
Testing Ensembles for Intrusion Detection: on the
Identification of Mutated Network Scans

Silvia González1, Javier Sedano1, Álvaro Herrero2, Bruno Baruque2, and Emilio Cor-
chado3

1Instituto Tecnológico de Castilla y León
C/ López Bravo 70, Pol. Ind. Villalonquejar, 09001 Burgos, Spain

javier.sedano@itcl.es

2Department of Civil Engineering, University of Burgos, Spain
C/ Francisco de Vitoria s/n, 09006 Burgos, Spain

{ahcosio, bbaruque}@ubu.es

3Departamento de Informática y Automática, Universidad de Salamanca
Plaza de la Merced, s/n, 37008 Salamanca, Spain

escorchado@usal.es

Abstract. In last decades there have been many proposals from the machine
learning community in the intrusion detection field. One of the main problems
that Intrusion Detection Systems (IDSs) - mainly anomaly-based ones - have to
face are those attacks not previously seen (zero-day attacks). This paper pro-
poses a mutation technique to test and evaluate the performance of several clas-
sifier ensembles incorporated to network-based IDSs when tackling the task of
recognizing such attacks. The technique applies mutant operators that randomly
modifies the features of the captured packets to generate situations that other-
wise could not be provided to learning IDSs. As an application example of the
proposed testing model, it has been specially applied to the identification of
network scans and related mutations.

Keywords: Network Intrusion Detection, Computational Intelligence, Machine
Learning, IDS Performance, Classifiers.

1 Introduction

One of the most harmful issues of attacks and intrusions, which increases the difficul-
ty of protecting computer systems, is the ever-changing nature of attack technologies
and strategies.

For that reason, among others, IDSs [1], [2], [3] have become an essential asset in
addition to the computer security infrastructure of most organizations. In the context
of computer networks, an IDS can roughly be defined as a tool designed to detect
suspicious patterns that may be related to a network or system attack. Intrusion Detec-
tion (ID) is therefore a field that focuses on the identification of attempted or ongoing
attacks on a computer system (Host IDS - HIDS) or network (Network IDS - NIDS).

ID has been approached from several different points of view up to now; many dif-
ferent Computational Intelligence techniques - such as Genetic Programming [4],
Data Mining [5], [6], [7], Expert Systems [8], Fuzzy Logic [9], or Neural Networks
[10], [11], [12] among others - together with statistical [13] and signature verification
[14] techniques have been applied mainly to perform a 2-class classification (nor-
mal/anomalous or intrusive/non-intrusive).

IDS evaluation is not a clear cut task [15]. Previous works have presented several
techniques to test and evaluate misuse detection models for network-based IDSs. A
testing technique to prove the effectiveness and capability of any visualization-based
IDS employing numerical data to confront unknown attacks has been previously pro-
posed [16], [17]. In this case, the method is used to asses different classifiers in the
detection of mutated network scans. The ability to detect such scans can help to iden-
tify wider and potentially more dangerous threats to a network. The main advantage
of this testing model is that it provides the classifiers with brand new attacks - net-
work scans in this case -.

A port scan may be defined as series of messages sent to different port numbers to
gain information on their activity status. These messages can be sent by an external
agent attempting to access a host to find out more about the network services this host
is providing. A port scan provides information on where to probe for weaknesses, for
which reason scanning generally precedes any further intrusive activity. This work
focuses on the identification of network scans, in which the same port is the target for
a number of computers. A network scan is one of the most common techniques used
to identify services that might then be accessed without permission [18].

The remaining sections of this study are structured as follows: section 2 introduces
the proposed testing technique. While the applied classifiers are described in section
3, experimental results are presented in section 4. The conclusions of this study are
discussed in section 5, as well as future work.

2 A Mutation Testing Technique for IDSs

Testing an ID tool is the only way to establish its effectiveness. This paper focuses on
checking the performance of IDSs when confronting with unknown anomalous situa-
tions.

Misuse IDSs based on signatures rely on models of known attacks. The effective-
ness of these IDSs depends on the "goodness" of their models. This is to say, if a
model of an attack does not cover all the possible modifications, the performance of
the IDS will be greatly impaired.

The proposed mutation testing model was previously applied to a visualization-
based IDS [16], [17] and is based on mutating attack traffic. In general, a mutation
can be defined as a random change. In keeping with this idea, the testing model modi-
fies different features of the numerical information extracted from the packet headers.

