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Abstract. A multi agent based predicting system is presented in which the
aim is to forecast the presence or not of oil slicks in a certain area of the
open sea after an oil spill. In this case, the multi agent architecture incor-
porates a predicting system based on the CBR methodology, implemented in
a series of interactive services, for modeling and monitoring the ocean water
masses. The system’s nucleus is formed by a series of deliberative agents act-
ing as controllers and administrators for all the implemented services. The
implemented services are accessible in a distributed way, and can be accessed
even from mobile devices. The proposed system uses information such as sea
salinity, sea temperature, wind, currents, pressure, number and area of the
slicks. obtained from various satellites. The system has been trained using
data obtained after the Prestige accident. Oil Spill Multiagent system (OSM)
has been able to accurately predict the presence of oil slicks in the north west
of the Galician coast, using historical data.
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1. Introduction

The response to minimize the environmental impact when an oil spill is produced
must be precise, fast and coordinated. The use of contingency response systems
can facilitate the planning and tasks assignation when organizing resources, espe-
cially when multiple people are involved.
When an oil spill is produced, the response to minimize the impact must be pre-
cise, fast and coordinated. In that kind of situations, where multiple people are
involved, a flexible and distributed architecture is needed in order to develop ef-
fective contingency response systems.
One of the most important characteristics is the use of intelligent agents as the
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main components in employing a service oriented approach, focusing on distribut-
ing the majority of the systems’ functionalities into remote and local services
and applications. The architecture proposes a new and easier method of building
distributed multi-agent systems, where the functionalities of the systems are not
integrated into the structure of the agents, rather they are modelled as distributed
services and applications which are invoked by the agents acting as controllers and
coordinators.
Agents have a set of characteristics, such as autonomy, reasoning, reactivity, social
abilities, pro-activity, mobility, organization, etc. which allow them to cover several
needs for artificial intelligence environments[30], especially ubiquitous communi-
cation and computing and adaptable interfaces[8]. Agent and multi-agent systems
have been successfully applied to several scenarios, such as education, culture, en-
tertainment, medicine, robotics, etc. [6][25]. The characteristics of the agents make
them appropriate for developing dynamic and distributed systems, as they possess
the capability of adapting themselves to the users and environmental characteris-
tics [14]. The continuous advancement in mobile computing makes it possible to
obtain information about the context and also to react physically to it in more
innovative ways . The agents in this architecture are based on the deliberative
Belief, Desire, Intention (BDI) model [3], where the agents’ internal structure
and capabilities are based on mental aptitudes, using beliefs, desires and inten-
tions . Nevertheless, modern developments need higher adaptation, learning and
autonomy levels than pure BDI model [3]. This is achieved in new multi-agent
architectures by modelling the agents’ characteristics to provide them with mech-
anisms that allow solving complex problems and autonomous learning. Some of
these mechanisms are Case-Based Reasoning (CBR) [1] and Case-Based Planning
(CBP), where problems are solved by using solutions to similar past problems [6].
Solutions are stored into a case memory, which the mechanisms can consult in
order to find better solutions for new problems. CBR and CBP mechanisms have
been modelled as external services. Deliberative agents use these services to learn
from past experiences and to adapt their behaviour according the context.
Predicting the behaviour of oceanic elements is a quite difficult task. In this case
the prediction is related with external elements (oil slicks), and this makes the
prediction even more difficult. Open ocean is a highly complex system that may
be modelled by measuring different variables and structuring them together. Some
of those variables are essential to predict the behaviour of oil slicks. In order to
predict the future presence of oil slicks in an area, it is obviously necessary to know
their previous positions. That knowledge is provided by the analysis of satellite
images, obtaining the precise position of the slicks.
The solution proposed in this paper generates, for different geographical areas, a
probability (between 0 and 1) of finding oil slicks after an oil spill. OSM has been
constructed using historical data and checked using the data acquired during the
Prestige oil spill, from November 2002 to April 2003. Most of the data used to
develop OSM has been acquired from the ECCO (Estimating the Circulation and

Climate of the Ocean) consortium [17]. Position and size of the slicks has been
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Figure 1. SAR image with an oil spill near the nort-west coas of Spain.

obtained by treating SAR (Synthetic Aperture Radar) satellite images[18].
The proposed system uses a CBR structure to learn from past situations, and to
generate solutions to new problems based in the past solutions given to past prob-
lems. Past solutions are stored in the system, in the case base. The cases contain
information about the oil slicks (size and number) as long as atmospheric data
(wind, current, salinity, temperature, ocean height and pressure). OSM combines
the efficiency of the CBR systems with artificial intelligence techniques in order to
improve the results and to better generalize from past data. The results obtained
approximate to the real process occurred in near the ninety per cent of the value
of the main variables analyzed, which is a quite important approximation.
OSM allows different users to work together but without sharing the same space.
The multi-agent architecture divides the system in small pieces that work sepa-
rately but coordinated. The different people involved in a contingency system like
the described in this paper can develop their specialized work being coordinated
in the distance.
After an oil spill, it is necessary to determine if an area is going to be contaminated
or not. To conclude about the presence or not of contamination in an area it is
necessary to know how the slicks generated by the spill behave.
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Figure 2. Interpretation of a SAR image done by the system.

