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GENERAL OBJECTIVES 
 

The present Ph.D. dissertation, entitled "Bioinformatics applied to human 

genomics and proteomics: development of algorithms and methods for discovery of 

molecular signatures derived from omic data and for the construction of co-

expression and interaction networks", develops and applies Bioinformatics methods and 

tools to address current critical problems in the analysis of human omic data. As a main 

scope of the work, we approached two main issues in Bioinformatics: analysis of 

heterogeneous omic data from clinical samples and integration and analysis of different 

human omic biomolecular information in relational networks. As a general comment, all the 

work presented in this Ph.D. used and developed a wide variety of bioinformatic and 

statistical tools for the analysis, integration, and elucidation of molecular signatures and 

biological networks. Most of this data corresponds to sample cohorts generated in recent 

biomedical studies on specific human diseases. 

This dissertation has been organised by main objectives into four different chapters 

focused on: (i) development of an algorithm for the analysis of changes and heterogeneity 

in large-scale omic data; (ii) development of a method for non-parametric feature selection; 

(iii) integration and analysis of human protein-protein interaction networks with subcellular 

location and (iv) integration and analysis of human co-expression networks derived from 

tissue expression data and evolutionary profiles of proteins. 

 

Primary specific objectives of this Ph.D. 

1a. Design and develop a new bioinformatics method to tackle the problems of 

samples variability and heterogeneity, detecting possible sample mislabelling and 

improving outlier's identification. To create such method, we designed a 

bioinformatic approach for in-depth analyses of large-scale omics data from 

biomedical samples to find and reveal all dependence relationships among omic 

features (i.e., genes, miRNAs, etc.) and samples (i.e., individuals of studied cohorts 

including their phenotypic and clinical characteristics). We also aimed to produce a 



 

 
XVIII 

new statistic enclosing these properties that may improve current statistical 

approaches. 

 

1b. Write and implement a complete R package corresponding to our new method to 

facilitate the use, accessibility, and interpretation of the results provided by the 

algorithm, accompanied by a detailed vignette and user guide. 

 

2. Develop a simple non-parametric statistic to measure the cohesiveness of 

categorical variables along a quantitative variable, applicable to feature selection 

in different types of big data. Consequently, we will compare this cohesiveness 

statistic to the current state of the art of feature selection methods, either flat, 

wrappers or embedded approaches. 

 

3. Integrate and analyse two high-throughput and systematic approaches from high- 

quality proteomics technologies: HuRI (Human Reference Interactome produced by 

Yeast-Two Hybrid technology) and Cell Atlas (comprehensive map of subcellular 

localization of all proteins of the human proteome, generated by antibody imaging). 

Explore the inference of protein subcellular localization given the integration of 

protein-protein interactome data and subcellular localization information, within the 

developed framework. 

 

4a. Generation of a robust human co-expression network across multiple tissues 

based on the analysis of a large RNA-sequencing dataset from the Human Protein 

Atlas. Disclose and identification the housekeeping (HK) and tissue-enriched (TE) 

genes (or gene-products) based on this data, placing them in a relational human gene 

expression context. 

 

4b. Integration the human co-expression network with protein orthologous families 

(derived from multiple sequence alignments, using OMA) plus an evolutionary 

timeline of the human proteome (using TimeTree), to investigate how old in 

evolution and how correlated are different human protein-coding genes. Generation of 

a relational network integrating: gene expression correlation (separating housekeeping 
or tissue-enriched) and protein evolutionary location in the timeline.  
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CHAPTER I 

 
Development of a bioinformatic method for 

decomposing heterogeneous cohorts of samples 
using robust omic data profiling 

 

 

 

 

 

BRIEF SUMMARY 
Current approaches for differential analysis or supervised learning in the study of 

samples from patients with complex diseases have to deal with patient and individual 

diversity, disease heterogeneity and technical variability. Here, we present the 

development and use of a new computational method, called DECO (DEcomposing 

heterogeneous Cohorts by Omic data profiling), intended to analyse and understand 

heterogeneous omic data avoiding classical normalization approaches of reducing or 

removing uninformative variation.  

Throughout Chapter I, DECO algorithm, statistical design and bioinformatic 

development are presented, including a detailed comparison to other current and well-

established methods and the application to experimental transcriptomic data from several 

cohorts of cancer patients. 
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CHAPTER I 

 

INTRODUCTION 
 

The areas of precision medicine and big data analysis have grown almost 

exponentially in the last decade due to the hopes of improving patient diagnosis based on 

omic information (i.e., data produced by genomic, transcriptomic, proteomic or other omic 

global techniques). Collecting information from large sample populations was expected to 

enable the identification and precise treatment of every single patient:  

“Precision medicine describes the definition of disease at a higher resolution by 

genomic and other technologies to enable more precise targeting of subgroups of disease 

with new therapies”  (Ashley 2016). 

Figure 1-I-1. Hypothetical workflow of precision medicine from the raw population and big data to precision 
medicine for any patient, through stratification of patients into similar categories depending on omic biomarkers 
and phenotypical features.  

Source: Manchester Precision Medicine Institute (http://www.mpmi.manchester.ac.uk/aboutprecisionmedicine/). 

 

Theoretically, if genomic-phenotypical information of one patient is available, we 

would be able of classifying such patient into a specific category where diagnosis and 

treatment have been already studied and tested (Fig. 1-I-1). Most of the times, however, 
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collecting a huge amount of data make analyses noisy, and bring the need to delve inside 

data applying different filtering techniques or attempting to remove irrelevant information: 

trying to change from incomprehensive big data to informative smart data. Such 

accumulation of large-scale data creates a complexity that, combined with sample 

variability, gives rise to a difficult scenario, where it is very easy to make mistakes when 

searching for novel specific disease markers. Currently, there is an increasing trend for 

multi-omics integration (Huang et al. 2017) and single-cell omics platforms to directly 

approach this issue from the root (Qian et al. 2017, Levitin et al. 2018). Regardless, 

individual variability is one of the most intricate issues to deal with in biomedical studies of 

large patient cohorts even if several omic datasets are available (De Palma and Hanahan 

2012, Rodriguez-Gonzalez et al. 2013). 

Currently, large-scale omic techniques applied to clinical and biomedical studies 

are generating deep molecular profiles from patients. One of the omic techniques that have 

provided best and broader results is genome-wide expression profiling (also known as 

GEP) that can be achieved using multiple high-throughput platforms. Consistent changes in 

gene signals among disease subtypes are detectable using differential expression methods 

like SAM (Tusher et al. 2001) and LIMMA (Smyth 2004), which have been applied 

successfully in the last decade, mostly focused on control-case binary comparisons. 

However, clinical data from patients and human samples exhibit considerable variability 

unrelated to the property of interest. This problem is larger when comparing closely related 

pathological disease subtypes, where subtle differences can mark dramatic changes in 

diagnosis and prognosis. Apart from the patient heterogeneity mentioned above, clinical 

samples in the case of cancer studies can also show intra-tumour variability corresponding 

to the alteration of tumour cells related to microenvironment, evolving mutations or 

longitudinal changes along the progression of the disease (Bedard et al. 2013). In 

summary, the big impact of individual heterogeneity and genetic dynamics on biomedical 

omic studies makes finding specific and reproducible gene markers highly challenging 

(Beckman et al. 2012, Gillies et al. 2012, Cyll et al. 2017). 

 Along the Introduction of this Chapter I, we will revisit current statistic methods, 

introduce new theoretical concepts and detail the statistical background related to our 

method, called DECO. Particularly, we will focus on the current state of art of those 

approaches to heterogeneity issues in cancer omic analyses. 
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CHAPTER I 

1. Gene expression and transcriptomics 

From the classical point of view, gene expression refers to the biological process 

by which information contained in a DNA gene sequence is transcribed to mRNA for a 

posterior translation to protein (functional gene product). Classically, this molecular process 

from DNA to mRNA is called transcription, which carries out the expression of any gene. 

Later, this mRNA will be translated into a protein. Figure 1-I-2 briefly describes the 

evolution of the central dogma of molecular biology. Interestingly, we know now that 

transcription not only generates mRNA molecules to be translated into proteins but also 

other RNA molecules are derived from non-coding genes: microRNA (miRNA), small non-

coding RNA (sncRNA), long non-coding RNA (lncRNA), transference RNA (tRNA), 

ribosomal RNA (rRNA), etc. Apart from helping in the regulation of RNA processing, these 

other RNA molecules perform additional diverse functions not necessarily related to protein 

production (Huang et al. 2013). 

Figure 1-I-2. The central dogma of molecular biology: evolution from 1965 (A) to current general concept (B). 
Adapted figure (Jafari et al. 2017). 

 

The use of transcriptomic techniques has been arisen according to the 

development and improvement of these technologies. The first attempt was published in 

1991 and included 609 mRNA sequences (expressed sequence tags - ESTs) from the 

human brain (Adams et al. 1991) obtained through an automated partial DNA sequencing 

procedure. However, current well-established transcriptomic methodologies, microarrays 

and RNA-sequencing (RNA-seq), were developed in mid-1990s and 2000s. For example, 

the first microarray analysis was published in 1995 (Schena et al. 1995) while first RNA-

sequencing study was released in 2006 (Bainbridge et al. 2006). In 2008, there was a 

boom of RNA-seq analysis due to increased capacity of recording sequences (up to 109 

sequences in a single experiment) reached by Illumina technologies. Figure 1-I-3 
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summarizes the methodological differences between microarray and RNA-seq 

technologies and how much different transcriptomic techniques have been used for 

analysis in terms of publications along the last 25 years (Lowe et al. 2017). As we can see, 

there was a great growth in the number of original research using RNA-seq due to its ability 

to read different RNA molecules and depth of coverage of gene expression signal.  

 

1.1 Microarrays technology 

Current microarray technology applied to gene expression allows measuring the 

abundance of thousands of transcripts via hybridisation of cDNA (complementary DNA 

obtained after reverse transcription of mRNA) to short oligonucleotides (probes of 25 - 50 

oligomers) of specific sequence placed on a physical support (array). The probe generation 

by manufacturer needs a prior knowledge about the DNA sequence of the organism (i.e. 

genome reference). Once the hybridisation is done, the intensity of fluorescence of the 

probes corresponding to each biological entity (i.e. the set of probes for each gene) allows 

the quantification corresponding to the amount of cDNA hybridized (Barbulovic-Nad et al. 

2006). Once processed, the microarray provides a global image that allows the 

quantification of thousands of genes at the same time.  

The microarray platforms most widely used and successful in transcriptomic 

studies have been produced by Affymetrix. After image scan, providing the raw signal of 

the microarrays, several data normalization processes (MAS5, Li-Wong, RMA, SVN or 

GCRMA) have been developed depending on the manufacturer and scope of the analysis 

(Li and Wong 2001, Hubbell et al. 2002, Huber et al. 2002, Wu et al. 2004). RMA method 

for Affymetrix platforms is the most extended and used microarray normalization method 

(Irizarry et al. 2003). All these different methods were intended to approach three main 

parts of any microarray normalization protocol: (i) background correction to remove noisy 

signal from fluorescence lecture; (ii) normalization to equal lectures from different samples 

within the same batch or experiment; and (iii) summarization of all probes composing a 

probeset (group of probe pairs that interrogate a sequence of a particular gene).  

Additionally, since a probeset match to a specific sequence of a gene, some 

methods, usually called gene-mappers or custom CDFs, have been developed for 

Affymetrix platform to integrate all probesets lectures mapping a gene combining 
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duplicated probesets and removing no unique unspecific probes (Sandberg and Larsson 

2007, Risueno et al. 2010). As a result of the normalization procedure and application (or 

not) of a custom CDF, we will obtain a matrix-table indicating the level of mRNA per gene 

per sample. 

 

1.2 RNA-sequencing technology 

Contrarily to microarray technology, RNA-sequencing (RNA-seq) technology is not 

biased by previous knowledge because it captures and sequences the transcripts 

contained at any RNA sample. Usually, the nucleotide sequences captured by this 

technique are around 100 bp (base pairs) but it may range between 30 and 100000 bp 

(100Kb). The depth of any RNA-seq experiment allows setting up different experiments 

depending on which kind of RNA molecules or biological process we are interested in. 

Usually, the background signal is very low for 100 bp reads in non-repetitive regions, 

providing a clear transcriptomic landscape for most of the organisms (Ozsolak and Milos 

2011).  

Figure 1-I-3. Summary figure showing (A) trends of use of different transcriptomic techniques, (B) the classical 
gene expression concept and (C) two schematic figures about microarrays and RNA-seq technologies. Figure 
adapted (Lowe et al. 2017). 
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Typically, the data analysis provided by a RNA-seq experiment consists of 6 

different steps: quality control, trimming, alignment, counting, normalization (for global 

adjustment of genome-wide and per sample) and differential expression. Although the 

insights about quality control or alignment procedures are out of the focus of this chapter, it 

is well-known they are crucial steps for a correct interpretation of posterior results. 

Regarding the absolute quantification step (includes counting and normalization), it 

provides the counts or number of reads per locus per sample and can be performed at 

gene, transcript or exon level. Along the last decade, different units have been proposed by 

experts for quantify amount of mRNA per sample to solve normalization issues related to 

gene length or sample background: 

• RPKM (Reads Per Kilobase per Million mapped reads): Normalization method 

designed for single-end RNA-seq experiments that normalize first for differences 

in sequencing depth and second for differences in gene size. The procedure is: (i) 

add the total reads in each sample and divide by 106 (per million scaling factor); 

(ii) divide the read counts of each gene by the per million scaling factor, giving 

reads per million or RPMs; (iii) divide the RPM values by the length (in kilobases, 

Kb) of each gene, returning final RPKM values.  

• FPKM (Fragments Per Kilobase per Million mapped reads): The same 

procedure that RPKM but designed for paired-end RNA-seq experiments. 

• TPM (Transcripts Per Million): Normalization method similar to RPKM and 

FPKM with a change in the order of the operations: first normalizes for differences 

in gene size and second for differences in sequencing depth: (i) divide the read 

counts by the length (in kilobases, Kb) of each gene, giving the reads per 

kilobase or RPKs; (ii) count all the RPK values in each sample and divide by 106 

(per million scaling factor); (ii) divide the RPK of each gene by the per million 

scaling factor, providing final transcripts per million or TPMs.  

• CPM (Counts Per Million): Counts divided by the total number of reads 

(sequencing depth) and multiplied by 106. This normalization method does not 

take into account the length of genes.  

Nowadays, TPMs are highly recommended instead RPKMs or FPKMs because the 

sum of TPMs per sample would give us the same number, while RPKMs or FPKMs can 
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vary along samples. However, most of the initial RNA-seq analyses described in literature 

were based on RPKM or FPKM calculations. All these units require a posterior 

transformation, where a change to the logarithmic scale log2(signal+1) should be 

performed because the distributions of expression signal are not linear. Previously, it is 

necessary adding 1 to remove those RPKM/FPKM/TPM/CPM values equal to 0, which 

would be transformed into (negative) infinite otherwise. We could analyse the expression 

signal by absolute quantification (estimation of the expression level of each gene) or by 

relative quantification (comparison of the expression between different types of samples). 

 Here, it is important to mention that these approaches tend to perform poorly if 

heterogeneous transcript distributions are present due to highly and differentially expressed 

genes which skew the count distribution (Bullard et al. 2010). For this reason, some newer 

normalization methods, like TMM, DESeq, UpperQuartile or PoissonSeq (Conesa et al. 

2016) try to avoid or ignore these highly variable features. 

 

1.3 Differential expression analysis 

Since both microarray and RNA-seq technologies provide a matrix containing 

normalized levels of mRNA per gene/exon/transcript per sample, a differential expression 

analysis will aim to compare these levels among groups of samples if categories are 

suitable of comparison. In this way, we would test if an observed difference in these mRNA 

level is greater than what would be expected by chance.  

Since the microarray technology was the first transcriptomic method to be widely 

accepted, the earliest methods for differential expression analysis were developed taking 

into consideration the particular statistical distribution and background derived from 

microarray normalization. As mentioned above, RMA method and Affymetrix platform have 

been the most used normalization method and microarray platform, respectively, so 

classical methods for differential expression on microarrays, like SAM or LIMMA, were 

accordingly designed. Due to microarray value distribution is not following any known 

statistical distribution, some investigators prefer applying a non-parametrical rank statistical 

hypothesis test, like the Mann-Whitney-Wilcoxon test or Rank Product test (Breitling et al. 

2004), or assuming normal distributions to apply the classical t-test. It is important to 

mention that the results of any differential expression analysis may vary a lot depending on 
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which method was chosen. In fact, it has been found a very low-level concordance among 

results on real array sets (Chrominski and Tkacz 2015), what makes even necessary to 

know the statistical assumptions behind each method. A brief description of classical 

approaches is following: 

- SAM: non-parametric statistical method to determine statistical significance 

between groups. It rebuilds the t-test to make it non-parametric (Tusher et al. 

2001). SAM uses the FDR and q-value method presented in Storey (Storey 

2002). 

- LIMMA: parametric method based on linear models to discover significant 

changes between groups of samples. Depending on the experimental design (two 

groups or more than two groups), it will be based on the b-statistic or F-statistic 

for assessing the significance of expression changes (Smyth 2004).  

- Rank Product: non-parametric method based on rankings of fold changes 

between groups of samples compared (Breitling et al. 2004). 

- Mann-Whitney-Wilcoxon: non-parametric method used to test conformity 

between two populations. One of the most used test if the distribution is unknown. 

- T-test: a statistical test based on the average and variance of the population to 

determine whether the two groups differ from one another. One of the most used 

test to assess significant changes if the distribution is normal. 

Attending to RNA-sequencing differential expression analysis, there are different 

methods specifically designed for RNA-seq distributions. For example, edgeR (Robinson et 

al. 2010) or DESeq (also DESeq2) (Anders and Huber 2010) are based on negative 

binomial distributions, which has been associated with RNA-seq value distributions. 

Alternatively, EBSeq (Leng et al. 2013) or baySeq (Hardcastle and Kelly 2010) are 

Bayesian approaches to the negative binomial model. Additionally, LIMMA could be also 

applied to RNA-seq data and their authors developed a normalization method based on 

CPMs, called voom (Law et al. 2014), while SAM’s author also developed a new version of 

SAM method, called SAMSeq, to deal with RNA-seq data (Li and Tibshirani 2013). 

Along this Chapter I, some comparisons will be focused on classical and well-

established methods like SAM, LIMMA and t-test and their performance on real and 

artificial transcriptomic datasets, not only from microarray technologies due to its larger 

historical use in bioinformatics and in clinical omic studies, but also from RNA-sequencing 
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experiments. 

 

2. Outlier profiling methods for cancer studies 

The idea that genes are often deregulated in only a subset of patients, especially in 

cancer studies, led to the development of an interesting method called Cancer Outlier 

Profile Analysis (COPA) (Tomlins et al. 2005, MacDonald and Ghosh 2006). Outlier genes 

are defined as the ones that show signals very different from the average in a subset of 

samples in some or in all of the studied classes (Fig. 1-I-4A). Indeed, the difference 

between an outlier and a normal gene is that the outlier has a modified expression only in a 

minority of the studied samples, indicating a heterogeneous behaviour in such sample 

subset (Tomlins et al. 2005, MacDonald and Ghosh 2006). This idea comes from a well-

known biological event in cancer: genetic translocations lead to up-regulation of 

oncogenes, which may affect cancer progression or reflect a particular state.  

In order to find outlier genes, or outlier features in general, several algorithms have 

been proposed in the last decade based on different modifications of statistical tests, 

clustering analysis or resampling techniques applied to either original omic data or 

multidimensional transformed data (Li et al. 2007, Tibshirani and Hastie 2007, Wu 2007, 

Baty et al. 2008, Lian 2008, Hiissa et al. 2009, Wang and Rekaya 2010, Mpindi et al. 2011, 

de Ronde et al. 2013, Yang and Yang 2013, Roden et al. 2014, Noto et al. 2015, Nabavi 

2016). 

Figure 1-I-4. Modified figures from COPA and DOG algorithm publications (Tomlins et al. 2005, Yang and Yang 
2013). Panel (A) describes a hypothetical gene profile from COPA point of view, showing a subset of samples with 
higher expression signal than the highest value of control group. Panel (B) shows exactly the same conceptual 
definition from a DOG point of view, providing some examples where outlier profile is only supported by one or two 
samples.  
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As we mentioned above, the first method approaching this issue was COPA 

(MacDonald and Ghosh 2006). First article describing COPA correctly identified strong 

outlier profiles of ERG and ETV1 genes, both from ETS family transcription factors, in 

several prostate cancer datasets (Tomlins et al. 2005). This method is intended to discover 

pairs of genes affected showing mutually exclusive profiles due to genetic translocation 

event and following an outlier profile. Aiming that, COPA is based on classical methods for 

detecting differences among two group of samples (t-tests or Mann-Whitney tests) but 

including proper modifications: centred and scale each omic profile (typically, rows 

correspond to genes and columns to samples in our omic data matrix) using median and 

median average difference (MAD). Thus, given a cut-off for number of outlier samples, 

COPA could rank any feature comparing sum of outlier samples for each pair of genes 

(MacDonald and Ghosh 2006). 

 

2.1 State of art: feature-based methods 

After COPA, a wide variety of statistical approaches for outlier profile detection 

appeared. Indeed, OS method modifies COPA statistic superseding percentile cut-off by 

the inter-quantile range of the expression data in both groups (Tibshirani and Hastie 2007). 

Then, ORT algorithm modifies OS statistic considering interquartile range only for control or 

reference samples and, consequently, replacing global median values by median values 

per category of samples (Wu 2007). Alternatively, in order to consider all possible values 

for outlier thresholds, the MOST method requires case expression data be sorted in 

descending order. This method carried out trimmed mean for all possible outlier thresholds 

to consider maximum values as outlier profiles (Lian 2008). Posteriorly, LSOSS algorithm 

postulates that case samples could follow different profiles (activated and inactivated 

samples) and proposes a model related to fitting least squares of gene expression data. 

They also include a modified hierarchical clustering method developed to classify the 

heterogeneous gene activation patterns. Authors of this paper remove median approach for 

t-statistic distribution of the expression data, and return to mean values for each class 

(Wang and Rekaya 2010). Additionally, GTI method were presented as an alternative to 

COPA, OS and ORT (similar performance on single studies) for the application on meta-

analysis but indicating problems with down-regulated genes (Mpindi et al. 2011). Next, 

ZODET was compared to GTI, which considered to transform each gene profile to z-scores 
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with respect to control samples (Roden et al. 2014). Following this approach, this method 

will fail and over-rate those genes whose standard deviation and mean of control samples 

are low, usually called flat genes in the literature.  

Figure 1-I-5. Original figure from DIDS algorithm publication (de Ronde et al., 2013). Panel (A) describes a 
hypothetical gene profile with DE where any outlier-behaviour is observed within case samples (red dots) against 
control samples (black dots). Panel (B) corresponds to actual gene outlier profile where a subset of case samples 
is significantly changed respect to control samples value range. The Mann-Whitney p-values are shown at bottom-
right corners of each panel. DIDS assumes control as stable profiles with no abrupt dispersion or variability. 
 

Several of these new approaches based on slight modifications of initial proposal 

done by COPA authors (OS, ORT, MOST, LSOSS) were independently compared by 

Karrila et al. using the Bhattacharjee dataset (Bhattacharjee et al. 2001) with 139 

adenocarcinomas and 17 normal lung samples (Karrila et al. 2011). The comparative was 

conceived to decide which method could be implemented as a part of a semi-supervised 

method to discover predictive biomarkers. According to their benchmark, they concluded 

that MOST was the most suitable algorithm for outlier profile detection due to its stability 

after resampling and its gene ranking agreement with other methods. Instead, LSOSS 

outperformed similar to t-test while OS and COPA behaved analogously. However, this 

study started from an incorrect premise: algorithms for outlier profile detection must be 

stable if a subset of samples was added or removed from the original dataset (a resampling 

benchmark was established). If this premise was correct, all these methods would give 

similar scores for genes even if the outlier samples were removed.  
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Outstanding from all these methods, DIDS algorithm (de Ronde et al. 2013) 

approaches the outlier profile detection through a very simple way obtaining notable results 

in several real and experimental datasets. Given a group-group comparison between 

control and cases samples (interesting for the study), DIDS considers control samples as 

stable and reference values from which case values deviations would indicate us if there 

are samples following an outlier behaviour within case group (Fig. 1-I-5). Additionally, the 

authors proposed a permutation-based p-value to determine which particular profiles were 

not showing an outlier profile by chance (lower number of samples out of control values 

range would be discarded).  

Figure 1-I-6. Adapted figures from original papers detailing key points of: (A) ReScore, (B) MultiStab or (C) CSAX 
methods (structure-based methods). 

 

2.2 State of art: structure-based methods 

Apart of these statistical approaches to cancer outlier profile detection, which were 

focused on the gene profile per se, some authors proposed new methods based on data 
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structure and resampling procedures. In fact, ReScore was intended to re-score the 

original omic data matrix to facilitate the splitting of any omic data in original subclasses 

analysed (Fig. 1-I-6A). Here, initial classes of samples are needed to transform the omic 

data matrix (Hiissa et al. 2009). Moreover, MultiStab was designed for finding out stable 

biomarkers among categories of samples. Contrarily to the concept proposed by COPA, 

they were searching stable biomarker for each category of samples. Then, they estimated 

the stability of all gene coordinates after applying a Between-group Analysis (BGA) (Fig. 1-

I-6B), which is based on ordination of group of samples similarly to Correspondence 

Analysis, within a resampling design (Baty et al. 2008). Alternatively, CSAX introduced a 

new way to approach this issue: applying an iterative learning method on a subset of 

control samples, leaving all case samples and the rest of samples as test set (Fig. 1-I-6C). 

Then, the method would try to identify the control samples within the test set and assess 

the anomaly (and the precedence) due to the previous mix (Noto et al. 2015). Roughly, it is 

important to mention that these methods are heuristic.  

 

2.3 Questionable hypothesis behind current methods 

Unfortunately, all those methods designed for outlier profile detection are missing a 

crucial reality here: control or reference samples also present intrinsic differences. As well 

as intra-tumour heterogeneity for case group, each specific patient genetic background 

involved as control or reference will be partly responsible for variability within control group. 

For this reason, basing outlier profile detection on stable patterns along control samples 

may lead to higher false negative and positive rates, even more accused if reference group 

has lower size (as usual). For example, DOG method (Yang and Yang 2013) is able to 

identify as significant outlier profiles those genes where only 1 or 2 samples deviate from 

control or reference group (Fig. 1-I-4B) while ZODET is conceptually based on control 

samples’ stability. In addition to the probable patient’s variability within the control group 

and intra-tumour heterogeneity, those omic techniques focused their samples on a cell 

population would inflates variability due to cell type differences along any tissue. 
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3. Theoretical framework 

As hinted above, the algorithm proposed in this Chapter I (DECO) approaches 

intrinsic heterogeneity within a group of samples trying to find out which features are 

directly related to variability. Due to biological characteristics of each individual, any group 

of samples could be split in different subgroups attending to the similarities among their 

omic profiles. In fact, this is main concept of personalized medicine: to discover the 

similarities and differences among patients to properly diagnose and treat them by 

stratifying in subgroups.  

Figure 1-I-7. Theoretical framework presenting four model-types of change expected when comparing two 
predefined classes: (A) complete change (pCom); (B) majority change (pMaj); (C) minority change (pMin); (D) 
mixed change (pMix). The adjusted p-values using FDR correction after t-test comparisons are shown in each 
model-type for a measured variable. The plots represent in blue the signal of such feature for the control samples 
and in red the signal of such feature for the case samples. All model-types were extracted from simulated data 
(10000 features and 80 samples, following a RMA value distribution for Affymetrix microarray). 
 

Particularly, the biomedical investigation is mostly focused in group-group 
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comparisons when any omic data analyses were carried out. For simplicity, investigators 

try to discover which particular transcriptomic, proteomic or genomic landscape are behind 

a specific cell state, disease or biological background through the comparison against a 

reference state. However, classical bioinformatic methods of differential analysis (e.g. for 

transcriptomic data: t-test, Mann-Whitney-Wilcoxon, SAM, LIMMA, edgeR, DESeq, etc) do 

not deal with heterogeneity as a part of the analysis, failing at some differential scenarios.  

Hence, investigators always focus on adjusted p-value from multiple testing 

correction for establishing a cut-off or threshold (usually adjusted p-value < 0.05), which 

may lead to misinterpret results in some cases (Fig. 1-I-7). Depending on the sample size 

of each group compared and the statistical method used, the adjusted p-value behind a 

comparison between two states could range around the typical threshold mentioned above. 

Thus, any decision made and based on a significance threshold may be inappropriate.    

Attending to possible omic scenarios for a single differential profile, we could 

roughly hypothesize four model-types when a group-group comparison is settled, described 

in Figure 1-I-7. Ideally, we would expect that a subset of features shows a complete 

change between two groups (panel A). This scenario is correctly detected by any of current 

statistical methods and reflected by the adjusted p-value. Nevertheless, the adjusted p-

value could miss relevant information when majority or minority change profiles are 

present in our data (panel B and C). While the adjusted p-value of majority profiles may be 

considered as positive biomarker between classes, minority profiles should be considered 

as false positives. Both adjusted p-values range depending on group size balance and 

method used to analyse the data. Finally, mixed change is correctly defined as true 

negative by any differential method (panel D). Although this differential change is not 

directly related to original group of samples, its variability may be associated with another 

sample information.  

In this way, we hypothesize that knowing both significance of differential change 

and the profile type of any omic feature would greatly increase the interpretability of the 

results after a common group-group comparison. For this reason, DECO algorithm 

(detailed along this Chapter I) will be intended to scrutinize and categorize all omic profiles 

if suitable. 
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4. Statistical tools: Resampling techniques 

In statistics, resampling corresponds to different methods for validating models, 

estimating statistics from a sample/population or iteratively performing significance tests. 

These techniques generally provide more accurate results than traditional methods and 

allow involving a wide variety of modifications, depending on which type of data would be 

analysed (Hesterberg et al. 2005). As a resampling method, we may highlight bootstrap, 

jackknife, subsampling, cross-validation and permutation tests. Briefly, the main 

characteristics are following: 

- Bootstrap is considered one of the most known resampling methods, 

consisting of a sampling with replacement (one sample may appear more than 

one time in a single iteration) to estimate the sampling distribution of any 

particular statistic.  

- Jackknife is more often applied for statistical inferences of bias and errors of 

any statistic. Classically, this resampling scheme is characterized by n-1 

iterations of n-1 subsets of samples (removing one sample). 

- The permutation strategy is a resampling method where significance of a test 

under null hypothesis is assessed through the random rearrangements of 

sample labels. Monte Carlos testing is one of the most famous permutation 

tests.  

- Cross-validation aims to validate a predictive model through the validation of 

this model on multiple subsets of data (trained with the rest of data). 

- Subsampling is similar to bootstrap but the resample size is smaller than total 

and the resampling scheme does not include replacement. Interestingly, it was 

reported is validity at many common scenarios whereas bootstrap does not. 

Different resampling techniques have been broadly adapted in bioinformatics since 

the expansion of gene expression analysis around 1995, due to the recent advances in 

cDNA microarray technologies and analyses in early 1990s (Lenoir and Giannella 2006). At 

that moment, the main purpose was to identify subset of genes which allow the 

discrimination of different group of patients, mostly focused on unsupervised experiment 

designs where no initial classes were defined. Later, once the classes were properly 

characterized, the bioinformatic field turn to the class-predictor analysis, where the 

investigator wants to define a minimum subset of features for predicting new samples 
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belonging to any known category (Molinaro et al. 2005).  

Particularly, the feature selection procedure included in our method (DECO) would 

consist of a subsampling procedure, which will explore all the omic data in order to provide 

a robust output of variables and significant genes.  

 

5. Statistical tools: Non-Symmetrical Correspondence Analysis  

Principal Component Analysis (PCA) is one of the most used techniques for the 

analysis of gene expression data. Since low dimensionality of omic data was broadly 

proven (Heimberg et al. 2016), PCA provides information on the overall structure of the 

data, organizing features and samples according to their similarity and variability, but now 

based on abstract measures after data transformation (Sanguansat 2012). However, the 

lack of direct interpretability (more accused if the dataset is heterogeneous) and its 

dependence on effect size and fraction of samples containing biological signal may lead to 

meaningless results (Lenz et al. 2016).  

 If the omic data is collected in a contingency table (absolute frequency matrix), 

classical tools like Correspondence Analysis (CA) would provide a measure and 

visualization of how strong are the associations between rows and columns. The CA is 

based on the decomposition of the index f2 of Pearson, a symmetric measure of 

association. However, the omic data compiled (i.e. gene expression, protein concentration, 

methylation level, etc.) is always intended to explain or define a biological state, pathology 

or particular group of samples. Therefore, the explanatory variables and response variables 

are predefined from the beginning. To overcome those misinterpretations, the Non-

Symmetrical Correspondence Analysis (NSCA) was introduced by D’Ambra and Lauro in 

1984 (Diday 1984). NSCA allows to establish asymmetric associations among features 

and samples in a common dimensional space transforming a frequency or contingency 

table N into a matrix of centred column profiles (Eq. 1.1). Given two categorical variables I 

and J, NSCA aims to assess how explanatory variable J influences on the distribution of 

response variable I.  
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the total variability or inertia explained by each component within a NSCA (features and 

samples) is summarized by the Goodman-Kruskal t index (Goodman and Kruskal 1959, 

Sanguansat 2012).  

   .- = /,01 = +·% ·
&'(

&·(
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Figure 1-I-8. Inner product calculated by NSCA would orient similar categorical variables in the same direction. 
(A) Inner product calculation between a feature Fi and a sample Sj. Greater absolute inner product would indicate 
association (positive or negative dependence) while values closer to 0 would signify no association. (B) 
Theoretical example of behaviour for different subgroup of samples. 

 

Eigen-value decomposition of the inertia variance covariance matrix would lead to 

factorial row and column coordinates definition for all categorical variables I and J. These 

coordinates would correspond to orthonormal singular vectors from both categorical 

variables, represented in the same lower (n-1) dimensional space. This space allows to 

characterize: (i) the asymmetric associations among both categorical variables I and J; and 

(ii) predictor or response outliers whose behaviour is significantly different from the rest.  

According to D’Ambra and Lauro proposal, to achieve a good quantitative 

estimation of the predictor-response relationship between two single categorical variables i 

and j is necessary to calculate the inner product (Fig. 1-I-8). Thus, inner product would 

reflect not only closeness between i and j but similar direction from origin. In our particular 

scenario, given a contingency matrix obtained from omic data, a greater inner product 
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would reflect both analogous direction and vector size for feature i and sample j. Hence, 

we could infer which feature’s profile i (response) is significantly biased by sample j 

(predictor). 

Apart of asymmetric associations, a greater singular vector size after is directly 

related with tnum contribution (Beh and Lombardo 2014). Any outlier feature or sample 

behaviour can be inferred depending on this value distribution, also allowing us to discover 

similar patterns or subgroups within both categorical variables I and J. 

It is noteworthy that a deep search in the literature revealed NSCA has not been 

widely applied to clinical data or omic data analysis: it was used as ordination method for 

the development of MCIA (Multiple Co-Intertia Analysis) (Meng et al. 2014), or for particular 

analyses (Ciavolino et al. 2017, Vega-Hernandez et al. 2017). Regardless, the Non-

Symmetrical Correspondence Analysis constitutes an excellent tool for analysing 

dependence relationships among two categorical variables (rows and columns) given a 

contingency table or absolute frequency matrix relating them. It will provide a meaningful 

interpretation of exclusive relationships through this predictor-response decomposition, 

establishing the source of this association and avoiding common symmetrical assumptions 

where both categorical variables are similarly weighted (Beh and D'Ambra 2010). 
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CHAPTER I 

 

MATERIAL AND METHODS 
 

This section presents the experimental and artificial datasets used along of this 

part of the work. It is important to note that artificial datasets were created for a particular 

validation while experimental datasets were chosen due to its biological relevance or 

singular characteristics.  

 

1. Transcriptomic datasets 

Due to their wide-knowledge, their easy implementation in bioinformatics pipeline 

and their accessibility, the analyses, tests, and experiments produced in this Chapter 1 

have been applied on transcriptomic datasets from different omic platforms. Both 

experimental and artificial or simulated datasets will be broadly detailed.  

We will compare it against other methods designed to analyse differences and find 

heterogeneity and outliers in disease sample cohorts: COPA (MacDonald and Ghosh 

2006), OS (Tibshirani and Hastie 2007), ORT (Wu 2007), MOST (Lian 2008), LSOSS 

(Wang and Rekaya 2010) and DIDS (de Ronde et al. 2013) (Table 1-M-1) plus the 

standard t-Test.   

 

Table 1-M-1. Statistical methods focused on finding outlier gene (feature) profiles within cancer samples.  
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1.1 Artificial transcriptomic datasets 

Several simulated artificial datasets were generated to assess the performance of 

DECO algorithm and the comparison with other methods. The simulated datasets were 

designed to have an expression data matrix that included signals for 1100 genes and 40 

samples in two classes, 20 in class type 0 (n1 = 20 controls) and 20 in class type 1 (n2 = 20 

cases). The specific design followed a similar scenario to the LSOSS benchmark (Wang 

and Rekaya 2010), with differential changes representing two different situations: (A) a 

dataset with a subset of 100 features showing differential expression (DE) for a subset of 

the case samples (Fig. 1-R-1A), reproducing the minority change (pMin) profile (Fig. 1-I-

7C); and (B) a dataset with a subset of 100 genes showing differential expression (DE) for 

a subset of samples of both classes, reproducing the mixed change profile (Fig. 1-I-7D), so 

that there is not global DE between classes for these genes (Fig. 1-R-1B). Both scenarios 

describe a balanced experimental design (n1 = n2 = 20).  

According to the experimental designs described above, the simulated expression 

data include two matrices: (i) a matrix with 1000 genes without DE, called matrix F (used 

for calculation of the False Positive Rates, FPR); and (ii) a matrix with 100 genes with DE, 

called T (used for calculation of the True Positive Rates, TPR). The expression values 

follow a Normal distribution with means µ(F)=µ(T)=0 and deviations ∂(F)=∂(T)=1, as 

established in other studies (Wu 2007). Then, we created different outlier situations varying 

number of h outlier samples within T matrix. Thus, given any feature of T, the number of 

outlier samples showing DE would change among hÎ{1,3,5,7,9} (Fig. 1-R-1C and D). 

However, in the Figures 1-R-1A and B, we only show h=5 (25% of group samples altered). 

The differential expression signals were generated by adding a constant value (d = 2) to the 

outlier samples but keeping their variability. 

Apart from this first simulation using normal distributions, an adapted version of the 

simData function from optBiomarker R package (Khondoker et al. 2010) was used. This 

method allows generating artificial gene expression data with DE signal based on 

distributions after RMA normalization (Irizarry et al. 2003), and it was applied to test the 

methods for all 4 model-types described above (Fig. 1-I-7). Here, outlier sample size was 

fixed to k=5. The objective of this wide benchmark was determining the ability of each 

method of detecting and scoring (with each own statistic) these 4 model-types, through the 

simulation of 8 different feature profiles within a whole dataset composed of 10000 
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feature’s profiles along 40 samples (Fig. 1-M-1). 

