

Design of Cooperative Agents for Mobile Devices

Juan M. Corchado1, Emilio S. Corchado2 and M. A. Pellicer1

1Dep. Informática y Automática
Universidad de Salamanca
 Plaza de la Merced s/n
37008, Salamanca, Spain
corchado@usal.es

http://gsii.usal.es/
2Department of Civil Engineering,

University of Burgos, Spain.
C/ Francisco de Vitoria s/n

09006, Burgos, Spain

Abstract. The paper presents an agent-based engineering system developed for
mobile devices. The proposed system has been used for constructing a wireless
tourist guide application that incorporates cooperative agents with the learning
capabilities. It is shown how to construct cooperative agents with a goal driven
design using a case-based reasoning methodology . The resulting architecture has
been tested by real users during six months and the results obtained are here
presented.

1 Introduction

Agents for mobile devices have introduced an interesting an exciting new paradigm in
the telecommunication industry. In the competitive telecommunication world multi-
agent systems have been success the drive for new and sophisticated services is
fundamental. The new challenges of this field require new technology that facilitates
the construction of more cooperative, dynamic and flexible applications, capable of
working in a real time environment. Agent-based solutions intend to cope with such
requirements. The development of agent for wireless devices is characterized by very
limited, variable and asymmetric technology and bandwidth, frequent and prolonged
disconnections, geographical mobility, severe resource restrictions and complex data
management issues. In addition to these familiar issues there is also the crucial element
of dynamism.

Agent technology has already been proposed as a possible solution to many of
these problems. When the terms "cooperation" or "intelligent" is used it is clear the
user means the software to be something more than a mere server, mobile or not.
Often, the term is only a reference to a context of a community and technology. With

respect to agents, the "intelligent" label in this case refers to a concern with abstract,
domain-independent theories of agent architecture and communication and/or aspects
of human characteristics. The terms cooperation and autonomy are essential in the
development of distributed agent-based systems for wireless devices.

The amount of information available to users via wireless systems is changing and
increasing continuously. Existing applications need to be continuously updated. In
this context the use of dynamic agents based systems may help to reduce the
developed costs and to facilitate the use of this technology. We propose the use of
cooperative agents that use case-based reasoning (CBR) systems [1, 3]. The proposed
architecture combines reactive and deliberative agents. The architecture used by the
second ones includes the use of Beliefs, Desires, and Intentions (BDI). Under this
model, agents have a mental state that consists of informational, motivational, and
deliberative states respectively. Beliefs represent the information about the
environment, the internal state the agent may hold, and the actions it may perform. The
agent will try to achieve a set of goals, and will respond to certain events [9, 11].

The deliberative agents are built on a case-based reasoning system [3,6]. The
proposed method starts by identifying agent roles and goals , and the design and
implementation of the agent architecture follows the form of CBR systems, which
facilitates learning and adaptation, and therefore a greater degree of autonomy than
with a pure BDI architecture. This is made by mapping the three mental attitudes of
BDI agents into the information manipulated by a CBR system. This direct mapping
between the agent conceptualisation and its implementation is the main difference with
respect to other proposals that have also tried to combine BDI and CBR [2, 7, 8, 10].

A tourist guide service through mobile devices has been used to validate the
system. The system has been validated by users who have used it when vis iting the
city of Salamanca. The system is able to program a tourist route, and modify it
according to the conditions of the places to visit and the available time for the tourist.
The following section describes the agent based architecture. The conclusions are
finally presented and the results evaluated.

2 Agent-based architecture

A tourist guide application has been developed using a multiagent architecture. The
agents assist potential tourists in the organization of their tourist routes and enable
them to modify their schedules on the move using wireless communication systems.
This system has been constructed using an engineering framework developed to
design and implement an agent-based tool, as well as integrating existing state of the
art in order to create an open, flexible, global anticipatory system with mobile access
for the promotion and management of inland and cultural tourism, which will be user-
friendly, cost-effective and secure.

