Learning user’s behaviour with an Adaptive
Multi-Agent System approach

Valérian Guivarch!, Juan Francisco De Paz Santana?, Javier Bajo Pérez2,
André Péninou!, and Valérie Camps'

! Institut de Recherche en Informatique de Toulouse, University of Toulouse, France
Firstname.Lastname@irit.fr
2 Department of Computer Science and Automation, University of Salamanca,
Spain* {fcofds, jbajope}@usal.es

Abstract. The context-aware systems allow the adaptation of the en-
vironment, which depends on the values perceived by sensors and on the
users’ preferences detected from users behaviour. These system need to
adapt at the users’ preferences change so as to generate dynamic systems
that improve their models while they are running. This work proposes
a multi-agent system which allows to learn and to anticipate users’ be-
haviour and to adapt at the change into a dynamic mode, and where
storing information from the previous cases during successive execution
is no more compulsory.

Keywords: multi-agent systems, classifiers, ambient intelligence

1 Introduction

Introduced by Weiser [16], ambient computing consists rather in integrating a
computer system directly into the real world, than limiting it to a single com-
puter. Such a computer system is then distributed into the environment in the
form of physical devices with which the users can interact, depending on their
perceptions and location. These systems are subject to a strong dynamic, with
the appearance or the disappearance of many heterogeneous devices (such as
measuring the users’ displacement) at run-time. However, the user may be faced
with situations that the developer cannot foresee. Thus, making an exhaustive
list of all the situations that the system may face is not possible during the
design phase.

The use of classifiers is widespread for this type of study. However, it is not
so easy to adapt to users’ behaviour changes. Among the traditional classifiers,
there are based on decision tree [13], probabilistic models [6], function-based
algorithms [14] or fuzzy models [1]. Their functioning is efficient enough, while
an adjustment is not required by a new user’s behaviour. Otherwise, it becomes
necessary to adapt their learning to the new cases.

* This work has been supported by the MICINN TIN 2009-13839-C03-03.

This paper focuses on the learning of users’ behaviour in order to make such
ambient systems able to adapt to the user context. To do so, we consider the
different suitable classification algorithms so as to associate any situation with
the action expected by the user. The algorithms need to remember the previous
cases in order to adapt to any change in their environment, such as a change
of the users’ preferences or the appearance/disappearance of the devices. In
this way, they can reboot. In this way, they can reboot the learning from the
beginning if the learning seems too much deteriorated. We are looking for a new
solution which can perform this dynamic learning and which does not involve
the record of any previous cases but a continuous adaptation, depending on its
perception. The system is compared with different classifiers in order to evaluate
its performance.

To that end, we present the approach of Adaptive Multi-Agent System (AMAS)
[8], and the system Amadeus, designed through this approach. We begin to de-
scribe its architecture and functioning, and then we will put forward a compar-
ative study between Amadeus and more conventional algorithms.

This article is divided as follows: section two describes the state of art relating
to the classifier systems and to the Adaptive Multi-Agent System approach;
section three presents the proposed model; section four describes respectively
the results obtained and the conclusions.

2 State of the art

2.1 Classifiers

The classification algorithms include decision trees, decision rules, probabilistic
models, fuzzy models, function-based algorithms and ensemble.

These algorithms/this algorithm use different processes to make the classifi-
cation. The most commons ones are decision rules and trees which make possible
the creation of rules that concatenate variables through operators in order to
classify a determined case. Among the classical decision rules algorithms, there
are RIPPER [5], One-R [10], M5 [9]. Concerning the decision tree algorithm, the
most used are C4.5 or J48 [13], (those are the same algorithms, but J48 is the
java implementation), and CART [3] [1] (Classification and Regression Trees).
The most commons probabilistic models are Bayes [6] and the bayesian network
[2], but this type of models are not very efficient for continuous variables because
it is necessary to realize a discretization of the values. The fuzzy models such as
K-NN (K-Nearest Neighbours) are not always effective because they require the
calculation of several measures of distances, so the performance would not be
good enough. An alternative algorithm which is actually very used, is the defini-
tion of functions as the Support Vector Machine (SVM) [14], this process is used
to give good results with a good yield because the classification of new instances
is low although the construction of the model is time-consuming. Other options
are the ensembles such as Bagging [4] and Ada-Boosting [7].

