

</xforms:trigger></td>

65

http://www.orbeon.com/forms/download
http://www.orbeon.com/forms/download

<td class="add-td">

<xforms:trigger appearance="minimal">

<xforms:label>Add One</xforms:label>

<xforms:insert ev:event="DOMActivate" context="instance(’books-instance’)"

nodeset="book" at="1" position="before" origin="instance(’book-template’)"/>

</xforms:trigger></td></tr>

<xforms:repeat nodeset="book" id="book-repeat">

<tr><td>

<xforms:trigger appearance="minimal">

<xforms:delete ev:event="DOMActivate" context="instance(’books-instance’)"

nodeset="book" at="index(’book-repeat’)"/>

<xforms:label>

</xforms:label>

</xforms:trigger></td>

4.3.3.3 Calculation

Calculation feature is supported by Orbeon Forms. For tested examples see
section 3.2.4.1.3.

4.3.3.4 SVG feature

Orbean Forms provides SVG feature and is tested using the example in sec-
tion 3.2.4.1.6.

4.3.3.5 Data sorage

Orbeon Forms uses persistence API to store form definition and data weather
in the same or different place. For example, form definition may be stored
in eXist and form data stored in other different. Orbeon Forms is shipped
with an embedded eXist database, where data is stored by default in eXist.
In addition, It provides a built-in support implementation for a number of
databases (see table below) and allows users to implement their own persis-
tence API. [51]

Storage Notes Availability
eXist A A full persistence layer implemented on top

of the open source eXist database. You can
setup this persistence layer to either use the
internal eXist database, or an external one.

Built-in

Oracle Afull persistence layer implemented on top
of the Oracle database. Forms and data are
stored using OracleXMLTypecolumns.

Built-in.

MySQL Afull persistence layer implemented on top of
MySQL.

Built-in

66

Alfresco This persistence layer isn’t bundled with Or-
beon Forms: it has been developed byAlexey
Ermakovand is available as an add-on that
you can download and configure with Orbeon
Forms.

Add-on

MongoDB A full persistence layer implemented on top of
MongoDB. NOTE: This is experimental as of
2011-04-26.

Built-in

File system (resource) A minimal, read-only persistence layer im-
plemented on top of Orbeon Forms’ resource
manager. This allows reading form definitions
stored within the Orbeon Forms WAR file.

Built-in

Table 4.2: reprinted from [51]

4.3.3.6 Access rights control

Two types of access control are provided by Orbean Forms: [55, 50]

(a) form builder access control: that is role-based. Permissions and
role are defined through a property file: form-builder-permissions.xml.
This enables specify different permissions (create, edit, or view a form)
for users depending on their roles.

(b) Access control to deployed forms: two levels of access control could
be implemented:

• Field level: is implemented in the form definition using $frroles.
This level of access control makes if a form field is visible or read
only or not for the current user. The visibility and read only XPath
expressions are defined in the Form Builder control validation di-
alog.

• Form level: controle acces to a form is based on path. For exam-
ple,
- If Orbean form is deployed on /orbeon and a form report is on
/orbeon/fr/ then,
- the path /orbeon/fr/report/new is for creating a new report and,
- the path /orbeon/fr/report/edit/id is for editing a report.
- Giving access to authenticated users to create new report is im-
plemented on /orbeon/fr/report/new.
- Giving access to authenticated users to edit a report is imple-
mented on /orbeon/fr/report/edit/*.

Orbeon form 4.0 provides an improved option for access control. It enables
to control role-based permissions in form builder under Advanced menu and
set permissions option.

67

4.3.3.6.1 username and roles

Orbeon form automatically adds two headers to deployed forms in form run-
ner:

• Orbeon-username: is one value that specifies the current user.

• Orbeon-roles: is a list of values that each one specifies one role.

Those headers are forwarded to form runner by XForms engine. Moreover,
they are forwarded to the the persistence layer to be used in database oper-
ations.

4.3.3.7 subforms feature

Subforms feature is tested and found that is supported by Orbeon Forms.

<xf:model>

<xf:instance id="names" src="names.xml">

<null/>

</xf:instance>

<xf:submission id="get-places" method="get" action="names.xml"

replace="instance" instance="names"/>

<xf:instance id="spaces">

<null/>

</xf:instance>

<xf:submission id="get-places" method="get" action="spaces.xml"

replace="instance" instance="spaces"/>

</xf:model>

<h2>Names</h2>

<xf:group ref="instance(’Names’)">

<xf:repeat nodeset="person">

<xf:output ref="name"/>

</xf:repeat>

<xf:submit submission="get-names">

<xf:label>Load names</xf:label>

</xf:submit>

</xf:group>

<h2>spaces</h2>

<xf:group ref="instance(’spaces’)">

<xf:repeat nodeset="spaces">

<xf:output ref="name"/>

</xf:repeat>

<xf:submit submission="get-spaces">

<xf:label>Load spaces</xf:label>

</xf:submit>

</xf:group>

68

4.3.3.8 Hint information feature

The example in section 3.2.4.1.8 is used to test this feature and found that
is provided by Orbeon Forms.

4.3.3.9 Dependency update feature

Like xsltForms and Betterform, this feature is supported by Orbeon Forms
with using incremental attribute.(See section 3.2.4.1.9)

4.3.3.10 upload feature

Orbeon Forms supports upload feature and is tested with an example sipped
with Orbean Forms package (xforms-upload directory).

4.3.3.11 spell checking

Orbeon Forms provides spell checker component that is bind to the node
which contains the text to be checked (for example, text area control).

