
Parallel implementation of a simplified
semi-physical wildland fire spread model using

OpenMP

D. Álvarez1,∗, D. Prieto1, M.I. Asensio1,2, J.M. Cascón2,3, and L. Ferragut1,2

1 Departamento de Matemática Aplicada, Universidad de Salamanca,
Casas del Parque 2, Salamanca, 37008, Spain

∗{daalle,dpriher}@usal.es
2 I. U. de F́ısica Fundamental y Matemáticas, Universidad de Salamanca,

Casas del Parque 1, Salamanca, 37008, Spain
{mas,ferragut}@usal.es

3 Departamento de Economı́a e Historia Económica, Universidad de Salamanca,
Edificio FES, Campus Miguel de Unamuno, Salamanca, 37007, Spain

casbar@usal.es

Abstract. We present a parallel 2D version of a simplified semi-physical
wildland fire spread model based on conservation equations, with convec-
tion and radiation as the main heat transfer mechanisms. This version
includes some 3D effects. The OpenMP framework allows distributing
the prediction operations among the available threads in a multicore ar-
chitecture, thereby reducing the computational time and obtaining the
prediction results much more quickly. The results from the experiments
using data from a real fire in Galicia (Spain) confirm the benefits of using
the parallel version.

Keywords: OpenMP, Parallel computing, Performance, Wildland fire
model

1 Introduction

Wildland fires caused by natural or human factors remain a major threat to
our forests. Therefore, the real-time simulation of wildland fire spread has direct
applications in prevention, fire-fighting planning, and prescribed burn planning.

There are numerous mathematical models designed to predict the spread
and spatial behaviour of wildland fire events according to the nature of their
construction. The types of models range from empirical models based on sta-
tistical correlations of observed fire behaviour, to theoretical or physical models
based on the fundamental understanding of the physics and chemistry that go-
vern combustion and heat transfer, covering a wide range of intermediate models:
semi-physical, semi-empirical, etc. The names and classifications vary depending
on the author; see for example [18, 19, 22–24]. The empirical models are simple,
but applicable only to systems in which the conditions are identical to those used



2 D. Álvarez, D. Prieto, M.I. Asensio, J.M. Cascón, and L. Ferragut

in formulating and testing the models. Physical models are much more complex;
their computational cost is high and their validation is extremely difficult, al-
though they may be extrapolated to a wide variety of fire situations. Advances
in computational power and spatial data analysis have improved the computa-
tional efficiency of complex models, whereby simplified physical or semi-physical
models can now provide reliable and effective simulations, being considered a
serious alternative to the widely used semi-empirical models.

The simulation response time of a wildland fire spread model is critical. The
prediction provided by the model must obviously be much faster than the real
evolution of the simulated fire event if it is to be useful for fire-fighting plan-
ning. The results of the simulation should also be reliable. Data assimilation is a
technique that improves the accuracy of the predictions [8]. This method is used
to feed current data into a model while it is still in simulation mode by using
sequential statistical estimation. Data assimilation uses statistical methods to
periodically adjust the model state, incorporating new data, with the aim of
improving the simulation’s accuracy. The computational cost of data assimila-
tion is high, as it involves a large number of simulations. Data assimilation has
been used previously in fire spread simulation; see for example [10] and [16]. In
addition, a models’s validation process includes certain steps that again involve
numerous simulations, such as sensibility analysis, and especially parameter ad-
justment.

Today, thanks to the myriad of different types and varietiesy of data received
from satellite images, real-time sensors and many other sources, the models
have become more complex, with the main aim being to improving simulation
accuracy. Nevertheless, a serious drawback of using such a large amount of data
is the time required to compute them all and generate a prediction under deman-
ding time constraints. It is thus of the utmost importance to significantly reduce
model’s simulation response time.

Thanks to advances in computation, it is becoming more common to find
models exploiting multicore architectures, regardless of the model’s nature. This
enables computational-intensive models to generate simulations in competitive
time. Techniques such as OpenMP allow fully exploiting the performance of a
single machine, as it enables all the cores to be used at the same time [14].
Moreover, the GPU’s advantages can exploited to improve this performance
using CUDA [4]. In addition, MPI is a powerful framework that allows a task
distribution over several resources in a cluster for the best performance. It is
common to find a hybrid OpenMP - MPI integration [7] that achieves satisfying
results in the shortest amount of time.