The integrated, multi-platform computer system is composed of a guide agent
(Planner Agent) that assesses the tourists and helps them to identify tourist routes in
a city with a given visiting period of time and under a number of restrictions related to

cost, tourist interest, etc. There is one assistant agent for each user of the system, the
Performer Agents. Each user willing to use the system has to register and solicit one of
these agents. Finally, there is a third type of agent, the Tracker agent, which maintains
updated information about the monuments, the restaurants, public transport
conditions, etc. This agent maintains horizontally and vertically compiled information
on hotel accommodation, restaurants, the commercial sector and transport, in order to
meet the needs of the potential visitor on an individually customized basis, and
responds to requests for information, reservations and purchases in the precise
moment that they are expressed. The user may decide whether to install the
corresponding Performer Agent on a mobile phone or PDA, or run it on the server and
interact with it via its mobile device. The first choice supposes a reduction of the cost,
since the tourist can interact with his agent as much as needed at no cost because it is
installed in the wireless device. Nevertheless, the agent will have to contact regularly
with the Planner Agent. Fig. 1. describes the system architecture from a very high
abstraction level. Users may interact either with their performer agents installed in their
wireless devices or in an internet server.

Fig. 1. System architecture

Agree

Inform-Whenever (Changes on the environment)

AgTracker AgPlanner:K-base

Fig. 2. Sequence diagram for the Tracker agent and the planner agent

The performer agents interact with the planner agent looking for plans, and the

tracker agent interacts with the planner agent to exchange information. The planner
agent is the only CBR-BDI agent in this architecture. The performer agents can be
considered assistant agents and the tracker agent is a reactive agent. Figure 2 and 3
show the sequence diagram for the multiagent system.

Tracker agent

Internet

Searches for

Performer agent

 [us001]

Internet

User Interfaz

Planner agent

Internet

Generates T.

Performer agent

 [us002]

Internet

User Interfaz

Performer agent

 [us001]

Wireless net.

User Interfaz

Performer agent

 [us002]

Wireless net.

User Interfaz

Performer agent

 [us00x]

Wireless net.

User Interfaz

A g P e r f o r m e r / Q u e s t i o n e r A g P e r f o r m e r / E x e c u t e r A g P l a n n e r : V C B P A g P l a n n e r : K - b a s e

Reques t (Ob jec t i ves , Resources)

<<ro le change>>

Inform (Base of Posible Solutions) <<role change>>

In fo rm (Mos t Rep lann ing-Ab le So lu t ion , n s teps)

Que ry I f (S tep i == t r ue)

asser t (n s teps)
< < r o l e c h a n g e > >

re fuse

[t rue == Be l i eve] Con f i rm

[f a l se == Be l i eve] D i scon f i rm

Request (Objectives - Sum(Objectives,i), Resources - Sum(Resources,i)

<<role change>>

Inform (Base of Posible Solutions) <<role change>>

Inform (Most Replanning-Able Solution, m steps)

Query I f (Se rend ip i t y i s Poss ib l e)

D iscon f i rm

<<role change>>

Inform (Base of Posible Solutions) <<role change>>

x

x

x

 [i : 1 . . n | | i : 1 . . m] S t e p s

* [m o r e p l a n n s]

Fig. 3. Sequence diagram for the performer agents and the planner agent

The planning agent incorporates a CBR system [1]. The relationship between CBR

systems and BDI agents can be established implementing cases as beliefs, intentions
and desires which led to the resolution of the problem. When the agent starts to solve
a new problem, with the intention of achieving a goal, it begins a new CBR reasoning
cycle, which will help to obtain the solution. The retrieval, reuse and revise stages of
the CBR system facilitate the construction of the agent plan. The agent’s knowledge-
base is the case-base of the CBR system that stores the cases of past believes, desires
and intentions. The agents work in dynamic environments and their knowledge-base
has to be adapted and updated continuously by the retain stage of the CBR system.
Based on this relationship, agents can be implemented using CBR systems. This
means, a mapping of agents into CBR systems. The advantage of this approach is that
a problem can be easily conceptualised in terms of agents and then implemented in the
form of a CBR system. So once the beliefs, desires and intentions of an agent are
identified, they can be mapped into a CBR system.

