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Abstract 
An instance-based problem solving model is presented in which the aim is to forecast, in real time, the 
physical parameter values of a complex and dynamic environment: the ocean. In situations in which the rules 
that determine a system are unknown the prediction of the parameter values that determine the characteristic 
behaviour of the system can be a problematic task. In such a situation it has been found that an instance-
based reasoning system can provide a more effective means of performing such predictions than other 
connectionist or symbolic techniques. The instance-based reasoning system incorporates a radial basis 
function artificial neural network for the instance adaptation. The results obtained from experiments, in 
which the system operated in real time in the oceanographic environment, are presented. 
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1. Introduction  

Forecasting the behaviour of a dynamic system is, in 
general, a difficult task, especially if the prediction 
needs to be achieved in real time. In such a situation 
one strategy is to create an adaptive system which 
possesses the flexibility to behave in different ways 
depending on the state of the environment. This paper 
presents the application of a novel artificial intelligence 
(AI) model to a real time forecasting problem. The 
approach, which is discussed, is capable of producing 
satisfactory results in situations in which neither 
artificial neural network nor statistical models have 
been sufficiently successful. 
 
The oceans of the world form a highly dynamic system 
for which it is difficult to create mathematical models 
(Tomczak et al., 1994). Although some statistical 
models have been formulated to describe partial 
oceanographic water masses, there are, as yet, no 
accurate general models. It is well known that the 
behaviour and characteristics of the oceans change 
seasonally and spatially. However, current knowledge 
of the ocean structure is still too weak to create a 
comprehensive model. Ocean water masses are 
extremely heterogeneous; each water mass has certain 
properties that differentiate it from other water masses.  
 
An artificial intelligence approach to the problem of 
forecasting in the ocean environment offers potential 
advantages over alternative approaches, because it is 
able to deal with uncertain, incomplete and even 
inconsistent data (Lees  et al., 1992). Several types of 
standard artificial neural network (ANN) have been 

used to forecast time series (Corchado et al., 1997a, 
1997b, 1998, 1999), in these experiments it has been 
discovered that it is very difficult to train a neural 
network to forecast successfully over the whole time 
series, especially if the data relate to a dynamic system. 
Statistical models such as Auto-Regressive Integrated 
Moving Averages (ARIMA) have been applied, but 
the results so far obtained have indicated that neural 
networks (although they are not enough accurate) 
have a greater facility for forecasting, using this type 
of time series data, than statistical models. 
 
Following earlier experiments using case-based 
reasoning (CBR) as a problem solving strategy in other 
domains (Lees, 1997; Adams et al., 1997), an instance-
based approach to the forecasting problem was 
considered worthy of investigation. Consequently a 
prototype system based on this approach was 
developed in the belief that an instance-based 
reasoning (IBR) mechanism might, as a data mining 
strategy, make better use of the vast database of 
oceanographic data held at the Plymouth Marine 
Laboratory (PML). The results of subsequent 
experiments employing an IBR approach indicated that 
instance or case-based reasoning methods could 
facilitate the organisation of data, the recovery of 
relevant data necessary to make an accurate forecast 
and incremental system learning. The adaptation of the 
recovered data is a crucial factor in obtaining an 
accurate result. With the aim of providing a more 
effective instance or case adaptation procedure it was 
decided to investigate a hybrid systems approach in 
which a neural network would be employed as a means 
of instance adaptation. As a result, a Radial Basis 
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Function (RBF) network has been found to be 
effective in the instance/case adaptation stage of the 
IBR system. 
 
An important aim in the current work is to develop a 
universal forecasting mechanism, in the sense that it 
might operate effectively anywhere, at any point on 
the surface of the ocean, and at any time of the year 
without human intervention. The results obtained to 
date suggest that the approach to be described in this 
paper appears to fulfil this aim. The structure of the 
paper is as follows. First a brief overview of the basic 
concepts of case-based reasoning is given. Then the 
oceanographic problem domain is briefly outlined. The 
hybrid neural network enhanced IBR system is then 
explained, and, finally, an outline of some of the results 
obtained to date is presented. 
 