This paper is organized as follows: Section 2 presents an overview of the fire
model optimized in this research. Section 3 details the technique used in the
parallel version of the model using the OpenMP framework. Experiments and
the performance study of the proposed parallel model are discussed in Section
4. Finally, the conclusions and future research are summarised in Section 5.



Parallel implementation of a fire spread model using OpenMP 3

2 The model

The simplified semi-physical wildland fire spread model used in this research has
been proposed by Ferragut et al. [11]. This model is based on principles of energy
and mass conservation and takes into account convection and radiation as the
main heat transfer mechanisms. Although the model’s equations are defined on a
2D domain, the model considers some 3D effects, such as non-local radiation from
the flames above the vegetal layer, for tackling with the effect that wind and slope
have over flame tilt. The model also uses a multivalued operator representing
enthalpy to consider the influence of fuel moisture content and heat absorption
by pyrolysis. The model has been modified with several improvements, see [9, 10],
with the current model version being called Physical Forest Fire Spread (PhFFS)
[20]. The version we present here computes the radiation term by numerical
integration [11], and provides a maximum improvement in computational cost
with the use of parallel computation.

The model’s non-dimensional simplified equations are,

∂te+ βv · ∇e+ αu = r in S × (0, tmax), (1)

e ∈ G(u) in S × (0, tmax), (2)

∂tc = −g(u)c in S × (0, tmax). (3)

We complete the problem with homogeneous Dirichlet boundary conditions and
the following initial conditions,

u(x, y, 0) = u0(x, y) in S, (4)

c(x, y, 0) = c0(x, y) in S. (5)

The spatial domain S represents the surface where the fire occurs, defined by
the mapping,

S : d 7−→ R3

(x, y) 7−→ (x, y, h(x, y))

where h(x, y) is a known function representing the topography of surface S and
d = [0, lx] × [0, ly] ⊂ R2 is a rectangle representing the projection of surface S.
Topography is one of the data layers that the model needs, and takes from a
Geographical Information System (GIS), see Fig. 1.

The unknowns, e = E
MCT∞

, dimensionless enthalpy, u = T−T∞
T∞

, dimensionless

temperature of the solid fuel and c = M
M0

, dimensionless mass fraction of solid
fuel, are bidimensional variables defined in S×(0, tmax), where tmax is the time of
study. The physical quantities E (J m−2), T (K) and M (kgm−2) are enthalpy,
temperature of the solid fuel and fuel load respectively.

M0 (kgm−2) is the initial solid fuel load, that defines the initial condition
and it is provided by two data layers, fuel load and fuel type, which the model
also takes from a GIS; see Fig. 1. Fuel load layer shows where there is fuel and
where there is not (roads, rivers, barren areas, firewalls set by firefighters...).
Fuel type layer shows the spatial distribution of different fuel types, as initial



4 D. Álvarez, D. Prieto, M.I. Asensio, J.M. Cascón, and L. Ferragut

Fig. 1. Layers gathered from a surface as input data by the model.

fuel load and other model input variables depend on fuel type. The model can
be fed by different fuel classifications, such as the well-known BEHAVE fuel
models [2], the more recent Scott and Burgan dynamic fuel models [21], or even
monitored data whenever available. C (J K−1 kg−1) is the heat capacity of solid
fuel, that also depends on fuel type. The temperature initial condition locates
the fire source by another data layer (see Fig. 1).

T∞ (K) is a reference temperature given by the ambient temperature, which
together with wind direction and intensity are the meteorological data the model
uses. The model considers wind effect in two different ways: through the con-
vective term itself, and through the flame tilt caused by wind that affects the
radiation term. The convective term, βv ·∇e in the energy conservation equation
represents the energy convected by the gas pyrolyzed through the elementary
control volume, where the surface wind velocity, v, is re-scaled by a correction
factor β. For a detailed explanation of the model parameter β see [20]. Wind
velocity v can be collected from meteorological stations located close to the fire,
or it can be computed by a wind model [5, 6, 12].