Figure 1-M-1. Artificial supervised benchmark (40 samples, 10000 features/genes) simulating a RMA log2 gene 
expression signal, generated with optBiomarker R package. (pComUP, pComDW, pMinUP, pMinCtr, pMixUP, 
pMixDW and pMixTwo) Boxplots of 7 positive patterns (4 model-type profiles) generated for both categories 
(control and case samples) within the whole dataset: pComUP-DW are complete changes; pMinUP-Ctr are 
minority changes; pMixUP-DW are mixed changes; and pMixTwo is a particular mixed/minority change where 
outlier samples are more changed in case samples. (pNULL) Boxplot per sample of rest of dataset, which include 
features showing no differential expression. 

 

1.2 Experimental transcriptomic datasets 

 In order to validate and assess DECO’s performance and results, five different 

cancer-related datasets from two different platforms (Affymetrix microarray and Illumina 

HiSeq) were used (Table 1-M-2).  
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Table 1-M-2. Experimental datasets used to assess current methods to find outliers and DECO. 

 

The first three datasets correspond to heterogeneous pathologies in which there 

was no clear gene signature (between subtypes referred in Table 1-M-2) described in the 

literature. In this way, we included: (i) an osteosarcoma dataset (OSC) including samples 

from primary tumour biopsies from 21 patients that were treated and followed in the same 

way, where some of them (n=12) never showed metastasis after treatment but others (n=9) 

suffered metastasis from the primary tumour; (ii) a myelodysplastic syndrome (MDS-1) 

dataset of CD34+ selected cells from bone marrow of 41 patients suffering two closely 

related MDS subtypes (RAEB1 n=21 and RAEB2 n=20); (iii) another myelodysplastic 

syndrome dataset (MDS-2) of mono-nucleated cells from bone marrow (BM-MNCs) of 

donors that did not have any kind of dysplasia or leukaemia (n=11) and patients with low-

risk prognosis MDS (n=13). This subtype of low-risk MDS patients is quite difficult to 

distinguish in the clinic from individuals with non-malignant anaemias. Interestingly, OSC, 

MDS-1 and MDS-2 datasets were also considered because classical methods for 

differential expression between classes did not find any significant result for the subtypes 

compared (Subtypes column, Table 1-M-2). Furthermore, we applied DECO on two large 

transcriptomic datasets obtained from biopsies of breast cancer patients (BCC-1 and BCC-

2 in Table 1-M-2).  

 

1.3 Data pre-processing 

Our method DECO is designed to support any type of omic feature data properly 

normalized. In this dissertation, we use gene expression data as it is one of the most 

frequently analysed genome-wide features in published genomic studies. For expression 
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datasets, the data matrices have to be previously normalized and log2 scaled using any of 

the well-established methods. RMA normalization method was applied here when data 

came from Affymetrix microarrays platforms (Irizarry et al. 2003).  

For RNA-seq data (produced with Illumina platforms), TPMs/FPKMs/RPKMs 

matrices may be the input to DECO after log2 transformation (log2(TPMs/FPKMs/RPKMs + 

1)); if read counts matrices are available, the voom normalization method (Law et al. 2014) 

or another read counts normalization method should be previously applied. 

 

2. Benchmark of the experimental datasets 

In order to avoid well-controlled situations, we used several experimental genome-

wide expression datasets from different sources, platforms and cell types (Table 1-M-2). In 

the case of microarray data, the probe-sets were previously mapped to ENSEMBL genes 

with GATExplorer CDFs (Risueno et al. 2010) and normalized with RMA method (Irizarry et 

al. 2003). 

Three methods were implemented to evaluate the results from each algorithm with 

the experimental datasets. First, GlobalTest (Goeman et al. 2004) (implemented in a R 

package) was used as a test of outcome and response based on the lists of candidate 

significant gene markers selected by each method. This test delivered the percentage of 

well-classified samples, the values of GlobalTest statistic and the p-value for the response. 

Second, Principal Component Analysis (PCA) (Mardia et al. 1979) also run with the lists of 

selected gene markers provided by each method and delivered the percentage of samples 

correctly separated in the principal dimension. Third, a Support Vector Machine (SVM) 

method (included in e1071 R package, (Meyer et al. 2014)) was applied, using a leave one-

out sample procedure, to predict the assignment to class of each sample using the lists of 

gene markers selected by DIDS or by DECO to compare their classification precision. 
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3. DECO: workflow 

DECO provides a comprehensive analysis about heterogeneity present in an omic 

dataset, describing the dependence between biomarkers and samples. Shortly, this 

method is composed of three main steps:  

1st: Recursive Discriminant Analysis (RDA). 

2nd: Non-Symmetrical Correspondence Analysis (NSCA).  

3rd: Integration in a unique and simple heterogeneity h-statistic.  

Figure 1-M-2. (A) Description of the dataset to be analysed, where the main parts will be the data matrix and the 
phenotypic data that includes all the known characteristics about each sample (e.g. clinical, phenotypical and 
personal characteristics). (B) Two main parts of the algorithm: RDA (Recursive Differential Analysis) and NSCA 
(Non-Symmetrical Correspondence Analysis). (C) The main parameter calculated by DECO, called heterogeneity 
statistic (h-statistic), which is determined for each feature in each sample. (D) The last step of the algorithm 
produces a feature ranking based in the values of the Standard Chi-Square (Sf ) and the h-statistic discriminant (h 
and h D,i , measuring the association of features to subsets of samples and estimate the relevance of such 
association within the cohort to identify possible subclasses). 
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Accordingly, DECO will recursively explore all the dataset to find out meaningful 

heterogeneity or variability. Thus, the main results provided by the analysis would be:  

(i) Full characterization of biomarkers profiles (Fig. 1-M-2C), associated with main 

classes compared in the study or biomarkers significantly related to other 

phenotypes. If supervised analysis, they would be categorized in 4 model-types 

(Fig. 1-I-7). 

(ii) Feature ranking based on combined parameters (Fig. 1-M-2D). 

(iii) Subgroups of samples based on h-statistic (Fig. 1-M-2C) which show significant 

variation among individuals (de novo subgroups or related to other phenotypical 

information). 

(iv) Possible errors in class label assignment (mixed profiles may point to this 

scenario). 

(v) Possible sample and gene outliers. 

 

4. DECO part 1: Recursive Differential Analysis (RDA) 

Once we have our omic data properly normalized, DECO will apply the LIMMA 

algorithm (Smyth 2004) iteratively to perform a Recursive Differential Analysis (RDA), using 

the empirical Bayes (eBayes) method from limma R package as basis for differential 

analysis between samples. This first RDA step allows three types of experiment designs to 

compare samples, that involve several considerations and which will be referred along of 

this Chapter I:  

(a) binary or supervised comparisons (2 groups) where user wants to compare 

two categories of samples, control and cases. 

(b) multiclass comparisons (> 2 groups) where there are several groups of 

samples to compare and user wants compare all separately. Here, each group of samples 

will be iteratively compared against all others. 

(c) unsupervised comparisons (no groups) where all samples are compared 

globally without any predefined category or class.  
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4.1 Granularity of RDA 

RDA step will follow a balanced resampling without replacement strategy. Given a 

omic data matrix and a vector indicating group of samples (or not), an optimum sub-

sampling size for each subset of samples must be determined. By default, it has been 

defined as r (Eq. 1.3), corresponding to the closest integer to the square root of 

min -5, -2, -;, …  (for a supervised analysis with classes) or - (for an unsupervised study 

without classes). This optimum = is the sample size of each subset was determined 

following the approach of consistency in a variety of resampling situations published by 

Babu (Babu 1992). Additionally, = could also be defined directly by the user.  

    = = >?- -5, -2, -; …    (Eq. 1.3)  

RDA step is primarily conditioned by the contrast design and r subsampling size. 

The ability to highlight the different theoretical profiles (Fig. 1-I-7) will vary depending on 

how the analysis was focused on classes or individual samples, what we called the 

granularity of RDA. In this way, it is important to mention that two main objectives could 

be followed: (i) a majority one, which will highlight major, stable but sometimes with lower 

fold change differences by setting = higher; and (ii) a minority one, which will search major 

and minor differences with higher fold change (Fig. 1-M-3).  

Figure 1-M-3. Theoretical profiles describing one “majority” (A) and one “minority” change (B). The ability of RDA 
to find out different profiles is directly related to subsampling size (r). (A) Majority profile described in Fig. 1-I-7 
within RDA step, where green squares would correspond to selected samples for any iteration. Both subsampling 
sizes (r=4 at upper panel and r=8 at bottom panel) of RDA are more likely to discover this profile. (B) Minority 
profile described in Fig. 1-I-7within RDA step. Here, only lower subsampling size (r=4 at upper panel) would be 
able to select this profile as positive, while higher subsampling size would miss it due to mean differences 
between groups of samples. 
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Once the optimum sub-sampling size has been calculated, the algorithm will 

randomly generate sample combinations to be tested (by default it will be 10000 random 

subsets from all the possible sample combinations). Finally, a significant p-value threshold 

must be defined to consider any differential event as positive (by default to adjusted p-

value < 0.01) from each output of LIMMA (Benjamini and Hochberg 1995). 

 

4.2 Frequency matrix: counting differential events 

Once all comparisons have been calculated using LIMMA, DECO will associate 

feature and samples by counting differential events (DEV): given one comparison between 

a subset of samples, any feature m showing a significant difference would be associated 

with these samples. Thus, the algorithm constructs a vector of p-values for each significant 

feature, and a frequency matrix A of features per samples counting the number of times 

that each feature was significant when a given sample was included in the comparison 

(Fig. 1-M-4). If a binary comparison was previously set up (comparison of two defined 

classes), up and down changes would be separated per feature within the A frequency 

matrix, so it would include 2m rows of differentially expressed features and n columns of 

samples. Equation 1.4A is used for the supervised experimental design, where nij is the 

number of repeats that feature i is differentially changed in sample j. In the case of 

unsupervised or multiclass design, only the up-changes are counted and a matrix A with m 

rows is generated (Eq. 1.4B): 

 @ = -$%
21·,

 (Eq. 1.4A)    @ = -$%
1·,

     (Eq. 1.4B) 

 

4.3 Summarizing differential events per feature 

Next, DECO will calculate a statistical parameter Xf which summarizes the number 

of positive DEVs, called R, through the adjusted p-values of these comparisons following 

the Fisher's combined probability test (Fisher 1925) (Eq. 1.5).  

   AB = −2 · D- EFG. +. IEDJK$
L
$45   (Eq. 1.5) 

Giving that the parameter Xf follows a Chi-square distribution with 2R degrees of 

freedom, DECO can calculate a new p-value, called here p-value(Xf), to identify the 
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features that have higher significance in the complete differential analysis. This new p-

value is also adjusted by the Holm or FDR method (Holm 1979, Benjamini and Hochberg 

1995). Finally, standardized values of Xf are calculated in order to compare Xf across 

different features under the same computational parameters described above (Eq. 1.6).  

     MB =
NOP2L

QL
      (Eq. 1.6) 

This final statistic Sf provides a robust parameter to rank the differential features 

according to their significance along the performed RDA.  

 

4.4 Double repeat-threshold  

Since RDA would iteratively explore all significant variability inside a omic dataset, 

there may be a subset of features amounting to a low number of repeats for a large number 

of samples or vice versa. Thus, a heuristic and double repeat-threshold can be applied 

in order to reduce the number of features susceptible to be the input of next step (NSCA). 

This threshold has been lately developed and it is composed of two parameters: (i) a 

number of repeats or differential events, called rep.thr; and (ii) the percentage of samples 

amounting this number of repeats, called samp.perc. Further information about this double 

optional filter and results of its application are provided in Section 9.3 of Results. 

 

5. DECO part 2: Non-Symmetrical Correspondence Analysis (NSCA) 

Given a frequency matrix A, DECO will apply a Non-Symmetrical Correspondence 

Analysis (NSCA) (Diday 1984) in order to explore and analyse the patterns and 

associations between features and samples. If the analysis design is binary, including two 

classes, a separated NSCA for each class will be performed to distinguish the differential 

events (up or down) that occurred in each class. Instead, a unique analysis will be done for 

unsupervised and multiclass designs. Further theoretical information about NSCA detailed 

in Section 5 of Introduction. 
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Figure 1-M-4. Theoretical example of how frequency matrix A is generated and interpreted. Given a subset of 
samples for each RDA iteration, DEVs would be annotated to positive features. (A) Binary or supervised example 
where different profiles could be found. (B) Unsupervised or multiclass examples where only up-regulated 
differential events are annotated. Feature pattern will generate subgroups of samples after NSCA analysis. 
 

The algorithm calculates the inner product matrix P (Eq. 1.7) of the feature and 

sample vectors in the NSCA space. Column isometric factorization, based on singular 

value decomposition of matrix A, provides a common n-1 dimensional space to infer 

individual feature profiles. The inner product between a feature and sample point measures 

the strength of the asymmetric association (Section 5 of Introduction). Thus, the higher the 

inner product is, the more dependency of differential feature signal from sample presence 

could be inferred (Fig. 1-I-8). Following Beh and Lombardo notation (Beh and Lombardo 

2014) (where OF are feature vectors and OS sample vectors, Fig. 1-I-8) the inner product 

matrix P can be expressed as: 

  R = +$% = ST$ · SM% · cos X$%
1·,

   (Eq. 1.7) 

The inner product matrix P improves the characterization of the feature profiles in 

complex heterogeneous sample sets in comparison with raw omic data. Additionally, raw 
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omic data E (Eq. 1.8) was used to complement NSCA relational information from P matrix, 

so a dispersion matrix D including distance from the mean value of each class (if 

supervised) or of all samples (if unsupervised or multiclass) per feature is calculated (Eq. 

1.9): 

    Y = K$%
1·,

     (Eq. 1.8) 

   Z = F$% = K$% − K$·
1·,

    (Eq. 1.9) 

All values from both D and P matrices were standardized to have all changes on 

the same scale. Besides, due to higher values of p were assigned to relevant 

correspondence among features and samples, P matrix scale was shifted placing the 

minimum value to 1 to avoid penalization of negative inner product p values.  

 

6. DECO main statistical parameter: h-statistic 

Next, we combined those new standardized scores of D and P, called DS and PS, in 

a heterogeneity statistic or h-statistic which is intended to reflect both directional 

influences among features and samples: the relevance of a feature in a sample profile 

given by PS(pij) and the relevance of a sample in a feature profile given by DS(dij).  

    [ = ℎ$% = F$%
] · +$%

] − ^_·`
1·,

    (Eq. 1.10) 

In brief, given a feature profile from this H matrix, absolute higher h-statistic values 

would correspond to those samples where: (i) omic signal is differentially changed (given 

by D) and (ii) the feature has relevance for the classification of those samples given our 

omic data matrix (given by P). 

 

7. DECO: sample stratification based on h-statistic 

The global feature profiles derived from the differential events and summarized by 

the matrix H were used to find subclasses in the sample set. A distance Pearson 

correlation matrix C (Szekely et al. 2007) between sample h vectors is calculated (Eq. 1.11) 

and hierarchical clustering is applied to group samples into subclasses. 
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  a = b$% = 1 − bd==(ℎ$, ℎ%)
1·,

    (Eq. 1.11) 

Later, an iterative function calculating the Pearson version of Hubert’s gamma 

coefficient, or γ (cluster.stats function from fpc R package), per k clusters identifies the 

highest value for optimal cutting of dendrogram (cutree function from stats R package). 

Thus, an optimal number of k clusters-subclasses will be set up (Eq. 1.12): 

    g = ?: i$	?k	>El?>J>      (Eq. 1.12) 

 

8. DECO: feature profile characterization and ranking 

 

8.1 Overlap statistic 

In the case that a supervised or multiclass design is set up, DECO is able to 

identify and discriminate which features conform a reliable response for class comparison; 

and in this way, it is able to segregate specific subtypes of samples within a class or within 

all the dataset, according to profiles shown in Figure 1-I-7. Our method bases this feature 

classification on how omic signal overlaps between categories. In a formal description, let 

ei=áei1,ei2,...einñ (where (i=1,2,...,m)) be the raw omic data vector from the matrix E per 

feature. Then, DECO calculates the density function f(ei) per category to find out how 

many parts per unit overlap based on approximate integration of the common area under 

all curves (sfmisc R package). 

  S = m K$,1n
∗

p

Pp
m K$,1q

FK    (Eq. M-11) 

where ∗ denotes complex conjugation. Consequently, features can be assigned to 

4 model-types as follows: (i) complete change (pCom), for well-separated feature profiles 

commonly found by standard methods of differential expression (fixed to of < 0.2 by 

default); (ii) majority change (pMaj), for features that show a major change between 

classes (0.2 ≤ of < 0.4); (iii) minority change (pMin), for features that mark a specific 

subclass within a category of samples (0.4 ≤ of < 0.8); and (iv) mixed change (pMix) for 

features whose differential events are not directly related to the compared categories, but 
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to subclasses within them (0.8 ≤ of ≤ 1.0). Example of plot representing this estimation is 

provided in Figure 1-R-15. 

 

8.2 Ranking based on parameters combination 

Finally, DECO produces a global ranking of the most relevant features that mark 

the samples studied based on the average rank obtained from the three main parameters 

calculated by the algorithm: (i) Standard Chi-square value Sf, which highlights the most 

significant changes from RDA; (ii) h-statistic range per feature, which indicates how 

discriminant each feature is, given the subclasses found by NSCA; and (iii) both of (overlap 

statistic) and standard deviation of raw omic signal in each differential feature, assessing 

the variability along samples to allow finding the most stable features that will be consider 

the best markers for the classes or subclasses found.  
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RESULTS 
 

 Along this Results section, we will highlight: (i) the results obtained from the 

comparison of our algorithm DECO in comparison with several current and classical 

methods for differential expression or outlier profile detection (using simulated and 

experimental datasets); (ii) the specific application of the algorithm to two large breast 

cancer datasets; and (iii) all issues related to the implementation of the method as an R 

package. 

 

1. DECO outperforms state of the art methods for finding outliers 

Several artificial datasets simulating gene expression data and including different 

subsets of genes that have differential changes were used (detailed in Section 1 of 

Materials and Methods) to compare the new method DECO with 7 established methods 

(described in Table 1-M-1). Following this benchmark, we will assess the ability of the RDA 

first step of DECO to detect outlier profiles of each model-type and to score them using 

Standard Chi-square. It is important to remind that supervised experimental design is the 

most common for differential analysis, contrasting any category of interest against a 

control/reference category of samples. This section will be focused on supervised 

analyses.  

All previous methods compared were also applied to these simulated datasets, 

returning their own scoring statistic for all genes: each method is based on a single statistic 

of relevance per feature, which is used to rank all genes and prioritize outlier profiles. Here, 

we compared these statistics against our Standard Chi-square, which summarizes 

differential expression events found along the subsampling step or RDA (r = 3, iterations = 

10000, adjusted p-value = 0.01). Figure 1-R-1 shows the results of first of these 

comparisons for two studied types of model-type profiles (according to Fig. 1-I-7). Here, the 

simulated data followed normal distributions, fitting similar distributions as the tested ones 

by current methods for outlier profile detection in their original studies.  
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Figure 1-R-1. Comparison of 8 methods (t-Test, COPA, OS, ORT, MOST, LSOSS, DIDS, DECO) used to find 
significant changes that occur in a minority of samples and in a small proportion of features (≈10%). (A-B) 
Boxplots of artificial expression signal (T matrix) simulating complex DE for a subset of samples (minority profiles 
and mixed profiles). Both panels also show p-value after t-test comparison between group distributions. (C-D) 
Barplot representation including mean and error bars of AUCs after TPR and FPR calculation (10 random 
simulations). All 8 methods and 5 different number of outlier samples (hÎ{1,3,5,7,9}) are represented. 
 

For this purpose, the two most complex model-types detailed in Figure 1-I-7 were 

included in this benchmark:  

(i) Minority change: within case group but not in the control samples (Fig. 1-R-

1A). We will vary the percentages of samples from case group corresponding to 

outlier profile (from 5%, 1 outlier sample in 20 samples, to 45%) (Fig. 1-R-1C) 

(ii) Mixed change: occurring both within case group and control group (Fig. 1-R-

1B). It is also explored using different percentages of changed genes (from 5%, 
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1/20, to 45%, 9/20) (Fig. 1-R-1D).  

Given an outlier sample size (k), the Areas Under the ROC Curves (AUCs) were 

calculated after 10 random simulations of all the procedures (Section 1 of Material and 

methods). Mean AUCs and standard error were represented for both comparisons 

described above: (i) & (ii). The results show that DECO provided better AUCs than other 7 

methods along of all scenarios tested (Fig. 1-R-1, panels C-D). For the minority change 

case (i), we expected that all methods were increasing their AUCs along higher outlier 

sample sizes (panel C). However, DECO notably outperforms other methods since 3/20 

outlier sample size was set-up. For the mixed change case (ii), we also expected that 

current and classical methods fail to detect those outlier profiles since they are not 

considering control as a source of heterogeneity (panel D). Indeed, AUCs’ values from 

these methods range around random expectation for TPR and FPR (AUC = 0.5), showing 

that current methods rely on the expectation that the control samples are stable and they 

should not suffer anomalous changes. Shortly, the numbers showed that having at least 3 

outlier samples (3/20) or more (5,7,9/20) DECO achieves a very good performance giving 

AUCs > 0.90. 

Since the transcriptomic omic data does not follow a normal distribution, we also 

compared all those methods for outlier profile detection using a modified version of the 

optBiomarker R package (Khondoker et al. 2010). This package was developed to simulate 

RMA distributions for differential expression analyses. Although it was thought to simulate 

differential expression between two categories (complete changes), we accordingly 

modified this R package to include the 4 model-types detailed above (Chapter 1-I Section 

1). Once we modified it, we assembled a wide benchmark including 4 model-types to 

compare how different methods score and rank each feature. This benchmark included 

simulated RMA gene expression signal for 10000 features/genes along 40 samples (20 

control and 20 cases), where 7 differential scenarios (k = 5) of 50 features/genes were 

included (detailed in Fig. 1-M-1):  

(i) pNull: no differential expression. It is composed of the rest of the feature/genes 

(9650g) non-included in any differential pattern.  

(ii) pComUP and pComDW: complete change. Up and down changes for all samples of 

each category. 

(iii) pMinUP and pMinCtr: minority change. Up changes for 5 samples within each 
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category (pMinUP for case samples and pMinCtr for control samples). 

(iv) pMixUP and pMixDW: mixed change. Up and down changes for 5 samples within 

each category. 

(v) pMixTwo: special mixed/minority change. Up changes for 5 samples within each 

category, where change is higher for outlier samples in case samples. This profile 

would suppose higher variability of control samples, but still a significant change for 

outlier samples in case samples. 

 

Consequently, we compared the scoring statistic of each method for features 

belonging to different 8 patterns detailed above and, again, DECO performance was based 

on Standard Chi-square statistic from RDA step. According to original hypothesis of cancer 

outlier profile, we expected that current methods for outlier profile detection score minority 

patterns (pMinUP and pMinCtr) higher than other patterns, while t-test and DECO do the 

same for complete changes (pComUP and pComDW). Figure 1-R-2 represents all gene 

scores per pattern obtained after applying all these methods. In the figure, each plot 

corresponds to one method split by the 8 different patterns, where pNULL’s segment would 

correspond to a random subset of 50 gene scores obtained for the whole pNULL profile 

(9650 features/genes). Interestingly, DECO only disclosed 31 out of 9650g (0.32%) as 

significant in any iteration of RDA step and, consequently, it was scored by Standard Chi-

square.  

As expected, this benchmark (Fig. 1-R-2) was very informative about performance 

and real assumptions done by each method because it really reflects the particular 

strengths and weaknesses. Attending to the original outlier model-type described by COPA 

(minority change: pMinUP), we can observe a variety of behaviours: while COPA and OS 

scored pMinUP (up in case samples) as the most significant ones, the other methods 

(included DECO) prioritized complete changes giving them a higher score. We expected 

this result from DECO and t-test but not from the other methods, specifically designed for 

outlier profile detection. This trend may be confusing for all those who applied these 

methods on their omic data awaiting maxima scores for outlier profiles.  
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Figure 1-R-2. Plots representing the scoring statistics of each method compared for 8 patterns of simulated 
benchmark generated with the modified optBiomarker R package. Each plot is segmented by patterns (50 gene 
scores each), where pNULL segment represents 50 random gene scores taken from all 9650 features composing 
the whole pNULL pattern. AUC calculation (TPR/FPR) is based on scores of differential patterns against whole 
pNULL (no differential expression). 
 

Additionally, we detailed along the description of these methods (Section 2.3 of 

Introduction) that they assumed stability for control or reference category, ignoring possible 

outlier samples included within this group. This assumption it is also reflected by pMinCtr 

scoring, where all methods (except DECO and t-test) were not able to discriminate it from 

pNull (no differential expression, True Negative features). In this way and trying to provide 

a meaningful insight of this assumption, we also included the pMixTwo pattern. This pattern 
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followed a mixed/minority profile where there were outlier samples in both categories, but 

case outlier samples have even higher expression than control outlier samples (Fig. 1-M-

1). Given this pMixTwo pattern, we aimed to test if a greater variability of control samples is 

enough to discard these outlier profiles as significant. As we can observe in Figure 1-R-2, 

all methods except t-test scored them greater than pNull but lower than pMinUP (original 

profile mentioned by COPA). Interestingly, our method DECO gave a similar score to 

pMinUP/pMinCtr/pMinTwo since they are outlier minority profiles, solving any effect derived 

from control or reference samples variability. 

Apart of the scoring statistical comparison, it is important to mention that DECO 

was the only method able to disclose all relevant features (100% of differential 

genes/features were scored) behind a heterogeneous omic dataset, integrating both 

classical (SAM, LIMMA, t-test) and outlier profile detection approaches. All these significant 

features have been highly scored (AUC = 0.997) and ranked by Standard Chi-square 

following a logical sequence: complete, minority and mixed profiles. However, if we apply 

methods for outlier profile detection or classical methods, we will only recover a part of the 

meaningful heterogeneity (Fig. 1-R-2), with a lower performance ratio as we showed in the 

previous benchmark (Fig. 1-R-1). 

 

2. Accurate detection of different feature profiles in a large-scale 
dataset through RDA feature selection and h-statistic. 

Once RDA feature selection step was demonstrated to outperform classical and 

current methods for outlier profile detection, in this Section 2 we will focus on how both 

RDA feature selection and posterior h-statistic are able to characterize subclasses within 

an artificial heterogeneous dataset. In any situation, the RDA step was intended to select 

all those features following one of the 4 model-types described above (Fig. 1-I-7) while h-

statistic encourages sample stratification using those picked features. 

For a correct interpretation and understanding of how sample stratification is 

improved by DECO, we built another simulated dataset framing a complex situation: 40 

samples and 10000 features following a normal distribution, out of which 250 had 

significant changes following 3 different theoretical model-types (Fig. 1-R-3). These 

differential features, each containing 50 genes, followed 5 distinct profiles:  
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(i) Two patterns (p1, p2) of 50 genes following a complete change in all case 

samples against the control category. Features in p1 are up-regulated in control 

samples while features in p2 are down-regulated in controls.  

(ii) Two patterns (p3, p4) of 50 genes changing in a minority (5/20 samples) of the 

samples, either in the cases or in the controls. Features in p3 are up-regulated 

in 5 samples of control category while features in p4 are up-regulated in 5 case 

samples.  

(iii) A profile (p5) of 50 genes showing a mixed change in a 25% of the samples 

(5/20) in both categories.  

The different profiles here presented can be observed in Figure 1-R-3A, which 

shows a heatmap illustrating the whole expression data matrix and the five profiles that 

affect to only a 2.5% of the 10000 genes. It is important to mention that the expression 

signals assigned to the genes in the simulated data included a random variability, following 

the same procedure for previous artificial dataset simulation (Section 1.1 of Material and 

Methods). 

As a reference, we run the well-established and classical SAM and LIMMA 

methods on the expression data matrix described above, using as threshold a FDR (for 

SAM) or adjusted p-value (for LIMMA) ≤ 0.05 (Tusher et al. 2001, Smyth 2004). As was 

hinted along the Introduction of this Chapter 1, these methods were expected to find at 

least all features describing a complete change profile between categories, corresponding 

to 100 genes included in the profiles p1 and p2. The aiming for SAM or LIMMA application 

was also showing how usual semi-supervised analysis differs from DECO application. A 

semi-supervised analysis would include a classical method for differential expression 

used to select features and a posterior unsupervised clustering to group samples. Thus, 

the user expects to group samples as original categories based on this subset of features. 

Interestingly, SAM was able to find those 100 genes under the significance threshold 

(result not shown in Fig. 1-R-3), but LIMMA found 112 significant differentially expressed 

genes (Fig. 1-R-3B). Such genes corresponded to: 95 genes with complete change profile 

(84.8%), 11 genes with minority change profile (9.8%) and 5 genes that do not have 

differential expression change (4.4% false positives) (Fig. 1-R-3B).  

On the same data matrix, we applied DECO and the results are shown in 2 steps in 
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Fig. 1-R-3C and D. Firstly, the RDA step selected the most significantly changing features 

identifying 249 out of the 250 true positives. The heatmap in Figure 1-R-3C represents the 

result of the posterior hierarchical clustering using the raw expression signal of these 249 

genes selected by RDA step. As can be seen, these genes are properly arranged in 5 

feature profiles (p1,2,3,4,5) and the samples are classified in 6 subclasses (c1,2,3,4,5,6) 

according to their corresponding profiles (Fig. 1-R-3C). These subclasses within both case 

and control categories would not have been found if LIMMA subset of features was 

selected before the hierarchical clustering analysis (Fig. 1-R-3B). Therefore, the features 

selected by LIMMA only separate the two main known classes (cases and control) and 

even one sample of the cases appears in the heatmap misclassified. 

Despite the classification of the 249 genes found in 5 profiles and the samples in 6 

subclasses obtained using the raw expression signal of the features selected by RDA, the 

dendrogram displaying the similarity among samples (Fig. 1-R-3C) indicated that one of 

the subclasses (c6) did not have a distinct expression profile from the original distribution 

(Fig. 1-R-3A). This subclass shows values that represent small variations from the mean 

expression signal of the whole dataset. In this way, the samples within this subclass c6 

were poorly defined using the raw expression signal.  

By contrast to this representation, Figure 1-R-3D shows a heatmap built with the 

parameter, h-statistic, derived from running the complete algorithm DECO (RDA + NSCA). 

The h-statistic was intended to improve subclasses separation through the integration of 

raw omic dispersion and predictor-response information (inner product from NSCA) as 

detailed above (Section 6 of Material and methods).  After this integration, the h-statistic 

would provide more defined profiles to both selected features and samples. Thus, the c6 

subclass is now well-defined by an increment of p2 profile and a decrease of p1 profile.  

It is important to note how c1 and c4 subclasses had a differential signal that 

comes from the complete changes (p1 and p2 respectively) plus another differential signal 

that comes from the mixed changes (p5) (Fig. 1-R-3D). For those samples, h-statistic 

values of p1 and p2 are lower than for other samples because p5 would exclusively 

identifies c1 and c4 subclasses while p1 and p2 are broadly associated with both 

categories. These kinds of profiles are not achieved using the raw expression signal, and 

so the results indicate that the h-statistic produced by DECO method is more powerful for 

sample characterization and stratification.  
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Figure 1-R-3. Analysis of a large simulated dataset that includes 20 cases versus 20 controls measuring 10000 
genes, including 250 genes following the 3 model-types in different subsets of the samples. (A) Heatmap of the 
full expression matrix. (B) Heatmap of the expression data of 112 genes (DEg) found by LIMMA method along all 
samples. (C) Heatmap of the expression of 249 DEg found by RDA step. (D) Heatmap corresponding to h-statistic 
of all samples and 249 DEg found by DECO method (RDA+NSCA). The whole dataset includes 6 different sample 
subsets that were found by DECO and characterized according to their gene profiles in 6 "subclasses" [c1, 2, 3, 4, 
5, 6]. The specific gene "profiles" identified were: [p1] profile including 50 genes UP in all controls with respect to 
the cases; [p2] profile including 50 genes DOWN in all controls with respect to the cases; [p3] profile including 50 
UP only in 5 controls; [p4] profile including 50 UP only in 5 cases; [p5] profile including 50 UP in both 5 cases and 
5 controls (5/20 = 25%). 
 

In conclusion, the results obtained from this benchmark highlights two main 

advantages of using DECO algorithm: the strength of RDA to select significant variable 

features (p1-p5) and the ability of h-statistic to exclusively associate features and samples 

Figure 4 
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(c6) within a particular dataset, enhancing the sample stratification. In the next section, 

further information and implications about how the h-statistic segregates subgroup of 

samples will be detailed. 

 

3. h-statistic facilitates patient stratification. 
Since the h-statistic’s relevance for patient stratification was hinted above, the 

particular effect on a single feature profile (i.e. any gene expression profile) produced by 

this integration of both omic dispersion and predictor-response information may be unclear 

yet. For this reason, we focused on a single and relevant feature profile to visualize the 

differences of using the raw omic signal (i.e. gene expression signal) or using the new 

statistical parameter: h-statistic.  

 

Figure 1-R-4. Boxplot visualization of h-statistic effect on two different profiles changing for the same samples (k = 
5). The left panel shows artificial expression data (similar to Fig. 1-R-7) for a minority profile and for a complete 
profile, while the right panel shows h-statistic values for the same profiles. After applying DECO, the h-statistic will 
be increased (absolute values) respect to original omic signal for the minority profile on outlier samples, allowing 
the specific identification of these samples within the dataset, as well as complete profile’s values for control 
samples. 
 

It is important to remember that the h-statistic was intended to enhance patient 

classification through the predictor-response information from NSCA. Given a frequency 

matrix, NSCA is able to establish which features identify a particular subset of samples 

within the whole dataset. Its particular weight function (Eq. 1.1) and posterior singular value 

decomposition (SVD) provides a view of data structure from the original frequency matrix. 

In this way, NSCA finds out exclusively dependence structures, avoiding overlapping 

information if possible. Given two different features (e.g. complete and minority) 

accumulating DEVs for a specific subset of samples (Fig. 1-M-3), NSCA will prioritize 
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(higher inner product) the minority profile cause of its exclusive (less frequent) association 

to those samples.  

Accordingly, the h-statistic will reflect the same behaviour weighting the feature’s 

relevance for each sample but slightly corrected by omic dispersion data (Eq. 1.10). Then, 

if a single feature is showing both high omic dispersion (absolute value) and high relevance 

(by NSCA) within a sample profile, it will be even higher scored by h-statistic (Fig. 1-R-4). 

Consequently, it will encourage those outlier profiles which enhance the characterization of 

each sample within our dataset. For example, the panel D of Figure 1-R-4 reveals how h-

statistic values for p2 pattern (complete change) and c4 subclass of samples are reduced 

in comparison with p5 pattern (minority change). 

 

Figure 1-R-5. ESR1 single profile from TCGA Breast Cancer subset (BCC-2) after DECO analysis (r=7; R=1000) 
through a multiclass design based on PAM50 pseudo-classes (Basal, LuminalA, LuminalB, Her2-enriched). Panel 
(A) represents raw values of both expression data (log2(RPKM+1)) and h-statistic, describing different trends by 
PAM50 pseudo-classes. Panel (B) corresponds to the same representation after ranking both expression data 
and h-statistic. Panel (C) corresponds to a boxplot of ranked values per PAM50 pseudo-classes. For example, 
panel A, B and C show how h-statistic is able to separate Her2 samples (blue) from Basal samples (red) while raw 
expression data agglutinates both classes within the same interval, or LumB (purple) from LumA (green). 

 

In order to evaluate how h-statistic behaves on an experimental dataset, we simply 

run DECO (r = 7; iterations = 2000) on a subset of TCGA Breast Cancer dataset (BCC-2 



 

 

 
48 

dataset from Table 1-M-2) following a multiclass experimental design based on PAM50 

pseudo-classes: Basal (n = 108), Luminal A (n = 307), Luminal B (n = 128) and Her2 (n = 

53). As we mentioned before, if a multiclass design is settled, DECO would maintain 

separated all samples from different subtypes along the RDA subsampling step, providing 

a clearer interpretation of results per subtype of samples than an unsupervised design. In 

this way, for this BCC-2 dataset, ESR1 was the first ranked gene profile by DECO, 

highlighting the relevance of the estrogen receptor (ESR1 gene) for the characterization 

and stratification of breast cancer samples. In Figure 1-R-5, we show the difference 

between the original gene profile based on the raw expression data (log2[RPKM+1]) and 

the h-statistic. Here, we can observe how h-statistic segregates the 5 pseudo-classes of 

breast cancer better than raw data, increasing (Luminal B or Basal) or decreasing (Her2-

enriched or Luminal A) the values depending on how relevant is this change for these 

samples.  

In conclusion, the h-statistic enhances the stratification of significant subtypes of 

samples through a numerical transformation to avoid overlap of different subtypes in the 

same range of values. 

 

4. Identification of markers for disease subtypes in absence of global 
expression changes: tests on three clinical datasets. 

Heretofore, we tested the ability of RDA and posterior h-statistic through analysis 

on simulated omic data. Because these results are not enough to expose how DECO 

would improve differential analysis of omic data, we also aimed to test and compare our 

method by means of an extensive comparison on real-experimental transcriptomic 

datasets. As previously demonstrated (Section 1 of Results), RDA step of DECO algorithm 

outperforms current and classical methods for differential expression and outlier profile 

detection. In this section, we extended the comparison to microarray transcriptomic 

datasets from different cancer pathologies. We selected three experimental datasets 

derived from clinical studies (Table 1-M-2), each one composed of two close subtypes of 

patients.  

Interestingly, any of them showed significant differences in their global expression 

profiles after applying classical methods: SAM or LIMMA (adjusted p-value > 0.05) (Fig. 1-
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R-6A). The three datasets used were: (i) an osteosarcoma dataset (OSC) including 

samples from primary tumour biopsies from 21 patients, where some of them (n=12) never 

showed metastasis after treatment but others (n=9) suffered metastasis from a primary 

tumour; (ii) a myelodysplastic syndrome (MDS-1) dataset of CD34+ selected cells from 

bone marrow of 41 patients suffering two closely related MDS subtypes (RAEB1 n=21 and 

RAEB2 n=20); (iii) another myelodysplastic syndrome dataset (MDS-2) of mononucleated 

cells from bone marrow (BM-MNCs) of donors that did not have any kind of dysplasia or 

leukemia (n=11) and patients with low-risk prognosis MDS (n=13).  

Since the standard methods for differential expression analysis (SAM and LIMMA) 

did not report any differences, we tried DECO and other methods better suited for 

discovering subtle differences. Based on previous studies that compared COPA, OS, ORT, 

MOST and LSOSS methods for cancer outlier discovery (Karrila et al. 2011), we 

considered MOST as the best of them for different scenarios and used it for our 

comparison. Additionally, mCOPA (expanded version of COPA also including down-

regulated outlier profiles) and DIDS were also included in our experimental benchmark 

because their capability to find outlier genes has been reported (Wang et al. 2012, de 

Ronde et al. 2013). As described in Materials and Methods (Section 2), two independent 

tests (GlobalTest and PCA) were set up to assess the relevance of the gene signatures 

found as significant by each of the compared methods (Fig. 1-R-6A). The number of genes 

found (e.g. OSC dataset: 331 genes found with mCOPA, 1586 with DIDS and 161 with 

DECO) were always significant (p-value ≤ 0.05) according to the respective algorithm. The 

results obtained for each of the three clinical datasets are presented in Figure 1-R-6A as 

an illustrated table.  

