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Finding the diameter of a dataset in multidimensional Euclidean space is a well-estab-
lished problem, with well-known algorithms. However, most of the algorithms found in 
the literature do not scale well with large values of data dimension, so the time com-
plexity grows exponentially in most cases, which makes these algorithms impractical. 
Therefore, we implemented 4 simple greedy algorithms to be used for approximating 
the diameter of a multidimensional dataset; these are based on minimum/maximum 
l2 norms, hill climbing search, Tabu search and Beam search approaches, respective-
ly. The time complexity of the implemented algorithms is near-linear, as they scale 
near-linearly with data size and its dimensions. The results of the experiments (con-
ducted on different machine learning data sets) prove the efficiency of the implemented 
algorithms and can therefore be recommended for finding the diameter to be used by 
different machine learning applications when needed.

1. Introduction
The K-nearer neighbor (KNN) classifier, its variants and the nearest neighbor search approaches in general are 
some of the most used approaches in machine learning for their simplicity, common use and various applica-
tions. These approaches depend mainly on finding similarities in feature space; Euclidean distance is one of 
the most used. Sometimes, finding similarity is the only option available, as in content-based image retrieval 
(Hassanat & Tarawneh, 2016). Finding the diameter in the Euclidean feature space is vital for some methods in 
different machine learning tasks, such as clustering and classification. These applications include, but are not 
limited to, data clustering for images database (Gudivada & Raghavan, 1995), pattern recognition, web clus-
tering (Broder, et al., 1997), Outlier Detection (Aggarwal, 2016), approximate furthest neighbor applications 
(Pagh, et al., 2015), Euclidean graphs (Supowit, 1990) and computational geometry (Williams, 2018).

The diameter or furthest pair problem can be defined as follows: given a finite set S of points of size n in 
d-dimensional Euclidean space Ed, find the maximum Euclidean distance between two pairs of points from data 
points given. This problem is different from the furthest neighbor problem (Pagh, et al., 2017).

The diameter is solvable using a brute force algorithm (BF), which is based on comparing the distance be-
tween each point and all the other points, and after all comparisons, it returns the maximum distance. The time 
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complexity is therefore O(n.n.d), which is impractical for data with large values of n and/or d. On the contrary, 
the nearest-neighbors problem is solved optimally in quasilinear time O(n log n); however, an optimal solution 
in similar time for the diameter problem is not achieved so far (Agarwal, et al., 1992) and (Williams, 2018). 
We found several efficient algorithms in the literature for the diameter problem if the data is of two dimensions 
such as the work of (Preparata & Shamos, 1985), or three dimensions such as the works of (Clarkson & Shor, 
1989), (Chazelle, et al., 1992), (Matoušek & Schwarzkopf, 1993), (Ramos, 1997), (Bespamyatnikh, 1998) and 
(Ramos, 2000); nevertheless, they all cannot be extended to higher dimensional spaces. (Finocchiaro & Pel-
legrini, 2002).

Less efficient algorithms, regardless the size of the dimension, include the work of (Yao, 1982), who pro-
posed several algorithms including the minimum spanning tree and the diameter in d dimension with O(n2) 
time. With approximation of √3 (Eg̃eciog̃lu & Kalantari, 1989) proposed an iterative approach costs O(n.d) 
for each iteration with m iterations, where m ≤ n. They showed that m might reach n in the worst case and thus 
become O(d.n2). Yao’s algorithm is faster than the BF, since the d is not counted here. While the performance 
of Eg̃eciog̃lu and Kalantari’s algorithm converges to that of the BF in the worst case, when m=n, however, this 
is rare to happen and depends mainly on the dataset itself, as shown by (Eg̃eciog̃lu & Kalantari, 1989). (Agar-
wal, et al., 1992), solved the problem with (1 + ɛ)-approximation in O(n ɛ(1-k)/2 log n) time. With a similar 
approximation, (Finocchiaro & Pellegrini, 2002) propose a solution with O(d.n.logn+n2) time. In the same year, 
another similar approximation is achieved by (Chan, 2002) who proposed a recursive algorithm to solve the 
problem with O(n+1/ɛ3(d-1)/2) time. The same approximation is also maintained by (Agarwal, et al., 2005) who 
utilize a paradigm called Coresets for approximating various extent measures of a set of points, this approxi-
mation is then used to find a number of different measures including the diameter, which can be calculated in 
O(n+1/ɛd-(3/2)) time. Similar approximation is also achieved by (Imanparast, et al., 2016) with O(n+1/ ɛd-2) time. 
(Har-Peled, 2001) proposed a practical algorithm with quadratic time in worst case; however, the running time 
is sensitive to the input dataset and can be approximated by O((n+1/ɛ3(d-1)/2) log 1/3).