The model also takes into account the energy lost by natural vertical con-
vection through the term αu in the energy conservation equation. This term is

related to the natural convection coefficient α = H[t]
MC , where H (J s−1m−2K−1)

is a model parameter representing natural convection, and [t] is a time scale.

The expression e ∈ G(u) represents a multivalued operator that models the
influence of solid fuel moisture content, and depends on fuel moisture content
Mv (kg of water/kg of dry fuel), on dimensionless pyrolysis temperature up, both
related to fuel type, and on latent heat evaporation Λv.



Parallel implementation of a fire spread model using OpenMP 5

The right-hand side of the mass conservation equation represents the loss of
solid fuel due to combustion. g(u) is null when u < up and constant γ otherwise,
with this constant being inversely proportional to the half time of combustion

t1/2(s) of each type of fuel, γ = ln 2[t]
t1/2

.

The right-hand side of the energy conservation equation describes the thermal
radiation reaching surface S from the flame above the layer,

r =
[t]

MCT∞
R (6)

R represents the incident energy at a point x = (x, y, h(x, y)) of surface S due
to radiation from the flame above the surface per unit time and per unit area,
obtained by summing the contribution of all directions Ω, that is

R(x) =

∫ 2π

ω=0

I(x,Ω)Ω ·N dω, (7)

where ω is the solid angle and N is the unit outer vector normal to surface S.
This term is computed by numerical integration (see [11]) in the following 3D
domain,

D={(x, y, z): x, y ∈ d, h(x, y)< z<h(x, y) + δ},

and each contribution depends on flame height F and flame temperature Tf for
each type of fuel, through the differential equation that describes total radiation
intensity I at any position along a given path Ω in a grey medium, which may
be written, ignoring scattering, as

dI

ds
+ a(s)I(s) = a(s)Ib(s). (8)

Ib is the black body total radiation intensity, and is governed by the Stefan-
Boltzmann law, corresponding to the integral over all wavelengths of the emissive
power of a black body

Ib =
σ

π
T 4, (9)

where σ = 5.6704 × 10−8Js−1m−2K−4 is the Stefan-Boltzmann constant, and
temperature T reaches flame temperature Tf . a is the radiation absorption co-
efficient inside the flame, and it is the third model parameter.

The numerical solution of Equations (1,2,3) is based on P1 finite element
approximation on a regular mesh for spatial discretisation and a Crank-Nicolson
finite difference scheme for time discretisation, combined with a Euler half-step
for the radiation term, and the characteristic method for the convective term. For
each time step, the corresponding discretised expressions for temperature, en-
thalpy and fuel load can be computed separately for each spatial node, so their
calculation can be parallelised. The radiation term (Equation 7) is computed
with numerical integration, solving the intensity ordinary differential (Equation
8) with a second-order BDF finite difference method. In order to reduce com-
putation time, the equations are only resolved using the active nodes placed



6 D. Álvarez, D. Prieto, M.I. Asensio, J.M. Cascón, and L. Ferragut

around the perimeter where the fire occurs, as the operations only affect the
nodes involved in the fire front, and not all the nodes in the domain.

3 Parallel model implementation

Modern computer architectures are commonly designed with multicore-processors
to work at the same time. So it is increasingly common to find programs working
in parallel mode, taking advantage of this feature. OpenMP [15] is an Application
Programming Interface (API) that provides all the language extensions needed
for developing parallel applications. While the MPI framework [17] is the lead-
ing technique for parallel programming in highly-parallel systems or clusters,
OpenMP framework also provides the potential to develop high-performance
applications, as it allows creating threads for working simultaneously on the
same computer.

Our model is developed in C++, and has three main parts:

1. Preprocessing(). This function initializes the model and reads the data from
the initial domain, including layers, input variables and model parameters.

