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Abstract. In order to utilize the low-grade thermal energy efficiently, a more realistic model of thermally regenerative electrochemical cycles system with continuous power output is proposed in which the heat transfer irreversibility, external heat leakage and non-ideal regeneration losses are taken into account. Besides, the symmetry of cells, which is necessary for a practical thermally regenerative electrochemical cycles system operated at steady state, is considered. Analytic expressions for the efﬁciency and power output of the system are derived. The design and operation criteria of the system for achieving continuous power output are obtained. The general performance characteristics and the optimally operating regions of several parameters are reported. The influences of the external heat leakage on the system performance and the upper and lower bounds of efficiency at maximum power output at different situations are evaluated and discussed. 
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1. Introduction

The effective utilization of low-grade thermal energy, which is continuously and abundantly generated by various energy converters, plays an important role in overcoming energy shortage and satisfying ever growing energy demands. It has become a hot research topic in recent decades [1] by enhancing energy utilization efficiency and reducing the consumption of traditional fossil fuels, alleviating environmental contamination and addressing the problem of greenhouse effect. Various feasible technologies, e.g., organic Rankine cycles [2], three heat sources heat transformers [3], semiconductor thermoelectric devices [4], electrochemical thermoelectric devices [5], etc., have been proposed. Unfortunately, among all these low-grade heat harvesting technologies, only a few of them are currently capable of having small enough volume and providing high enough power output and efficiency simultaneously.
Recently, by adopting highly reversible electrode materials, a novel thermally regenerative electrochemical cycle (TREC) system based on thermogalvanic effect has been proposed [6]. Due to its high conversion efﬁciency and small volume, it is regarded as a promising approach to exploit the low-grade thermal energy and draws widely attention. Yang et al. presented a charging-free TREC system [7] and a membrane-free TREC system [8] in succession, which enriched the application scenario of the TREC system. Andreas et al. [9] proposed a TREC system by adopting supercapacitors, which may operate between a wider range of temperature differences. Long et al. investigated the performance of TREC and thermally regenerative electrochemical refrigerator (TRER) systems [10], respectively, by adopting finite time thermodynamics [11] and introducing various objective functions [12]. The influences of the internal resistance, speciﬁc heat capacity, speciﬁc charge capacity, and isothermal coefﬁcient on the performance of TREC and TRER systems were discussed. In order to generate continuous and high enough power output, Wang et al. [13] put forward an electrochemical system consisting of multiple thermally regenerative electrochemical cycles (TRECs) and discussed its performance characteristics under different operating situations. Moreover, various hybrid systems consisting of TREC and fuel cell [14], TRECs and fuel cell [15], and TRER and solar cell [16] have been proposed, respectively, in order to achieve better performance and higher energy conversion efficiency, which greatly extended the scope of the applications of these systems.
However, it should be pointed out that in Ref. [13] the irreversibilities of heat transfer [17] between two heat sources and the cells are neglected. As a consequence, there is no restriction of electric current, heat transfer coefficients, and regeneration efficiency for a TRECs system to achieve continuous power output. In other words, the TRECs system is assumed to be capable of realizing the continuous power output if only 
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 is the total number of the cells adopted in the TRECs system and 
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 indicates the number of the cells charged/discharged at the same time, which is a result that may not coincide with a practical case. Besides, the external heat leakage loss, which has been proved to be important to the performance of traditional thermodynamic cycle [18] and related thermodynamic device [19], was not taken into account in Refs. [6] and [13], because in Ref. [6] the TREC system cannot generate work at the whole cycle time and in Ref. [13] the heat transfer coefficients between cells and two heat sources are assumed to be infinite. In addition, the symmetry of the cells inside the TRECs system was not taken into account as well, which is necessary for a practical thermally regenerative electrochemical cycles system operated at steady state. Consequently, a further development of the model of the TRECs system established in Ref. [13] is of great significance.
In the present paper, based on the model in Ref. [13], a more realistic TRECs system with continuous power output is established. The heat transfer irreversibility between two heat sources and the cells is considered and the non-ideal regeneration and external heat leakage losses are included. Besides, the symmetry of cells, which is a necessary ingredient for the operation of TRECs system at steady state in practice, is taken into account. With the help of the proposed model, the design and operation criteria of the TRECs system for achieving continuous power output are first deduced. Then, the influences of the external heat leakage are investigated and the general performance characteristics of the TRECs system are reported. In addition, the optimally operating regions of several parameters are determined. Finally, the upper and lower bounds of efficiency at maximum power output are discussed.
2. Model description of a thermally regenerative electrochemical cycles system
According to Ref. [6], in a TREC system, copper hexacyanoferrate (CuHCF) with negative temperature coefficient and copper/cupric (Cu/Cu2+) with positive temperature coefficient are chosen as the active materials of positive and negative electrodes in the thermogalvanic cell, respectively, due to their low heat capacity, high charge capacity, and high absolute value of temperature coefficient. Besides, sodium nitrate (NaNO3) and cupric nitrate (Cu(NO3)2) are, respectively, adopted as the aqueous solutions of positive and negative electrodes, which are separated by an anion membrane. When such a TREC system works as a heat engine, the thermogalvanic cell goes through four processes to fulfill a cycle, which includes two isobaric processes and two isothermal processes, as shown in Fig. 1. During process 1-2, the cell is heated from 
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 under the open circuit condition. In process 2-3, the cell is connected with a power source and charged at constant temperature 
[image: image6.wmf]h

