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Abstract

Background: Genome editing technologies offers new opportunities for tackling diseases such as acute
lymphoblastic leukemia (ALL) that have been beyond the reach of previous therapies.

Results: We show how the recent availability of genome-editing tools such as CRISPR-Cas9 are an important means
of advancing functional studies of ALL through the incorporation, elimination and modification of somatic
mutations and fusion genes in cell lines and mouse models. These tools not only broaden the understanding of
the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic
targets for future clinical trials.

Conclusions: New approaches including CRISPR-Cas9 are crucial for functional studies of genetic aberrations
driving cancer progression, and that may be responsible for treatment resistance and relapses. By using this
approach, diseases can be more faithfully reproduced and new therapeutic targets and approaches found.
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Background
Acute lymphoblastic leukemia (ALL) is a malignant
disorder originating from hematopoietic B- or T-cell
precursors, characterized by marked heterogeneity at the
molecular and clinical levels. Although a genetic event is
known to occur in the majority of cases, and may be as-
sociated with outcome prediction, around 25–30% of
pediatric and 50% of adult ALL patients have no defined
genetic hallmarks of biological or clinical significance [1].
The development of new techniques of genetic editing

such as TALENs or CRISPR-Cas9 has made it possible
to produce powerful animal genetic models that recap-
itulate the cooperating oncogenic lesions affecting genes
with an established role in the proliferation and establish-
ment of the leukemic clone [2]. In ALL, some approaches
have been oriented towards analyzing the targeting of
transcriptional factors such as PAX5, which are involved

in the pathogenesis of B-ALL, and TAL1 and LMO2,
which are highly deregulated in T-ALL [3–5]. Targeting
gene fusion expression has also been addressed through
genome editing systems, as with MLL and AF4, whose
fusion is associated with poor prognosis and which mainly
affects B-ALL infants [6]. Other genes have been modified
to gain a better understanding of the mechanism of action
of several drugs, for example, BTK, target of ibrutinib,
XPO1, the target of KPT-8602, and CB1 and CB2, the
targets of dronabinol [7, 8]. However, genome editing
techniques have gone a step further and they have been
used with therapeutic and clinical approaches. Their use
has facilitated the design of new therapies such as
chimeric antigen receptors (CARs) and have allowed
the study of genes involved in the evolution of patho-
genesis [9, 10].

Targeted genome editing in ALL
The development of next generation sequencing (NGS)
techniques provided enormous amount of data to inter-
pret, which generated the need to translate those data
into functionally and clinically relevant knowledge that
enable investigators to determinate how genotype influ-
ences phenotype. In the past decade, the integration of
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genome editing systems enables investigators to directly
manipulate virtually any gene in a diverse range of cell
types and organisms [11].
Genome editing system is based in the use of engineered

nucleases composed of sequence-specific DNA-binding
domains fused to a non-specific DNA cleavage module
[12, 13]. These chimeric nucleases inducing DNA double-
strand-breaks (DSBs) that stimulate the cellular DNA
mechanisms, including error-prone non-homologous end
joining (NHEJ) and homologous recombination (HR) [14].
Several approaches have been used in the last years as
genome editing technologies (Fig. 1). The combination of
simplicity and flexibility has hurtled zinc-finger nucleases
(ZFNs), transcription activator-like effector nucleases
(TALENs) and short palindromic repeats interspersed with
regular intervals (CRISPR) to the forefront of genetic
engineering (Fig. 2) [11].
ZFNs and TALENs were first used to generate

knock-out rats in 2009 and 2011, respectively [15, 16].
TALENs system was first used in human cells in the
same year [17]. CRISPR-Cas9 system, discovered as part
of the prokaryotic adaptive immune system at the end of
1980s [18], was introduced some years later. This was
proposed as a genetic modification system in 2005 [19]
but was not tested until 2012 [20].
CRISPR-Cas9 is presented as a faster, cheaper, simpler

