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Abstract. This work presents a multiagent system for evaluating automatically the interac-
tion that exists between the atmosphere and the ocean surface. Monitoring and evaluating 
within the Ocean CO2 exchange process is a function requiring working with a great 
amount of data: satellite images and in-situ vessel’s data. The system presented in this work 
focuses on Ambient Intelligence (AmI) technologies since the vision of AmI assumes 
seamless, unobtrusive, and often invisible but also controllable interactions between hu-
mans and technology. The work presents the construction of an open multiagent architec-
ture which, based on the use of deliberative agents incorporating case-based planning 
(CBP) systems, offers a distributed model for such an interaction. This work also presents 
an analysis and design methodology that facilitates the implementation of CBR agent based 
distributed artificial intelligent systems. Moreover, the architecture takes into account the 
fact that the working environment is dynamic and therefore it requires autonomous models 
that evolve over time. In order to resolve this problem an intelligent environment has been 
developed, based on the use of CBP-CBR agents, which are capable of handling several 
goals, constructing plans from the data obtained through satellite images and research ves-
sels, acquiring knowledge and of adapting to environmental changes, are incorporated. The 
artificial intelligence system has been successfully tested in the North Atlantic Ocean, and 
the results obtained will be presented within this work.   
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1 Introduction 

Ambient intelligent environments are characterized by their ubiquity, 
transparency and intelligence [2]. The Agents and multi-agent systems 
(MAS) have become increasingly relevant for developing distributed and 
dynamic intelligent environments. Agents and multiagent systems have 
become increasingly relevant for developing applications in the internet, 
personalized user interfaces, oceanography, control systems or robotic en-
vironments.  Agents can be characterized through their capacities in areas 
such as autonomy, reactivity, pro-activity, social abilities, reasoning, learn-
ing and mobility. These capacities which can be modeled in various ways, 
using different methodologies [40], making the agents and multiagent sys-
tems highly suited to intelligent environments. One of the possibilities to 
model the reasoning capacity is to use Case Based Reasoning (CBR). In 
this work we present a distributed architecture whose main characteristic is 
the use of CBR-BDI agents [11]. These agents are capable of learning, 
from their initial knowledge and by interacting autonomously with their 
environment and with users of the system, adapting themselves accord-
ingly. Both, the developed multiagent architecture and the modeling agent 
are described in detail. The development of ambient intelligent systems is 
normally complicated due it novel connotations, this work presents a prac-
tical way for analyzing and designing multiagent systems at the same time 
of describing the distributed ambient intelligent system developed. 

The mission of the intelligent environment presented in this work, is to 
globally monitor the interaction between the ocean surface and the atmos-
phere, facilitating the work of oceanographers. Initially, the system is be-
ing used in order to evaluate and predict the amount of CO2 absorbed or 
expelled by the ocean in the North Atlantic [4, 5, 13]. The main purpose of 
this work is to obtain an architecture that enables the construction of open, 
distributed and dynamic systems capable of growing in dimension and of 
adapting their knowledge according to different changes that take place in 
their environment. There are many different architectures for constructing 
deliberative agents and many of them are based on the BDI model. In the 
BDI model, the internal structure of an agent and its capacity to choose is 
based on mental aptitudes. This has the advantage that it uses a natural 
model (human) and a high level of abstraction. The BDI model uses the 
agent’ Beliefs as informational aptitudes, its Desires as motivational apti-
tudes and its Intentions as deliberative aptitudes. The method proposed in 
[3, 10, 11] facilitates the incorporation of CBR systems as a deliberative 
mechanism within BDI agents, allowing them to learn and adapt them-
selves, and lending them a greater level of autonomy than pure BDI archi-
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tecture [21]. Moreover, this proposal differs from others [8, 18, 26, 31, 39] 
in that it proposes direct mapping between the concept of the agents and 
their implementation. CBR systems are also highly suited to some of the 
tasks in the study of CO2 exchange between the ocean and the atmosphere, 
such as the interpretation of satellite images [34]. 

One of the major problems in the development of an architecture based 
on multiagent systems is that there are currently no clear standards or well 
developed methodologies for defining the steps of analysis and design that 
need to be taken in order to define an intelligent environment. There are at 
present a number of methodologies: Gaia [41], AUML [6, 29, 30], MAS-
CommonKADS [22], MaSE [16], ZEUS [28], MESSAGE [17]. The prob-
lem with these methodologies is that they are generally not fully developed 
and present a number of limitations. For this study, we have decided to opt 
for a combination of elements from Gaia and Agent Unified Modelling 
Language (AUML) for our MAS. Gaia is a simple methodology that al-
lows us to carry out a preliminary analysis and design with which to con-
front the problem at a general level. The great advantage is that we can 
carry out a rapid, broad study but problems arise when the design is at its 
completion because there tends to be an overly high level of abstraction. 
AUML, on the other hand, offers mechanisms which allow us to obtain a 
design that is sufficiently precise and able to pass directly to the imple-
mentation stage, but has the disadvantage of being too precise and detailed 
for the preliminary stages. Our goal is to take advantage of both method-
ologies by carrying out a preliminary analysis and design with Gaia and 
later on to carry out the appropriate changes by using a detailed AUML 
design. In this way we are able to obtain both a generalized vision of the 
problem in terms of organization, and a detailed Multi Agent System 
(MAS) description which helps enormously in the development of such a 
research project.  

In order to implement the BDI agents, various tools are used. One inter-
esting tool is the Jadex [35], which incorporates the BDI architecture into 
Jade agents [7]. In this sense, Jadex agents work with concepts of beliefs, 
goals and plans, all of which become objects which can be created and 
manipulated within the agent. The beliefs represent any type of Java object 
and are stored in the beliefs’ database. The goals represent specific motiva-
tions that influence the behaviour of the agent. The plans are procedures 
written in Java which are executed in order to reach the goals. Jadex has 
the advantage to allow the programmer to introduce his own deliberative 
planning mechanisms. In our case, this mechanism will be a CBR system. 
In addition, it offers all the advantages of Jade and allows the use of Jade 
and Jadex agents within the same MAS. The MAS incorporates “light-
weight” agents that can live in mobile devices, such as phones, PDAs, etc. 
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These agents make it possible for a oceanographer to interact with the 
MAS in a very simple way, downloading and installing a personal agent in 
his mobile phone or PDA.

In the next section, we will explain the various relationships that can be 
established between CBR and BDI concepts. In the third section we will 
describe the oceanic/atmospheric problem that has led to most of this re-
search. In the fourth section, the multiagent system developed will be de-
scribed, paying special attention to the CBR-BDI agents. Finally, some 
preliminary results and the conclusions will be presented. 