<xforms:textarea ref="."/>

<fr:spell-checker ref="."/>

The spell checker component is displayed on the form page as an icon next
to the form field. This icon allows the user to open the spell checker icon
dialog to correct spelling mistakes. [48]

4.3.3.12 Autocomplete feature

This feature is supported by Orbeon Forms. It allows adding an auotocom-
plete field to the field and gives the user a list of suggestions when typing a
few characters [47].

The autocomplete component in Orbeon Forms is implemented in three
modes: [47]

(a) Static mode: in this mode, the auotcomplete field shows a static list
of suggestions (it is changed or obtained from other resource) depend-
ing on what the users type in it (It will only display items which label
starts with the text entered by users).

Example:

<fr:autocomplete ref="country-name" dynamic-itemset="false">

<xforms:label>Enter a country name: </xforms:label>

<xforms:itemset nodeset="instance(’all-countries’)/country">

<xforms:label ref="name"/>

<xforms:value ref="name"/>

69

</xforms:itemset>

</fr:autocomplete>

(b) Resource: the autocomplete field in this mode shows a list of sugges-
tions that returned by HTTP service in an XML document.

Example:

<fr:autocomplete ref="country-name" labelref="country-name/@label"

resource="/xforms-controls/services/countries?

country-name={$fr-search-value}"max-results-displayed="4">

<xforms:label>Country code: </xforms:label>

<xforms:itemset nodeset="/countries/country">

<xforms:label ref="name"/>

<xforms:value ref="us-code"/>

</xforms:itemset>

<xforms:alert>Value is mandatory</xforms:alert>

</fr:autocomplete>

This mode of auotcomplete feature introduced after the 3.9 release, and isn’t
yet available in Orbeon Forms 3.9 or earlier releases.

(c) Dynamic mode: the autocomplete in this mode displays a list of sug-
gestions that is updated automatically based on what users typed, and
it is not retrieved from a service.

Example:

<fr:autocomplete ref="instance(’selected-countries’)/dynamic"

labelref="instance(’selected-countries’)/dynamic/@label"

id="dynamic-autocomplete"

dynamic-itemset="true">

<!-- React to user searching -->

<xforms:action ev:event="fr-search-changed">

<xforms:variable name="search-value" select="event(’fr-search- value’)"/>

<xforms:variable name="make-suggestion"

select="string-length($search-value) >= 2"/>

<xforms:action if="$make-suggestion">

<!-- Update itemset -->

<xforms:setvalue ref="instance(’search-dynamic’)/country-name"

value="$search-value"/>

<xforms:send submission="update-countries"/>

</xforms:action>

<xforms:action if="not($make-suggestion)">

<!-- Delete itemset -->

<xforms:delete nodeset="instance(’searched-countries’)/country"/>

</xforms:action>

70

</xforms:action>

<xforms:label>Country code: </xforms:label>

<xforms:itemset nodeset="instance(’searched-countries’)/country">

<xforms:label ref="name"/>

<xforms:value ref="us-code"/>

</xforms:itemset>

</fr:autocomplete>

4.4 Microsoft Office InfoPath 2007

InfoPath is a client-side implementation that based on using XML technolo-
gies such as XSLT, XML Schema and XPath expressions. InfoPath is used
to design form templates that can be filled out in InfoPath, a web browser
or a mobile device.

When the user designs a form template, InfoPath automatically generates
an XML schema or the user can design a form template based on an existing
XML schema. InfoPath creates an (.xsn) file for the form template that is a
cabinet file combined of all different and required files such as XML schema
(.xsd) file and XSLT (.xsl) file. XSLT presentation will be generated auto-
matically when designing a form template, where InfoPath will produce the
XSLT structure based on mapping xml schema elements to the UI controls.

InfoPath has a built-in feature that enables the user to save form data lo-
cally, and continue working on a form template that is stored on a server by
caching it locally [29].

4.4.1 Installation

Microsoft InfoPath is installed as a part of Microsoft office 2007 package. It
needs for Windows Vista or at least Windows XP Service Pack 1. It could
be installed on MAC operating system as well.

I used Windows 7 machine to install Microsoft office 2007 that include In-
foPath.

4.4.2 connection to a web service

InfoPath enables the user to configure the form template to allow receiving
or submission of data (XML data) to a web service. For example, connect
a form template to a web service could be used to receive or submit data
to another program or system that is not directly supported in InfoPath.
In addition, fields with values that are received from a web service may be

71

added to the form template or bind fields to another that associated with a
web service [41].

4.4.2.1 Supported web service standard in InfoPath

• Simple Object Access Protocol (SOAP): is a simple protocol based
on XML that allows exchange information over the intenet. InfoPath
supports Microsoft SOAP Toolkit 3.0.

• Web Service Description Language (WSDL): is a description lan-
guage based on XML that is used to describe location, communication
protocol and interfaces to a web service.

• Universal Description, Discovery, and Integration (UDDI) Ser-
vices: is an XML-based directory service that is used for registration
and search web services. InfoPath uses UDDI to search for available
web services.

4.4.3 Form supported features in InfoPath

The following sections are about form features that are supported and not
supported by InfoPath. These features are tested using form samples that
are designed by Microsoft InfoPath 2007.

4.4.3.1 Data validation

InfoPath supports data validation and It could be done using the following
rules: [65]

• Using built-in data types to validate data.

• Using the built-in feature for validation condition , or adding the code
of that condition in validating event and in this case the programming
will be in C or visual basic (Microsoft visual studio should be installed).

• Using validation rules to check any changed event of a field or clicked
event of a button.