First, position, shape and size of the oil slicks must be identified. One of the
most precise ways to acquire that information is by using satellite images. SAR
(Synthetic Aperture Radar) images are the most commonly used to automatically
detect this kind of slicks [27]. Satellite images show certain areas where it seems
to be nothing (e.g. zones with no waves) as oil slicks. Figure 1 shows a SAR image
which displays a portion of the Galician west coast with black areas corresponding
to oil slicks.

Figure 2 shows the interpretation of the SAR image after treating the data.
SAR images make it possible to distinguish between normal sea variability and oil
slicks. It is also important to make a distinction between oil slicks and look-alikes.
Oil slicks are quite similar to quiet sea areas, so it is not always easy to discriminate
between them. If there is not enough wind, the difference between the calmed sea
and the surface of an oil slick is less evident. This can lead to mistakes when trying
to differentiate between a normal situation and an oil slick. This is a crucial aspect
in this problem that can be automatically managed by computational tools [24].
Once the slicks are correctly identified, it is also crucial to know the atmospheric
and maritime situation that is affecting the zone at the moment that is being
analyzed. Information collected from satellites is used to obtain the atmospheric
data needed. That is how different variables such as temperature, sea height and
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salinity are measured in order to obtain a global model that can explain how slicks
evolve.

There are different ways to analyze, evaluate and predict situations after
an oil spill. One approach is simulation [4], where a model of a certain area is
created introducing specific parameters (weather, currents and wind) and working
along with a forecasting system. Using simulations it is easy to obtain a good
solution for a certain area, but it is quite difficult to generalize in order to solve
the same problem in related areas or new zones. It is possible to replace the oil
spill by drifters to obtain a trajectory model comparing the trajectory followed by
the drifters with the already known oil slicks trajectories. If the drifters follow a
similar trajectory as the one that followed the slicks, then a model can be created
and there will be a possibility of creating more models in different areas. Another
way of predicting oil slicks trajectories is studying previous cases for obtaining a
trajectory model for a certain area [28]. One step over these solutions is the use of
systems that combining a major set of elements generate response models to solve
the oil spill problem. A different point of view is given by complex systems which
analyze large databases (environmental, ecological, geographical and engineering)
using expert systems. This way, an implicit relation between problem and solution
is obtained, but with no direct connection between past examples and current
decisions. Nevertheless arriving at these kinds of solutions requires a great data
mining effort. Once the oil spill is produced there should be contingency models
for making a fast solution possible. Expert systems have also been used for solving
this problem. These systems use stored information from past cases as a repository
where future applications will find structured information. The final objective of
all these approaches is to be decision support systems in order to enhance the
response against oil spill situations. Different techniques have been used to achieve
this objective, from fuzzy logic to negotiation with multi-agent systems. One of
these techniques is Case-Based Reasoning which is described in the next section.

In this paper, the oil spill problem is first presented, showing its difficulties
and the possibilities of finding solutions to the problem. Then, the multi-agent
architecture is described. Afterwards, OSM is explained, and last, the results are
shown and also the future developments that can be achieved with the system.

2. A Multi-Agent communication architecture for integrating

distributed services

A multi-agent architecture has been developed to integrate the predicting services.
Because the architecture acts as an interpreter, the users can run applications and
services programmed in virtually any language, but have to follow a communication
protocol that all applications and services must incorporate. Another important
functionality is that, thanks to the agents’ capabilities, the systems developed can
make use of reasoning mechanisms or learning techniques to handle services and
applications according to context characteristics, which can change dynamically
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Figure 3. Framework basic schema.

over time. Agents, applications and services can communicate in a distributed way,
even from mobile devices. This makes it possible to use resources no matter its
location. It also allows the starting or stopping of agents, applications, services or
devices separately, without affecting the rest of resources, so the system has an
elevated adaptability and capacity for error recovery.

Users can access the system through distributed applications, which run on
different types of devices and interfaces (e.g. computers, cell phones, PDA). Figure
3 shows the basic schema of the framework where all requests and responses are
handled by the agents in the platform. The agents analyze all requests and invoke
the specified services either locally or remotely. Services process the requests and
execute the specified tasks. Then, services send back a response with the result of
the specific task.

The presented framework is a modular multi-agent architecture, where ser-
vices and applications are managed and controlled by deliberative BDI (Belief,
Desire, Intention) agents [3][15][20][29]. Deliberative BDI agents are able to coop-
erate, propose solutions on very dynamic environments, and face real problems,
even when they have a limited description of the problem and few resources avail-
able. These agents depend on beliefs, desires, intentions and plan representations
to solve problems [2][11][22]. Deliberative BDI agents are the core of the multia-
gent communication system. There are different kinds of agents in the architecture,
each one with specific roles, capabilities and characteristics. This fact facilitates
the flexibility of the architecture in incorporating new agents. However, there are
pre-defined agents which provide the basic functionalities of the architecture:
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• CommApp Agent. This agent is responsible for all communications between
applications and the platform. It manages the incoming requests from the ap-
plications to be processed by services. It also manages responses from services
(via the platform) to applications. CommApp Agent is always on l̈istening
modë. Applications send XML messages to the agent requesting a service,
then the agent creates a new thread to start communication by using sock-
ets. The agent sends all requests to the Manager Agent which processes the
request. The socket remains open until a response to the specific request is
sent back to the application using another XML message. All messages are
sent to Security Agent for their structure and syntax to be analyzed.