system with the potential for multiplex genome editing
[21]. The method is based on generating a directed cut
in the double strand of DNA by the Cas9 nuclease. This

is driven by a single 20-nucleotide RNA strand, which
marks the exact breakage point. After DNA cutting, the
DNA repair machinery of the host cell leads to repair
errors and thereby promote a modification of the original
sequence by a mutation such as an insertion, deletion or in-
version, among others [22]. Based on CRISPR-Cas9 system,
CRISPR interference (CRISPRi) and CRISPR activation
(CRISPRa) emerged. CRISPRi uses a catalytically inactive
version of Cas9 (dCas9) lacking endonucleolytic activity in
combination with an sgRNA designed with a 20-bp
complementary region to any gene of interest to silence a
target gene [23]. While CRISPRa uses fusions of dCas9 to
activator domains to activate gene expression [21].
Genome editing strategies have been used in several

organisms, including Drosophila [24], Caenorhabditis
elegans [25], zebrafish [26], mouse [27], rat [28], plants
and humans [21] and has allowed a large number of
functional studies to be carried out, based on the gener-
ation of animal and plant models. The use of genetically
modified cell lines and animal models to understand the
functions of genes and their pathogenesis in diseases con-
ditioned by molecular genetics could be of help and pro-
vide insights to better understand cancer. The method
used until now to generate these animal models, especially
mice, is tedious and time-consuming, but CRISPR-Cas9
makes the procedure easier and more efficient [29].
Genome editing technologies, such as CRISPR-Cas9, have

already been applied to the study of many diseases, includ-
ing hematological diseases [30]. As exemplified by some

Fig. 1 Timeline of genome editing engineering in ALL
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very recent studies in Fanconi anemia (FA), a genetic DNA
repair-deficient human disorder that results from mutations
in FA genes [31] or the study of BCR-ABL oncogene in
chronic myeloid leukemia [32]. Specifically, most of the
genetic modification studies in ALL have been with
CRISPR-Cas9, more than 20 articles since 2015. The vast
majority had the purpose of knocking out genes, either by
introducing mutations, insertions or deletions.
An overview of recent studies in genome editing in

ALL is summarized in Table 1. Some of the most rele-
vant studies included in the table are detailed below.

Targeting transcriptional factors
Deregulation of Transcription factors (TFs) is a common
mechanism in the pathogenesis of human cancer, in
particular in leukemia cells, genes encoding TFs are
often amplified, deleted, rearranged via chromosomal
translocation, or subjected to point mutations that result
in a gain- or loss-of-function. Consequently, targeting of
TFs can be highly effective in treating ALL. TFs such as
PAX5 and IKZF1 were altered in nearly 80% of patients
with B-ALL [33, 34]. These alterations affected glucose

metabolism and energy supply, whereby the transcrip-
tion factors act as metabolic repressors by limiting the
amount of ATP available. A CRISPR-Cas9-based screen
of PAX5 and IKZF1 transcriptional targets identified
some target genes such as NR3C1, TXNIP and CB2 as
central effectors of B-lymphoid restriction of glucose
and energy supply and therefore new targets for treating
B-ALL [3].
In human T-cell acute lymphoblastic leukemia (T-ALL)

cells, a CRISPR-Cas9 editing tool was used to disrupt
TAL1 (SCL) [4] or TRIB1 (TRB1) [35] genes to delineate
their biological functions. TAL1 is one of the oncogenes
most frequently deregulated in T-ALL [36]. This deregula-
tion is produced by t (1;14) (p34;q11) (1–2%) or SIL(-
STIL)-TAL1 deletions (del(1)(p32)) (15–20%), although
there is still a large group of patients in whom the gene is
deregulated but not altered. Epigenetics must there-
fore play an important role in these patients [37].
CRISPR-Cas9 was used in a cell line to reproduce
two known alterations in TAL1 (insertion and dele-
tion) and it was observed how these alterations
triggered their expression. Furthermore, a change in
methylation acetylation of H3K27 was observed,