T

 by contacting the high-temperature heat source. As a consequence, the entropy of the cell increases by absorbing heat from the high-temperature heat source during the electrochemical reaction. After being charged, the cell is then disconnected from the power source and cooled down from 
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 at the open circuit condition in process 3-4. In the final process i.e., process 4-1, the cell is discharged at constant temperature 
[image: image9.wmf]c

T

 by connecting with external load and contacting the low-temperature heat source, and the entropy of the cell decreases by releasing heat into the low-temperature heat source during the electrochemical reaction. Besides, in Fig. 1(a), 
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 denotes the regeneration heat, 
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 are the temperatures of the cell in two isobaric processes after regeneration. 
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 due to the non-ideal regeneration. 
It is worthy to point out that geothermal, the waste heat from heat engine, fuel cell, solar cell, and so on can be adopted as the high-temperature heat source of the TREC system. Besides, it should be mentioned that the temperature of the low-grade heat source is variable when the low-grade heat harvesting system is working in transient-state condition. However, when the low-grade heat harvesting system is working in steady-state condition, the waste heat flux generated by different thermodynamic devices such as heat engine, fuel cell, solar cell, and so on, should equal the heat flux extracted by the low-grade heat harvesting system. Therefore, the temperature of the low-grade heat source is constant at steady-state operation. The investigation of the performance characteristics of the low-grade heat harvesting system working in transient-state is complicated. In present paper, the performance characteristics of the TRECs system are investigated under steady-state condition only. This methodology has been adopted by numerous researchers in the researches of various low-grade heat harvesting systems, e.g., TRECs system [15], thermoelectric device [20], thermionic devices [21], absorption refrigerator system [22], organic Rankine cycle [23], and so on. In addition, the influence of the temperature of the low-grade heat source on the performance characteristics of TRECs system under steady-state operation will be discussed in section 5.
After these four processes, the cell goes back to its initial state, while part of the thermal energy absorbed from the high-temperature heat source is converted into work output resulting from the higher voltage in the discharging process than in the charging process.
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Fig. 1. (a) The T-S diagram and (b) the schematic diagram of a TREC system
In order to establish a more practical TREC system with continuous power output, a TRECs system consisting of 
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 identically thermogalvanic cells which are separated into 
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 identical cell packs, where 
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 denotes the number of the cells included in one cell pack is considered. The cells inside one cell pack go through different processes in a cycle simultaneously. The irreversible TRECs system, as shown in Fig. 2, operates between two heat sources with temperatures 
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 are, respectively, the heats absorbed from the high-temperature heat source and released into the low-temperature heat source by the cell packs during the two isothermal processes in a cycle; 
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 are, respectively, the temperatures of the cells in two isothermal processes; 
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 is the regeneration heat transferred between the cells in process 1-2 and process 3-4; 
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 are the additional heats exchanged between the cell packs and the two thermal sources in the processes 1-2 and 3-4 due to the non-ideal regeneration in a cycle; and 
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 is the external heat leakage between the two thermal sources in a cycle. Note in Fig. 2 that 
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, due to the finite-time heat transfer.
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Fig. 2. (a) The T-S diagram and (b) the schematic diagram of a TRECs system
3. Efficiency and power output

