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Abstract: A circular jump forms in the radial ow thickness when a downwards stream hits a horizon-

tal plate. Centre manifold theory is used to rigorously derive, from the Navier-Stokes equations, a dy-

namic model for slow horizontal variations of ow thickness and velocity. An advantage of this appro-

ach is the capacity to study non-stationary regimes and examine stability of the ow. Numerical solu-

tions of the model reproduce experimentally observed recirculation under the jump and quantitatively

agree with experiments of laminar ows.
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1 Introduction

A uid jet impinging downwards onto a horizontal

surface generates a ow with hydraulic jump, that

is, a sudden elevation of a free surface of uid [1]{

[3]. For certain parameters of the ow the jump

is stationary and radially symmetric. The phe-

nomenon has been studied theoretically in many

works but there is still lack of systematic approach

to the dynamics.

One of the most simple models of the hydraulic

jump is an inviscid ow exhibiting Rayleigh's

shock [4]. Linear one-dimensional shocks are con-

sidered in early work by Rayleigh [5], where, in

particular, river bores were analyzed as moving

shocks. The basic assumptions of this model are

continuity of mass and momentum uxes across

the shock, but discontinuity of kinetic energy ux.

It was shown that in order to meet a natural re-

quirement that the kinetic energy be lost in the

shock, the free surface behind the shock must be

higher then before. There have been attempts to

use this approach together with potential theory

to model circular hydraulic jumps [6]{[7]. How-

ever, this gave incorrect predictions for the radius

of the jump. It was found that the radius should

essentially depend on the radius of the falling jet

and, hence, on the radius of a nozzle where the jet

discharges from. Experiments have not con�rmed

such a dependence. A more elaborate model by

Watson [6] suggested that part of the ow is e�ec-

tively viscous and part e�ectively inviscid. For the

viscid segment, a similarity velocity pro�le was

prescribed. This theory also treated the hydraulic

jump as the shock. The viscous part was shown to

play substantial role in the dynamics. The model

was simpli�ed by Tani [8] who supposed the ow

was totally viscid. The boundary layer equations

were averaged over the depth of the ow under

assumption of similarity velocity pro�le. Bohr et

al. [7] developed this approach further, and good

predictions for the radius of the jump were ob-

tained.

There are two main shortcomings of these mod-

els | they describe only stationary states and

they are heuristic: as mentioned above, verti-

cal velocity pro�les are often approximated by

similarity distributions. For example, Bohr et

al. [7] assumed a parabolic structure: u(r; z) =

�u(C1� �C2�
2), � = z=�(r), where �u is the depth-

average velocity, r is the radius, z is the vertical

coordinate, � is the ow thickness, and C1, C2 are

some constant coeÆcients.

In this paper we use an approach that rests

on the solid basis of centre manifold theory. Its

detailed description can be found, for instance,

in [9]. Here we briey outline the main idea of

this theory. Consider a dynamical system

_x = Ax+ f(x; y; a) ; _y = By + g(x; y; a) ; (1)
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where the overdot denotes d=dt, a is a set of pa-

rameters, x and y are generally multidimensional

variables, and f and g are nonlinear functions. It

is assumed that the eigenvalues of the m�m ma-

trix A all have zero real part, and the eigenvalues

of the n�nmatrix B all have strictly negative real

part. Near the origin (x; y; a) = (0; 0; 0) the linear

dynamics dominate and the modes y are driven

exponentially quickly to 0 due to the equations

_y = By. These modes are thus ignored when con-

sidering the linear long-term evolution, and the

dynamics are approximately described in terms

of the neutral modes, x, which obey the equations

_x = Ax. Then centre manifold theory asserts that

this linear picture is only modi�ed by the nonlin-

ear terms f and g: the modes y(t) go exponen-

tially quickly to a manifold y = h(x; a), called

the centre manifold; and thereafter the long-term

evolution of the system is described by the low-

dimensional system _x = Ax + f(x; h; a). Centre

manifold theory has been successfully applied to

a number of problems such as dispersion of con-

taminants in channels [10], [11], dynamics of thin

�lms on inclined planes [12] and others.