Fig. 2 The nuclease genome editing technologies in ALL. The three most commonly used types of nucleases include programmable nucleases
like Zinc Finger Nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and CRISPR systems (Clustered Regularly Interspaced Short
Palindromic Repeats). These nucleases were able to induce double-strand breakgs (DSBs) in the target followed by the activation of DNA repair
mechanisms [30]. On induction of double-stranded breaks or nicks at targeted regions, repairing is done by either Non-homologous end joining
(NHEJ) or Homologous recombination (HR) pathway. NHEJ is an error prone repair mechanism where joining of broken ends takes place, which
generally results in heterogeneous indels (insertions and deletions) whereas HR is a precise repair method in which homologous donor template DNA
is being used in repair DNA damage target site. HR is the ideal strategy for generating knock in models [81, 82].
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Table 1 Applications of genome editing systems in ALL

Outcome Target Gene SSN
Technique

Modification
Type

Cell type Reference

Targeting
Transcriptional factors

Point mutation
(insertion/deletion)

TAL1 CRISPR-Cas9 HR PEER (in vitro) [4]

Repress expression PAX5 CRISPR-a NA Patient-derived pre-B ALL
cells (in vitro)

[3]

Knock out NR3C1 CRISPR-Cas9 NHEJ

TXNIP

CB2

Knock out LMO2 CRISPR-Cas9 NHEJ PF-382 (in vitro) [5]

Targeting gene
fusion expression

Chromosomal
rearrangement

MLL/AF4 TALEN NHEJ K562, HSPCS (in vitro) [42]

MLL/AF9

Knock in MLL/AF4 AF4/MLL CRISPR-Cas9 HR HEK293 (in vitro) [46]

Chromosomal
rearrangement

MLL/ENL CRISPR-Cas9 NHEJ HSPCS (in vitro / in vivo,
xenograft)

[6]

Chromosomal
rearrangement

MLL/AF9 TALEN NHEJ CD34+ human cord blood
(in vivo, xenograft)

[43]

AF9/MLL

Knock in ETV6/RUNX1 CRISPR-Cas9 HR MIFF3 hIPSCs (in vitro) [40]

Drug targts discovery
and therapy

Knock out CB1 CRISPR-Cas9 NHEJ Jurkat (in vitro) [7]

CB2

Knock out BTK CRISPR-Cas9 NHEJ RCH-ACV (in vitro / in vivo,
xenograft)

[8]

BLK

Knock in XPO1 CRISPR-Cas9 HR HL-60, Jurkat, K-562, and MOLT-4
(in vitro / in vivo, xenograft)

[57]

Knock out ABCB1 CRISPR-Cas9 NHEJ HALO1 (in vitro) [59]

Modification of CARs Knock out CD19 CRISPR-Cas9 NHEJ NALM6, 697 (in vitro / in vivo,
xenograft)

[65]

Knock out CD19 CRISPR-Cas9 NHEJ Murine leukemia cell lines E2a:PBX
(in vitro / in vivo, xenograft)

[83]

PAX5

EBF1

Knock out TRAC CRISPR-Cas9 HR NALM6 (in vitro / in vivo, xenograft) [63]

Knock in CD19

Knock out CD52 TALEN NHEJ Two infants (in vivo) [9]

TCR ab

Knock out TCR b CRISPR-Cas9 NHEJ PBMC (in vitro) [84]

Knock out CD7 CRISPR-Cas9 NHEJ T cell lines (in vitro / in
vivo, xenograft)

[85]

TRAC

Evolution of
pathogenesis

Knock out CASD1 CRISPR-Cas9 NHEJ HAP1 (in vitro) [70]

Knock out RIP1 CRISPR-Cas9 NHEJ Patient-derived ALL cells
(in vitro / in vivo, xenograft)

[75]

Knock out CXCR4 CRISPR-Cas9 NHEJ NALM6 (in vitro / in vivo,
xenograft)