To set up an agent using the CBR-BDI agent architecture [3] we need to identify an
initial set of beliefs, desires and intentions and include them in the case-base of the
agent in the form of cases. Then, a number of metrics for the retrieval, reuse, revise and

retain steps has to be defined. Besides, rules that describe the Expert’s knowledge
must be established, if available. Once the agent has been initialised it starts the
reasoning process and the four steps of the CBR system are run sequentially and
continuously until its goal is achieved (or there is enough evidence for a failure
situation).

-<<Role>>
-K-base

-Update Believes/Intentions
-<<Role Dynamic>>

-VCBP

<<agent>> Planner

-Input
-Request ACL for service (Give MRS)
-(ACL content = {O, R, hi, UsedBel})

-O = Objetivos
-R = Recursos

-hi : int
-UsedBel

<<Capability>> K-base

-Description
-Given a set of Preferences about a problem P

-this service offers the Most Replanning-able Solution

<<Service>> Give MRS

Type
Inform, Failure

Protocol:
Request-Best Solution for a dynamic environment

Agent Comunication Language
FIPA ACL

Ontology
Planning ontology

Content Language
FIPA SL

-Input
-{ S(p) } S1(p),S2(p),S3(p),..Sn(p) : Posible Solutions

<<Capability>> VCBP

Output:
Sf(p) : MRS (Most Replanning-able Solution)

Description:
This capability provides the most replanning-able

solution to the performer Agent

Output:
S1(p),S2(p),S3(p),..Sn(p) : Posible Solutions

Description:
This capability provides solutions that fulfill a

set of given preferences

-Input
-Inform ACL for Update Believes/Intentions

-(ACL Content =
-b1(t),b2(t),...bn(t) : Believe

-t : time)

<<Capability>> Update Believes/Intentions

Output:
bi(t-1) <- bi(t) : Believe

I[bi(t-1) <- bi(t)] : Intentions

Description:
This capability Updates believes and

intentions

Fig. 4. Planner Agent class diagram

Fig. 4 shows the AUML class diagram (www.auml.org) of the Planner Agent. In

these types of diagrams, the roles and goals of the agents are represented as
Capabilities that may change with the time. In particular, the roles of the Planner Agent
are to update the believes and intentions, which are stored in the form of cases, to
identify those believes and intentions that can be used to generate a plan n, and to
provide adequate plans to the Performer Agent given a number of conditions. These
roles allow the agent to generate the closest to the optimum plan, which in this case
has also to be the most replan-able solution. In this context, when the Performer Agent
asks for a tourist route, given a number of constraints such as the money the tourist is
willing to spend, the number of monuments to visit, the type of restaurants to eat, the
time availability for the holiday, etc. the Planner Agent generates a plan that fulfils
such conditions. This plan is easy to modify at execution time if the user changes of
mind. The Planner Agent is a CBR-BDI agent, where the first role is carried out during
the Retain stage of the CBR life cycle, the second role is the Retrieval step, and the
third role is the Reuse stage.

-Input
-Preferences = { O <- O', R <- R', hi, UsedBel}

-O' = Objetivos Pendientes
-R' = Recursos Disponibles

-hi : Int
-UsedBel = {b1, b2, b3..bk} : Believe

<<Capability>> Request for Replanning

-<<Role>>
-Wait Preferences

-<<Role Dynamic>>
-Questioner,Executer

-Request for Replanning

<<agent>> Performer

-Input True

<<Capability>> Wait Preferences

Description:
This Capability waits preferences
{O = Objectives, R = Resources }

to solve a Problem p

-Input
-Request : Preferences = { O, R, hi, UsedBel={} } for S(p)