• CommServ Agent. It is responsible for all communications between services
and the platform. The functionalities are similar to CommApp Agent but
backwards. This agent is always on l̈istening modeẅaiting for responses of
services. Manager Agent signals to CommServ Agent which service must be
invoked. Then, CommServ Agent creates a new thread with its respective
socket and sends an XML message to the service. The socket remains open
until the service sends back a response. All messages are sent to Security
Agent for their structure and syntax to be analyzed. This agent also peri-
odically checks the status of all services to know if they are idle, busy, or
crashed.

• Directory Agent. It manages the list of services that can be used by the
system. For security reasons [26], the list of services is static and can only
be modified manually; however, services can be added, erased or modified
dynamically. The list contains the information of all trusted available ser-
vices. The name and description of the service, parameters required, and the
IP address of the computer where the service is running are some of the
information stored in the list of services. However, there is dynamic infor-
mation that is constantly being modified: the service performance (average
time to respond to requests), the number of executions, and the quality of
the service. This last data is very important, as it assigns a value between 0
and 1 to all services. All new services have a quality of service (QoS) value
set to 1. This value decreases when the service fails (e.g. service crashes, no
service found, etc.) or has a subpar performance compared to similar past
executions. QoS is increased each time the service efficiently processes the
tasks assigned. Information management is especially important because the
data processed is very sensitive and personal. Thus, security must be a major
concern. For this reason the multiagent architecture does not implement a
service discovery mechanism, requiring systems to employ only the specified
services from a trusted list of services. However, agents can select the most
appropriate service (or group of services) to accomplish a specific a task.

• Supervisor Agent. This agent supervises the correct functioning of the other
agents in the system. Supervisor Agent periodically verifies the status of all
agents registered in the architecture by sending ping messages. If there is no
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response, the Supervisor agent kills the agent and creates another instance
of that agent.

• Security Agent. This agent analyzes the structure and syntax of all incoming
and outgoing XML messages. If a message is not correct, the Security Agent
informs the corresponding agent (CommApp or CommServ) that the message
cannot be delivered. This agent also directs the problem to the Directory
Agent, which modifies the QoS of the service where the message was sent.

• Manager Agent. Decides which agent must be called by taking into account
the QoS and users preferences. Users can explicitly invoke a service, or can let
the Manager Agent decide which service is best to accomplish the requested
task. If there are several services that can resolve the task requested by an
application, the agent selects the optimal choice. An optimal choice has higher
QoS and better performance. Manager Agent has a routing list to manage
messages from all applications and services. This agent also checks if services
are working properly. It requests the CommServ Agent to send ping messages
to each service on a regular basis. If a service does not respond, CommServ
informs Manager Agent, which tries to find an alternate service, and informs
the Directory Agent to modify the respective QoS.

• Interface Agent. This kind of agent was designed to be embedded in users’
applications. Interface agents communicate directly with the agents in the
architecture so there is no need to employ the communication protocol, rather
the FIPA ACL specification. The requests are sent directly to the Security
Agent, which analyzes the requests and sends them to the Manager Agent.
The rest of the process follows the same guidelines for calling any service.
These agents must be simple enough to allow them to be executed on mobile
devices, such as cell phones or PDAs. All high demand processes must be
delegated to services.

In the next section, the contingency response system to face oil slick situa-
tions is presented, explaining how the multi-agent architecture is integrated with
a CBR system in order to obtain a flexible and distributed structure.

3. OSM: a hybrid multiagent system for contingency response in

oil spill situations

CBR has already been used to solve maritime problems [7] in which different
oceanic variables were involved. In this case, the data collected from different
observations from satellites is processed and structured as cases. The cases are the
key to obtain solutions to future problems through a CBR system.

Figure 4 shows the basic structure of the OSM system, where the interfaces
agents are connected to the services through the multiagent architecture. The
interface agents represent the different roles the users can perform to interact
with the system. The services are the different phases of the CBR cycle, that
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Figure 4. OSM basic structure.

are requested by the users. One user may only need to introduce information in
the system, while expert users can be requested from the system to confirm the
predictions generated.

The functionalities of the system can be accessed using different interfaces
for PCs and PDAs (Personal Digital Assistant) where users can interact with the
system by introducing data, requesting a prediction or revising a solution generated
by the system. Figure 5 shows the main graphical user interface of OSM. The
interface shows a set of parameters, the oceanic area visualization with oil slicks
and a squared area to be analyzed.