2 CBR-BDI Agents 

Ambient Intelligence has been widely studied and different artificial intel-
ligence techniques have been applied. The application of agents and multi-
agent systems facilitates taking advantage of the agent capabilities, such as 
mobility, pro-activity or social abilities, as well as the possibility of solv-
ing problems in a distributed way. Agents, in the context of an intelligent 
environment, must be able to respond to events, take the initiative accord-
ing to their goals, communicate with other agents, interact with users, and 
make use of past experiences to find the best ways to achieve goals. There 
are many architectures for constructing deliberative agents and many of 
them are based on the BDI model [23, 24]. In the BDI model, the internal 
structure of an agent and its capacity to choose, is based on mental apti-
tudes: agent behaviour is composed of beliefs, desires, and intentions. The 
beliefs represent its information state, what the agent knows about itself 
and its environment. The desires are its motivation state, what the agent is 
trying to achieve. And the intentions represent the agent’s deliberative 
states. Intentions are sequences of actions; they can be identified as plans. 
A BDI architecture has the advantage that it is intuitive and relatively sim-
ple to identify the process of decision-making and how to perform it. Fur-
thermore, the notions of belief, desire and intention are easy to understand. 
On the other hand, its main drawback lies in finding a mechanism that 
permits its efficient implementation. 

Case-based Reasoning (CBR) is a type of reasoning based on the use of 
past experiences [24]. The purpose of CBR systems is to solve new prob-
lems by adapting solutions that have been used to solve similar problems 
in the past. The fundamental concept when working with CBRs is the con-
cept of case. A case can be defined as a past experience, and is composed 
of three elements: A problem description which describes the initial prob-
lem, a solution which provides the sequence of actions carried out in order 
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to solve the problem, and the final state which describes the state achieved 
once the solution was applied. A CBR manages cases (past experiences) to 
solve new problems. The way in which cases are managed is known as the 
CBR cycle. The CBR cycle shown in Figure 1 consists of four sequential 
phases: retrieve, reuse, revise and retain. The retrieve phase starts when a 
new problem description is received. Similarity algorithms are applied in 
order to retrieve from the cases memory the cases with a problem descrip-
tion more similar to the current one. Once the most similar cases have been 
retrieved, the reuse phase begins. In this phase the solutions of the cases 
retrieved are adapted to obtain the best solution for the current case. The 
revise phase consists of an expert revision of the solution proposed. Fi-
nally, the retain phase allows the system to learn from the experiences ob-
tained in the three previous phases and updates the memory case in conse-
quence. 

 

 

Fig. 1. Diagram including a CBR-BDI agent reasoning cycle. 

The deliberative agents, proposed in the framework of this investigation, 
use this concept to gain autonomy and improve their problem-solving ca-
pabilities. The method proposed in [11] facilitates the incorporation of 
CBR systems as a deliberative mechanism within BDI agents, allowing 
them to learn and adapt themselves, lending them a greater level of auton-
omy than pure BDI architecture [10]. Accordingly, CBR-BDI agents im-
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plemented using CBR systems could reason autonomously and therefore 
adapt themselves to environmental changes. The CBR system is com-
pletely integrated within the agents’ architecture. The CBR-BDI agents in-
corporate a “formalism” which is easy to implement, in which the reason-
ing process is based on the concept of intention. Intentions can be seen as 
cases, which have to be retrieved, reused, revised and retained. This makes 
the model unique in its conception and reasoning capacities. The structure 
of the CBR system has been designed around the concept of a case. A di-
rect relationship between CBR systems and BDI agents can also be estab-
lished if the problems are defined in the form of states and actions.  

 
Case: <Problem, Solution, Result>  
Problem: initial_state 
Solution: sequence of <action, [intermediate_state]> 
Result: final_state 

BDI agent 
Belief: state 
Intention: sequence of <action> 
Desire: set of <final_state> 

 
The relationship between CBR systems and BDI agents can be estab-

lished by implementing cases as beliefs, intentions and desires which lead 
to the resolution of the problem. As described in [5, 14], in a CBR-BDI 
agent, each state is considered as a belief; the objective to be reached may 
also be a belief. The intentions are plans of actions that the agent has to 
carry out in order to achieve its objectives [9], so an intention is an ordered 
set of actions; each change from state to state is made after carrying out an 
action (the agent remembers the action carried out in the past, when it was 
in a specified state, and the subsequent result). A desire will be any of the 
final states reached in the past (if the agent has to deal with a situation, 
which is similar to a past one, it will try to achieve a similar result to that 
previously obtained).   

3 Air Sea Interaction Problem 

One of the factors of greatest concern in climactic behaviour is the quan-
tity of CO2 present in the atmosphere. CO2 is one of the greenhouse gases 
that helps to make the earth’s temperature habitable, so long it is maintains 
certain levels [37]. Traditionally, it has been considered that the main sys-
tem regulating CO2 in the atmosphere is the photosynthesis and respiration 
of plants. However, thanks to teledetection techniques it has been shown 
that the ocean plays a highly important role in the regulation of carbon 
quantities the full significance of which still needs to be determined [38]. 
Current technology allows us to obtain data and make calculations that 
were unthinkable some time ago. This data gives us an insight into the 
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original source and the decrease in CO2 as well as its causes [25], which 
allows us to make predictions on the behaviour of CO2 in the future.  
   The need to quantify the carbon dioxide valence, and the exchange rate 
between the oceanic water surface and the atmosphere, has motivated us to 
develop the distributed system, presented here, that incorporates CBR-BDI 
agents capable of estimating such values using accumulated knowledge 
and updated information. The CBR-BDI agents receive data from satel-
lites, oceanographic databases, oceanic and commercial vessels. The CBR 
reasoning system incorporated within the BDI agents allows the agents to 
optimise tasks such as the interpretation of images using various strategies 
[33]. The information received is composed of satellite images of the 
ocean surface, wind direction and strength, and other parameters such as 
water temperature, salinity and fluorescence as can be seen in Figure 2. An 
improvement over the monitoring and forecasting methods presented in [3, 
4, 13] has been incorporated to the modelling CBR-BDI agents presented 
in this paper.  

 

     
Fig. 2. Satellite colour pictures. 