2 Centre manifold model

Li and Roberts [13] used the centre manifold

technique to describe thin uid ows on curved

substrates. In particular, their model is appli-

cable to ows on plane surfaces, which interest

us here. A similar approach was earlier used by

Roberts [12]. Let us describe the main points of

the approach. The uid dynamics are governed by

the continuity equation and Navier-Stokes equa-

tions:

r � u = 0 ; (2)

@u

@t
+ u � ru = �

1

�
rp+

�

�
r

2
u+ g ; (3)

where traditional notations are used. Attached

to (2){(3) are boundary conditions expressing no

slip on the bottom plate, the free surface kine-

matic relation, a jump in normal stress on the

free surface caused by surface tension, and zero

tangential stress on the surface. The dimensional

equations (2){(3) are non-dimensionalized using

characteristic thickness of the �lm, H, as the ref-

erence length; �H=�, where � is the coeÆcient

of surface tension, as the reference time; �=� as

the reference velocity; and �=H as the reference

pressure. The non-dimensional form of (2){(3) is

r � u = 0 ; (4)

R

�
@u

@t
+ u � ru

�
= �rp+r2

u+Bg ; (5)

where g is a unit gravitational vector, R =

��H=�2 is the Reynolds number, and B =

�gH2=� is the Bond number.

To set the equations to a form treatable by

the centre manifold approach Roberts [12] per-

formed the following tricks. First, the horizontal

gradients, @=@x and @=@y, are supposed small:

@=@x � ", @=@y � " (non-dimensional), where " is

a small parameter. Second, the gravitational force

is regarded as a perturbing \nonlinear" term by

introducing small parameter � such that B = �2.

Third, the tangential stress on the free surface is

modi�ed using an arti�cial parameter  so that at

 = 0 the lateral shear mode of slowest decay ac-

tually becomes a neutral mode, but at  = 1 the

tangential stress boundary condition is recovered.

The idea is to seek a solution as power series in ,

" and � and substitute  = 1 into �nal expressions

in order to model the original physical problem.

Convergence of the series at  = 1 is con�rmed by

calculations [13]. According to the centre mani-

fold technique the horizontal velocity components

u and v, vertical velocity w and pressure p are

represented as functions of \amplitudes" of the

neutral modes: these are � and, as measures of

the velocity, the horizontal depth-average veloc-

ity components �u and �v. Centre manifold theory

guarantees that the solution is representable in

the form

u(t) = U(�; �u; �v) ;

such that
@

@t

"
�
�u

�v

#
= G(�; �u; �v) :

(6)

In (6) the dependence on the parameters ",  and

� is implicit. By adjoining the trivial equations

@"=@t = 0 ; @=@t = 0 ; @�=@t = 0

a new dynamical system is obtained for u, �, p,

",  and �. Once the terms of the original dy-

namical system involving parameters " and � are

treated as small perturbations, the theory leads

to a physically adequate solution for slow hori-

zontal variations (small "), and a relatively weak

gravitational force (small �).
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Analyzing (4), (5), (6) using computer algebra

yields the model [13]

@�

@t
� �

@(��u)

@x
�

@(��v)

@y
; (7)
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In this paper we con�ne our attention to

radially-symmetric ows. To transform (8) and

(9) to radial geometry, polar coordinates x =

r cos', y = r sin' should be used under assump-

tion that �, �u and �v do not depend on '. The

equations for the radial ow are presented further

below.

Meanwhile, the characteristic dimensional

scales adopted in [13] are inconvenient for the par-

ticular problem. The scales are essentially based

on the surface tension coeÆcient, �, which has a

negligible role in the radial dynamics, at least for

the ows reported in [1]. We choose di�erent char-

acteristic scales which are typical for the problem

in question: radius r
�
, thickness �

�
, velocity u

�
,

pressure p
�
= �gr

�
and time t

�
= r

�
=u

�
. These

values are estimated from the governing equations

as follows. Assuming that in the Navier-Stokes

equations the non-stationary term, inertia terms,

pressure term and viscous term are all of the same

order of magnitude one gets

u
�

t
�

=
u2
�

r
�

=
u
�
w
�

�
�

=
�g�

�

�r
�

=
�u

�

�2
�

; (10)

where � = �=�. The mass ux relation gives

u
�
r
�
�
�
= Q ; (11)

(Q equals the total mass ux divided by 2�), and

the continuity relation gives

u
�

r
�

=
w
�

�
�

: (12)

Solving (10){(12) results in

r
�
=

 
Q5

�3g

!
1=8

; u
�
=
�
Q�g3

�
1=8

: (13)

Using scales (13) we deduce new non-dimensional

form of the equations (2){(3):

r � u = 0 ; (14)

@u

@t
+ u � ru = �

1

Fr
rp+

1

Re
r

2
u+

g

Fr
; (15)

where the Froude number Fr and the new

Reynolds number Re are:

Fr =
u2
�

gr
�

; Re =
r
�
u
�

�
: (16)

Substituting (13) into (16) we reveal that the

Froude and Reynolds numbers are represented in

terms of a single parameter which is the non-

dimensional total mass ux q:

Re = 1=q2 ; F r = q ; q =
�5=8

Q3=8g1=8
: (17)

Let us show that the expression for q indeed repre-

sents the non-dimensional mass ux. Label tem-

porarily the dimensional quantities by tildes to

distinguish them from dimensionless quantities.
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Figure 1: �U2 = 0:55. The ow evolves to stationary state. Streamlines of the eventual ow pattern show

recirculation under the jump.
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Figure 2: �U2 = 0:48. The ow evolves to a settled oscillating regime.
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Figure 3: The position of the stationary jump ver-

sus the external thickness. Stars are plotted using

Fig. 3 of [1], circles correspond to our model.