2. Solve(). This function computes the simulation from the previously acquired
data.

3. Postprocessing(). This function saves the simulation results.

Firstly, the sequential version of the model was analysed using the Gprof
tool [13] to locate the most time-consuming functions in the code. The analysis
reports an 84.1% execution time for FireSimulator:Solve() function. As this func-
tion represents the bulk of the program, achieving a better performance focused
on improving this function using OpenMP. We therefore analyse the callgraph
report looking for loops potentially parallelizables in the Solve() function . Some
of these methods present a considerable number of shared variables or other
inconveniences in the loop (such as loop breaking) which mean they cannot be-
come a parallel region. After a careful review of the analysis, the parallelisable
code represents approximately an 85% execution time, and the remaining 15%
corresponds to the sequential code.

As Amdahl’s law [1] concludes, the theoretical speed-up in latency of a pro-
gram is limited by the part of the application that cannot be parallelised. The
minimum execution time we could then obtain using a parallel version of the
program is shown in Equation (10), where tseq represents the execution time in
sequential mode, and Nth the number of threads used. In addition, Equation (11)
expresses the maximum speed we could obtain. When the number of threads Nth
tends to infinity, the limit of the speed-up is reached, and the equation value is
1/0.15 = 6.67.

tpar(Nth) = 0.15 ∗ tseq +
0.85

Nth
∗ tseq (10)

SNth
=

tseq

0.15 ∗ tseq + 0.85
Nth
∗ tseq

=
1

0.15 + 0.85
Nth

(11)



Parallel implementation of a fire spread model using OpenMP 7

After recoding the for loops into the model algorithms for independent itera-
tions, the OpenMP language directives have been used to achieve parallelism. In
this way, the #pragma omp parallel for directive enables the distribution of
a task among the available threads speeding-up the execution. The scheduling
of the iterations is dynamic: each thread executes a chunk of iterations then
requests another chunk until none remains to be distributed. This method allows
accessing consecutive elements in arrays containing the input variables. Besides
that, the data-sharing attribute clause is shared ; so the array of input variables
and the results are shared among all threads. This configuration leads to a
negligible increment in the global memory when the application runs in parallel
mode.

A parallel implementation of the algorithms in our model requires identifying
both major operations: matrix initialisation and basic matrix operations such
as addition, subtraction or multiplication. Accordingly, each thread retrieves a
chunk of elements, performs the assigned tasks and saves the result in a final
shared matrix where all the elements are independent.

The sequential Solve() function is outlined in Algorithm 1. The for loops
included in the following members of the Solve() function have been distributed
among the available threads in a parallel version for a better performance.

Algorithm 1 Sequential Solve() function in the model. Sections 1 to 7 have
been parallelised into threads.

Solve() {
1. Comp. of the initial values in the domain: {- 1.Parallel loop -}

– u0: Dimensionless solid fuel temperature.
– c0: Dimensionless fuel mass fraction.
– e0: Dimensionless enthalpy.

2. For each simulation epoch:
(a) Comp. of the node convection in the 2D domain. {- 2.Parallel loop -}
(b) Comp. of the 3D temperature for radiation comp. {- 3.Parallel loop -}
(c) Set active nodes in 2D domain. {- 4.Parallel loop -}
(d) Comp. of the radiation (for each active node):

i. Solve the numerical integration (Eq. 7). {- 5.Parallel loop -}
ii. Solve the intensity ODE (Eq. 8). {- 6.Parallel loop -}

iii. Update values u, e, c. {- 7.Parallel loop -}
}

4 Experiments and results

4.1 Real case study

The topographic data used in our experiments were taken from an area in Osoño
(Galicia), situated in the northwest of Spain, where a real fire occurred in August,



8 D. Álvarez, D. Prieto, M.I. Asensio, J.M. Cascón, and L. Ferragut

2009. The wildfire ignited at 3.45 p.m. (local time) on August 17th, 2009. Despite
the firefighters’ efforts to bring the fire under control in the early hours, it was not
stabilised until the following day at 3.45 a.m. Finally, the fire was extinguished
at 9.10 p.m. on August 18th, burning a total area of 224ha.