Oil slicks are mainly detected using SAR images. Those images are processed
and transformed to be used by the system. Oceanic, meteorological and oil spill re-
lated data is stored in the system in order to generate future predictions. The data
used to train the system has been obtained after the Prestige accident, between
November 2002 and April 2003, in a specific geographical area at the west of the
Galician coast (longitude between 14 and 6 degrees west and latitude between 42
and 46 degrees north). Table 1 shows the basic structure of a case. The variables
can be geographical (longitude and latitude), temporal (date of the case), atmo-
spheric (wind, current, sea height, bottom pressure, salinity and temperature) and
variables directly related with the problem (number and area of the slicks).

All information is stored in the case base and OSM is ready to predict future
situations. A problem situation must be introduced in the system for generating a
prediction. Then, the most similar cases to the current situation are retrieved from
the case base. Once a collection of cases are chosen from the case base, they must
be used for generating a new solution to the current problem. Growing Radial
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Figure 5. Graphical user interface of OSM.

Variable Definition/Unit
Longitude Geographical longitude/Degree
Latitude Geographical latitude/Degree
Date Day, month and year of the analysis/dd/mm/yyyy
Sea Height Height of the waves in open sea/m
Bottom pressure Atmospheric pressure in the open sea/Newton/m2
Salinity Sea salinity/ppt(parts per thousand)
Temperature Celsius temperature in the area/C
Area of the slicks Surface covered by the slicks present in the area/Km2
Meridional Wind Meridional direction of the wind/ m/s
Zonal Wind Zonal direction of the wind/ m/s
Wind Strenght Wind Strenght/ m/s
Meridional Current Meridional direction of the ocean current/ m/s
Zonal Current Zonal direction of the ocean current/ m/s
Current Strenght Ocean current strength/ m/s

Table 1. Variables that define a case

Basis Functions Networks [16] are used in OSM for combining the chosen cases in
order to obtain the new solution.

OSM determines the probability of finding oil slicks in a certain area. OSM
divides the area to be analyzed in squares of approximately half a degree side for
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Figure 6. Division of the analyzed area into squares with slicks inside.

generating a new prediction. Then, the system determines the amount of slicks in
each square. The squares are colored with different gradation depending on the
quantity of oil slicks calculated.

Within the case base there are a temporal relationship between a case and
its future situation. A square, with all the values of the different variables can be
related with the same square but in the next temporal situation. That relationship
will provide the internal mechanism used to generalize and to train the GRBF
network, which will generate the prediction.

Figure 6 shows the interpretation of a series of slicks. The squared areas
are those that will be analyzed by the system. First, the slicks corresponding to
different days are colored in different colors. Then, in figure 7 can be seen how
the squared zones are colored in different intensity depending on the amount of
slicks appearing on each square (down). The bigger amount of slicks, the darker
the squared is colored.

The data is stored into the case base once structured. Every case has its
temporal situation stored and relates every case with the next situation in the same
position. The temporal relationship creates the union between the problem and
the solution. The problem is the past case, and the solution is the future case. The
relationship established between a situation and its corresponding future provides
the necessary data for generalizing and generating an appropriate prediction for
an introduced problem.
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Figure 7. Interpretation of the amount of slicks in an area.

3.1. OSM architecture

OSM employs a multi-agent architecture based on SOA for distributing resources
and optimizing its performance. Most of the system functionalities have been mod-
eled as applications and services managed by deliberative BDI (Belief, Desire,
Intention) agents [3][15]. Deliberative BDI agents are able to cooperate, propose
solutions on very dynamic environments, and face real problems, even when they
have a limited description of the problem and few resources available. These agents
depend on beliefs, desires, intentions and plan representations to solve problems
[11].

There are four basic blocks in OSM: Applications, Services, Agents Platform
and Communication Protocol. These blocks provide all the system functionalities:

• Applications. These represent all the programs that users can use to exploit
the system functionalities. Applications are dynamic, reacting differently ac-
cording to the particular situations and the services invoked. They can be
executed locally or remotely, even on mobile devices with limited processing
capabilities, because computing tasks are largely delegated to the agents and
services.

• Services. These represent the activities that the architecture offers. They are
the bulk of the functionalities of the system at the processing, delivery and
information acquisition levels. Services are designed to be invoked locally or
remotely. Services can be organized as local services, web services, GRID
services, or even as individual stand alone services. Services can make use of
other services to provide the functionalities that users require. OSM has a
flexible and scalable directory of services, so they can be invoked, modified,
added, or eliminated dynamically and on demand. It is absolutely necessary
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that all services follow a communication protocol to interact with the rest of
the components.

• Agents Platform. This is the core of the system, integrating a set of agents,
each one with special characteristics and behavior. An important feature
in this architecture is that the agents act as controllers and administrators
for all applications and services, managing the adequate functioning of the
system, from services, applications, communication and performance to rea-
soning and decision-making. In OSM, services are managed and coordinated
by deliberative BDI agents. The agents modify their behavior according to
the users’ preferences, the knowledge acquired from previous interactions, as
well as the choices available to respond to a given situation.