4.4.3.2 Dynamic form modification

InfoPath provides dynamic form modification by using repeating section
option. For example, adding and removing form fields are tested and found
that are supported.

4.4.3.3 calculation

Calculation feature is supported in InfoPath. A formula (XPath expression
consists of values, fields, functions, and operators) is used to calculate a form
field or control. This formula is inserted to the form element or control from
insert formula option that can be found under properties of the field [29].

72

4.4.4 Data storage

InfoPath can support different data storage: [29, 40]

• XML file: data form is stored as XML file locally or somewhere on a
network.

• SQL and Microsoft Access databases: InfoPath enables the user
to submit data to SQL AND access databases. As well as it allows
query data from them and binds it to the form controls.

• any relational database: for instance, an InfoPath form could receive
data from and submit data to an Oracle database that is connected
using a web service.

4.4.5 Access rights control

InfoPath allows classifying users into one or more groups by using User
Roles option. This option could be used to give users different views
of a form depending on their roles [42]. In addition, Information Rights
Management (IRM) in Microsoft Office InfoPath 2007 helps to create a
form with restricted permissions for specific users. permission option
is used to control access to a form and give users or groups one of the
following permissions: [44]

– Read permission: gives the user Read access to the form.

– Change permission: enables the user to access the form to read,
edit and save changes.

– Full access permission: gives the user full access to the form.

4.4.6 SVG feature

InfoPath does not support SVG feature, where there is no option or
control is provided in InfoPath2007 to perform SVG. However, I could
not find any reference to prove that.

4.4.7 subforms feature

Subforms feature is supported by InfoPath2007. A subform is created
by using template part that is includes in Desin a form template
dialog box, and then inserted to the main form.

4.4.8 Hint information feature

InfoPath provides this feature (called ScreenTip) under a form element
or control properties.

73

4.4.9 dependency update feature

This feature is supported by InfoPath. It is implemented via Rules
option that is under control properties. This option enables to set a
fields value using a formula (XPath expression) depending on a change
event in another fields value.

4.4.10 Upload feature

InfoPath enables the user to upload or attach files with a form. This fea-
ture is performed using File attachment control that allows upload-
ing all types of files. If the form designer limited the allowed uploaded
files then the user cannot upload a file out this limited set. Moreover,
by default, InfoPath considers specific types of files (such as .com, .exe
and .cmd) unsafe and restricts them from attaching or uploading with
a form. System administrators in InfoPath can add and remove file
types from the unsafe list by setting a value of a certain registry key.
This restriction prevents maliciousexecutable files from attacking users
computers [45].

4.4.11 spell checking

InfoPath supports this and it is enabled by selection the option Enable
spelling checker from the control properties and then Display tab.

4.4.12 Autocomplete feature

Autocomplete feature is provided by InfoPath. The option Enable Au-
toComplete (selected from the control properties and the display
tab) enables this feature

4.5 Summary

This chapter presented the most essential software that are used for
smart forms developing based on W3C standards. It described and ex-
plained their capabilities and verified the supported and not supported
form features that are tested and experimented.

74

Chapter 5

Summarized comparison
between tested
applications

This chapter presents a summarized comparison for the client and server
side functionality, as well as supported and non-supported form features
between the experimented applications that are introduced and tested
in the previous chapter. The first section presents a table that compares
client and server side implementations between the applications. The
second section produces the comparison in tables; each table compares
one form feature between the applications.

5.1 client and server side functionality com-
parison

The following table displays the functionality type of each of the previ-
ous experimented applications:

Application functionality
AJAXForms server-side implementation of XForms 1.0

eXist-db(XSLTForms) client-side implementation of XForms 1.1
eXist-db(Better Forms) server-side implementation of XForms 1.1

Orbeon Forms server-side implementation of XForms 1.1
InfoPath client-side system from Microsoft

Table 5.1: functionality type comparison

5.2 Form features comparison

This section is for comparing supported and non-supported form fea-
tures between the applications. The following tables show a summarized

75

comparison for each form feature in each application.

5.2.1 Data validation

The following table compares data validation feature between the pre-
vious experimented applications:

Application Data validation feature
AJAXForms supported(XForms validation rules)

eXist-db(XSLTForms) supported(XForms validation rules)
eXist-db(Better Forms) supported(XFroms validation rules

Orbeon Forms supported(XForms validation rules, mhand-
coding or using Form Builder)

InfoPath supported(using three different rules)
Table 5.2: Data validation comparison

5.2.2 Dynamic form modification

The following table compares dynamic form modification feature be-
tween the previous experimented applications:

Application Dynamic form modification feature
AJAXForms supported

eXist-db(XSLTForms) supported(adding and removing from DOM with
insert and delete elements)

eXist-db(Better Forms) supported(adding and removing from DOM with
insert and delete elements)

Orbeon Forms supported(adding and removing from DOM with
insert and delete elements)

InfoPath supported(using repeating section interface op-
tion)

Table 5.3: Dynamic form modification comparison

5.2.3 calculation

The following table compares calculation feature between the previous
experimented applications:

Application calculation feature
AJAXForms supported(XForms standard ways)

eXist-db(XSLTForms) supported(XForms standard ways)
eXist-db(Better Forms) supported(XForms standard ways)

Orbeon Forms supported(XForms standard ways)
InfoPath supported(using XPath expressions and insert for-

mula interface option)
Table 5.4: Calculation comparison

76

5.2.4 Data storage

The following table compares data storage feature between the previous
experimented applications:

Application Data storage feature
AJAXForms XML database

eXist-db(XSLTForms) XML database
eXist-db(Better Forms) XML database

Orbeon Forms Embedded eXist-db database(XML), built-in
database(Oracle, MySql and MangoDB) and Add-
on database(Alfresco)

InfoPath XML, MySql, Microsoft Access and any relational
databse

Table 5.5: Data storage comparison

5.2.5 Access rights control

The following table compares access rights control feature between the
previous experimented applications:

Application Access rights control feature
AJAXForms not verified

eXist-db(XSLTForms) relies on the server database access control
eXist-db(Better Forms) relies on the server database access control

Orbeon Forms form builder access control(role-based) and Ac-
cess control to deployed forms(field level and form
level)

InfoPath user roles option(gives users different views of a
form) and permission option(gives users different
restricted permissions to a form)

Table 5.6: Access rights control comparison

5.2.6 SVG feature

The following table compares SVG feature between the previous exper-
imented applications:

Application SVG feature
AJAXForms not verified

eXist-db(XSLTForms) supported and could be used to capture data
eXist-db(Better Forms) not supported

Orbeon Forms supported and could be used to capture data
InfoPath not supported

Table 5.7: SVG feature comparison

77

5.2.7 Subforms feature

The following table compares subforms feature between the previous
experimented applications:

Application Subforms feature
AJAXForms supported(using repeat element)

eXist-db(XSLTForms) supported(using repeat element)
eXist-db(Better Forms) supported(using repeat element) with cross-

module submission
Orbeon Forms supported(using repeat element)

InfoPath supported(template part option from design a
form template dialog box)

Table 5.8: Subforms feature comparison

5.2.8 Hint information

The following table compares hint information feature between the pre-
vious experimented applications:

Application Hint information feature
AJAXForms supported(using help element)

eXist-db(XSLTForms) supported(using hint element)
eXist-db(Better Forms) supported(using hint element)

Orbeon Forms supported(using hint element)
InfoPath supported(one of a control properties called

screenTip)
Table 5.9: Hint information comparison

5.2.9 Dependency update feature

The following table compares dependency update feature between the
previous experimented applications:

Application Dependency update feature feature
AJAXForms supported(using incremental attribute)

eXist-db(XSLTForms) supported(using incremental attribute)
eXist-db(Better Forms) supported(using incremental attribute)

Orbeon Forms supported(using incremental attribute)
InfoPath supported(using Rules option under a control

properties)
Table 5.10: Dependency update comparison

78

5.2.10 Upload feature

The following table compares upload feature between the previous ex-
perimented applications:

Application Upload feature
AJAXForms not verified

eXist-db(XSLTForms) not supported
eXist-db(Better Forms) supported(using upload element)

Orbeon Forms supported(using upload element)
InfoPath supported(using file attachment control option)

Table 5.11: Upload feature comparison

5.2.11 Spell checking

The following table compares spell checking feature between the previ-
ous experimented applications:

Application Spell checking feature
AJAXForms not verified

eXist-db(XSLTForms) not supported
eXist-db(Better Forms) not supported

Orbeon Forms supported(fr:spell-checker)
InfoPath supported(one of a control properties)

Table 5.12: Spell checking comparison

5.2.12 Autocomplete feature

The following table compares autocomplete feature between the previ-
ous experimented applications:

Application Autocomplete feature
AJAXForms not verified

eXist-db(XSLTForms) not supported
eXist-db(Better Forms) not supported

Orbeon Forms supported(fr:autocomplete) in three modes:
static, resource and dynamic mode

InfoPath supported(one of a control properties)
Table 5.13: Autocomplete comparison

5.3 Summary

This chapter introduced a summary that compared the experimented
applications in this thesis. The comparison involved their client and
server side implementations, and assessed for features.

79

Chapter 6

summary, conclusion and
further work

6.1 summary

This thesis focused on smart forms concept. It reported the most major
electronic forms technologies that are based on W3C standards. The
research explained the supported features that could be included in an
electronic form and make it smart form. In addition, it presented the
related researches that contributed in the electronic form developing,
as well as it described the main W3C electronic forms technologies, de-
tailed their components, benefits, and web browser support, and tested
them in term of the major electronic form features that explained in this
research. Furthermore, those form features are tested using four elec-
tronic forms applications: AJAXForms, eXist-db that implements two
technologies (XSLTForms on client-side and betterFORMS on server-
side), Orbeon Forms and Microsoft InfoPath. The research outlined
the installations, features, and capabilities of those applications which
use W3C technologies in their implementations. Finally, this study
produced a summary that compares the experimented applications in
terms of their functionalities and electronic form features.

6.2 conclusion

HTML5 forms and XForms are the frontier electronic forms technologies
that are based on W3C standards. Although XForms is more complex
and not natively supported by web browsers, HTML5 forms did not
replace it. XForms is more powerful where it is the first choice for the
most software products industries. There are different implementations
of XForms that transform XForms to JavaScript and HTML to enable
web browsers rendering XForms. HTML5 Forms is simpler to be under-
stood and modified by web designers. In addition, it provides powerful
new input types and attributes, as well as it has a native support for

80

the most major smart forms features that are explored in this research.
Xforms does not support all the electronic forms features such as spell
checking and autocomplete features. However, Orbeon Forms applica-
tion (which is a server-side implementation of XForms) provides all the
smart forms features in addition to other useful and powerful electronic
forms capabilities. As a result, I believe that the Orbeon Forms is a
perfect application that could be used to develop a smart form with
most of the powerful features.