According to (Williams, 2018), the best known algorithms for solving the furthest pair problem in d di-
mensional Euclidian space still have running time bounds of the form O(n2-1/θ(d)), which is barely sub-quadratic. 
Most of the algorithms found in the literature are quadratic or sub-quadratic in terms of the number of points, 
or exponential in terms of the number of dimensions d, as these algorithms assume (in a way or another) that d 
<< n. However, having large values of d (like in the case of machine learning datasets) makes such algorithms 
impractical, particularly in online applications. One of the reasons behind the long time consumed by these 
algorithms is due to the quality of approximation, as most of these algorithms attempt to satisfy a specific 
pre-defined approximation goal ɛ, where ɛ differs from paper to another, e.g. 0< ɛ ≤1 (Agarwal, et al., 1992), 
and √3 (Eg̃eciog̃lu & Kalantari, 1989), etc. Table 1 summarizes the time complexity of the well-known state-
of-the-art algorithms.

The purpose of this paper is to trade off some quality by not being committed to a predefined constraint, 
implementing near-linear time approximate algorithms, which are based on greedy approaches to solve the 
diameter problem. The greedy approaches used are Minimum/Maximum Norms, Hill climbing, Tabu search 
and Beam search. We need faster algorithms to be used for a larger project on approximate nearest neighbor 
classifier, and since such a classifier is approximate by its nature, a more approximate (lower quality) furthest 
pair algorithm may not affect its performance.
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Table 1: Summary of time complexity of state-of-the-art diameter’s algorithms of n points in d dimensions

Method Reference Time complexity

M1 (Imanparast,  
et al., 2016) ) (1)

M2 (Agarwal,  
et al., 1992) ) (2)

M3 (Yao, 1982)
 (3)

where 

M4 (Eg̃eciog̃lu 
& Kalantari, 
1989)

 (4)
where 

M5 (Finocchiaro 
& Pellegrini, 
2002)

 (5)

M6 (Agarwal,  
et al., 2005) ) (6)

M7 (Chan, 2002) ) (7)

M8 (Har-Peled, 
2001)  

(8)

2. Implementation of the Greedy Algorithms
The following algorithms are implemented using Microsoft Visual studio C++ and tested on several machine 
learning common datasets.

2.1. Minimum/Maximum l2 norms
This algorithm is implemented based on finding the l2 norms for each point. Then it stores k points of those 
having the minimum l2 norms, and k points of those having the maximum l2 norms. Here, we choose k to be 
log n for time complexity purposes. Some machine learning datasets use negative values, and since the norm 
of a point with negative values might equal to a different point, we opt for translating all points by subtracting 
the minimum of each dimension of all points. The stored k points (log n) are then compared using brute force 
algorithm to find the furthest points (the diameter of the dataset). See Algorithm (1). Finding the norms takes 
O(n.d) time, finding the k maximum and minimum norms takes O(2nlogn) time, and the brute force comparison 
O(d. log n . log n) time. The total time complexity of this algorithm is

 (9)

We cannot further simplify equation (9), because it depends on both n and d values, if d is a large value then 
the time complexity might be sub-linear, while if n >> d it might be a quasilinear time.
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ALGORITHM 1: Minimum/Maximum l2 norms (assuming all points are already shifted)
Input DATA: A data set of n points and d dimensions of real numbers, and a constant k.
Output MAX: The approximate diameter (the distance between the approximate furthest points)
for each point i in DATA, do calculate its l2 normi end
Store the points of the minimum k norm in Set1
Store the points of the maximum k norm in Set2
MAX ← 0
for each point i in Set1, do

for each point j in Set2, do
D ← l2 (Set1[i], Set2[j])
if D > MAX then MAX ← D

end
end
return MAX

2.2. Hill climbing implementation
This algorithm is inspired by the work of (Le Bourdais, 2015), which is about finding the furthest neighbors. 
This algorithm works by selecting a random point, then finding the furthest point by comparing all points, then 
the new point is taken to be compared with all the other points. Thus it keeps running that way keeping track of 
the points with the maximum distance until no further enhancement – i.e., no new points with a distance greater 
than the current distance. See Algorithm 2. This algorithm depends mainly on the number of iterations as each 
iteration costs O(n.d) time. The number of iterations depends on the nature of the data and the random starting 
point. The number of iterations is normally constant k << n, and therefore, the time complexity is

 (10)