2.2 Adaptive Multi-Agent System

Adaptive Multi-Agent Systems (AMAS) [8] are based on a local approach to
design complex systems for which no solution is a priori known. This approach
focuses on defining the local behaviour of agents to be truly adaptive, while
ignoring the purpose of the overall system, but ensuring that the collective be-
haviour is the one expected, ie the system is “functionally adequate”. To this
end, agents must have a local cooperative behaviour. Cooperation is not limited
by a simple resource sharing or simply working together, it is grounded on three
local meta-rules, applied by every agent that the designer must instantiate de-
pending on the problem to solve: (cpe,) : any signal received by an agent must be
unambiguously understood; (¢gec) : any information from its perceptions should
be useful to its reasoning, (c4ct) : its reasoning should make it perform actions
which are useful for the others and for the environment.

The AMAS approach can be described as proscriptive because agents must
overall anticipate, prevent or repair Non Cooperative Situations (NCS). A NCS
appears when at least one of the three previous meta-rules is not locally verified
by an agent. Several generic NCS can then be highlighted: incomprehension and
ambiguity if (cper) is not verified, incompetence and unproductivity if (cqec) is
not respected and, finally, concurrency, conflict and uselessness where (c,ct) is
not verified. This approach has important methodological implications: designing
an AMAS is equivalent to defining and assigning rules of cooperation agents.
In particular, for a given problem, the designer must 1) define the nominal
behaviour of an agent, then 2) deduct the NCS which the agent may face with,
and finally 3) define the actions that the agent carries out to come back in
a cooperative state. This approach has helped solve several types of problems
related to different areas: the real-time profiling [11], the bioprocesses control
[15], etc. The capacity of the AMAS to resolve complex, dynamic and distributed
problems make them ideally suited to resolve the problem of user behaviour
learning in ambient system.

3 Proposed System

Based on the approach by AMAS, we designed Amadeus, a multi-agent system
whose purpose is, for each device of the ambient system, to collect its local
context and to adapt its behaviour depending of its context. For this, Amadeus
begins with the observation and the learning of the way the user uses each
device and in what context, in order to achieve any recurring action in its place.
Any new user action can modify or improve this learning because the latter is
continuous during system operation.

An instance of Amadeus is associated with each device (Figure 1). In each
instance, data agents represent contextual data which are either collected from
local sensors of the device or received from other instances. The user agent
represents the user satisfaction depending of the user profile the contextual data
of the instance. This satisfaction is defined as a value in the range [0, 1]. We

present here the operation of context and controller agents, which ensure the
device adaptation in order to maintain the high user satisfaction.

\ /m CONTROLER

/ \ CONTROLER =

Fig. 1. General structure of the system

INTERACTION

General Operation A controller agent is associated with each effector of the
device. It aims to anticipate the user actions. For this, it has a set of context
agents, which provides information on the actions it can perform and the con-
sequences of these actions on the user’s satisfaction. These context agents aim
then to determine the effects of a particular action on the user’s satisfaction, but
also to identify situations where these predictions are correct. In these situations,
they view themselves as being valid.

Controller agent The behaviour of controller agent is described trough a
cycle of three phases. In the perception phase, it collects action suggestions from
context agents. Each suggestion contains a description of the proposed action
and a forecast of the impact that this action will have on the user’s satisfaction,
as well as a confidence level for this forecast.

In the decision phase, the controller agent evaluates what is the most ad-
vantageous action to make among the proposed ones in order to increase the
user’s satisfaction. To that end, it begins its treatment by managing conflicts or
concurrences which oppose the suggestions. For example, if two context agents
propose the same action with different forecasts, the contert agent will ignore the
less confident suggestions. Then, once in possession of pertinent suggestions, the
controller agent evaluates what is the best action to do among those proposed
by the remaining context agents. In other words, it assesses, based on the current
situation, which forecast ensures the higher level of user satisfaction. This action
may equally be a change in the status of an effector or the maintaining of this
effector in its current state, because a context agent can propose “preserve the
current state” as action.