2. CBR Systems Overview 

Although knowledge-based systems (KBS) represent 
one of the commercial successes of the outcome of 
artificial intelligence research, developers of these 
systems have encountered several problems (Watson 
et al., 1994). Knowledge elicitation, a necessary 
process in the development of rule-based systems, can 
be problematic. The implementation of a KBS can also 
be comp lex, and, once implemented, may also be 
difficult to maintain. With the aim of overcoming these 
problems Schank (1982) proposed a revolutionary 
approach, case-based reasoning, which is in fact a 
model of human reasoning (Joh, 1997). The idea 
underlying CBR is that people frequently rely on 
previous problem-solving experiences when solving 
new problems. This assertion may be verified in many 
day to day problem solving situations by simple 
observation or by psychological experimentation 
(Klein et al., 1988). Since the ideas underlying case-
based reasoning were first proposed, CBR systems 
have been found to be successful in a wide range of 
application areas (Kolodner, 1993).  
 
A case-based reasoning system solves new problems 
by adapting solutions that were used to solve 
previous problems (Riesbeck et al., 1989). The case 
base holds a number of cases, each of which 
represents a problem together with its corresponding 
solution. Once a new problem arises, a possible 
solution to it is obtained by retrieving similar cases 
from the case base and studying their recorded 
solutions. A CBR system is dynamic in the sense that, 
in operation, cases representing new problems 
together with their solutions are added to the case 
base, redundant cases are eliminated and others are 
created by combining existing cases. 
 
A CBR system analyses a new problem situation, and 
by means of indexing algorithms, retrieves previously 
stored cases, together with their solution, by matching 

them against the new problem situation, then adapts 
them to provide a solution to the new problem by 
reusing knowledge stored in the form of cases in the 
case base. All of these actions are self-contained and 
may be represented by a cyclic sequence of processes, 
in which human interaction may possibly be needed. 
Case-base reasoning can be used by itself or as part of 
another intelligent or conventional computing system. 
Furthermore, case-based reasoning can be a 
particularly appropriate problem solving strategy when 
the knowledge required to formulate a rule-based 
model of the domain is difficult to obtain, or when the 
number or complexity of rules relating to the problem 
domain is too great for conventional knowledge 
acquisition methods.  
 
A typical CBR system is composed of four sequential 
steps which are called into action each time that a new 
problem is to be solved (Kolodner, 1993; Aamodt, 
1994; Watson, 1997). Figure 1 outlines the basic CBR 
cycle. 
 

new
problem

case
base

retrieve

reuseretain

retrieved
cases

matching
cases 

revise
proposed
solution

confirmed
solution

 

Figure 1. CBR Cycle 

 

This cyclic process of CBR involves four major steps, 
represented by the ellipses in Figure 1: 

• Retrieve the most relevant case(s), 
• Reuse the case(s) to attempt to solve the 

problem, 
• Revise the proposed solution if necessary, 

and 
• Retain the new solution as a part of a new 

case. 
The purpose of the retrieval step is to search the case 
base and to select from it one or more previous cases 
that most closely match the new problem situation, 
together with their solutions. The selected cases are 
reused to generate a solution appropriate to the 
current problem situation. This solution is revised if 
necessary and finally the new case (i.e. the problem 
description together with the obtained solution) is 
stored in the case base. Cases may be deleted if they 
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are found to produce inaccurate solutions, they may 
be merged together to create more generalised 
solutions, and they may be modified, over time, 
through the experience gained in producing improved 
solutions. If an attempt to solve a problem fails and it 
is possible to identify the reason for the failure, then 
this information should also be remembered in order to 
avoid the same mistake in the future. This corresponds 
to a common learning strategy employed in human 
problem solving. Rather than creating general 
relationships between problem descriptors and 
conclusions, as is the case with rule-based reasoning, 
or relying on general knowledge of the problem 
domain, CBR systems are able to utilise the specific 
knowledge of previously experienced concrete problem 
situations. A CBR system provides an incremental 
learning process because each time that a problem is 
solved a new experience is retained, thus making it 
available for future reuse.  
 
In the CBR cycle there is normally some human 
interaction. Whilst case retrieval and reuse may be 
automated, case revision and retention are often 
undertaken by human experts. This is a current 
weakness of CBR systems and one of their major 
challenges. In this paper a method of automating the 
process of case adaptation (revision) is presented for 
the solution of problems in which the cases are 
characterised predominantly by numerical information. 
 