<<Capability>> Questioner

-Input
-MRS : Most Replanning-able Solution {b1,b2,..bm} :Believe

<<Capability>> Executer

Output:
a) Query If Replanning (For All Believe E MRS ,

 Believe == true)
b) Query If Replanning (if Any Believe E MRS ,

Believe==false)
c) Failure Replanning

Description:
This capability executes the MRS solution and it checks

proposed believes are true.
Otherwise it is capable of replanning to get other solutions

Output:
Request ACL for service (Give MRS) to Ag Planner

(ACL content = {O, R, hi, UsedBel})

Description:
This capability request for the best posible solution to

Planner Agent in a dynamic environment

Output:
Request ACL for service (Give MRS) to Ag

Planner (ACL content = {O’, R’, hi, UsedBel}
)

Input Constraint:
O' > 0
R’ > 0

Output:
Wait Preferences : { O, R , hi ,

UsedBelieves= { } } for S(p)

Description:
If all objectives have not been achieved and
there are available resources, this capability

request for the service “Give MRS” to
Planner Agent to finish the plan

Fig. 5. Performer agent class diagram

-<<Ro le>>
-Search Changes
-Store Changes

<<agent>> Tracker

-Input
-b1(t),b2(t),.. .bn(t) : Believe

-t : time

<<Capabi l i ty>> Search Changes

Output:
{ b i (t) } / b i (t) <> b i (t -1) : Be l ieve

Description:
This capabi l i ty f inds the changed

bel ieves on the environment

-Input
-{bi(t)} : Believe

-t : time

<<Capabi l i ty>> Store Changes

Output:
bí(t-1) <- bi(t)
Description:

This capabi l i ty stores new
values for the changed

believes

-Descr ip t ion
-This serv ice not i f ies changes on the

-environment automatical ly

<<Service>> Not i fy Changes

Type Inform

Protocol :

Agent Comunication Language
F I P A A C L
Onto logy

Planning ontology

Content Language
F I P A S L

Fig. 6. Tracker agent class diagram

The Performer agents are assistant agents. Each of them is associated to one user
and contact the Planner Agent to request a plan. These agents may be in waiting
mode, waiting for a request from the user, may ask to the Planner Agent for a plan, or
request a modification in a plan (replanning) to the Planner Agent. Fig. 5 shows the
AUML class diagram for the Performer agent. The Tracker Agent is always looking for
changes in the visiting conditions of the different sites, and keeps a record of them.
The Planner Agent regularly contacts the Tracker Agent looking for changes in the
environment. Fig. 6 shows the AUML class diagram for the Tracker agent.

3 Conclusions

The previously introduced architecture has been implemented using JADE and JADE-
LEAP. This initial prototype has been successfully tested in Salamanca during the
past few months. The tourists could use mobile devices to contact their agents and to
indicate their preferences such as monuments to visit, visits duration, dinner time,
amount of money to spend, etc. The cases store information about the environment,
for example the opening and closing times of monument. This type of information can
be seen as agents believe, for example, and average dinner in the casino restaurant
costs around thirty five Euros. Cases can also be previous successful routes (plans),
that includes the monuments to visit, the time to spend visiting each monument,
information about the cost of the visit, the time required for going to one place to
another, the characteristics of the route (museum route, family route, university route,
roman route, gothic route, etc.), etc. Once a tourist contacts the system he has to
describe his profile, to select the type of visit in which he is interested in, to determine
how much money he wants to spend and for how long, and the type of restaurants he,
she or a family like more. This information is used to construct the problem case. Then
the reasoning mechanism of the planning agent generates the plan [5,6].

Table 1. Tourists evaluation.