Finally, in the action phase, it selects the contert agent associated with the
best action, and it makes this action (i.e.: it affects the new state at the effector).

Context agent A context agent has, for each contextual data in the input
system, a values’ range representing the validity range of the context agent. A
value range is called valid if the current value of this data is included within the
bounds of the values range. The context agent itself has a validity status, which
is valid when all its data values’ ranges are valid, and invalid in the other cases.
The context agent starts its cycle by validating or invalidating its value ranges,
depending on the updated values perceived. Then he does the same with its
validity status, if appropriate. The bounds of the values ranges is implemented
through an Adaptive Value Tracker (AVT) [12], which is a software component
to find the value of a dynamic variable in a given space through successive
feedbacks.

A context agent owns an action suggestion which is sent to the controller
agent when it becomes valid. This suggestion includes the description of the
action itself, which means the state to allocate at the effector. As well, it includes
a forecast about the impact of this action on the user satisfaction, which is
implemented as a value between -1 and 1. Finally, it includes a confidence about
the forecast, implemented with an AVT limited between 0 and 1, and which
means how much the context agent is certain that the proposed action will have
the expected impact. When a contert agent becomes valid, it communicates
to its associated controller agent in order to send it its action suggestion. As a
matter of fact, a context agent considers that the forecast which accompanies the
proposed action is true only when the context agent is valid. The context agent
also has a selection state. It can be selected or unselected. As I said, a context
agent is selected if its suggestion seems to be the best for the controller agent.
If another context agent is then selected, the previous selected context agent
becomes automatically unselected. If the context agent is selected, it records
the current level of user satisfaction. Once it is no longer selected, it makes the
comparison of the effect produced on the user satisfaction with his prediction
possible. Three cases can occur:

1. Forecasts match perfectly to reality: the context agent increases his confi-
dence.

2. The forecast value differs from reality, but the forecast meaning is correct: the
context agent adapts its prediction to rectify it, but nevertheless considered
that the action was good enough to increase its confidence.

3. The forecast meaning is incorrect: the context agent first decreases con-
fidence. However, it considers that making such a mistake means that it
should not have sent this suggestion in the situation it was in. As a conse-
quence, it modifies its input ranges so that if the same situation occurs it
remains invalid.

The behaviour of a context agent is to propose an action for a given context
with a certain forecast about the consequences of this action on the user sat-
isfaction. Besides, it evaluates its confidence as the reliability of its suggestion.
In other words, more the confidence is high, more the agent has the certainty
that its proposed action will have the expected consequence. This confidence is

calculated by a function that evaluates a confidence level Ty at time 441 based
on its confidence level T; to the previous time, a feedback F included between 0
and 1, and a parameter \ determined experimentally and which represents the
impact of feedback in the calculation of the new confidence level. To increase
the confidence of the context agent in cases 1 and 2 described above, we use a
feedback close to 1, while we use a feedback close to 0 to decrease it in the third
case. This function is as following:

Tt+1:Tt*)\+F*(1—)\)

A context agent is created each time the user performs an action when no
context agents proposed this action for this situation (including the action to
“do not change the state of the effector”). This new context agent has initialized
with this action, and its values ranges are initialized around actual values data.
The forecast is based on the observed impact of these actions the first time, and
the confidence is initialized at 0.5.

Finally, the learning of user behaviour is based on the interaction of context
and controller agents. It is produced through the creation of context agents, the
adaptation of values ranges and the adjusting of context agent confidence.

4 Case study

We made this study in order to compare the performances of Amadeus with more
conventional learning algorithms. More specifically, we focus on the classifier
algorithms Naive Bayes, J48, SVM and LMT, which are well-know techniques
for this type of problems. We made this study in order to test the Amadeus
capacity to determine, for a given situation, what the user action will be. Each
situation can be considered as a case, as defined by the Case Base Reasoning
approach, or as a contextual situation, as defined in Amadeus.