[10]

Others Knock out FLT3 TALEN NHEJ K562 (in vitro) [86]

Knock out screen NA CRISPR-Cas9 NHEJ NALM6 (in vitro) [87]

Knock out screen NA CRISPR-Cas9 NHEJ MV4,11 (in vitro) [88]

Knock out NUDT15 CRISPR-Cas9 NHEJ Mouse (in vivo) [89]

Knock out DCK CRISPR-Cas9 NHEJ KOPN41 (in vitro) [90]

Knock out PTCH1 CRISPR-Cas9 NHEJ Zebrafish embryos (in vivo, xenograft) [91]

This table shows the main genetic editing studies carried out in ALL, classified according to the target. The different columns indicate: the outcome of
edition, the target of edition (highlighted in bold), the technique used, the type of modification, the cell type and the reference
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suggesting a causal relationship between mutagenesis,
epigenetic modulation and expression of TAL1 [4].
LMO2 is another gene deregulated in T-ALL. It is a

potent oncogene that is essential for the formation of a
large transcriptional complex in which genes such as
TAL1, LDB1, GATA1, GATA2, GATA3, RUNX1, ETS1,
and MYB intervene. Furthermore, its overexpression has
been associated with the development of T-ALL. How-
ever, the reasons why this gene is overexpressed remain
unclear, because few mutations have been described.
Mutations targeted to the non-coding region of LMO2
were introduced in a T-ALL cell line by CRISPR-Cas9
and proved to be a possible cause of the deregulation of
LMO2 expression [5].

Targeting gene fusion expression in ALL with
chromosomal rearrangements
As indicated above, chromosomal translocations are very
frequent in ALL and can be used to stratify the risk of
ALL patients. It is well known that MLL rearrangements
occur in a small percentage of B-ALL patients, where
they are associated with very poor prognosis. Several
studies have proposed that MLL rearrangements are an
initiating event in leukemic transformation, unlike
ETV6-RUNX1 and BCR-ABL translocations, in which sec-
ond events are necessary to initiate leukemia [33, 38, 39].
This was demonstrated by Enver T’s group, who used a
homologous recombination knock-in approach by
CRISPR-Cas9 to introduce the cDNA encoding of RUNX1
exons 2–8 into the native ETV6 locus of hIPSC.
ETV6-RUNX1 expression induced a partial block of the
maturation of B lymphocytes, at which time the second
events required for leukemia development occurs [40].
Matthew Porteus’s group wanted to test the oncogenic

potential as initiator event of the MLL translocations,
and for this purpose, they generated the MLL-AF4 and
MLL-AF9 translocations by genetic modification in pri-
mary hematopoietic stem and progenitor cells (HSPCs).
This strategy was based on previous studies that demon-
strated that the double-stranded DNA breakage at
specific positions of two chromosomes could lead to
translocation [41]. They used TALENs to generate cuts
directed at specific positions of MLL-AF4 and AF9,
based on the breakage points described in patients. In
vitro, the cells that acquired the translocation showed a
proliferative advantage over the others but were not able
to transform completely because they eventually disap-
peared from the culture [42].
Shortly after, Heckl D.’s group showed strong evidence

for the formation of true t (11;19)/MLL-AF9 translocations
in vitro and in vivo by CRISPR-Cas9. No full transform-
ation was observed in liquid cultures or methylcellulose-
based in vitro assays using CD34+ HSPC, while in vivo

assays demonstrated that endogenous t (11;19) can initiate
a monocytic leukemia-like phenotype. This study is in line
with the Matthew Porteus’s study, which emphasizes the
importance of environmental cues for the oncogenic trans-
formation inMLLr leukemias [6].
More recently, Stanford’s group managed to generate t

