HAIS'10

5th International Conference on HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS

A Bio-Inspired Fusion Method for Data Visualization

Bruno Baruque¹

GICAP – Grupo de Inteligencia Computacional Aplicada University of Burgos, Spain.

bbaruaue@ubu.es

Emilio Corchado²

2
BISITE –
University of Salamanca, Spain
escorchado@usal.es

Outline

- Introduction
- Competitive learning algorithms
 - The Self-Organizing Map
 - The Visualization Induced SOM (ViSOM)
 - Quality Measures
- Ensembles and combinations
 - Fusion by Euclidean Distance
 - Weighted Voting Superposition (WeVoS)
- Experiments and Results
- Conclusions

Introduction

Introduction

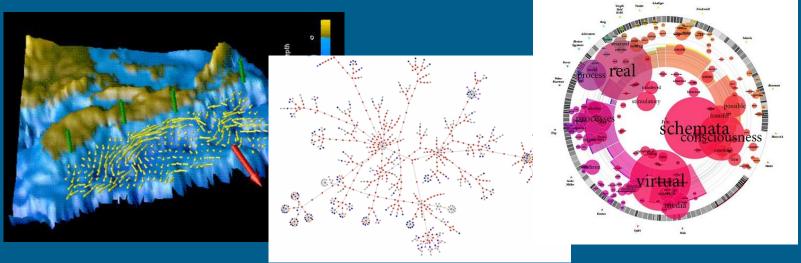
Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

- Objective: to obtain a clearer and more truthful representation of the structure of a multi-dimensional data set
- This is very useful in several types of AI systems such as Case Based Reasoning Systems



Introduction

Introduction Competitive Learning Ensembles and Experiments

Algorithms Combinations and Results

Conclusions

- Intended to use ANN
- Preferably Non-Supervised Learning
- Problems:
 - it is very difficult to asses the quality of a single map without comparing
 - the training of a map with the same dataset and parameters can yield quite different results

30/06/2010 4

Outline

- Introduction
- Competitive learning algorithms
 - The Self-Organizing Map
 - The Visualization Induced SOM (ViSOM)
 - Quality Measures
- Ensembles and combinations
 - Fusion by Euclidean Distance
 - Weighted Voting Superposition (WeVoS)
- Experiments and Results
- Conclusions

Competitive Learing Alg.

Introduction

Competitive Learning Algorithms Ensembles and Combinations

Experiments and Results

Conclusions

SOM (Self-Organizing Maps)

- Objective
 - low dimensional representation (2-D)
 - preserve the topological properties of the input space
- Unsupervised Learning
- Neighbouring function makes close neurons activate for close 'patterns' in the input space

$$w_k(t+1) = w_k(t) + \alpha(t)\eta(v,k,t)(x(t) - w_v(t))$$
 [Kohonen, 84]

30/06/2010

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

SOM (Self-Organizing Maps)

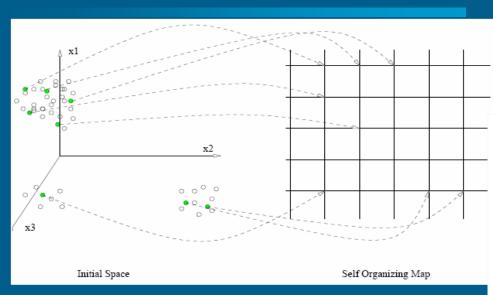


Fig. 3. 3D dataset mapped into a 2D map using a Self-Organizing Map



Introduction

Competitive Learning Algorithms Ensembles and Combinations

Experiments and Results

Conclusions

ViSOM (Visualization Induced SOM)

- Objective
 - o directly preserve the local distance information on the map, along with the topology
- Constrains the lateral contraction forces between neurons so that distances between neurons in the data space are in proportion to those in the input space

$$w_k(t+1) = w_k(t) + \alpha(t)\eta(v,k,t) \left[\left[x(t) - w_v(t) \right] + \left[w_v(t) - w_k(t) \right] \left(\frac{d_{vk}}{\Delta_{vk}\lambda} - 1 \right) \right]$$

[Yin, 02]

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

ViSOM (Visualization Induced SOM)

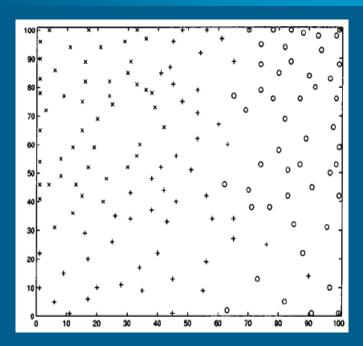


Fig 3. Iris dataset represented by a SOM 30/06/2010



Fig 4. Iris dataset represented by a ViSOM

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Quality Measures

Distortion

Measures in a more detailed way the topological order of the map

$$E_{d} = \sum_{x_{i} \in D} \sum_{w_{k} \in W} \eta(v_{i}, k) ||x_{i} - w_{k}||^{2}$$