In order to make this evaluation, we designed a simulator of ambient system
which makes possible the description of simulated users’ simple behaviours in a
virtual ambient. We define our ambient system as an apartment where we use
a lamp and a shutter, both electric, in the living room. In addition to that, we
add on the same room a luminosity and presence sensor.

As for the user, the simulator enables to describe the virtual users’ behaviour.
For now, we set the maximal numbers of users to a single user; the multi-users
problems will be dealt with in a future study. We design this virtual user with
a simple behaviour: he walks randomly in the apartment, making sure that the
brightness is suitable when he is in the living room, but he remains energy
efficient. In practice, this means that when he is in the living room, if it is too
dark he will first try to illuminate the room by opening the shutter, then light up
the lamp if it is not enough light. If the brightness is too high, he will first turn the
lamp off if it is on, otherwise he will close the shutter. On the other hand, when
he is not in the living room, he does not care about the shutter’s state, but he
makes sure that the lamp was efficiently turned on. This behaviour is much more
than maintaining a constant average brightness in the room, because it takes into

account the presence of the user in the living room, and the priority to open the
shutter rather than to switch the lamp on in order to ensure that the energy
is saved if it is possible. As for the user’s movements, a random displacement
enables to change when and how long the user is or is not present in the living
room. To improve the realism of the simulation, the conditions associated to the
user’s actions are unclear; for example, if the theoretical condition where the
user turns on the light is a luminosity above 55, then the real condition will
be randomly fixed between 50 and 60. As a matter of fact, a human behaviour
cannot be modeled with too precise rules of actions.

In order to compare the result produced by Amadeus with the result of others
classifier algorithms, we generate 13 days of data. The simulator generates a
simulation where the time is accelerated, with 1440 simulation cycles by virtual
day, one by minute.

The first days (from 1 to 3) are allocated to the learning phase and the next
10 days are allocated to the tests on the effects of the learning. We perform this
experiment in two different conditions: in the first one, the learning phase lasts
only one day, and over this period we give only the first day data to various
algorithms so that they make their learning; in the second condition, 3 days
are used for the learning phase. Therefore, we can compare the impact of the
learning time on the different systems.

In the figure 1, we can see an example of data perceived by the different
learning algorithms. We can see the date from the cycle 480 until the cycle 490
of the first day (i.e. from 8:00 till 8:10 of the first day). At this moment, the user
is in the living room (Presence=1), the shutter is open (Shutter=1), the light is
turned on (Light=1). The user behaviour sets the max threshold of luminosity
at 90, and the more the luminosity is beyond the threshold, the more the user’s
satisfaction decreases. As I previously explained, the threshold, which is set so
that the user acts, is randomly generated in order to improve the simulation
realism. Here, the generated threshold is at 26%. As a matter of fact, we can see
in the cycle 485 that, whereas his satisfaction decreases until this value, the user
decides to turn the light off. (User Decision=0).

The objective of our learning is to see, according to these data, what the
user’s decision is in order to be able to anticipate its decision. Note that the
number of the day and the number of the cycle, if they are used to save the
previous problem on the conventional algorithm, are not directly used to make
the learning of the behaviour.

5 Results and conclusions

In order to verify Amadeus’ adaptability, we test the system evolution through 18
720 cases (one case by minute during 13 days). We capture the data which refer
to these cases and we test the success rate when new case arrives in the system.
In order to verify the real adaptability from the initial step on, a validation is
performed after the capture of information from the first day, in which there
were 1440 pieces of data. A learning is performed, using the information of the

Da Cycle User Luminosit Presence Shutter Light User
v ¥ Satisfaction ¥ g Decision
0 480 34% 91,97 1 1 1 1
0 481 32% 92,06 1 1 1 1
0 482 31% 92,16 1 1 1 1
0 483 29% 92,26 1 1 1 1
0 484 27% 92,35 1 1 1 1
0 485 26% 92,45 1 1 1 0
0 486 100% 74,03 1 1 0 0
0 487 100% 74,11 1 1 0 0
0 488 100% 74,18 1 1 0 0
0 489 100% 74,26 1 1 0 0
0 490 100% 74,33 1 1 0 0

Table 1. Example of data, as perceived by the different learning algorithms.

first day, then as new case are coming, the system foresees the associated user’s
action. We perform a new training of the system only when the classification of
a new element is wrong in order to integrate the new case at the used models in
the classifiers.