The Instance-based reasoning systems are highly 
syntactic CBR-approaches (Aamodt et al., 1994). In 
cases where there is a lack of guidance from general 
background knowledge, a relatively large number of 
instances are needed in order to obtain a concept 
definition or solution. The representation of the 
instances are usually simple (e.g. feature vectors), 
since a major focus is to study automated learning 
without user intervention (Aha, 1991).  
 

2.1 CBR Systems for Forecasting  

Several researchers (Nakhaeizadeh, 1994; Lendaris et 
al., 1994) have used k-nearest-neighbour algorithms 
for time series predictions. Although a k-nearest-
neighbour algorithm does not, in itself, constitute a 
CBR system, it may be regarded as a very basic and 
limited form of CBR operation in numerical domains. 
Nakhaeizadeh (1994) uses a relatively complex hybrid 
CBR-ANN system. In contrast, Lendaris and Fraser 
(1994) forecast a data set just by searching in a given 
sequence of data values for segments that closely 
match the pattern of the last n measurements and then 
by supposing that similar antecedent segments are 
likely to be followed by similar consequent segments.  
 
In most of the cases the CBR systems used in 
forecasting problems have a flat memories with simple 

data representation structures. In the majority of the 
systems surveyed case revision (if carried out at all) is 
performed by human expert, and in all the cases the 
CBR systems are provided of a small case-base. A 
survey of such forecasting CBR systems can be found 
in Corchado et al., 1998. 
 
3. The Oceanographic Environment  

Oceanography is a science that concentrates on the 
understanding of the physical principles that drive the 
oceans, and which uses the tools of mathematics and 
theoretical fluid dynamics to forecast their behaviour 
(Tomczak et al. 1994). Oceanic waters are divided into 
provinces (also called water masses) which are 
moderately homogenous. The boundaries between 
provinces or water masses are known as fronts. These 
areas are very dynamic and their properties depend on 
the nature of the two water masses converging to 
create each front. Some frontal areas, e.g. the Arctic 
and Antarctic convergence zones, are extremely 
heterogeneous and are very variable; therefore 
forecasting the temperature of the water in these areas 
can be difficult. 
 
The movement of water masses makes the ocean’s 
water temperature change in a complex manner in both 
spatial and temporal domains (Tomczak et al. 1994). 
The analysis and interpretation of large volumes of 
oceanographic data have traditionally been achieved 
through the use of statistical software tools. However 
the processing speed when using such tools is limited 
by the need for frequent user intervention.  
 
Knowledge-based systems have been developed to 
assist in weather prediction. However, apart from the 
work of Lybanon (1986), there appears to be little 
evidence of the application of knowledge based 
approach as a means of predicting the location and 
movements of large water masses. 
 
With the aim of providing an improved method for 
analysing the large masses of available oceanographic 
data, the application of knowledge-based (in particular, 
rule-based) methods was investigated in an earlier 
research project involving collaboration between the 
Plymouth Marine Laboratory and the University of 
Paisley (Lees et al., 1992). The motivation for that work 
was derived from the oceanographers' need for a better 
understanding of the ocean environment, for which, 
because of the complexities of the ocean, it is very 
difficult to formulate adequate and complete 
mathematical models. The results, using rule-based 
methods, provided some insight into the nature and 
complexities of the ocean. Building on this experience, 
it was decided to carry out further investigations into 
the application of alternative artificial intelligence 
problem solving approaches. Detecting oceanographic 
features, their boundaries and being able to predict 
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their evolution was the goal of the Knowledge Based 
Oceanographic System (KBOS) (Rees et al., 1991) and 
subsequent projects: the On line Real time 
Knowledge based Analysis (ORKA) system (Rees et 
al., 1995), and the Simulated Tactical Environmental 
Bubble (STEB) system (Corchado et al., 1997a, 1997b). 
The AI methods which were applied in these projects 
include neural networks (Corchado, 1995) and case-
based reasoning (Lees, 1997). 
 