The modifications created by this model may involve changes in aspects such as:
attack length (amount of time that each attack lasts), packet density (number of pack-
ets per time unit), attack density (number of attacks per time unit) and time intervals
between attacks. The mutations can also concern both source and destination ports,

varying between the different three ranges of TCP/UDP port numbers: well known
(from 0 to 1023), registered (from 1024 to 49151) and dynamic and/or private (from
49152 to 65535).

Time is another fascinating issue of great importance when considering intrusions
since the chance of detecting an attack increases in relation to the duration of it. There
are therefore two main strategies:
 Drastically reduce the time used to perform a scan.
 Spread the packets out over time, which is to say, reduce the number of packets

sent per time unit that are likely to slip by unnoticed.
In this study, the mutations are applied to data related to network scans. It should

be taken into account and will be explained further on that any of the possible muta-
tions may be meaningless such as a sweep of less than 5 hosts in the case of a network
scan.

Changes can be made to the traffic related to attacks to take the following issues
into account:
 Number of scans in the scan (that is, number of addressed ports).
 Destination port numbers at which scans are aimed.
 Time intervals when scans are performed.
 Number of packets (density) forming the scans (number of scanned hosts).

3 Classifiers and Ensembles

As previously explained, one of the most interesting features of IDSs would be their
capability to automatically detect whether a portion of the traffic circulating the net-
work is an attack or normal traffic. Automated learning techniques are algorithms
designed specifically for the purpose of deciding about new presented data.

Usually that kind of algorithms suffer from common problems, such as the over-
fitting to the data used for training - and therefore, poor generalization capabilities -,
the stuck on local minima in their learning function or a high computational com-
plexity when dealing with complex data. One of the most widespread and useful tech-
niques in order to avoid such problems is the ensemble learning scheme [19], [20].
The main idea behind this kind of meta-algorithms is to train several slightly different
simpler classifiers and combine their results in order to improve the results obtained
by a single, usually more complex, one [21].

In the present study several of these algorithms have been considered both for the
base classifiers and for the ensemble training in order to have a significant wide array
of possible algorithms to compare their performance results on mutated data sets.

Among the base classifiers, it should be mentioned clustering algorithms such as
the k-Nearest Neighbours (IBK) [22], instance-based statistical classification algo-
rithms such as the Simple Classification and Regression Decision Tree (CART) [23]
and the REP-Tree [24] and artificial neural-network such as the Radial Basis Function
Network [25].

Among the ensemble meta-algorithms that make use of the previous mentioned
simple algorithms, the test performed have made use of basic algorithms such as the
MultiClass Classifier [26], used to adapt binary classifiers to multi-class problems,

Bagging [27], Adaptative Boosting (AdaBoost) [28], or Random Forest [29] and
compared their results with more modern boosting algorithms such as the LogitBoost
[30] or the StackingC [31]. As results prove, ensemble learning adds an important
value to the analysis, as almost all variants consistently improve results obtained by
the single classifier.

4 Experimental Results

This section describes the datasets used for evaluating the proposed testing method
and how they were generated. Then, the obtained results are also detailed.

4.1 Datasets

Real-life datasets have been previously applied to perform ID [16], [17], been proved
that this low-dimensional datasets allow for the detection of some anomalous situa-
tions [11]. Packets travelling along the network are characterized by using a set of
features extracted from the packet headers contribute to build up the neural-network
input vector, x 5; these features can be listed as follows:
 Timestamp: the time when the packet was sent.
 Source port: the port number of the device that sent the packet.
 Destination port: the port number of the target host, i.e. the host to which the pack-

et is sent.
 Protocol ID: an integer number that identifies the protocol over TCP of the packet.
 Size: the packet size (in Bytes).
From these datasets, one of them was selected as the original one that was later mu-
tated. It contained examples of two different attacks:
 Three different network scans aimed at port numbers 161, 162 and 3750. A time

difference between the first and the last packet included in each sweep of 17 866
ms for port number 161, 22773 ms for port number 162 and 17755 ms for port
number 3750.

 An MIB (Management Information Base) information transfer event. This anoma-
lous situation and its potential risks are fully described in [17], [32].
On the basis of this original dataset, several mutations were generated according to

the testing technique previously described.
Several testing data sets containing the following key features were obtained by

mutating different characteristics of the original data:
 Case 1 (modifying both the amount of scans and the destination ports):

 Data set 1.- only one scan: port 3750.
 Data set 2.- two scans: ports 161 and 162.
 Data set 3.- only one scan: port 1734.
 Data set 4.- two scans: ports 4427 and 4439.