 % Evaluation - degree of satisfaction

Tourists that… 8-10 6-8 4-6 0-4 No answer

Used the help of the agent 18
%

63,8 4,2 3,1 12,6 16,3

Used the help of a tourist guide 37
%

65,7 15,2 9,4 5,8 3,9

The initial system was tested during the fist four moths of 2004. The case base was

initially filled with information collected during ten months. Local tourist guides
provided the agent with a number of standard routes. Three hotels of the city offered
the option to their 3410 guests to use the help of the agent or a professional tourist
guide, around 18% of them decided to use the agent based system and 37% of them
used the help of a tourist guide. The Planner agent had stored in its memory 2234
instances of tourist circuits, which covered a wide range of all the most common
options that offers the city. On the arrival to the hotel the tourists were asked to
evaluate their visit and the route. Table 1 shows the responses given by the tourists
after their visit. The tourists that used the help of the agent-based tourist guide
provided the answer directly to the agent. As it can be seen, in Table 1, the degree of
satisfaction of the tourist that used the help of a professional tourist guide is higher
that in the other two cases. Nevertheless, the percentage of the tourists whose degree
of satisfaction was very high (between 8 and 10) is very similar in the case of the
tourists that use the help of the agent and in the case of the tourists that use the
tourist guide. 16,3% of the tourists that used the agent based system did not answer

the test or let us know that the system did not work successfully due to technical
reasons (possibly the server was down, there was a lack of coverage, the tourist did
not use the wireless system adequately, etc.) If we take this into consideration, we can
say that most of the tourist (81,24%) that used the help of the agent and did not have
technical problems had a high or very high degree of satisfaction (6-10). This degree of
satisfaction is similar to the one of the tourist that used the help of professional tourist
guides. The CBR component of the architecture provides a straight and efficient way
for the manipulation of the agents knowledge and past experiences. The proposal
presented in this paper reduces the gap that exists between the formalization and the
implementation of BDI agents.

Acknowledgements

This work has been supported by the MCyT project TIC2003-07369-C02-02.

References

1. Aamodt A. and Plaza E. (1994). Case-Based Reasoning: foundational Issues,
Methodological Variations, and System Approaches, AICOM. Vol. 7. No 1, March.

2. Bergmann, R., Muñoz-Ávila, H., Veloso, M. and Melis, E. (1998). CBR Applied to
Planning. In Lenz, M. Bartsch-Sporl, B., Burkhard, H. and Wess, S. (Eds.) Case-Based
Reasoning Technology: From Foundations to Applications. Lecture Notes in Computer
Science 1400, pp. 169-200. Springer 1998, ISBN 3-540-64572-1.

3. Corchado J. M. And Laza R. (2003). Constructing Deliberative Agents with Case-based
Reasoning Technology , International Journal of Intelligent Systems. Vol 18, No. 12,
December.

4. Corchado J. M. and Lees B. (2001). A Hybrid Case-based Model for Forecasting. Applied
Artificial Intelligence. Vol 15, no. 2, pp.105-127.

5. Glez-Bedia M. and Corchado J. M. (2002) A planning strategy based on variational
calculus for deliberative agents. Computing and Information Systems Journal. Vol 10, No
1, 2002. ISBN: 1352-9404, pp: 2-14.

6. Glez-Bedia M., Corchado J. M., Corchado E. S. and Fyfe C. (2002) Analytical Model for
Constructing Deliberative Agents, Engineering Intelligent Systems, Vol 3: pp. 173-185.

7. Martín F. J., Plaza E., Arcos J.L. (1999). Knowledge and experience reuse through
communications among competent (peer) agents. International Journal of Software
Engineering and Knowledge Engineering, Vol. 9, No. 3, 319-341.

8. Olivia C., Chang C. F., Enguix C.F. and Ghose A.K. (1999). Case-Based BDI Agents: An
Effective Approach for Intelligent Search on the World Wide Web, AAAI Spring
Symposium on Intelligent Agents, 22-24 March 1999, Stanford University, USA.

9. Rao, A. S. and Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. First
International Conference on Multi-Agent Systems (ICMAS-95). San Franciso, USA.

10. Wendler J. and Lenz M. (1998). CBR for Dynamic Situation Assessment in an Agent-
Oriented Setting. Proc. AAAI-98 Workshop on CBR Integrations. Madison (USA) 1998.

11. Wooldridge, M. and Jennings, N. R. (1995) Agent Theories, Architectures, and Languages:
a Survey. In: Wooldridge and Jennings, editors, Intelligent Agents, Springer-Verlag, pp. 1-
22.

