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A hybrid neuro-symbolic problem solving model is pre-
sented in which the aim is to forecast parameters of a
complex and dynamic environment in an unsupervised
way. In situations in which the rules that determine a
system are unknown, the prediction of the parameter
values that determine the characteristic behaviour of
the system can be a problematic task. The system em-
ploys a case-based reasoning model to wrap a grow-
ing cell structures network, a radial basis function net-
work and a set of Sugeno fuzzy models to provide an
accurate prediction. Each of these techniques is used
in a different stage of the reasoning cycle of the case-
based reasoning system to retrieve, adapt and review
the proposed solution to the present problem. This sys-
tem has been used to predict the red tides that appear
in the coastal waters of the north west of the Iberian
Peninsula. The results obtained from experiments are
presented.
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and adaptation, fuzzy revision, extracting fuzzy rules,
red tides

1. Introduction

Forecasting the behaviour of a dynamic system
is, in general, a difficult task, especially if the pre-
diction needs to be achieved in real time. In such
a situation one strategy is to create an adaptive
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system which possesses the flexibility to behave in
different ways depending on the state of the envi-
ronment. This paper presents the application of a
novel hybrid artificial intelligence (AI) model to a
forecasting problem over a complex and dynamic
environment. The approach, which is discussed, is
capable of producing satisfactory results in situa-
tions in which neither artificial neural network nor
statistical models have been sufficiently successful.

The oceans of the world form a highly dynamic
system for which it is difficult to create mathe-
matical models [1]. Red tides are the name for the
discolourations caused by dense concentrations of
microscopic sea plants, known as phytoplankton.
The discolouration varies with the species of phy-
toplankton, its pigments, size and concentration,
the time of day, the angle of the sun and other
factors. Red tides usually occur along the north
west coast of the Iberian Peninsula in late summer
and autumn [2]. The prevailing southerly winds
cause cold, nutrient-rich water to rise up from the
deeper regions of the ocean to the surface, a pro-
cess known as upwelling. Swept along with this up-
welled water are dinoflagellate cysts, the resting
stages of the organism, which lie dormant in the
sediments on the sea floor. The high nutrient con-
centrations in the upwelled water, together with
ideal conditions of temperature, salinity and light,
trigger the germination of the cysts, so that the di-
noflagellates begin to grow and divide. The rapid
increase in dinoflagellate numbers, sometimes to
millions of cells per liter of water, is described
as a bloom of phytoplankton (concentration levels
above the 100.000 cells per liter). Concentration of
the bloom by wind and currents, as well as the di-
noflagellates’ ability to swim to the surface, com-
bine to form a red tide. If conditions at the wa-
ter’s surface become unfavourable for the dinoflag-
ellates, for example, if the nutrients are depleted or
the bloom is dispersed by wind and currents, the
dinoflagellates will again form dormant cysts and
sink to the sea floor. This study focusses on the
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pseudo-nitzschia spp diatom dinoflagellate, witch
causes amnesic shellfish poisoning (or ASP).

An artificial intelligence approach to the prob-
lem of forecasting in the ocean environment offers
potential advantages over alternative approaches,
because it is able to deal with uncertain, incom-
plete and even inconsistent data. Several types of
standard artificial neural networks (ANN) have
been used to forecast the evolution of different
oceanographic parameters [3,4,5]. The reported
work shows how difficult it is to train neural net-
works to successfully forecast time series of oceano-
graphic and/or biological parameters such as the
temperature, chlorophyll and salinity of the water.
Statistical models such as Auto-Regressive Inte-
grated Moving Averages (ARIMA) have been ap-
plied, but the results obtained so far have indi-
cated that neural networks (although not accurate
enough) have a greater facility for forecasting such
parameters than statistical models [6].

An important aim in the current work is to de-
velop a universal forecasting mechanism, in the
sense that it might operate effectively anywhere,
at any point, in coastal waters, and at any time
of the year without human intervention. The re-
sults obtained to date suggest that the approach
described in this paper appears to fulfil these aims.