As mentioned before, none of the well-established methods were able to find 

differential genes among the two categories of samples defined in each dataset. 

Furthermore, the methods that gave differences (mCOPA, MOST, DIDS, DECO) widely 

differs in the size of gene signatures found. In fact, DIDS always provides by far the largest 

list. Since it is well-known the difficulty of evaluating several gene signatures if there are no 

true positives and the size varies among methods, we run the tests using top-100 genes 

according to p-value ranking provided by the only three methods which provide a ranking: 

MOST, DIDS and DECO.  
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Figure 1-R-6. Results of the comparison of 6 methods (SAM, LIMMA, mCOPA, MOST, DIDS and DECO) applied 
to find differential expression signal in 3 distinct experimental datasets derived from cancer clinical studies. Yellow 
boxes indicate the best results. (A) Two statistical tests (GlobalTest and PCA) were run to evaluate the signature 
found by each method. (B) This table shows number of positive iterations and maximum number of differentially 
expressed genes found after applying DIDS and DECO on random datasets (group of samples were mixed). (C) 
Negative control table showing the results of GlobalTest for each dataset when all the genes of the expression 
data matrix were selected as input or when 100 randomly selected genes were selected. 

Figure 5 

A 

B 

Comparison of 6 methods using 3 experimental clinical datasets to find DE genes between two 
well-defined classes. Output results evaluated using Globaltest and PCA. 

DE genes with RANDOM selection of samples 
C GlobalTest outcome  

with RANDOM selection of genes 

0 g 0g 331 g top100 1586 g top100 161 g top100

p-value -- -- 0.0917 0.0587 0.0000194 0.000152 0.00436 0.000617
% of correct       
classification -- -- 80.95% 76.19% 90.47% 90.47% 80.95% 80.95%

statistic                   
(specificity) -- -- 8.91 8.32 15.8 17.9 15.4 17

% of variability     
explained -- -- 69.70% 52.25% 42.00% 47.00% 72.00% 70.50%

Samples well classified             
(using 1st component) -- -- 12/21 16/21 16/21 19/21 18/21 17/21

0 g 0g 86 g top100 1452 g top100 441 g top100

p-value -- -- 0.00555 0.326 7.72E-06 0.0000736 0.000143 9.97E-07
% of correct       
classification -- -- 75.60% 56.09% 85.36% 78.07% 78.07% 90.24%

statistic                   
(specificity)  -- -- 8.53 2.74 11.5 15 15.8 23.6

% of variability     
explained -- -- 63.00% 39.42% 36.50% 55.50% 53.00% 52.00%

Samples well classified             
(using 1st component) -- -- 28/41 29/41 33/41 30/41 37/41 37/41

0 g 0g 213 g top100 1951 g top100 1024 g top100

p-value -- -- 0.00184 0.00131 0.000508 0.00173 0.00123 3.62E-06
% of correct       
classification -- -- 91.66% 79.16% 83.33% 83.33% 83.33% 87.50%

statistic                   
(specificity)  -- -- 10.6 11.8 14.5 17.5 14.5 28.4

% of variability     
explained -- -- 44.29% 55.83% 47.12% 64.70% 58.84% 66.13%

Samples well classified             
(using 1st component) -- -- 15/24 18/24 18/24 16/24 17/24 21/24

DECO

Signature                                           
(genes selected by each method) 

GLOBALTEST 

PCA

mCOPA MOST
Osteosarcoma dataset 

(OSC)
Metastasis (n=9) vs                             

Non-Metastasis (n=12) 

SAM LIMMA DIDS

DECO

Signature                                           
(genes selected by each method) 

GLOBALTEST 

PCA

mCOPA MOST
Myelodysplastic Syndrome             

dataset 1 (MDS-1)
MDS-RAEB1 (n=21) vs                       

MDS-RAEB2 (n=20) 

SAM LIMMA DIDS

DIDS DECO

Signature                                           
(genes selected by each method) 

GLOBALTEST 

PCA

Myelodysplastic Syndrome             
dataset 2 (MDS-2)

Healthy control (n=11) vs                      
MDS-LowRisk (n=13) 

SAM LIMMA mCOPA MOST

Osteosarcoma dataset (OSC)
(n=9) vs (n=12)

RANDOM sampling (i.e. no classes)                  
(100 iterations)

significant g    
in best iter

iters with at 
least 1 

significant g

significant g    
in best iter

iters with at 
least 1 

significant g

4492 g 100/100 58 g 3/100

Myelodysplastic Syndrome 
dataset 1 (MDS-1)
(n=21) vs (n=20)

RANDOM sampling (i.e. no classes)                  
(100 iterations)

significant g    
in best iter

iters with at 
least 1 

significant g

significant g    
in best iter

iters with at 
least 1 

significant g

2049 g 100/100 117 g 6/100

Myelodysplastic Syndrome 
dataset 2 (MDS-2)
(n=11) vs (n=13)

RANDOM sampling (i.e. no classes)                  
(100 iterations)

significant g    
in best iter

iters with at 
least 1 

significant g

significant g    
in best iter

iters with at 
least 1 

significant g

8708 g 100/100 8 g 4/100

DIDS DECO

DIDS DECO

DIDS DECO

GLOBALTEST       
(p-value)     

(average of the iters)

GLOBALTEST       
(statistic)  

(average of the iters)

Osteosarcoma dataset (OSC)
(n=9) vs (n=12)

All genes                
(g = 20172) 0.322 5.390

RANDOM selection 
of 100 genes                       

(5000 iterations)
0.412 5.369

Myelodysplastic Syndrome 
dataset 1 (MDS-1)
(n=21) vs (n=20)

All genes                
(g = 20172) 0.019 4.260

RANDOM selection 
of 100 genes                       

(5000 iterations)
0.107 4.234

Myelodysplastic Syndrome 
dataset 2 (MDS-2)
(n=11) vs (n=13)

All genes                
(g = 38048) 0.270 4.820

RANDOM selection 
of 100 genes                       

(5000 iterations)
0.361 4.830
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In this way, we observed that DECO gave best results for the two datasets of 

myelodysplasia (MDS-1 and MDS-2, Fig. 1-R-6A) and a close result to DIDS for the 

osteosarcoma dataset (OSC). GlobalTest is a response-outcome test which allows 

determining how a given gene set marks the difference between the two sample categories 

compared (i.e. the gene set provided by each method is used in GlobalTest as a priori input 

group of tested variables) (Goeman et al. 2004). The results of GlobalTest gave best p-

values using the top 100 best genes that DECO selected, being better than MOST in all 

cases and better than DIDS in the case of MDS-1 and MDS-2.  

PCA results also indicate that the gene sets provided by DECO are the ones that 

better assigned the samples to their expected category in the MDS cases. Only in the case 

of osteosarcoma DIDS seems to be slightly better. To validate that these results, we 

repeated the differential expression analyses doing a random selection of samples in the 

two categories and evaluating how many significant genes were found in 100 iterations by 

the algorithm DECO or by the other method that sometimes performed also well in previous 

analyses, DIDS. These random tests allowed finding that DIDS gave many falser positives 

than DECO, because it selects many more significant genes that should not be found in a 

random model (Fig. 1-R-6B). The robustness of the GlobalTest was also validated using a 

random selection of 100 genes in 5000 iterations and showing that the resulting p-values 

were not significant (Fig. 1-R-6C). 

Finally, we tested the performance of the methods building sample class predictors 

with a machine learning approach: a leave-one-out Support Vector Machine (SVM), using 

e1071 R package. This approach was only proved with the best methods according to 

previous comparisons (DIDS and DECO). This benchmark complements previous results 

because it allows to evaluate the stability of each gene signature found and also the 

suitability for each sample analysed. The procedure evaluates the performance of n 

classifiers (one per sample of each dataset) to determine its correct category (control or 

case), leaving-out such sample and using the rest (n-1) to build each classifier. Thus, each 

predictor is built leaving one sample out and using the top-25 genes that are selected by 

each method previously applied to the rest of the samples. In this way n predictors (with n = 

number of samples in each dataset) were calculated and the probability of assigning each 

sample to its correct class was determined. 
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The results from these analyses are showed as boxplots in Figure 1-R-7, where 

we can observe that DECO gave the highest probability and lowest dispersion of true class 

assignment for all samples in the three experimental clinical datasets studied: median 

probability values ≈0.86 for OSC dataset; ≈0.84 for MDS-1 and ≈0.95 for MDS-2. These 

trials were also done using a random selection of features to have a random reference in 

the comparison of the methods. As expected, the random selection gave an average 

classification of 50% (probability about 0.5) for the two possible classes. 

Figure 1-R-7. Support Vector Machine (SVM) predictors built to compare the ability of DIDS and DECO for 
predicting which class belongs each sample. A leaving-one out design was followed: each method provided a 
gene signature after run on n-1 samples, then the SVM model was built based on top-25 genes and used to 
predict the class of the sample outside of design. (A) Osteosarcoma dataset, (B) myelodysplastic syndrome 
dataset 1 and (C) myelodysplastic syndrome dataset 2 were tested. 

 

The results provided in this section lead us to conclude how robust DECO and its 

recursive searching of differential features could be on experimental transcriptomic 

datasets. Interestingly, any classical method (SAM and LIMMA) found differential signal 

between group of samples due to their lack of attention on outlier profiles. Then, we could 

see how three independent outcome tests were used to assess gene signatures provided 

by each method, where DECO outperformed significantly better and meaningful for each 

sample included in datasets. The recursive analysis included in DECO greatly enhances 

Figure 6 
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the discovery of the 4 model-types hypothesized in this Chapter 1 (Fig. 1-I-7), improving 

the classification of samples even if no global differential signal was found via classical 

methods. 

 

5. Molecular characterization of hidden factors on a large cancer 
microarray dataset. 

 In order to demonstrate that the method not only outperform on simulated data or 

with small datasets, we tested DECO using two other experimental datasets with more than 

two hundred samples (Table 1-M-2). In this section 5, DECO was applied following an 

unsupervised experimental design which did not presume a priori classes or categories.  

 The first dataset selected was a breast cancer (BCC) collection of 285 samples 

divided in oestrogen receptor positive or negative (ESR1+/ESR1–) newly diagnosed 

tumours (Table 1-M-2), tested with global gene expression technology (with genome-wide 

RNA microarrays), taken from the GEO database (ID: GSE25055). This dataset also 

includes full information about the patients’ survival and about their sensitivity to endocrine 

therapy as well as their sensitivity or resistance to chemotherapy (Hatzis et al. 2011). In 

this way, the unsupervised analysis was carried out using the following as input parameters 

of DECO: RDA r = 5, combinations = 200000, adjusted.p.value < 0.01; NSCA variability 

explained = 97%, feature threshold = 3 differential in events in at least 5 samples.  

After running DECO, 255 genes were selected showing differential expression 

changes (Fig. 1-R-9). The values of all the statistical parameters provided by DECO for 

these 255 genes are included as Additional Table 1 (CD of this Thesis), while the 

complete data matrix corresponding to the h-statistic per gene and sample is provided as 

Additional Table 2 (CD of this Thesis). As a whole, the results obtained with this dataset 

found 6 major subclasses or categories, where primary division of sample dendrogram 

reveals a deep division between ESR1+ and ESR1- samples. Furthermore, it is important 

to note that there was a high correspondence between the sample source and a significant 

subset of genes which marked two subclasses: subclasses 2 and 3 (Fig. 1-R-9).  

All the clinical samples from primary breast cancer tumours used for this study 

were obtained by two different groups: collected by the M. D. Anderson Cancer Center 

(MDACC, Houston) or collected by the group called Investigation of Serial Studies to 
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Predict Your Therapeutic Response (I-SPY) (Hatzis et al. 2011). Each of these two groups 

used a different procedure to isolate the tumour biopsy samples: (i) 227 samples were 

obtained by fine-needle aspiration (MDACC) and (ii) 83 samples were obtained by surgical 

resection of the core biopsy (I-SPY) (Hatzis et al. 2011). We observed in the results 

provided by the algorithm DECO that a small group of genes marked a clear difference 

between these two groups of samples isolated in a different way. We tested that this signal 

was not due to a random selection or to a bad normalization of the data, since more that 

95% of the genes did not show any significant difference within these two classes. 

Therefore, we concluded that those genes were indicating a small change in the 

expression signal due to some differences in the two isolation protocols used. In fact, 

according to the h-statistic provided by our method, two of the highest discriminating genes 

found for these subclasses were haemoglobin β-subunit and δ-subunit (HBB and HBD 

genes; Fig. 1-R-8), which have been recently reported in the literature for suffering a 

depletion depending on the procedure of biopsy sampling used in patients with breast 

cancer (Tanamai et al. 2009). All gene expression values in Figure 1-R-8 have been sorted 

by h-statistic ranking, showing the power of this new parameter to highlight relevant 

feature-sample associations.  

Together with the signal coming from haemoglobin depletion, the same group of 

samples showed a strong up-regulation of collagens (COL1A1, COL1A2, COL3A1, 

COL4A1, COL4A2, COL5A1, COL5A2, COL6A3) which could reveal changes in the 

extracellular matrix components and could be related to mechanical manipulation of tissue 

samples, and therefore related to the different isolation procedure (gene patterns 4 and 5, 

Fig. 1-R-9). This effect was not reported in the analysis of the samples published by the 

original authors (Hatzis et al. 2011), probably because it affects a small number of genes 

and does not affect to any critical breast cancer associated gene.  

As described, we had here a clear discovery of a small gene signature associated 

with a specific sample subtype (subclasses 2 and 3, Fig. 1-R-9) that shows the value of 

using our new algorithm. It is also important to indicate that doing a semi-supervised 

analysis or unsupervised analysis with classical methods based on the gene expression 

signal would not find this signature.  
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Figure 1-R-8. Gene expression profiles of HBB and HBD genes (haemoglobin β-subunit and δ-subunit) from 
GSE25055 breast cancer dataset. Both plots have been modified from original representations returned by DECO 
within its PDF report file (Section 8.3 of Introduction). Red arrows point to samples from ISPY hospital (grey), 
where the protocol for breast biopsy is different, showing a depletion of the expression of HBB and HBD genes. 

 

According to the standard and well-known subtypes of breast cancer, the results of 

our analysis showed how the h-statistic provided by DECO found the expected division of 

samples that follow the PAM50 subclasses (Parker et al. 2009) (Fig. 1-R-9). In this way, 

the method was able to find not only the large differences that marked the separation 

between basal and luminal-like BCC subtypes, but it also found gene subsets directly 

related to the other subtypes of BCC that usually are more difficult to separate, like: luminal 

(A and B) and HER2-enriched (Fig. 1-R-9). The method also found specific genes 

associated with basal or luminal PAM50 subtypes (like: GATA3, TBC1D9, EN1, CA12, 

NAT1, PROM1 and AGR2) that have been previously linked to the ESR1 status in breast 

cancer (Parker et al. 2009). In fact, a functional enrichment analysis, using DAVID web tool 

(Huang da et al. 2009), of the group of genes found by DECO marking the basal BCC 

subtype showed a high enrichment within specific gene sets that corresponded to basal up-
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regulated or down-regulated genes against luminal breast cancer samples (as defined in 

the Molecular Signatures Database at the Broad Institute, MSigDB, 

http://software.broadinstitute.org/gsea/msigdb/). 

Figure 1-R-9. Heatmap representation of the h-statistic of 285 patients and 255 DE genes, calculating the 
distance matrices using 1-Pearson correlation of the h-statistic values and posterior Ward’s criterion for 
hierarchical clustering of both features and samples.  DECO (unsupervised experimental design, no group of 
samples) was previously applied on the microarray expression data (obtained from Hatzis et al.). 

 

6. DECO matches disease subtypes using an unsupervised design 
on RNA-sequencing data. 

Our algorithm DECO was also applied to another large breast cancer dataset taken 

from the TCGA database through TCGA2STAT R package (Wan et al. 2016), which 

includes genome-wide expression profiling using high-throughput RNA sequencing 

(Section 1 of Material and methods). In a recent study Ciriello and collaborators (Ciriello et 

al. 2015) analysed this dataset characterizing a distinct disease inside the breast cancer 

tumours corresponding to invasive lobular (IL-BCC) subtype. It is clinically and molecularly 

different to the more common and frequent invasive ductal (ID-BCC) subtype. This tumour 

stratification was not previously investigated because the normal molecular portraits of 

Figure 7 
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human breast tumours, even for the datasets of TCGA (Cancer Genome Atlas Research et 

al. 2013), followed the most standard classification of breast cancer in 4 subtypes: luminal 

A, luminal B, HER2-enriched and basal-like (defined by the PAM50 signature excluding 

normal subclass) (Parker et al. 2009).  

Under this scenario, we took 596 breast cancer samples studied by Ciriello et al. 

(Ciriello et al. 2015) having samples corresponding to each one the 4 main BCC subtypes 

(307 luminal A, 128 luminal B, 53 HER2-enriched and 108 basal-like), but also including 

the new tumour subtype classification: IL-BCC and ID-BCC. We analysed this dataset with 

the algorithm DECO following an unsupervised experiment design to test if our method was 

able to find genes as features that distinguished and separated all the different disease 

subtypes. For this analysis, we used the original expression RPKM data matrix provided by 

TCGA, checking a correct normalization and filtering-out 902 genes due to their low 

expression in all samples (expression signal RPKM < 2). Then, all omic RPKM matrix was 

properly converted to log2 scale (log2(RPKM + 1)). Consequently, DECO was applied 

without any predefined category of samples, where initial parameters were previously set 

up to: RDA r = 5; combinations = 1000000; adjusted.p.value < 0.01; NSCA variability 

explained = 80%, feature threshold = 3 differential events in at least 30 samples. 

Heatmap representation in Figure 1-R-10 shows the binary clustering of samples 

and genes obtained using the h-statistic provided by DECO for each sample and each 

gene. The method selected 3228 genes that had differential expression changes 

(according to the threshold indicated above). The values of all the statistical parameters 

provided by DECO for these 3228 genes are included in Additional Table 3 (CD of this 

Thesis), while the complete data matrix corresponding to the h-statistic per gene and 

sample is provided as Additional Table 4 (CD of this Thesis). These results showed that 

the method found 4 subclasses directly related to the 4 BCC PAM50 subtypes: subclass 1 

corresponding to basal-like subtype in red (Fig. 1-R-10); subclass 2 corresponding mainly 

to HER2-enriched subtype in blue; subclass 3 to Luminal B subtype in purple; and 

subclasses 4 and 5 corresponding mainly to Luminal A subtype (marked in green).  
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Figure 1-R-10. Heatmap of the h-statistic of 596 patients and 3228 DEgenes (the expression data for this cohort 
was obtained with RNA-seq, from Ciriello et al.). Top dendrogram (corresponding to samples) identifies 6 and 5 
main subclasses (marked in A and B respectively). The 4 standard well-known BCC subtypes (usually associated 
with the PAM50 signature) are labelled with a color panel close to each heatmap, indicating in brackets the 
number of samples of each subtype. 

 

Interestingly, the method also was able to distinguish inside Luminal A a subtype in 

that corresponded mainly to subclass 5 and had a distinct gene profile. This subtype 

corresponded to the recently characterized invasive lobular breast cancer (IL-BCC) 

subtype (marked in yellow in the grey bar in Figure 1-R-10). Ciriello and collaborators 

(Ciriello et al. 2015) published two years ago a comprehensive molecular portrait of the 

invasive lobular breast cancer (IL-BCC). Some genes found to differentiate lobular versus 

ductal breast carcinomas (like thrombospondin 4, THBS4, the thrombospondin receptor, 

CD36, and multiple cadherins, CDH5, CDH11, CDH17, CDH22, CDH23) (Korkola et al. 

2003), were found inside the gene signature that marked the subclass 5 according to 

DECO. By contrast, some genes that showed significant mutations in IL-BCC, like FOXA1 

and TBX3 (Ciriello et al. 2015), are usually up-regulated in all Luminal A samples and so 
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were not selected as specific markers of the IL-BCC subtype. It is also interesting to remark 

that previous studies on breast cancer indicated that unsupervised clustering of lobular and 

ductal breast tumours based on expression profiling failed to distinguish between these two 

subtypes of carcinomas (Korkola et al. 2003), and this underlines the value of the DECO 

method to find disease subtypes or classes.  

 

7. DECO multiclass enhances signatures and sample stratification 
after unsupervised analysis. 

It is noteworthy that there is a high and increasing number of publications following 

a semi-supervised scheme for omic analyses on clinical studies. Under our consideration, a 

semi-supervised analysis would be composed of a first step to select features associated 

with the categories of samples of interest (i.e. differential expression) and a posterior 

analysis to validate this signature through an unsupervised clustering (i.e. hierarchical 

clustering), which aims to group samples accordingly.  

 Since the previous section described a particular unsupervised scenario of breast 

cancer where DECO was applied, we actually expected the h-statistic was able to 

discriminate PAM50 subtypes properly. PAM50 classification was released as a predictive 

signature of breast cancer prognosis based on the mRNA level of a curated list of 50 

genes, dividing the patients into four recognized subtypes: Basal, Her2-enriched, Luminal 

(A and B) and Normal (Perou et al. 2000). This last subclass was integrated by a 

particularly heterogeneous group of samples, while the rest of subclasses were well-

defined by transcriptomic profiling using microarrays. For this reason, it is reasonable 

expecting a minimum division among these samples if a transcriptomic omic platform like 

RNA-sequencing is used. 

 Interestingly, PAM50 is not the first option for diagnostic of breast cancer patients 

because the subtypes proposed agree with the absence/presence of three particular 

biomarkers easily detectable by immunohistochemistry: two hormonal receptors like 

oestrogen-receptor (ESR1) and progesterone receptor (PGR) and also Her2 gene (ERBB2) 

(Yip and Rhodes 2014). Indeed, Her2-enriched samples correspond to ESR1-/PGR-

/ERBB2+ samples, luminal correspond to ESR1+/PGR+/ERBB2-, while basal samples 

mostly correspond to the triple-negative case. Notably, it is still an issue that basal-like 



 

 

 
60 

samples are not characterized by the presence of any marker, leading to the appearance of 

multiple analysis referring this question in the last decade (Bianchini et al. 2016, Jiang et al. 

2016, Liu et al. 2016, Martínez-Canales et al. 2017). 

Since this agreement among PAM50 and immunohistochemistry is not always 

fulfilled because of intrinsic tumour variability and technical variability (Table 1-R-1), a 

double purpose is followed in this section: explore the transcriptomic signatures of pure 

breast cancer subtypes through a combination of PAM50 prognostic value and 

immunohistochemistry; and characterize in a simple procedure the positive markers for 

triple-negative (basal-like) samples. Aiming that, we run DECO (multiclass design) on a 

subset of the BCC-2 dataset composed of pure samples (Table 1-R-1), those meeting the 

double condition: PAM50 and immunohistochemistry. This subset involved 361 samples 

divided in three categories (called Basal_000c, Lum_110c and Her2_001c), which have 

been remained separated in the subsampling procedure or RDA (r = 5; iterations = 10000; 

adjusted p-value = 0.01). Later, the NSCA step and h-statistic have been calculated after 

filtering for significant results to finally obtain 693 features/genes and 3 subclasses defined 

by DECO (rep.thr = 10 and perc.samp = 5%; threshold explained at Section 9.3 of Results). 

  

Table 1-R-1. Pure samples contained in BCC-2 dataset through combination of PAM50 and 
immunohistochemistry classifications (0-1 code for three biomarkers ESR1/PGR/ERBB2; x corresponds to Not 
assigned). 

 

Figure 1-R-11 shows three different dendrograms corresponding to different steps 

of the simple pipeline carried out by DECO. As detailed above, we faced a very clear 

biological scenario here because of combining PAM50 and immunohistochemistry markers 

(pure subtypes). For this reason, the whole subset of 361 samples from BCC-2 dataset 

already shows a good stratification of samples based on these pure categories (Fig. 1-R-
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11C). However, we can also observe several misclassified samples (not placed close to the 

rest of samples from the same category) marked with red asterisks if raw omic data and all 

features are input to hierarchical clustering. This first result (Fig. 1-R-11C) puts forward the 

idea of combining both predictive tests for enhancing classification of samples and 

reassures the evidence that each subtype actually comprises a very different biological 

scenario, as reported in the literature. 

Figure 1-R-11. Dendrograms obtained after hierarchical clustering of: (A) h-statistic from DECO, (B) raw omic 
data of gene signature obtained via RDA (any feature with at least one differential event) and (C) raw omic data of 
whole BCC-2 dataset. Red asterisks mark misclassified samples and dashed boxes mark relevant parts of the 
dendrogram. For all panels, distance was based on Pearson correlation (distance = 1 - correlation), while 
hierarchical clustering used Ward method.  

 

Consequently, we assumed that the application of DECO would retrieve even a 

better sample stratification and specific signatures’ definition. Thus, in Figure 1-R-11B we 

can observe the corresponding dendrogram to raw omic data of selected features by RDA 

step (at least 1 differential event per feature). Still, there are several misclassified samples 

but less than previous (panel C). Interestingly, the hierarchical clustering puts together in 

the same branch (dashed box, Fig. 1-R-11B) samples from Her2_001c and a subset of 
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Lum_110c (both Luminal A and Luminal B). Alternatively, both h-statistic used by DECO 

and double repeat-threshold on features selected by RDA improve the sample stratification, 

reducing to only 1 misclassified sample and clustering together all samples of Lum_110c 

subtype but separated from Her2_001c and Basal_000c (Fig. 1-R-11A). This is a positive 

result because two first biomarkers (ESR1 and PGR) correspond to hormonal signalization 

which it is known to be more relevant, so Her2_001c and Basal_000c may be more related 

due to the absence of both biomarkers. 

As mentioned before, our main purpose will be the definition of triple negative or 

basal-like signature. Although it is a very distant subtype from other breast cancer subtypes 

in terms of gene expression, there is no clear gene signature described in the literature for 

these samples. Classically, patients including in the triple-negative subtype have poor 

prognosis and are diagnosed by the absence of the 3 markers mentioned above 

(ESR1/PRG/ERBB2). No positive biomarker was definitely proposed for the diagnosis of 

this group but several studies have been published approaching this, as mentioned above.  

Since DECO has been proven to improve the original sample stratification, we 

could review the up-regulated biomarkers found for Basal_000c subclass. For this 

purpose, we firstly focused on the average h-statistic value of each feature per subclass 

provided by DECO. The top-15 up-regulated features or genes assigned to this subclass 

included: ROPN1, ART3, HORMAD1, GABRP, ZIC1, A2ML1, KRT16, MSLN, PRAME, 

ROPN1B, FABP7, MIA, EN1 and SOX10 (decreasingly ordered). Several of these genes 

were reported as breast basal-like carcinomas markers on an independent cohort of 

patients (Ivanov et al. 2013), specifically EN1 has been proposed as new targetable gene 

(actinomycin D) in triple-negative breast cancer samples (Kim et al. 2018). Remarkably, 

two of them are paralogs (ROPN1 and ROPN1B) related to PKA-dependent signalling 

processes for spermatozoa capacitation, whose high expression have been also 

associated with melanoma (Uhlen et al. 2017). Moreover, other genes like MIA was broadly 

associated with different types of cancer (Sasahira et al. 2016).  

Interestingly, DECO also corroborated the very clear gene expression signature 

for Her2_001c subgroup composed of ERBB2 amplicon at 17q12-q21 DNA region (i.e. 

ERBB2, STARD3, GRB7, PGAP3 or CDK12) (Kauraniemi and Kallioniemi 2006). 

All these results obtained by simple analysis, carried out by DECO on a subset of 

BCC-2 dataset (Table 1-M-2), leads us to conclude that DECO resembles an excellent and 
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robust bioinformatic tool to analyse and characterize gene signatures of subclasses of 

samples in a single pipeline (similar to semi-supervised design mentioned above), 

enhancing the sample stratification even if a very clear stratification was present in raw 

omic data (Fig. 1-R-11C). 

 

8. R package: deco. 

8.1 General environment 

DECO was initially programmed in R environment, then a complete R package, 

called ‘deco’, have been produced. Additionally, a detailed R vignette (Appendix 1) 

describing how this R package functions could be consulted, which was also included in 

the R package. 

Table 1-R-2. R package dependencies of deco R package. 

Package Description Version 

limma Linear Models for Microarray Data used for 
differential expression analysis. 3.30.13 

snowfall Library for easy parallel computation in R. 1.84-6.1 

foreign Optimized reading and writing files in R. 0.8-67 

AnnotationDBI Management of Annotation libraries and objects. 1.36.2 

Biobase Management of R objects from Bioconductor. 2.34.0 

gdata Advanced management of R matrix and data.frame. 2.18.0 

lisp Higher-order programming. 0.1 

ade4 Tools for multivariate data analysis. 1.7-6 

locfit Local regression, likelihood and density estimation. 1.5-9.1 

sfsmisc Approximation to numerical integration. 1.1-0 

gplots 

Libraries for representation of results and plot 
configuration. 

3.0.1 

RColorBrewer 1.1-2 

scatterplot3d 0.3-40 

made4 1.48.0 

Our method was written, developed and compiled within R environment (R-version 

3.4.0). The deco R package created is compatible with all R-versions since 3.0.1, it is 

periodically maintained and revised to ensure its correct function. Today, deco R package 
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is available for downloading in Bioinformatics and Functional Genomics group’s website 

(http://bioinfow.dep.usal.es/deco/) and it is also planned to upload it into CRAN R 

repository (http://cran.r-project.org/). 

8.2 R dependencies of deco R package 

The development of deco R package leads to include several R packages for the 

proper functioning of this method. While limma R package is essential for RDA step and 

differential analysis or snowfall for parallel computation, other R packages like gplots, 

RColorBrewer, scatterplot3d or made4 were used to improve representation and plot of 

deco’s results. Moreover, other packages were included for management of data (foreign 

or gdata), bioinformatic or annotation protocols (Biobase or AnnotationDBI), advanced 

statistical analysis (locfit, ade4 or sfsmic) or optimized programming (lisp) (Table 1-R-2). 

Moreover, the R code for NSCA was adapted from original code produced and published 

by Beh and Lombardo (Beh and Lombardo 2014). 

 

9. deco R package: development and main functions created 

Since DECO method is composed of two main steps: RDA and NSCA (Section 2 of 

Material and methods), the deco R package have been written following the same scheme. 

Two main R functions, called decoRDA and decoNSCA, would compute both main 

procedures: the results of the resampling procedure (decoRDA) are needed by decoNSCA 

to calculate the Non-Symmetrical Correspondence Analysis and, then, the h-statistic.  

9.1 Input data 

Given an omic data matrix as input to analyse, the features/genes/proteins must be 

placed as rows and samples as columns. This omic data matrix is the unique requirement 

to run decoRDA R function. Nevertheless, a named vector indicating which samples are 

belonging to each group of samples may be also input, if supervised or multiclass 

experimental design is planned. As hinted above, the omic data matrix must be properly 

normalized by any suitable method for the omic platform used to generate the data. For 

example, several normalization methods have been proposed or used for DECO validation, 

like RMA normalization method for Affymetrix microarray platform, RPKMs for RNA-seq 
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experiments or CPMs obtained after counts/reads normalization through voom 

normalization method (Law et al. 2014). 

 

9.2 decoRDA R function 

The decoRDA R function would compute the subsampling procedure depending 

on the experimental design: supervised, multiclass or unsupervised. Anywise, the groups of 

samples will be compared using LIMMA (Smyth 2004) through pair-wise comparisons for 

supervised and multiclass experimental design. Given a number of iterations/combinations 

of samples (all possible combinations or a random subset) and an optimal subsampling 

size (Section 4 of Material and methods), decoRDA will calculate the combinations and 

compute a LIMMA differential expression analysis iteratively on these subset of samples, 

saving the statistical output given by LIMMA per iteration and counting in an incidence or 

frequency matrix which features have been identified as significant for each subset of 

samples (Section 5 of Material and methods). In case of supervised analysis was chosen, 

the frequency matrix will be divided by classes to enhance posterior subclass discovery, 

then both UP and DOWN differential events will be separately counted in the frequency 

matrix, doubling the number of rows (one UP and one DOWN per feature). Otherwise, 

differential events will be annotated only in samples where the change was an UP 

regulation (Section 4 of Material and methods). 

These results and the incidence matrix are not directly saved as R objects when 

the subsampling procedure is executing due to its computational cost and RAM memory 

consumption. For this reason, the foreign R package was implemented to write and read 

files of a temporary folder, previously created to save these intermediate results. This 

temporary folder will be immediately removed after decoRDA finish. 

Interestingly, since the use of omic data is continually growing, a parallel 

computation of decoRDA was also implemented to hasten the subsampling procedure. 

For this purpose, the snowfall R package was chosen due to its stability, simplicity and the 

development of parallel computation alternatives for the gold-standard loop functions in R: 

apply, sapply, lapply, mapply and tapply. Moreover, this library and parallel computation 

were also implemented for the calculation of the overlap statistic within the decoNSCA R 

function. 
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Apart from technical issues derived from resampling procedures in R, others 

biological considerations were done in order to facilitate the output of decoRDA R function. 

First, we noticed that working with omic data derived from clinical data made the 

patient/sample gender an issue when resampling techniques are proposed (Fig. 1-R-12). 

All genes or features located in sexual chromosomes would be great candidates to be 

differentially expressed features even when all groups of samples are well-balanced (mixed 

profiles, Fig. 1-I-7), leading for the discovery of clear subclasses and confusing results. For 

this reason, a R function called AnnotateDECO has been developed to annotate each 

feature according to the attributes indicated by user and to the official R/Bioconductor 

annotation library for the organism of study. This function is called by decoRDA if user 

requires it. By default, a logical variable called rm.xy would indicate to decoRDA if the 

annotation information (chromosome of each feature) should be used to remove those 

features located at X or Y chromosomes.  

Figure 1-R-12. Figure representing differential evidences of sexual genes if they are included in a resampling 
procedure, like RDA step. Here, DECO was run by default parameters (following similar supervised design than 
Fig. 1-R-5) on real datasets OSC, MDS-1 and MDS-2 while setting rm.xy to FALSE. (A) Height of bar corresponds 
to average repeats (or differential events) amounted by each set of genes found per chromosome. (B) A single 
gene profile of KDMD5 (chromosome Y) obtained after applying DECO is shown. As we can see, it follows a 
mixed profile. 

9.3 decoNSCA R function 

Once decoRDA R function has been run, the R object list provided will be the input 



 

 
67 

CHAPTER I 

for next function decoNSCA. First, this function will remove those noisy features which 

results from the subsampling subset may be considered irrelevant (Section 4.4 of Material 

and methods). While the common thresholds are based on a single parameter cut-off which 

summarizes significance (i.e. adjusted p-value), we demonstrated how it may hide relevant 

results in heterogeneous scenarios (Figure 1-I-7). Although Standard Chi-Square was 

proposed for summarizing the number of positive iterations amounted by a single feature, 

they may be mostly given by a specific group of samples or globally by low number of 

repeats in a larger number of samples. Thus, this repeat-threshold proposed aims to 

remove: 

a) Features amounting a very low number of differential events on a large 

number of samples.  

b) Features amounting a great number of differential events on a very 

small number of samples.  

Given one differential feature selected by decoRDA, this removal step would be 

based on the number of differential events or repeats amounted by a minimum percentage 

of samples. By default, those parameters are settled as 3 repeats (rep.thr input in R) and 

5% of samples (samp.perc input in R), then any feature amounting less than 3 differential 

events for at least 5% of samples will be removed. In this way, it may be considered as a 

two-dimensional threshold, as it is shown in the Figure 1-R-12 corresponding to the 

analysis of BCC-2 dataset (pure classes, multiclass analysis from Chapter 1-R Section 7). 

Attending to relevant features or genes for BCC-2 dataset, we can observe how very 

significant features for PAM50 or immunohistochemistry classification like ESR1, PGR or 

ERBB2 are high ranked and would not be removed (Fig. 1-R-12). However, this heuristic 

threshold prioritizes outlier genes like CDK18 (for subgroups or small set of samples), while 

withdraw other less specific like GBJ6, KRT17 or CDH1 (described above: a) situation). In 

summary, this double threshold would allow us to control which features will enter to the 

NSCA analysis, avoiding similar situations to those examples given by current methods for 

outlier profile detection, like DOG or ZODET methods (Yang and Yang 2013, Roden et al. 

2014), where even a single outlier sample may enable significant results (Fig. 1-I-4).  
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After this removal step, decoNSCA will take the frequency matrix (two if supervised 

analysis) and will search for subclasses of samples calling the internal function 

NSCAcluster, which specifically applies NSCA and later calculates the h-statistic based on 

inner product of NSCA and dispersion of raw omic data per feature (Section 5 of Material 

and Methods). After the h-statistic calculation, another R function called cophDECO will 

define subclasses based on a hierarchical clustering for samples and for features of this 

statistic. Separately, the overlap statistic will be also computed for each feature (if 

supervised or multiclass experimental design) using raw omic data. 

Figure 1-R-13. Example of double repeat-threshold (rep.thr and samp.perc) proposed for BCC-2 dataset. (A) 
While x-axis corresponds to repeats (differential events) amounted per feature remains invariable, y-axis 
represents percentage of samples amounting at least the repeat-threshold chosen (colour code from 1 to 20 
repeats here). Trends have been fitted using cubic smooth spline approach (s-par = 0.75). (B) Once a repeat-
threshold was chosen (10 repeats, red arrows), we represented the samp.perc threshold which would filter all 
these features amounting less than repeat-threshold in a percentage of samples (5% by default). Red dots 
assigned to filtered features. Both plots included position of relevant genes for BCC-2 dataset. 
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In order to facilitate management of results provided by decoNSCA, an own R 

object-class was created following the S4 object system and called deco class. Notably, 

this object includes statistical information and a table ranking about each feature, all the 

information about subclasses found and h-statistic matrix, and also a summary of input 

parameters given by user. 

9.4 decoReport and plotDECOProfile R functions 

Any high-throughput analysis in research should be properly illustrated or 

represented to facilitate the understanding of other interested researchers. Moreover, we 

contemplated that some parts of this algorithm may be not easily understood, then it may 

seem even more complex than really are. Aiming to highlight the most relevant parts, deco 

R package also implements two R functions called decoReport and plotDECOProfile which 

will generate a single PDF file including several plots about data and results.  

The decoReport R function produces a PDF file summarizing most of the analysis 

done by DECO (RDA and NSCA steps). Since a complete vignette is attached as 

Appendix 1, we will just focus on main plots: 

(i) First page of the PDF file will briefly summarize the results obtained after both 

RDA and NSCA steps. Number of features selected after RDA, Hubert’s gamma 

coefficient pointing the suitability of subclasses found after hierarchical clustering 

of h-statistic, top10 ranking of features or subclass membership of each sample 

are some of this information. This brief summary may be also shown via 

summary() or print() R native functions. 

(ii) Boxplot of Goodman and Kruskal’s t (or inertia) contributions (Section 4 of 

Introduction) per sample belonging to each subclass found is represented. Here, 

a similar t contribution and low dispersion of t values may be expected for very 

different samples conforming a subgroup (particular behaviour within the 

dataset). For example, Basal-like or triple-negative (negative for ESR1, PGR and 

ERBB2 gene markers) subgroup of samples from BCC-2 dataset integrates a 

very characteristic biological scenario, aggressive and showing high diversity of 

outcomes (Jiang et al. 2016, Martínez-Canales et al. 2017), which was reflected 

via t contributions. 