 Case 2 (modifying both time and the number of scans):
 Data set 5.- three time-expanded scans: ports 161, 162 and 3750.
 Data set 6.- three time-contracted scans: ports 161, 162 and 3750.

 Data set 7.- one time-expanded scan: port 3750.
 Case 3 (modifying both the amount of packets and the destination ports):

 Data set 8.- two 5-packet scans: ports 4427 and 4439.
 Data set 9.- two 30-packet scans: ports 1434 and 65788.
The first issue to consider is the amount of scans. Data sets containing 1 scan (Data

sets 1, 3 and 7), 2 sweeps (Data sets 2, 4, 8 and 9) or 3 sweeps (Data sets 5 and 6)
have been used. Each scan is aimed at a different port number. The implications are
crystal clear; hackers can check the vulnerability of as many services/protocols as
they want.

A scan attempting to check port protocol/service can be aimed at any port number
(from 0 to 65535). The data sets contain scans aimed at port numbers such as 161 and
162 (well known ports assigned to Simple Network Management Protocol), 1434
(registered port assigned to Microsoft-SQL-Monitor, the target of the
W32.SQLExp.Worm), 3750 (registered port assigned to CBOS/IP ncapsalation), 4427
and 4439 (registered ports, as yet unassigned) and 65,788 (dynamic or private port).

In order to check the performance of the described ensembles in relation to the
time-related strategies, data sets 5, 6 and 7 have been used. Data set 5 was obtained by
spreading the packets contained in the three different scans (161, 162 and 3750) over
the captured session. In this data set, there is a time difference of 247360 ms between
the first (in the sweep aimed at port 161) and the last scan packet (in the scan aimed at
port 3750). The duration of the captured session (all the packets contained in the data
set) is 262198 ms, whereas in the original data set the scan lasts 164907 ms. In the
case of data set 7, the same mutation has been performed but only for packets relating
to the scan aimed at port 3750. On the other hand, the strategy of reducing the time
was used to obtain data set 6. In this case, the time difference between the first and the
last packet is about 109938 ms.

Finally, the number of packets contained in each scan was also considered. In the
case of a network scan, each packet means a different host targeted by the scan. Data
sets 8 and 9 were designed in complying with this idea. Data set 8 contains low-
density scans given that they have been reduced to only 5 packets. It was decided that
a scan aimed at less than 5 hosts should not constitute a network scan. On the other
hand, data set 9 contains medium-density scans. In this case, each one of them has
been extended to 30 packets.

4.2 Results

For the sake of brevity, experiments were conducted only on two of the data sets
described above: data set 6 and 9. All the classifiers were trained on the original da-
taset, comprising an MIB information transfer and scans aimed at port numbers 161,
162 and 3750.

To check the performance of the classifier ensembles when confronting different
numbers of classes, the data sets were labeled in a different way. Two different labels
were assigned to packets in dataset 6, differentiating attacks from normal traffic. On
the other hand, five different classes were defined for data set 9, namely: normal,
scan#1, scan#2, scan#3 and MIB transfer.

WEKA software [33] was used to train and classify the data sets, with various en-
sembles and classifiers. In the experimentation, cross validation is used with a value
of 10 K-fold. Tables 1 and 2 show the training and validation/classification perfor-
mance of the applied models.

Table 1. Results on data set 6 (two classes).

Ensembles Classifier Correctly Classified Instances

FilteredClassifier
MLP, REPTree, PART,
id3, SMO, SMOreg,
Winnow, SPegasos

Training (99.983%)
Classification (100%)

Adaboost JRip
Training (99.983%)
Classification (100%)

MultiboostAB JRip
Training (99.983%)
Classification (100%)

MultiboostAB REPTree
Training (99,9489%)
Classification (100%)

RandomSubSpace REPTree
Training (99.983%)
Classification (100%)

RandomSubSpace SImpleCart
Training (99,9659%)
Classification (100%)

RotationForest REPTree and PART
Training (99.983%) for both
Classification (100%) for both

AttributeSelectedClassifier SImpleCart
Training (99,8636 %)
Classification (100%)

Bagging REPTree
Training (99.9659%)
Classification (100%)

Table 2. Results on data set 9 (five classes).