The study is based on the successful results ob-
tained with the hybrid case-based reasoning sys-
tem reported [4,5,6] and used to predict the evo-
lution of the temperature of the water ahead of
an ongoing vessel, in real time. The hybrid system
proposed in this paper is an extension and an im-
provement of the previously mentioned research.
The retrieval, reuse, revision and learning stages
of the CBR system have been modified or changed
for two reasons: to adapt the hybrid system to the
afore-mentioned problem and to completely auto-
mate the reasoning process of the proposed fore-
casting mechanism.

The structure of the paper is as follows: first a
brief overview of the basic concepts that charac-
terize the case-based reasoning model is presented;
the red tide problem domain is briefly outlined; the
hybrid neuro-symbolic system is then explained;
and finally, the results obtained to date with the
proposed forecasting system are presented and an-
alyzed.

2. CBR Systems Overview

Although knowledge-based systems (KBS) rep-
resent one of the commercial successes resulting
from artificial intelligence research, their develop-
ers have encountered several problems [7]. Knowl-
edge elicitation, a necessary process in the devel-
opment of rule-based systems, can be problematic.
The implementation of a KBS can also be com-
plex, and, once implemented, it may also be dif-
ficult to maintain. With the aim of overcoming
these problems [8] proposed a revolutionary ap-
proach, case-based reasoning, which is, in effect,
a model of human reasoning. The idea underly-
ing CBR is that people frequently rely on previ-
ous problem-solving experiences when solving new
problems. This assertion may be verified in many
day to day problem-solving situations by simple
observation or by psychological experimentation
[9]. Since the ideas underlying case-based reason-
ing were first proposed, CBR systems have been
found to be successful in a wide range of applica-
tion areas [10,7,11].

A case-based reasoning system solves new prob-
lems by adapting solutions that were used to solve
previous problems [12]. The case base holds a num-
ber of cases, each of which represents a problem to-
gether with its corresponding solution. Once a new
problem arises, a possible solution to it is obtained
by retrieving similar cases from the case base and
studying their recorded solutions. A CBR system
is dynamic in the sense that, in operation, cases
representing new problems together with their so-
lutions are added to the case base, redundant cases
are eliminated and others are created by combin-
ing existing cases.

A CBR system analyses a new problem situ-
ation, and by means of indexing algorithms, re-
trieves previously stored cases, together with their
solution, by matching them against the new prob-
lem situation, then adapts them to provide a so-
lution to the new problem by reusing knowledge
stored in the form of cases, in the case base. All
of these actions are self-contained and may be
represented by a cyclic sequence of processes, in
which human interaction may be needed. Case-
based reasoning can be used by itself or as part of
another intelligent or conventional computing sys-
tem. Furthermore, case-based reasoning can be a
particularly appropriate problem-solving strategy
when the knowledge required to formulate a rule-
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Fig. 1. The classical CBR cycle.

based model of the domain is difficult to obtain, or
when the number or complexity of rules relating to
the problem domain is too great for conventional
knowledge acquisition methods.

A typical CBR system is composed of four se-
quential steps which are called into action each
time a new problem is to be solved [7,10,13]. Fig-
ure 1 outlines the basic CBR cycle.

The purpose of the retrieval step is to search the
case base and select one or more previous cases
that most closely match the new problem situa-
tion, together with their solutions. The selected
cases are reused to generate a solution appropri-
ate to the current problem situation. This solu-
tion is revised if necessary and finally, the new
case (i.e. the problem description together with
the obtained solution) is stored in the case base.
Cases may be deleted if they are found to pro-
duce inaccurate solutions, they may be merged to-
gether to create more generalised solutions, and
they may be modified, over time, through the ex-
perience gained in producing improved solutions.
If an attempt to solve a problem fails and it is
possible to identify the reason for the failure, then
this information should also be stored in order to
avoid the same mistake in the future. This corre-
sponds to a common learning strategy employed in
human problem-solving. Rather than creating gen-
eral relationships between problem descriptors and
conclusions, as is the case with rule-based reason-
ing, or relying on general knowledge of the prob-
lem domain, CBR systems are able to utilise the
specific knowledge of previously experienced, con-
crete problem situations. A CBR system provides

an incremental learning process because each time
a problem is solved, a new experience is retained,
thus making it available for future reuse.