By de�nition q = ru�, therefore, q =

(~r=r
�
)(~u=u

�
)(~�=r

�
) = (~r~u~�)=(r2

�

u
�
) = Q=(r2

�

u
�
).

Substituting here (13) we readily obtain the above

formula for q. Computer algebra yields (the same

result follows from (7){(9)):

@�

@t
� �

1

r
@r(r �U�) ; (18)
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r
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�
�U2

+4:0930 q2 @r

�
1

r
@r(r �U)

�
+ 4:8333 q2

�r

�
�Ur

+

 
0:1066 q2

�2r
�2
� 0:5834 q2

�rr

�

!
�U ; (19)

where �U is the average radial velocity ( �U2 =

�u2 + �v2). See that the continuity equation is of

the �rst order in r and the momentum equation

is of the second order in r. Hence, we need three

boundary conditions. We choose these to specify

velocity and �lm thickness on the left end of spa-

tial domain, that is at some relatively small �xed

radius r1, and velocity on the right end, that is at

some �xed r2 > r1.

3 Numerical results

We solved equations (18){(19) using the dae2

solver developed by Roberts [14]. To compare

numerical results with the experiments we used

dimensional parameters from [1] which were the

same in all the computations: r1 = 6 mm, �1 =

1:5 mm, r2 = 38 mm, and Q = 27=(2�) ml/s.

Once the total ux, coordinate and thickness on

the left end are stipulated, then the velocity on

this end is obtained from the continuity condition

as �U1 = Q=(�1r1). Thus, the boundary condi-

tions on the left end were �xed, while the bound-

ary condition specifying the velocity on the right

end, �U2, was free to be varied on our choice from

one experiment to another. Various magnitudes

of �U2 lead to various thicknesses on the right end,

�2. In some sources this thickness is called exter-

nal height. In the laboratory experiments [1] �2
was controlled by the height of a circular rim sur-

rounding the falling jet. Because the hydraulic

jump is formed far away from the rim, the rim

does not act as immediate cause of the jump; it

only controls the right end boundary condition.

Note that the jump is formed even when there is

no rim. The initial condition was chosen to rep-

resent uniform thickness throughout the ow and

velocity decreasing like 1=r. The latter choice pro-

vided a constant mass ux at the initial moment,

which helped reduce oscillations in early stages of

the dynamics. We adopted

�(r; 0) � �1 ; �U(r; 0) = q=(r�1) :

For �U2 > 0:5 we observed that stationary ow

is eventually formed after some transitional evo-

lution. An example of the ow dynamics and

eventual streamline pattern is shown in Fig. 1.

In the jump area a vortex (recirculation area) is

situated, where uid particles move along closed

orbits. This feature qualitatively agrees with the

laboratory observations. For �U2 < 0:5 unsteady

behaviour of the ow is obtained (Fig. 2).

Depending on the controlling boundary value

of the velocity from the range �U2 > 0:5 the ow

settles upon a certain thickness after the jump, �2,

and certain jump coordinate rj. The comparison

of the numerical and experimental results for the

stationary ows are presented in Fig. 3. See that

the points representing numerical solutions form

one line with the points representing experiments.
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The unsteady regimes at relatively large values

of �2 ( �U2 < 0:5) can be explained by too abrupt

change in the ow thickness and velocity in the

jump area. The larger �2 the larger the spatial

derivatives entering the governing equations. Re-

call that the accuracy of these equations is assured

by the centre manifold theory provided the spa-

tial variations are slow enough. This condition is

violated for extremely steep jumps. To extend the

area of applicability of the centre manifold model,

it is necessary to take into account higher-order

terms in ". Nevertheless, for relatively small ex-

ternal heights the model works well, and stability

of the solution is demonstrated by Fig. 1.

4 Conclusion

A non-stationary radial model of thin uid ow

is developed to study the circular hydraulic jump

formed by a stream of uid hitting a horizontal

plate. Accuracy of the model, for smooth ows,

is assured by the centre manifold theory. Station-

ary ow patterns are obtained for relatively small

external heights. For the stationary regimes, the

dependence of jump location against the exter-

nal height is determined, showing good agreement

with available experimental data. Stability of the

regimes is demonstrated. The model well repro-

duces a recirculation zone under the hydraulic

jump.
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