The focus in recent research has been to investigate 
ways to forecast the thermal structure of the water 
ahead of an ongoing vessel, in real time. Forecasting in 
such an environment is a difficult task due to the 
nature and behaviour of the ocean waters, which are in 
a continuous state of movement. The scales of 
physical motion of the oceans and the atmosphere 
range from being ocean-wide down to tiny eddies, 
which are present in the neighbourhood of fronts. 
 
In order to obtain acceptable predictions an 
autonomous universal methodology, capable of 
forecasting changes in the water temperature as an 
expert oceanographer might do, is desirable. In 
addition, the system should be able to analyse, in real 
time, the variation in the temperature of the water on a 
local basis, to analyse and select the most relevant 
local knowledge from the huge database of information 
available (in the form of satellite images and thermal 
data profiles) to produce a forecast, taking into 
account factors such as the season of the year and the 
geographical location of the vessel from which the 
forecast is made.  
 
4. Forecasting Systems  

In the current work the aim is to develop a system for 
forecasting as a methodology for predicting the values 
of physical parameters (in particular, sea temperature) 
at a given depth around a sea going vessel from data 
acquired in real time, and also from past records of sea 
temperature (and possibly other oceanographic 
parameters) surrounding the vessel at some point 
ahead which will be reached in the immediate future. 
This information may also then be used to provide a 
forewarning of an impending oceanographic front. The 
approach builds on the methods and expertise 
previously developed in the earlier research referred to 
above. 
 
The problem of forecasting, which is currently being 
addressed, may be simply stated as follows: 

Given:  a sequence of data values (which may be 
obtained either in real-time, or from stored 
records) relating to some physical 
parameters, 

Predict:  the value of that parameter at 
some future point(s) or time(s). 

 
The raw data (on sea temperature, salinity, density and 
other physical characteristics of the ocean) which are 
measured in real time by sensors located on the vessel 
consist of a number of discrete sampled values of a 
parameter in the form of a time series. These data 
values are supplemented by additional data derived 
from satellite images, which are received weekly. In the 
present work the parameter used is the temperature of 
the water mass at a fixed depth. Values are sampled 
along a single horizontal dimension, thus forming a set 
of data points. 

4.1 The Hybrid IBR Forecasting System 

In order to produce a forecast, in real-time, of ocean 
temperature a certain distance ahead of a vessel as it 
traverses the ocean, a problem instance is generated 
every 2 km. A problem instance consists of a sequence 
of the N sampled data values (after suitable filtering 
and pre-processing) immediately preceding the data 
value corresponding to the current position of the 
vessel. A value of 40 for N (corresponding to 40 km) 
has been found empirically to produce satisfactory 
results when forecasting the temperature of the water 5 
km ahead of an ongoing vessel. The problem instance 
also includes various other numerical values, including 
the current geographical location of the vessel and the 
time and date when the case was recorded. To forecast 
at other distances, different values of N are required. 
 
The set of N data values forms an input vector, which 
is then used to produce a forecast of the ocean 
temperature, several km ahead. In outline, this process 
is depicted in Figure 2. Note that, in practice, it is the 
set of differences (Ti – Ti-1,  Ti – Ti-2  etc.) between 
the temperature Ti at the current point and the 
temperature at successive earlier points which is used 
as the input vector. 
 

x0   x1   x2   x3   - - - - xN-1     xN    xN+1  x N+2 - - - x N+5

input temperature vector
(known data)

{ x0  x1  x2  x3  - - -  xN-1 }

produce
forecast

time or
distance

output
(forecasted value)

x N+5

temperature value at current time or distance

 

Figure 2. Forecasting operation 
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The forecasted values are created using a neural 
network enhanced instance-base reasoning system. 
The IBR mechanism allows the experience recorded in 
previous forecasting situations to be reused. The role 
of the neural network lies in the instance adaptation 
process. The relationships between the processes and 
components of the hybrid system are illustrated in 
Figure 3.  
 
The cyclic IBR process shown in the figure has been 
inspired by work of Aamodt and Plaza (1994). The four 
basic phases in the IBR cycle are shown as ellipses. 
Superimposed on the fundamental IBR cycle is a cycle 
of neural network operations during which the network 
parameters are retrieved from a neural network 
knowledge base, employed in instance adaptation, and 
then are revised, with their updated values being 
stored back in the knowledge base. The full cycle of 
operations of the hybrid system is explained in the 
following section. 
 