(9;11) chromosomal translocations encoding MLL-AF9
and reciprocal AF9-MLL fusion products in CD34+
human cord blood cells by TALENs. Transplantation of
these cells into immune-compromised mice induced
myeloid leukemias with absence of secondary lesions
studied by targeted exome sequencing and RNAseq [43].
The prevailing theory is that MLL rearrangements

occur in the uterus due to exposure to certain chemicals
during pregnancy that cause errors in DNA repair, as
has been demonstrated in vitro and in vivo [44, 45]. The
group of Pablo Menéndez examined how it affected the
expression of the fusion protein in repairing DNA
damage. To this end, MLL-AF4 protein and its recipro-
cal, AF4-MLL were induced in the AAVS1 locus of the
HEK293 cell line by CRISPR-Cas9. They subsequently
induced DNA damage by exposing the cells to etoposide
and ionizing radiation (IR), with no differences in repair
between WT cells and those expressing proteins. Thus,
they demonstrated that the expression of the fusion
proteins caused by MLL rearrangements, did not in-
fluence susceptibility to DNA damage or repair mech-
anisms [46].

Drug targets discovery and therapy
The targets against which a drug acts must be identified
and combined with the data provided by the NGS. This
may sometimes identify patients with mutations in genes
associated with some type of resistance. It can also help
to generate other new drugs, when there is prior know-
ledge of the altered pathway we wish to attack. For
example, ibrutinib has recently been proposed for the
treatment of pre-BCR and TCF3-r-positive cases. Ibruti-
nib is an inhibitor kinase targeted to those ALL subtypes
with affected BCR signaling. In order to understand the
mechanism of action of ibrutinib in this ALL subtype,
Bruton tyrosine kinase (BTK) KO, B lymphocyte kinase
(BLK) KO and BTK / BLK KO cells have been generated
by CRISPR-Cas9 [8].
The importance of BTK in the pathogenesis of chronic

lymphocytic leukemia, diffuse large B-cell lymphoma,
and other mature B-cell malignancies is well established
[47–49], while there is less information about the role of
BTK in ALL. Early studies reported unaltered levels of
BTK in childhood ALL cells, whereas frequent BTK
deficiency due to aberrant splicing was reported later
[50, 51]. BLK and BTK were the only kinase genes over-
expressed in this subtype of ALL, as revealed by arrays
[52]. Only the elimination of the expression of both
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kinases managed to reduce the proliferation in a similar
way to ibrutinib. However, these should not be the only
targets of ibrutinib since the decrease in proliferation
was still greater when the drug was used. To confirm
that BTK and BLK were actually drug targets, ibrutinib
was tested in cell lines generated with KO genes. This
indicated that ibrutinib requires the presence of both
kinases for maximum effectiveness [8].
In a subsequent study, Thomas Vercruysse and

coworkers focused on exportin 1 (XPO1). XPO1 plays an
important role in the transport through the nucleus of
cycle regulatory proteins and tumor suppressor proteins,
among others. The overexpression of this gene is associ-
ated with several types of cancer, and with poor patient
outcome [53, 54]. XPO1 inhibitors act by binding to the
reactive cysteine residue located at position 528, pre-
venting the export of charged proteins to the cytoplasm
[55, 56]. To verify that the drug binds specifically to act
against XPO1, a point mutation was inserted at residue
528 by CRISPR-Cas9. When this occurred, the drug was
not able to act, and the cells became resistant. There-
fore, this study demonstrated that the drug is highly
specific to XPO1 and is potent against ALL [57].
More recently, Dronabinol (Tetrahydrocannabinol,

THC), a US Food and Drug Administration-approved
cannabinoid receptor (CNB) agonist for the treatment of
chemotherapy-induced nausea and vomiting, was found
to induce apoptosis in acute leukaemia cells, as evi-
denced by the abrogation of pro-apoptotic effects of
CRISPR-mediated knockout of CB1 or CB2 following
THC treatment [7, 58].
Furthermore, new drugs are being proposed as an

alternative to current therapy. An example is Carfilzo-
mib (CFZ), as a substitute of proteasome inhibitor Bor-
tezomib (BTZ), who demonstrated favorable clinical
outcomes for refractory childhood ALL. CFZ showed
significantly higher activity than BTZ in vitro, except for
the P-glycoprotein-positive t (17;19) ALL cell lines. Takaha-
shi et al. generated a knock-out of ABCB1, who codes for
P-glycoprotein, by genome editing with a CRISPR-Cas9
system and sensitized P-glycoprotein-positive t (17;19) ALL
cell line to CFZ [59].