The multiagent system presented is aimed at modelling the flux of CO2 
exchanged between the atmosphere and the ocean surface. The oceans con-
tain approximately 50 times more CO2 in dissolved forms than the atmos-
phere, while the land biosphere including the biota and soil carbon con-
tains about 3 times as much carbon (in CO2 form) as the atmosphere [38]. 
The CO2 concentration in the atmosphere is governed primarily by the ex-
change of CO2 with these two dynamic reservoirs. Since the beginning of 
the industrial era, about 2000 billion tons of carbon have been released into 
the atmosphere as CO2 from various industrial sources including fossil fuel 
combustion and cement production. This amount, which is about 35% of 
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the total amount of carbon in the pre-industrial level, corresponds to ap-
proximately 590 billion tons as carbon. At present, atmospheric CO2 con-
tent is increasing at an annual rate of about 3 billion tons which corre-
sponds to one half of the annual emission rate of approximately 6 billion 
tons from fossil fuel combustion. Whether the missing CO2 is mainly ab-
sorbed by the oceans or by the land and their ecosystems has been debated 
extensively over the past decade.  

It is important, therefore, to fully understand the nature of the physical, 
chemical and biological processes which govern the oceanic sink/source 
conditions for atmospheric CO2 [25, 38]. Satellite-borne instruments pro-
vide high-precision, high-resolution data on atmosphere, ocean boundary 
layer properties and ocean biogeochemical variables, daily, globally, and 
in the long term. All these new sources of information have changed our 
approach to oceanography and the data generated needs to be fully ex-
ploited. Wind stress, wave breaking and the damping of turbulence and 
ripples by surface slicks, all affect the air-sea exchange of CO2. These 
processes are closely linked to the "roughness" of the sea surface, which 
can be measured by satellite radars and microwave radiometers. Sea sur-
face roughness consists of a hierarchy of smaller waves upon larger waves 
(photograph, left, and close-up, below). Different sensors give subtly dif-
ferent measurements of this roughness. 

Our final aim is to model both, the open ocean and shelf seas, and it is 
believed that by assimilating Earth Observation (EO) data into artificial in-
telligence models these problems may be solved.  EO data (both for as-
similation and for validation) are vital for the successful development of 
reliable models that can describe the complex physical and biogeochemical 
interactions involved in marine carbon cycling. Satellite information is vi-
tal for the construction of oceanographic models, and in this case, to pro-
duce estimates of air-sea fluxes of CO2 with much higher spatial and tem-
poral resolution, using artificial intelligence models than can be achieved 
realistically by direct in situ sampling of upper ocean CO2. To handle all 
the potentially useful data to create daily models in a reasonable time and 
with a reasonable cost, it is necessary to use automated distributed systems 
capable of incorporating new knowledge. Our proposal is presented in the 
following section. 

4 Air Sea Interaction Multiagent System 

The option chosen to define an appropriate analysis and design methodol-
ogy for the problem to be resolved is one that combines Gaia [41] and 
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AUML [6, 29, 30], in an attempt to take advantage of both. Through Gaia 
it is possible to make an analysis of the problem using organizational crite-
ria and a later design. After applying Gaia, the result consists of a design at 
the elevated abstraction level. At this point the Gaia design is transformed 
so that AUML techniques can be applied. Figure 3 illustrates the paths fol-
lowed in order to obtain the different models used. It shows how Gaia is 
used initially in order to obtain an analysis and high level design and then 
AUML is used in order to obtain a detailed, low level design.  

 

 
Fig. 3. Methodology Followed 

4.1. Gaia Analysis and Design 

Gaia is a methodology for analysis and design in agent-based systems. It is 
very general and therefore applicable to a very wide range of multiagent 
systems. It also allows the user to have a wide knowledge of the multi-
agent systems both at an organizational (social) level and at a detailed 
level for each agent [41]. Through the Gaia analysis, two models are ob-
tained: the role model and the interaction model. We analyze a problem in 
terms of organization, first by analyzing the different roles that our system 
could play. Studying the requirements of the problem we have come to the 
conclusion that we need six roles: a STORING role, for obtaining data that 
should be permanently available and stored in a database; a PROCESSING 
role, for transforming the images from the satellite into cases; a 
DATACAPTURING role for obtaining the data from the Vessel; a 



A CBP agent for monitoring the carbon dioxide exchange rate from satellite 
images      11 

CONSTRUCTAPARTIALCO2MODEL role, for generating a model; an 
OBTAINCO2EXCHANGE role for calculating the rate of CO2 exchange 
using the data from the model; an AUTOEVALUATION role for assess-
ing the model by contrasting the results offered by the model with the real 
data obtained by the sensors on the boat; and finally, a 
PROCESSINGINFORMATION role for allowing the user to interact with 
the system. For each of these roles, it will be necessary to specify its par-
ticular attributes: responsibilities, permission, activities and protocols [41]. 
As an example, we shall present the STORING role: In Figure 4 we can 
see how the STORING role is responsible for storing the data fed into the 
systems from its surroundings. The data comes from satellites or ships. As 
part of this role, the consulting tasks related to the data stored and the pos-
sible modifications to this data are also carried out. The protocols used are 
those requesting data from Vessel, the sending of data obtained to the da-
tabase Store, informing of the possibility that a new evaluation may be car-
ried out and the request for data processing. The actions that are carried 
out consist of storing the satellite images, storing the images from the Ves-
sel sensors, making changes in the storage parameters or in the database 
data, when necessary. The role must have permission to access the data 
and the Vessel data via satellite. In addition, it must have permission for 
reading and writing over the Store database where the data received is 
stored. Its liveness responsibilities are as follows: STORESAT which con-
tinually stores the data received via satellite. When new data is received, it 
is stored in “raw” format and then a request is made to the PROCESSING 
role to carry out a data processing action. STOREVESSELDATA is re-
sponsible for storing the data that is received from the Vessels. In order for 
the data to arrive, there exist two possibilities, the data is either requested 
from the boat, or the boat sends them under its own initiative. In the first 
case, the sequence is to carry out a data request and store the data. In the 
second case, the sequence is to store the data, and the appropriate role is 
informed of the possibility to carry out an auto-assessment of the current 
model with the new data. CONSULTST carries out consultations concern-
ing the Store database. MODIFYST makes it possible to carry out modifi-
cations both on the parameters of the storage of the BD Store, and on the 
data stored there. Lastly, the safety responsibilities that the STORING role 
has are those which can establish a valid connection either with the satel-
lite and the Vessel, or with the database.  
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Fig. 4. Gaia role model for the STORING role. 