(iii) A similar plot to Figure 1-R-13B remaining how the previously explained repeat-
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threshold was computed is also provided. 

(iv) The top-50 feature ranking table is provided in a separate page. If supervised 

experimental design was chosen, then two top-50 tables are provided in order to 

segregate complete and majority profiles from minority and mixed ones. This 

table is also included in the deco R object returned by decoNSCA function. 

(v) Interestingly, a top-50 ranking based on h-statistic range is provided (two 

tables separated per category of samples if supervised), revealing how h-

statistics per feature are pointing to each subclass discovered (Fig. 1-R-14). This 

table is also included in the deco R object returned by decoNSCA function. 

(vi) Heatmap of h-statistic showing the hierarchical bi-clustering (feature and 

samples) computed by decoNSCA to disclose subgroups of samples and 

feature’s patterns associated with each subgroup. It may include additional 

information of samples (phenotype) or features if provided as data.frame via 

info.sample or info.feature inputs to the decoReport R function. 

Figure 1-R-14. Adapted screenshot of h-statistic ranking table within the PDF file returned by decoReport R 
function after BCC-2 analysis (multiclass analysis). (A) Discriminant features will be ranked according to the 
maximum range of values reached by h-statistic per feature. (B) Ranking columns would rank features according 
to this relevance or mean h-statistic per subclass. (C) Standard.Chi.Square column just displays this statistic 
derived from RDA step per feature. (D) Dendrogram columns point to which group of feature’s dendrogram 
belongs each feature and which exact position occupies. 

 

(vii) Heatmap of raw or original omic data (gene expression, miRNA expression, 

protein expression, etc) based on the same feature selection done by decoRDA 

and filtered by the repeat-threshold in decoNSCA.  
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(viii) Single feature profiles plotted in single pages (if supervised or multiclass 

design). These pages include a profile plot showing raw omic data signal but 

ranked accordingly to h-statistic, which enables the visualization of differences. It 

is accompanied by information of samples if provided. Moreover, the overlap of 

raw omic signal densities per category of samples compared is also represented 

(Fig. 1-R-15), but not for unsupervised analysis. Additionally, a barplot indicating 

mean and standard error of h-statistics per subgroup of samples found by DECO, 

in order to quickly visualize which subgroup is supported (marked) by this feature. 

The profiles to be plotted may be indicated via id input, limited to 50 profiles.  

(ix) Biplot and 3D representation of NSCA coordinates returned for each sample 

and subgroup of samples discovered. 

 

Figure 1-R-15. Adapted screenshot of overlap statistic plot returned by decoReport R function, which will 
estimate the percentage of overlapping raw omic data signal among classes studied. (A) Overlap between non-
metastasis (control) and metastasis (case) samples of OSC dataset for ARHGDIB gene. (B) Overlap among pure 
classes (Basal_000c, Her2_001c and Lum_110c) of BCC-2 dataset for PGR (progesterone receptor) gene, one of 
the most relevant in breast cancer. 
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Additionally, the plotDECOProfile R function was written for plotting single feature 

profiles as indicated in (viii) of previous list without restriction of number. However, the 

overlap representation is omitted in this PDF file. Further details about the deco R package 

functions, parameters to control the analysis and R objects returned after each function is 

provided in the Appendix 1, which includes the original vignette specifically written for 

users of this package.  
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DISCUSSION 
 

This Discussion presents an overview of the main results presented in this Chapter 

trying to gain insight into the value of the work done and also reviewing related scientific 

publications. Our analysis is specifically focused on the strengths and weaknesses of the 

developed method (DECO) and their main statistics (Standard Chi-square and h-statistic) 

for the analysis of complex omic data from heterogeneous sample sets.  

 

1. Recursive subsampling (RDA) provides a robust feature selection 
both in homogeneous and heterogeneous sample series 

Along the Introduction of this Chapter I, we revisited and detailed the main 

bioinformatic methods and approaches emerged since COPA method proposed the outlier 

profile as a frequent scenario of cancer omic analyses (MacDonald and Ghosh 2006). They 

proposed the discovery of up-regulation events for a subset of samples when gene 

expression levels (mRNA) of cancer samples are compared to control samples. In the 

original publication, they attributed these differential events to genomic translocations of 

DNA, a very common incident in tumour cells. Particularly, this study was focused on 

prostate cancer and the fusion of TMPRSS2 and ETS transcription factor genes (Tomlins 

et al. 2005).  

In the singular biological context of cancer, the genomic translocation is one of the 

many existing sources of biological heterogeneity of tumour cells (Hogenbirk et al. 2016). 

As mentioned before, individual genotype and phenotypical circumstances, spatial and 

temporal clonal evolution of tumour cells (even more pivotal if solid tumour) and technical 

variability (from any high or low-throughput technique) also contribute to a complex 

scenario where the identification of any relevant source of heterogeneity makes crucial the 

development of comprehensive approaches (Allott et al. 2016, Rubben and Araujo 2017). 

However, we mentioned before that most of the current omic analyses focus on supervised 

comparisons (reference samples against case samples) which do not take into 
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consideration these issues. For this reason, we hypothesized (Introduction, Section 3) a 

four model-type scheme of possible heterogeneous profiles when two categories of 

samples are compared (Fig. 1-I-7), which involves classical or expected complete changes 

and outlier changes between classes. 

Given an omic dataset, DECO aims to detect any relevant feature supporting the 

intrinsic heterogeneity through a subsampling procedure without replacement (RDA). The 

feature selection process is crucial for any posterior analysis (Singh and Sivabalakrishnan 

2015) because it allows us not only select and rank significant features but also place in 

context which samples are aiding this variability (Fig. 1-M-4). Thus, the Standard Chi-

square was implemented to facilitate the ranking of features found instead a simple counter 

of differential events (or Repeats). It possesses the advantage of being corrected by 

significance level of each differential event (Eq. 1.6): for the same number of differential 

events per feature, lower p-values (i.e. » 0.001) should be greater considered or scored 

than greater ones (i.e. » 0.05). Taking into consideration these points, we have 

demonstrated in Section 1 of Results that RDA step is able to disclose every differential 

feature and rank them greater than random differences (Fig. 1-R-2), following a logical 

order similar to our 4 model-type (adjusted p-values from Fig. 1-I-7).  

Noteworthy, subsampling and other resampling techniques have been broadly 

used in many scientific fields for statistic estimation, stability assessment or learning 

processes. If they are carefully raised (involving previous knowledge, computational cost or 

suitability of the problem to solve), these techniques will provide very useful and reliable 

information (Irizarry et al. 2003, Gur-Dedeoglu et al. 2008, Lee et al. 2014). Although big 

data analyses are coming more frequent now, summarizing it into smart data remains 

essential and requires of the development of new exhaustive approaches. Our method 

DECO, and particularly the RDA step, adds a new scheme analysis on a very 

acknowledged differential analysis approach like LIMMA and its Bayesian (eBayes) method 

(Smyth 2004), enlarging the suitable profiles from complete changes to all our 4 model-

types and ranking them accordingly.  

An essential point to consider before applying a resampling technique in the 

differential analysis is the subsampling size: the number of samples per group compared in 

each iteration. Interestingly, as described in Section 4 of Material and methods, the ability 

of RDA to detect all 4 model-types is conditioned by this subsampling size, concluding that 
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a small subsampling size would allow us to disclose all model-types (from complete to 

mixed). However, it is important to mention that LIMMA is partially based on t-test statistics, 

then the sample size of compared samples (subsampling size per iteration) roughly affects 

to its statistical power (Dobbin and Simon 2005, Stretch et al. 2013). In this way, a greater 

subsampling size makes RDA more sensible to complete changes (often very plane genes: 

low fold-change among categories), while a lower subsampling size would bring robust 

complete changes and all other model-types (granularity of RDA, Section 4 of Material and 

Methods). 

In conclusion, we consider that approaching the feature selection or differential 

analysis through a subsampling scheme, as provided by RDA, release to gain insight into 

the significant variability present at any homo- or heterogeneous omic dataset.  

 

2. The predict-response information provided by NSCA in the h-
statistic notably improves the patient stratification 

One of the most common pipelines for differential analysis of omic data described 

in the literature is composed of (i) the first step for select relevant features which 

discriminate among categories of samples compared and (ii) a second step for clustering 

samples through an unsupervised technique based on previous selected features. Thus, 

the second step is conditioned by the feature selection process and the raw data input to 

the unsupervised method. Once we considered that the RDA step provides a precise 

definition of significant features, we aimed to improve the unsupervised clustering via a 

proper transformation of raw omic data instead the development of a new clustering 

technique. 

Given a omic dataset, our RDA step will produce a frequency matrix which counts 

the number of differential events per feature amounted by each subset of samples (Section 

4 of Material and Methods). After applying NSCA on this matrix, we would obtain a direct 

lecture of predictor-response dependence among selected features and samples. Roughly, 

NSCA would help us to answer this hypothetical question: given a sample(s) present in a 

feature profile (predictor), would it be responsible for the differential expression of this 

feature (response). As proposed by Beh and Lombardo (Beh and Lombardo 2014), the 

inner product (p) between features and samples reflects the dependence relationships 
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behind the inertia analysis (Goodman and Kruskal’s t decomposition) did by NSCA (Fig. 1-

M-6). Nevertheless, the inner product may excessively weight small outlier subgroup of 

samples (accumulating inertia), which may be inappropriate for a global interpretation of 

heterogeneity behind an omic dataset. For this reason, we integrated the inner product (p) 

provided by NSCA and omic dispersion from the mean per feature (d) as described in 

Section 6 of Material and Methods. The new statistic was called heterogeneity statistic or 

h-statistic, which will supersede the raw omic data for a clustering analysis (Section 7 of 

Material and Methods). 

As demonstrated above in Section 2 and 3 of Results, the h-statistic enhances the 

sample stratification, bringing the feature-sample relevance by the inner product slightly 

corrected by omic dispersion (Fig. 1-R-3). Thus, it would reduce the existing overlap of raw 

omic data depending on the predictor-response information what would improve the output 

of any clustering technique applied on h-statistic (Fig. 1-R-4). For example, we could 

observe how it functions for a single real expression profile like ESR1 gene profile from 

BCC-2 dataset (Fig. 1-R-5). Due to the presence of particularly high expressed genes in 

Her2-enriched subgroup, like ERBB2, STARD3, PGAP3, GRB7 or CDK12 genes (Section 

7 of Results), NSCA would not consider these samples as relevant for differential profile of 

ESR1. Consequently, h-statistic would weight it accordingly, facilitating the subgroup 

discrimination. In fact, we can observe how different subgroups analysed reduced the value 

dispersion from raw omic profile to h-statistic profile (Fig. 1-R-5C). 

While there are no similar integrations of raw omic data and other statistics 

described in the literature, there are a wide range of integrative methods and models for 

multi-omics approaches (Bersanelli et al. 2016), for example for all these biological 

processes related to gene expression (mRNA expression, miRNA expression, copy 

number variation or DNA methylation), several of them aiming to discover hidden biological 

factors (Ebrahim et al. 2016). Here, the integration proposed is not only very simple and 

intuitive but also susceptible of being developed in a future towards a multi-omics platform 

approach, since h-statistic was standardized and has no units. In this way, we will briefly 

discuss the suitability of DECO algorithm for non-transcriptomic platforms in the Section 5 

of this Discussion. 
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3. DECO discloses relevant hidden classes of samples 

  DECO was successfully applied to a variety of experimental transcriptomic 

datasets obtained from two different omic platforms: microarrays manufactured by 

Affymetrix and RNA-sequencing from Illumina (Table 1-M-2). Particularly, two out of these 

five transcriptomic datasets compiled gene expression profiles from breast cancer patients, 

the most reported cancer in the literature and one of the most frequent cancer in the 

population. From these two large datasets, we fundamentally found and characterized two 

hidden subgroups of samples: the hospital source (ISPY) for BCC-1 dataset and 

invasive lobular carcinoma (ILC) for BCC-2 dataset. Initially, we aimed to focus our analysis 

in assessing the performance of DECO to characterize main subgroups (related to PAM50 

classification of samples) if unsupervised experimental design was applied.  

Surprisingly, DECO revealed ISPY-subclass as a strongly marked subgroup of 

samples in BCC-1 (Fig. 1-R-9), whose technical explication was not reported or introduced 

by original authors (Hatzis et al. 2011). Additionally, while the characterization of ILC breast 

cancer subtype is the main purpose of Ciriello et al. paper (Ciriello et al. 2015), they did not 

deepen in mRNA signature. DECO found a clear signature related to ILC samples in 

comparison with PAM50 subclasses (Fig. 1-R-10) in a very simple pipeline, due to h-

statistic properties defined above. In fact, all genes found for both hidden subgroup of 

samples and others related to PAM50 subclasses are coherent and the functional 

enrichment analyses of different clusters reveals main well-reported signatures (Section 5 

and 6 of Results).  

 Attending to these results and previous work, we conclude that DECO is a very 

precise and simple bioinformatic tool for disclosing hidden significant subgroup of samples 

not directly related to original categories, as well as for outlier profile detection of single 

features (Fig. 1-M-2C/D). 
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4. DECO R package is simple and easy to use 

To facilitate the use and applicability of DECO, one of the main objectives of this 

Chapter I was to develop a full and simple R package containing this algorithm. This R 

package was called deco, contains two R vignettes detailing the use of main functions and 

may be downloaded from our website (http://bioinfow.dep.usal.es/deco/). 

Since DECO method is composed of two well-distinguished steps, we proposed to 

separate R functions in the same way. As detailed above (Section 9 of Results), first R 

function, called decoRDA, was intended to carry out a Recursive Differential Analysis 

(RDA) based on LIMMA differential analysis technique. Although several different 

parameters may be input to control the subsampling procedure (detailed within R vignette, 

Appendix 1), this function only requires an omic data matrix (features as rows and 

samples and columns) to compute this analysis. The experimental design would be defined 

by the user and enhanced within this function to adapt it for LIMMA design matrixes. In 

addition, the computational cost and RAM consumption derived from any resampling 

technique has been significantly reduced through parallelization of calculations (using 

snowfall R package) and saving intermediate results (Section 9.2 of Results). The output 

will be clear, including the mentioned frequency matrix for NSCA and a feature table 

summarizing feature statistics among other objects. Thus, any non-expert user can execute 

it following the R vignette or help pages included in the R package. 

Since the second step fundamentally includes a NSCA analysis, the calculation of 

h-statistic and the hierarchical clustering of samples, we integrated these three processes 

in the second R function, called decoNSCA. In this way, the user would also obtain a clear 

and fast lecture of results produced by DECO in a single R object (of class deco) which 

would include: the table including all feature-statistics, NSCA outputs and hierarchical 

clustering of both samples and features. The native R functions print and summary were 

accordingly modified to provide a summary if a deco class object was input. Finally, the 

basic workflow is completed by the decoReport R function which would provide an 

extended PDF report including relevant plots for the interpretation of results, very easy to 

execute and where phenotypic information of samples will be input to match significant 

patterns to original data. 

For these reasons, we thought our deco R package is functionally coherent, simple 

and adapted to current computational needs of many bioinformatic users. This R package 
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was successfully tested on Linux, Windows and MacOSX operative systems and will be 

also uploaded to CRAN R repository (cran.r-project.org). 

 

5. Suitability of DECO method for non-transcriptomic omic platforms 

Since LIMMA is one of the most used techniques for differential expression 

analysis and has been broadly adapted to R environment, the application on other omic 

platforms is increasing every year. Indeed, there are many publications in the last decade 

reporting its use for proteomics differential analysis due to its simplicity, performance and 

dealing with variability of proteomic data (Margolin et al. 2009, Ting et al. 2009, Pagel et al. 

2015, Kuzniar et al. 2017, Basken et al. 2018, Jeannin et al. 2018). In fact, Kammers and 

colleagues made an extended revision of empirical Bayes method (eBayes) of LIMMA and 

its advantages of use in proteomics and genomics, highlighting its power to detect 

differentially expressed proteins via inter-experiment variability dealing (Kammers et al. 

2015). Although LIMMA is not the first method for differential protein expression analysis, 

its suitability for proteomic datasets has been broadly demonstrated and, consequently, the 

DECO applicability on similar datasets to enhance the differential analysis and posterior 

clustering of samples. 

Additionally, other less common omic datasets like miRNA expression or 

methylation data were also susceptible of being analysed with LIMMA. Since miRNA data 

may obtained in a similar way that mRNA profiles (microarray platforms like Affymetrix or 

RNA-sequencing experiments), miRNA analysis has been also related to LIMMA 

differential analysis in many publications (Thomou et al. 2017, Xue et al. 2017, Mastriani et 

al. 2018). On the other hand, there are many successful publications where LIMMA have 

been applied for supervised or multiclass comparisons of CpG methylation levels in 

different biological scenarios (Stefan et al. 2014, Wockner et al. 2014, Johnson et al. 2017, 

Saito et al. 2017, Martorell-Marugan et al. 2018). Interestingly for these two omic platforms, 

the authors possess the advantage of using the same technique for mRNA levels and 

miRNA expression or DNA methylation data, which is totally complementary in terms of 

interpretability of results (gene expression).  

In conclusion, since LIMMA has been broadly applied to several different omic 

platforms (i.e. proteomic, miRNA and DNA methylation data) and it is the functional core of 
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RDA step, DECO is greatly suitable to be applied on these platforms. DNA methylation and 

miRNA expression levels are two complementary data to mRNA expression, providing a 

major insight into the biological scenario behind a particular omic study. As such, we have 

in mind an advanced development of DECO method for the integration of these particular 

gene expression related platforms (mRNA with miRNA or DNA methylation) for a same set 

of samples because the transformation of raw omic data into differential events first and h-

statistic later is no dependent of any initial unit or statistic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER II 
 

Cohesiveness: a simple and non-parametric 
statistic for platform-independent feature 

selection with omic data 

 

 

 

BRIEF SUMMARY 
Throughout this Chapter II, we propose a novel and simple non-parametric 

statistic to measure the proximity of the samples belonging to a category within a 

quantitative variable. According to the current results obtained from omic data analysis, 

our statistic, called cohesiveness, could be used to: (i) select the best features to 

differentially characterize any category of samples and (ii) determine the most stable 

feature’s patterns corresponding to a category of samples. 
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CHAPTER II 

 

INTRODUCTION 
 

Our ability to compile large amount of phenotypic information for clinical or 

biological samples is being improved every day. Nowadays, we enjoy a great variety of 

omic technologies to collect high-dimensional data (transcriptomics, proteomics, genomics, 

metabolomics, etc.) from biological samples of different organisms. As mentioned in 

Chapter I, the availability of phenotypic data is essential for the proper interpretation of 

results and posterior classification of individuals in a previous characterized group, 

especially in the context of precision medicine (Fig. 1-I-1). However, while we mainly 

focused on the analysis of heterogeneous (and homo-) omic data in a particular biological 

context in Chapter I, now, we focus on how dealing with large phenotypical datasets, when 

high-dimensional omic data are available, to select not only discriminant but also stable 

patterns within biological features.  

 

1. Feature selection in bioinformatics 

Feature selection (FS) has been subjected to numerous studies and development 

of methods for multiple scientific fields, considered as a crucial step for posterior prediction 

of particular conditions or group of samples or conditions. Particularly, the increasing trend 

of high-dimensional data produced by biomedical and biological research has notably 

contributed to the development of new tools and applications for omics data. For instance, 

a simple search of “feature selection” in PubMed database (www.ncbi.nlm.nih.gov) returns 

4328 studies of which 2488 date from the last five years. 

Here, they dealt with “large p, small n” problem (where p corresponds to 

independent features and n samples), very common in biomedical research when omic 

data was generated. Especially, it has been broadly examined by machine learning 

methods as a first step of algorithms to reduce the number of biological features (Wang 

and Fu 2006) (gene expression, methylation, protein concentration, etc.) measured without 

altering the intrinsic and relevant structure of omic dataset (Hira and Gillies 2015). 



 

 
84 

Consequently, the feature selection procedures implemented in any bioinformatics pipeline 

should be carefully chosen to enhance the posterior interpretability of the results (Saeys et 

al. 2007). Although there are other problems associated with any classification and feature 

selection procedure, we would like mentioning how often the big size of omic and biological 

data render classification algorithms useless due to the computational cost, particularly all 

those which include combinatorial procedures or randomization of features (Chen et al. 

2012, Bolón-Canedo et al. 2015, Kourou et al. 2015). 

Interestingly, most of these approaches has been proven on microarray datasets 

due to its popularity, easy accessibility, and management (Tan et al. 2014, Hira and Gillies 

2015). Moreover, application of feature selection procedures is preferred to data or 

dimensionality reduction techniques, since it is easier to interpret original omic data instead 

transformed data (Wang et al. 2016). This kind of data is intended to contain flat features 

(Fig. 2-R-1), where features are assumed to be independent. Classically, feature selection 

methods for flat features have been split into: 

- Filter: evaluates the association of each feature with a categorical variable through 

a statistical significance analysis without using any classification algorithm (Liu and 

Setiono 1996). It could be univariate or multivariate (when multiple features are 

evaluated). Fisher’s score, ReliefF, mRmR, Wrank or Trank methods are several 

classical examples of filter methods (Bradley and Mangasarian 1998, Nigam et al. 

2000, Baldi and Long 2001, Liu et al. 2002, Robnik-Šikonja and Kononenko 2003). 

- Wrapper: evaluates a set of features considering a predefined classifier to select a 

subset of relevant and non-redundant features (Fig. 2-R-2). However, its 

computational cost is higher than filter methods (Yu and Liu 2004). Random forest 

(Breiman 2001) or posterior modifications of random forest, such as like Recursive 

Feature Elimination (RFE) (Svetnik et al. 2004), are highly-studied and applied 

wrapper methods for feature selection. 

- Embedded: evaluates the features at the same time that constructs the predictor 

classifier, combining the advantages of both filter and wrapper methods. Moreover, 

there are less computational intensive than wrapper algorithms (Liu and Yu 2005). 

Lasso or Supper Vector Machines (SVM) are examples of embedded methods 

used with omics data. 
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Alternatively, there are feature selection methods for structured features, where 

features are also independents but there are relationships among them, retrieving a simple 

or complex scenario. Group Lasso, ANOVA or multinomial regression are several 

examples of this second type of feature selection, which take into account these 

relationships. However, we will focus on methods for flat features due to its similarity with 

the method proposed along of this Chapter II. 

Figure 2-I-1. General classification of feature selection methods. Scheme from (Tang et al. 2014). 

 

Apart from feature selection methods, there are methods focused on feature 

extraction, as mentioned above. These methods are based on the supposition than given a 

large matrix (i.e. omic data) following the common “large p, small n” scheme, we may 

reduce the redundant information via transformation of original data into new features, 

which would comprise relevant information in a reduced set of features. This concept is 

known as dimensionality reduction. Several well-known techniques are Principal 

Component Analysis (PCA), Multidimensional scaling (MDS), Linear Discriminant Analysis 

(LDA) or Non-Negative Matrix Factorization (NMF). However, these methods are out of the 

scope of this Chapter II since they are not related with the simple method proposed. 

Interestingly, for feature selection methods, the choice between supervised or 

unsupervised design (no classes of samples to compare) within a pipeline establish the 

main bottleneck to choose a proper technique. Currently, omic studies gather detailed 
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knowledge on the samples analysed, composed by categorical data, leading to expect 

changes among different states or classes (supervised) to define its biological context 

(Bermingham et al. 2015). In this way, feature selection procedures within a supervised 

pipeline would try to avoid redundant information while maximizing differences between 

classes (Koch 2014, Bolón-Canedo et al. 2015, Singh and Sivabalakrishnan 2015). 

Figure 2-I-2. Adapted figure (Ang et al. 2016). (A) Feature b2 is irrelevant and non-informative for the classification 
of group 1 and 2 of samples. (B) Feature b1 and Feature b2 are redundant since they provide the same 
information for the classification of group 1 and 2. 

 

2. Categorical data analysis in bioinformatics 

Categorical variables have two primary types of scales: (i) variables having 

categories without a natural ordering are called nominal; (ii) and categorical variables do 

have ordered categories are called ordinal. In clinical studies, phenotype encompasses a 

wide range of data: disease risk, ethnicity, age, sex, medical treatments or pathology 

classification. These categories would allow to the scientist to discriminate among samples 

in order to characterize each one with a subset of relevant or differential features (Berger et 

al. 2013). In order to characterize each categorical variable by associating certain 

continuous variables, multiple statistical approaches have been traditionally applied in 

bioinformatics, such as discriminant analysis, MANOVA, correlation analysis, or any of 

differential analyses mentioned in Chapter I. Thus, the feature selection would be directly 

conditioned by samples’ categories and comparison among them, obtaining variable results 
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depending on the experiment design. However, there is a previous question which anyone 

carrying on a statistical analysis of omic data should answer: could our categories follow an 

order? Indeed, the user should choose a proper method, like stage-like (Aibar et al. 2016) 

or time-course approaches (Nueda et al. 2009), and avoid classical methods to improve the 

interpretation of the results. 

Regarding unsupervised methods, clustering is the most widely used technique to 

group similar samples in biological data, leading to significant discoveries at the beginning 

of omic analyses (Perou et al. 2000). However, our clustering method choice and the high 

dimensional nature of biological data compromise the meaningful of the results (Ronan et 

al. 2016). Any previous normalization or scale transformation of the date could alter the 

result and, even obtaining a nice clustering result, its biological significance is not always 

well-determined. In fact, many unsupervised feature selection methods are based on data 

transformation (i.e. combining two or more original biological features in a single one) to 

enhance the results.  

For all those reasons, given categorical and omic data, we will propose a non-

parametric, simple and easily-understood statistic -called cohesiveness- to assess the 

ability of any biological feature for classifying samples into phenotypic categories. The 

cohesiveness takes into account both principal concepts of any classifier: contribution (to 

classification purpose) and interaction (among categories of samples), using two or more 

categories of samples as basis for its calculations but not taking into consideration the 

redundancy among features (filter method for flat features). The algorithm to calculate 

the cohesiveness statistic has been written in the R language. The original R script can be 

found as Appendix 2. 
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 MATERIAL AND METHODS 

 

1. Experimental datasets 

The gene expression data from the Genotype-Tissue Expression (GTEx) project 

was used (GTEx v7), which is a RNA-sequencing dataset (Illumina TrueSeq RNA-

sequencing) comprising the gene expression signal of 56202 genes (ENSEMBL IDs) and 

11688 samples from 54 conditions (51 tissues and 3 derived cell lines). Expression and 

phenotypical data (www.gtexportal.org/datasets) can be downloaded as TPMs (Section 

1.2, Introduction of Chapter I) from GTEx website portal (Consortium 2013). Additionally, a 

single-cell RNA-sequencing dataset with information of different cell-types of healthy 

human brain (fetal and adult) was used (Darmanis et al. 2015).  

As microarray datasets, an Affymetrix HGU133 Plus2.0 gene expression dataset 

from patients of diffuse large B-cell lymphoma was used. Additionally, another dataset 

compiling transcriptomic data from several brain regions was also used (Kang et al. 2011). 

In both cases, we mapped from Affymetrix probesets into ENSEMBL IDs using BrainArray 

CDFs (Dai et al. 2005). Then, RMA normalization method was applied (Irizarry et al. 2003). 

 

Table 2-M-1. Transcriptomic datasets used to compare different methods for feature selection in Chapter II. 
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2. Methods for feature selection 

Along of this Chapter II, several feature selection methods will be used to compare 

the performance against the proposed cohesiveness statistic. For filter methods, we 

selected several different modifications of ReliefF method (Robnik-Šikonja and Kononenko 

2003), different metric distances like Euclidean, Hellinger, Angle, DKM (Dietterich, Kearns 

and Mansour distance) or AUC distances, or probabilistic measurements like Information 

Gain, Gini’s ratio, Gain Ratio or Accuracy. All these feature selections methods are 

implemented in the CORElearn R package. Apart from these feature selection methods, we 

also evaluated LIMMA (F-test; from limma R package) and Recursive Feature Elimination 

(RFE; caret R package) based on Random Forest.  

All these methods are referenced in Table 2-M-2. 

 

3. Input data 

As hinted above, the high-throughput omic data obtained from clinical or biological 

studies are accompanied by a deep phenotypic characterization of - samples, most of 

them associated with an interesting factor T. In this way, any factor or categorical variable 

T could be composed by T categories (g	 ≥ 2), which can be characterized through 

cohesiveness analysis of biological features. In fact, all samples could belong to one 

category within a T factor, so we will dispose a omic matrix @ associated with - samples 

(rows) and > omic features (columns) plus one -or more- T factor(s), following the next 

notation: 

   @ = E$%
,·(1st)

, 1 ≤ ? ≤ -; 1 ≤ G ≤ > + D  (Eq. 2.1) 

where, given D factors (D ≥ 1), each cell E$% corresponds to the value of ith sample for the jth 

feature (1 ≤ G ≤ >) plus the phenotypic information per T factor (> < G ≤ > + D). 

 

4. Cohesiveness: gap definition and probability function 

Let l = 1,2… -  be the increasing natural rank of - elements, which could belong or 

not to a given { category. The subset of elements from l belonging to this { category 

could be defined as l| = l5
|, l2

| … l}
| , where = ≤ -. Then, the difference or gap between 
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two consecutive elements of l|	is calculated as follows: 

    F$
| = l$s5

| − l$
|, 1 ≤ ? ≤ = − 1  (Eq. 2.2) 

Then, the minimum value of the variable Z| = (F$
|)}P5 will be 1 and the maximum 

value will be - − = + 1. Given an element of l| and a value F$| = F, there are - − = − F  

positions within l in which to place the first element of l| at a distance F from the second 

element and the remaining = − 2 elements could be placed at empty - − F positions (Fig. 

2-M-1B). Considering that the elements are uniformly distributed and unique in the set l, 

the probability function of Z| will be: 

   m Z| = R Z| = F =

,P~

}P5
,

}

  (Eq. 2.3) 

for 1 ≤ F ≤ - − = + 1 and 0 otherwise. The denominator corresponds to the total number of 

combinations of = elements within a - elements finite vector, while the numerator 

corresponds to fix one element of l| and let free the other = − 1 elements within a - − F 

finite vector (Fig. 2-M-1B). Using Wolfram Mathematica software, we checked that m Z|  is 

a probability function because the sum of all probabilities is 1. Additionally, we calculated 

the mean and the variance of this distribution: 

     Y Z| =
,s5

}s5
    (Eq. 2.4) 

 

    IE= Z| =
,s5 · ,P} ·}

(}s5)q·(}s2)
   (Eq. 2.5) 

Extensively, given a feature with l	elements and { categories, we calculated a Z-score �| 

for each { category based on observed mean Z| = 5

}P5
· F$

|}P5
$45 , theoretical mean Y Z|  

and theoretical standard deviation Ä(Z|) to estimate the probability of obtaining a specific 

distribution of gaps F:  

     �| =
_ÅPÇ _Å

É _Å / }
   (Eq. 2.6) 

Due to the classical Central Limit Theorem (CLT) (Billingsley 1995), this Z-score �| 

follows a normal distribution Ö(0,1). Thus, we could use this normal distribution to assign a 

left-tailed p-value for each �|, in order to compare the consistency of all { cohesiveness 
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given feature l (Fig. 2-M-1A). Then, lower p-values indicate that this feature groups closer 

the elements of a category (Z| would be significantly lower than Y Z| ). 

 

Figure 2-M-1. Theoretical representation of cohesiveness statistic and gap probability. (A) Cohesiveness statistic 
is intended to score higher those tight categories for rank positions, independently of other categories of samples. 
(B) Graphical representation of how the probability of a specific gap between two elements of l| is calculated. 

 

5. Cohesiveness: optimal significance threshold for multiple 
categories 

After calculating �| and its corresponding p-value for each { category of a given 

feature, we propose a summarization of these p-values to accordingly rank all biological 

features analyzed. Then, p-values could be summarized using Fisher’s combined 

probability test (Fisher 1925) or Stouffer’s Z-score method (Stouffer and Hovland 1949) 

providing a multiple summarized cohesiveness score aá per biological feature à and, 

posteriorly, calculating a p-value for these summarization methods.  

Adjustment of p-value for multiple comparisons was proposed using False 

Discovery Rate (FDR) (Benjamini and Hochberg 1995) on resulting Fisher’s or Stouffer’s p-

value. 
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6. Cohesiveness: reducing the redundancy of selected biological 
features 

Cohesiveness is intended as a filter feature selection method which does not deal 

with the redundancy of selected features because it does not estimate the relationship or 

similarity among the biological features analyzed. As a simple estimation of redundancy for 

classification purposes, we propose to integrate both cohesiveness measurement and 

Spearman’s Correlation Coefficient (SCC) among biological features for reducing the 

redundancy of highly scored features by cohesiveness. The correlation matrix of SCCs, 

called Má, among all biological features > analyzed would be: 

   Mâ = 	 k$% = bd==(à$, à%)
1·1

  (Eq. 2.7) 

 Given the square matrix Má, we could integrate each biological feature vector (row 

or column) of Má and the vector of summarized cohesiveness aá, by multiplying both 

values, obtaining a corrected cohesiveness. Then, given a biological feature à, we could 

search the complementary biological feature a$
∗ among G elements (G ≠ ?, G ≤ >), which 

would be characterized by minimum value of: 

    aá
∗ = >?-(aG · Má%

â )    (Eq. 2.8) 

Thus, aá∗ resembles the most relevant complementary feature for biological feature 

à, which integrates both negative Spearman’s Correlation Coefficient (SCC) and a high 

summarized cohesiveness score aá. Later, we counted the absolute frequency @á for any 

biological feature à of appearing as the complementary biological feature of another:  

   @á = aá
∗ = à1

á45     (Eq. 2.9) 

Finally, we added aá and @á to calculate a final cohesiveness score aáã	per 

biological feature à intended to be used for classification purposes, which allow ranking of 

all biological features accordingly: 

       aáã = aá + @á     (Eq. 2.10) 
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7. R script 

All calculations required for cohesiveness analysis of a given omic matrix and 

categories of samples are provided as a single and simple R script in Appendix 2. The 

script includes one functions to calculate final cohesiveness statistic (trimmed or complete) 

and p-value per category (�|) of samples per feature. Additionally, it also includes an 

option to compute the summarized cohesiveness score aá according to Fisher’s combined 

probability test or Stouffer’s Z-score method. 

 

Table 2-M-2. Methods for feature selection on omic data used in Chapter II. 
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CHAPTER II 

 

RESULTS 
 

1. Cohesiveness detects stable patterns within variable data 

The cohesiveness statistic is intended to disclose not only differential features 

among multiple phenotypical categories but also stable feature patterns within homo- or 

heterogeneous data. In last ten years, there have been several publications related to 

differential stability or differential stable expression (Hawrylycz et al. 2015), also referred as 

reproducible gene expression patterns (Huang et al. 2016), relating them to housekeeping 

functions or preserved and important functions within a specific biological context (Shaw et 

al. 2011), such as tissues or cell types. These approaches were intended to determine 

which genes exhibit a reproducible and stable behaviour among the analysed categories.  

Figure 2-R-1. Example of discovery of stable patterns within very variable signal using cohesiveness statistic (�|, 
showed at top of each category and plot. Red values refer to significant ones). (A) Non-overlap signal among 
categories, providing a perfect differential scenario (TP). (B) Overlapping (100% of size of D; n = 40) among A-D 
categories, while E remains non-overlapping. (C) Cohesiveness statistics remain high even for E category if the 
full overlapping signal (100% of size of D; n = 40) is present. 
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Interestingly, our statistic (�|, eq. 2.6) could be used in the same way, identifying 

stable patterns across categories within any feature. Figure 2-R-1 shows several examples 

of stable pattern detection conducted using cohesiveness statistic on three artificial feature 

profiles. We demonstrated how cohesiveness is able to find both differential (Fig. 2-R-1A) 

and stable feature patterns within variable or random data (Fig. 2-R-1B and C). These 

stable feature patterns may be no interesting for classification purposes based on mean, 

median or population’s statistics, but they may point to non-deregulated signal in particular 

conditions or biological scenarios (Prieto et al. 2006). 

Figure 2-R-2. Stable feature detection by filter methods, F-test (LIMMA) and cohesiveness statistic (aá). Each 
method’s differential scores ranged between 0 and 1, corresponding 1 to maximum score (positive feature) and 0 
to random scores. Differential �| scores from random of this category of interest (category D) were also 
normalized between 0 and 1. Segments over points represent standard deviation of data. 

 

Figure 2-R-2 displays the performance of all different filter methods evaluated 

(included in caret R package) and F-test (LIMMA) against the stable artificial feature (Fig. 

2-R-1A and B). This artificial dataset is based on features shown in Figure 2-R-1, 

containing a positive artificial feature with a differential pattern for all four categories of 

samples (panel A), a stable artificial feature for one out of four categories of samples (E 

positive; A, B, C and D negative; n = 200 samples; panel B to C), and 100 random features 

for all the categories (n = 200 samples). Additionally, we were iteratively including samples 

from A-D categories within the range of values of E category (x axis of Fig. 2-R-2). Then, 

we applied all filter methods and F-test to these 102 artificial features and calculated all 

scores for positive, random and stable features. Original scores from caret R package 
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(which includes all these methods) were normalized between 0 and 1 values (1 for positive 

and 0 for random features), then we proceeded in the same way with the cohesiveness 

statistic (aá) for a proper comparison.  

As we can observe in Figure 2-R-2, there was a great difference among the 

performance of any of these methods and the cohesiveness statistic proposed for 

disclosing a stable pattern. Here, any value close to 1 for the stable feature would indicate 

that it has been similarly scored to a positive feature (differential feature for all categories), 

which was used to set up the maximum method’s score. Thus, we can observe how 

cohesiveness score for the stable feature and category E reaches values close to 1, 

indicating that it has been identified as a positive feature, while other methods score this 

stable feature pattern lower than the differential positive pattern. All method’s scores 

decrease, as expected, when the number of samples disrupting this stable pattern 

increases (from 4 samples to 40 samples, similar size to our category of interest E).  

 

2. Cohesiveness as feature selection method for multiple 
classification of categories 

Once we detailed how cohesiveness statistic is able to interpret any single feature, 

we may define it as a one VS all differential method. Because great absolute values of 

cohesiveness would discover patterns where any or a few samples belonging to other 

categories are present within, this statistic should be understood as a tool for discovering 

patterns where a category is significantly different from all others. Thus, we would assume 

our category is significantly placed alone in a specific range of values (i.e. omic data). 

Similarly to Hawrylycz et al. paper (Hawrylycz et al. 2015), we also aimed to 

determine which genes show a stable expression among 16 brain regions studied by Kang 

et al. (Kang et al. 2011), as application on a large experimental dataset. These regions 

were properly analysed by authors, collecting 599 different samples from adult individuals, 

and grouping these samples into 6 major regions (AMY: amygdala [n=35], CBC: cerebellar 

cortex [n=34], HYP: hippocampus [n=35], MD: mediodorsal nucleus of thalamus [n=33], 

NCX: neocortex [n=429], STR: stratum [n=33]). First, we filter 39300 genes into the 10112 

most variable genes (IQR filter) and we applied all feature selection methods (Table 2-M-2) 

to select features associated with 6 major regions. GlobalTest was used as outcome test to 



 

 
98 

assess the classification’s rate of each signature, as used in Chapter I. 