ALGORITHM 2: Hill climbing
Input: DATA; A data set of n points and d dimensions of real numbers.
Output: MAX; The approximate diameter (the distance between the approximate furthest points)
P1 ← random point (1, n)
MAX ← 0
for each point pi in DATA, do

D ← l2 (P1, pi)
if D > MAX then
MAX ← D

P2 ← pi
end

end
Stop ← false
while not Stop, do

MAX2 ← 0
for each point pi in DATA, do

D= l2 (P2, pi)
if D > MAX2 then
MAX2 ← D

P3 ← pi
end

end
if MAX2 > MAX then

P1 ← P2
P2 ← P3
MAX ← MAX2

else Stop ← true
end

end
return MAX
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2.3. Tabu search implementation
This algorithm is an attempt to increase the accuracy of The Hill climbing approach by storing all points with 
the same maximum distance. Hence, it is similar to the Algorithm (2) except for two differences: a) it uses a 
queue to store all points with the maximum similar distance, and b) it uses a binary array to keep track of visited 
points. See Algorithm 3. Obviously, this algorithm consumes more time, as the compared point might have two 
or more points with the same maximum distance, and this increases the number of iterations per point; this sit-
uation is more likely to occur in large datasets. The time complexity is similar to Equation (10) but with larger 
k in many cases, as it needs extra O(k.n) time to find all similar maximum distances, this makes the total time 
complexity

 (11)

ALGORITHM 3: Tabu search
Input: DATA; A data set of n points and d dimensions of real numbers.
Output: MAX; The approximate diameter (the distance between the approximate furthest points)
P1 ← random point (1, n)
MAX ← 0
Initialize Boolean array Visited ← false for all points
Initialize real array Distances ← 0 for all points
for each point pi in DATA, do

Distancesi ← l2 (P1, pi)
if Distancesi > MAX then MAX ← Distancesi end
end

for i ←1 to n
if Distancesi = MAX then
P2 ← pi

Push (P2) to QUEUE
end

end
while QUEUE is not empty, do

P3 ← POP from QUEUE
if Visited [P3] continue else Visited [P3] ← true
Initialize real array Distances ← 0 for all points
for each point pi in DATA, do

if Visited [pi] continue; end
Distancesi ← l2 (P3, pi)
if Distancesi > MAX then MAX ← Distancesi ; end

end
for each i in Distances , do Push (pi) to QUEUE iff Distancesi = MAX; end

end
return MAX

2.4. Beam search implementation
Doing multiple runs on different random points would enhance the performance of Algorithm 2. However, such 
an approach would not share information among runs, which allows for visiting the same point several times, 
and this increases time consumed without a significant increase to the accuracy. Therefore, we opt for Beam 
search approach, which seeds different random points to start “climbing” with. Such an approach can share 
information of visited points and save some time instead of re-calculating unneeded distances. Here we opt for 
20 as the Beam size (B), this number can be changed to any other number. However, we think this number is 
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relatively small, and the algorithm might provide better results. See Algorithm 4. The time complexity is not 
necessarily 20 times the time complexity of Algorithm 2 because of the visited points’ information used by the 
algorithm; however, it should take longer. The time complexity is

 (12)

ALGORITHM 4: Beam search
Input: DATA; A data set of n points and d dimensions of real numbers.
Output: MAX; The approximate diameter (the distance between the approximate furthest points)
B ← 20 // Beam size can be any number > 0 and < n
Initialize Boolean array Visited ← false for all points
for i ←1 to B

P1 = random point (1, n)
MAX ← 0
for each point pi in DATA, do

D ← l2 (P1, pi)
if D > MAX then MAX ← D; P2 ← pi ; end

end
Push (P2) to QUEUE

end
while QUEUE is not empty, do

P3 ← POP from QUEUE
if Visited [P3] continue; else Visited [P3] ← true; flag ← false; end
for each point pi in DATA, do

if Visited [pi] continue; end
D ← l2 (P3, pi)
if D > MAX then MAX ← D; P1 ← pi ; flag← true; end

end
if flag=true then Push (P1) to QUEUE ; end

end
return MAX

3. Data
Since this work concerns finding the diameter of machine learning datasets, we used several real-world datasets 
downloaded from the UCI Machine Learning Repository (Lichman, 2013) to evaluate the implemented algo-
rithms, in addition to the “Colors” and “Nasa” datasets, which are obtained from SISAP (Figueroa, et al., 2007). 
The chosen datasets are varied in dimensions, ranges, and data types. Table 2 describes the data.
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Table 2: Sample of machine learning datasets with different data types, n, d and ranges