Once the role model has been obtained, the Gaia analysis is completed 
with the Interaction model. The interaction model shows us the depend-
ences and relationships between the roles. For each interaction between 
two roles there is a protocol. For our MAS, we have decided to use the fol-
lowing interaction protocols: ObtainVesselData is formed by protocols be-
tween the STORING role and the DATACAPTURING role, whereby the 
first protocol requests the data in situ from the Vessel (for a specific date) 
and the second protocol ensures that it is given. ObtainConstructData is an 
interaction through which the CPCM 
(CONSTRUCTAPARTIALCO2MODEL) role wishes to construct a new 
model and in order to do so, requests new cases from the PROCESSING 
role. The PROCESSING role responds with the requested information. 
ObtainInsituData allows the AE (AUTOEVALUATION) role to obtain 
current data in situ aboard the Vessel. To do this, it is necessary to make a 
request to the STORING role to carry out a consultation of the Store data-
base. In case the data requested is not available, a request will be made to 
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the DATACAPTURING role to obtain it. ObtainStExchange is used by the 
PI (PROCESSINGINFORMATION) role to obtain the rate of exchange of 
CO2 that is produced when applying the current model. OCE 
(OBTAINCO2EXCHANGE) consults the model database and calculates 
the exchange. ObtainNewModelSuper allows the PI role to request the 
creation of a new model. In order to do this, it makes a request from 
CPCM, which will in turn have to consult if there are new cases available 
within the case database. ObtainNewModelAuto allows the AE role to re-
quest the creation of a new model in case the current one is considered in-
adequate. ObtainNewModelStoring is the protocol that is executed when 
the PROCESSING role informs the CPCM role that new images have ar-
rived from the satellite and have been transformed. With the new data, a 
new model can be created. ObtainStModel enables the PI role to consult 
the information associated with a certain model. ObtainStore allows the PI 
role to consult the data stored in the Store database. In order to do this, it 
makes a request to the STORING role. ObtainVessel allows the PI role to 
consult the data stored in the EPROM of the Vessel. In order to do this it 
makes a request to DATACAPTURING role. ObtainEvaluationSuper is 
the protocol with which PI requests an evaluation of a model. To do this, it 
makes a request to the AE role. The AE role needs to know the current 
data in situ in order to make the evaluation. ObtainEvalautionDC enables 
the DATACAPTURING role to inform the AE role that the Vessel has 
carried out a new data collection. This implies that AE is able to carry out 
an evaluation of the current model. If the evaluation is not satisfactory, a 
request is made to generate a new model. The DATACAPTURING role 
does not have any direct communication with the AE role so it must make 
the request to the STORING role, which acts as an intermediary. Acti-
vate/Deactivate Sensors allow the PI role to activate or deactivate the Ves-
sel sensors. In order to do this, it is necessary for it to communicate with 
the DATACAPTURING role. Delete EPROM allows the PI role to delete 
all the data from the Vessel’s EPROM. ChangeStore enables the PI role to 
modify the storage parameters of the Store data. It communicates with the 
STORING role that carries out the modifications. ChangeCase allows the 
PI role to modify the storage parameters of the case memory store. To do 
this it needs to communicate with the PROCESSING role.  

Figure 5 illustrates the interaction ObtainVesselData. It shows that the 
interaction uses two different protocols. In each protocol, a textual descrip-
tion indicates the type of interaction (RequestInsituData and SendInsitu-
Data), the role that initiates the interaction (STORING in the first one, and 
DATACAPTURING in the second one), and the role to which it is di-
rected (DATACAPTURING in the first one and STORING in the second 
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one), and a description of the process that is carried out during the interac-
tion. Moreover, the entry information given by the role that initiates the in-
teraction (InsituDataFromAGivenDate in the second protocol) and the exit 
information given by the role to which the interaction is directed (Ves-
selInsituData in the second protocol) is also shown.  

 

 

Fig. 5. Protocols for the ObtainVesselData interaction. 

Once the analysis has been finalised, the Gaia design is carried out. Tra-
ditional techniques of software engineering are not followed in terms of 
detailing the analysis to the extent that a direct implementation can be 
made. Instead, the level of abstraction is reduced so that traditional tech-
niques can be applied. In the design process three models are considered: 
agent model, services model and acquaintance model [41]. The agent 
model shows the types of agents that are going to appear in the system, as 
well as the number of instances for each agent type that can be executed 
within the execution time.  

Using the role models as a base, we have decided to use five types of 
agents: Store, Vessel, Modelling, User and SuperUser. As Figure 6 illus-
trates, each agent is responsible for carrying out some particular roles. For 
example, Store agent is responsible for carrying out STORING and 
PROCESSING roles, and within the execution time it will be necessary to 
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have at least one instance of STORING role and one instance of 
PROCESSING role.  

 

 

Fig. 6. Gaia Agents Model for our MAS 

The services model identifies the services associated with each role, be-
ing a service a function that the agent needs to develop. In object oriented 
methodologies, the service coincides with the method, but the difference 
here is that they won’t be available for other agents in the way methods 
were for other objects. A service will serve as a block of simple, individual 
and coherent activities that create an agent. Each Gaia activity corresponds 
to a service, in other words, it will be developed into a service but not all 
services need to correspond necessarily to an activity. 

 

 
Fig. 7. Gaia acquaintance model for our MAS. 
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Lastly, the acquaintance model defines the communication links that ex-
ist between the different types of agents. As can be seen in Figure 7, the 
messages – or formats – aren’t defined, even when they are sent, but are 
only responsible for indicating the communication paths. At this point, it 
may be of interest to introduce a diagram that shows the architecture of our 
system, indicating the number of agents, the relationships between them 
and their surroundings. The aim of this project is to construct a multiagent 
system composed of various subsystems. Each one of these subsystems 
will be responsible for modeling the CO2 exchange in an area of the ocean 
with particular characteristics. There will be communication between the 
subsystems, with an exchange of information to help construct and im-
prove local models.  

 

 
Fig. 8. Diagram of the architecture of our MAS. 

Figure 8 illustrates a subsystem in which is it possible to observe how a 
Modelling agent is responsible for the creation and evaluation of models in 
terms of the data received from the Store, Vessel and User agents. This 
model allows us to monitor and predict the CO2 exchange between the 
ocean surface and the atmosphere. The Store agent processes the images 
from the satellite and transforms them for use by the system. Each Vessel 
agent is installed in a ship and collects information in-situ that allows us to 
evaluate the models created by the Modelling agent. The User agent can 
interact with any of the other agents. Figure 8 shows how the agents inter-
act with each other and with their surroundings. From the oceanographic 
point of view, in order to resolve the problem that confronts us, the ocean 
has been divided into a series of zones. In each of these zones there will be 
a Modelling Agent, a StoreAgent, and various Vessel Agents.  
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4.2. Detailed AUML Design 

As well as presenting the proposal for the AUML design established for 
the problem, it is necessary to establish a relationship between the Gaia 
methodology used during the analysis and the AUML methodology. More-
over, its use needs to be justified. In contrast to Gaia, AUML works at a 
highly detailed level, perhaps too high in its initial stages for large scale 
problems, as it is our case. We propose to use the low level analysis made 
by Gaia and develop a design with AUML, at a low level, but with suffi-
cient detail to proceed with the implementation.  