• Communication Protocol. This allows applications and services to communi-
cate directly with the Agents Platform. The protocol is completely open and
independent of any programming language. This protocol is based on SOAP
specification to capture all messages between the platform and the services
and applications [5]. Services and applications communicate with the Agents

Platform via SOAP messages. A response is sent back to the specific service
or application that made the request. All external communications follow the
same protocol, while the communication among agents in the platform fol-
lows the FIPA Agent Communication Language (ACL) specification. This is
especially useful when applications run on limited processing capable devices
(e.g. cell phones or PDAs). Applications can make use of agents platforms
to communicate directly (using FIPA ACL specification) with the agents in
OSM, so while the communication protocol is not needed in all instances, it
is absolutely required for all services.

Agents, applications and services in OSM can communicate in a distributed
way, even from mobile devices. This makes it possible to use resources no matter
its location. It also allows the starting or stopping of agents, applications, ser-
vices or devices separately, without affecting the rest of resources, so the system
has an elevated adaptability and capacity for error recovery. Users can access to
OSM functionalities through distributed applications which run on different types
of devices and interfaces (e.g. computers, PDA). Figure 8 shows the structure of
OSM. As can be seen, most of the functionalities, including the CBR system, have
been modeled as services and applications. Thus, each service can be performed
on demand and can also be replicated to respond multiple requests.

Interface Agents are a special kind of agents in OSM designed to be embedded
in users’ applications. These agents are simple enough to allow them to be executed
on mobile devices, such as cell phones or PDAs because all high demand processes
are delegated to services. OSM defines three different Interface Agents:

1. Input Agent. It is the agent that sends the information introduced by the
users to OSM. Once the data have reached the system, it is structured into
the case base. This interface agent is used by users that have visualized an oil
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Figure 8. OSM extended structure.

slick, in order to introduce the data related with that slick into the system.
the Input Agent interface is used by the users to introduce the data. The
main parameters to identify the slick are its position, in terms of longitude
and latitude, the surface covered by the slick, and the distance of that slick
to the coast. Once the basic information about the slick has been sent to the
system, OSM recovers satellite information about the ocean and the meteoro-
logical conditions in the area to create a case from the slick and geographical
information.

2. Prediction Agent. When a user wants to request a prediction from OSM, this
is the agent used to do so. In the interface of the agent, the user can define
the area to be analyzed, the size of the squares to be transformed into cases
and, if there are previous information stored in the system, the existing slicks
to be considered to generate the prediction.

3. Revision Agent. When a prediction is generated by OSM, the system can
automatically verify the correction of the proposed solution. But, if there are
revision experts available, it also requests an expert for a revision. The users
re ceive the proposed solution and enough data to validate the solution for
the current problem.

OSM also defines three different services which perform all tasks that the
users may demand from the system. All requests and responses are handled by
the agents. The requests are analyzed and the specified services are invoked either
locally or remotely. Services process the requests and execute the specified tasks.
Then, services send back a response with the result of the specific task. In this
way, the agents act as interpreters between applications and services in OSM.
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Next, the main services defined in OSM are explained, following the main
phases of the CBR cycle.

3.2. Prediction System

OSM is a Contingency Response system for Oil Spills conceived as a multi-agent
system which core working structure follows the Case-Based Reasoning method-
ology. The different services implemented by the OSM system cover the four main
phases of the OSM cycle, and also the pre-processing stage, covered by the Data

Input Service covers. The retrieval and reuse phases are implemented in the Pre-

diction Generation Service that generates a prediction after a problem description
is introduced in the system by an user. The Revision Service covers the revision

phase, and may require the confirmation of an expert, to validate the correction
of the solution proposed. The final stage of the CBR cycle, the retention phase is
also implemented in the Data Input Service, where

Data Input Service

When data about an oil slick is introduced in the system OSM must complete
the information about the area including atmospheric and oceanic information:
temperature, salinity, bottom pressure, sea height. All that complementary data
is collected from satellite services that offer on-line and in real time that precise
information. With all that information the case is created and introduced in the
case base.

Historical data collected from November 2002 to April 2003 has been used
to create the case base of OSM. As explained before, cases are formed by a series
of variables. Principal Components Analysis (PCA) [9] can reduce the number of
those variables and then, the system stores the value of the principal components,
which are related with the original variables that define a case. PCA has been
previously used to analyze oceanographic data and it has proved to be a consistent
technique when trying to reduce the number of variables [21]. OSM uses Fast
Iterative Kernel PCA (FIKPCA) which is an evolution of PCA [12]. This technique
reduces the number of variables in a set by eliminating those that are linearly
dependent, and it is quite faster than the traditional PCA.

To improve the convergence of the Kernel Hebbian Algorithm used by Kernel
PCA, FIK-PCA set ηt proportional to the reciprocal of the estimated eigenvalues.
Let λt ∈ ℜr

+ denote the vector of eigenvalues associated with the current estimate

of the first r eigenvectors. The new KHA algorithm sets de ith component of ηt

to the files.