[Lampinen,92]

Goodness of Approximation

 measuring both the continuity of the mapping from the dataset to the map grid, and the accuracy of the map in representing the set

$$d(x_i) = ||x_i - v_i|| + \min \sum_{k=0}^{|K_{v_i'}|-1} ||w_{li(k)} - w_{li(k+1)}||$$

[Kaski & Lagus,96]

Outline

- Introduction
- Competitive learning algorithms
 - The Self-Organizing Map
 - The Visualization Induced SOM (ViSOM)
 - Quality Measures
- Ensembles and combinations
 - Fusion by Euclidean Distance
 - Weighted Voting Superposition (WeVoS)
- Experiments and Results
- Conclusions

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

- The sets of <u>patterns misclassified</u> by the different classifiers would <u>not necessarily overlap</u>
- <u>Different classifier designs</u> offer <u>complementary</u> <u>information</u> about the patterns to be classified to improve the performance of the selected classifier
- Ensemble Summarization
 - Combination of answers of different classifiers (i.e. some kind of voting) Known as <u>aggregation</u>. Not suitable for representation
 - Combination of classifiers to obtain a final one (that should outperform the individual classifiers)

30/06/2010

Introduction

Competitive Learning
Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Bagging

- Originally devised to improve classification accuracy
- Not suitable for representation
- Training of networks individually using slightly different datasets
- Datasets obtained using re-sampling with replacement
- Classification results obtained by weighted voting

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Bagging

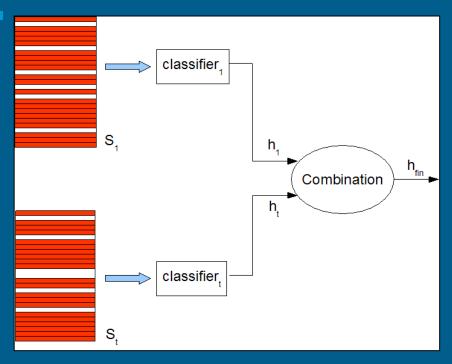


Fig 5. Scheme of the training of an ensemble using the bagging algorithm [Breiman,96]

Introduction

Competitive Learning
Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Fusion by Euclidean Distance

- Neurons must be aligned first.
- Based on <u>Euclidean distance</u> on neuron's weights and calculation of centroids.
- The set of data entries recognized for each neuron is updated as the <u>unions</u> of the sets corresponding to the clusters of neurons.

30/06/2010

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Fusion by Euclidean Distance

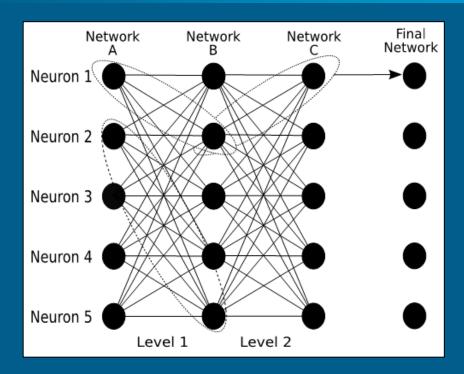


Fig 6. Alignment of three networks and their merging into one final map [Georgakis, 96]

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Weighted Voting Superposition

- Objective:
 - to obtain a final map keeping the most important features of the maps composing the ensemble
- based on the calculation of the "quality of adaptation" of homologous units of different maps
- calculates the best adapted vector of characteristics in each of the units that make up the final map

$$V_{p,m} = rac{\sum_{m} b_{p,m}}{\sum_{i=1}^{M} b_{p,i}} \cdot rac{q_{p,m}}{\sum_{i=1}^{M} q_{p,i}}$$

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

Weighted Voting Superposition

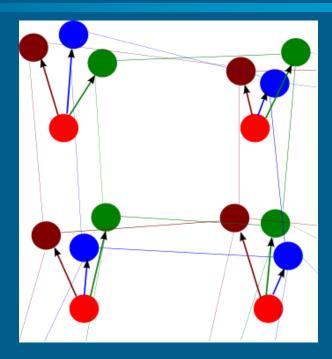


Fig. 5. Diagram showing how units of ensemble maps vote to determine the position of the final units

Outline

- Introduction
- Competitive learning algorithms
 - The Self-Organizing Map
 - The Visualization Induced SOM (ViSOM)
 - Quality Measures
- Ensembles and combinations
 - Fusion by Euclidean Distance
 - Weighted Voting Superposition (WeVoS)
- Experiments and Results
- Conclusions