#Dataset Name n d Data Type Range

D1 Iris 150 4 real [0.1,7.9]

D2 Haberman 306 3 digits [0,83]

D3 Glass 214 9 real [0,75.41]

D4 Liver 345 6 digits [0,297]

D5 Balance 625 4 digits [1,5]

D6 Wholesale 440 7 digits [1,112151]

D7 Vowel 528 10 real [-5.211,5.074]

D8 Banknote 1372 4 real [-13.7731,17.9274]

D9 Diabetes 768 8 real [0,846]

D10 Cancer 683 9 digits [0,9]

D11 Vote 399 16 digits [0,2]

D12 Heart 270 25 real [0,564]

D13 BCW 699 10 digits [1,13454352]

D14 Monkey1 556 17 Binary [0,1]

D15 Ionosphere 351 34 real [-1,1]

D16 Sonar 208 60 real [0,1]

D17 Vehicle 846 18 digits [0,1018]

D18 German 1000 24 digits [0,184]

D19 Phoneme 5404 5 real [-1.82,4.38]

D20 Parkinson 1040 27 real [0,1490]

D21 Australian 690 42 real [0,100001]

D22 QSAR 1055 41 real [-5.256,147]

D23 Segmen 2310 19 real [-49.68,1386.33]

D24 Waveform21 5000 21 real [-4.2,9.06]

D25 Waveform40 5000 40 real [-3.97,8.82]

D26 EEG 14980 14 real [86.67,72]

D27 letter-recognition 20000 16 digits [0,15]

D28 Nasa 40150 20 real [-1.33224,1.8424]

D29 Colors 112682 112 real [0,1]
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4. Results and discussion
We implemented the greedy algorithms using C++ language on a personal computer with Intel® Pentium® 
CPU G630 @ 2.70 GHz, 4 GB of RAM and a 32-bit operating system. The performance of these algorithms is 
evaluated on the datasets shown in Table 2. The evaluation is based on both accuracy and time consumed. We 
will refer to the greedy algorithms (1, 2, 3 and 4) as A1, A2, A3, and A4, respectively. Tables 3 and 4 show the 
performance of these algorithms in terms of time consumed and accuracy achieved.

Table 3: Time and number of iterations used by each of the proposed algorithms

Method
Data

Time Iterations

BF A1 A2 A3 A4 BF A1 A2 A3 A4

D1 14 0 0 0 2 11175 2 4 4 25

D2 55 0 0 0 5 46665 2 3 4 23

D3 38 0 0 0 5 22791 2 3 4 24

D4 85 0 1 0 7 59340 2 3 4 23

D5 243 0 1 0 14 195000 2 3 4 31

D6 144 0 1 0 10 96580 2 3 4 23

D7 249 0 2 1 15 139128 2 3 4 23

D8 1180 0 3 2 26 940506 2 3 4 25

D9 473 0 2 1 20 294528 2 3 4 24

D10 365 0 2 1 22 232903 2 3 4 30

D11 161 0 2 1 15 79401 2 3 4 25

D12 92 0 1 1 12 36315 2 3 4 23

D13 399 0 2 1 19 243951 2 3 4 23

D14 306 0 1 22 29 154290 2 2 29 36

D15 239 0 3 2 30 61425 2 2 4 28

D16 125 0 3 2 27 21528 2 3 4 27

D17 859 0 4 3 36 357435 2 3 4 23

D18 1244 0 6 3 48 499500 2 3 4 25

D19 19862 1 14 9 134 14598906 2 3 4 29

D20 1685 0 7 5 59 540280 2 3 4 23

D21 789 1 6 5 42 237705 2 3 4 23

D22 2122 1 10 6 75 555985 2 3 4 23

D23 6327 1 12 16 95 2666895 2 3 6 23

D24 45045 3 48 24 414 12497500 2 3 4 26

D25 86034 5 108 90 889 12497500 2 4 4 31

D26 290055 6 69 49 520 112192710 2 3 4 23

D27 468757 7 103 70 935 199990000 2 3 4 28

D28 2176035 16 351 190 2215 805991175 2 4 4 27

D29 49979645 175 2281 133296 23015 2053592925 2 3 182 31
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As can be seen from Table 3, A1 consumed the least time, and this is expected since the dominant O(n.d) time 
is used only twice. The Beam Search algorithm (A4) consumed more time and iterations, because it starts with 
20 random points; however, interestingly, the number of iterations is not proportional with the initial seed (20) 
because of the memory used, as visited points are not re-calculated by A4. A2 and A3 came in between in terms of 
time and number of iterations, and were almost similar, with some increase in number of iterations, and this is due 
to the maximum equal distances, which depend mainly on the dataset itself. There is a large increase in number 
of iterations (and therefore time) when calculating the diameter for D4 (Binary data) and D29 (data rang [0,1]), 
such kind of data with many zeros and ones allows for similar distances between points, as the permutations of 
the same number of zeros and ones make different points in the feature space but with similar Euclidean distance.