Figure 2-R-3. Classification’s rate of all different methods compared, including cohesiveness, on Kang’s dataset 
of 6 human brain regions. (A) Plot showing the classification’s rate (percentage of well-assigned samples) of each 
method at different number of features, using GlobalTest as outcome test to assess the ability of selected features 
to classify samples. Grey-like colours correspond to methods for flat features, blue to F-test from LIMMA, pink to 
RFE (Random Forest) and orange-red scale to cohesiveness alternatives. (B) Heatmaps showing the percentage 
of intersect among gene signatures selected by each method, at different size of signatures. 
 

Figure 2-R-3 displays the performance of different methods for feature selection on 

6 major regions of Kang’s dataset. Since each method evaluated and ranked all features 

according to their ability to discriminate among these brain regions, we cut these gene 

signatures at different sizes to properly compare all them using GlobalTest (threshold for 

well-assigned samples: p-value £ 0.001). We expected that Random Forest (RFE) was one 

of the best methods along different size of signatures, because it takes into account the 

existing relationships among features (wrapper method) while others do not. RFE 

outperforms all methods with its top-5 selected features except cohesiveness statistic 

(trimmed = 1%), which classifies 12 more samples than RFE (Fig. 2-R-3A). Surprisingly, 

top-5 from F-test (LIMMA) shows one of the poorest performances. All other methods for 

flat features shows a similar range of classification along different sizes of signatures (90-

95% of samples), while GainRatio was the worst feature selection method on Kang’s 
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dataset (80-85%).  

Once the classification’s rates from this large dataset are analysed, we firstly 

wondered how different are gene signatures among all methods used. Figure 2-R-3B tries 

to compile this information, showing the percentage of pairwise intersect among gene 

signatures of each method in several heatmaps (one per number of features). Main 

clusters of intersect correspond to Hellinger, AUC, Euclidean and Angle distances 

methods, while top-right corner correspond to different cohesiveness versions.  

Figure 2-R-4. Classification’s rate of different methods for Brain-2 dataset -9 brain cell types- (A) and DLBCL -3 
different subtypes of pathology- dataset (B).  

 

Additionally, we tested all these methods for feature selection on two more large 

transcriptomic datasets in order to compare the classification’s rates (threshold for well-

assigned samples: p-value £ 0.001). We used a large dataset from different human brain 

cell types (astrocytes [n=62], endothelial [n=20], fetal quiescent [n=110], fetal replicating 

[n=25], hybrid [n=46], microglia [n=16], neurons [n=131], oligodendrocytes [n=38] and OPC 
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[n=18]), obtained by single-cell RNA sequencing (Darmanis et al. 2015), a RNA-seq variant 

which allows to sequence all RNA present in a unique cell. Since the single-cell RNA-

sequencing technique is very precise, this data is commonly characterized by a notably 

presence of no reads, making more difficult the statistical approach to differential analyses. 

Figure 2-R-4A shows the classification’s rates for this dataset (Brain-2 dataset, Table 2-M-

1) based on GlobalTest results and 9 different categories of samples (brain cell types). 

LIMMA shows the lowest performance, while trimmed version of cohesiveness statistic and 

RFE are almost overlapping at all different sizes of signatures tested. In fact, both showed 

the greatest performances at greater sizes of signatures (75 and 100 features). 

Figure 2-R-5. Heatmaps showing Spearman correlation coefficients (SCC) among different feature rankings 
obtained by each method (Table 2-M-2) per dataset (Table 2-M-1). (A) Brain-1 dataset (Kang et al. 2011). (B) 
Brain-2 dataset (Darmanis et al. 2015). (C) DLBCL dataset (Lenz et al. 2008).  

 

Alternatively, we also tested these methods in a large dataset of Diffuse Large B-

Cell Lymphoma (DLBCL dataset, Table 2-M-1) with only 3 subtypes or categories of 

samples along 414 different patients (Lenz et al. 2008). As we can observe in Figure 2-R-

4B, original cohesiveness statistic (without trimmed) performs worse than other methods, 

what we assumed that may be due to large size of categories (only 3 categories). The 

probability of finding a lower gap for large categories of samples is greater than for smaller 

categories, due to the degree of freedom of each case. However, trimmed version of 

cohesiveness (1% trimmed) outperforms RFE and LIMMA, supporting our previous idea 

that trimmed version and/or the additional Spearman’s correlation attribute @á could 

enhance the feature selection at some scenarios, where there are categories with large 
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number of samples (Brain-1 dataset if 6 major brain regions or DLBCL dataset). 

An easy way to compare the similarity among different methods compared (Table 

2-M-2) could be calculate the pairwise Spearman’s Correlation Coefficient of feature’s 

rankings obtained. We have already observed how feature’s signatures are related at top 

levels (Fig. 2-R-3B), while we can now compare the global rankings produced by each 

method in each dataset analysed (Table 2-M-1), displayed as heatmap in Figure 2-R-5. 

The four cohesiveness versions are very related each other in all datasets and, posteriorly, 

closely related to probabilistic and distance methods, like Gini, InfGain or DistHellinger. 

 

3. Cohesiveness finds tissue-specific genes: differential and stable 
patterns 

Genotype-Tissue Expression (GTEx) consortium tries to compile, in a single 

dataset, the gene expression data from multiple different human tissues using RNA-

sequencing technology (Consortium 2013). Nowadays, this huge resource embraces 30 

different major tissues and 54 more specific subtypes of human tissues, amounting 11688 

different samples. It was intended to help in the identification of tissue-specific gene 

expression levels and, consequently, their relationship with different biological functions. 

One of the major issues approached first by authors using GTEx was defining a threshold 

to identify tissue-specific genes. In this way, Sonawane and colleagues (Sonawane et al. 

2017) proposed to calculate a score for tissue-enriched genes (ká) based on standardized 

values from median expression of each tissue and all samples:  

  ká,å$]]0ç =
1ç~(çé&}])è,ê'ëëíìP1ç~(çé&}])è,îïï

6ñLè,îïï
   (Eq. 2.11) 

Then, they put a threshold of ká,å$]]0ç > 2 for defining any gene as tissue-enriched 

for a particular tissue. Sonawane’s score assumes that a tissue-enriched gene should 

show higher expression values than for all other tissues, but it obviates whether the gene is 

also expressed in other tissues. Instead, other authors calculated the number of tissue-

enriched genes based on the number of tissues showing a higher gene expression level 

than a minimum threshold (i.e. mean(FPKM) > 1) (Uhlen et al. 2015). Thus, they assumed 

that a hypothetical tissue-enriched gene would not show any expression signal in other 

tissues. As demonstrated above, cohesiveness would highlight both stable and/or 
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differential features when multiple categories of samples are known. It could be applied as 

measurement to define tissue-specific or enriched genes, just considering each �| 

calculated per feature.  

Figure 2-R-6. Expression profile of AURKAIP1 gene per tissue of GTEx dataset. (A) Boxplot per tissue using 
log2(TPM + 1) as unit of gene expression signal. (B) Positions in ranking (non-parametric) of testis’ samples in 
red, showing how little deviation in parametric scale (A) may result in large gaps (B). 

 

Since cohesiveness statistic is measuring the mean of all gaps (Eq. 2.4) between 

elements belonging to the same category, it is sensible to large datasets where - is very 

high and = is very low. Here, the cohesiveness statistic may be biased by outlier points 

amounting a great gap from previous sample. For this reason, we also considered trimmed 

means, replacing Y Z|  by Yå}$1 Z|   to remove those outliers in posterior calculations, 

including theoretical mean and variance.  

Figure 2-R-6A shows an example of tissue-enriched profile (AURKAIP1 gene) for 

testis affected by a little group of samples, where original cohesiveness statistic assigned 

as a slightly significant feature with p-value = 0.0438 (�| = −1.663) while trimmed 

cohesiveness statistic (trimming 1%, two-tailed) scores it as a very significant tissue-

enriched feature with p-value = 8.13·10-16 (�| = −7.966). In fact, we represented in Figure 

2-R-6B how samples belonging to testis tissue are distributed by AURKAIP1 gene, 

showing how a minor portion of gaps have huge values due to the dispersion of several 

samples and the low dispersion of global expression profile of AURKAIP1. 
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AURKAIP1 was also correctly identified by Sonawane’s score (Sonawane et al. 

2017), but there are relevant cases where this score fails because the dispersion of the 

data and the range of values (close to zero). Interestingly, we demonstrated above how 

cohesiveness is able to find stable patterns within notably variable omic profiles where 

other methods fail (Fig. 2-R-1 and 2). A tissue-enriched gene may be considered not only 

as a very expressed gene in a particular tissue respect to others, but also as a constantly 

expressed gene (low or high) in a tissue while is variable and low expressed. For example, 

all genes located at sexual chromosomes are candidates to follow this kind of patterns. 

GTEx includes several male and female tissues, where those genes are intended to be 

expressed homogeneously but not necessarily at very high expression.  

Figure 2-R-7. Tissue-enriched genes within very variable expression profiles. These three examples correspond 
to genes located at chromosome Y (PRKY, USP9Y, RPS4Y1), enriched in human male tissues like testis and 
prostate. 

Particularly, we looked for stable tissue-enriched genes for male tissues located at 

chromosome Y or for female tissues located at chromosome X, which range of values are 
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overlapping other tissues and low, but non-zero. In the literature, several RNA molecules 

have been reported of causing a phenotypical difference even if only a single copy is 

detected within the cell (Seiler et al. 2017). Using cohesiveness statistic, we were able to 

find those patterns, where other methods failed. Figure 2-R-7 shows three examples of 

genes located at chromosome Y and showed a very stable expression pattern in testis and 

prostate tissues, while very variable expression level is present at other human tissues. 
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DISCUSSION AND FUTURE WORK 
 

 Along this Chapter II, we explained and tested a new statistic as a method for 

feature selection in omic (or not) omic data. This statistic was intended as a simple and 

non-parametric measurement of the cohesiveness of categorical variables along a 

quantitative variable, called cohesiveness statistic. It could be categorized as a filter 

method for flat features (univariate, no evaluate a set features), since it does not 

contemplate the relationship among analysed features to score these features.   

 Cohesiveness statistic is based on the probability of finding a specific gap or 

distance among two elements within an ordered quantitative variable. One of the 

disadvantages of considering rankings instead original values is related to ties. Originally, 

cohesiveness integrates a random method to differentiate these values, but it may entail 

errors if the percentage of ties is high, because the feature would be considered as a 

random or negative feature. For that reason, further investigations about how we can 

approach this issue are required, for example, using a greater trimmed mean, reordering a 

subset of ties, removing all ties or labelling all those features with a high number of ties as 

non-discriminant. 

 However, the advantages of using rankings or non-parametric measures 

instead parametric values are greater than disadvantages: 

• Cohesiveness could be applied indistinctly to any omic technology or dataset, it is 

not a platform-dependent method. 

• Cohesiveness is not assuming any value distribution of omic data like classic 

methods for differential analysis (Section 1.3 of Introduction, Chapter I). 

• Cohesiveness is not based on mean or median differences to perform a differential 

analysis, a minimum gap (Z| = 1) directly implies there is no other sample in this 

range of values. 

• Cohesiveness is able to find stable patterns where there is no overlap among 

categories and sample median or mean may be similar. 

 As detailed in the Results section, we demonstrated how cohesiveness is able to 
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perform a differential analysis following a multiclass contrast design (Fig. 2-R-3 and 4), 

classifying the samples in similar success rates to more sophisticated methods, even 

similar to methods with high computational cost like Random Forest (RFE).  

Particularly, we can focus on the results for the classification of samples in order to 

a better interpretation of how datasets are composed and which methods agree in their 

selection. The similarity of top and global signatures among all methods, as observed in 

Figure 2-R-3B and Figure 2-R-5, remarks a similar agreement with probabilistic and 

distance-related methods but a high specificity at top signatures, at least for Brain-1 

dataset (Table 2-M-1). The partial agreement among other methods in terms of chosen 

signatures may reveal that the 6 major regions of Kang’s dataset are mostly classifiable by 

several redundant genes. This result is supported by the fact that classification’s rates 

slightly varies from lower to higher number of features (Fig. 2-R-3A). Alternatively, the 

classification’s rates for Brain-2 and DLBCL improves from lower to higher number of top-

features, revealing a less redundant scenario where more features are required to enhance 

the classification of several samples. 

The methods to find tissue-enriched or condition-enriched are very common in the 

analysis of comprehensive omic datasets, where several tissues or cell types were 

included. Since the GTEx consortium produced the largest transcriptomic dataset of human 

tissues, we wanted to test the ability of cohesiveness to deal with a very large omic dataset 

(56202 features and 11688 samples) for two reasons: computational cost and large gap 

distributions. Cohesiveness is very fast in comparison with other precise feature selection 

methods like Random Forest (RFE, aprox. 400x slower) or ReliefF-derived algorithms and 

it is able to perform a complete analysis of GTEx (54 categories in 56202 features) in 

approx. 50 minutes. Additionally, the proposed trimmed version of cohesiveness (trim = 

1%, by default) allows to improve its performance when the number of total samples is 

much greater than the number of samples of a category (Fig. 2-R-6B). 

We can conclude that cohesiveness statistics represents a notably advance 

respect to current methods in two main issues: (i) it is a non-parametric approach, 

applicable to any omic data set without considering value distribution; (ii) and it is able to 

discover not only differential features associated with each category of samples, but also 

stable patterns, associated with a specific category of samples, within very variable 

features.  
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Integration of human  
protein-protein interaction networks and 

subcellular localization maps 

 

 

 

BRIEF SUMMARY 

 In this Chapter III, we will develop and explore a new analytical framework for the 

integration of protein-protein interactomes and subcellular localization data of proteins. 

Classically, we may think the first requirement for a correct physical interaction should be 

the co-localization of these proteins in the same space. Nowadays, there is a lack of 

meeting between human interactome and subcellular localization data, which could be 

supporting our idea that transient protein-protein interactions and shuttling proteins would 

be inferred through the integration of both sources of data. Chapter III is based on HuRI 

(Human Reference Interactome) and Cell Atlas (Human Protein Atlas project) resources to 

gain insights into subcellular co-localization of interacting proteins. 

 All data, analyses and results provided along this Chapter III were produced in 

collaboration with Marc Vidal PhD’s Laboratory at Center for Cancer Systems Biology 

(Dana-Farber Cancer Institute, Harvard Medical School. Boston, United States), during a 

short-term stay of three months in 2017 for collaborating in the last version of HuRI 

(Human Reference Interactome) project. 
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CHAPTER III 

 

INTRODUCTION 
 

Systems biology summarises our basic intuition about how proteins, genes, 

enzymes and every molecular compound interact with each other within a cell. Regarding 

the same genotype of all the cells composing an organism, systems biology tries to 

understand how different behaviours can be achieved with the same background but 

different environments. In this way, the evolution of molecular biology along the past 

century allows us to compile enough information to establish relationships, inferring new 

biological processes or properties (Vidal 2009). Understanding systems biology as a 

discipline to produce, integrate and analyse data of possible interactions within a cell, we 

may use different technologies to obtain data related to genomics, transcriptomics, 

metabolomics, epigenomics, interactomics, proteomics, etc. Consequently, our ability of 

analyse this massive or big data is conditioned by the proper advances in each technology 

platform and computational methods (Altaf-Ul-Amin et al. 2014). Developing new and 

advanced methods for the analysis, interpretation, and integration of several platforms has 

become one of the most complex challenges, even leading to the multi-omics era 

(Bersanelli et al. 2016, Huang et al. 2017).  

As hinted along Chapter I, precision or personalized medicine is one of the most 

promising, controversial and complex challenges in biomedicine. It is based on systems 

biology in order to diagnosis and prognosticate patients, selecting the most relevant 

biomarkers to discriminate specific pathological subtypes from each other. Similar to other 

scientific fields, the progress of personalized medicine and systems biology is closely 

associated with cancer research because of the magnitude of related publications and 

research groups involved. This process would generate predictions of biomarkers from 

modelling, which should be confirmed by experimental evaluation (Werner et al. 2014). 

Vice versa, advances in systems biology could be directly applied on cancer research or 

personalized medicine (Sevimoglu and Arga 2014).  

Considering that systems biology is dramatically advancing our mechanistic 

understanding in cancer research, the protein-protein interaction networks allow wider 
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interpretation of how each protein function depends on other protein activities within the 

global cell context under a specific functional organization (Barabasi and Oltvai 2004). 

Protein-protein interaction is defined as a real and physical interaction among proteins 

though electrostatic forces, which need to be confirmed by experimental techniques. This 

molecular interaction occurs in a specific biomolecular context of a given cell or organism 

(De Las Rivas and Fontanillo 2010).  

Protein-protein interactions (PPI) have been approaches from very different fields 

like biochemistry, molecular dynamics or signal transduction. The compendium of whole 

protein-protein interactions occurring within a cell is usually called protein interactome, a 

very useful resource for signal cascades’ research and discovery of therapeutic candidates 

in the pharmaceutical industry (Sevimoglu and Arga 2014). These networks have been 

broadly used to describe molecular background of a wide variety of disease and to 

determine common pathways to similar pathologies (Barabasi et al. 2011, Menche et al. 

2015).  

 

1. Technologies to infer protein-protein interactions 

Nowadays there are a wide variety of techniques which pursue the identification of 

protein-protein interactions, several of them resembling slight modifications of an original 

technique. The chemical and physical characteristics of any of these techniques strongly 

condition the nature of each protein-protein interaction and, consequently, the confidence 

behind the experimental validation. While several techniques are based on biophysical 

methods (electron scattering, biosensor, luminescence, x-ray crystallography, etc.), other 

methods are based on biochemical properties, imaging technologies, genetic inference or 

protein complementation, for example (Berggard et al. 2007). Interestingly, the Ontology 

Lookup Service (OLS) from EMBL-EBI provides a useful categorization of these 

techniques (MI: molecular interactions) compiled in a huge ontology of MI methods 

(https://www.ebi.ac.uk/ols/ontologies/mi), offering controlled vocabularies to describe 

different aspects which need to be considered (Jupp et al. 2015).  

The main classification of technologies for detection of PPIs is based on 

experimental characteristics: in vitro, in vivo or in silico. Any of these categories shows a 

wide variety of approaches within them, providing very distant methods for detecting and, 
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posteriorly, validating any protein-protein interaction (Rao et al. 2014). Within all them, it is 

important to highlight mass spectrometry derived methods, modifications of yeast-two-

hybrid technique or phage display as widely used high-throughput technologies. Although 

high false positive rates and noise have been reported from these techniques, they are still 

considered unbiased techniques which provides a meaningful read of PPIs within a cell. 

Indeed, several ongoing projects pursue the construction of high-quality human (and other 

organisms) protein interactomes, using high-throughput techniques, like HuRI, BioPlex, 

QUBIC or CoFrac (Rolland et al. 2014, Hein et al. 2015, C Wan et al. 2015, Huttlin et al. 

2017). 

We can also distinguish the experimental methods for detecting protein-protein 

interactions into two categories: (i) binary, which would be any method able to specifically 

detect interactions between two proteins only; and (ii) co-complex, which would be any 

technology with the ability to measure direct or indirect interactions among two or more 

proteins (complexes) (Yu et al. 2008). Thus, the main criticism on co-complex methods 

resides in their inability to distinguish between physical or indirect interactions between two 

proteins, leading to the development of computational approaches (spoke or matrix 

models) to infer real interactions within a complex (Hakes et al. 2007). Among the binary 

methods, the most used technology is Yeast Two Hybrid (Y2H), which is based on the bait-

prey (physical interaction) principle to promote the expression of a reporter gene. Mass 

spectrometry, affinity purification and co-immunoprecipitation are the most relevant co-

complex methods.  

We also may discriminate between permanent and transient protein-protein 

interactions within a specific biological context using any of these technologies (La et al. 

2013). For example, macromolecular complexes are composed of several proteins which 

physically interact each other through permanent interactions, while most of cellular 

processes, such as signalling pathways, phosphorylation, ubiquitination or gene repression 

involve transient protein-protein interactions. Consequently, since transient interactions are 

weaker depending on cellular context (spatial and temporal conditions) (Fig. 3-R-1), they 

are more difficult to detect using high-throughput or even more specific low-throughput 

technologies. 

During the last decades, much specific and diverse efforts (low and high-

throughput experiments) have been carried out to detect both transient and permanent 
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PPIs, single or multiple. Thus, several databases, often called primary databases, were 

developed to compile and integrate all this information in unique frameworks to facilitate 

new analyses and validations. These primary databases, for example HPRD, DIP, BioGrid, 

BIND, IntAct or MINT (Xenarios et al. 2000, Bader et al. 2001, Zanzoni et al. 2002, 

Hermjakob et al. 2004, Stark et al. 2006, Keshava Prasad et al. 2009), display and curate 

all reported PPIs directly from the literature. Unfortunately, it was well-demonstrated that 

the overlap among them are relative small. For this reason, other recent efforts such as 

APID (Agile Protein Interaction Data Analyzer), developed in our laboratory, try to integrate 

all these primary databases, as a second effort to produce full protein-protein interactomes 

involving every reported PPI (Prieto and De Las Rivas 2006, Alonso-Lopez et al. 2016). 

Figure 3-R-1. Transient and permanent protein-protein interactions. Transient interactions are weaker (B) and 
depend on temporal and spatial cellular patterns (A). 
 

2. Protein interactomes 

Cells could be represented as complex networks of molecular interactions, 

providing a meaningful relational space to analyse, validate and infer specific functions 

(Vidal et al. 2011). Given that the protein is the main functional molecule of any organism, a 

protein interactome is composed of all reported protein-protein interactions from a specific 

biological context, cellular type, tissue or organism. Within these networks, nodes are 

represented by proteins while edges are non-directed because the directionality of these 

interactions cannot be defined. Importantly, datasets generated through binary methods, 

like Y2H, would contain interactions between two proteins, while co-complex methods 

would bring a mix between direct and indirect associations. Not only these two types of 

networks differ in terms of global properties, but also may reflect different relationships 



 

 
113 

CHAPTER III 

among proteins given the same cellular context (Seebacher and Gavin 2011).  

Systems biology has been an emerging field for last decades, when graph theory 

was slowly introduced as theoretical framework to analyse and scale reported molecular 

interactions behind a particular cellular behaviour (Vidal 2009). Different aspects of 

topological analyses of large protein interactomes have been very discussed in the 

literature, where specialists in the field proposed multiple new concepts and ideas. For 

example, local perturbations within a biological network have been linked to several 

pathologies (Menche et al. 2015), variants of cancer (Yi et al. 2017), protein targets (Noh et 

al. 2018) or particular phenotypes (Peng et al. 2018). Local perturbations may be 

understood as a gene deletion, specific mutation, protein inhibition or any action which 

produces an alteration in the functionality in one or a group of nodes (i.e. proteins, mRNA, 

metabolites, etc) within a network (Fig 3-I-2). Specially, DNA variants were frequently 

associated (Sewell and Fuxman Bass 2017).  

Figure 3-R-2. Network perturbations have been widely associated with different diseases. Figures adapted (Vidal 
2009, Sewell and Fuxman Bass 2017). 

 

Alternatively, there is an increasing tendency of integrating networks from different 

omic sources (i.e. transcriptomics, metabolomics and proteomics), called multi-omics, to 

enhance the ability of systems biology approaches to define particular states underlying 

any cellular state (List et al. 2016, Dimitrakopoulos et al. 2018). As such, an incomplete 

biological network would be fulfilled by other omic approaches, if this integration is properly 

conducted, considering both data properties and prior knowledge. 



 

 
114 

3. Integrative analyses of subcellular localization and protein-protein 
interaction datasets 

Protein-protein interactomes have been broadly used for predicting subcellular 

localization (Shin et al. 2009) based on following principle: any physical molecular 

interaction really requires both molecules to be located at the same cellular space.  

Nowadays, subcellular localization information could be classified as experimental 

(based on antibody imaging) or computational (based on computational prediction from 

similar located proteins). Although experimental datasets were intended to be systematic 

and unbiased, a slight nucleus bias was reported for Cell Atlas dataset by authors (Thul et 

al. 2017). On the other hand, since Y2H methodologies have been largely developed and 

improved during last decades, protein-protein interactomes derived from this technique 

may be considered as reliable enough, systematic and unbiased biological networks. Y2H 

provides a clearer interpretation of the interactome because it is a binary method. Thus, 

combining experimental and systematic approaches from both platforms may be a more 

unbiased approach for enhancing the prediction of unallocated proteins. 

Several approaches related to the proposed integrative framework for human 

interactomes have been recently published. A simple search in PubMed of “protein 

localization prediction” returns almost 90 different methods proposed since the early 

2000’s. Several of these proposals are focused on experimental approaches and data 

(Shen and Burger 2010, Bogachev et al. 2016, Liu and Hu 2016) or annotation databases 

(Chi and Nam 2012). For example, ComPPI resembles a database of protein-protein 

interactions compartmentalized in very specific subcellular localizations (about 1600 

different compartments) for a variety of living organisms (Veres et al. 2015). Alternatively, a 

wide variety of computational methods based on network analysis (Mooney et al. 2011, Xu 

et al. 2013), machine learning (like Supper Vector Machines – SVMs) (Rahman et al. 2016, 

Almagro Armenteros et al. 2017, Hasan et al. 2017), logistic regression models (S Wan et 

al. 2015) or entropy measures (Zhao et al. 2015) were also proposed.  

In summary, our proposal aims the integration of protein interactomes with 

subcellular localization data as it would help to predict transient protein-protein interactions 

(spatial and temporal conditioned), which may remain undetectable for antibody detection. 
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CHAPTER III 

 

MATERIAL AND METHODS 
 

1. Molecular interactions methods (PSI-MI) and ontologies 

Throughout this Chapter III, all PSI-MI terms and controlled vocabulary for 

molecular interactions methods were based on Ontology Lookup Service (OLS) from 

EMBL-EBI website (https://www.ebi.ac.uk/ols/ontologies/mi). Due to our experience with 

literature-based interactomes (Prieto and De Las Rivas 2006, Alonso-Lopez et al. 2016), a 

manual curation of PSI-MI methods was conducted to generate a robust literature-based 

human interactome in agreement with Marc Vidal’s laboratory at the Center for Cancer 

Systems Biology (Dana-Farber Cancer Institute, Harvard Medical School. Boston, USA). 

This new categorisation will be used to produce one of the human interactomes here 

analysed (LitBM-17) and future analyses for APID interactomes. A table with all PSI-MI 

methods and categorisation into binary, indirect or invalid, is provided in Appendix 3. 

 

2. Human interactome datasets 

All human interactome datasets used for the comparison, analysis or integration 

with Cell Atlas along the Chapter III of this dissertation are described below: 

- HI-III: human interactome produced as a result of the third mapping of Human 

Reference Interactome (HuRI) project to provide high-quality maps of protein-protein 

interactions systematically obtained by Yeast Two-Hybrid experiments (Rual et al. 

2005, Rolland et al. 2014), covering around 77% of human genome search space. 

All proteins have been successfully mapped to ENSEMBL IDs provided by 

GENCODE database. It is composed of 8189 proteins and 49839 interactions. This 

last version (HI-III) is currently unpublished, but all dataset is public and available for 

downloading (http://interactome.baderlab.org/).  

- BioPlex: human interactome produced using affinity purification-mass spectrometry 

methodology. This approach is intended as a co-complex approach to find 



 

 
118 

interactions or associations occurring in macromolecular protein complexes. It 

covers more than 25% of protein-coding genes from the human genome, resembling 

a large protein-protein interaction network composed of 10571 proteins and 53074 

interactions (Huttlin et al. 2017). 

- QUBIC: human interactome produced using the quantitative BAC-GFP interactomics 

technique, called QUBIC (Hubner et al. 2010). This interactome could be also 

considered as a co-complex approach to detect protein co-complexes. It is 

composed of 5516 proteins and 29574 interactions (Hein et al. 2015). 

- CoFrac: human interactome obtained by co-fraction methods, embedded into co-

complex approaches to disclose macromolecular complexes. It is composed of 3429 

proteins and 16487 interactions (C Wan et al. 2015). 

- LitBM-17: literature-based interactome created from mentha resource, after 

improving the classification of PSI-MI terms referred in Section 1 of Material and 

Methods. It was specifically created for the next publication involving HI-III 

interactome at CCSB Systems biology laboratory of Marc Vidal, PhD. The mentha 

resource involves five different primary databases of protein-protein interactions: 

MINT, IntAct, DIP, BioGRID and MatrixDB. First, data were filtered to have valid 

identifiers (ENSEMBL IDs from GENCODE, Pubmed IDs and PSI-MI terms). A 

single evidence (PPI) consisted of a Pubmed ID and interaction detection method 

(MI) included in the PSI-MI controlled vocabulary, while duplicated entries from 

different databases were merged. LitBM-17 only considered PPIs supported by more 

than two publications or PSI-MI methods classified as binary after removing all 

records included in human experimental interactomes described above. It is 

composed of 6047 proteins and 13441 interactions. A similar approach to produce a 

literature-based interactome was done for the previous version of HuRI (HI-II) 

(Rolland et al. 2014). 

 

3. Subcellular localization data: Cell Atlas from Human Protein Atlas 
project 

The subcellular localization data used is a part of Human Protein Atlas project 

(initiated in 2003), which resembles a comprehensive effort for elucidating the whole map 
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of human proteins along cells, tissues and organs. The researchers used antibody-based 

imaging for this particular subcellular map of protein localization, called Cell Atlas (Thul et 

al. 2017), while other omic technologies like mass spectrometry, systems biology or 

transcriptomics were used for other purposes (Uhlen et al. 2015, Uhlen et al. 2017). 

The subcellular protein map compiled by Cell Atlas is composed of 12003 proteins 

(mapped to ENSEMBL IDs) located at 32 different subcellular localizations, manually 

grouped by similarity into subcellular meta-compartments (Fig. 3-R-4B). Additionally, there 

are four levels of reliability in Cell Atlas: Validated, Supported, Approved and Uncertain. 

Any protein annotated only as Uncertain to one or more subcellular localizations was not 

considered for the analysis and integration.  

The whole dataset can be downloaded from the Human Protein Atlas website as a 

text file (https://www.proteinatlas.org/about/download). 

 

4. Statistical analyses 

The Fisher’s exact test was used as enrichment tool to determine if significant 

overlaps are present when 2x2 contingency tables have to be assessed, also represented 

as Venn’s diagrams. Odds ratios are provided in log scale and p-values associated will be 

corrected using False Discovery Rate (Benjamini and Hochberg 1995), if it is necessary. 

Additionally, Z-score transformation (Eq. 3.1) after network randomization will be 

used to determine whether a real or experimental statistic is significantly different to 

random distribution, using the same data.  

    � =
éPúùûü†°¢

Éùûü†°¢
    (Eq. 3.1) 

where l corresponds to experimental/real observation, ^}£,~§1 corresponds to the 

average of random observations and Ä}£,~§1 corresponds to standard deviation of random 

observations. Empirical p-values from normal distribution will be calculated (right or two-

tailed) and False Discovery Rate applied if required (Benjamini and Hochberg 1995). 

Regarding correlation analyses, the Spearman Correlation Coefficient (SCC) was 

calculated when non-parametric analysis of relationships was needed, while the Pearson 

Correlation Coefficient (PCC) was used in parametric relationships. The Weighted Pearson 

Correlation Coefficient (WPCC) was also calculated for particular scenarios where weights 
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are relevant to properly understand the results. The significance (p-values) for all these 

correlation metrics were calculated approaching correlation metrics to Student’s t-

distribution (degrees of freedom: n – 2), using the native R package called stats. 

 

5. Network randomization 

The network randomisation of HI-III interactome (undirected network) was 

conducted using BiRewire R package (Iorio et al. 2016). This procedure was iteratively run 

to generate 1000 random degree-preserved networks, which were used as basis to 

produce null distributions of different statistics of HI-III interactome. 

 

6. Network analysis, integration and visualization 

All statistical analyses, integration and visualisation of human interactomes and 

Cell Atlas were conducted in R environment. Several R packages like igraph, reshape2 or 

ggplot2 were specifically used for the visualisation and management of human 

interactomes in R. Cytoscape software was also used to represent biological subnetworks 

(Shannon et al. 2003). 
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RESULTS AND DISCUSSION 
 

Here we will present the current results and analyses obtained from this ongoing 

collaboration with Marc’s Vidal laboratory from CCSB (Dana-Farber Cancer Institute). For 

this reason, we unified all results and corresponding discussion of this Cell Atlas and HI-III 

integration, for a better understanding of currently done work and main gaps to be fulfilled. 

Moreover, we briefly discuss about the agreement reached for the manual 

categorization/curation of PSI-MI methods before the creation of a reliable human 

literature-based interactome (LitBM-17) to compare against HI-III from HuRI (Human 

Reference Interactome) project. 

 

1. Categorization of PSI-MI terms to produce a reliable literature-
based interactome 

Although systematic protein-protein interactomes could be produced through 

several methodologies, we would like to focus on one of the most common and well-

understood techniques to infer physical protein-protein interactions: experimental assays 

like the Yeast Two-Hybrid method (Y2H) (Fields and Song 1989, Bruckner et al. 2009), 

which is unbiased to the current knowledge and reports physical interaction between two 

proteins (no macromolecular complexes).  

Our lab has been interested, during the last decade, in developing reliable protein-

protein interaction interactomes for different organisms based on available literature 

information. In this way, our last published version of APID (Alonso-Lopez et al. 2016) 

summarizes and curates information from other databases exclusively related to proven 

protein-protein physical interaction single experiments, providing a simple and complete 

database including different confidence intervals based on previous knowledge. Previous 

studies about APID and literature interactomes led us to collaborate with the ongoing HuRI 

(Human Reference Interactome) project, in order to improve and curate the classification of 

PSI-MI terms into binary, indirect or invalid categories.  
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Figure 3-R-1.  PSI-M
I m

ethods present in APID
 and also in LitBM

-17, specifically created for the com
parison with hum

an Y2H interactom
e: HI-III (H

uR
I project). 

Binary and indirect m
ethods are differentiated by colours. 
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For this reason, we aimed to categorize frequent PSI-MI terms to facilitate their 

posterior use for producing binary and/or indirect interactomes, adding posterior thresholds 

of confidence related to the number of publications or different methods supporting each 

PPI. Particularly, this new classification was applied for producing the literature-based 

interactome (LitBM-17) used to compare with the last version of human interactome of 

HuRI project (HI-III). Since Y2H is considered a binary method, we were interested to 

produce a literature-based interactome only including PPIs supported by binary method 

more than one time (one publication and two methods; or two publications using the same 

PSI-MI method), following previous scheme of comparisons of last version of HuRI 

(Rolland et al. 2014). Finally, the new proposed classification of PSI-MI terms is shown in 

Appendix 3. 

Interestingly, our agreement about binary, indirect and invalid terms led us to 

conclude that current ontologies for PSI-MI terms may be confusing and imprecise. Figure 

3-R-1 took ontology of PSI-MI terms from OLS and mapped all terms appearing at least 

one time in APID, colouring them according to table in Appendix 3. We can observe how 

several father terms are considered binary while not all children are or several relationships 

among very distant areas of this tree/ontology representation of PSI-MI methods. These 

characteristics of OLS ontology lead to problems when term-convergence was carried out. 

In our proposal, similar PSI-MI methods were collapsed along the ontology to avoid 

mismatch information compiled from different sources. Indeed, since literature publications 

are individually curated by each primary database, we analysed the agreement among 

these databases to assign PPIs to PSI-MI methods.  

Figure 3-R-2 shows two networks displaying the OLS ontology for PSI-MI methods 

where information about the number of PPIs reported in BioGrid and IntAct were mapped. 

As we can see, BioGRID is carrying out a more astringent classification of publications 

reporting PPIs in PSI-MI methods, occupying only a small portion of this OLS ontology. On 

the other hand, IntAct database assigns experiments to more specific PSI-MI methods and 

differently converges at some areas of this OLS ontology. This issue is crucial for meta-

databases like mentha or APID when any threshold or curation is desired because same 

records or experiments may appear duplicated depending on which databases are 

mapped, leading to false entries at different confidence levels.  

As detailed above in Material and Methods, the literature binary generated for the 
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comparison against HuRI (called LitBM-17) was produced only considering PPIs supported 

by more than two publications or PSI-MI methods classified as binary. To avoid these 

issues, all methods from different sources were collapsed following a meta-group scheme 

(also shown in Appendix 3) instead a father-child relationship derived from OLS ontology. 

Thus, following a meta-group collapse for PSI-MI assignments should deal with these 

redundancies and disagreements among large primary protein-protein interaction 

databases as BioGRID, IntAct, HPRD or MINT. 

 

Figure 3-R-2. BioGRID and IntAct number of PPIs mapped on OLS ontology of PSI-MI terms, represented as a 
network of terms. Size of nodes corresponds to number of PPIs assigned to this PSI-MI method. 

 

2. Comparison of human interactomes 

We will analyse and contrast several human interactomes against experimental 

subcellular localization data of Cell Atlas. Our main objective behind these comparisons is 

to define an unbiased and high-throughput human interactome for the integration with Cell 

Atlas information. 

First of all, we calculated the overlap between different human interactomes. 

Although they are not directly comparable because of the technologies used to produce the 

dataset, figure 3-R-3 provides us with a brief overview of how distant are these 
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interactomes in terms of protein-protein interactions and proteins detected. 

Figure 3-R-3. Overlap of different human interactomes used: (A) protein-protein interactions and (B) proteins. 

 

As we can observe in Figure 3-R-3, there is a very low overlap among different 

human interactomes for both proteins and protein-protein interactions, as previously 

reported for old versions of these interactomes (Rolland et al. 2014). Technologies behind 

these interactomes greatly vary the ability of detecting protein-protein interactions (Y2H, 

co-complex or literature-based), often making difficult the direct comparison of these 

networks. However, interactomes systematically generated were reported to be more 

reliable than literature-derived (especially if low-throughput experiments are more 

frequent), which involves a strong study bias (Luck et al. 2017). 

 

3. Coverage of the integrative analysis and biases for subcellular 
compartments 

Any technology for detecting molecular interactions is able of showing particular 

biases depending on their limitations and suitability for the analysis. Since the human 

interactome of interest (HI-III) was produced through Yeast-Two-Hybrid technology (Y2H), 

it is important to remind that Y2H is a technique based on bait-prey contact inducing 
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transcription of a reporter gene. Thus, any revealed protein-protein interaction should be 

reproducible in the cellular nucleus of yeast, even if these proteins are not usually related 

or present at this subcellular localization. Indeed, not only the interaction should be 

reproducible but also bait-prey proteins must be able to enter the nucleus to activate 

transcription of reporter (Bruckner et al. 2009). For these reasons, some authors reported 

this specific condition in the literature (von Mering et al. 2002, Bjorklund et al. 2008). 

For this reason, we investigated the coverage of these two high-throughput 

techniques (fluorescent imaging and yeast-two-hybrid) in terms of proteins detected and 

subcellular localizations assigned to each protein. Since subcellular localizations greatly 

vary in terms of size and number of functional proteins, we expected a variable number of 

detected proteins assigned to each subcellular compartment. Additionally, we already 

mentioned that several authors described a relevant propensity for detecting nucleus-

located proteins in yeast-two-hybrid experiments. Thus, similar preference might be 

expected for HI-III interactome. 