[ηt]i =
1

[λt]i

τ

t + τ
η0 (3.1)

The final variables are, obviously, linearly independent and are formed by
combination of the previous variables. The values of the original variables can be
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recovered by doing the inverse calculation to the one produced to obtain the new
variables. The variables that are less used in the final stored variables are those
whose values suffer less changes during the periods of time analysed (salinity, tem-
perature and pressure do not change from one day to another, then, they can be
ignored considering that the final result does not depend on them). Once applied
the FIKPCA, the number of variables is reduced to three, having the following
distribution:

Variable 1: -0,560 * long - 0,923*lat + 0,991*s height +

0,919*b pressure + 0,992*salinity + 0,990*temp -

0,125*area of slicks + 0,80*mer wind + 0,79*zonal wind +

0,123*w strenght + 0,980*mer current + 0,980*zonal current

+ 0,980*c strength

Variable 2: 0,292*long - 0,081*lat - 0,010*s height -

0,099*b pressure - 0,011*salinity - 0,013*temp -

0,021*area of slicks + 0,993*merl wind + 0,993*zonal wind

+ 0,989*w strenght - 0,024*mer current - 0,024*zonal current

- 0,024*c strength

Variable 3: 0*long - 0,072*lat + 0,009*s height +

0,009*b pressure + 0,009*salinity + 0,009*temp +

0,992*area of slicks + 0,006*mer wind + 0,005*zonal wind

+ 0,005*w strenght - 0,007*mer current - 0,007*zonal current

- 0,007*c strength

After applying FIKPCA, the historical data is stored in the case base, and is
used to solve future problems using the rest of the CBR cycle. Storing the prin-
cipal components instead of the original variables implies reducing the amount
of memory necessary to store the information in about a sixty per cent which is
more important as the case base grows. The reduction of the number of variables
considered also implies a faster recovery from the case base.

When introducing the data into the case base, Growing Cell Structures (GCS)
[10] are used. GCS can create a model from a situation organizing the different
cases by their similarity. If a 2D representation is chosen to explain this technique,
the most similar cells (i.e. cases) are near one of the other. If there is a relation-
ship between the cells, they are grouped together, and this grouping characteristic
helps the CBR system to recover the similar cases in the next phase. When a new
cell is introduced in the structure, the closest cells move towards the new one,
changing the overall structure of the system. The weights of the winning cell ωc,
and its neighbours ωn, are changed. The terms ǫc and ǫn represent the learning
rates for the winner and its neighbours, respectively. x represents the value of the
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input vector.

ωc (t + 1) = ωc (t) + ǫc (x − ωt) (3.2)

ωn (t + 1) = ωn (t) + ǫn (x − ωn) (3.3)

The pseudocode of the GCS insertion process is shown below:

1. The most similar cell to the new one is found.

2. The new cell is introduced in the middle of the connection

between the most similar cell and the least similar to the new one.

3. Direct neighbours of the closest cell change their values by

approximating to the new cell and specified percentage of the

distance between them and the new cell.

Once the case base has stored the historical data, and the GCS has learned
from the original distribution of the variables, the system is ready to receive a new
problem.

When a new problem comes to the system, GCS are used once again. The
stored GCS behaves as if the new problem would be stored in the structure and
finds the most similar cells (cases in the CBR system) to the problem introduced
in the system. In this case, the GCS does not change its structure because it has
being used to obtain the most similar cases to the introduced problem. Only in
the retain phase the GCS changes again, introducing the proposed solution if it is
correct.

Prediction Generation Service

When a prediction is requested by a user, the system starts recovering from
the case base the most similar cases to the problem proposed. Then, it creates a
prediction using artificial neural networks.

The similarity between the new problem and the cases is determined by the
GCS. Every element in the GCS has a series of values (every value corresponds
to one of the principal components created after de PCA analysis). The distance
between elements is a multi-dimensional distance where all the elements are con-
sidered to establish the distance between cells. After obtaining the most similar
cases from the case base, the cases are used in the next phase. The most sim-
ilar cases stored in the case base will be used to obtain an accurate prediction
according to the previous solutions related with the selected cases.

Once the most similar cases are recovered from the case base, they are used to
generate the solution. The prediction of the future probability of finding oil slicks
in an area is generated using an artificial neural network, with a hybrid learning
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system. An adaptation of Radial Basis Functions Networks are used to obtain that
prediction [13]. The chosen cases are used to train the artificial neural network.
Radial Basis Function networks have been chosen because of the reduction of the
training time comparing with other artificial neural network systems, such as Mul-
tilayer Perceptrons. In this case, the network is trained in every analysis using only
the cases selected from the case base.

Growing RBF networks [23] are used to obtain the predicted future values
corresponding to the proposed problem. This adaptation of the RBF networks
allows the system to grow during training gradually increasing the number of ele-
ments (prototypes) which play the role of the centers of the radial basis functions.
The creation of the Growing RBF must be made automatically which implies an
adaptation of the original GRBF system. The error for every pattern is defined
by:

ei = l/p ∗

p∑

k=1

||tik − yik|| (3.4)

Where tik is the desired value of the kth output unit of the ith training pattern,
yik the actual values ot the kth output unit of the ith training pattern.

The pseudo code of the Growing RBF process id described next:

1. Calculate the error, ei (4) for every new possible prototype.

a. If the new candidate does not belong to the chosen

ones and the error calculated is less than a threshold error,

then the new candidate is added to the set of accepted

prototypes.

b. If the new candidate belongs to the accepted ones

and the error is less than the threshold error, then modify the

weights of the neurons in order to adapt them to the new

situation.