There are three concepts that diverge slightly between the meaning from 
the Gaia methodology and the AUML methodology. Firstly, in AUML a 
role is considered the result of social restrictions and individual behaviours 
and refers to the organisation. Specifically, it makes reference to the be-
haviour of an agent within a society. One agent can play many roles in a 
MAS and may change role during its execution. Secondly, a service is de-
fined within AUML as the activity which an agent can develop and dis-
tribute among other agents. Lastly, a capability describes what the agent is 
capable of doing under certain particular conditions. Due to the existing 
differences in the definition that GAIA and AUML provide of roles, ser-
vices and capacities, it is necessary to adapt the GAIA design to the 
AUML standard. As far as the roles are concerned, we have divided those 
of Gaia into more specific AUML roles. The services of Gaia are divided 
into AUML services and capabilities, and, given that the level of detail is 
greater, it is possible that it will be necessary to consider some new service 
or capability, or divide and specialise some of the Gaia services. Another 
important change refers to the models of interaction. In Gaia the interac-
tions were specified through the Acquaintance model of services [41]. 
Now they will be used to obtain sequence and collaboration diagrams 
which will be much more detailed and in which there appear messages ex-
changed between agents (interpreting a particular role), and the order in 
which these exchanges of messages are produced.  

In order to model the system’s behaviour even more, state and activity 
diagrams will be used. These diagrams are not clearly defined in AUML, 
and therefore we will have to make an adaptation from UML diagram 
types, so that they can represent the state through which our agents can 
pass and the dynamic of the activities that are produced within our system. 
After carrying out the appropriate changes, we begin the design of the 
AUML by obtaining the class diagrams. The specifications that will be fol-
lowed are those of the FIPA for the modelling of class diagrams for agents 
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using AUML [6]. We obtain a class diagram for one of the most prominent 
agents, the Modelling agent, the CBR-BDI agent. 

 

 

Fig. 9. Class diagram for the Modelling agent. 

Figure 9 shows the class diagram for the Modelling agent. The Model-
ling agent develops six capabilities and offers four services to other agents. 
The Jacobean Sensitivity Matrix (JSM) capability offers a mechanism to 
retrieve the beliefs that can be used to solve a given problem in a given 
situation. These beliefs are given in the form of problem descriptions. 
Pondered Weigh Technique (PWT) is the capability of the Modelling 
agent through which it can calculate the most suitable solution for a given 
problem. The solution is calculated taking into consideration the beliefs re-
trieved by the JSM capability. The Revision Simulated Equation (RSM) 
capability enables the agent to compare the model obtained in the PWT 
capability with other oceanographic models and in-situ data supplied from 
vessels. Calculate Exchange is the capability that allows it to calculate the 
rate of exchange of CO2 that a specific ocean zone produces at a given 
time using that particular model. Evaluate Model allows the agent to 
evaluate the goodness of a model, in other words, it can measure the effi-
ciency of a model by comparing the results that have been given with the 
results from the Vessel’s sensors. Consult Model allows it to carry out 
consultations of the model database. As far as the services offered by the 
agent are concerned, we have: Obtain Exchange through which an agent 
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can request a calculation of the rate of exchange of CO2 that is produced in 
a given ocean zone at a given date, by using the specific model indicated. 
Obtain Model allows an agent to request the Modelling agent for data from 
a model that was being used at a given date. Construct Model offers the 
possibility to attend to construction requests from the models. Lastly, Ob-
tain Evaluation offers any agent the possibility to request an evaluation for 
a particular model in a particular ocean zone at a given date based on the 
real data obtained from the Vessel sensors.  

The AUML design is completed by offering interaction diagrams which 
show the interaction between the MAS agents as well as the different roles 
that can be taken up by the different agents and the interactions between 
these roles. It is habitual to use a collaboration diagram, although a se-
quence diagram, which would be equivalent to the collaboration diagram, 
can also be used, [29]. We can differentiate ten different interactions.  

 

 

Fig. 10. Collaboration diagram corresponding to the interactions that occurs be-
cause of the arrival of a new satellite image to the Store agent. 

Figure 10 shows the interactions between the Modelling and Store 
Agents when a new problem descriptor or case is stored. When new satel-
lite data is received, the Store Sat Data role of the Store Agent is in 
charged of storing the data in the right format with the help of the Trans-
form Im-Cases role. The image is digitally processed in order to obtain the 
corresponding problem description data. Finally, the Store Agent moves 
into the Store Cases role to store the new problem description data. The 
Store agent establishes a communication process with the Modelling Agent 
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and transfers the new problem description information. The Modelling 
Agent processes the new problem description, and may, creates a new 
model. The Modelling agent executes the JSM role, in which the agent 
consults the beliefs base in order to obtain the most similar beliefs (prob-
lem descriptions) to the initial problem sent by the Store Agent. Once the 
Modelling Agent has retrieved the beliefs, it changes to execute the PWT 
role. Now, the agent calculates the most suitable solution for the initial 
problem case provided by the Store Agent. The most suitable solution is 
calculated using the cases retrieved by the JSM role as it is shown in 4.3. A 
model is created using the most suitable solution, and the RSE role is exe-
cuted, which is in charge of the revision of the model. Finally, the RSE 
role transmits the result of the revision by changing back to the role JSM. 
Now the Modelling Agent (with the JSM role) retains the problem descrip-
tion and the knowledge obtained after all this process. A new model may 
have been created or modified. 

 

 

Fig. 11. State Diagram for the Store agent. 

To finish the AUML design, state and activity diagrams are created to 
model the behaviour of the agents. We use UML state diagrams [32], 
which we have designed for the Store and Modelling agents. Figure 11 
shows the state diagram for the Store agent. We believe that the Store 
agent can be found in three possible states: a state in which the agent is 
awaiting requests; a state in which the agent is modifying stored data; and 
thirdly, a state in which the agent carries out operations to store data. Some 
of these operations include obtaining particular parameters that character-
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ize an image. An additional state allows it to be ready to receive new re-
quests when it has no tasks to be carried out. Finally, to finish with the 
AUML design, in terms of the activity diagrams, we focus on the activities 
that will be developed within the CBR cycle.  

Figure 1 illustrates the activities that come into play when a user makes 
a petition to create a model. Once the design is complete, we go on to the 
implementation, using the Jadex tool, a tool that incorporates the BDI 
model within Jade agents and tool. With Jadex, the Modelling agents are 
built while the rest of the agents will be Jade. The communication mecha-
nisms are the same as in Jade (ACL is used) [7, 35]. The use of Jadex 
means that it is necessary to use OKL consulting language. 