Table 4: The diameters of the tested datasets after applying the proposed methods

Method
Data

Diameter Approximation

BF A1 A2 A3 A4 BF A1 A2 A3 A4

D1 7.09E+00 7.09E+00 7.09E+00 7.09E+00 7.09E+00 0 0.0 0.0 0.0 0.0

D2 6.40E+01 6.40E+01 6.40E+01 6.40E+01 6.40E+01 0 0.0 0.0 0.0 0.0

D3 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 0 0.0 0.0 0.0 0.0

D4 2.95E+02 2.92E+02 2.95E+02 2.95E+02 2.95E+02 0 3.9 0.0 0.0 0.0

D5 8.00E+00 8.00E+00 8.00E+00 8.00E+00 8.00E+00 0 0.0 0.0 0.0 0.0

D6 1.29E+05 1.29E+05 1.29E+05 1.29E+05 1.29E+05 0 0.0 0.0 0.0 0.0

D7 9.35E+00 9.35E+00 9.35E+00 9.35E+00 9.35E+00 0 0.0 0.0 0.0 0.0

D8 3.45E+01 2.61E+01 3.45E+01 3.45E+01 3.45E+01 0 8.4 0.0 0.0 0.0

D9 8.68E+02 8.68E+02 8.68E+02 8.68E+02 8.68E+02 0 0.0 0.0 0.0 0.0

D10 2.57E+01 2.56E+01 2.56E+01 2.56E+01 2.57E+01 0 0.1 0.1 0.1 0.0

D11 7.21E+00 7.21E+00 7.21E+00 6.40E+00 7.21E+00 0 0.0 0.0 0.8 0.0

D12 4.40E+02 4.17E+02 4.40E+02 4.40E+02 4.40E+02 0 22.9 0.0 0.0 0.0

D13 1.34E+07 1.34E+07 1.34E+07 1.34E+07 1.34E+07 0 0.0 0.0 0.0 0.0

D14 3.46E+00 2.00E+00 3.46E+00 3.46E+00 3.46E+00 0 1.5 0.0 0.0 0.0

D15 9.75E+00 8.81E+00 9.75E+00 9.75E+00 9.75E+00 0 0.9 0.0 0.0 0.0

D16 3.53E+00 2.81E+00 3.53E+00 3.06E+00 3.53E+00 0 0.7 0.0 0.5 0.0

D17 8.80E+02 8.80E+02 8.80E+02 8.80E+02 8.80E+02 0 0.0 0.0 0.0 0.0

D18 1.87E+02 1.86E+02 1.87E+02 1.87E+02 1.87E+02 0 1.2 0.0 0.1 0.0

D19 6.17E+00 5.49E+00 5.69E+00 5.97E+00 6.17E+00 0 0.7 0.5 0.2 0.0

D20 2.13E+03 2.10E+03 2.13E+03 2.13E+03 2.13E+03 0 34.3 0.0 0.0 0.0

D21 1.00E+05 1.00E+05 1.00E+05 1.00E+05 1.00E+05 0 9.0 0.0 0.0 0.0

D22 1.73E+02 1.73E+02 1.73E+02 1.73E+02 1.73E+02 0 0.0 0.0 0.0 0.0

D23 1.52E+03 1.51E+03 1.52E+03 1.52E+03 1.52E+03 0 14.8 0.0 0.0 0.0

D24 2.30E+01 2.18E+01 2.30E+01 2.30E+01 2.30E+01 0 1.3 0.0 0.0 0.0

D25 2.38E+01 2.09E+01 2.38E+01 2.38E+01 2.38E+01 0 2.9 0.0 0.0 0.0

D26 1.10E+06 1.10E+06 1.10E+06 1.10E+06 1.10E+06 0 0.0 0.0 0.0 0.0

D27 3.34E+01 3.31E+01 3.34E+01 3.34E+01 3.34E+01 0 0.3 0.0 0.0 0.0

D28 2.83E+00 2.55E+00 2.83E+00 2.83E+00 2.83E+00 0 0.3 0.0 0.0 0.0

D29 1.41E+00 1.41E+00 1.41E+00 1.41E+00 1.41E+00 0 0.0 0.0 0.0 0.0
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The approximation in Table 4 is calculated by subtracting the output diameter of each algorithm from the 
actual diameter presented by the BF; the smaller the approximation, the larger the accuracy of an algorithm will 
be.