6.3 further work

Based on the study that presented in this thesis, there are different
concepts that can be conducted in the electronic forms developing field.
Firstly, developing an algorithm transforms XForms to HTML5 Forms.
This could be a contributed improvement that benefits from the na-
tive support of web browsers for HTML5 Forms. Secondly, build-
ing an application that is automatically generated an electronic form
(XForms or HTML5 Form), SQL database and php script from XML
schema/document. This application can be implementing by using Or-
beon Forms application that tested and presented in this thesis as the
most powerful electronic form application because it supports the most
major electronic forms features. Finally, the first research that pre-
sented in chapter 3-section3.2.1 (Generation and validation of web
forms using database metadata and xforms.) may be enhanced
to generate complex XML schema and XForms.

81

Bibliography

[1] Ajaxforms. http://ajaxforms.sourceforge.net/index.html.

[2] Client-side and server-side scripting. http://www.

yourwebskills.com/clientserver.php.

[3] Data validation. http://www.wong-sir.com/cit/information_

processing/data_validation.htm.

[4] database servers, 2002. http://www.pcworld.idg.com.au/

article/191014/database_servers/.

[5] Electronic forms. White Paper, 2009.

[6] agence XML. From ajaxforms to xsltforms. http://www.

agencexml.com/xsltforms-slideshow/projectancestor.htm,

lastviewed22April.

[7] agence XML. From ajaxforms to xsltforms. http://www.

agencexml.com/xsltforms-slideshow/ajaxforms2xsltforms.

htm,lastviewed22April.

[8] agence xml. Xsltforms. http://www.agencexml.com/xsltforms.

[9] Must be build. Adding form fields dynamically with
jquery. http://www.mustbebuilt.co.uk/2012/07/27/

adding-form-fields-dynamically-with-jquery/.

[10] Messaoud Benantar. Access control systems: security, identity
management and trust models. Springer, 2006.

[11] John M. Boyer. Xforms 1.0 (third edition). Technical report, W3C.
http://www.w3.org/TR/2007/REC-xforms-20071029/#intro.

[12] John M. Boyer. Xforms 1.1. Technical report, W3C. http://www.
w3.org/TR/xforms/.

[13] Loren Cahlander, Paul Cross, Zar Geldiyev, Adam Stallman, and
Mike Turpin. Exist-db open source xml database software archi-
tecture description. December 2010. chaos management.

[14] Toon Calders, Stijn Dekeyser, Jan Hidders, and Jan Paredaens.
Analyzing workflows implied by instance-dependent access rules.
In PODS, pages 100–109, 2006.

[15] Alain Couthures. Json for xforms. XML Prague 2011, page 13,
2011.

[16] Alain Couthures. xsltforms-support, February 2012.
http://www.mail-archive.com/xsltforms-support@lists.

sourceforge.net/msg00109.html.

82

http://ajaxforms.sourceforge.net/index.html
http://www.yourwebskills.com/clientserver.php
http://www.yourwebskills.com/clientserver.php
http://www.wong-sir.com/cit/information_processing/data_validation.htm
http://www.wong-sir.com/cit/information_processing/data_validation.htm
http://www.pcworld.idg.com.au/article/191014/database_servers/
http://www.pcworld.idg.com.au/article/191014/database_servers/
http://www.agencexml.com/xsltforms-slideshow/projectancestor.htm, last viewed 22 April
http://www.agencexml.com/xsltforms-slideshow/projectancestor.htm, last viewed 22 April
http://www.agencexml.com/xsltforms-slideshow/projectancestor.htm, last viewed 22 April
http://www.agencexml.com/xsltforms-slideshow/ajaxforms2xsltforms.htm, last viewed 22 April
http://www.agencexml.com/xsltforms-slideshow/ajaxforms2xsltforms.htm, last viewed 22 April
http://www.agencexml.com/xsltforms-slideshow/ajaxforms2xsltforms.htm, last viewed 22 April
http://www.agencexml.com/xsltforms
http://www.mustbebuilt.co.uk/2012/07/27/adding-form-fields-dynamically-with-jquery/
http://www.mustbebuilt.co.uk/2012/07/27/adding-form-fields-dynamically-with-jquery/
http://www.w3.org/TR/2007/REC-xforms-20071029/#intro
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.mail-archive.com/xsltforms-support@lists.sourceforge.net/msg00109.html
http://www.mail-archive.com/xsltforms-support@lists.sourceforge.net/msg00109.html

[17] Commercial data processing. Checking the data (verification
validation). http://www.jhigh.co.uk/ComputingSG/CDP/CDP_

Validation.html.

[18] S. Dekeyser, J. Hidders, R. Watson, and R. Addie. Peer-to-peer
form based web information systems. In Gill Dobbie and James
Bailey, editors, The Seventeenth Australasian Database Conference
(ADC2006), pages 79–88, Hobart, Tasmania, Australia, January
2006. Australian Computer Society, Inc. http://eprints.usq.

edu.au/293/1/adhw_adc06_final.pdf.

[19] Micah Dubinko, Stacy Silvester, Sebastian Schnitzen-
baumer, and Dave Raggett. Xforms 1.0: Data model.
Technical report, W3C. http://www.w3.org/TR/2000/

WD-xforms-datamodel-20000406/.

[20] Mohammed M. Elsheh and Mick J. Ridley. Generation and
validation of web forms using database metadata and xforms.
In Symposium on progress in information communication tech-
nology, 2010. http://spict.utar.edu.my/SPICT-10CD/papers/

spict10_18.pdf.

[21] Existdb. Open source native xml database. http://http://

exist-db.org.

[22] Existdb. Open source native xml database. http://cdi.uvm.edu/
exist/quickstart.xml,last visited 30 March 2013.