In a TRECs system, the net heat fluxes between the two thermal sources and the charged and discharged cell packs during two isothermal processes can be expressed, respectively, as [13]
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 are the heats absorbed from the high-temperature source and released to the low-temperature source by one cell during two isothermal processes due to thermogalvanic effect; 
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By assuming that the heat transfers between heat sources and cells obey linear heat transfer law, 
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According to experimental data [13], it is a good approximation to assume 
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It is well known that the regenerator plays an important role in improving the efficiency of a TRECs system [13]. However, the perfect regeneration requires infinite regeneration time i.e., 
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, which is unachievable for a practical system. Consequently, the regenerative efficiency can be defined as [13]
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respectively. To achieve the objective temperatures, i.e., 
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, after non-ideal regeneration the cells in process 1-2 should absorb heat from the high-temperature source and the cells in process 3-4 should release heat into the low-temperature source. By using Eqs. (9) and (10), the additional heats exchanged between one cell pack and two thermal sources due to the non-ideal regeneration in two isobaric processes can be expressed as
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respectively, where 
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 is the heat capacity of one cell. 
In order to obtain the relationship between 
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are, respectively, the corresponding logarithmic mean temperature differences [24],  
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In addition, by considering that all cells in the TRECs system are equivalent, the relation between 
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 under continuous power output can be deduced as [13]
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By using Eq. (18), the relation between 
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Substituting Eqs. (17)-(19) into Eq. (8), the regenerative efficiency can be further expressed as
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Using Eqs. (11)-(18), (20), and the relation 
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where 
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In order to make the model of the TRECs system more practical, the external heat leakage loss will be introduced. According to the above analyses and considering the external heat leakage, the net heat absorbed from high-temperature heat source and released into low-temperature heat source in a cycle can be obtained as
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 is the associated heat leakage coefficient. In the present paper, the TRECs system is assumed to be operated only at steady state. Therefore, the corresponding heat fluxes can be expressed as
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Using Eqs. (24) and (25), one can obtain the power output and efficiency of the TRECs system as
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4. Continuous power output criterion of thermally regenerative electrochemical cycles system
In this section, a special case, in which the TRECs system is working without adopting a regenerator, will be considered. At this situation, all the heat required in process 1-2 should be absorbed form high-temperature heat source and all the heat in process 3-4 should be released into low-temperature heat source. Meanwhile, the time durations required in process 1-2 and process 3-4 are minimal at this situation. The minimal time duration of the isobaric process can be obtained from Eq. (21) by setting 
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Using Eq. (28), one can generate the three-dimensional projection graphs of 
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Fig .3. Three-dimensional projection graphs of 
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More importantly, Eqs. (19), (28), and Fig. 3 can serve as the design and operation criteria to determine whether the TRECs system can achieve the continuous power output condition. There exist three different situations which will be discussed in detail in the following. 
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, Eq. (19) is not fulfilled at any case, i.e., the continuous power output condition can never be achieved. To be more specific, the cell pack in state 1 (state 3) cannot reach state 2 (state 4) on time due to the finite-time heat transfer. Two examples will be used to make this situation more readily comprehensible. For a TRECs system with 
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, which is a more common condition for the TRECs system. The influences of regeneration and finite-time heat transfer under this condition will be discussed with detail in next section. 
Besides, it should be pointed out that the cells inside the TRECs system are analogous to the working substance in traditional thermodynamic cycles. Therefore, in order to maintain the symmetry of cells inside the TRECs system during the regeneration process at steady operation, the values of 
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5. Performance characteristics and optimum operation criteria of thermally regenerative electrochemical cycles system
In this section, based on the results obtained above and according with Carnot theorem which restricts the available efficiency, the real performance characteristics of the TRECs system with various irreversibilities will be investigated by using numerical calculation. Specifically, the influences of 
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 on the performance parameters of the TRECs system, e.g., regenerative efficiency, efficiency, and power output will be discussed. The maximum efficiency, the maximum power output, and the corresponding efficiency at maximum power output will be deduced. Besides, the optimal relation between efficiency and power output will be revealed, according to which, the optimally operating regions of the TRECs system and the corresponding operating parameter, namely, electric current can be determined from the viewpoint of energy saving. The details are presented as follows.
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Fig. 4. Three-dimensional projection graphs of 
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Fig. 5. Three-dimensional projection graphs of 
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Fig. 6. Curves of 
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Fig. 7. Variations of 
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Using Eqs. (21), (24)-(27), one can also obtain the 
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Fig. 8. Curves of 
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Using Eqs. (21), (24)-(27), one can also generate the 
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Using Eqs. (21), (24), (25), and (27), one can plot the three-dimensional graph of efficiency varying with 
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Fig. 9. Curves of 
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Fig. 10. Three-dimensional graph of 
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 varying with 
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 and 
[image: image355.wmf]m