In the CBR cycle there is normally some human
interaction. Whilst case retrieval and reuse may be
automated, case revision and retention are often
undertaken by human experts. This is a current
weakness of CBR systems and one of their major
challenges. In this paper, a method for automat-
ing the CBR reasoning process is presented for the
solution of problems in which the cases are charac-
terised predominantly by numerical information.

2.1. CBR Systems for Forecasting

Several researchers [14,15] have used k-nearest-
neighbour algorithms for time series predictions.
Although a k-nearest-neighbour algorithm does
not, in itself, constitute a CBR system, it may be
regarded as a very basic and limited form of CBR
operation in numerical domains. [14] uses a rela-
tively complex hybrid CBR-ANN system. In con-
trast, [15] forecast a data set just by searching
in a given sequence of data values for segments
that closely match the pattern of the last n mea-
surements and then, by supposing that similar an-
tecedent segments are likely to be followed by sim-
ilar consequent segments. Other examples of CBR
systems that carry out predictions can be found in
[16], [17] and [18].

In most cases, the CBR systems used in fore-
casting problems have flat memories with sim-
ple data representation structures using k-nearest-
neighbour metric in their retrieve phase. K-nearest-
neighbour metric are acceptable if the system is
relatively stable and well understood, but if the
system is dynamic and the forecast is required in
real time, it may not be possible to easily redefine
the k-nearest-neighbour metrics adequately. The
dominant characteristic of the adaptation stage
used in these models are similarity metrics or sta-
tistical models, although, in some systems, case
adaptation is accomplished manually. If the prob-
lem is very complex, there may be no planned
adaptation strategy and the most similar case is
used directly, but it is believed that adequate
adaptation is one of the keys to a successful CBR
paradigm. In the majority of the systems surveyed
case revision (if carried out at all) is performed by
human expert, and in all the cases the CBR sys-
tems are provided with a small case-base. A survey
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of such forecasting CBR systems can be found in
[19].

Traditionally, CBR systems have been combined
with other technologies like artificial neural net-
works, rule-based systems, constraint satisfaction
problems and others, producing successful results
[20] and [11], but the particularities of the problem
described, make that these techniques are not the
most appropriate for obtaining an accurate predic-
tion.

3. The Red Tides Problem Domain

Recently red tides have been very much in the
news. Dinoflagellates are usually regarded as the
causative organisms, but not all red tides are
caused by dinoflagellates and not all dinoflagellates
cause red tides. Even the colour factor is variable:
so-called red tides may be brown, yellow, green,
etc. Some red tides may be very extensive and sev-
eral square kilometers of ocean may be affected,
even to the extent that satellites have been used
to track blooms. Surface waters of these blooms
are associated with the production of toxins, re-
sulting in mortality of fish and other marine or-
ganisms. Toxic blooms of dinoflagellates fall into
three categories: (1) blooms that kill fish but few
invertebrates; (2) blooms that kill primarily in-
vertebrates; (3) blooms that kill few marine or-
ganisms, but whose toxins are concentrated within
the siphons, digestive glands, or mantle cavities of
filter-feeding bivalve mollusc such as clams, oys-
ters, and escallops.

What causes such blooms? A range of factors
seem to be involved, but very little definite infor-
mation is available. In some places there seems
to be a strong correlation between the occurrence
of upwelling (nutrient-rich waters coming in from
deep water) and such blooms [21]. But, in other
areas, the blooms have been found to be associ-
ated with tidal turbulence or they seem to be set
off by heavy rainfall on the land, the runoff wash-
ing phosphates into the sea and also lowering the
salinity, all factors which seem to favour dinoflag-
ellate growth. It is also thought that Vitamin B12,
which is required by most dinoflagellates, may also
be washed into the sea from the soil and salt-marsh
areas, where it is produced by bacteria and blue-
green algae. Humic substances have also been sug-
gested as possible causative agents.