Figure 3-R-4. Coverage analysis of Cell Atlas and HI-III interactome datasets. (A) Number of proteins of Cell Atlas 
and HI-III per subcellular compartment. Labels on x-axis are ordered like panel B. (B) Percentage of detected 
proteins of HI-III respect to total number of proteins of Cell Atlas per subcellular localization (average = 47.89%). 
(C) Overlap of detected proteins by both datasets. (D) Number of proteins per number of subcellular localizations 
that may occupy any protein.  
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 Notably, it is important to remember that all protein IDs were properly mapped to 

ENSEMBL IDs from GENCODE release 27. Furthermore, any subcellular assignments 

from Cell Atlas were only considered if status or reliability level is Approved, Supported or 

Validated, but not Uncertain (Thul et al. 2017).  

 

3.1 Overlap of Cell Atlas and HI-III human interactome 

Figure 3-R-4 tries to summarize main aspects of coverage between Cell Atlas 

(12003 proteins) and HI-III interactome (8189 proteins). We can observe a notable overlap 

of number of proteins included in HI-III and with known subcellular localization in Cell Atlas 

(5488 proteins, 67.01% of HI-III proteins), shown in Fig. 3-R-4C. However, 320 out of these 

5488 proteins are Uncertain assigned, then their subcellular localizations were not taken 

into consideration (Fig. 3-R-4D). Additionally, HI-III’s authors reported a high number of 

interactions depending on keratins and keratin associated proteins (around 100 proteins 

resembling almost 10000 interactions). The localization of most of these proteins is not 

known, so we removed them from this integrative analysis to eliminate possible biases. 

Finally, 5121 out of 5488 proteins entered in posterior analyses, providing a full HI-III 

interactome comprising 18024 interactions. 

Regarding biases for particular subcellular locations, we can observe HI-III 

shows no preferences for any compartment. Panel A of figure 3-R-4 shows the number of 

proteins detected per subcellular localization. Noteworthy, several subcellular localizations 

have a very low number of associated proteins, especially for localizations comprising the 

whole Midbody meta-compartment. Alternatively, the cytosol or nucleoplasm are the most 

represented spaces, as expected. However, the percentages of proteins present in HI-III 

respect to Cell Atlas per subcellular compartment are close to 50% (mean = 47.89%), 

corresponding more variable percentages to those subcellular localizations with low 

number of proteins (i.e. aggresome, lysosomes, mitotic spindle, etc). Due to these similar 

percentages, we can consider that there are no significant preferences for a subcellular 

compartment in HI-III in terms of detection of proteins, especially relevant for all those 

nucleus-related compartments which have been previously described as possible favourite 

subcellular spaces for Y2H experiments. 

In conclusion, these results of coverage and biases related to protein’s detection 



 

 
128 

allowed us to continue with all analyses and integration, proving that exists a remarkable 

agreement between these two resources: Cell Atlas and HI-III interactome. 

 

3.2 Comparison of subcellular biases among human interactomes 

Once we have defined the coverage between Cell Atlas and HI-III, we deepened 

further to estimate if significant biases are present in the human interactome. We 

demonstrated that percentage of detected proteins by HI-III is very similar along different 

subcellular compartments (Fig. 3-R-4B), but the probability of founding these percentages 

by chance can be estimated according to the subcellular compartment size and whole 

interactome size. In this way, we also compared all human interactomes described in 

Material and methods to disclose biases for all similar human interactomes and compared 

them.  

Figure 3-R-5. Enrichment analysis of every human interactome compared (HI-III, BioPlex, CoFrac, QUBIC and 
LitBM-17). (A) Heatmap showing enrichment (odds ratio) for subcellular localizations where red squares 
correspond to higher odds ratios and blue square to lower odds ratios. Grey squares mean no significant odds 
ratios. (B) Scheme of hypergeometric test calculated, where the intersection of list of protein coding genes from 
Genecode v27 and genes detected by Cell Atlas were used. 
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Based on scheme displayed at Figure 3-R-5B, we calculated the hypergeometric 

test for contingency tables (also known as Fisher’s exact test) on every single human 

interactome per subcellular localization of Cell Atlas. In this way, the odds ratio provided 

were transformed into log2 scale. Thus, figure 3-R-5A summarizes both enrichment 

analysis (biases) and number of proteins per subcellular localization per human 

interactome. We accompanied this heatmap with a barplot displaying number of total 

proteins and number of exclusive proteins (only in one compartment) per subcellular 

localization in Cell Atlas. Furthermore, we highlighted in different colours any related 

subcellular localization according to subcellular meta-compartments. 

Figure 3-R-6. Enrichment analysis of human interactomes per subcellular localization of Cell Atlas involving more 
than 100 proteins (20 subcellular localizations). The coefficient of variation of log2(odds ratio) per interactome is 
shown, highlighting HI-III as the less biased human interactome. 

 

Attending to Fisher’s exact test results (Fig. 3-R-5A, heatmap), we can observe the 

different preferences for subcellular compartments of each human interactome (HI-III, 

BioPlex, CoFrac, QUBIC and LitBM-2017). Similar to previous results, the most relevant 

enrichment or depletion (odds ratios) correspond to all those subcellular compartments 

involving less than 100 proteins. For example, CoFrac, QUBIC and LitBM-17 are highly 
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enriched for lysosomes and endosomes compartments. Generally, we can also observe 

how HI-III are less biased than any other human interactome compared, showing a slightly 

enrichment for nucleoplasm and nuclear bodies spaces and a slightly depletion for 

endoplasmic reticulum or mitochondria spaces. Both results were expected because a lack 

of membrane-related proteins have been also described for Y2H experiments in the 

literature, apart from the preference for nucleus-localized proteins. 

 Regarding the total number of proteins per subcellular compartment (Fig. 3-R-5A, 

barplot), great differences among various spaces led us to remove all those showing less 

than 100 proteins not exclusively located (grey bar). Any subcellular localization showing a 

low number of proteins is more sensible to dispersion and suitable of being enriched or 

depleted. Thus, we recalculated this same enrichment analysis after removing those 

compartments with less than 100 proteins, showing a similar trend. Here, we also 

computed coefficient of variation on odds ratios per interactome (Fig. 3-R-6). 

Interestingly, we can also note how several spaces are more suitable for multi-

localized proteins, which were detected at more than one compartment, than others (Fig. 

3-R-5A, barplot). For example, the mitochondria show lower number of total proteins than 

plasma membrane but almost double number of exclusive located proteins, indicating that 

proteins located in mitochondria are more dependent on this space. Plasma membrane is 

intended as one of the most transversal compartments, where occurring an outstanding 

variety of biological functions carried out by wide variety of proteins (O’Connor et al. 2010). 

Subsequently, we can conclude HI-III interactome has notable coverage of subcellular 

map proposed by Cell Atlas, showing no remarkable biases for subcellular localization 

even for nucleus-related spaces. Indeed, HI-III is less biased than current human 

interactomes derived from other high-throughput technologies for defining molecular 

interactions (BioPlex, CoFrac or QUBIC) and also less than literature-based interactomes 

(LitBM-17) which comprise both high and low-throughputs techniques. 

 

4. HI-III tends to connect proteins between more related subcellular 
compartments. 

As mentioned above, the classical understanding of physical protein-protein 

interaction unmistakably implies the co-localization of proteins involved: it is necessary that 
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both proteins are able to interact in the same biological context. Indeed, several of the 

current technologies to disclose molecular interactions are just based on co-localization 

events, like Fluorescence In Situ Hybridization (FISH), Förster Resonance Energy Transfer 

(FRET) or Surface Plasmon Resonance (SPR) (Dunn et al. 2011).  

Particularly for protein-protein interactomes, Thul et al. proposed in the original 

paper describing Cell Atlas that this resource could be used to improve any existing 

interactome (Thul et al. 2017), providing an extra level of reliability for those protein-protein 

interactions occurring in the same subcellular compartment. Otherwise, any protein-protein 

interaction is less likely to occur. Nevertheless, the quality of co-localization techniques is 

conditioned by several factors related to biochemical characteristics of proteins or 

subcellular compartments belonging them. Many transient or very specific molecular 

interactions may be missed, leading to an incomplete knowledge of the real subcellular 

map. Consequently, we aimed to test whether the integration of a complete cell protein-

protein interactome and subcellular localization information would empower our 

ability for discovering transient protein-protein interactions and shuttling proteins, 

which are able to multiple interact with multiple proteins in different subcellular spaces. 

 

4.1 Enrichment analysis for shuttling proteins among compartments 

Aiming for this purpose, we tested the ability of HI-III to rescue protein-protein 

interactions within the same compartment or within very related compartments. As a 

measurement of the relationship between two subcellular compartments, we first calculated 

the significance for enrichment or depletion on multi-localized or shared proteins: 

proteins demonstrated to be in two or more compartments. Two subcellular compartments 

would be related if there is a significant enrichment in shared proteins. After mapping 

subcellular localization to proteins in HI-III (Fig. 3-R-5), Fisher’s exact test between pairs of 

compartments were calculated.  

Figure 3-R-7 resembles a heatmap which shows the significant relationships 

(overlap in number of proteins) among all possible pairs, cut-off at two different thresholds 

after or before FDR correction of p-values from Fisher’s exact test. Raw p-values are also 

shown because several authors reported that multiple p-value adjustment on asymmetrical 

p-value distributions are limited to two-tailed assumptions (Pounds and Cheng 2006). In 
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fact, right-tailed test was chosen because we cannot assume that depletion of overlap 

between subcellular compartments is related to this technique (Y2H) or it is biologically 

relevant, even if any large bias was found in HI-III (Fig. 3-R-6). 

Figure 3-R-7. Enrichment analysis for shared proteins between pairs of subcellular localizations of Cell Atlas, 
using HI-III as reference. The left panel shows p-values before FDR correction, while the right panel shows after 
FDR correction. (A) Nuclear compartments are very related through shared or multi-localized proteins. (B) 
Membrane-related compartments seem to be very related. (C) The cytosol is expected to be a common space for 
protein localization. 

 

Here, we are searching enriched overlaps, then only right-tailed p-values have 

been considered as significant. As we may expect, there are several compartments which 

seem to be more related than others. For example, nuclear compartments are very related 

each other (Fig. 3-R-7A), not only due to their biological relevance but also because of the 

unexpected bias for nuclear subcellular localizations reported by authors in the original Cell 

Atlas study (Thul et al. 2017). Additionally, membrane-related compartments are also very 

suitable for sharing proteins due to their physicochemical characteristics and the 

communication with the extracellular environment (Fig. 3-R-7B). Alternatively, cytosol is 

intended to be one of the most occupied cellular spaces, as reflected by HI-III (Fig. 3-R-

7C).  
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4.2 Enrichment analysis for protein-protein interactions between compartments 

Since figure 3-R-7 displays the main trafficking of proteins (detected by HI-III) 

among subcellular compartments, we can infer which cellular spaces tend to communicate 

each other more often. In this way, we may hypothesise the following: existing protein-

protein interactions between proteins located at one of those commonly related 

compartments should move to interact from one to another subcellular space. First, 

we assessed the agreement between the trend observed for shuttling proteins (Fig. 3-R-7) 

and protein-protein interactions between compartments. Given a pair of subcellular spaces, 

we considered only those PPIs occurring between proteins annotated to one or both 

compartments, so interactions within a compartment were removed for this analysis. In this 

way, only cross-talk among compartment is reflected (Fig. 3-R-8A). Z-scores were 

calculated after randomization of HI-III (1000 random networks) as detailed in Material and 

Methods, then FDR correction to empirical p-value of z-scores was applied. 

Figure 3-R-8. Enrichment analysis for z-scores obtained after randomization of HI-III, showing the enrichment for 
PPIs among subcellular compartments of Cell Atlas. (A) Scheme of considered PPIs per pair of subcellular 
spaces, where intra-compartment’s PPIs were discarded (white edges) while inter-compartment were considered 
(dark edges). (B) Heatmaps showing significant enrichments for PPIs between two subcellular compartments of 
Cell Atlas in HI-III interactome. 
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 Figure 3-R-8 shows two similar heatmaps to the previous figure, where significant 

relationships after randomization of HI-III are plotted. Here, FDR correction and no p-value 

correction are also shown, accordingly to previous protein enrichment’s maps. As we can 

observe, there is a relevant agreement among protein enrichment (Fig. 3-R-7) and PPI 

enrichment (Fig. 3-R-8) according to HI-III interactome. Main relationships like nuclear and 

membrane-related compartments are also reflected by PPIs of HI-III, which may indicate 

that proteins annotated only to one compartment are really located at those two 

compartments.  

 

4.3 Agreement between shuttling proteins and protein-protein interactions between 

subcellular compartments 

Once we have determined the existing enriched relationships among 

compartments for shuttling proteins (based on Cell Atlas’ localizations) and for protein-

protein interactions (based on HI-III), we integrated both maps to determine if this 

interactome is able to report a similar trend. In order to assess if this agreement between 

previous heatmaps is significant and to highlight the most consistent relationships, we 

overlapped both maps (cut-off at p-value or FDR < 0.05) and calculated Fisher’s exact test 

(Figure 3-R-9).  

As we can see, both panels A and B indicate that PPI enrichment follows a similar 

trend (not expected by chance) with or without FDR correction of empirical p-values from z-

scores and odds ratios. In fact, we can observe three main regions: p1 and p3 reflect 

overlapping regions where protein and PPI enrichment were found, while p2 highlights a 

PPI’s enriched region where endoplasmic reticulum seems to be a key compartment for 

interactions among vesicle-related spaces and nuclear membrane. Furthermore, the odds 

ratio of the overlap after FDR correction is even higher than previous one, because the 

most significant PPI’s enriched squares (green) keep overlapping protein’s enriched 

squares (red) (Fig. 3-R-9B).  
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Figure 3-R-9. Combined heatmaps of shuttling protein’s enrichment (red squares) and protein-protein interaction 
enrichments (green squares), before (A) and after FDR correction (B). Significance threshold chosen was 0.05 (p-
value or FDR < 0.05). Additionally, Fisher’s exact test were calculated to determine if there was a significant 
overlap between both enrichment analysis. 

 

Although these analyses are based on a discrete or binary value (enriched or not 

based on p-value’s cut-off), it may be bias derived from significance thresholds chosen. For 

this reason, we also evaluated if any parametric or non-parametric relationship is reflected 

by both enrichments. In this way, we recalculated the z-scores obtained after 

randomization of HI-III into ratios (ratio = real observed PPIs / average of random PPIs) for 

making them more comparable to odds ratios. Moreover, both ratios were transformed into 

logarithmic scale before compare. 

Figure 3-R-10 displays a plot facing odds ratios from protein enrichment analysis 

and ratios from PPI enrichment analysis. We also calculated two statistics for estimating if 

a positive trend may be inferred: (i) linear regression existing (blue line, grey shadow 

confidence intervals 95%) and (ii) Spearman’s correlation, which resembles a non-
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parametric measurement of relationship. As observed, Spearman’s correlation is positive 

and significant (corr = 0.301, p-value = 3.466·10-8), while linear regression follows an 

increasing trend (slope = 0.942, intercept = -0.101). Since these two ratios do not follow 

similar distributions, Spearman’s correlation seems to be a more reliable result. According 

to previous results shown in figure 3-R-9, these results also indicate there is a slight trend 

for HI-III to connect (PPI enrichment) those compartments where exist an enrichment for 

shuttling proteins (protein enrichment) (Fig. 3-R-10). In fact, several relationships among 

compartments were shown in grey in the figure in the top-right square of the plot, most of 

them expected due to biological characteristics of each compartment. 

Figure 3-R-10. Scatter plot between odds ratios from protein enrichment analysis (y-axis) and ratios from PPI 
enrichment analysis (x-axis). Log-transformation was previously applied. Additionally, linear trend (blue line, grey 
shadow are confidence intervals 95%), Spearman and Pearson correlations between both data are shown 
(bottom-left corner). Point size corresponds to relative number of proteins included in each pair of subcellular 
compartments under consideration (graph on bottom-right corner). 
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The trend shown in Figure 3-R-10 did not include all those pairs of subcellular 

compartments where returned odds ratio (protein enrichment, Fisher’s exact test) was 

positive or negative infinitive, indicating a complete or null overlap between spaces, 

respectively. Indeed, only overlap with itself (diagonal from fig. 3-R-7) returned positive 

infinitive while negative for several pairs. Due the impossibility of considering these values 

for the trend, we assessed the differences between full or no-overlap of subcellular spaces 

in terms of PPI’s ratios (Fig. 3-R-11). As observed, the Wilcoxon-Mann-Whitney test was 

significant. We proved the number of observed PPIs is significantly smaller if proteins are 

located in different subcellular compartments that if the proteins share location in two 

subcellular compartments. In conclusion, this result empowered our previous results of HI-

III’s ability to disclose interactions among proteins of very related subcellular 

compartments. 

Figure 3-R-11. Boxplots showing the comparison of PPIs between proteins present in two subcellular locations 
with no-overlap (grey) or with full-overlap (dark red). Wilcoxon-Mann-Whitney test was applied to assess 
differences between these two distributions. 

 

It is noteworthy the positions taken by greater pairs of subcellular localizations in 

Figure 3-R-10 (point sizes are relative to number of proteins), which seem to follow a 

higher correlation than the rest. In order to test this observation, a Weighted Pearson 

Correlation Coefficient (WPCC) was calculated using the number of proteins within each 

pair of subcellular compartments as weights. Additionally, we also put an iterative threshold 
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to remove smaller pairs of subcellular compartments, then WPCC was calculated by 

weighting as zero all those pairs showing fewer proteins than threshold. These results are 

shown in Figure 3-R-12 (only significant, p-value £ 0.05). As observed in this figure, there 

is an increasing trend of WPCC corresponding to greater pairs of subcellular 

compartments. Since the cytosol and nucleoplasm involve the highest number of proteins 

in HI-III, we can conclude that the trend observed in Figure 3-R-10 is notably due to these 

two compartments.  

 

Figure 3-R-12. Weighted Pearson Correlation Coefficient (WPCC) for different thresholds of number of proteins 
are shown. An increasing trend is observed up to percentile 85 (only significant WPCC are shown). 
 

Interestingly, figure 3-R-9 could be represented as a network where nodes are 

represented by these 20 subcellular compartments chosen and edges are significant 

overlaps derived from shuttling proteins or significant enrichment from PPIs of HI-III (Fig. 3-

R-13). This cellular network provides a whole perspective of how subcellular meta-

compartments are connected if only enrichment of shuttling proteins is considered (panel 

B) or enrichment of PPIs in HI-III interactome (panel A). In fact, information provided by HI-

III seems to be more relevant for grouping subcellular compartments belonging to the same 

meta-compartment. For example, vesicles and cytoskeleton meta-compartments are 

separated only if shuttling proteins are considered, although plasma membrane, cytosol or 

nucleus-nucleoplasm compartments play a central role within this cellular network in Fig. 3-

R-13B. In comparison with other subcellular localization databases, this type of cellular 
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network plot helps to understand how shuttling or shared proteins from different sources 

are differentially relating subcellular spaces. Binder and colleagues created 

COMPARTMENTS as a literature-curated database to collect subcellular localization of 

proteins from different primary resources (Binder et al. 2014). They performed a similar 

cellular network of shared proteins using their curated database, where cytosol, nucleus 

and cytoskeleton are very related and separated from vesicle-related subcellular 

compartments, similarly to our PPI-enriched cellular network (Fig. 3-R-13A). 

Figure 3-R-13. Network representation of cross-talk between subcellular compartments if only PPI enrichment is 
considered (A) or protein enrichment (B) given a human interactome (HI-III). Heatmap from figure 3-R-6A was 
adapted into network representation. 

 

4.4 Three different integrative scenarios for assessing cross-talk 

As detailed above, we considered proteins present in both compartments 

composing each pair of subcellular spaces (Fig. 3-R-8A) to produce all posterior analyses 

of PPI enrichment. However, our results demonstrating a cross-talk tendency of HI-III to 

connect proteins from very related localizations may be completely conditioned by this 

assumption. If a great overlap of proteins is found, previous analysis may only reflect a 

significant number of protein-protein interactions from proteins annotated to both 

subcellular compartments, bringing any additional information from HI-III to Cell Atlas. 

Thus, it is also need to determine if there is still a trend when shared proteins are included 

in the analysis. Otherwise, this complete integration of human interactome and subcellular 

localization datasets may be irrelevant. For this reason, we reproduced all the previous 
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analyses shown in Results, following these scenarios: 

- Exclusive proteins: considering only proteins exclusively assigned to one 

unique subcellular compartment by Cell Atlas resource (Fig. 3-R-5A, black 

bars in barplot), interacting with other different subcellular space (Fig. 3-R-

14A). Subnetwork of HI-III only composed of 1516 proteins and 3143 PPIs. 

- Without shared proteins: considering all proteins located in one out of two 

spaces composing a pair of subcellular compartments. Thus, shared proteins 

between two compartments were discarded (Fig. 3-R-14A). Subnetwork of HI-

III composed of 4125 proteins and 13668 interactions. 

- All proteins: all proteins included in a pair of subcellular spaces interacting 

with another subcellular compartment (Fig. 3-R-14A). The results of this 

scenario were shown above. Here, intra-compartmental PPIs among proteins 

exclusively located at one compartment have been not considered (763 

proteins and 904 interactions). 

Figure 3-R-14. Three different scenarios were tested to verify HI-III cross-talk among subcellular compartments. 
(A) Schematic design of three proposed scenarios. (B) Table showing results for three scenarios from different 
analyses described along this Results Section 2. 

 

To summarize all these results and to avoid reproducing same figures using 

different subsets of data, a table including main results and comparisons is shown in 

Figure 3-R-14B. The second proposed scenario (without shared proteins) still reflects a 

positive linear trend and significant Spearman’s correlation among protein enrichment and 
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protein-protein interaction enrichment. Thus, we can confirm that HI-III significantly tends to 

connect proteins annotated to different but related subcellular compartments, even if 

shuttling or shared proteins are not included in the global analysis. 

 

5. Agreement of given prediction for subcellular localization based 
on protein-protein interactome (HI-III). 

Once we have demonstrated that HI-III is able to disclose protein-protein 

interactions among related subcellular compartments, we will draw a simple proposal to 

infer subcellular localization for unannotated proteins included in the analysed human 

interactome. Based on a protein-protein interaction network, we may suppose that any 

given protein should be co-localized in the most frequent subcellular localizations of 

their first neighbours. Considering HI-III as reliable human protein-protein interactome, 

we could look for those proteins whose neighbours are prominently located at a particular 

subcellular localization. Aiming that, we calculated the enrichment of subcellular 

localization from partners of each protein reported in HI-III, then Fisher’s exact test was 

applied to define these significant compartments per protein.  

First, we evaluated the agreement between Cell Atlas information and HI-III 

prediction to verify that previous demonstrated trend is also present at protein-level. Thus, 

we considered only located proteins of HI-III on main 20 subcellular localizations mentioned 

before (Fig. 3-R-6), and all those proteins showing a reasonable degree (degree > 3) for 

this analysis. A total of 2607 out of 8030 proteins remained after these considerations. 

Moreover, after applying the enrichment test (Fisher’s exact test), 1965 out of 2607 

proteins analysed showed any enriched subcellular localization within its neighbourhood (at 

least one subcellular compartment with p-value £ 0.05). Finally, we could match both Cell 

Atlas original subcellular localization and this HI-III prediction based on protein’s 

neighbourhood.  

Figure 3-R-15 shows the agreement between the initial Cell Atlas subcellular 

localization and HI-III prediction (also based on Cell Atlas dataset) per protein. While Cell 

Atlas assigns 3175 different localizations for these 1965 proteins (grey colour, Fig. 3-R-

15A), HI-III predicts 2821 subcellular localizations for the same subset of proteins, with an 

agreement of 600 subcellular localizations for 539 proteins (red colour, Fig. 3-R-15A). This 
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overlap is very significant (OR = 3.556; p-value £ 2.2·10-6) and supports our previous 

results about how using this protein-protein interactome (HI-III) we are notably able to infer 

the subcellular localization of proteins when enough information is available (degree > 3).  

 

Figure 3-R-15. Agreement between current Cell Atlas subcellular localization and HI-III prediction based on first 
protein’s neighbourhood (1965 proteins). (A) Agreement’s map ordered by Cell Atlas subcellular localization. (B) 
Significance and enrichment of agreement per subcellular localization. (C) Scheme of Fisher’s exact test 
application. 

 

Regarding each subcellular localization analysed, there are several subcellular 

compartments which this overlap/agreement is no-significant, like all plasma membrane or 

microtubules related compartments (Fig. 3-R-15B). Interestingly, intermediate filaments 

and actin filaments show the most enriched overlaps (Fig. 3-R-15B), which may 

correspond to the great ability of HI-III to detect protein-protein interactions of keratin-

related proteins even when they have been removed at first. Several of these proteins are 

intended to be part of these subcellular localizations. Moreover, about a 60% of these 

common subcellular localizations are assigned to cytosol or nucleoplasm (357 out of 600 
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assignments), which also reinforces previous results highlighting the greatest pairs of 

subcellular compartments (Fig. 3-R-11) as the most representative for the trend showed in 

Figure 3-R-10.  
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DISCUSSION AND FUTURE WORK 
  

Throughout this Chapter III, we presented the analyses and results derived from an 

ongoing collaboration with Marc Vidal’s laboratory and Human Reference Interactome 

(HuRI) project. The last version of this interactome (HI-III) has been the subject of analysis 

and integration with Cell Atlas dataset (Thul et al. 2017), in order to: (i) define any possible 

subcellular localization bias of HI-III and other current human protein-protein interactomes; 

(ii) validate if protein-protein interactions of HI-III are related to significantly connected 

subcellular compartments by shuttling proteins (multi-localized proteins); (iii) assess the 

ability of HI-III to disclose PPIs between non-co-localized proteins but both localized in 

significantly connected compartments (cross-talk); and (iv) compare Cell Atlas dataset with 

proposed HI-III prediction of subcellular localization.  

As detailed above, we used a high-throughput and experimental resource (Cell 

Atlas) to define possible subcellular localization bias of HI-III interactome and other current 

protein-protein interactomes (Fig. 3-R-4 and 5) instead typical approaches using manually 

curated databases (GO or UniProt). This way, we avoided any literature bias derived from 

particular analyses carried out on the subcellular localization of a single protein in a specific 

biological context. We demonstrated that HI-III is the less biased systematic human 

protein-protein interactome, which made it more suitable for posterior analyses about 

subcellular localization inference through a protein-protein interaction network.  

Shuttling proteins are intended to be those proteins which travel from one 

subcellular compartment to another for participating in different biological functions. Here, 

we evaluated how HI-III reflects the connectivity or relationship among different 

compartments through the enrichment on this kind of proteins. We called shuttling or 

shared proteins to those multi-localized proteins which have been annotated to two or 

more different compartments by Cell Atlas. Figure 3-R-7 reflected the connectivity among 

the greatest 20 subcellular compartments due to shuttling or shared proteins enrichment 

(Fisher’s exact test). Main macro-subcellular compartments seemed to be related, while 

cytosol was sharing (as expected) proteins with multiple subcellular spaces. Moreover, we 
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assessed the same enrichment among compartments for PPIs (Fig. 3-R-8), using a 

randomization of HI-III network as the basis for significance calculation. The agreement 

between shared proteins and PPI connecting two different subcellular spaces was tested in 

two different ways: discrete (Fig. 3-R-9) and continuous (Fig. 3-R-10), both significant and 

showing a trend of HI-III to connect through PPIs those subcellular compartments very 

related by shared proteins (Cell Atlas). Interestingly, HI-III connects meta-groups of 

subcellular compartments properly if we attended to PPIs, while shared proteins slightly 

differed to these meta-groups (Fig. 3-R-13). All these results lead us to conclude that HI-III 

connects close subcellular compartments involving new information which did not disclose 

only by considering shared proteins, like original publication of Cell Atlas described (Thul et 

al. 2017). Finally, based on these results, we briefly validated subcellular localizations 

inferred by HI-III protein-protein interactome in comparison with Cell Atlas original 

subcellular localizations.  

The agreement between Cell Atlas and HI-III prediction reinforces our main idea 

that a combination of two systematic and distant approaches like Y2H for protein-protein 

interactomes and antibody imaging for detecting the subcellular localization could be used 

to improve both techniques and validates existing data. However, it should not be 

considered as excluding approaches, since both are systematic approaches and presents 

different precision, sensitivity and error rates depending on protein characteristics, 

subcellular compartment or organism. In this way, a specific protein-protein interaction 

notably reported by Y2H between non-co-localized proteins may be potentially considered 

as candidate subcellular emplacements for these proteins, because transient protein-

protein interactions (Fig. 3-I-1) and shuttling proteins are more difficult to detect through 

antibody imaging.   

Interestingly, this collaboration also revisited the ontology of PSI-MI methods from 

OLS database to create several meta-groups of PSI-MI methods. These meta-groups have 

been used to collapse similar methods which have been assigned to the same experiment 

from similar primary databases of protein-protein interaction (Fig. 3-R-1 and 2). Thus, we 

manually curated this ontology due to our experience from APID literature-based 

interactomes (Alonso-Lopez et al. 2016) and from literature-based interactome used to 

compare previous version of HuRI project (Rolland et al. 2014). The proposed manual 

curation and used to create LitBM-17 interactome is included in Appendix 3. 
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We are currently collaborating with Marc Vidal’s laboratory to fill gaps related to this 

integration of subcellular localization information with Human Reference Interactome (HI-

III). We aim to properly analyse networks reflecting the cross-talk between two subcellular 

compartments in HI-II and other human interactomes mentioned. In fact, the significant 

inference of subcellular prediction given by HI-III would lead us to develop different 

approaches to improve this prediction. We are investigating different approaches (i.e. edge 

weighting based on confidence score from HI-III experiments and integration of several 

human interactomes or profile similarity scores) pursuing this intention.  
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CHAPTER IV 

 

Co-expression network of the human 
proteome: integrating tissue-specific and 

evolutionary timeline information 

 

 

 

 

 

BRIEF SUMMARY 

 Throughout this chapter, we will describe an integrative analysis describing the 

evolutionary age of human protein-coding genes based on transcriptomic data and public 

databases. This analysis arose from a successful collaboration between Katia de Paiva 

Lopes from Jose Miguel Ortega’s lab and our laboratory, which was published in BMC 

Genomics in 2016 (Lopes et al. 2016).  
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CHAPTER IV 

 

INTRODUCTION 
 

Transcriptomic technologies have been broadly applied to the study and analysis 

of a wide variety of organisms, especially eukaryotic transcriptomes (Wang et al. 2009). In 

the Chapter I, we described the most relevant transcriptomic platforms like microarray, 

ESTs or RNA-sequencing. The RNA-sequencing (RNA-seq) methodology has greatly 

improved our ability to measure not only gene expression levels (mRNA), but also other 

RNA molecules (miRNA, iRNA, non-coding RNAs, etc) and biological processes (splicing). 

As previously mentioned (Fig. 1-I-3A), its growth during last decade has made RNA-seq 

the most used transcriptomic platform (Lowe et al. 2017). 

 Attending to human tissues, systematic analyses have been performed based on 

transcriptomic technologies to characterise their specific gene expression profiles. For 

example, the FANTOM project consists of transcriptomic profiling of 56 human healthy 

tissues associated with the functional annotation of mammalian genomes (Consortium et 

al. 2014). Alternatively, the Genotype-Tissue Expression Consortium or GTEx (Consortium 

2013) compiles a vast resource of human transcriptomic data (RNA-sequencing) of 11688 

samples for 54 different specific tissues (used in chapter II). Actually, GTEx was used to 

infer patterns across human tissues or individuals (Mele et al. 2015) and to produce tissue-

specific gene co-expression networks (Pierson et al. 2015). Interestingly, the Human 

Protein Atlas project consists of well-curated RNA-seq samples from 32 human tissues to 

find the correlation between gene expression and protein presence/absence along 

secretome, metabolic processes and membrane, druggable or cancer proteomes (Uhlen et 

al. 2015). Moreover, there are examples of specific studies on tissues or cell-types using 

RNA-seq, like the characterisation of the placenta transcriptome from 20 healthy women 

with uncomplicated pregnancies (Saben et al. 2014). 
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Figure 4-I-1. Figure from Uhlen et al. study presenting the RNA-seq dataset used along this study, which shows 
the FPKM distributions of tissue-enriched genes for 13 main tissues (Uhlen et al. 2015). 

 

 The assembly of comprehensive maps of the human transcriptome is essential for 

a clear identification of the functional elements of our genome and to reveal the molecular 

constituents of different cells and tissues (Wang et al. 2009). Despite many transcriptomic 

studies, little has been reported about the evolutionary determinants of human cell identity, 

particularly from a joint perspective of protein evolution and gene expression (Sardar et al. 

2014). Attending to functional diversity and redundancy of human genome, the evolution of 

a particular human gene could be informative about the reasons behind its function. Gene 

age is an important piece of information that can be inferred in different ways and has been 

used in some genome-scale studies and in some studies on gene families (Capra et al. 

2013). Indeed, phylostratigraphy is the common methodology employed to find the origin 

and emergence of genes (Domazet-Loso et al. 2007, Sestak et al. 2013). Previous 

phylogenetic studies about human genome revealed relationships with diseases (Domazet-

Loso and Tautz 2008), codon usage (Prat et al. 2009), essentiality, interactions (Abrusan 

2013), stemness and self-renewal (Hemmrich et al. 2012). Alternative studies have 
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demonstrated how ancient genes evolve slower (Alba and Castresana 2005), encode 

longer proteins, present higher expression levels, possess higher intron density and are 

subject to stronger purifying selection (Wolf et al. 2009, Cai and Petrov 2010). Several of 

these studies approach the question of gene age in different ways, but most of them are 

not focused on human genes or do not apply phylostratigraphy using large-scale genomic 

data. 

Figure 4-I-2. Homo sapiens evolutionary timeline graph obtained from TimeTree resource (www.timetree.org). 
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 Throughout this chapter IV, we addressed the key question about the evolution and 

age of human genes through the combination of genome-wide data and public databases, 

aiming to map human genes on the whole evolutionary time-scale. We will manage one of 

the comprehensive human tissue RNA-seq dataset mentioned above: Human Protein Atlas 

(Uhlen et al. 2015), which will allow deep expression profiling of protein-coding genes 

across different human tissues (Fig. 4-I-1). Additionally, we will integrate a database of 

orthologous proteins to find the oldest relatives to each human protein along different 

species (Altenhoff et al. 2013, Altenhoff et al. 2015). We used taxonomy mapping of these 

genes to lineage clades from the NCBI Taxonomy database 

(www.ncbi.nlm.nih.gov/taxonomy); and the time-scale mapping provided by TimeTree 

resource (www.timetree.org) (Hedges and Kumar 2009).  

 Clusters of orthologous proteins built along multiple species were demonstrated to 

be more accurate than simple sequence homology match when we carried out 

phylogenetic studies (Altenhoff et al. 2013). This involves a conservation along the 

evolutionary tree instead revealing singular best homologous, providing a simple way to 

date the origin of different protein modules implicated in specific biological functions and 

pathways (Donnard et al. 2011). To complete the view of the protein-coding gene 

phylostratigraphy, we will use the genome-wide expression data to produce a human gene 

network based on a co-expression analysis of the transcriptomic RNA-seq profiles along 

multiple tissues, identifying which genes can be considered Housekeeping (HKg) or 

Tissue-enriched (TEg). We expect the allocation of these gene subsets (HKg and TEg) on 

the evolutionary time map would show a clear difference in gene age, indicating that 

housekeeping genes are older. 
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MATERIAL AND METHODS 
 

1. Gene expression data from human normal tissues 

The genome-wide expression dataset used in this work corresponds to a series of 

RNA-seq analyses performed with Illumina HiSeq 2000 paired end sequencing on cDNA 

libraries prepared from samples of 122 human individuals from 33 different tissues 

(ArrayExpress DB: E-MTAB-2836) (Uhlen et al. 2015). The data provided reads for 20,344 

genes detected per sample, where 18,545 of these genes showed relevant expression 

signal corresponding to mean(FPKM) ≥ 1 in all the selected tissues. After normalization 

and comparative analysis of the expression distributions of the samples from this dataset, 

we selected a total of 116 samples with two to five biological replicates for the following 32 

tissues: adrenal gland (3 replicates), appendices (3), bone marrow (4), brain (3), colon 

rectum (5), duodenum (2), endometrium (5), oesophagus (3), fallopian tube (5), adipose 

tissue (3), gallbladder (3), heart (4), kidney (4), liver (3), lung (5), lymph node (5), ovary (3), 

pancreas (2), placenta (4), prostate (4), rectum (4), salivary gland (3), skeletal muscle (5), 

skin (3), small intestine (4), smooth muscle (3), spleen (4), stomach (3), testis (5), thyroid 

(4), tonsil (3) and urinary bladder (2). 

 

2. Expression profiling and co-expression data analyses 

RNA-seq expression data from all the tissue samples, taken as normalised FPKM 

(Fragments Per Kilobase of transcript per Million reads) from (Uhlen et al. 2015), were log2 

transformed to obtain the final expression values as: log2(FPKM + 1). Normalised 

expression distributions of these samples can be seen in Figure 4-R-1 as density plots and 

in Figure 4-R-2 as boxplots. Unsupervised clustering of the samples based on whole gene 

expression was done applying an agglomerative hierarchical clustering and calculating the 

distances based on: [1 – Spearman correlation]. This clustering was done for all the 116 

samples and just for the 32 tissues using the average expression of the replicates (Fig. 4-

R-3). Principal Component Analysis (PCA) was performed to alternatively visualize groups 
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of samples and tissues (Fig. 4-R-4). 

The co-expression dataset was built calculating the pairwise Spearman correlation 

coefficient (r) of all the genes (18,545 with mean(FPKM)>1 in all 32 tissues) along the 116 

samples and only selecting, as positive gene-pairs, the ones with a correlation coefficient ≥ 

0.85 (Fig. 4-M-1). Cross-validation of these correlation values was applied by a random 

selection of two sample replicates from each tissue and recalculating again the Spearman 

correlation of genes for these random subsets of the data. This sampling was done 100 

times, also annotating for each gene-pair the number of times that its r coefficient was ≥ 

0.85. Only the gene-pairs validated 100 times in this sampling were selected. A final set of 

highly correlated gene-pairs was produced including 2298 genes and 20,005 co-expression 

interactions. This co-expression dataset is provided as Additional file 2 in our website 

(bioinfow.dep.usal.es/evolutionaryhallmarks), indicating the names of all the gene-pairs and 

their correlation value. A gene co-expression network derived from the co-expression data 

was built using Cytoscape (www.cytoscape.org) and we applied the MCODE algorithm to 

identify clusters inside the network. This algorithm performs an analysis of the topology of 

the network to find densely connected regions that define modules. The co-expression 

network built with Cytoscape including all the subnetworks found (with information about 

the specific proteins in each), as well as the parameters derived from the graph analysis, is 

provided as Additional file 3 (bioinfow.dep.usal.es/evolutionaryhallmarks). 

 

3. Evolutionary analyses 
 

3.1 Orthologous search for human proteins: Lowest Common Ancestor 

For the evolutionary analysis and determination of Lowest Common Ancestor 

(LCA), we used a database of orthologous proteins: Orthologous MAtrix (OMA, 

http://omabrowser.org/) (Altenhoff et al. 2013, Altenhoff et al. 2015).  OMA includes a 

database and resource with methods for the inference of orthologous among complete 

genomes. We downloaded the OMA database into a local MySQL database and created 

Python scripts to search for the Ensembl ID's from our transcriptomic data into this local 

database and to calculate the LCA into each respective orthologous group. Thus, we 

obtained a table with the number of protein-coding genes assigned to each clade in the 



 

 
157 

CHAPTER IV 

human taxonomy lineage, as defined by the Taxonomy resource from NCBI (Taxonomy ID 

9606 for human, Homo sapiens; database accessed 9 January 2016).  