The particular type of neural network of interest in the 
current research is the Radial Basis Function (Haykin, 
1994), in which the input layer is a receptor for the 
input data, whilst the hidden layer performs a non-
linear transformation from the input space to the 
hidden layer space.  
 
The hidden neurons form a basis for the input vectors; 
the output neurons merely calculate a linear 
combination of the hidden neurons' outputs. 
Activation is fed forward from the input layer to the 
hidden layer where a Basis Function is calculated. The 
weighted sum of the hidden neurons’ activations is 
calculated at the single output neuron.  
 
Radial Basis Functions (RBF) are better at interpolating 
that at extrapolating. Furthermore, RBFs are less 
sensitive to the order in which data is presented to 
them than is the case with other neural network 
models, such as Multi-Layer Perceptrons. Radial Basis 
Functions are of potential use in hybrid systems 
because of their fast learning capability. 
 

p r o b l e
mc a s e

i n s t a n c e
b a s e

r e t r i e v e

r e u s e

r e v i s e

re ta in

r e t r i e v e
di n s t a n c e s

p r o p o s e d
f o r e c a s t

r e v i s e d
f o r e c a s t

f o r e c a s t s
d a t a b a s e

n e u r a l
n/wK B

e r ro r
l im i t s

m a t c h i n g
ins tance

 

Figure 3. Modified instance/case-base reasoning cycle 

4.2 IBR System Operation 
 
The forecasting system uses data from two sources: (i) 
the real-time data are used to create a succession of 
problem instances, characterising the current 
forecasting situation; (ii) data derived from satellite 
images are stored in a database (which, for clarity, is 
not shown in Figure 3). The satellite image data values 
are used to generate instances, which are then stored 
in the instance base and subsequently updated during 
the IBR operation. 
 
The cycle of forecasting operations (which is repeated 
every 2 km) proceeds as follows.  First a new problem 
instance is created from the pre-processed real-time 
data. A set of k  instances, which most closely matches 
this current problem instance, is then obtained from 
the instance base during the IBR retrieve phase, using 
nearest neighbour matching. 
 
In the reuse phase, the values of the weights and 
centres of the neural network used in the previous 
forecast are retrieved from the neural network 
knowledge base. These network parameters together 
with the k  closest matching instances are then used to 
create a forecast of the temperature a distance 5 km, 
say, ahead. At this point the parameters of the network 
are modified by taking into account the information 
contained in the retrieved instances. The effect of this 
is to allow the system to learn from all these k 
instances (rather than simply using the single 
adjudged closest matching instance) in making a new 
forecast. 
 
During each forecasting cycle the RBF network is 
retrained, using the retrieved weights and centres, with 
the input vectors contained in the k  matching 
instances applied as inputs to the network. This 
process adapts the network, by accommodating the 
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retrieved instances, thus updating the values of the 
network parameters (empirically, a value for k  of 
between 500 to 1000 has been found to be 
appropriate). The input vector from the problem 
instance is then fed into the trained network to 
produce a proposed forecast.  
 
In the revise phase, the proposed forecast is modified 
by taking into account the accuracy of the previous 
forecasts, which were reused in obtaining the new 
forecast. Each instance has associated with it a 
measure of the average error over the previous 
forecasts for which that particular instance was used 
to train the neural network. Error limits are calculated 
by averaging the average error of the k  instances used 
to train the ANN in producing the current forecast. 
The revised forecast is then expressed, using the error 
limits, as an interval between upper and lower limits 
rather than as a single value.  
 
The revised forecast is then retained in a temporary 
store – the forecasts database. When the vessel has 
travelled a further 5 km the actual value of the water 
temperature at that point is measured. The forecasted 
value for the temperature at this point can then be 
evaluated, by comparison of the actual and forecasted 
values, and the error obtained. A new instance, 
corresponding to this forecasting operation, is then 
entered in the instance base. Knowledge of the 
forecasting error is also, at this point, used to update 
the average error of all the k  instances that were 
reused to obtain that forecast. 