Introduction

Competitive Learning
Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions

- Initial Study
 - Well-known datasets obtained from the UCI Repository: Iris and Echocardiogram
- Practical case
 - Visualization of ham samples quality

30/06/2010 20

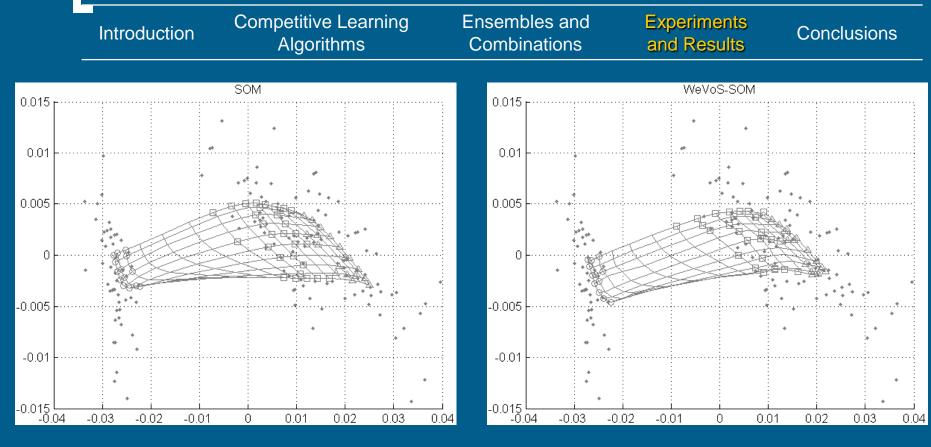
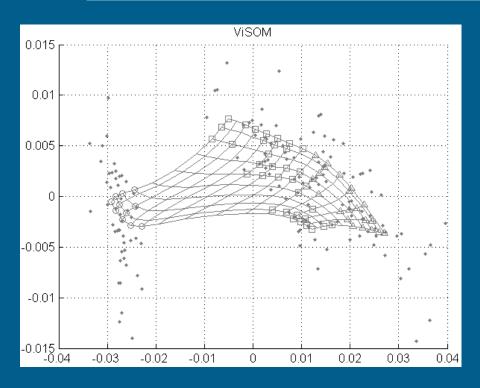


Fig. 7. SOM represented over the Iris Dataset (1st two Principal Components) 30/06/2010

Fig. 10. WeVoS obtained from 5 SOM maps over the Iris Dataset (1st two Principal Components)

Introduction Competitive Learning Ensembles and Experiments
Algorithms Combinations and Results Conclusions



0.015 0.005 -0.005 -0.015 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Fig. 9. ViSOM represented over the Iris Dataset (1st two Principal Components)

Fig. 10. WeVoS obtained from 5 ViSOM maps over the Iris Dataset (1st two Principal Components)

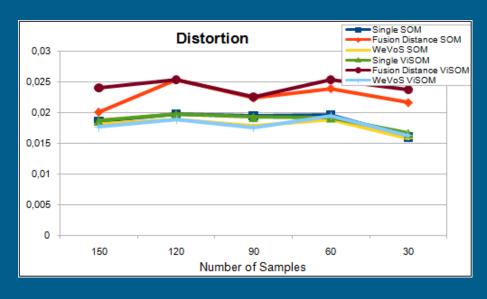
Introduction

Competitive Learning
Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions



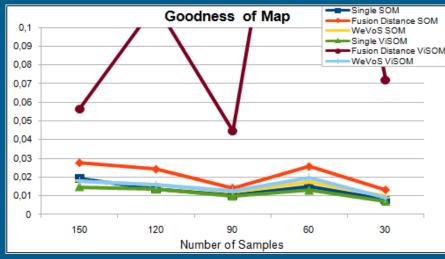


Fig. 11. Distortion for the models compared over the Iris Dataset

Fig. 12. Goodness of Map for the models compared over the Iris Dataset

30/06/2010 23

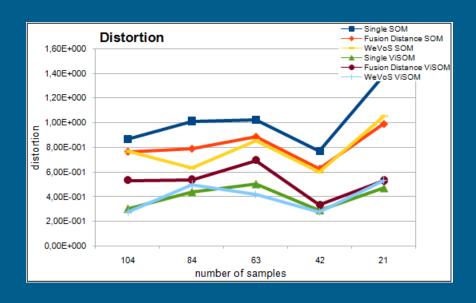
Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Results