2. Select the best prototypes from the candidates.

a. If there are valid candidates, create a new cell

centered on it.

b. Else, increase the iteration factor. If the iteration

factor comes to the 10% of the training population, freeze the

process.

3. Calculate global error and update the weights.

a. If the results are satisfactory, end the process. If

not, go back to step 1.

Once the GRBF network is created, it is used to generate the solution to the
proposed problem. The solution will be the output of the network using as input
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data the selected cases from the case base.

Revision Service

After generating a prediction, the system needs to validate its correction.
The system can also query an expert user to confirm the automatic revision pre-
viously done. The prediction is shown to the users in a similar way the slicks are
interpreted by OSM. A set of squared colored areas appear. The intensity of the
color corresponds with the possibility of finding oil slicks in that area. The areas
colored with a higher intensity are those with the highest probability of finding
oil slicks in them. In this visual approximation, the user can check if the solution
is adequate. The system also provides an automatic method of revision that must
be also checked by an expert user which confirms the automatic revision.

Explanations are a recent revision methodology used to check the correction
of the solutions proposed by CBR systems [19]. Explanations are a kind of justi-
fication of the solution generated by the system. To obtain a justification to the
given solution, the cases selected from the case base are used again. As explained
before, we can establish a relationship between a case and its future situation. If
we consider the two situations defined by a case and the future situation of that
case as two vectors, we can define a distance between them, calculating the evolu-
tion of the situation in the considered conditions. That distance is calculated for
all the cases retrieved from the case base as similar to the problem to be solved. If
the distance between the proposed problem and the solution given is not greater
than the average distances obtained from the selected cases, then the solution is
a good one, according to the structure of the case base. Next, the explanation
pseudo code is showed:

1. For every selected case in the retrieval phase, the distance

between the case and its solution is calculated.

2. The distance between the proposed problem and the proposed

solution is also calculated.

3. If the difference between the distance of the proposed solution

and those of the selected cases is below a certain threshold

value, then the solution is considered as a valid one.

4. If not, the user is informed and the process goes back to the

retrieval phase, where new cases are selected from the case base.

5. If, after a series of iterations the system does not produce a

good enough solution, then the user is asked to consider the

acceptance of the best of the generated solutions.

The distances are calculated considering the sign of the values, not using its
absolute value. This decision is easily justified by the fact that is not the same to
move to the north than to the south, even if the distance between two points is
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the same. If the prediction is considered as correct it will be stored in the case
base, and it can then be used in next predictions to obtain new solutions.

The distances are calculated considering the sign of the values without using
its absolute value. This decision is justified by the fact that is not the same to
move to the north than to the south, even if the distance between two points is
the same. If the prediction is considered correct, it will be stored in the case base
and can then be used in next predictions for obtaining new solutions.

If the proposed prediction is accepted, it is considered as a good solution to
the problem and can be stored in the case base in order to solve new problems. It
will have the same category as the historical data previously stored in the system.

When inserting a new case in the case base, Fast Iterative Kernel PCA is used
for reducing the number of variables used and adapting the data generated by the
system. The adaptation is done by changing the original variables into the principal
components previously chosen by the system. The internal structure of the case
base also changes when a new case is introduced. The GCS system related with
the case base structure controls its growth. The GCS system grows and improves
its capability of generating good results as new knowledge is introduced in the
system.

4. Results

OSM uses different artificial intelligence techniques to cover and solve all the phases
of the CBR cycle. Fast Iterative Kernel Principal Component Analysis is used to
reduce the number of variables stored in the system, getting about a 60% of re-
duction in the size of the case base. This adaptation of the PCA also implies a
faster recovery of cases from the case base (more than 7% faster than storing the
original variables).

To obtain a prediction using the cases recovered from the case base, Growing
Radial Basis Function Networks has been used. This evolution of the RBF networks
implies a better adaptation to the structure of the case base, which is organized
using Growing Cell Structures. The results using Growing RBF networks instead of
simple RBF networks are about a 4% more accurate, which is a good improvement.

Evaluations show that the system can predict in the conditions already
known, showing better results than previously used techniques. The use of a com-
bination of techniques integrated in the CBR structure makes it possible to obtain
better result than using the CBR alone (17% better), and also better than using
the techniques isolated(neural networks), without the integration feature produced
by the CBR (11% better). A resume of all these improvements can be seen in figure
9.

The predicted situation was contrasted with the actual future situation. The
future situation was known, as long as historical data was used to develop the
system and also to test the correction of it. The proposed solution was, in most of
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Figure 9. Resume of the improvement of the results obtained
with OSM.

Number of cases RBF CBR RBF + CBR OSCBR
100 45% 39% 42% 43%
500 48% 43% 46% 46%
1000 51% 47% 58% 64%
2000 56% 55% 65% 72%
3000 59% 58% 68% 81%
4000 60% 63% 69% 84%
5000 63% 64% 72% 87%

Table 2. Percentage of good predictions obtained with different techniques.

the variables, close to 90% of accuracy. For every problem defined by an area and
its variables, the system offers 9 solutions (i.e. the same area with its proposed
variables and the eight closest neighbors). This way of prediction is used in order to
clearly observe the direction of the slicks which can be useful in order to determine
the coastal areas that will be affected by the slicks generated after an oil spill.