3.1. Recent Trends

The nature of the red tides problem has changed
considerably over the last two decades around the
world. Where formerly a few regions were affected
in scattered locations, now virtually every coastal
state is threatened, in many cases over large ge-
ographic areas and by more than one harmful
or toxic algal species [22]. Few would argue that
the number of toxic blooms, the economic losses
from them, the types of resources affected, and
the number of toxins and toxic species have all
increased dramatically in recent years in all over
the world. Disagreement only arises with respect
to the reasons for this expansion. Possible expla-
nations include: a) species dispersal through cur-
rents, storms, or other natural mechanisms; b) nu-
trient enrichment of coastal waters by human ac-
tivities, leading to a selection for, and prolifera-
tion of, harmful algae; c) increased aquaculture
operations which can enrich surrounding waters
and stimulate algal growth; d) introduction of fish-
ery resources (through aquaculture development)
which then exposes itself to the presence of indige-
nous harmful algae in the surrounding waters; e)
dispersal of the species via ship ballast water or
shellfish seeding activities; f) long-term climatic
trends in temperature, wind speed, or insolation
and g) increased scientific and regulatory scrutiny
of coastal waters and fishery products and im-
proved chemical analytical capabilities that lead to
the discovery of new toxins and toxic events [23].

3.2. Models

Models of dinoflagellate blooms have been de-
veloped from several different perspectives. [24] ex-
amined the response of a swimming dinoflagellate
to internal waves and showed that accumulation of
motile and non-motile cells may occur due to an
internal wave field, with the accumulation of verti-
cally migrating cells being most significant. These
models consider only the physics of the wave field
and the swimming behavior of the phytoplankton,
without regard to the phytoplankton response to
nutrients or light. Others have examined the re-
sponse of phytoplankton to the flow field of Lang-
muir cells [25] or to 2-dimensional, cross-frontal
circulation [26], to name just two of many physical
systems that have been studied in this theoreti-
cal context. The growth and accumulation of indi-
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vidual harmful algal species in a mixed planktonic
assemblage are exceedingly complex processes in-
volving an array of chemical, physical, and biologi-
cal interactions. Our level of knowledge about each
of the many species varies significantly, and even
those most widely studied remain poorly charac-
terized with respect to bloom or population dy-
namics. Resolution of various rate processes inte-
gral to the population dynamics (i.e., input and
losses due to growth, grazing, encystment, excyst-
ment, and physical advection) has not been accom-
plished, but is fundamental to the long-term man-
agement of fishery resources or marine habitats af-
fected by harmful algae. Many of the processes are
difficult to quantify in the field because harmful
species often represent only a small fraction of the
biomass in natural samples. The end result is that
despite the proven utility of models in so many
oceanographic disciplines, there are no predictive
models of population development, transport, and
toxin accumulation. There is thus a clear need to
develop models for regions subject to red tides, and
to incorporate biological behavior and population
dynamics into those simulations [23].

4. Forecasting Red Tides

In the current work, the aim is to develop a
system for forecasting one week in advance the
concentrations (in cells per liter) of the pseudo-
nitzschia spp, the diatom that produces the most
harmful red tides, at different geographical points.
The approach builds on the methods and expertise
previously developed in earlier research [3,4,5].

The problem of forecasting, which is currently
being addressed, may be simply stated as follows:

– Given: a sequence of data values (representa-
tive of the current and immediately previous
state) relating to some physical and biological
parameters,

– Predict: the value of a parameter at some fu-
ture point(s) or time(s).

The raw data (sea temperature, salinity, PH,
oxygen and other physical characteristics of the
water mass) which is measured weekly by the mon-
itoring network for toxic proliferations in the CC-
CMM (Centro de Control da Calidade do Medio
Marino, Oceanographic environment Quality Con-
trol Centre, Vigo, Spain), consists of a vector of

discrete sampled values (at 5 meters’ depth) of
each oceanographic parameter used in the experi-
ment, in the form of a time series. These data val-
ues are complemented by additional data derived
from satellite images, which is received and pro-
cessed daily, and other data belonging to ocean
buoys that record data on a daily basis. In the
present study, the parameter for prediction is the
concentration of pseudo-nitzschia spp in a given
water mass one week in advance.

4.1. The Hybrid Forecasting System

In order to forecast the concentration of pseudo-
nitzschia spp at a given point a week in advance, a
problem descriptor is generated on a weekly basis.
A problem descriptor consists of a sequence of N
sampled data values (filtered and pre-processed)
recorded from the water mass to which the forecast
will be applied. The problem descriptor also con-
tains various other numerical values, including the
current geographical location of the sensor buoys
and the collection time and date. Every week, the
concentration of pseudo-nitzschia spp is added to
a problem descriptor forming a new input vector.
The problem descriptor is composed of a vector
with the variables that characterise the problem
recorded over two weeks. The prediction or out-
put of the system is the concentration of pseudo-
nitzschia spp one week later, as indicated in Table
1.