Interestingly, Algorithms A2 and A3 found the exact diameter for most datasets tested, and even for those 
datasets for which the diameter was not determined accurately, the approximations were very low (in the range 
[0.1, 0.5] for A2, and [0.1, 0.8] for A3. It is worth noting that A4 achieved the optimal diameter for all the data-
sets tested; however, this does not prove that A4 is an exact algorithm, since it uses random seeding; there is 
no guarantee to find an optimal solution all the time. We tested A4 on another synthesized data (n=1198, d=14, 
range [-10, 10] real values), and it was not exact (the approximation was very small = 0.68). Therefore, there is 
no need to prove otherwise.

A closer look at the results in Tables 3 and 4 reveals that the faster algorithms are less 
accurate and that the slower ones are more accurate. This prevents us from recommending 
an algorithm for finding the diameters of machine learning datasets, which are required for 
other machine learning tasks. Our concern in this work is two-fold: accuracy achieved and 
time consumed. Therefore, to further evaluate the algorithms, we opt for algorithm’s effi-
ciency, which is based on the algorithm’s accuracy and time consumption, so we define the 
accuracy of an algorithm by

Table 5: Accuracy and efficiency of the implemented algorithms

Method
Data

Accuracy Efficiency

BF A1 A2 A3 A4 BF A1 A2 A3 A4

D1 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.875

D2 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.917

D3 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.884

D4 1.000 0.987 1.000 1.000 1.000 0.500 0.987 0.988 1.000 0.924

D5 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.996 1.000 0.946

D6 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.993 1.000 0.935

D7 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.992 0.996 0.943

D8 1.000 0.755 1.000 1.000 1.000 0.500 0.755 0.997 0.998 0.978

D9 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.996 0.998 0.959

D10 1.000 0.995 0.995 0.995 1.000 0.500 0.995 0.990 0.993 0.943

D11 1.000 1.000 1.000 0.888 1.000 0.500 1.000 0.988 0.882 0.915

D12 1.000 0.948 1.000 1.000 1.000 0.500 0.948 0.989 0.989 0.885

D13 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.995 0.998 0.955

D14 1.000 0.577 1.000 1.000 1.000 0.500 0.577 0.997 0.933 0.913

D15 1.000 0.904 1.000 1.000 1.000 0.500 0.904 0.988 0.992 0.888

D16 1.000 0.795 1.000 0.866 1.000 0.500 0.795 0.977 0.852 0.822

D17 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.995 0.997 0.960

D18 1.000 0.994 1.000 0.999 1.000 0.500 0.994 0.995 0.997 0.963
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Method
Data

Accuracy Efficiency

BF A1 A2 A3 A4 BF A1 A2 A3 A4

D19 1.000 0.890 0.923 0.967 1.000 0.500 0.890 0.922 0.967 0.993

D20 1.000 0.984 1.000 1.000 1.000 0.500 0.984 0.996 0.997 0.966

D21 1.000 1.000 1.000 1.000 1.000 0.500 0.999 0.992 0.994 0.949

D22 1.000 1.000 1.000 1.000 1.000 0.500 1.000 0.995 0.997 0.966

D23 1.000 0.990 1.000 1.000 1.000 0.500 0.990 0.998 0.997 0.985

D24 1.000 0.945 1.000 1.000 1.000 0.500 0.945 0.999 0.999 0.991

D25 1.000 0.877 1.000 1.000 1.000 0.500 0.877 0.999 0.999 0.990

D26 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.998

D27 1.000 0.990 1.000 1.000 1.000 0.500 0.990 1.000 1.000 0.998

D28 1.000 0.901 1.000 0.999 1.000 0.500 0.901 1.000 0.999 0.999

D29 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 0.997 1.000

Average 1.000 0.945 0.993 0.984 1.000 0.500 0.945 0.988 0.979 0.946

 (13)

where approximation = the actual diameter – the output diameter, the actual diameter is the ground truth diam-
eter, which is found by an exact algorithm such as the BF.

Consequently, we define the efficiency of an algorithm by

 (14)

where T(A) is the time consumed by an Algorithm A, and T(BF) is the actual time needed by the BF to find the 
optimal solution under the same circumstances and using the same resources. Accuracy and efficiency for the 
previous algorithms are calculated in Table 5.