4.3. The CBR-BDI Modelling Agent 

Once the architecture proposed has been studied, it would seem a good 
idea to deepen the Modelling agents – in the form of a deliberative agent 
that uses a CBR reasoning mechanism –. This agent will have two princi-
pal functions. The first one is to generate models which are capable of pre-
dicting the atmospheric/oceanic interaction in a particular area of the ocean 
in advance. The second one is to permit the use of such models. In Figure 
11, we can see that a Modelling agent possesses two principal states: one 
to generate the forecasting models and the other to permit the use of the 
models. Moreover, Figure 1 shows one of the activities carried out by the 
Modelling agent. We can see how the reasoning cycle of a CBR system is 
included among the activities, composed of stages of retrieval, reuse, re-
vise and retain. Also, an additional stage that introduces expert’s knowl-
edge is used. This reasoning cycle must correspond to the sequential exe-
cution of some of the agent roles.  

The Modelling agent presents a deliberative architecture, based on the 
BDI (Belief, Desire, Intention) model [10]. In this model, the internal 
structure and capabilities of the agents are based on mental aptitudes, using 
beliefs, desires, and intentions. This method facilitates the incorporation of 
CBR systems [1] as a deliberative mechanism within BDI agents, facilitat-
ing learning and adaptation and providing a greater degree of autonomy 
than pure BDI architecture. To introduce a CBR motor into a BDI agent it 
is necessary to represent the cases used in a CBR system by means of be-
liefs, desires and intentions, and implement a CBR cycle. A case is a past 
experience composed of three elements: an initial state or problem descrip-
tion that is represented as a belief; a final state that is represented as a set 
of goals; and the sequence of actions that makes it possible to evolve from 
an initial state to a final state. This sequence of actions is represented as in-
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tentions or plans. CBR consists of four sequential stages: retrieve stage to 
recover the most similar past experiences to the current one; reuse stage to 
combine the retrieved solutions in order to obtain a new optimal solution; 
revise stage to evaluate the obtained solution; and retain stage to learn 
from the new experience.  

 

 
Fig. 12. CBR-BDI internal structure 

Figure 12 shows the internal structure of a CPR-BDI agent. Problem de-
scription (initial state) and solution (situation when final state is achieved) 
are represented as beliefs, the final state as a goal (or set of goals), and the 
sequences of actions as plans. The CBR cycle is implemented through 
goals and plans. When the goal corresponding to one of the stages is trig-
gered, different plans (algorithms) can be executed concurrently to achieve 
the goal. Each plan can trigger new sub-goals and, consequently, cause the 
execution of new plans. 
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Deliberative CBR-BDI agents, like Modelling agent, are able to incor-
porate other reasoning mechanisms that can coexist together with the CBR. 
Modelling is an autonomous agent that can survive in dynamic environ-
ment. However, is possible to incorporate communication mechanisms that 
allow it to be easily integrated into a multi-agent system and work coordi-
nately with other agents to solve problems in a distributed way.  

The CBR motor is divided into four sequential stages and different algo-
rithms can be used in each one. The reasoning structure is presented in de-
tail in the next paragraphs.  

The roles of the Modelling agent are shown in Figure 9. The agent car-
ries out roles to generate models such as Jacobean Sensitivity Matrix 
(JSM), Pondered Weigh Technique (PWT), Revision Simulated Equation 
(RSE), and other roles that allow it to operate with the models calculated, 
like Forecast Exchange Rate, Evaluate Model or Consult model. The roles 
used to carry out the stages of the CBR cycle are now described. Jacobean 
Sensitivity Matrix (JSM): This role is in charge of carrying out the re-
trieval stage. In order to do this it needs to use a method that guarantees 
the recuperation of cases whose characteristics are similar to the current 
problem. The Jacobean Sensitivity Matrix (JSM) is used in this case for 
data clustering and retrieval [27]. The Jacobean Sensitivity Matrix method 
is a novel approach for feature selection. It can be used to visualize and ex-
tract information from complex, and highly dynamic data. The model is 
based on the principal component analysis and is used to identify which 
input variables have more influence in the output of the neural network 
used to perform the principal component analysis. The neural network 
identifies the beliefs stored by the agent that can be more useful to solve a 
given problem.  The mathematical model is now outlined.  

If  JSM is a matrix NxM where 
N: is the number of input of the neural network. 
M: is the number of output of the neural network. 
And if the element  in the matrix represents the sensitivity (influ-

ence) of the output k over the input I, then 
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 where 
jiw : is the weight of the connection between the input neuron i and the 

hidden neuron j. 
kjw : is the weight of the connection between the hidden neuron j and 

the output neuron k. 
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ky : is the Output obtained for neuron k of the output layer. 
Then 

ky = f ( ) k knet (2) 

 
where  

jy : is the Output obtained for neuron j of the hidden layer. 
Then 

jy = f ( ) j jnet (3) 

 
where 

ix : is the Input for neuron i. 

hf : is the activation function in neuron h. 
then  
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where  
H: is the number of neurons in the hidden layer. 

jθ : is the value of  threshold of neuron j of the hidden layer. 

kθ : is the value of  threshold of neuron k of the output layer. 
 
Pondered Weigh Technique (PWT): The reuse is carried out using the 

cases selected during the retrieval stage. The cases are pondered [15] and 
the bigger weight is given to the one that more resembles the current prob-
lem in the following way: 
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where: 

*p : is the solution prediction. 
Z: is  the number of retained cases from the base of beliefs. 
a:  is  the measure of minimum similarity between the retained cases 

from the base of beliefs and the current case. 
rp :  is the retained prediction r-th from the base of beliefs. 

r: is the measure of similarity between the retained cases r-th from the 
base of beliefs and the current case. 

 
Revision Simulated Equation (RSE): During the revision stage an equa-

tion (F) is used to validate the proposed solution . *p

)( 22 AIRpCOSWpCOksoF −=  (7)

 
where: 
F: is the flux of . 2CO
k: is the gas transfer velocity. 
Then 
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where 
Lat: is  the Latitude. 
Long: is  the Longitude. 
so:  is  the Solubility. 
then it is verified that: 
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tk = 273,15 + t (10) 

where: 
t: is  the Temperature. 
s: is  the Salinity. 

EYearDSSTCLatBLongApCO ++++=2  (11)

 



26      Juan M. Corchado, Jim Aiken, Javier Bajo 

Where SST is the temperature of the marine surface or air as it corre-
sponds to  or . The coefficients of the equation de-
pend on the month, as shown it Table 1. 

SWpCO2 AIRpCO2

 

Table 1. Months\Coefficients values. 