Ensembles Classifier Correctly Classified Instances

FilteredClassifier
MLP, REPTree, PART,
id3, SMO

Training (99,9489%) for MLP
Training (99,8977%) for Reptree
Training (99,9489%) for PART
Training (99,9148%) for id3
Training (99,9659%) for SMO
Classification for all of then
(81,25%) with 12 errors in the
3rd class

Adaboost JRip
Training (99,9148%)
Classification (100%)

MultiboostAB JRip
Training (99,9148%)
Classification (100%)

MultiboostAB REPTree
Training (99.983%)
Classification (100%)

RandomSubSpace REPTree
Training (99,9659%)
Classification (100%)

RandomSubSpace SImpleCart
Training (99.983%)
Classification (100%)

RotationForest REPTree and PART

Training (99,983%) for RepTree
Classification(89,0625%) for
Reptree with 7 errors in the 4th
class

Training (99,983%) for PART
Classification (53,125%) for
PART with 30 errors in the 4th
class

AttributeSelectedClassifier SImpleCart
Training (99.983%)
Classification (100%)

Bagging REPTree
Training (99.983%)
Classification (100%)

From Tables 1 and 2, it can be concluded that classification models are able to car-
ry out the classification of the two data sets and get the right classification of more
than 99.9% of the classes.

Table 3 shows the characteristics and options of the chosen ensembles, together
with their tuned values.

Table 3. Selected options of the ensembles for experimental study.

Ensembles Options

FilteredClassifier Name of the filter “Discretize”

Adaboost
Number of boost iterations (10), seed for resampling (1), use
resampling instead of reweighting (false), percentage of
weight mass (100).

MultiboostAB
Number of boost iterations ((10), number of sub-
committees.(3), seed for resampling (1), use resampling in-
stead of reweighting (false), percentage of weight mass (100).

RandomSubSpace
Number of iterations (10), Size of each subSpace (0.5), seed
for resampling (1).

RotationForest

Maximum size of a group (3), Minimum size of a group (3),
number of iterations to be performed (10), number of groups
(false), filter used “Principal Components”, percentage of
instances to be removed (50), seed for resampling (1).

AttributeSelectedClassifier
Name of an attribute evaluator (CfsSubsetEval), name of a
search method (BestFirst).

Bagging
Size of each bag (100), compute out of bag error (False),
number of bagging iterations (10), seed for resampling (1).

5 Conclusions and Future Work

This paper has proposed a mutation testing model for classifiers ensembles perform-
ing ID on numerical traffic data sets. It is aimed at assessing the generalization capa-
bility of the applied classifiers when confronting with zero-day attacks.

Experimental results show that the applied classifier ensembles properly deal with
the analyzed data, containing mutated network scans. It can then be concluded that the
applied models are able to properly detect new attacks related with previously unseen
scans.

Future work will be based on the mutation of some other attack situations and the
broadening of considered classifiers and ensembles.

Acknowledgments

This research has been partially supported through the project of the Spanish Ministry
of Science and Innovation TIN2010-21272-C02-01 (funded by the European Regional
Development Fund). The authors would also like to thank the vehicle interior manu-
facturer, Grupo Antolin Ingenieria S.A., within the framework of the MAGNO2008 -
1028.- CENIT Project also funded by the MICINN, the Spanish Ministry of Science
and Innovation PID 560300-2009-11 and the Junta de Castilla y Len
CCTT/10/BU/0002.

References

1. Computer Security Threat Monitoring and Surveillance. Technical Report. James P. Ander-
son Co, (1980)

2. Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software Engineering
13(2), 222-232 (1987)

3. Chih-Fong, T., Yu-Feng, H., Chia-Ying, L., Wei-Yang, L.: Intrusion Detection by Machine
Learning: A Review. Expert Systems with Applications 36(10), 11994-12000 (2009)

4. Abraham, A., Grosan, C., Martin-Vide, C.: Evolutionary Design of Intrusion Detection
Programs. International Journal of Network Security 4(3), 328-339 (2007)

5. Julisch, K.: Data Mining for Intrusion Detection: A Critical Review. In: Applications of Data
Mining in Computer Security. Kluwer Academic Publishers. Advances in Information Secu-
rity 33-62 (2002)

6. Giacinto, G., Roli, F., Didaci, L.: Fusion of Multiple Classifiers for Intrusion Detection in
Computer Networks. Pattern Recognition Letters 24(12), 1795-1803 (2003)

7. Chebrolu, S., Abraham, A., Thomas, J.P.: Feature Deduction and Ensemble Design of Intru-
sion Detection Systems. Computers & Security 24(4), 295-307 (2005)