As can be seen in Table 5, the most accurate Algorithm (A4) is not necessarily the most efficient, since it 
consumes more time, neither the BF for the same reason. At the same time, the faster algorithm (A1) is not nec-
essarily the most efficient as it is the least accurate. This leaves two options (A2 and A3), particularly A2 (the 
Hill climbing search), which achieved the highest efficiency. A2 is slightly more efficient than A3 because of 
considering only points with larger distances, while A3 was considering all points with maximum equal points. 
This sometimes leads to better approximation, but such insignificant enhancement does not justify the extra 
time consumed comparing to that of the A2.

Since most of the algorithms found in the literature proposed in theory, have no available practical code to 
be used for comparison and are difficult to be implemented (Har-Peled, 2001), we opt for using the reported 
time complexities on the sizes and dimensions of the machine learning datasets. Having known that, calculating 
the number of operations that are used by an algorithm might approximate the real running time to some degree 
of accuracy. For conciseness, we choose datasets with (small n, small d), (small n, large d), (large n, small d) 
and (large n, large d). Since ɛ is in the range (0, 1] for most of the methods found in the literature, we opt for ɛ 
=0.5 as a midpoint to calculate the number of operations for each method that uses such approximation. Table 
6 presents the calculations.
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Table 6: Algorithms comparison in terms of number of operations on some datasets

Dataset
Method D1 D16 D19 D25 D27 D28 D29

BF 4.47E+04 1.29E+06 7.30E+07 5.00E+08 3.20E+09 1.61E+10 7.11E+11

M1 1.54E+02 2.88E+17 5.41E+03 2.75E+11 3.64E+04 3.02E+05 1.30E+33

M2 3.07E+03 1.22E+12 2.68E+05 4.56E+10 5.17E+07 4.45E+08 9.64E+22

M3 1.31E+05 3.33E+05 3.04E+08 3.07E+08 5.72E+09 2.47E+10 2.13E+11

M4 1.13E+04 2.16E+04 1.46E+07 1.25E+07 2.00E+08 8.06E+08 6.35E+09

M5 2.68E+04 1.39E+05 2.95E+07 2.75E+07 4.05E+08 1.62E+09 1.29E+10

M6 1.56E+02 4.08E+17 5.42E+03 3.89E+11 4.32E+04 4.11E+05 1.84E+33

M7 1.73E+02 4.38E+26 5.47E+03 4.08E+17 5.95E+06 3.80E+08 1.32E+50

M8 1.73E+02 4.38E+26 5.47E+03 4.08E+17 5.95E+06 3.80E+08 1.32E+50

A1 2.98E+03 1.92E+04 1.62E+05 3.29E+05 8.95E+05 2.04E+06 1.64E+07

A2 2.40E+03 3.74E+04 8.11E+04 8.00E+05 9.60E+05 3.21E+06 3.79E+07

A3 2.40E+03 4.99E+04 1.08E+05 8.00E+05 1.28E+06 3.21E+06 2.30E+09

A4 1.50E+04 3.37E+05 7.84E+05 6.20E+06 8.96E+06 2.17E+07 3.91E+08
* Calculations for methods M1 to M8 are made using equations (1-8) from Table 1.
* Calculations of BF and A1-A4 are based on actual number of operations made by each algorithm from the implementation.

As can be seen from Table 6, while M1 (Imanparast, et al., 2016) performs the best on 4 datasets (D1, D19, 
D27 and D28, with d =4, 5, 16 and 20 respectively), it performs very badly on the other datasets. This is due to 
the effect of the value of d on this algorithm, as this algorithm is exponential in terms of d, and is not affected 
much by the value of n (See Equation 1). This phenomenon can be noticed with all methods found in the liter-
ature (M1-M8), particularly at columns D16, D25 and D29, which have d= 60, 40 and 112, respectively. Such 
exponential behavior makes these algorithms perform much less than the exact BF, which is not acceptable in 
application. However, the implemented algorithms are affected by both n and d linearly, and their performances 
were consistent regarding the different dimensions. This behavior is expected and complies with time complex-
ity analysis of A1-A4. See Equations 9, 10, 11 and 12.

The number of operations presented in Table 6 does not show the full picture. For example, A1 performs 
better than A2, A3 and A4. This is because it is faster, but due to its lower accuracy, its efficiency becomes 
lower, too. To compare the efficiency of the other algorithms with the implemented ones, we assume that the 
approximation is ɛ =0.5, knowing that most of the algorithms (M1 to M8) uses 1+ ɛ or more. The accuracy 
of each algorithm is calculated using Equation 13, and the efficiency is calculated using Equation 14. Table 7 
presents the calculations.
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Table 7: Efficiency of different methods

Dataset
Method D1 D16 D19 D25 D27 D28 D29 Avg.