 

3.2 Mapping of the human taxonomic phyla into evolutionary timeline 

Furthermore, we integrated these data with the TimeTree of life 

(www.timetree.org) (Hedges et al. 2015), that includes the tree of living species calibrated 

to time. The analysis of the number of genes placed along the evolutionary time-scale 

allowed visualization of the profile of human genes origin for the whole genome (genome-

wide) or for specific subsets of genes. In this genes/time profile, we calculated the number 

of protein-coding genes that had LCA corresponding to each clade (or level) in the 

taxonomy lineage (31 consecutive levels for human) and we identified certain levels where 

major changes occur. These are taken as most significant stages and proposed as key 

evolutionary hallmarks including specific sets of the human protein-coding genes that are 

identified.   

Figure 4-M-3. Workflow of analysis and integration carried out along this study after data normalization and 
filtering non-expressed genes. We started after filtering non-expressed genes (mean(FPKM) < 1 in all tissues) of 
RNA-seq dataset from Human Protein Atlas. Then, two parallel analyses were carried out to finally converge in a 
single co-expression network revealing relationships among differently aged genes. 
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4. Functional enrichment analysis and identification of gene modules 

For the functional enrichment analysis, we used DAVID (david.ncifcrf.gov) (Huang 

da et al. 2009) and GeneTerm-Linker (gtlinker.cnb.csic.es) (Fontanillo et al. 2011) 

bioinformatic tools with the list of genes from each evolutionary stage level of the human 

lineage. In all cases, the enrichment analyses were done using a hypergeometric test and 

adjusting the p-values for multiple testing with the Benjamini-Hochberg procedure 

(Benjamini and Hochberg 1995). In the same way, we also investigated the functional 

enrichment of the subnetworks generated by the clusters and modules found in the 

analysis of the gene co-expression network. 

 

5. Statistical analyses  

All the data analyses and graphics have been produced in the R statistic 

environment. General functions and statistical tools have been applied over the different 

data presented. Some specific methods or algorithms are cited along different sections of 

this chapter. 
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RESULTS AND DISCUSSION 
 

1. Human global transcriptome profile reveals a clear clustering of 
similar samples and tissues 

As we described above, the RNA-seq data from Human Protein Atlas project 

(Uhlen et al. 2015) is composed of 116 biological replicates from 32 different human 

tissues (after samples’ filter mentioned in Material and methods). First, we filtered those 

genes showing low expression values in all different tissues (mean(FPKM) > 1), remaining 

18545 genes. Density plots of value distributions before and after filter revealed how values 

close to zero have been notably reduced, which will allow us to work with expressed genes 

and avoid problems derived from such accumulation of zero or low gene expression signal 

(Fig. 4-R-1).  

Figure 4-R-1. Density plot of value distributions after normalization of RNA-seq dataset from Human Protein Atlas. 
(A) Density plot per tissue before and after filtering non-expressed genes. (B) Density plot using the whole dataset 
before and after filtering. 
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Attending to biological replicates, boxplots of value distributions showed in Figure 

4-R-2 point to a slightly variation of FPKM distributions across different tissues and 

replicates. However, since we will mainly work with non-parametric calculations like 

Spearman correlations, we considered that value distributions after filtering are enough 

robust to perform our analysis. 

Figure 4-R-2. Boxplots of the expression signal from each one of the RNA-Seq samples studied. These 
distributions of expression values represented correspond to the log2 of the (FPKM+1) signal for each one of the 
116 samples analysed, after filtering non-expressed genes. In total 32 different human tissues are included. 

 

As the first analysis, we conducted an unsupervised clustering analysis based on 

global expression correlation along 116 samples of 32 human normal tissues and displayed 

as square heatmap (Fig. 4-R-3). All genes after filter were used (18545 genes), generating 

a dendrogram from hierarchical clustering based on pairwise distances among samples (1 - 

Spearman correlation). As we can observe, we found a clear relationship among samples 

from the same tissue, which have been closely placed by this hierarchical clustering 

(agglomerative method). Moreover, similar tissues were also placed together, like spleen, 

lymph nodes and tonsils (lymphatic system) or stomach, duodenum, small intestine, rectum 

and colon (digestive system). Interestingly, the Spearman correlation distribution (top-left 

panel of Fig. 4-R-3) shows a maximum frequency around 0.80-0.85 values while testis 

tissue seems to be the most different human tissue due to its clear separated branch in the 

dendrogram. 

Additionally, a Principal Component Analysis was performed for the same 

transcriptomic data. Although the variability explained by main principal component was 

low (14.006%), those well-separated tissues at hierarchical clustering analysis were placed 

at the most distant positions from origin when we represent two main principal components 

(Fig. 4-R-4), like testis, brain or bone marrow. 
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Figure 4-R-3. Heatmap showing square correlation matrix of 116 biological replicates from Human Protein Atlas 
dataset. Spearman correlation was calculated while 1-Spearman correlation was used as the distance metric for 
agglomerative hierarchical clustering of samples. 

Figure 4-R-4. Principal Component Analysis of 116 samples from Human Protein Atlas dataset, after filtering non-
expressed genes.  
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2. Robust gene expression signal from house-keeping and tissue-
enriched genes 

 Attending to classical biology concepts, we could distinguish between House-

keeping (HKg) and Tissue-enriched (TEg) genes. Figure 4-R-5A shows the number of 

genes expressed, with mean(FPKM) equal or higher than 1, per number of tissues. The 

distribution is asymmetric, showing a great amount of ubiquitously expressed genes along 

different tissues (8961 genes). Particularly, 7668 out of these 8961 genes are expressed 

(FPKM equal or higher than 1) in all biological replicates (116 samples). The intersection of 

these 7668 genes with a curated dataset of 3804 house-keeping genes created by 

Eisenberg and colleagues (Eisenberg and Levanon 2013) gave a total of 3524 HKg (Fig. 4-

R-5C), indicating a large overlap of 93 %. Fisher’s exact test was calculated to assess the 

significance of this overlap (OR = 32.09 with 95 % confidence interval, 28.27–36.43; p-

value < 0.00001).  

 

Figure 4-R-5. The number of genes expressed along 32 tissues derived from RNA-seq transcriptomic data. (A) 
Plot showing the number of expressed genes per number of tissues. House-keeping genes as HKg while tissue-
enriched genes as TEg. (B) Comparison of the expression distributions of HKg versus TEg. (C) Venn diagrams 
showing the intersection of 7668 genes (expressed in all the biological replicates of all tissues) with the dataset of 
3804 house-keeping genes obtained from Eisenberg et al. (Eisenberg and Levanon 2013). 

 

The definition of tissue-specific genes is not an easy issue due to the possible 

differences among intra-tissue variabilities. Specific measurements have been designed in 

order to mitigate this problem (as explained in chapter II), like Z-score based on median 

and IQR (interquartile range) designed for GTEx dataset (Sonawane et al. 2017), involving 
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a posterior heuristic threshold for removing non-specific expression patterns. Here, the 

original Human Protein Atlas dataset (20344 genes and 116 samples) showed quite 

notable intra-tissue variability. Indeed, if we had substituted mean by median when the 

expression filter was applied, we would have obtained 18441 genes showing all tissues 

with median(FPKM)>1 instead 18545 genes for mean (18416 common genes). Similar to 

original authors of Human Protein Atlas dataset (Uhlen et al. 2015), we chose a more 

typical threshold (mean) to avoid False Negatives entering in our filtered dataset. For 

example, NEUROD2 has been reported as highly brain-specific gene (Chen et al. 2016) 

while GSTK1 is well known as house-keeping gene (Himmels et al. 2017) (Fig. 4-R-6). 

Figure 4-R-6. Examples of gene expression profiles of tissue-enriched (A) and housekeeping (B) genes from 
Human Protein Atlas dataset. Mean(FPKM > 1) was considered as threshold, which results in a similar threshold 
for log scale: log2(FPKM + 1) > 1. 

 



 

 
164 

Attending to these considerations, for the tissue-enriched genes analysis we 

explored the other side of the data in Figure 4-R-5A and considered just the genes that 

were expressed (mean(FPKM) > 1) in only one, two or three tissues (2459 genes). We did 

not take only one, but also two or three tissues, because some tissues are physiologically 

very related and in fact presented high correlation between them, for example: colon and 

rectum; small intestine and duodenum, etc. On the other hand, several tissues showed a 

notable differential behaviour (testis or brain) in the hierarchical clustering and PCA results 

with respect to other human tissues. Therefore, we expected an exclusive group of specific 

expression patterns supporting these evidences (Fig. 4-R-7B). Accordingly, figure 4-R-7A 

shows a heatmap of Spearman’s correlation across biological replicates based on tissue-

specific genes present in two or three tissues (1076 genes). These observations 

corroborated how related tissues share a common gene expression signal even if only 

tissue-specific patterns are considered.  

Figure 4-R-7. Analysis of co-occurrence for TEg in our RNA-seq dataset. (A) Pairwise Spearman correlation of 
biological replicates using only TEg appearing in two or three tissues (1076 genes). (B) Pie chart showing the 
frequency of tissues associated with TEg. 
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Finally, a global comparison of the expression distributions of HKg versus TEg 

indicated that the Tissue-enriched genes showed significantly lower expression values than 

the housekeeping genes (Fig. 4-R-5C). In order to demonstrate this difference, we 

conducted two different statistical tests, t-test (assuming normal distribution) and Wilcoxon 

(rank based test). Both p-values were very low (p-value < 1e-10) while the difference 

between the mean expressions of TEg and HKg was 1.61 (log2 scale). Interestingly, we 

can observe the variability of TEg was much larger than the variability of HKg, which could 

correspond to a tighter regulation of HKg to be considered in further analyses. 

 

3. Human gene hallmarks on the evolutionary time-scale 

 The evolutionary analysis was carried out through a phylostratigraphic approach for 

reconstruction of macro-evolutionary trends based on the principle of founder gene 

formation (Domazet-Loso et al. 2007).  Typically, these methods first identify the 

homologues of a given gene and then use the divergence between the two most distant to 

determine the gene age. Historically, such studies have been using BLAST (Altschul et al. 

1990) for homology searches. However, this approach was shown to introduce some 

biases into the analyses (Moyers and Zhang 2015, Moyers and Zhang 2016).  

Another approach is to use orthologous groups to determine the age of a gene. 

Orthologues are believed to be functionally more similar than paralogues (Koonin 2005) 

and by definition, they trace back to an ancestral gene that was present in a common 

ancestor of the compared species (Gabaldon and Koonin 2013). Consequently, the 

parameters used for clustering orthologous groups affect the age estimations for a gene; 

for instance, restrictive parameters tend to limit the set of possible progenitors (Capra et al. 

2013). Nevertheless, both approaches used for dating the gene origin depend on the 

correct identification of homologues and/or orthologues, but in the second case, the 

accurate reconstruction of orthologous families imposes a higher stringency, implying a 

conservation along the evolutionary clades. 

For our analysis, we identified the group of orthologues that corresponded to each 

of the 18545 genes detected in the transcriptomic study (after filtering non-expressed 

genes), mapping them to the corresponding human protein-coding genes in the OMA 

database (mapping of 18545 genes to 17437 proteins). Then, we assigned the Lowest 
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Common Ancestor (LCA) to each human protein according to its orthologous family. As 

hinted above, the use of OMA in comparison with BLAST homology approach gives us a 

more detailed view of gene origin since it uses a more restrictive grouping method. 

Thereby, the number of genes dated on ancient clades is lower.  

Figure 4-R-8. Evolutionary hallmarks of human protein-coding genes along time-scale. Plot presenting the relative 
number of human protein-coding genes, which are assigned to each of the 31 taxonomic clades (labelled in 
colours, legend). For each one of these taxonomy levels, the graph represents the cumulative percentage of 
protein-coding genes that are dated at such level. The 31 taxonomic clades are placed as dots along the time-
scale from the origin to present while arrows point to 8 main hallmarks. The black line includes all the 17437 
proteins derived from the mapping of expressed genes in OMA. The blue line includes only the HK genes: 3393. 
The red line includes only the TE genes: 2157. 

 

Once we identified the LCA for each human protein-coding gene, we assigned 

such protein/gene to the corresponding taxonomy level in the human lineage as defined in 

NCBI database, which includes 31 taxonomic groups as consecutive clades from the first 

one, named cellular organisms, to the last one Homo sapiens. Figure 4-R-8 presents these 

31 taxonomic clades placed along the time-scale (in million years ago, MYA) from the 

origin to present.  

As we can observe, we represented the cumulative percentage of dated proteins 

for each one of these taxonomy levels. First, we represented all the genes mapped to OMA 
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proteins (Fig. 4-R-8, black line in the graphic, that includes 17437 proteins); second, the 

same plot is produced but including only the proteins that correspond to House-keeping 

genes (Fig. 4-R-8, blue line includes 3393 proteins, HKg); third, plot including only the 

Tissue-enriched genes (Fig. 4-R-8, red line includes 2157 proteins, TEg). Interestingly, the 

analyses of these plots obtained with the phylostratigraphic method revealed the presence 

of some major differential steps on the emergence of protein-coding genes along the 

evolutionary time-scale from origin to present. Looking at all the expressed coding genes, 

we can see the global evolutionary profile of the organism (human), but along this profile, 

we can identify some more prominent steps in the accumulated relative number of genes 

along time. For example, a large increase is observed at the start of the curve of HK’s trend 

(blue line), from the first taxonomy level (origin, Cellular organisms) to second (Eukaryota) 

taxonomy level. By contrast, the TE’s line (red line) presents the major emergence of 

genes much later (around the Mammalia).  

Figure 4-R-9. Illustrated table showing data for the 8 evolutionary hallmarks of human protein-coding genes, 
separated in all human genes, HKg and TEg (from left to right). 

 

The complete timeline includes 31 phylogenetic clades (named in the figure 4-R-8 

legend), but by analysing these points it was possible to identify eight major steps or stage 

levels (what we called hallmarks) that appear on the human gene profile along evolutionary 

time. Moreover, we could assign the number of human protein-coding genes that emerged 

along each one of these eight stages for the three categories reported: all the expressed 

protein-coding genes mapped to OMA, the HK and the TE. The eight stage levels identified 

are: st1) Cellular organisms (Prokaryota); st2) Cellular organisms to Eukaryota; st3) 

Eukaryota to Metazoa; st4) Metazoa to Vertebrata; st5) Vertebrata to Euteleostomi; st6) 

Euteleostomi to Mammalia; st7) Mammalia to Primates; and st8) Primates to Homo 

sapiens. All the numbers corresponding to the human protein-coding genes assigned to 
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each of these eight evolutionary hallmarks are included in the illustrated table in Fig. 4-R-9, 

that indicates how many are in each stage either considering the complete human gene set 

or just the HK or the TE. All the information about each one of the human protein-coding 

genes including the assignment to stages is also provided as Additional file 4 

(bioinfow.dep.usal.es/evolutionaryhallmarks). 

Figure 4-R-10. Boxplot showing distributions of (left) hallmark assignments and (right) time clade’s assignments 
for HKg and TEg. Significance was calculated by Wilcoxon test. 

 

The analysis of the hallmarks also reveals that the HK genes are more ancient than 

TE genes (Fig. 4-R-8 and 9). The HK genes present a major increase or expansion in 

stage 2 (Prokaryota to Eukaryota), with 1009 genes and a change of ≈ 30 % with respect to 

the total. By contrast, the TE genes show a major increase in stage 7 (Mammalia to 

Primates) with 799 genes and a change of ≈ 37 %. Alternatively, we also conducted a 

Wilcoxon rank test to compare if there is a significant late-emergence of TE genes in 

comparison with HK genes (Fig. 4-R-10). Whether we took hallmark’s assignments for both 

groups of genes as time clade’s assignments, there was a notable difference between 

housekeeping and tissue-enriched genes (p-value < 2.2·10-6) which also validates our idea 

about the late-emergence of tissue-enriched genes. 

These observations seem to indicate that house-keeping genes emerged early in 

evolution and, consequently, are older in age, knowing that they reflect more essential and 

constitutive functions. This idea relating gene essentiality to older genes was previously 

reported in several studies, for example on yeast and mammalian genes (Alba and 

Castresana 2005, Abrusan 2013). By contrast, the observations that human tissue-specific 
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genes had emerged later in evolution may reveal that human-specific cellular or 

physiological roles are implemented at molecular level by the appearance of newer 

functional genes. 

 

4. Gene age data comparison 

As indicated above, there are some studies that use the phylostratigraphic method 

to explore the age of human genes, but most of these studies use sequence similarity 

search (with algorithms like BLAST) to look for the oldest homologues to the human (Alba 

and Castresana 2005, Domazet-Loso and Tautz 2008, Neme and Tautz 2013). To 

compare the results on human gene age assignment done in this work with alternative 

available age assignments, we took the published data from Domazet-Lošo (Domazet-Loso 

and Tautz 2008) and from Neme (Neme and Tautz 2013), and we represented the 

information about allocation to Lowest Common Ancestor (LCA) of the human genes in 

phylogenetic clades of the evolutionary tree. The assignments were done using 15 

common phylostratum to allow the comparison of the data.  

The results of this comparison are included in Figure 4-R-11 and they show a 

general similarity but some important differences. The most significant difference 

corresponds to the fact that both Domazet-Lošo (Domazet-Loso and Tautz 2008) and 

Neme (Neme and Tautz 2013) placed a very large number of genes on the first stage of 

the evolutionary time-scale that goes from the origin of life to first cellular organisms (i.e. 

pre-eukaryota): 8285 of 22,845 (36 %) and 7309 of 22,154 (33 %), respectively. This result 

denotes a bias that, as we indicated above, can be due to the methodology of using the 

homology search approach.  

In any case, the idea suggested that one third of the human proteome may have 

emerged in evolutionary time before the origin of eukaryotic cells needs deeper studies and 

it is not what we observed in our analyses. Another important difference is that the 

proposed age mapping allocates the largest number of genes, first, to the Chordata-

Vertebrata-Euteleostomi phylostratums (with 5070 genes) and, second, to the Mammalia-

Eutheria (with 2172 genes) (Fig. 4-R-11). From the evolutionary point of view these results 

make a lot of sense since the time-scale of life (Hedges and Kumar 2009, Hedges et al. 

2015) reveals two large expansions of the species precisely around the vertebrate’s time 
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(between 600 and 400 MYA) and around the time of the mammal’s appearance (between 

250 and 100 MYA). These expansions are well reflected in our time-scale profile (Fig. 4-R-

8). Finally, it is important to indicate that the age mapping presented in our study only 

considers human protein-coding genes that are included in orthologous families (mapping a 

total of 17437) and, thus, it has a lower coverage over human genes than the other 

reported studies which include more than 22000 genes in each case (Domazet-Loso and 

Tautz 2008, Neme and Tautz 2013). 

Figure 4-R-11. Comparison of different studies on the evolutionary origin of human genes. At left, the plot 
represents the same data included in the table (right panel) and both show a comparison of the assignment of the 
human protein-coding genes to the Lowest Common Ancestor (LCA) in phylogenetic clades of the evolutionary 
tree. The assignments were allocated to 15 phylostratums to allow the comparison of the data. Different datasets 
including our data correspond to different colours. 

 

5. Functional enrichment of the genes at different evolutionary 
hallmarks 

To improve the interpretation of the genes behind these hallmarks, we performed 

functional enrichment analyses of the sets of protein-coding genes included in each one of 

eight major stages found in the evolutionary study. The full results of these analyses are 

provided as tables within Additional file 5, available to download from original publication 

repository (http://bioinfow.dep.usal.es/evolutionaryhallmarks/). In all the stages, the 

functional enrichment makes clear biological sense and provides a strong support to the 

allocation of many biological processes in evolutionary time. We briefly comment and 

discuss some interesting functions enriched in each stage.  
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Stage-1, from the origin of life to first cellular organisms. 

This stage comprises the genes occurring over two major domains of life: Archaea 

and Bacteria. Determining the LCA, our data shows that human has 6.76 % (1178) of the 

protein-coding genes assigned to Prokaryotic age. Prokaryotes are organisms that lack 

both membrane-bound organelles and nucleus. Functional enrichment analysis showed 

that this stage involved many basic metabolic processes like glycolysis (GO:0006007, 

glucose catabolic process), the Krebs cycle (GO:0006099, tricarboxylic acid cycle), and 

lipid oxidation (GO:0009062, fatty acid catabolic process). The enrichment also shows the 

appearance of the oldest cellular organelle, the mitochondria, and the oldest 

macromolecular machine, the ribosome, that are well reported to be dated to Prokaryotic 

times. 

Stage-2, Cellular organisms to Eukaryota. 

According to basic literature, the defining feature of eukaryotic cells is that they 

have membrane-bound organelles, especially the nucleus, which contains the genetic 

material, and is enclosed by the nuclear envelope. Protists, fungi, animals, and plants all 

consist of eukaryotic cells. Eukaryotic cells also contain other membrane-bound organelles 

such as the Golgi apparatus. Eukaryotic organisms can be unicellular or multicellular. The 

functional enrichment analysis for the 2178 genes that emerged along this stage showed 

well the formation of the principal complexes expected in Eukaryotes. It is noteworthy that 

the enrichment on nuclear pore proteins, nuclear import proteins, nucleosome and 

chromatin proteins, as well as many proteins involved DNA and RNA activity: mRNA and 

rRNA processing, mRNA splicing, DNA unwinding, DNA polymerase, DNA/RNA helicase. 

This stage also marks in time the appearance and biogenesis of some major molecular 

complexes: the proteasome (GO:0005839, proteasome core complex), the spliceosome, 

and the ribosome (at this stage mainly the proteins of the large subunit RPLs, in contrast to 

the ribosomal proteins of the small subunit RPSs, that were mostly allocated to Prokaryotic 

age).  

Stage-3, Eukaryota to Metazoa.  

The third stage comprises organisms from Opisthokonta and Metazoan clades with 

1395 protein-coding genes (27.25 % cumulative). The Opisthokonts are a broad group of 

eukaryotes, including both the animal and fungi kingdoms, sometimes referred to as the 
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fungi/metazoan group (Parfrey et al. 2006). This stage comprises metazoan, fungal and 

protistan taxa, and other multicellular taxa (such as plants, or red and brown algae) 

(Medina et al. 2004). They also include known fungi and/or parasites of plants like 

Ascomycota, Basidiomycota, Chytridiomycetes, Glomeromycota, Microsporidia, 

Urediniomycetes, Ustilaginomycetes and Zygomycota (Adl et al. 2005). According to our 

functional enrichment analysis, this stage involves different genes responsible for signal 

transduction like the GTPases. Some of the enriched terms are pyrophosphatase activity, 

nucleoside-triphosphatase activity, GTP binding, transferring phosphorus-containing 

groups. All these functions indicate that it may be the time when phosphorus and phospate 

acquired a key role in protein function and regulation. Other enriched functions, like post-

translational protein modification, calcium- binding EF-hand, protein transport and 

localization also indicate cellular protein regulation.  

Stage-4, Metazoa to Vertebrata.  

This stage includes organisms from Eumetazoa, Bilateria, Deuterostomia, 

Chordata, Craniata, and Vertebrata with 2333 genes (40.63 % cumulative). The main 

novelties of this stage are the appearance of protein kinase activity, and the presence of 

growth factors and some specific signalling proteins like WNT. All biochemically 

characterized members of the WNT superfamily encode enzymes that transfer organic 

acids, typically fatty acids, onto hydroxyl groups of membrane-embedded targets (Hofmann 

2000). Other enriched terms in this stage, like sarcomere and contractile fibber part, may 

indicate the emergence of the muscular structures present in vertebrates (Neyt et al. 2000).  

Stage-5, Vertebrata to Euteleostomi.  

This stage represents the largest step in the human lineage according to the 

number of protein-coding genes assigned (5070), that correspond to a 29 % of the total. 

The stage comprises organisms from Gnathostomata (jawed vertebrates), Teleostomi 

(bony fish and tetrapods) and Euteleostomi (bony vertebrate) (Zhu et al. 2013). The 

enrichment analysis shows a large functional expansion including new biological systems, 

like the neural and the vascular-circulatory systems, represented in enriched terms like 

neurogenesis, neuron differentiation, axogenesis, voltage-gated channels, neuromuscular 

junction development, blood vessel development, vasculature development, mesenchymal 

cell development and differentiation, etc. Many other genes are assigned to biological 

regulation and regulation of cellular processes, including cell death and apoptosis. Finally, 
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the appearance of the large family of homeobox proteins seems to be placed at this stage. 

Stage-6, Euteleostomi to Mammalia.  

In this stage, there are organisms from Sarcopterygii (lobe-finned fishes) (Coates 

2009), Dipnotetrapodomorpha (new taxon from NCBI comprising lungfishes), Tetrapoda 

(four-legged vertebrates), Amniota (comprising the reptiles, birds and mammals that lay 

their eggs on land or retain the fertilized egg within the mother) and up to Mammalia 

clades. With 1953 genes at this stage, the human lineage achieves 80 % of its gene 

composition. The most relevant enriched terms are related to the hematologic system, 

marking the appearance of the leukocytes and the lymphocytes. Previous phylogenetic 

analyses based on gene expression data also placed the date of many proteins from 

leukocytes around the time of the mammals’ clade (Hughes and Friedman 2009).  

Stage-7, Mammalia to Primates.  

This stage comprises clades of Theria, Eutheria, Boreoeutheria, Euarchontoglires, 

and Primates, representing organisms that give birth to live young without using a shelled 

egg up to placental mammals (Myers et al. 2006). There are 2821 genes emerged on this 

stage, adding up to 97.08 % of the cumulative profile in the human gene lineage. A large 

number of these genes is enriched in the terms regulation of gene expression and 

transcription. Other more specific terms are related to the skin (epidermal and epithelial cell 

differentiation, keratinization) or with the sexual reproductive system (male gamete 

generation, spermatogenesis and sexual reproduction). This stage also includes a family of 

cytochrome P450 proteins (that are around 23) and the mammalian defensins (that are 6): 

DEFA1B, DEFA3, DEFA4, DEFA5, DEFA6, and DEFB4A. Defensins are a family of 

antimicrobial peptides and vital contributors to host immune response. Being constitutive or 

inducible expressed genes, they have been shown to contribute to innate host defence via 

direct bactericidal activity, as well as to adaptive immunity through effector and regulatory 

functions (Dhople et al. 2006). 

Stage-8, Primates to Homo sapiens.  

The last stage of human development, with 509 genes, presents a group of quite 

specific functions played by specific protein families, such as somatotropin hormone, 

cytochrome P450, GTPase activator activity, defence response to fungus and bacterium 

provided by histatins. HIS1 and HIS3 (histatin proteins) have been found only in saliva of 
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humans, macaques and some other primates but not in any other mammals (Sabatini et al. 

1993). They are a family of histidine-rich polypeptides that probably function as part of the 

non-immune host defence system and appeared very late in evolution (Sabatini et al. 

1993). Cytochromes P450 constitute a superfamily of proteins that existed in virtually all 

species from prokaryotes to humans. Most of these proteins in the CYP1, CYP2, CYP3 and 

CYP4 families encode enzymes involved in the metabolism and elimination of potential 

toxic compounds like drugs or foreign xenobiotics, and are inducible by various 

environmental stimuli (Nebert et al. 2013). This last stage includes a small subset of six 

cytochromes P450 that seem to be very specific of the primates-human clades: CYP2A7, 

CYP2C9, CYP2D6, CYP2J2, CYP2S1 and CYP3A43. The appearance late in evolution of 

some of these genes may reflect their functional specificity and it is known that they play a 

key role in human health (Nebert et al. 2013). 

 

6. Network analysis reveals evolutionary age conservation of co-
expressed proteins 

The global co-expression analysis of the human protein-coding genes allowed the 

construction of a network including highly correlated protein pairs. The integration of these 

data with the data from the evolutionary analysis –that provided the identification of the 

eight stages along evolutionary time– did allow mapping the age of the genes on the 

network according to such stages. These results are presented in Figure 4-R-12 that 

shows a complex network –like a galaxy– involving 1691 human protein nodes associated 

by 19615 interactions (Spearman’s correlation across human tissues from Human Protein 

Atlas dataset). 

This network corresponds to a subset of the co-expression data, build as indicated 

above, which included 2298 proteins and 20005 interactions (the full co-expression data is 

provided in Additional file 2 and the network in Additional file 3 of the original 

supplementary files: http://bioinfow.dep.usal.es/evolutionaryhallmarks/). The subset is done 

with only the groups that had at least five linked proteins since we wanted to provide in 

Figure 4-R-9 a visible representation of the network with a clear colour mapping of the 

eight stages. The colours of the stages are also presented in the illustrated table (Fig. 4-R-

6) to allow better identification of the number and % of proteins at each age hallmark. The 
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analysis of the network (Fig. 4-R-12) done with the algorithm MCODE revealed the 

existence of 11 major subnetworks, which can be considered as major constellations in the 

galaxy of relational nodes. The colour legend indicates that there is enrichment in certain 

colours in each subnetwork. To prove this further, we built a graphic representation for 

each one of the 11 subnetworks found to show the proportion of proteins assigned to each 

of the eight evolutionary stages with their corresponding colour code (colours as in Figure 

4-R-9 and 12).  

Figure 4-R-12. Human co-expression network mapping the evolutionary age on highly correlated nodes. 
Representation of the co-expression complex network –like a galaxy– that includes 1691 protein nodes related 
with 19615 interactions. The colour mapping of the nodes corresponds to the eight stages that were identified in 
the evolutionary study (as reflected in the labels included at the top right). The network also includes numbers for 
11 major subnetworks –clusters of closely related proteins that include more than 20 nodes– considered as major 
constellations in the galaxy of nodes. Three panels on the right show an enlarged view of three subnetworks 
corresponding to ribosomal proteins (5), mitochondrial proteins (10) and angiogenesis proteins (11) 

 

This graphic is presented as Figure 4-R-13, which shows each subnetwork with its 

specific colour pattern, indicating that there are always some predominant colours: 

subnetwork 5 is the oldest with red predominant colours and subnetwork 11 is the newest 

with blue predominant colours. As a conclusion, these results revealed that in the groups of 
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highly co-expressed proteins there is a tendency to include proteins of the same 

evolutionary age.  

Figure 4-R-13. The relative composition on proteins from different ages in the subnetworks found in the human 
co-expression network. Graphic plot representing, for each one of the 11 subnetworks found in the co-expression 
network, the proportion of proteins assigned to each of the 8 evolutionary stages. The stages are marked with 
their corresponding colour code indicated. 

 

Finally, we did a functional enrichment analysis of the proteins forming the 11 

subnetworks which again showed a coherent biological enrichment in specific functions: 

(subnetwork 1) immune response; (2) cell cycle; (3) cytoskeleton; (4) RNA splicing; (5) 

ribosome; (6) extracellular matrix; (7) muscle and contraction; (8) gametes and 

reproductive process; (9) cell junction and cell adhesion; (10) mitochondria and ATP 

synthesis; (11) angiogenesis and vasculogenesis. More detailed results for this analysis 

are presented in the illustrated table in Figure 4-R-14. Thus, we observed that age-related 

proteins are predisposed to present expression co-regulation and to have close functional 

links. 

Combining age data, functional data and co-expression data can provide a deeper 

view about the links and roles of the human protein-coding genes. We observed, for 

example, that subnetwork 5 (which contains proteins related with ribosome and translation) 

presented, as expected, an overwhelming majority of ancient genes from the Prokaryotic or 
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Eukaryotic age (stages 1 and 2). On the other hand, subnetworks 1 (immune response, 

leukocyte/lymphocyte activations), 8 (gametes and reproductive process) and 11 

(angiogenesis and vasculogenesis) showed a higher proportion of recent genes dated after 

Vertebrata (Fig. 4-R-14). These results agree with studies based on yeast protein physical 

interaction networks, arguing that proteins preferentially interact with proteins of same age 

and origin (Capra et al. 2010). Moreover, it was previously shown that co-expression 

networks can be conserved over the evolutionary history, and these genes tend to be 

functionally related and provide selective advantages (Stuart et al. 2003). It has been also 

reported that co-expression networks are found associated with functions like cell 

adhesion, cell cycle, DNA replication and DNA repair (Monaco et al. 2015), and this is in 

agreement with functions found enriched in subnetworks of our analyses: subnetwork 2 

and 9 (Fig. 4-R-13). 

Figure 4-R-14. Human co-expression network: functional enrichment of major subnetworks. Illustrated table 
showing a summary of the results from the functional enrichment analyses done with the proteins included in each 
of the 11 subnetworks labelled at the right and included in the network provided in Figure 4-R-8. The number of 
proteins (p) and interactions (i) that each subnetwork includes are also indicated. 
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7. Network analysis reveals tissue-specific clusters 

Since we successfully mapped evolutionary information over nodes of the co-

expression network, we investigated how clusters of replicates-tissues obtained using all 

genes in our RNA-seq dataset (18545 genes) are conserved by gene relationships within a 

co-expression network. Thus, we enlarged our previous network (Fig. 4-R-12) through 

filtering all gene correlations (r ³ 0.75; repeats = 100) in order to improve the visualization 

of tissue-specific clusters within the co-expression network.  

As we can observe in Figure 4-R-15, the new co-expression network is a highly 

dense network, now composed of 8634 nodes and 131197 edges. We mapped an 

additional layer of information on nodes about the number of tissues where each gene is 

expressed (mean(FPKM)>1), corresponding to previous analysis (Fig. 4-R-5). We 

effortlessly identified several clusters of tissue-specific genes within our network, which 

correspond to main tissue-relationships previously highlighted by replicates’ co-expression 

heatmap using not only all expression dataset (Fig. 4-R-3) but also tissue-specific genes 

(Fig. 4-R-7). For example, a highly specific cluster associated with gene expression of 

testis was found. It was expected because this RNA-seq dataset from Human Protein Atlas 

revealed a great differential expression signal from testis, also detected in our analysis for 

clustering samples (Fig. 4-R-3 and 4) and in our analysis of tissue-specific genes’ 

frequency (Fig. 4-R-7). Doubtless, testis was also reported as one of the most divergent 

tissues in terms of gene expression and protein concentration (Kosti et al. 2016).  

Interestingly, more close groups of tissues appeared as gene co-expression 

clusters of no tissue-specific genes (orange-like nodes) like digestive system, immune 

system, bone marrow or brain (Fig. 4-R-15). This result supports our previous idea that 

common restriction of the tissue-specific definition to a unique tissue could be wrong since 

many tissues are quite similar. Genes/proteins may vary slightly their expression along 

these related tissues, hindering our classification into tissue-specific or house-keeping 

when a selective threshold is applied. In fact, it has been well-described how 

multifunctional proteins interact with related proteins from different biological functions 

(Chapple et al. 2015), whose gene expression may correspond to these subtle expression 

differences.  
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Figure 4-R-15. Large co-expression network of 8634 nodes and 131197 edges, obtained by filtering all 
Spearman’s correlation lower than 0.75 (repeats = 100). A tissue-specific expression layer has been mapped over 
nodes (right legend), highlighting several tissue-enriched subnetworks. Prefuse force directed layout was used to 
represent the whole network. 

 

We also found relationships among very similar genes within this large co-

expression network, like homeobox family or SPAT subfamily A (Fig. 4-R-15). This also 

suggested to us that a well-managed co-expression network may be an excellent approach 

to elucidate both global and specific relationships, even across gene families or tissue 

functions.  
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CHAPTER IV 

 

CONCLUSIONS 
 

Throughout Chapter IV, we presented a transcriptomic analysis of the human 

gene expression profiles along 32 tissues from the Human Protein Atlas project. This 

in-depth analysis yielded a global mapping of the activity of most human genes and of the 

links between them, revealing the expected association of samples from common 

physiological regions: the digestive system (stomach, duodenum, small intestine, colon and 

rectum), the hematopoietic and lymphatic system (bone marrow, lymph node, spleen, tonsil 

and appendix), the muscle (cardiac and skeletal muscle), the brain or the testis. 

Interestingly, we conducted an evolutionary study of the human protein-coding 

genes, placing them in the time-scale of the living species and revealing eight distinct 

hallmarks along such time-scale, showing that the housekeeping (HK) genes are more 

ancient than the tissue-enriched (TE) genes. As demonstrated above, the HK genes 

present significant emergence in stage 2 of the evolutionary profile, while the TE genes 

have the major appearance in stage 7. The functional enrichment study found coherent 

groups of terms and annotations assigned to the genes placed at each evolutionary stage. 

For example, in stage 1 there were many functional terms on essential metabolic 

processes, like aerobic respiration and mitochondrial activity; and in stage 2 there were 

enriched functions related to the nucleus and genome regulation, like chromatin and 

nucleosome assembly, DNA replication or mRNA processing. 

Finally, the study of the pair-wise correlation of the gene expression profiles along 

tissues allowed building human gene co-expression networks and find modules with 

functional and biological meaning. The mapping of the age of the protein-coding genes on 

these networks demonstrated the existence of tight links between age-related proteins, 

while the inclusion of tissue-enriched information denoted how reliable is a gene co-

expression network for reflecting both global and specific biological relationships. 
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GENERAL CONCLUSIONS 
 

Along the four chapters of this PhD dissertation, we have proposed and detailed 

Bioinformatics algorithms, methods or frameworks to approach major issues in current 

omic data analyses and interpretation of results. As general conclusions of this PhD, we 

can conclude the following statements:  

 

1. The proposed method DECO is able to deal with homo- and heterogeneous omic 

datasets, extracting all the relevant intra-variability through an exhaustive differential 

analysis designed as a resampling of samples (RDA), even when classical methods for 

differential analysis did not find significant signal. Thus, a proper feature’s categorization 

into a four model-types, including outlier omic profiles, was proposed to improve the 

interpretation of the results. 

 

2. DECO outperforms current methods for outlier profile detection on large and small 

omic datasets, providing a logical importance at scoring (Standard Chi-Square) significant 

features, decreasing from complete changes to mixed changes. 

 

3. The h-statistic proposed integrates both omic data dispersion and predictor-

response information (NSCA), providing a comprehensive lecture of the existing 

dependent structures among samples and biological features. We have demonstrated that 

it greatly enhances the stratification of samples, allows to disclose hidden subgroup of 

samples respect to the initial categories and highlights significant associations among 

samples and features. 

 

4. The deco R package comprises all steps of DECO method in a simple and friendly-

user protocol, consisting of three R functions: RDA, NSCA and a graphical report (PDF 

file). A full detailed vignette describing this protocol has been written for an easy handling 

of the user. 
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5. The cohesiveness statistic has been demonstrated as a simple and non-

parametric measurement to precisely select stable and differential features when 

phenotypical data is available. We have demonstrated that a simple assessment of the 

probability of “being close” is similar to the one VS all design. It allows to disclose stable 

patterns along samples even when there are no differences among averages, which may 

correspond to tissue-specific patterns or differential expression levels. 

 

6. Since it is a non-parametric statistic, cohesiveness can be applied to any type of 

omic data to assess the ability of any biological feature for discriminating among 

categories of samples or conditions. 

 

7. As a result of the collaboration with Marc Vidal’s laboratory, we proposed a new 

categorization of PSI-MI methods into meta-groups to avoid mismatches of manual 

curation done by different primary protein-protein interaction databases. Further 

investigations need be done about this primary issue for the creation of literature-based 

protein-protein interactomes. 