The simulation area is a surface of 3.315m x 2.740m, where the altitude
ranges from 540m to 680m above sea level. The average slope ranges from 6.56%
at the initial point to 2.86% at the end. The fire spread over an irregular surface
with discontinuous slopes, watersheds, river basins and even firebreaks. Fuel data
were collected from the IFN4 database, with fuel type distribution according to
BEHAVE classification [3]. Weather data were gathered from a nearby weather
station 3.750m from the fire ignition, providing ambient temperature and wind
data. The initial wind speed was about 11.45 km/h, increasing to 17.26 km/h,
and moving from the west to the north.

The input layers in the domain are therefore transformed into an array of
663 × 548 nodes, as the model considers a 5 metres cell size. The model must
operate over four layers, with more than 363, 000 nodes per layer, to solve the
system of equations detailed in Section 2. Moreover, the real input variables
and parameters detailed above must be resolved by the model, along with the
numerical integration in the nodes placed around the fire area to provide the
simulation result.

4.2 Performance analysis/evaluation

The main objective pursued in this research is to evaluate the potential benefit
of using the parallel version of the model rather than the sequential version. To
achieve this, our parallel version has been developed as detailed in Section 3 and
compiled by GCC 5.4.0 using the -O3 compilation flag with OpenMP 4.0. The
experiments have been run on a workstation with a Xeon Broadwell Processor
E5-1650 v4 at 3.60 GHz with six cores and 12 threads, 15 MB of cache memory
and a memory of 16 GB of DDR4/2400 MHz ECC Reg. To prevent the processor
from handling the frequency and obtain an adequate correlation of the data, the
Intel SpeedStep and Turbo Boost technologies have been disabled.

By taking data on the Osoño fire as input data, each test was performed at
least five times, increasing the number of the threads from one (sequential) to
12, as this is the maximum number of threads supported by the workstation.
For the parallel time analysis, only the execution time of the Solve() function is
considered. Table 1 summarises the average execution time collected from one
to four hours of fire spread simulation time.

The results gathered from the experiments show how the execution time
depends on the number of threads involved. Hence, whereas the sequential ex-
ecution of one hour using one thread (sequential) took 93.8 seconds, this time
decreased according to the number of threads configured in the simulation un-
til the best time of 17.5 seconds was reached when 11 threads were used. In
this case, the execution time running in parallel tpar among 11 threads is up to
18.75% of the sequential runtime tseq.



Parallel implementation of a fire spread model using OpenMP 9

Table 1. Solve() function execution time in seconds obtained for every hour simulated.

Number of threads

Hour Seq. 2 3 4 5 6 7 8 9 10 11 12

1 93.8 51.8 37.3 29.8 28.5 24.2 21.0 19.8 19.5 19.0 17.5 18.0

2 229.6 130.2 86.4 74.6 62.4 54.3 48.4 46.7 44.4 43.7 41.7 42.4

3 434.4 228.5 157.2 122.6 107.9 88.8 82.8 77.8 75.2 73.8 73.0 72.5

4 653.3 355.1 241.7 186.0 154.8 137.1 126.1 118.3 113.5 111.3 109.4 108.8

Speed-up, which is defined as the ratio of sequential time tseq to parallel
execution time tpar, is detailed in Table 2.

Table 2. Solve() function Speed-up obtained from one to four hours of fire spread
simulation.

Number of threads

Hour Seq. 2 3 4 5 6 7 8 9 10 11 12

1 1 1.81 2.51 3.15 3.28 3.87 4.46 4.72 4.79 4.92 5.33 5.19

2 1 1.76 2.66 3.08 3.67 4.22 4.74 4.91 5.17 5.25 5.50 5.41

3 1 1.90 2.76 3.54 4.02 4.89 5.24 5.58 5.78 5.89 5.95 5.99

4 1 1.84 2.70 3.51 4.22 4.73 5.14 5.52 5.75 5.87 5.97 6.00

The model’s parallelisation recorded a considerable difference in performance
depending on the number of threads configured in the simulation, as detailed in
Table 2. This table shows how the execution time for one hour of simulation sig-
nificantly improves when the first six threads were used and therefore, a 74.15%
(3.87) speed-up increase over the sequential time was raised. The remaining im-
provement, around 6%, was achieved when the rest of the threads were used:
from six threads with 74.15% (3.87) over the sequential time to 11 threads with
81.25% (5.33). However, the results between 10 - 12 threads may fluctuate by less
than 1%, and are not therefore meaningful because the operating system also
keeps running, and affects the optimal number of threads for the best results.