[23] Existdb. Open source native xml database, l. http://exist-db.

org/exist/apps/doc/xforms.xmll,last visited 3 April 2013.

[24] Existdb. Open source native xml database, user authentication and
access control. http://cdi.uvm.edu/exist/security.xml,last
visited 30 March 2013.

[25] Better Form. The xforms toolkit. http://www.betterform.de/

en/xforms-toolkit.html.

[26] Yuri Gapanyuk, Egor Lakomkin, Sergey Ionkin, and Martin
Davtyan. Mvc web framework based on exist application server
and xrx architecture. In Denis Turdakov and Andrey Simanovsky,
editors, SYRCoDIS, volume 735 of CEUR Workshop Proceedings,
pages 19–25. CEUR-WS.org, 2011.

[27] Rebecca A Hills, Janet G Baseman, Debra Revere, Craig L K Boge,
Mark W Oberle, Jason N Doctor, and William B Lober5. Applying
the xforms standard to public health case reporting and alerting.
Online Journal of Public Health Informatics, 3(2):414–425, June
1998. http://ojphi.org/htbin/cgiwrap/bin/ojs/index.php/

ojphi/article/view/3656/3086.

[28] Trent Jaeger. Systems and internet infrastructure se-
curity lab. Technical report, Pennsylvania State Uni-
versity. http://ix.cs.uoregon.edu/~butler/teaching/10F/

cis607/papers/jaeger-refmon.pdf.

[29] Philo Janus. Pro InfoPath 2007, volume 252. Apress, 2007.

[30] JavaHowTo. 6 common errors in setting java heap size,
July 2006. http://javahowto.blogspot.com.au/2006/06/

83

http://www.jhigh.co.uk/ComputingSG/CDP/CDP_Validation.html
http://www.jhigh.co.uk/ComputingSG/CDP/CDP_Validation.html
http://eprints.usq.edu.au/293/1/adhw_adc06_final.pdf
http://eprints.usq.edu.au/293/1/adhw_adc06_final.pdf
http://www.w3.org/TR/2000/WD-xforms-datamodel-20000406/
http://www.w3.org/TR/2000/WD-xforms-datamodel-20000406/
http://spict.utar.edu.my/SPICT-10CD/papers/spict10_18.pdf
http://spict.utar.edu.my/SPICT-10CD/papers/spict10_18.pdf
http://http://exist-db.org
http://http://exist-db.org
http://cdi.uvm.edu/exist/quickstart.xml
http://cdi.uvm.edu/exist/quickstart.xml
http://exist-db.org/exist/apps/doc/xforms.xmll
http://exist-db.org/exist/apps/doc/xforms.xmll
http://cdi.uvm.edu/exist/security.xml
http://www.betterform.de/en/xforms-toolkit.html
http://www.betterform.de/en/xforms-toolkit.html
http://ojphi.org/htbin/cgiwrap/bin/ojs/index.php/ojphi/article/view/3656/3086
http://ojphi.org/htbin/cgiwrap/bin/ojs/index.php/ojphi/article/view/3656/3086
http://ix.cs.uoregon.edu/~butler/teaching/10F/cis607/papers/jaeger-refmon.pdf
http://ix.cs.uoregon.edu/~butler/teaching/10F/cis607/papers/jaeger-refmon.pdf
http://javahowto.blogspot.com.au/2006/06/6-common-errors-in-setting-java-heap.html
http://javahowto.blogspot.com.au/2006/06/6-common-errors-in-setting-java-heap.html

6-common-errors-in-setting-java-heap.html,last visited 12
April 2013.

[31] Jr. Steven Pemberton Nick Van den Bleeken John M. Boyer,
Leigh L. Klotz. Xforms 2.0. Technical report, W3C.
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0#About_

the_XForms_Specification.

[32] Ján Kasarda, Martin Nečaskỳ, and Tomáš Bartoš. Generating
xforms from an xml schema. In Networked Digital Technologies,
pages 706–714. Springer, 2010.

[33] Markku Pekka Mikael Laine et al. Xformsdb-an xforms-based
framework for simplifying web application development. 2010.

[34] Matthew Langham and Carsten Ziegeler. Cocoon: building XML
applications. Sams, 2003.

[35] Bruce Lawson and Remy Sharp. Introducing html5. New Riders,
2011.

[36] Peter Lubbers, Frank Salim, and Brian Albers. Pro HTML5 pro-
gramming. Apress, 2011.

[37] Wayne Allan Malkin. system and method of implementing calcu-
lation fields in an electronic form, Novmber 2004.

[38] Wolfgang Meier. exist: An open source native xml database. Web,
Web-Services, and Database Systems, pages 169–183, 2003.

[39] Antony J. Moore, Susan M. Warren, Scott D. Guthrie, and
Steven A. Isaac. web controls validation, July 2005.

[40] msdn. Introduction to microsoft office infopath 2007.
http://office.microsoft.com/en-us/infopath-help/

introduction-to-microsoft-office-infopath-2007-HA010163577.

aspx,last visited 19 April 2013.

[41] msdn. Overview of web service support in infopath
2007. http://msdn.microsoft.com/en-us/library/office/

bb852081(v=office.12).aspx,last visited 19 April 2013.

[42] MssharePointTips. Using infopath 2007 user roles. http://www.

mssharepointtips.com/tip.asp?id=1082,last visited 20 April
2013.

[43] Christopher Murphy, Richard Clark, Oli Studholme, and Divya
Manian. Beginning HTML5 and CSS3: The Web Evolved. Apress,
2012.