4.3 Radial Basis Function Operation 

The RBF network uses nine input neurons, between 
twenty and thirty five neurons in the hidden layer and 
a single neuron in the output layer. Input vectors 
(explained earlier) form the input to the network; the 
output of the network is the difference between the 
temperature at the present point and the temperature a 
fixed distance ahead. Initially, twenty vectors are 
randomly chosen from the first training data set and 
used as centres in the middle layer of the RBF network. 
All the centres are associated with a Gaussian 
function, the width of which, for all the functions, is 
set to the mean value of the Euclidean distance 
between the two centres that are separated the most 
from each other. 

 
Training of the network is done by presenting pairs of 
corresponding input and desired output vectors. After 
an input vector activates every Gaussian unit the 
activations are propagated forward through the 
weighted connections to the output units which sum 
all incoming signals. The comparison of actual and 

desired output values enables the mean square error 
(the quantity to be minimized) to be calculated. 
 
The closest centre to each particular input vector is 
moved toward the input vector by a percentage α of 
the present distance between them. By using this 
technique the centres are positioned close to the 
highest densities of the input vector data set. The aim 
of this adaptation is to force the centres to be as close 
as possible to as many vectors from the input space as 
possible. The value of α is initialised to a value of 20 
each time that the network is retrained, and its value is 
linearly decreased with the number of iterations until 
its value becomes zero; then the network is trained for 
a number of iterations (between 10 and 30 iterations for 
the whole training data set, depending on the time left 
for the training) in order to obtain the best possible 
weights for the final value of the centres.  

 
A new centre is inserted into the network when the 
average error in the training data set does not fall by 
more than 10% after 10 iterations (using the whole 
training set). In order to determine the most distant 
centre C, the Euclidean distance between each centre 
and each input vector is calculated and the centre 
whose distance from the input data vectors is largest is 
chosen. A new centre is inserted between C and the 
centre closest to it. Centres are also eliminated when 
they do not contribute significantly to the output of 
the neural network. Thus, a neuron is eliminated if the 
absolute value of the weight associated with that 
neuron is smaller than twenty per cent of the average 
value of the absolute value of the five smallest 
weights. The number of neurons in the middle layer is 
maintained above 20. 
 
5. Results  

The hybrid forecasting system has been tested in the 
Atlantic Ocean in September 1997 on a research cruise 
going from the UK to the Falkland Islands (also known 
as Malvinas). The cruise crossed several water masses 
and oceanographic fronts (areas where two water 
masses with different characteristics converge). 
Although, the system was monitored and improved 
from a computing point of view, over a month, the 
forecasting method explained in previous sections 
remained unchanged. The prototype system used in 
this experiment was set up to forecast the temperature 
5 km ahead. Figure 4 illustrates the error in the 
forecasts over a total distance traversed of 10500 km. 
The strategy adopted was to create an accurate 
successful method which was able to forecast a short 
distance ahead, and then to extend it so as to produce 
forecasts a further distance ahead. 
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IBR-ANN Hybrid System
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Figure 4. Absolute value of the error using the hybrid system
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Figure 5. Error limit values for a forecast 5 km ahead using the hybrid system 

 
The average error in the forecast was found to be 0.02 
°C. Only 4.5% of the forecasts have an error higher 
than 0.5 °C, 8.3% higher than 0.04 °C, 32% higher than 
0.02 °C. These figures indicate that the hybrid system 
is able to produce a forecast with an average error of 
0.02 °C and with a probability of 0.96 that the error in 
the forecast is smaller than 0.05 °C. Although the 
experiment was carried out using a limited data set 
(11000 km between the latitudes 50° North and 50° 
South), eleven water masses with different 
characteristics were crossed, six fronts were traversed. 
The Falkland Front (km 10000) in particular is one of 
the most chaotic oceanographic areas in the world. It is 
believed that these error value results are significant 
enough to be extrapolated over the whole Atlantic 
Ocean. 
 
Figure 4 shows the absolute value of the difference 
between the actual temperature value of the water and 
the forecast value obtained using the RBF neural 
network for the instance adaptation in the hybrid 
system. This graph does not take into account any 

improvement that may be obtained using error limits 
during the review phase of the CBR cycle. 
 