As detailed in Section 3, the theoretical maximum speed-up we could obtain
when the number of threads tends to infinity is defined in Equation 11, and its
value is 1/0.15 = 6.67. The results gathered from four hours of fire spread simu-



10 D. Álvarez, D. Prieto, M.I. Asensio, J.M. Cascón, and L. Ferragut

lation using 12 threads provide a 6.00 x maximum speed-up over the sequential
time, which is not far from the theoretical speed.

Furthermore, in order to check how the increase in threads influences the
increase in speed-up , the parallel efficiency ENth

= (tseq/tpar)/Nth (%) is eva-
luated, where Nth is the number of threads involved.

Fig. 2. Speed-up and parallel efficiency for four hours of fire spread simulation.

Fig. 2 summarises the speed-up and parallel efficiency of four hours of fire
spread simulation. In this case, the speed-up increases linearly until six threads
that matches with the number of the cores of the workstation. A slight increase
in the speed-up has then been observed according to the number of threads
(from 7 to 12) configured in the runtime. This effect is due to Hyper-Threading
technology that allows running the concurrent scheduling of two processes per
core. At this point, efficiency decreases from around 80% using six threads to 50%
when 12 threads are involved. As Amdahl’s law describes, when the number of
threads increases, a parallel overhead appears causing a deterioration of speed-
up and parallel efficiency. This drop in performance is due to the OpenMP
programming methodology’s loop-scheduling overhead when the model’s loops
are parallelised.

5 Conclusions and further research

This research describes a parallel version of a simplified semi-physical wildland
fire spread model using OpenMP. This model’s sequential version is analysed and
improved using the #pragma omp parallel for directive to develop a parallel
version. In this way, all the independent loop iterations can be distributed among
the available threads to speed-up the execution. The experimental results for a
simulation of a real fire in Osoño show an improvement in the speed-up when



Parallel implementation of a fire spread model using OpenMP 11

the parallel version of the model is used. Nevertheless, performance efficiency
decreases in step with the number of threads involved in the simulation. However,
our improved parallel model computes simulations much more quickly: one hour
of fire spread can be simulated in less than 50 seconds, and four hours in about
four minutes.

Although our model is under continuous development, we are currently work-
ing on improving the performance reported in this work by using the CUDA
framework to run the model on GPU. Future work on the model will also in-
clude a new approach for working on a cluster or in a highly-parallel system
combining OpenMP and MPI frameworks. Furthermore, we are also studying
other models, including wind models [12], which may exploit parallelisation ca-
pabilities for a better performance.

Acknowledgement

This work has been partially supported by the Department of Education of the
regional government, the Junta of Castilla y León, Grant contract: SA020U16.
The authors are also grateful to Arsenio Morillo Rodŕıguez chief of the forest
prevention and valorization area of the regional government, the Xunta de Gali-
cia, for his technical support providing all the necessary information about the
Osoño fire.

References

1. G.M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM.

2. H.E. Anderson. Aids to Determining Fuel Models for Estimating Fire Behavior.
General Technical Report INT-122, U.S. Department of Agriculture, Forest Ser-
vice, Intermountain Forest and Range Experiment Station, 1982.

3. P.L. Andrews. BEHAVE: fire behavior prediction and fuel modeling system-BURN
subsystem, Part 1. U.S. Dept. of Agriculture, Forest Service, Intermountain Re-
search Station Ogden, UT, 1986.

4. B. Arca, T. Ghisu, W. Spataro, and G.A. Trunfio. GPU-accelerated Optimization
of Fuel Treatments for Mitigating Wildfire Hazard. Procedia Computer Science,
18:966 – 975, 2013.