[44] Office. Create a form that has restricted permission.
http://office.microsoft.com/en-au/infopath-help/

create-a-form-that-has-restricted-permission-HA010077998.

aspx,last visited 20 April 2013.

[45] Office. Insert a file attachment control. http:

//office.microsoft.com/en-au/infopath-help/

insert-a-file-attachment-control-HP010080908.aspx,last
visited 20 April 2013.

[46] The open web application security project OWASP. Reviewing
code for data validation. https://www.owasp.org/index.php?

title=Reviewing_Code_for_Data_Validation&setlang=es#

Never_Rely_on_Client-Side_Data_Validation.

84

http://javahowto.blogspot.com.au/2006/06/6-common-errors-in-setting-java-heap.html
http://javahowto.blogspot.com.au/2006/06/6-common-errors-in-setting-java-heap.html
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0#About_the_XForms_Specification
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0#About_the_XForms_Specification
http://office.microsoft.com/en-us/infopath-help/introduction-to-microsoft-office-infopath-2007-HA010163577.aspx
http://office.microsoft.com/en-us/infopath-help/introduction-to-microsoft-office-infopath-2007-HA010163577.aspx
http://office.microsoft.com/en-us/infopath-help/introduction-to-microsoft-office-infopath-2007-HA010163577.aspx
http://msdn.microsoft.com/en-us/library/office/bb852081(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/office/bb852081(v=office.12).aspx
http://www.mssharepointtips.com/tip.asp?id=1082
http://www.mssharepointtips.com/tip.asp?id=1082
http://office.microsoft.com/en-au/infopath-help/create-a-form-that-has-restricted-permission-HA010077998.aspx
http://office.microsoft.com/en-au/infopath-help/create-a-form-that-has-restricted-permission-HA010077998.aspx
http://office.microsoft.com/en-au/infopath-help/create-a-form-that-has-restricted-permission-HA010077998.aspx
http://office.microsoft.com/en-au/infopath-help/insert-a-file-attachment-control-HP010080908.aspx
http://office.microsoft.com/en-au/infopath-help/insert-a-file-attachment-control-HP010080908.aspx
http://office.microsoft.com/en-au/infopath-help/insert-a-file-attachment-control-HP010080908.aspx
https://www.owasp.org/index.php?title=Reviewing_Code_for_Data_Validation&setlang=es#Never_Rely_on_Client-Side_Data_Validation
https://www.owasp.org/index.php?title=Reviewing_Code_for_Data_Validation&setlang=es#Never_Rely_on_Client-Side_Data_Validation
https://www.owasp.org/index.php?title=Reviewing_Code_for_Data_Validation&setlang=es#Never_Rely_on_Client-Side_Data_Validation

[47] Orbean. Autocomplete. http://wiki.orbeon.com/forms/

doc/developer-guide/xbl-components/autocomplete#

TOC-Overview,last visited 27 April 2013.

[48] Orbean. Spell checker. http://wiki.orbeon.com/forms/

doc/developer-guide/xbl-components/spell-checker#

TOC-Overview,last visited 27 April 2013.

[49] Orbean. Xforms - validation. http://wiki.orbeon.com/forms/

doc/developer-guide/xforms-validation.

[50] orbeon. Form runner access control. http://blog.orbeon.

com/2012/05/forms-access-control-with-form-builder.

html,last visited 14 April 2013.

[51] orbeon. Form runner/form builder persistence api.
http://wiki.orbeon.com/forms/doc/developer-guide/

form-runner/persistence-api,last visited 14 April 2013.

[52] orbeon. Orbeon form builder - user guide. http://wiki.orbeon.
com/forms/doc/user-guide/form-builder-user-guide#

TOC-Orbeon-Form-Builder,last visited 9 April 2013.

[53] orbeon. Orbeon forms faq. http://dl.lib.brown.edu:8083/

ops/doc/home-faq,last visited 9 April 2013.

[54] Orbeon. Xml pipeline language (xpl). http:

//wiki.orbeon.com/forms/doc/developer-guide/

xml-pipeline-language-xpl,last visited 27 April 2013.

[55] orbeon. Forms access control with form builder, May 2012.
http://wiki.orbeon.com/forms/doc/developer-guide/

form-runner/access-control#TOC-With-Orbeon-Forms-4.

0,last visited 14 April 2013.

[56] Pdfscrpting.com. Calculating field values and more. http://www.
pdfscripting.com/public/department45.cfm.

[57] Mark Pilgrim. Dive into html5, 2010.

[58] quirksmode.org. Extending forms. http://www.quirksmode.org/
dom/domform.html,last visited 8 May 2013.

[59] Ravi Sandhu and Jaehong Park. Usage control: A vision for next
generation access control. Computer Network Security, pages 17–
31, 2003.

[60] Alain Couthures Source forge. xsltforms-support, July
2012. http://sourceforge.net/mailarchive/message.php?

msg_id=29510306.

[61] Edwin Tump. The risks of client-side data dtorage. Tech-
nical report, SANS institute reading room site, 2011.
http://www.sans.org/reading_room/whitepapers/storage/

risks-client-side-data-storage_33669.

[62] W3schools.com. Html spellcheck attribute. http://www.

w3schools.com/tags/att_global_spellcheck.asp,last visited 8
May 2013.

[63] W3schools.com. Html5 web storage. http://www.w3schools.

com/html/html5_webstorage.asp,last visited 8 May 2013.