Conclusions



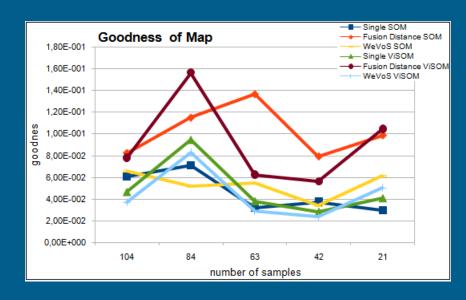


Fig. 13. Distortion for the models compared over the Echo-Cardiogram Dataset

Fig. 14. Goodness of Map for the models compared over the Echo-Cardiogram Dataset

30/06/2010

24

Competitive Learning **Ensembles** and **Experiments** Introduction Conclusions **Algorithms** Combinations and Docults

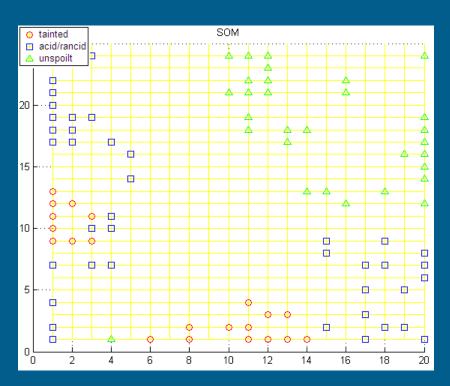


Fig. 15. Map of the Ham dataset created using a single SOM

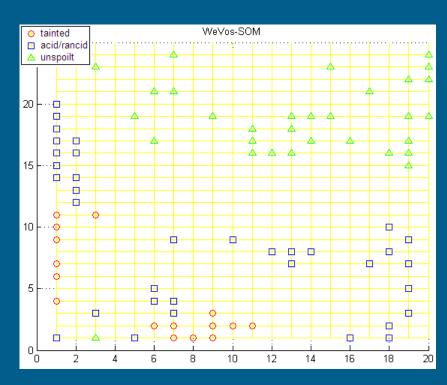


Fig. 16. Map of the Ham dataset created using an ensemble of 5 SOMs and the WeVoS summarizing algorithm 25

Introduction

Competitive Learning Algorithms

Ensembles and Combinations

Experiments and Possilts

Conclusions

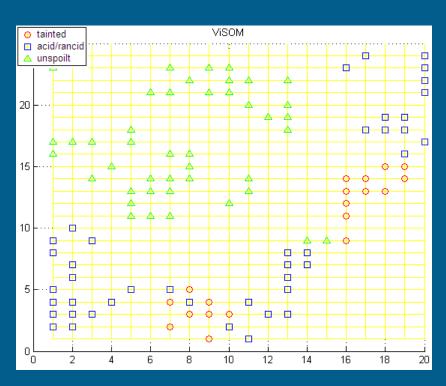


Fig. 17. Map of the Ham dataset created using a single ViSOM

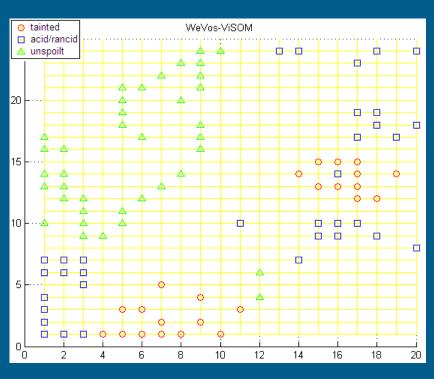


Fig. 18. Map of the Ham dataset created using an ensemble of 5 ViSOMs and the WeVoS summarizing algorithm

Outline

- Introduction
- Competitive learning algorithms
 - The Self-Organizing Map
 - The Visualization Induced SOM (ViSOM)
 - Quality Measures
- Ensembles and combinations
 - Fusion by Euclidean Distance
 - Weighted Voting Superposition (WeVoS)
- Experiments and Results
- Conclusions

Conclusions

Introduction Competitive Learning Ensembles and Experiments

Conclusions and Results

- A novel technique of obtaining fusion of unsupervised visualization algorithms has been presented.
- It has been used for the first time with more advanced models than the single SOM (ViSOM) with good results.
 - Lower distortion errors. Slightly increased quantization error
- The model proves its full potential with more difficult to analyse datasets (faulty or insufficient data)

30/06/2010 28

Conclusions

Introduction Competitive Learning Ensembles and Experiments

Algorithms Combinations and Results

Conclusions

- Useful also for organizing information for more accurate and faster retrieval (i.e. CBR systems)
- Future Work Includes:
 - More complex ensemble training algorithms
 - Comparison on a wider range of datasets
 - Use of other similar competitive learning algorithms

30/06/2010 29

Questions?

Thank you for your attention!

30/06/2010