Table 1

Variables that define a case

Variable Unit Week

Date dd-mm-yyyy Wn−1, Wn

Temperature Cent. degrees Wn−1, Wn

Oxygen milliliters/liter Wn−1, Wn

PH acidic/neutral Wn−1, Wn

Transmitance % Wn−1, Wn

Fluorescence % Wn−1, Wn

Cloud index % Wn−1, Wn

Recount of diatoms cel/liter Wn−1, Wn

nitzschia spp cel/liter Wn−1, Wn

nitzschia spp (future) cel/liter Wn+1

The forecast values are obtained using a neural
network enhanced hybrid case-base reasoning sys-
tem. Figure 2 illustrates the relationships between
the processes and components of the hybrid CBR
system. The cyclic CBR process shown in the fig-
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ure has been inspired by the work of [4] and [5].
The diagram shows the technology used at each
stage, where the four basic phases of the CBR cy-
cle are shown as rectangles.

The retrieval stage is carried out using a Grow-
ing Cell Structures (GCS) ANN. The GCS facili-
tates the indexation of cases and the selection of
those that are most similar to the problem descrip-
tor. The reuse of cases is carried out with a Radial
Basis Function (RBF) ANN, which generates an
initial solution creating a model with the retrieved
cases. The revision is carried out using a group
of pondered Fuzzy systems that identify potential
incorrect solutions. Finally, the learning stage is
carried out when the real value of the concentra-
tion of pseudo-nitzschia spp is measured and the
error value is calculated, and updating the knowl-
edge structure of the whole system. The cycle of
operations of the hybrid system is explained in the
following section in detail.

The neural networks used in the current study
are: a) Growing Cell Structures (GCS) [27] which
are a variation of Kohonen’s Self-Organising Maps
and provide the basis for powerful information
retrieval applications and similarity visualization
tools offering several advantages over both non-
self-organising neural networks and the Kohonen
self-organising maps cited above, and b) the Ra-
dial Basis Function (RBF) [28], in which the input
layer is a receptor for the input data, whilst the
hidden layer performs a non-linear transformation
from the input space to the hidden layer space.

4.2. System Operation

The forecasting system uses data from two main
sources: (i) the data (coming from the buoys
and monitoring net) used to create a succession
of problem descriptors, characterizing the current
forecasting situation; (ii) data derived from satel-
lite images stored on a database. The satellite im-
age data values are used to generate cloud and su-
perficial temperature indices which are then stored
with the problem descriptor and subsequently up-
dated during the CBR operation. Table 1 shows
the variables that characterise the problem. Data
from the previous 2 weeks (Wn−1, Wn) is used to
forecast the concentration of pseudo-nitzschia spp
one week ahead (Wn+1).

Several experiments have been carried out over
a testing data set in order to identify the opti-

Fig. 2. Hybrid neuro-symbolic system.

Table 2

Summary of results using a RFB with information coming
from several weeks

Incorrect Not False

Weeks MAE predictions detected alarms

1 36.553,06 15 8 4

2 32.573,88 9 5 7

3 46.798,66 15 5 10

mum number of weeks for constructing a case. Ta-
ble 2 shows a summary of the results using the hy-
brid system to predict the concentration of pseudo-
nitzschia spp a week ahead. Each row shows the re-
sults obtained when forecasting the concentration
of pseudo-nitzschia spp using data of the last 1, 2
and 3 weeks to construct the cases. The best re-
sults were obtained using data of 2 weeks previous
(Wn−1, Wn), with a mean average error (MAE) of
32.573,88 cell/liter.

Two situations of special interest are those cor-
responding to the false alarms and the blooms
not detected. The former refers to predictions
of bloom (concentration of pseudo-nitzschia ≥
100.000 cell/liter) which don’t actually material-
ize (real concentration ≤ 100.000 cell/liter). The
latter, more significant occurrence arises when a
bloom exists but the model fails to detect it.
Another unwelcome situation occurs when the
number of predictions exceeds an absolute error
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of 100.000 cell/liter (labelled as incorrect predic-
tions).