 

8. The proposed integration of protein-protein interaction networks with subcellular 

localization data establishes a good basis for testing new prediction subcellular 

localization approaches. Cross-talk among subcellular compartments from HI-III 

significantly matches with the most connected spaces according to Cell Atlas information, 

leading to new potential subcellular localizations for those proteins which should move to 

interact each other (shuttling proteins). 

 

9. The described integration of human co-expression network (Human Protein Atlas), 

orthologous identification (OMA through LCA) and evolutionary timeline (TimeTree) 

provides a successful framework to identify more conserved and correlated 

group/families of human protein-coding genes. This type of integration was intended of 

being extrapolated to other organisms or particular biological pathways and networks. 
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APPENDIX 1 
 

R vignette describing the use and required inputs to run DECO algorithm and 

DECO R package. This vignette is also available in the original R package, called deco, 
and in the website of Javier De Las Rivas’ laboratory (http://bioinfow.dep.usal.es/deco/). 
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Abstract

Here we present a tutorial to use DECO, a method to explore and find di�erences in heterogeneous

large datasets usually produced in biological or biomedical omic-wide studies. The method makes a

comprehensive analysis of multidimensional datasets (usually consisting on a collection of samples where

hundreds or thousands of features have been measured with a large-scale high-throughput technology,

for example, a genomic or proteomic technique). The method finds the di�erences in the profiles of the

features along the samples and identifies the associations between them, showing the features that best

mark a given class or category as well as possible sample outliers that do not follow the same pattern of

the majority of the corresponding cohort. The method can be used in a supervised or unsupervised mode,

it allows the discovery of multiple classes or categories and is quite adequate for patients stratification.
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1. VARIABILITY AND HETEROGENEITY IN HIGH-DIMENSIONAL DATA DECO R package

1. Variability and heterogeneity in high-dimensional data

Individual diversity and variability is one of the most complex issues to deal within high-dimensional studies
of large populations, as the ones currently performed in biomedical analyses using omic technologies. DECO
is a method that combines two main computational procedures: (i) a Recursive Di�erential Analysis
(RDA) that performs combinatorial sampling without replacement to select multiple sample subsets followed
by di�erential analysis; and (ii) a Non-Symmetrical Correspondence Analysis (NSCA) of di�erential
events that allow the characterization and assigment of features and samples in a common multidimensional
space, combining in a single statistic parameterization both the feature-sample changes detected and a
predictor-response information.

The statistical procedure followed in both parts of the method are detailed in the original publication [1],
but this brief vignette explains how to use DECO to analyze multidimensional datasets that may include
heterogeneous samples. The aim is to improve characterization and stratification of complex sample series,
mostly focusing on large patient cohorts, where the existence of outlier or mislabeled samples is quite possible.

In this way, DECO can reveal exclusive associations between features and samples based in specific di�erential
signal and provide a better way for the stratifycation of populations using multidimensional large-scale
data. The method is applied to data derived from di�erent omic technologies, for example: genome-wide
expression data obtained with microarrays or with RNA-seq (either for genes, miRNAs, ncRNAs, etc).
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Figure 1: Workflow of DECO algorithm.
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3. EXPERIMENTAL DATA DECO R package

2. Installation

The deco R source package can be downloaded from R CRAN repository or from our lab website (http:
//bioinfow.dep.usal.es/deco/). It can be installed by downloading and executing in UNIX-like terminal:
R CMD INSTALL /path/to/deco_1.0.tar.gz

or first choosing your nearest CRAN mirror using chooseCRANmirror() and executing in R:
install.packages("deco", type="source", dependencies = TRUE)

If any problem with dependencies are reported, user can download R packages directly from Bioconductor
repository and repeat previous instruction to install deco R package:
# Bioconductor dependencies
source("https://bioconductor.org/biocLite.R")
biocLite(c("AnnotationDbi", "foreign", "limma", "Biobase",

"gdata", "cluster", "gplots", "RColorBrewer",
"snowfall", "scatterplot3d", "made4", "locfit",
"lisp", "ade4", "sfsmisc"))

# Loading package in R
library(deco)

It can be also done using devtools R package to install dependencies from local directory (in this case the
user has to decompress .tar.gz previously):
# Loading devtools R package...
library(devtools)

# Installing dependencies. Path to directory containing decompressed R package
install_deps("/path/to/deco/",dependencies="logical")

# Loading package in R
library(deco)

This R package contains a experimental dataset as example and all functions needed to run an analysis.

3. Experimental data

At presernt, the method directly supports two types of data from transcriptomic technologies: microarrays
and RNA-seq platforms. In case of microarrays, robust normalization of raw signal is needed for correct
application of eBayes method (done for example with the RMA method or with normalizeBetweenArrays
method from LIMMA package [2]). Notwithstanding, RNA-seq read counts matrix (genes or transcripts as
rows and samples as columns) can be the input; and in this case then user should apply voom normalization
method [2]. Below, we show two di�erent examples of both types of datasets obtained with such platforms.

3.1 Microarrays dataset: study on lymphoma subtypes

Here, a normalized microarray gene expression matrix from clinical samples is used as example taken from
Scarfo et al.[3]. Anaplastic Large Cell Lymphoma (ALCL) is an heterogeneous disease with two well
di�erentiated forms based on ALK gene expression: ALK(-) and ALK(+). The dataset, obtained in GSE65823
from GEO database, corresponds to genome-wide expression profiles of human T-cell samples hybridizated on
A�ymetrix HGU133Plus2.0 platform, which were mapped to ENSEMBL genes with genemapperhgu133plus2cdf
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CDF package from GATExplorer [4]. The mapping from A�ymetrix probes to genes can be also done using
BrainArray CDF packages.

The main interest to include this dataset, to be analysed with DECO, is because using this sample set Scarfo
et al. [3] identified of a subset of patients within the ALK(-) class discovering high ectopic expression
of several gene markers. To do so, the authors applied one of the most used methods for detection of outliers
and heterogeneous behavior, that is COPA [5]. Further comparisons between COPA and other related
methods can be found in our paper about DECO [1]. The phenotypic information about this sample set
provided by GEO database were included in an ExpressionSet object. This R object called ALCLdata could
be directly loaded as follows:
data(ALCLdata)
# to see the ExpressionSet object
ALCLdata

# to see the phenotypic information
pData(ALCLdata)

Classes vector to run a supervised analysis (explained in following section) to compare both ALCL classes:
positiveALK and negativeALK.
classes.ALCL <- pData(ALCLdata)[,"Alk.positivity"]
names(classes.ALCL) <- sampleNames(ALCLdata)

3.2 RNA-seq dataset: study on breast cancer subtypes

Here, we show a RNAseq dataset analysed using DECO. The dataset was downloaded from The Cancer
Genome Atlas (TCGA). It is composed by 878 clinical samples from patients with di�erent subtypes of
Breast Cancer [6], that include the standard classes (given by markers ESR1, PGR and HER2) and two
classes associated to the cell-type, called: Invasive Ductal Carcinoma (IDC) and Invasive Lobular
Carcinoma (ILC). The genes of the dataset are mapped to HGNC symbol IDs. The dataset can be loaded
directly in R or downlad from the TCGA data portal:
# Load required R package to download data.
library(TCGA2STAT)
# Download complete Breast Cancer RNAseq counts matrix from TCGA database.
BRCA_count <- getTCGA(disease = "BRCA", data.type = "RNASeq",

type = "count", clinical=TRUE)

# Different slots included in the data (count matrix, clinical data and a merged matrix).
names(BRCA_count)
[1] "dat" "clinical" "merged.dat"

# Apply ’voom’ normalization from LIMMA R package to read count matrix
# It would return a log2_counts_per_million (logCPM) inside ’E’ slot.
BRCA_count$dat <- limma::voom(BRCA_count$dat, normalize = "quantile")$E

Then, user can run voom normalization method provided in LIMMA R package to calculates matrix of
logCPMs. Further information about voom normalization and its properties can be found in LIMMA R
package [2]. The normalized matrix is then analysed using the RDA method of DECO.

DECO is also able to analyse other RNAseq data types (RPKMs, FPKMs or TPMs values). The data are
usually log scaled. Here, we shown an example using data type RPKMs from TCGA database.
# Load required R package to download data.
library(TCGA2STAT)
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# Download complete Breast Cancer RNAseq RPKMs matrix from TCGA database.
BRCA_rpkm <- getTCGA(disease = "BRCA", data.type = "RNASeq2", clinical=TRUE)

# Different slots included in the data (count matrix, clinical data and a merged matrix).
names(BRCA_rpkm)
[1] "dat" "clinical" "merged.dat"

# Conversion to log2 scale, required to apply LIMMA.
BRCA_rpkm$dat <- log2(BRCA_rpkm$dat + 1)

3.3 Use of other omic platforms

Together with RNA-seq or microarray platforms, DECO algorithm can be applied to datasets obtained with
other omic platforms (as far as a correct normalization of the data per sample can be achieved).

In order to provide an example of other platform, we show an example of a miRNAs dataset from same
TCGA database used above:
library(TCGA2STAT)
# Download complete Breast Cancer miRNAseq rpmmms matrix from TCGA database.
BRCA_mirna <- getTCGA(disease = "BRCA", data.type = "miRNASeq",

type = "rpmmm", clinical=TRUE)

# Different slots included in the data.
names(BRCA_mirna)
[1] "dat" "clinical" "merged.dat"

# Convert ’rpmmm’ to log2 scale.
BRCA_mirna$dat <- log2(BRCA_mirna$dat + 1)

Additionally, more information about di�erent data platforms available for direct download to R environment
can be queried on TCGA2STAT R package vignette.
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4. RDA, Recursive Di�erential Analysis: Standard.Chi.Square

We proposed a recursive subsampling strategy which selects subsets of samples (from the di�erent classes) and
compares all against all (in an exhaustive search). When the number of combinations is very large a random
selection of all possible subsets is done. In order to obtain the best possible results, three parameters should
be taken into consideration before running the analysis: (i) the subsampling size called r (DECO method
calculates an optimal size of subsampling subsets if the user does not define it); (ii) number of subsets or
combinations, called iterations, to compare in this subsampling step; and (iii) adjusted.p.value threshold
for the di�erential tests or contrasts, called q.val and computed using eBayes from LIMMA [2].

Aiming to summarize all positive di�erential events (DE) for each feature (combinations with a lower
adj.p.value than threshold), Fisher’s combined probability test is applied to each final feature vector of
adj.p.values to obtain a Standard.Chi.Square, which will is not a�ected by type of analysis (supervised or
unsupervised) because it only takes into account number of positive DE events.

4.1 Supervised analysis

Depending on classes input vector, a supervised analysis compares just two types of samples (i.e. healthy
donors versus patients in a typical biomedical study). The decoRDA() RDA function will adjust the optimal
subsampling size r (that the user can modify) to explore all DE signal, and UP and DOWN events will be
taken into account for posterior NSCA. Here, an example of decoRDA function using ALCLdata dataset:
# if gene annotation will be required (annot = TRUE or rm.xy = TRUE)
library(org.Hs.eg.db)
# example of SUPERVISED design with Affymetrix microarrays data
sub <- decoRDA(data = exprs(ALCLdata), classes = classes.ALCL, q.val = 0.01,

rm.xy = T, r = NULL, cpus = 6, parallel = T, temp.path = getwd(),
control = "pos", annot = T, id.type = "ENSEMBL",
pack.db = "org.Hs.eg.db")

This RDA procedure generates an incidenceMatrix which counts di�erential events per gene (feature) per
sample. Thus, this matrix would contain just di�erential genes as rows and samples as columns with one
di�erential event at least.
dim(sub$incidenceMatrix)

The incidenceMatrix produced after the RDA, can reveal the important changes that mark an entire
subclass (grey boxes in Figure 1), as well as specific signal changes that mark a subclass of samples (red
boxes in Figure 1). As we can see in a simple example (Figure 1), both Gene 1 and Gene 2 seem to mark
two subclasses (or subtypes) inside each compared class, while Gene 3 and Gene 4 reflect the behaviour of
control and case classes respectively. Following the RDA step, the NSCA step analyses the numbers of the
incidenceMatrix. The NSCA analysis is also done splitting UP and DOWN changes when the algorithm is
run in supervised mode.

4.2 Unsupervised analysis

If classes input vector is empty, a unsupervised analysis is run comparing all against all samples taking
di�erent subsets (each combination of samples is unique) and looking for UP events. Then, those samples
which show any di�erential change with statistical significance will be counted. In order to clarify final results
of NSCA analysis, it is important to underline that just UP regulated events will be assigned to samples,
while both UP and DOWN regulation events are counted in the supervised analyisis explain above.
# if gene annotation will be required (annot = TRUE or rm.xy = TRUE)
library(org.Hs.eg.db)
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Figure 2: Example of an "incidence matrix" obtained after RDA for a SUPERVISED analysis.

# example of UNSUPERVISED design with RNA-seq data (log2[RPKM])
sub <- decoRDA(data = BRCA_rpkm$dat, q.val = 0.01, r = NULL, cpus = 6,

parallel = T, temp.path = getwd(), annot = T, rm.xy = T,
id.type = "SYMBOL", pack.db = "org.Hs.eg.db")

RDA procedure generates in this case an incidenceMatrix which counts just UP events per gene per sample.

Figure 3: Example of an "incidence matrix" obtained after RDA for a UNSUPERVISED analysis

4.3 Multiclass analysis

Together with supervised or unsupervised analyses, the method can be run for multiclass comparison, taking
subsets of samples from several classes identified a priori and forcing them to be compared. Then, we would
count di�erential events per feature per sample but there will not be mix between di�erent classes. Here, we
show an example of a breast cancer dataset (from Ciriello et al. [6], log2(RPKM+1) scaled) that uses the
well-defined PAM50 classes:
# Loading phenoData for TCGA paper (Cell 2012)
data(phenoData.BRCA.TCGA)
# Selecting samples with complete phenoData.
BRCA_rpkm$dat <- BRCA_rpkm$dat[, colnames(BRCA_rpkm$dat) %in%

phenoData.BRCA.TCGA[,"mRNA"]]
# Selecting IDC and ILC samples.
BRCA_rpkm$dat <- BRCA_rpkm$dat[, rownames(phenoData.BRCA.TCGA[
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!phenoData.BRCA.TCGA[,"Final.Pathology"] %in% c("Other","Mixed.IDC.ILC"),])]
# Creating a multiclass vector with PAM50 subclasses.
classes.PAM <- phenoData.BRCA.TCGA[colnames(BRCA_rpkm$dat), "PAM50"]
names(classes.PAM) <- rownames(phenoData.BRCA.TCGA[colnames(BRCA_rpkm$dat),])
# example of MULTICLASS design with RNA-seq data (log2[RPKM])
sub <- decoRDA(data = BRCA_rpkm$dat, classes = classes.PAM, q.val = 0.01,

r = NULL, cpus = 6, parallel = T,
temp.path = getwd(), annot = T, rm.xy = T,
id.type = "SYMBOL", pack.db = "org.Hs.eg.db")

4.4 Running the RDA function: decoRDA()

This vignette presented some examples of decoRDA() subsampling function for supervised and unsupervised

analyses (if user has two classes of samples or not). Now, details about all the input parameters which control
the RDA procedure are indicated:

• data input corresponds to our expression matrix with features as rows and samples as columns.

• q.val is the threshold imposed to the adjusted.p.value from LIMMA method in each iteration.

• r is the resampling size.

• temp.path defines a location in your computer where decoRDA() would save temporary results.

• classes is a character vector or factor indicating to which class each sample belongs.

• control is a character indicating which label has to be set as control class in a supervised analysis.

• rm.xy is a logical indicating if X or Y chromosome placed genes/proteins/features should be removed
before run RDA (requires id.type and annot inputs).

All the rest of parameters are used to annotate features or to establish a parallel computation of processes, so
they are explained within a longer and more detailed vignette included in the DECO R package.

5. NSCA, Non-Symmetrical Correspondence Analysis: h statistic

Once the frequency matrix of DE events or incidenceMatrix has been produced, DECO follows applying a
NSCA [7] procedure. NSCA allows analyse all dependencies and covariances between di�erential features
and samples placing them in the same relational space. Further information can be found in a more detailed
vignette included in the DECO R package and also in our original publication [1].

As a measure of this significant association, NSCA function returns a inner product matrix relating feature-
sample dependencies in the di�erential context. After the inner product matrix is generated, samples with
similar profiles (using all the genes that gave DE events over a threshold: pos.rep) are grouped together using
a hierarchical clustering based on Pearson correlation distances between samples: distij = 1 ≠ corr(pi, pj).

Additionally, all di�erent agglomeration methods to creates a dendrogram (see further information in hclust
R function) are assessed looking for the method that shows highest cophenetic correlation [8]. Thus, we
identify the best clustering procedure to make subclasses, choosing an optimal number of subclasses depending
on the best Hubber’s Pearson “ cutting this dendrogram.

5.1 Running the NSCA function: decoNSCA()

Here, we show an example of how user can run the second step of DECO:
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# It can be applied to any subsampling design (SUPERVISED or UNSUPERVISED) and
# any transcriptomic platform (microarray, RNAseq, methylation, etc)
deco_results_ma <- decoNSCA(sub = sub, v = 80, method = "ward.D",

k.control = 3, k.case = 3, samp.perc = 0.05, rep.thr = 5,
parallel = T, cpus = 6, rm.complete = F, overlap = T)

Several important input parameters of this decoNSCA() function can be set up by user. Further information
could be found in ?decoNSCA help page. Finally, this function will return an output R object deco that is
described in the following section.

6. Description of output results

slotNames(deco_results_ma)
[1] "featureTable" "NSCAcluster" "incidenceMatrix" "classes"
"pos.iter" "control" "q.val" "subsampling.call"
"deco.call"

After running NSCA function decoNSCA, the method produces an R object of deco class. The main slots
with relevant information inside this object are:

• featureTable is the main output table with the feature statistics and rankings.

• NSCAcluster contains the NSCA information and sample subclasses. It will be duplicated if a supervised

analysis is run.

• incidenceMatrix is the Absolute frequency matrix with DE events per sample used in the NSCA.

• Vector of classes with labels per sample. For unsupervised analysis it will be NA.

• Label set as control.

• q.val is the adjusted.p.val threshold previously defined.

• subsampling.call and deco.call correspond to both decoRDA and decoNSCA function calls.

Feature ranking and statistics

The main output table with relevant feature information from RDA, NSCA and subclasses searching
corresponds to featureTable.
dim(deco_results_ma@featureTable)
# Statistics of top-10 features
deco_results_ma@featureTable[1:10,]

The most relevant statistic derived from RDA technique is the Standard.Chi.Square. The amount of di�erential

events or Repeats that each gene (each feature) appears di�erentially changed among classes or samples
is also very important, and it is summarized in Standard.Chi.Square since this parameter weights the
significance of the DE. Genes with similar Repeats values which correspond to lower adj.p.value resemble
higher Standard.Chi.Square values, meanwhile genes with higher adj.p.value, or near q.val threshold imposed
by user, give lower Standard.Chi.Square values.

IDs Standard.Chi.Square Repeats adj.p.values h.Range Dendrogram.group
DE feature 1 250 100 ~ 0.01 3.26 2
DE feature 2 150 100 ~ 0.05 12.65 5
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Moreover, for supervised analysis the exprsUpDw character indicates if case class shows UP or DOWN
regulation of each feature. In some cases, several genes could follow deregulation in both classes for some
subgroup of samples, which we called change-type MIXED. This kind of change pattern could explain some
hidden characteristic of the samples and allows finding outliers: a subgroup of samples that only change in a
subset of genes. In this cases there are not di�erences between the mean or median for the whole classes, and
so classical methods like SAM or LIMMA do not find these patterns.

After RDA and NSCA analysis, the statistics referred to sample subclasses found is used to rank DE features
properly. In this way, h statistic obtained per feature is used to determine how each feature discriminates
each subclass found. As we mentioned above, this statistic combines both the DE changes and the predictor-
response relationship between features and samples, so it refers to feature’s discriminant ability. Furthermore,
Dendrogram.group helps to identify to which pattern belongs each feature and each sample within the h
statistic heatmap (decoReport() PDF report).

Sample subclasses membership

To see how samples are grouped into di�erent subclasses within class:
# If SUPERVISED analysis
sampleSubclass <- rbind(deco_results_ma@NSCAcluster$Control$samplesSubclass,

deco_results_ma@NSCAcluster$Case$samplesSubclass)
# If UNSUPERVISED analysis
sampleSubclass <- deco_results_ma@NSCAcluster$All$samplesSubclass
## Sample subclass membership
head(sampleSubclass)

Subclass
GSM1607016 "pos Subclass 1"
GSM1607017 "pos Subclass 1"
GSM1607018 "pos Subclass 1"
GSM1607019 "pos Subclass 1"
GSM1607021 "pos Subclass 1"
GSM1607024 "pos Subclass 2"

Additionally, we can print a brief summary of DECO analysis using summary or print native R functions.
## Example of summary of a ’deco’ R object (ALCL supervised/binary example)

summary(deco_results_ma)
# Decomposing Heterogeneous Cohorts from Omic profiling: DECO
# Summary:
# Analysis design: Supervised
# Classes compared:
# neg pos
# 20 11
# RDA.q.value Minimum.repeats Percentage.of.affected.samples NSCA.variability
# Thresholds 0.01 10.00 5.00 86
# Number of features out of thresholds: 297
# Feature profile table:
# Complete Majority Minority Mixed
# 12 87 197 1
# Number of samples affected: 31
# Number of positive RDA comparisons: 1999
# Number of total RDA comparisons: 10000

An extended report (as PDF file) including more detailed information of the analysis and several plots
illustrating all the results (as the bi-clustering approach to h statistic matrix) can be also produced with the
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decoReport() R function. Information about the extended report is included in longer and more detailed
vignette in the DECO R package.

7. Output reports

7.1 Generating a PDF report

DECO R package implements an additional function to help users to view and analyse the output results. It
contains a detailed representation of main results (subclasses found, main biomarkers, h statistic heatmap,
best feature profiles, feature’s overlapping signal. . . ). Here, we briefly describe how to run decoReport() R
function:
### microarray results
decoReport(deco_results_ma, sub, pdf.file = "Report.pdf",

info.sample = pData(ALCLdata)[,c("Type","Blood.paper"), drop = F],
cex.names = 0.3, print.annot = T)

### rnaseq results
decoReport(deco_results_rnaseq, sub, pdf.file = "Report.pdf",

info.sample = clinical.data.tcga[, 1:2, drop=F],
cex.names = 0.3, print.annot = T)

A main result of DECO analysis is the h statistic matrix derived from both combination of RDA and NSCA
information. In this way, decoReport() generates the heatmap representation of this h statistic matrix

that includes a double correlation analysis between samples and between features and two derived clustering
dendrograms. In this way the heatmap reveals subclasses of samples and feature patterns.

Further information about all plots included in the PDF report (decoReport()) can be found using help.
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Heatmap (based on double correlation and clustering of h matrix) including features found.
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Figure 4: Heatmap of h statistic values from DECO, included in PDF generated by decoReport() function.

7.2 Generating plots and profiles for a specific feature (i.e. gene profiling)

Additionally, plotDECOProfile() R function provides a way to visualize a single feature profile.

Here, we show the examples for two genes discovered by Scarfo et al. [3] in the analysis of the ALCL samples:
(i) ALK, that is the key gene-marker used by doctors to separate the two major subtypes of Anaplastic
Large Cell Lymphomas (in the analysis done with DECO, this gene shows a change-profile Complete

which supports the value of the gene to separate the ALCL samples); (ii) ERBB4, that was reported by
authors as biomarker of a new subclass found inside the negative ALCL samples (in the analysis done with
DECO, this gene shows a change-profile Minority indicating the existence of a subset of negative ALCL
samples that are separated from the rest).
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7. OUTPUT REPORTS DECO R package

### ALK gene profile
plotDECOProfile(deco = deco, id = "ENSG00000171094",

data = data, pdf.file = "ALK_ALCLdata.pdf",
cex.samples = 2, info.sample = pData(ALCLdata)[,c(9,8,10)])
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Figure 5: Search for the specific patterns for a feature within the profiles obtained with DECO. The figures
correspond to ALK gene and include a plot of its raw expression along samples and a plot of the h statistic
of this gene per subclass. This gene shows a change type COMPLETE. The h statistics per subclass found
are large for the controls ("positive" ALCLs), and constant and close to 0 for the "negative" ALCLs.
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7. OUTPUT REPORTS DECO R package

### ERBB4 gene profile
plotDECOProfile(deco = deco, id = "ENSG00000178568",

data = data, pdf.file = "ERBB4_ALCLdata.pdf",
cex.samples = 2, info.sample = pData(ALCLdata)[,c(9,8,10)])

ERBB4 gene: profile section

Raw data profile of: ENSG00000178568
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Figure 6: Search for the specific patterns for a feature within the omic profile derived from the RDA-NSCA
results. The figures correspond to ERBB4 gene and include a plot of its raw expression along samples and
a plot of the h statistic of this gene per subclasses. This gene shows a profile of change type MINORITY,
that reveals a di�erent behaviour for a subset of samples inside the "negative" ALCLs. The h statistics per
subclass found in this case do not change for the controls (blue boxes corresponding to "positive" ALCL
samples), but change a lot within the "negative" ALCL samples, indicating that is a clear marker of this
group (segregating a subtype inside that corresponds to negative subclass 2) (see also Figure 3).
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APPENDIX 2 
 

R script to iterative calculate all cohesiveness statistics per feature within an omic 
dataset, based on two or more categories of samples. 

  
############################################################################ 
############################################################################ 
#### Cohesiveness R script 
#### 
# Author: Fco. Jose Campos-Laborie (CiC-IBMCC, USAL-CSIC) 
# Salamanca, Spain. 
# Date: July 16th, 2018 
##  
## Cohesiveness statistic is intended as a feature selection method  
## to assess the probability of "being close" of any group of samples  
## within a feature. 
 
## R dependencies 
library(metap) 
 
#### INPUT: 
# mx = matrix with rows as features and columns as samples 
# cl = named vector with group of samples as values and names of samples as 
# names of 'cl'. 
# comb.p.val = "fisher" for Fisher's combined probability test or "z.score" for 
# Stouffer's method. 
# method = "complete" to consider all elements and "trimmed" to consider elements  
# after removing outliers from both tails. 
# trim = portion of outlier elements to remove for each category (from 0 to 1). 
 
 
cohesiveness <- function(mx, cl, comb.p.val = "fisher",  
                         method = "complete", trim = 0.01) 
{ 
  require(metap) 
   
  if(!method %in% c("complete","trimmed")) 
    stop("'method' must be 'complete' or 'trimmed'") 
  # ordering the matrix 
  mx <- mx[,names(cl)] 
  # counter for biological features 
  counter <- 0 
   
  # wrapper for all biological features 
  res <- t(apply(mx, 1, function(x) { 
    counter <<- counter + 1 
    cat("\rFeature: ",counter) 
    # ranking the feature 
    x1 <- rank(-x, ties.method = "random") 
    names(x1) <- names(x) 
     
    res <- sapply(unique(as.character(cl)), function(y) { 
      x2 <- x1 
      cl2 <- cl 
      ## Calculating gaps between elements of each group 
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      d <- diff(sort(x2[cl2 == y])) 
      ## Average, 'r' and 'n' 
      if(method == "complete"){ 
        avrg.samp <- mean(d) 
        r <- length(x2[cl2 == y]) 
        n <- length(x2) 
      } 
      if(method == "trimmed"){ 
        avrg.samp <- mean(d, trim = trim) 
        r <- length(x2[cl2 == y]) 
        n <- length(x2) 
        r <- r - ceiling(trim*r*2) 
        n <- n - ceiling(trim*r*2) 
      } 
      ## Calculating theoretical average and sd 
      avrg <- (n+1)/(r+1) 
      variance <- ((n+1)*(n-r)*r)/(((r+1)^2)*(r+2)) 
      std <- sqrt(variance) ## standard deviation 
      ## Z-score 
      z <- (avrg.samp - avrg)/(std/sqrt(r)) 
       
      return(c(z, pnorm(z)))}) 
  })) 
  colnames(res) <- c(rbind(paste(unique(as.character(cl)),"cohesiveness",sep = "_"), 
                           paste(unique(as.character(cl)),"p.value",sep = "_"))) 
   
  if(comb.p.val == "fisher"){ 
    ### Fisher's combination 
    summ <- apply(res[,seq(2,dim(res)[2],2)], 1, function(x) -2*sum(log(x))) 
    p.val <- 1 - pchisq(summ, df = dim(res)[2]) 
  } 
  else if(comb.p.val == "z.score"){ 
    ### Stouffer's Z-score 
    summ <- t(apply(res[,seq(2,dim(res)[2],2)], 1, function(x) 
unlist(sumz(x)[c("z","p")]))) 
    p.val <- summ[,"p"] 
    summ <- summ[,"z"] 
  } 
  ## Multiple correction of p-values 
  fdr <- p.adjust(p.val, method = "fdr") 
   
  res <- data.frame(res, summ, p.val, fdr) 
  return(res) 
} 
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APPENDIX 3 
 

Manual categorization of frequent PSI-MI methods into meta-groups to produce a 

non-redundant literature-based interactome. Deleted PSI-MI methods correspond to non-
reliable methods. 

 

MI_ID Name of the PSI-MI method PSI-MI TYPE 
Meta-group 

PSI-MI 
(proposed) 

If the PPIs come "from the same PubMed 
(PMID)" we unify to the meta-group: 

8 array technology binary 8 MI:0008 array technology 

81 peptide array binary 8 MI:0008 array technology 

89 protein array binary 8 MI:0008 array technology 

95 proteinchip(r) on a surface-enhanced 
laser desorption/ionization binary 8 MI:0008 array technology 

678 antibody array binary 8 MI:0008 array technology 

921 surface plasmon resonance array binary 8 MI:0008 array technology 

18 two hybrid binary 18 MI:0018 two-hybrid 

397 two hybrid array binary 18 MI:0018 two-hybrid 

398 two hybrid pooling approach binary 18 MI:0018 two-hybrid 

399 two hybrid fragment pooling approach binary 18 MI:0018 two-hybrid 

655 lambda repressor two hybrid binary 18 MI:0018 two-hybrid 

726 reverse two hybrid binary 18 MI:0018 two-hybrid 

727 lexa b52 complementation binary 18 MI:0018 two-hybrid 

728 gal4 vp16 complementation binary 18 MI:0018 two-hybrid 

1112 two hybrid prey pooling approach binary 18 MI:0018 two-hybrid 

1113 two hybrid bait and prey pooling 
approach  MI:1113 binary 18 MI:0018 two-hybrid 

1203 split luciferase complementation binary 18 MI:0018 two-hybrid 

2215 barcode fusion genetics two hybrid  binary 18 MI:0018 two-hybrid 

112 ubiquitin reconstruction binary 18 MI:0018 two-hybrid 

232 transcriptional complementation assay binary 18 MI:0018 two-hybrid 

369 lex-a dimerization assay binary 18 MI:0018 two-hybrid 

1356 validated two hybrid binary 18 MI:0018 two-hybrid 

30 cross-linking study binary 30 MI:0030 cross-linking 

31 protein cross-linking with a bifunctional 
reagent binary 30 MI:0030 cross-linking 
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34 display technology binary 34 MI:0034 display technology 

48 filamentous phage display binary 34 MI:0034 display technology 

66 lambda phage display binary 34 MI:0034 display technology 

84 phage display binary 34 MI:0034 display technology 

108 t7 phage display binary 34 MI:0034 display technology 

115 yeast display binary 34 MI:0034 display technology 

47 far western blotting binary 47  
12 bioluminescence resonance energy 

transfer binary 51 MI:0051 fluorescence technology 

55 fluorescent resonance energy transfer binary 51 MI:0051 fluorescence technology 

905 amplified luminescent proximity 
homogeneous assay binary 51 MI:0051 fluorescence technology 

1016 fluorescence recovery after 
photobleaching binary 51 MI:0051 fluorescence technology 

52 fluorescence correlation spectroscopy binary 52 MI:0052 fluorescence spectroscopy 

53 fluorescence polarization 
spectroscopy binary 52 MI:0052 fluorescence spectroscopy 

65 isothermal titration calorimetry binary 65   

77 nuclear magnetic resonance binary 77   

10 beta galactosidase complementation binary 90 MI:0090 protein complementation assay 

11 beta lactamase complementation binary 90 MI:0090 protein complementation assay 

90 protein complementation assay binary 90 MI:0090 protein complementation assay 

111 dihydrofolate reductase reconstruction binary 90 MI:0090 protein complementation assay 

231 mammalian protein protein interaction 
trap binary 90 MI:0090 protein complementation assay 

370 tox-r dimerization assay binary 90 MI:0090 protein complementation assay 

809 bimolecular fluorescence 
complementation binary 90 MI:0090 protein complementation assay 

1037 split renilla luciferase complementation binary 90 MI:0090 protein complementation assay 

1204 split firefly luciferase complementation binary 90 MI:0090 protein complementation assay 

1235 thermal shift binding binary 90 MI:0090 protein complementation assay 

99 scintillation proximity assay binary 99 MI:0099 scintillation proximity assay 

425 kinase scintillation proximity assay binary 99 MI:0099 scintillation proximity assay 

107 surface plasmon resonance binary 107   

114 x-ray crystallography binary 114   

411 enzyme linked immunosorbent assay binary 411   

417 footprinting binary 417 MI:0417 footprinting 

605 enzymatic footprinting binary 417 MI:0417 footprinting 

814 protease accessibility laddering binary 417 MI:0417 footprinting 

440 saturation binding binary 440   

729 luminescence based mammalian 
interactome mapping binary 729   

813 proximity enzyme linked 
immunosorbent assay binary 813   

888 small angle neutron scattering binary 888   



 

XXV 

 
1 interaction detection method MI:0001 deleted 1   

21 colocalization by fluorescent probes 
cloning deleted 21   

22 colocalization by immunostaining deleted 22   

23 colocalization/visualisation 
technologies deleted 23   

403 colocalization deleted 25   

25 copurification deleted 105   

10023 co-fractionation deleted 256   

105 structure based prediction deleted 260   

260 inhibitor small molecules deleted 330   

330 molecular source deleted 339   

339 undetermined sequence position deleted 363   

492 in vitro deleted 364   

493 in vivo deleted 403   

10018 protein-peptide deleted 418   

10020 affinity capture-RNA deleted 492   

10021 protein-RNA deleted 493   

256 RNA interference deleted 686   

1017 RNA immunoprecipitation deleted 1017   

363 inferred by author deleted 10018   

364 inferred by curator deleted 10020   

418 genetic deleted 10021   

686 unspecified method deleted 10023   

4 affinity chromatography technology indirect 4   

6 anti bait coimmunoprecipitation indirect 6   

7 anti tag coimmunoprecipitation indirect 7   

13 biophysical indirect 13   

16 circular dichroism indirect 16   

17 classical fluorescence spectroscopy indirect 17   

19 coimmunoprecipitation indirect 19   

20 transmission electron microscopy indirect 20   

27 cosedimentation indirect 27   

28 cosedimentation in solution indirect 28   

29 cosedimentation through density 
gradient indirect 29   

38 dynamic light scattering indirect 38   

40 electron microscopy indirect 40   

42 electron paramagnetic resonance indirect 42   

45 experimental interaction detection indirect 45   
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49 filter binding indirect 49   

51 fluorescence technology indirect 51   

54 fluorescence-activated cell sorting indirect 54   

67 light scattering indirect 59   

69 mass spectrometry studies of 
complexes indirect 61   

71 molecular sieving indirect 67   

91 chromatography technology indirect 69   

96 pull down indirect 71   

97 reverse ras recruitment system indirect 91   

104 static light scattering indirect 96   

226 ion exchange chromatography indirect 97   

227 reverse phase chromatography indirect 104   

254 genetic interference indirect 226   

257 antisense rna indirect 227   

276 blue native page indirect 254   

400 affinity technology indirect 257   

401 biochemical indirect 276   

402 chromatin immunoprecipitation assays indirect 400   

404 comigration in non denaturing gel 
electrophoresis indirect 401   

405 competition binding indirect 402   

406 deacetylase assay indirect 404   

410 electron tomography indirect 405   

412 electrophoretic mobility supershift 
assay indirect 406   

413 electrophoretic mobility shift assay indirect 410   

415 enzymatic study indirect 412   

416 fluorescence microscopy indirect 413   

419 gtpase assay indirect 415   

420 kinase homogeneous time resolved 
fluorescence indirect 416   

423 in-gel kinase assay indirect 419   

424 protein kinase assay indirect 420   

426 light microscopy indirect 423   

428 imaging techniques indirect 424   

434 phosphatase assay indirect 426   

435 protease assay indirect 428   

437 protein tri hybrid indirect 434   

510 homogeneous time resolved 
fluorescence indirect 435   

512 zymography indirect 437   

515 methyltransferase assay indirect 510   
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516 methyltransferase radiometric assay indirect 512   

588 3 hybrid method indirect 515   

663 confocal microscopy indirect 516   

676 tandem affinity purification indirect 588   

807 comigration in gel electrophoresis indirect 663   

808 comigration in sds page indirect 676   

825 x-ray fiber diffraction indirect 807   

826 x ray scattering indirect 808   

841 phosphotransferase assay indirect 825   

858 immunodepleted 
coimmunoprecipitation indirect 826   

859 intermolecular force indirect 841   

870 demethylase assay indirect 858   

872 atomic force microscopy indirect 859   

880 atpase assay indirect 870   

889 acetylase assay indirect 872   

892 solid phase assay indirect 880   

893 neutron diffraction indirect 889   

894 electron diffraction indirect 892   

920 ribonuclease assay indirect 893   

943 detection by mass spectrometry indirect 894   

944 mass spectrometry study of 
hydrogen/deuterium exchange indirect 920   

947 bead aggregation assay indirect 943   

949 gdp/gtp exchange assay indirect 944   

953 polymerization indirect 947   

963 interactome parallel affinity capture indirect 949   

964 infrared spectroscopy indirect 953   

968 biosensor indirect 963   

969 bio-layer interferometry indirect 964   

982 electrophoretic mobility-based method indirect 968   

990 cleavage assay indirect 969   

991 lipoprotein cleavage assay indirect 979   

997 ubiquitinase assay indirect 982   

1000 hydroxylase assay indirect 984   

1010 neddylase assay indirect 990   

1019 protein phosphatase assay indirect 991   

1022 field flow fractionation indirect 997   

1024 scanning electron microscopy indirect 998   
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1038 silicon nanowire field-effect transistor indirect 1000   

1086 equilibrium dialysis indirect 1005   

1103 solution state nmr indirect 1008   

1104 solid state nmr indirect 1010   

1147 ampylation assay indirect 1019   

1246 ion mobility mass spectrometry of 
complexes indirect 1022   

1247 mst(micro-scale thermophoresis) indirect 1024   

1311 differential scanning calorimetry indirect 1038   

1313 proximity labelling technology indirect 1086   

1314 proximity-dependent biotin 
identification indirect 1103   

2189 avexis(avidity-based extracellular 
interaction screening) indirect 1104   

979 oxidoreductase assay  MI:0979 indirect 1138   

984 deamination assay  MI:0984 indirect 1147   

998 deubiquitinase assay  MI:0998 indirect 1246   

1005 adp ribosylase assay  MI:1005 indirect 1247   

1008 sumoylase assay  MI:1008 indirect 1311   

1138 decarboxylation assay  MI:1138 indirect 1313   

1354 lipase assay  MI:1354 indirect 1314   

59 gst pull down indirect 1354   

61 his pull down indirect 2189   
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