 
Months\Coefficients A B C D E 
Feb -2488 -0,42 4,98 -12,23 1,38 
May -7642 -0,9 -1,74 -20,77 4,14 
Jun -4873 -0,85 1,3 -15,64 2,66 
Jul -7013 -0,025 3,66 -7,07 3,64 
Aug -3160 -0,69 0,84 -11,31 1,8 
Sep -1297 0,43 -4,19 -17,06 1,05 
Oct 83 -0,81 4,81 -10,92 0,076 
Nov 747 0,2 -0,73 -17,3 -0,062 
Dec -4306 0,38 -0,22 -17,13 2,45 

 
During the revision, the agent compares the obtained F value with the 

predicted one, and if the prediction differs in less than 10%, the case is 
stored on the base of beliefs. As it has been shown the CBR-BDI, agents 
use a CBR system, at a low level of implementation, which is the reason 
for using cases. One case for the CBR consists of a problem (initial situa-
tion and a number of goals) and the plans to resolve it. For oce-
anic/atmospheric interaction, we define the problem in terms of the attrib-
utes shown in Table 2:  

Table 2. Case Attributes. 

 
Case Field Measurement 
DATE Date (dd/mm/yyyy) 
LAT Latitude (decimal degrees) 
LONG Longitude (decimal degrees) 
SST Temperature (ºC) 
S Salinity (unitless) 
WS Wind strength (m/s) 
WD Wind direction (unitless) 
Fluo_calibrated Fluorescence calibrated with chlorophyll 
SW pCO2 Surface partial pressure of CO2 (micro Atmospheres) 
Air pCO2 Air partial pressure of CO2 (micro Atmospheres) 
Flux of CO2 CO2 exchange flux (Moles/m2) 
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Table 2 shows the description of a case: DATE, LAT, LONG, SST, S, 

WS, WD, Fluo_calibrated, SW pCO2 and Air pCO2. Flux of CO2 is the 
value to be identified.  

    As mentioned in section 2 there is a correspondence between cases 
and BDI agents. To use a deliberative BDI model that utilises a CBR 
mechanism, it is necessary to transform the case representation by the 
CBR system into a BDI formalisms. The BDI model deals with: 

- Beliefs, that represent the state of the problem, with certain 
knowledge about the surroundings and the agent itself. In our 
problem we shall use as belief the attributes DATE, LAT, LONG, 
SST, S, WS, WD, Fluo_calibrated, SW pCO2 and Air pCO2. A be-
liefs base will be used in which each belief is a ProblemDescrip-
tion type and contains all the attributes mentioned in Table 2.  

- Desires, that represent those final states to which the agent wishes 
to arrive or reach. In this case, it deals with three goals: 

o Predict the flux of CO2 exchanged between the sea surface 
and the atmosphere, using a window of two or three 
weeks. 

o Calculate the best parameters to use in order to improve 
the prediction for different window sizes.  

o Calculate the most suitable prediction window in relation 
to a maximum % error allowed. 

An agent stores all the goals in a similar way to the beliefs.  
- Intention, that represents the sequence of actions that should be 

followed in order to reach the final state or goal. This new attribute 
is introduced into the case description. The sequence of actions to 
be carried out is generally formed by the stages of the reasoning 
cycle and the different algorithms executed in each one of those 
stages. In general an agent will have available various pre-defined 
plans or intentions that could be called up and modified at the exe-
cution time. The selection of plans is made through the agent 
CBR-BDI, JSM, PSW and RSE mechanisms.  

 
The tools offered by the jadex platform [35] have been used for the stor-

ing and use of beliefs, desires and intentions or plans. In this way, we have 
been able to construct a deliberative BDI agent capable of reasoning 
through the use of a CBR mechanism. The agent manages cases and car-
ries out CBR cycles. 
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4.4. Communication agents 

To complete the proposal for the MultiAgent System, we outline the types 
of communication that the system agents employ. The Jadex tool has been 
used to carry out the implementation of the system. This tool is an exten-
sion of Jade and, among other features, which uses a standard for commu-
nications in accordance with the Foundation for Intelligent Physical 
Agents [19]. In this way, both ontologies and languages used are those 
proposed by the FIPA. Jade uses the Agent Communication Language 
(ACL) defined by the FIPA. The agents send and receive java objects that 
represent ACL messages in accordance with a series of protocols. The ma-
jority of protocols appear in the libraries offered by Jade [7]. Furthermore, 
the FIPA-SL contents language is used.  

The messages used have a syntax whereby the agent is instructed to 
send the message to the receiver of that message. It also indicates the con-
tent of the message, information to identify the message, name of the lan-
guage in which the content of the message is written and the ontologies 
that define the meaning of the vocabulary used. Figure 13 shows an exam-
ple of a message used by the Modelling agent to request the Storing agent 
for information on the cases stored in the case base. The language of con-
tents used is FIPA Semantic Language (SL). The ontology defines the vo-
cabulary that is used within the message and the content makes reference 
to the request for a search to be carried out of the cases and the specific pa-
rameters of the search. 

 

 

Fig. 13. Example of the message used in the MAS. The User agent makes a re-
quest to the Modelling agent asking about the models generated for the maximum 
and minimum longitude and latitude coordinates the 27th November 2005. 



A CBP agent for monitoring the carbon dioxide exchange rate from satellite 
images      29 

The types of messages used in the MAS proposed in this work: request, 
agree, refuse, cancel, inform, query-if, subscribe, propose, reject-proposal, 
accept-proposal, failure and not-understood. As far as the protocols are 
concerned, the three used are defined by the FIPA: FIPA-request protocol, 
FIPA-query protocol y FIPA-ContractNet protocol [19]. 

5  Results and conclusions 

The application of Artificial Intelligence techniques [1] is extremely useful 
in a field like oceanography and specifically in the study of the CO2 ex-
change between the ocean surface and the atmosphere. The intelligent en-
vironment that has been developed allows oceanographers to maintain a 
seamless, unobtrusive, and often invisible but also controllable interaction 
with the available technology. The use of agents and multiagent systems as 
the fundamental base for creating an intelligent environment is highly 
suited because of the characteristics of the agents themselves. Their mobil-
ity, proactivity, autonomy, social capabilities, reasoning and capacity for 
learning all makes the multiagent system and transparent intermediate 
layer between the user of the system and the underlying technology. A user 
can access the system rapidly and efficiently using their personal agent. 
This agent is able to sit within a “light” device and can communicate 
through wireless technology with the other agents of the system. This al-
lows oceanographers to be independent and unbound by location. Figure 
14 shows the interface of a User agent accessed via a PDA. It is possible to 
see how the user can access the Modelling, Store or Vessel agent. The ap-
propriate Store or Vessel can be selected through a simple interface that 
only presents the necessary information and avoids showing too many 
elements on the screen. The oceanographers themselves can decide that 
amount of elements that they wish to see.  Figure 14 b) presents the op-
tions that can be executed by the Modelling agent: To request the creation 
of a new model, for which it will be necessary to enter the appropriate pa-
rameters; predict the level of exchange in a particular zone of the ocean; 
make an inquiry about the models stored; evaluate a model by entering real 
data or saving the corresponding data to the models that are being cur-
rently used.   