5. M.I. Asensio, L. Ferragut, and J. Simon. A convection model for fire spread sim-
ulation. Applied Mathematics Letters, 18(6):673–677, 2005. Special issue on the
occasion of MEGA 2003.

6. J.M. Cascón, Y.A. Engdahl, L. Ferragut, and E. Hernández. A reduced basis for
a local high definition wind model. Computer Methods in Applied Mechanics and
Engineering, 311:438 – 456, 2016.

7. A. Cencerrado, T. Artés, A. Cortés, and T. Margalef. Relieving Uncertainty in
Forest Fire Spread Prediction by Exploiting Multicore Architectures. Procedia
Computer Science, 51:1752 – 1761, 2015.

8. G. Esvensen. Data assimilation, The Ensemble Kalman Filter. Springer, 2009.



12 D. Álvarez, D. Prieto, M.I. Asensio, J.M. Cascón, and L. Ferragut

9. L. Ferragut, M.I. Asensio, J.M. Cascón, and D. Prieto. A Simplified Wildland Fire
Model Applied to a Real Case, pages 155–167. Springer International Publishing,
Cham, 2014.

10. L. Ferragut, M.I. Asensio, J.M. Cascón, and D. Prieto. A Wildland Fire Physical
Model Well Suited to Data Assimilation. Pure and Applied Geophysics, 172(1):121–
139, 2015.

11. L. Ferragut, M.I. Asensio, and S. Monedero. Modelling radiation and moisture
content in fire spread. Communications in Numerical Methods in Engineering,
23(9):819–833, 2007.

12. L. Ferragut, M.I. Asensio, and J. Simon. High definition local adjustment model
of 3d wind fields performing only 2d computations. International Journal for
Numerical Methods in Biomedical Engineering, 27(4):510–523, 2011.

13. S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A Call Graph Execution
Profiler. SIGPLAN Not., 17(6):120–126, June 1982.

14. E. Innocenti, X. Silvani, A. Muzy, and D.R.C. Hill. A software framework for fine
grain parallelization of cellular models with OpenMP: Application to fire spread.
Environmental Modelling & Software, 24(7):819 – 831, 2009.

15. M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin. An OpenMP runtime API for
profiling. Sun Microsystems, Inc.. OpenMP ARB White Paper. Available online
at http://www.compunity.org/futures/omp-api.html.

16. J. Mandel, L.S. Bennethum, J.D. Beezley, J.L. Coen, C.C. Douglas, M. Kim, and
A. Vodacek. A wildfire model with data assimilation. Mathematics and Computers
in Simulation, 79:584–606, 2008.

17. MPI Forum. Message Passing Interface (MPI) Forum Home Page.
http://www.mpi-forum.org/ (Dec. 2009).

18. E. Pastor, L. Zárate, E. Planas, and J. Arnaldos. Mathematical models and cal-
culation systems for the study of wildland fire behaviour. Progress in Energy and
Combustion Science, 29(2):139–153, 2003.

19. G.L.W. Perry. Current approaches to modelling the spread of wildland fire: a
review. Progress in Physical Geography, 22(2):222–245, 1998.

20. D. Prieto, M.I. Asensio, L. Ferragut, and J.M. Cascón. Sensitivity analysis and
parameter adjustment in a simplified physical wildland fire model. Advances in
Engineering Software, 90:98 – 106, 2015.

21. J.H. Scott and R.E. Burgan. Standard Fire Behavior Fuel Models: A Comprehen-
sive Set for Use with Rothermel’s Surface Fire Spread Model. General Technical
Report RMRS-GTR-153, U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station, 2005.

22. A.L. Sullivan. Wildland surface fire spread modelling, 1990-2007. 1: Physical and
quasi-physical models. International Journal of Wildland Fire, 18(4):349–368,
2009.

23. A.L. Sullivan. Wildland surface fire spread modelling, 1990-2007. 2: Empirical and
quasi-empirical models. International Journal of Wildland Fire, 18(4):369–386,
2009.

24. A.L. Sullivan. Wildland surface fire spread modelling, 1990-2007. 3: Simulation and
mathematical analogue models. International Journal of Wildland Fire, 18(4):387–
403, 2009.