8. Kim, H.K., Im, K.H., Park, S.C.: DSS for Computer Security Incident Response Applying
CBR and Collaborative Response. Expert Systems with Applications 37(1), 852-870 (2010)

9. Tajbakhsh, A., Rahmati, M., Mirzaei, A.: Intrusion Detection using Fuzzy Association Rules.
Applied Soft Computing 9(2), 462-469 (2009)

10. Sarasamma, S.T., Zhu, Q.M.A., Huff, J.: Hierarchical Kohonenen Net for Anomaly Detec-
tion in Network Security. IEEE Transactions on Systems Man and Cybernetics, Part B
35(2), 302-312 (2005)

11. Herrero, Á., Corchado, E., Gastaldo, P., Zunino, R.: Neural Projection Techniques for the
Visual Inspection of Network Traffic. Neurocomputing 72(16-18), 3649-3658 (2009)

12. Zhang, C., Jiang, J., Kamel, M.: Intrusion Detection using Hierarchical Neural Networks.
Pattern Recognition Letters 26(6), 779-791 (2005)

13. Marchette, D.J.: Computer Intrusion Detection and Network Monitoring: A Statistical
Viewpoint. Information Science and Statistics Springer-Verlag New York, Inc. (2001)

14. Roesch, M.: Snort–Lightweight Intrusion Detection for Networks. In: 13th Systems Admin-
istration Conference (LISA '99). 229-238 (1999)

15. Ranum, M.J.: Experiences Benchmarking Intrusion Detection Systems. NFR Security
Technical Publications. (2001)

16. Corchado, E., Herrero, Á., Sáiz, J.M.: Testing CAB-IDS through Mutations: on the Identifi-
cation of Network Scans. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) International Con-
ference in Knowledge-Based and Intelligent Engineering & Information Systems (KES
2006). LNAI, vol. 4252, pp. 433-441. Springer, Heidelberg (2006)

17. Corchado, E., Herrero, Á.: Neural Visualization of Network Traffic Data for Intrusion
Detection. Applied Soft Computing 11(2), 2042–2056 (2011)

18. Abdullah, K., Lee, C., Conti, G., Copeland, J.A.: Visualizing Network Data for Intrusion
Detection. In: Sixth Annual IEEE Information Assurance Workshop - Systems, Man and
Cybernetics. pp. 100-108 (2005)

19. Sharkey, A.J.C., Sharkey, N.E.: Combining Diverse Neural Nets. Knowledge Engineering
Review 12(3), 231-247 (1997)

20. Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems
Magazine 6(3), 21-45 (2006)

21. Ruta, D., Gabrys, B.: An Overview of Classifier Fusion Methods. Computing and Infor-
mation Systems 7(1), 1-10 (2000)

22. Bailey, T., Jain, A.: A Note on Distance-Weighted k-Nearest Neighbor Rules. IEEE Trans-
actions on Systems, Man and Cybernetics 8(4), 311-313 (1978)

23. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression
Trees. Wadsworth Inc., Belmont, CA 358 (1984)

24. Zhao, Y., Zhang, Y.: Comparison of Decision Tree Methods for Finding Active Objects.
Advances in Space Research 41(12), 1955-1959 (2008)

25. Moody, J., Darken, C.J.: Fast Learning in Networks of Locally-tuned Processing Units.
Neural computation 1(2), 281-294 (1989)

26. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing Multiclass to Binary: a Unifying Ap-
proach for Margin Classifiers. Journal of Machine Learning Research 1, 113-141 (2001)

27. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123-140 (1996)
28. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International

Conference on Machine Learning. pp. 148-156 (1996)
29. Breiman, L.: Random Forests. Machine Learning 45(1), 5-32 (2001)
30. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical View of

Boosting. The Annals of Statistics 28(2), 337-407 (2000)
31. Seewald, A.K.: How to Make Stacking Better and Faster While Also Taking Care of an

Unknown Weakness. Nineteenth International Conference on Machine Learning. Morgan
Kaufmann Publishers Inc., (2002)

32. Corchado, E., Herrero, Á., Sáiz, J.M.: Detecting Compounded Anomalous SNMP Situa-
tions Using Cooperative Unsupervised Pattern Recognition. In: Duch, W., Kacprzyk, J., Oja,
E., Zadrozny, S. (eds.) 15th International Conference on Artificial Neural Networks
(ICANN 2005). LNCS, vol. 3697, pp. 905-910. Springer, Heidelberg (2005)

33. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter 11(1), 10-18
(2009)