Modification of CAR
Chemotherapy and/or radiotherapy have been standard
treatments for ALL to date. However, immunological
therapies have gained importance. These work by
harnessing the immune system of patients to fight the
disease. One example is chimeric antigen receptors
(CARs), which are proteins genetically engineered to
allow T cells to recognize a specific antigen in tumor
cells. It had already been proposed as a standard therapy
for ALL patients in 2013 by Rosenberg. In this case, the
CARs were directed against CD19, an antigen of B cells

[60]. Its efficacy had already been demonstrated in cases
of refractory or relapsed ALL [61, 62].
CRISPR-Cas9 may be key to carry out this genetic

modification. This was demonstrated by Michel Sade-
lain’s group. The strategy followed was the combination
of knock-out and knock-in. On the one hand, they inter-
rupted the TRAC locus, and on the other, they added a
CAR directed to CD19, inserting it in the AAVS1 locus.
hey compared responses to CD19 antigens from these
cells with those from others in which CAR had been
randomly integrated. In this way, they were able to dem-
onstrate that targeted CAR integration under the control
of endogenous regulatory elements is much more effect-
ive, reduces tonic signaling, avoids the differentiation
and accelerated depletion of T cells, and increases the
therapeutic potential of these cells [63].
Paul Veys’s group demonstrated the use of TALEN-

modified T lymphocytes in two infants with refractory
B-ALL. They generated universal T-cells against CD19
(CAR19), targeting the TALENs against the T-cell
receptor (TCR) and simultaneously transfecting with
non-human leukocyte donor cell antigens. As treated
cells, they disrupted the CD52 gene, the target of the
drug alemtuzumab, by TALEN, and also disrupted the
expression of the αβ T cell surface receptor (TCR αβ).
This minimized the risk of graft-versus-host disease
(GVHD). The newborns were treated with lymphoplasty,
chemotherapy and anti-CD52 serotherapy before
infusion of CAR19. The results were very positive, yield-
ing remissions within 28 days before allogeneic stem cell
transplantation [9].
Despite the good results with CAR19 therapy, 10–20%

of treated patients suffer relapses due to partial loss of
the CD19 epitope [61, 64]. Andrei Thomas-Tikhonenko
and his group have provided evidence that epitope
loss is closely linked to alterations in exon 2 of
CD19, detected in some samples from patients with
relapses. These alterations include frameshift-type
mutations and the total loss of the exon, resulting
from an alternative splicing event that encodes a defi-
cient isoform of exon 2. To assess the relevance of
the detected isoforms, they eliminated CD19 expres-
sion by CRISPR-Cas9 from ALL cell lines, and then
reconstituted them with different isoforms. They
observed that the depleted isoform of exon 2 was lo-
cated mostly in the cytosol, which could explain its
mechanism of escape in front of CAR19. Thus, these
deleterious mutations and the selection of isoforms
resulting from alternative splicing could be the cause
of this mechanism of resistance [65].