85

http://wiki.orbeon.com/forms/doc/developer-guide/xbl-components/autocomplete#TOC-Overview
http://wiki.orbeon.com/forms/doc/developer-guide/xbl-components/autocomplete#TOC-Overview
http://wiki.orbeon.com/forms/doc/developer-guide/xbl-components/autocomplete#TOC-Overview
http://wiki.orbeon.com/forms/doc/developer-guide/xbl-components/spell-checker#TOC-Overview
http://wiki.orbeon.com/forms/doc/developer-guide/xbl-components/spell-checker#TOC-Overview
http://wiki.orbeon.com/forms/doc/developer-guide/xbl-components/spell-checker#TOC-Overview
http://wiki.orbeon.com/forms/doc/developer-guide/xforms-validation
http://wiki.orbeon.com/forms/doc/developer-guide/xforms-validation
http://blog.orbeon.com/2012/05/forms-access-control-with-form-builder.html
http://blog.orbeon.com/2012/05/forms-access-control-with-form-builder.html
http://blog.orbeon.com/2012/05/forms-access-control-with-form-builder.html
http://wiki.orbeon.com/forms/doc/developer-guide/form-runner/persistence-api
http://wiki.orbeon.com/forms/doc/developer-guide/form-runner/persistence-api
http://wiki.orbeon.com/forms/doc/user-guide/form-builder-user-guide#TOC-Orbeon-Form-Builder
http://wiki.orbeon.com/forms/doc/user-guide/form-builder-user-guide#TOC-Orbeon-Form-Builder
http://wiki.orbeon.com/forms/doc/user-guide/form-builder-user-guide#TOC-Orbeon-Form-Builder
http://dl.lib.brown.edu:8083/ops/doc/home-faq
http://dl.lib.brown.edu:8083/ops/doc/home-faq
http://wiki.orbeon.com/forms/doc/developer-guide/xml-pipeline-language-xpl
http://wiki.orbeon.com/forms/doc/developer-guide/xml-pipeline-language-xpl
http://wiki.orbeon.com/forms/doc/developer-guide/xml-pipeline-language-xpl
http://wiki.orbeon.com/forms/doc/developer-guide/form-runner/access-control#TOC-With-Orbeon-Forms-4.0
http://wiki.orbeon.com/forms/doc/developer-guide/form-runner/access-control#TOC-With-Orbeon-Forms-4.0
http://wiki.orbeon.com/forms/doc/developer-guide/form-runner/access-control#TOC-With-Orbeon-Forms-4.0
http://www.pdfscripting.com/public/department45.cfm
http://www.pdfscripting.com/public/department45.cfm
http://www.quirksmode.org/dom/domform.html
http://www.quirksmode.org/dom/domform.html
http://sourceforge.net/mailarchive/message.php?msg_id=29510306
http://sourceforge.net/mailarchive/message.php?msg_id=29510306
http://www.sans.org/reading_room/whitepapers/storage/risks-client-side-data-storage_33669
http://www.sans.org/reading_room/whitepapers/storage/risks-client-side-data-storage_33669
http://www.w3schools.com/tags/att_global_spellcheck.asp
http://www.w3schools.com/tags/att_global_spellcheck.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp

[64] Hua Wang, Yanchun Zhang, and Jinli Cao. Access control man-
agement for ubiquitous computing. Future Generation Computer
Systems, 24(8):870–878, 2008.

[65] S.Y.M. Wong-A-Tonl. Infopath basics: 3 ways to validate data in
infopath. http://www.bizsupportonline.net/infopath2007/

infopath-basics-3-ways-validate-data-infopath.htm.

86

http://www.bizsupportonline.net/infopath2007/infopath-basics-3-ways-validate-data-infopath.htm
http://www.bizsupportonline.net/infopath2007/infopath-basics-3-ways-validate-data-infopath.htm

	Introduction
	Major electronic forms features
	Electronic forms supported features
	Data Validation
	Dynamic form modification
	Calculation feature
	Access right control
	Data Storage
	SVG feature
	subforms feature
	Hint information feature
	 Dependency update feature
	Upload feature
	spell checking
	Autocomplete feature
	Summary

	Technology and Literature review
	W3C electronic forms technologies
	HTML Forms
	XForms
	HTML5 Forms
	XForms VS. HTML5 forms

	Related research
	 Generation and validation of web forms using database metadata and xforms.
	 Applying the xforms standard to public health case reporting and alerting
	 Peer-to-peer form based web information systems
	Json for xforms
	 MVC web framework based on eXist application server and XRX architecture
	 XFormsDBAn XForms-Based Framework for Simplifying Web Application Development
	Generating XForms from an XML schema

	Summary

	Electronic forms applications
	AJAXForms Project
	Installation
	Form supported features in AJAXForms
	Why is AJAXForms involved in this research

	eXist-db
	eXist-db data storage
	eXist-db security
	Installation
	client-side functionality (xsltForms)
	Server-side functionality (betterFORM)

	Orbeon Forms
	Orbeon Forms builder
	Installation
	Supported form features by Orbeon Forms

	Microsoft Office InfoPath 2007
	Installation
	connection to a web service
	Form supported features in InfoPath
	Data storage
	Access rights control
	SVG feature
	subforms feature
	Hint information feature
	dependency update feature
	Upload feature
	spell checking
	Autocomplete feature

	Summary

	Summarized comparison between tested applications
	client and server side functionality comparison
	Form features comparison
	Data validation
	Dynamic form modification
	calculation
	Data storage
	Access rights control
	SVG feature
	Subforms feature
	Hint information
	Dependency update feature
	Upload feature
	Spell checking
	Autocomplete feature

	Summary

	summary, conclusion and further work
	summary
	conclusion
	further work