The use of error limits can substantially improve the 
accuracy of the forecast. The error limit values are 
determined and modified dynamically from information 
relating to the past forecasting performance of the 
system and which is contained in the stored instances. 
These error limits indicate the range of forecast values 
than may be expected to be produced through the 
adaptation of particular stored instances.  
 
Figure 5 shows the value of the error limits used during 
the experiment and Figure 6 the forecast error outside 
the error limits. (If, using error limits, the forecasted 
temperature value at a particular location is, say, 6 ± 0.5 
°C - i.e. from 5.5 °C to 6.5 °C - then, if the actual 
temperature value is found to be 6.8 °C, the value of 
the forecast error outside the error limits will be 6.8 - 
6.5, i.e. 0.3 °C). 
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IBR-ANN Hybrid System
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Figure 6. Absolute error values using the hybrid system (with error limits) 
 

Time between the picture being recorded and 
the real time data being recorded 

(number of weeks) 

Average Error 
 

(°C ) 

Error Limits 
 

(°C ) 

Average error  
(outside error limits)  

(°C ) 

1 0.020 0.0198 0.00100 

2 0.024 0.0255 0.00173 

3 0.034 0.0332 0.00212 

4 0.048 0.0459 0.00333 

52 0.033 0.0318 0.00252 

Table 1. Average error in the forecast outside the error limits with the hybrid system 
 
Although 45.5% of the predictions were outside the 
limits of the error band, only 3.4% of the predictions 
were more than 0.005 °C outside the error limits. The 
average error of the predictions using error limits is 
0.001 °C. The shape of the error limit plot (Figure 6) is 
very similar to the error in the forecast presented in 
Figure 4; this means that the error limits adapt 
themselves to the pattern of temperatures in the 
different water masses. Both the error and the error 
limits are, on average, higher in frontal water masses 
than in homogeneous water masses. This was to be 
expected due to the higher dynamic nature and 
heterogeneity of such areas. 
 
A similar experiment was carried out using the data 
recorded by the vessel during the cruise, but this time 
using instances obtained from satellite images 
recorded more than one week previously. Table 1 
shows how the average error, the average error limits 
and the average error outside the error limits were 
found to vary when satellite images of different ages 
were used. Table 1 shows that the forecasting error is 
only slightly changed when using satellite images 
which are one or even two weeks old. The table also 
shows that when using satellite pictures collected 
exactly one year back the error in the forecast may be 
similar or smaller than the error obtained using pictures 
that are three or more weeks old. This is the reason 
why data up to one year old is kept in the database 

and in the instance base; if for technical reasons (e.g. 
clouds covering a certain area or problems with the 
data telecommunications) recent satellite images can 
not be obtained, data recorded one year back can be 
used by the system and may in fact produce better 
results that data recorded three or four weeks 
previously. This is due to the annual cycle of most of 
the water masses. However, such results can not be 
guaranteed as there are also other factors that 
determine the pattern of ocean temperature variations. 
 
Further experiments have been carried out to compare 
the performance of the IBR-ANN hybrid forecasting 
system with several other forecasting approaches. 
These include standard statistical forecasting 
algorithms and the application of several neural 
network methods. The results obtained from these 
experiments are listed in Table 2.  
The table shows the average error obtained with a 
Finite Impulse Response ANN (Corchado et al., 1999), 
a standard Radial Basis Function network (Corchado et 
al., 1997a), a Linear Regression model, an ARIMA 
(Auto-regressive Integrated Moving Averages) model 
(Box et al., 1976) and a CBR system without the neural 
network component which creates instances in real 
time using the temperature recorded from the sea 
surface (Rees et al., 1997).  
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Table 2 shows how the forecasting error generated by 
the hybrid system is less than 20% of the 
corresponding value produced by any of the other 
forecasting methods. The hybrid system is more 
accurate than any of the other techniques studied 
during this investigation. The performance of the 
hybrid system is better than the other methods in each 
of the individual water masses crossed by the vessel 
when travelling from the UK to the Falkland Islands. 
For a complete descriptions of the results obtained in 
the framework of this investigation refer to Corchado 
(2000). 
 