The User agent offers similar menus to allow the user to interact with 
the Vessel and Store agents. Figure 14 c) shows the parameters that an 
oceanographer needs to enter when he wishes to make and inquiry the 
cases stored by the Store agent for the zone of the Atlantic Ocean situated 
between 10º and 100º latitude and 10º and 100º longitude on the 
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11/03/2006. After the inquiry is made, the cases are shown to the user in a 
table as can be seen in Figure 14 d). The user can select each one of the 
these cases and modify the parameters.  

However, the agents do not represent a mere software that interacts be-
tween the user and the technology, but also has the capacity to make deci-
sions and act for themselves in a distributed way, in order to respond and 
adapt to the changes that are produced within the environment and within 
its own internal knowledge structure. In this paper we have described the 
construction of a multiagent system whose main component is the Model-
ling agent, a deliberative agent based on the BDI model [10] that uses 
case-based reasoning [1] as its reasoning mechanism. As can be seen in 
Figure 15, the Modelling agent handles beliefs, desires and intention from 
a conceptual point of view and cases from an implementation point of 
view. A case (a file in Figure 15) is composed of the attributes described in 
Table 2. Cases can be viewed, modified and deleted manually or automati-
cally by the agent (during its revision stage). The agent plans (intentions) 
can be generated using different strategies since the agent integrates differ-
ent algorithms.  

 

(a) 
 

(b) 
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(c) 
 

(d) 

Fig. 14. User agent screen shot. a) Menu accessing subsystem agents. b) User op-
tions for interacting with the Modelling agent from a light device.. c) Inquiry 
about cases from a Store agent. d) Result obtained from the inquiry made in c).  

 
Figure 15 shows the North Atlantic exchange rate calculating by the 

Modelling agent, during the 11th of March of 2006. The screen shot also 
presents the algorithms used in the different stages of the CBR cycle. The 
menus on the left facilitate the interaction or interrogation with the agent in 
order to evaluate models, predict exchange rates, consult data, change data 
create a new model or save the current model data. Figure 15 presents a 
view of the Modelling Agent. These agents have their own interface and 
can also be accessed via the User or Super user agents.  
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Fig. 15. Modelling Agent User Interface. 

The Modelling agent is fully integrated within the multiagent system. 
As can be observed in Figure 16, the Modelling agent creates new goals 
based on the changes in its internal state or in response to messages re-
ceived from other agents within the system. Figure 16 is a screen shot of 
the Jadex Tracer agent [35] in which the behaviour of the Modelling agent 
is represented. In it we can observe the goals generated by the Modelling 
agent, the plans that are put into operation, and the messages that it re-
ceives. For example, for a REQUEST message inquiring about a model re-
ceived from the Gui agent, the Modelling agent executes the update_plan 
model, from which a consult_model goal is created, that subsequently 
launches the plan ConsultModelPlan. As can be seen, the agent is capable 
of handling various goals and plans at the same time.    

 



A CBP agent for monitoring the carbon dioxide exchange rate from satellite 
images      33 

 
Fig. 16. Behaviour of the Modelling agent observed through a Jadex Tracer agent. 

Table 3. Mmoll*m-2d-1 of C02 exchanged in the North Atlantic during 2005 and 
2006. 

Method Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. 
PWT -2.119 -2.230 -1.885 -1.622 -1.164 0.495 2.435 2.235 
CoHel IBR -2.325 -2.126 -1.926 -1.625 -1.210 0.845 2.634 2.325 
VCBP -2.453 -2.965 -2.036 -1.155 0.965 -0.235 2.555 2.725 
Casix manual 
models 

-4.317 -1.875 -1.655 -1.233 0.205 2.035 3.978 1.955 

 
The previously described system was tested in the North Atlantic Ocean 

during the last few months. During this period of time, the multiagent sys-
tem has been tuned and updated, and the first autonomous prototype 
started to work in august 2004. Although the system is not fully opera-
tional and the aim of the project is to construct a research prototype and 
not a commercial tool, the initial results have been very successful from 
the technical and scientific point of view. The interaction between the sys-
tem developers and oceanographers with the multiagent system has been 
continuous during the construction and pruning period, from December 
2003 to Feb 2005. The system has been tested from September 2005 to 
March 2006 and the results have been very accurate. Table 3 presents the 
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results obtained with the Multiagent systems proposed in this work, previ-
ous multiagent systems developed [3, 4, 13], and with mathematical Mod-
els [25] used by oceanographers to identify the amount of CO2 exchanged. 
As can be observed in Table 3, the models proposed for the multiagent 
system offer results that are very close to real values obtained by oceanog-
raphers, while the response time is significantly reduced. The mathemati-
cal model proposed in this paper offers far greater precision than models 
based on the varaitional calculus [4, 12, 14] and Hebbian learning [3, 13, 
20] previously proposed. The error committed by to previous models has 
been reduced although it should be said that the differences are not highly 
significant. An analysis of the principal components allows us to optimise 
the recovery stage of the CBR cycle.   

The models have constructed cases based on real data obtained in the 
Azores zone of the Atlantic Ocean (± 37N, 25W). Under these conditions 
the models proposed for the multiagent system have been increasingly ac-
curate. The accuracy of the results increases as the number of cases in-
crease. However, if the number of cases managed is very high, the effi-
ciency of the system falls. Figure 17 shows a comparative sample between 
real data and the predictions made by the SMA working on data related to 
the months 2005-2006.  
 

 
Fig. 17. CO2 real flux and flux prediction. 

The construction of the distributed system has been relatively easy using 
previously developed CBR-BDI libraries [3, 4, 11, 12, 13, 14]. From the 
software engineering point of view AUML [6, 29, 30] and Gaia [41] pro-
vide an adequate framework for the analysis and design of distributed 
agent based systems. The formalism defined in [21]facilitates the straight 
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mapping between the agent definition and the CBR construction. Although 
the proposed system requires further improvements and more work, the 
initial results are very promising. The generated open framework facili-
tates the incorporation of new agents using different modelling techniques 
and learning strategies so further experiments will allow us to compare 
these initial results with the ones obtained by other techniques.  
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