Evolution of pathogenesis
Although there have been great advances in the treat-
ment and cure of ALL, there is still a large group of
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patients who experience relapses, persistent minimal
residual disease, and drug resistance, and who ultimately
have a poor prognosis [66, 67]. Efforts have therefore
focused on trying to understand why these resistances
occur, to counteract them, and to look for new, more
personalized drugs that avoid resistance.
In ALL, survival and drug resistance of lymphoblasts

critically depend on 9-O-acetylation of sialic acids (Sias)
[68, 69]. Baumann AM et al., generated a CASD1
knock-out cells by CRISPR-Cas9-mediated genome
editing and demonstrated that CASD1 is essential for
9-O-acetylation [70].
Second mitochondrial-derived caspase-activators

(SMACs) act by inhibiting inhibitors of apoptosis
proteins (IAPs). One of the possible causes of resistance
is revealed by the action of these proteins, which act to
counteract the effects of drugs. These are also overex-
pressed in many types of cancer [71, 72]. The main
mechanism of action of IAPs is the inhibition of apop-
tosis through proteins such as caspases [73] or receptor
interaction of protein kinase 1 (RIP1), a potent activator of
death [74]. In this study, they set out to demonstrate that
SMAC acted by reactivating apoptosis of these cells, medi-
ated by RIP1. They used CRISPR-Cas9 system to knock
out this gene in vivo in xenograft models, and thereby
eliminate its expression. The results showed that RIP1 was
necessary for the induction of cell death by SMAC [75].
CXCR4 encodes a membrane receptor whose function

is to attract and confine the stromal cells of the bone
marrow stromal cells (BMSCs). This interaction with
BMSCs gives B cells a degree of protection, associated
with increased survival, resistance to treatment, relapse
and worse prognosis [76, 77]. CXCR4 is highly expressed
in B-ALL cells and has also been correlated with poor
patient outcome [78]. Inhibitors of CXCR4 have already
been examined in the preclinical setting, in vitro and in
vivo [79, 80] and may be CXCR4 antagonists or agonists.
To test whether the efficacy of these compounds was
due to the inhibition of CXCR4 and not to their own ac-
tivity as agonists, they generated a B-ALL cell line with
CXCR4 knock-out by CRISPR-Cas9. They demonstrated
that the agonistic activity of CXCR4 antagonists did not
affect antitumor activity. In addition, in vivo CXCR4
knock-out models reduced the burden of leukemia and
disease progression. In this way, the importance of
CXCR4 in the pathogenesis of B-ALL and in its use as a
therapeutic target to fight drug resistance is demon-
strated [10].

Conclusions, challenges and future directions
Genome editing technologies have already demonstrated
its potential to study molecular biology and pathogenesis
of the genetic aberrations in ALL, in vitro and in vivo.

From a future perspective, the development of the
genomic editing tools could also help to the generation
of murine models of leukemias that resemble the human
disease. In this sense, multigenic nature of the disease
entails great difficulties. In the case of ALL, murine
models based on a single alteration have failed, at least
in part, to fully develop the disease. Combining several
of the gene alterations found in patients in a murine
model, we could approach to the real pathological
conditions, giving rise to a more efficient model for the
investigation of this type of tumors. Until recently, to
generate an animal model with several genetic alter-
ations was a long and expensive process, however, tools
such us, CRISPR-Cas9, will allow introducing multiple
mutations in a single step. Thus, it will be possible to
generate, in short periods of time, more complex animal
models that allow us to simulate more faithfully the
conditions that occur in patients, providing the appro-
priate platform to study and to develop new therapeutic
strategies.
Furthermore, in the clinic, genome editing systems

could facilitate the rapid screening of new drugs and will
promote the development of personalized medicine,
connecting genomics, disease phenotypes and thera-
peutic goals. The use of these technologies will broaden
our understanding of the mechanism of action of these
novel drugs and enable the identification of novel
mechanisms of acquired resistance to pathway target
therapeutics. However, translating genome editing tech-
nologies to the clinical setting requires two main
concerns to be addressed: the safety and efficacy of treat-
ments. The off-target effect remains one of the major
obstacles of this technology. Researches will need to
improve our genetic tools in order to eliminate any
off-target effects and to improve the gene edition effi-
ciency in the future. Despite this, genome editing
offers new opportunities for tackling diseases such as
ALL that have been beyond the reach of previous
therapies.
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