, where 
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Fig. 11. (a) Variation of 
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. The other parameters have the same values as those adopted in Fig. 9.
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Fig. 12. Variations of 
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. The other parameters have the same values as those adopted in Fig. 9.
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Fig. 13. Three-dimensional graphs of 
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 varying with 
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 and 
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=200. The other parameters have the same values as those adopted in Fig. 9.

Similarly, the three-dimensional graph of power output varying with 
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Fig. 14. (a) Variation of 
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. The other parameters have the same values as those adopted in Fig. 9.

[image: image405.png]



Fig. 15. Variations of 
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 with 
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 for several given values of 
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Using Eqs. (21), (24)-(27), and the data in Fig. 15, it is possible to analyze the situation at limit 
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Finally a comparison between our system and other low-grade heat recovery technologies is presented. The 
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 [26]. It can be realized by comparing the values in Table 1 and Fig. 16 that the performance of TRECs system is competitive as long as the external heat leakage loss is limited to be a small value.
6. Conclusion

A more realistic model of the TRECs system including the heat transfer irreversibility, external heat leakage loss, and non-ideal regeneration has been established to exploit the low-grade thermal energy continuously. By using the proposed model and considering the heat transfer irreversibility and non-ideal regeneration, the design and operation criteria of the TRECs system for achieving continuous power output are obtained, which are accounted by Eqs. (19) and (28). Besides, the values of 
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 should be limited as even integers to maintain the symmetry of cells during the regeneration process at steady operation is indicated. In addition, the analytic expressions for the efﬁciency and power output of the TRECs system are derived, by which the influences of the external heat leakage on the performance of the TRECs system are evaluated and the general performance characteristics and optimally operating regions of the TRECs system are revealed. The TRECs system should be operated in the region of  
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. Finally, the upper and lower bounds of efficiency at maximum power output at different situations are discussed in detail. The results obtained in present paper may provide some useful guidance for the optimal design, establishment, and operation of practical TRECs system with continuous power output.
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