In order to ensure that the system has adaptation and evolution capacities,
we use two other variables as the user preferences change, they represent the
number of the day and the case number (which is daily reset to zero). If the user
preferences change, these variables refer to the case information and the system
would be able to adapt itself.

In order to conduct this analysis, we study the system evolution by comparing
the multi-agent system Amadeus with 4 different classification systems: the J48,
the Naive Bayes, SVM and LMT. In the figure 2, we can see the system evolution
for the estimation of the light state depending on variables defined in the case
study. The axis x represents the case number, and the axis y is the number
of accumulated errors. We can see that most of the algorithms have a similar
behaviour until the moment where the multi-agent system becomes worst than
the others. The method with high performance is LMT but the execution time
is too high.

In the second experiment, we repeat the same process with 3 days as learning
basis. We use the same classifiers and we obtain the results represented on figure
3. The figure 2 shows the successful rate of the SMA is better than the other
methods until the user adapts a new behaviour, then the successful rate of the
LMT is better than the multi-agent system but this algorithm is not efficient
and the execution time is too high. The execution time to carry out the test was
5177.89 seconds and the execution time of the others methods was lower than
60 seconds.

cases

Fig. 2. Evolution of the number of errors made by the CBR with learning based on
one day.

140
|
.

120
I
|

60 80

40

20

Fig. 3. Evolution of the number of errors made by the CBR with learning based on
three days.

The multi-agent system has initially less generalization ability than the others
classifiers, but better performances when new cases come. Moreover, Amadeus
is able to adapt itself at new situations without it is necessary to store these
new cases, facilitating the management of the necessary data for the correct
functioning of the system.

10

References

10.

11.

12.

13.

14.

15.

16.

. D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Ma-

chine learning, 6:37—66, 1991.

R.R. Bouckaert. Bayesian belief networks: from construction to inference. Univer-
siteit Utrecht, Faculteit Wiskunde en Informatica, 1995.

L. Breiman. Classification and regression trees. Chapman & Hall/CRC, 1984.

L. Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.

W.W. Cohen. Fast effective rule induction. Proceedings of the Twelfth International
Conference on Machine Learning, Lake Tahoe, California, 1995.

R.O. Duda and P.E. Hart. Pattern classification and scene analysis. Wiley, 1996.
Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
Thirteenth International Conference on Machine Learning, pages 148-156, 1996.
Jean-Pierre Georgé, Marie-Pierre Gleizes, and Valérie Camps. Cooperation. In Gio-
vanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos, edi-
tors, Self-organising Software, Natural Computing Series, pages 193-226. Springer
Berlin Heidelberg, 2011.

G. Holmes, M. Hall, and E. Prank. Generating rule sets from model trees. Advanced
Topics in Artificial Intelligence, pages 1-12, 1999.

R.C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine learning, 11(1):63-90, 1993.

S. Lemouzy, V. Camps, and P. Glize. Real time learning of behaviour features for
personalised interest assessment. Advances in Practical Applications of Agents and
Multiagent Systems, pages 5—14, 2010.

Sylvain Lemouzy. Systemes interactifs auto-adaptatifs par systemes multi-agents
auto-organisateurs: application a la personnalisation de l'accés a linformation.
These de doctorat, Université Paul Sabatier, Toulouse, France, juillet 2011.

J.R. Quinlan. C4. 5: programs for machine learning. Morgan kaufmann, 1993.

V. Vapnik. Pattern recognition using generalized portrait method. Automation
and Remote Control, 24:774-780, 1963.

S. Videau, C. Bernon, P. Glize, and J.L. Uribelarrea. Controlling bioprocesses
using cooperative self-organizing agents. Advances on Practical Applications of
Agents and Multiagent Systems, pages 141-150, 2011.

M. Weiser. The computer for the 21st century. Scientific American, 265(3):94-104,
1991.