Table 2 shows a summary of the results obtained after comparing different
techniques with the results obtained using OSM. The table shows the evolution
of the results along with the increase of the number of cases stored in the case
base. All the techniques analyzed improve its results while increasing the number



22 Juan Manuel Corchado, Aitor Mata and Sara Rodŕıguez

. RBF CBR RBF + CBR OSCBR
RBF

CBR *
RBF + CBR = =
OSCBR * * *

Table 3. Multiple comparison procedure among different techniques.

of cases stored. Having more cases in the case base, makes easier to find similar
cases to the proposed problem and then, the solution can be more accurate. The
R̈BFc̈olumn represents a simple Radial Basis Function Network that is trained
with all the data available. The network gives an output that is considered a so-
lution to the problem. The C̈BRc̈olumn represents a pure CBR system, with no
other techniques included; the cases are stored in the case base and recovered
considering the Euclidean distance. The most similar cases are selected and after
applying a weighted mean depending on the similarity of the selected cases with
the inserted problem, a solution s proposed. The R̈BF + CBRc̈olumn corresponds
to the possibility of using a RBF system combined with CBR. The recovery from
the CBR is done by the Manhattan distance and the RBF network works in the
reuse phase, adapting the selected cases to obtain the new solution. The results
of the R̈BF+CBRc̈olumn are, normally, better than those of the C̈BR,̈ mainly
because of the elimination of useless data to generate the solution. Finally, the
ÖSMc̈olumn shows the results obtained by the proposed system, obtaining better
results that the three previous analyzed solutions.

Table 3 shows a multiple comparison procedure (Mann-Whitney test) used
to determine which models are significantly different from the others. The asterisk
indicates that these pairs show statistically significant differences at the 99.0%
confidence level. OSM presents statistically significant differences with the rest of
the models. The proposed solution does not generate a trajectory, but a series of
probabilities in different areas, what is far more similar to the real behavior of the
oil slicks.

Several tests have been done to compare the overall performance of OSM.
The tests consisted of a set of requests delivered to the Prediction Generation

Service (PGS) which in turn had to generate solutions for each problem. There
were 50 different data sets, each one with 10 different parameters. The data sets
were introduced into the PGS through a remote PC running multiple instances of
the Prediction Agent. The data sets were divided in five test groups with 1, 5, 10, 20
and 50 data sets respectively. There was one Prediction Agent for each test group.
30 runs for each test group were performed. Several data have been obtained from
these tests, notably the average time to accomplish the solutions, the number of
crashed agents, and the number of crashed services. First, all tests were performed
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Figure 10. Average time needed to generate all solutions.

with only one Prediction Service running in the same workstation on which the
system was running. Then, five Prediction Services were replicated also in the same
workstation. For every new test, the case base of the PGS was deleted in order
to avoid a learning capability, thus requiring the service to accomplish the entire
prediction process.

Figure 10 shows the average time needed by OSM for generating all solutions
(predictions) for each test group. As can be seen, the time exponentially increases
when there is only one PGS running. This is because the service must finish a
request to start the next one. So, for the last test group (50 data sets) the service
was overcharged. On the other hand, with five replicated services, the system can
distribute the requests among these services and optimize the overall performance.
The system performed slightly faster when processing a single request, but the
performance was constantly reduced when more requests were sent to the service.

Figure 11 shows the average number of crashed agents and services during
all tests. As can be seen, with only one PGS available OSM is far more unstable.
This is because the PGS had to perform all requests by itself. It is important to
notice that when the PGS crashed, more agents crashed because they were always
waiting for the service response. For example, when processing 50 data sets, the
last agent had to wait almost 200 seconds to receive the response. These data
demonstrate that a distributed approach provides a higher ability to recover from
errors.
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Figure 11. Average number of crashed agents.

5. Conclusions and future work

In this paper, the OSM system has been explained. It is a new solution for pre-
dicting the presence or not of oil slicks in a certain area after an oil spill.
OSM represents a combination of a distributed multi-agent architecture with a
predicting system based on Case-Based Reasoning. The arrangement of those two
methodologies allows OSM to be able to interact with different users at the same
time, generating solutions to new problems using past solutions given to past
problems.

The distribution has been effective, permitting the users to interact with the
system in different ways, depending on the needs of the users or on the requirements
of the system.

CBR represents the predicting part of the system. It has proved to generate
consistent results if enough data is available. The structure of the CBR method-
ology has been divided into services in order to adapt its way of working to the
inner structure of the multi-agent architecture.

Generalization must be done in order to improve the system. Applying the
methodology explained before to diverse geographical areas will make the results
even better, being able to generate good solutions in more different situations.
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Although these tests have provided us with very useful data, it is necessary
to continue developing and enhancing OSM. Results also demonstrate that using
a distributed architecture is adequate for building complex systems and exploiting
composite services, in this case OSM.
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