6. Conclusions  

This paper has presented a problem solving method 
that combines an instance/case-based reasoning 
system integrated with an artificial neural network, 
which is able to identify trends present in a large data 
set in order to create forecasts in real time. As such, it 
could be regarded as an application of data mining in a 
real time situation. The forecasting task, which is 

addressed in this work, is difficult for two reasons: the 
unpredictable and complexity of the media in which the 
forecast must to be done, and the fact that the forecast 
must be done in real time. Essentially, the instances 
stored in the instance base are created through the 
selection of data values, which correspond to the 
current location, and track of the ship. The time series 
data values obtained in real time are then matched by 
the IBR mechanism against the data patterns of the 
stored instances in order to produce the required 
forecast. The data are derived from the extensive 
database of earlier historical values, or from satellite 
images. The evaluation of the forecasts produced and 
the consequent modifications of the stored instances 
enable the system to learn and to improve its 
performance over time. 

 
 
 

Table 7. Absolute value of the error using the FIR ANN 
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Table 8. Absolute value of the error using the RBF ANN 

 

 
Table 9. Absolute value of the error using the Linear Regression 
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Table 10. Absolute value of the error using the ARIMA model 

 
 

 
Table 11. Absolute value of the error using a CBR system 

 
 

Method Type Average Error (°C )  
FIR ANN 0.096 
RBF ANN 0.114 
Linear Regression Statistics 0.174 
ARIMA Statistics 0.129 
CBR CBR 0.120 
IBR-ANN hybrid IBR – ANN 0.020 
IBR-ANN hybrid  
(outside error limits)  

IBR – ANN 0.001 

Table 2: Average forecasting error using various forecasting methods 
 
 

The forecasting system is able to produce a forecast 
with an acceptable degree of accuracy and within the 
time constraints imposed by the real time nature of the 
problem. Although the accuracy of the forecast 
depends, to a great extent, on the quality of the 
instances and on the actual date when the data from 
which the instances were created was collected, it has 

been demonstrated that good quality forecasts may be 
obtained even with data collected one year before the 
forecast was made. 
 
The method combines the ability of instance-based 
reasoning to index, organise and retrieve relevant data 
with the generalisation, learning and adaptation 
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capabilities of the radial basis function neural network. 
The resulting hybrid system thus combines 
complementary properties of both connectionist and 
symbolic AI methods. The neural network plays an 
important role in the system; it adapts the instances 
selected during the instance-based operations, 
combines aspects of the knowledge contained in 
several instances and supports the generation of the 
prediction. The Radial Basis Function network adapts 
its structure, without human intervention, to the 
characteristics of the environment in which the system 
is operating and acts as a function that facilitates 
system learning by extracting the relevant 
characteristics of a number of closely matching 
instances and combining them in the form of a 
representative instance. The results obtained may be 
extrapolated to provide forecasts further ahead using 
the same technique, and it is believed that successful 
results may be obtained. However, the further ahead 
the forecast is made, the less accurate the forecast may 
be expected to be.  
 
The limitations of this method of forecasting in its 
present form are as follows. 
• Forecasts can only be produced while the vessel is 

proceeding in a straight line. The present system is 
not able to forecast while the vessel is changing its 
direction (or has changed it in the last 40 km). 
However, it would be possible to adapt the way in 
which the data is extracted from the database 
during the instance creation process, to enable it to 
overcome this limitation. 

• The present system operates satisfactorily only if 
there are no discontinuities in the data greater than 
2 km in length. However, after a discontinuity the 
forecast can be resumed by interpolating the 
missing data with data from both ends of the 
instance vector. This strategy has been found to 
be successful if the discontinuity is no longer than 
5 km. 

• The system can not function in a particular area if 
there are no stored instances from that area. In this 
situation, the only solution is to use a back-up 
mechanism to prime the system; for this, the 
experimental results obtained in comparing neural 
network methods suggest that a Finite Impulse 
Response network may be the most appropriate 
method to use (Corchado et al., 1999). Once the 
system is in operation and is producing forecasts, a 
succession of instances will be generated, thus 
enabling the hybrid forecasting mechanism to 
function autonomously. 

 
In conclusion, the instance-based reasoning problem 
solving approach provides an effective strategy for 
forecasting in an environment in which the raw data is 
derived from three distinct sources: a large database of 
historical data, satellite image data, and time series data 
obtained in real-time.  
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