BF 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

M1 0.926 0.000 0.919 0.002 0.985 0.823 0.000 0.522

M2 0.870 0.000 0.916 0.011 0.969 0.801 0.000 0.509

M3 0.237 0.682 0.178 0.606 0.354 0.325 0.497 0.411

M4 0.743 0.844 0.766 0.955 0.927 0.784 0.641 0.808

M5 0.581 0.775 0.654 0.928 0.874 0.748 0.635 0.742

M6 0.926 0.000 0.919 0.001 0.985 0.823 0.000 0.522

M7 0.926 0.000 0.919 0.000 0.983 0.804 0.000 0.519

M8 0.926 0.000 0.919 0.000 0.983 0.804 0.000 0.519

A1 0.938 0.783 0.888 0.877 0.990 0.901 1.000 0.911

A2 0.949 0.972 0.922 0.998 1.000 1.000 1.000 0.977

A3 0.949 0.834 0.966 0.998 1.000 0.999 0.997 0.963

A4 0.749 0.793 0.989 0.988 0.997 0.999 0.999 0.931

As noted in Table 7, M1 is still efficient on the same datasets with relatively smaller dimensions, but not 
more efficient than (A1-A4). This is due to the accuracies of these algorithms, which reach to 1 in most cases, 
while it depends on the fixed approximation 0.5 for M1. The same applies to the other methods (M2-M8), while 
their efficiencies on datasets with larger dimensions are very low, and sometimes less than 0.5 the ideal efficien-
cy of the BF, or even zeros with large dimensions (D16, D25 and D29) – i.e., less efficient than the impractical 
algorithm BF. On average, we can see that A2 is the most efficient of them all, but the efficiencies of the rest of 
the implemented algorithms are not different significantly, and this makes A1, A2, A3 and A4 appropriate for 
AI applications.

It is worth mentioning that the efficiencies of A1, A2, A3 and A4 calculated in Table 7 are slightly different 
from those presented in Table 5, because their accuracies and efficiencies are calculated based on number of 
operations and not based on real-time consumed by the CPU. It is also worth mentioning that if M1-M8 are 
coded and implemented on the same datasets, the results might be changed, but not significantly, as the reported 
theoretical time complexity tills.

5. Conclusions
AI and machine learning databases normally have relatively small n around 1000-5000 (the median size of 365 
UCI machine learning datasets is 1540). This number represents the examples of the sample that are meant to 
represent the population of a real-world problem. Obtaining such learning examples is costly and therefore 
their quantity tends to be relatively small. However, these kinds of databases have relatively large number of 
dimensions, around 20-50 (the median dimensions of 365 UCI machine learning datasets is 21), and sometimes 
much larger. This is due to the features needed for training, such as CBIR, speech recognition, iris code, etc., 
so finding the diameter using algorithms that do not scale well to large dimensions of the data makes such algo-
rithms impractical, particularly for AI and machine learning applications.

Most of the algorithms found in the literature do not scale well with large values of the dimension of the 
data, and the time complexity grows exponentially in most cases. Therefore, we implemented 4 simple approxi-
mate algorithms to be used for finding the diameter of a dataset in any dimension. The time complexity analysis 
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of the implemented algorithms confirms a near-linear time for them all, and the algorithms scale near-linearly 
with number of points and dimensions.

We find through experiments that the implemented algorithms approximate well, fast and therefore efficient. 
We also find that the four implemented algorithms vary in speed and accuracy; nevertheless, they all of near-lin-
ear time and having high accuracy on average. A1 is the fastest with the lowest accuracy, and A4 is the slowest 
with a highest accuracy. A2 and A3 are in the middle, A2 is the most efficient taking into consideration both 
speed and accuracy, and therefore, we recommend it to find the diameter for different applications.

We also compared the implemented algorithms with some of the most common state-of-the-art algorithms 
in terms of number of operations and their approximations. We found that the implemented algorithms are more 
efficient than those are, particularly, when applied on different machine learning datasets.

Without implementing the state-of-the-art algorithms (in Table 1), the comparisons discussed in this work 
might be inadequate to a certain degree. This major limitation will be addressed in the future work regarding the 
difficulties of implementing such theoretical algorithms. This work is part of a larger project about approximate 
nearest neighbor search. One of the implemented methods will be used with some other techniques to provide a 
new solution for this problem; we tend to use A2 (because of its high efficiency) for our future project.
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