The cycle of forecasting operations (which is re-
peated every week) proceeds as follows:

First a new problem instance is created from the
pre-processed data cited above.

When a new problem is presented to the system,
the GCS neuronal network is used to obtain k more
similar cases to the given problem (identifying the
class to which the problem belongs, see Figure 3).

Fig. 3. Summary of technologies employed by the hybrid
system.

In the reuse phase, the values of the weights and
centers of the neural network used in the previ-
ous forecast are retrieved from the knowledge base.
These network parameters together with the k re-
trieved cases are then used to retrain the RBF net-
work and to obtain an initial forecast of the con-
centration of pseudo-nitzschia spp (see Figure 3).
During this process the values of the parameters
that characterise the network are updated.

In the revision phase, the initial solution pro-
posed by the RBF neural network is modified ac-
cording to the responses of the four Fuzzy revi-
sion subsystems. Each revision subsystem has been
created from the RBF network using neurofuzzy
techniques [29]. For each class of the GCS neu-
ral network a vector of four values is maintained
(see Figure 3). This “importance” vector is ini-
tialised with a value of (0.25, 0.25, 0.25, 0.25) and
represents the accuracy of each revision subsys-
tem with respect to a class. The sum of the four
values of the vector should be one. During revi-
sion, the class-associated “importance” vector as-
sociated to which the problem case belongs is used
to ponder the outputs of each fuzzy revision sys-
tem. Each vector value is associated with one of
the four revision subsystems. For each forecasting

cycle, the value of the importance vector associ-
ated to the most accurate revision subsystem is in-
creased and the other three values are proportion-
ally decreased. This is done in order to give more
relevance to the most accurate revision subsystem.

The revised forecast is then retained temporar-
ily in the forecast database. When the real value of
the concentration of pseudo-nitzschia spp is mea-
sured, the forecast value for the variable can then
be evaluated, though comparison of the actual and
forecast value and the error obtained (see Figure
3). A new case, corresponding to this forecasting
operation, is then stored in the case base. The fore-
casting error value is also used to update the im-
portance vector associated with the revision sub-
systems of the retrieved class.

4.3. Growing Cell Structures Operation

The GCS used in this work is characterized by
a two-dimensional space, where the cells (neurons)
are connected and organized into triangles. Each
cell in the network is associated with a weight
vector, w, of the same dimension than the input
data. At the beginning of the learning process,
the weight vector of each cell is initialized with
random values [30]. The basic learning process in
a GCS network consists of topology modification
and weight vector adaptations carried out in three
steps. The training vectors of the GCS network are
the cases stored in the CBR case-base, as indicated
in Figure 2.

In the first step of each learning cycle, the cell
c, with the smallest euclidean distance between its
weight vector, wc, and the actual input vector, x,
is chosen as the winner cell or best-match cell.

The second step consists in the adaptation of
the weight vector of the winning cells and their
neighbours.

In the third step, a signal counter is assigned to
each cell, wich reflects how often a cell has been
chosen as winner.

Growing cell structures also modify the overall
network structure by inserting new cells into those
regions that represent large portions of the input
data, or removing cells that do not contribute to
the input data representation.

Each cell of the CGS neural network has an as-
sociated weighted vector. These weighted vectors
are used by the fuzzy systems during the revision
stage, as will be shown later.
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Figure 4 provides a more concise description
of the GCS-based case retrieval regime described
above, where vx is the value feature vector describ-
ing the new query case X, GCS is the set of cells
describing the GCS topology after the training and
K is the retrieved set of most relevant cases.

Fig. 4. GCS-based case retrieval.

The neural network topology of a GCS network
is incrementally constructed on the basis of the
training data presented to the network. Effectively,
such a topology represents the result of the basic
clustering procedure (see Figure 4). Such a topol-
ogy has the added advantage that inter-cluster dis-
tances can be precisely quantified. Since such net-
works contain explicit distance information, they
can be used effectively in CBR to represent an in-
dexing structure which indexes sets of cases in the
case base and a similarity measure between case
sets.

4.4. Radial Basis Function Operation

The RBF network used in the framework of this
experiment, uses 18 input neurons (see Table 1),
between three and fifty neurons in the hidden layer
and a single neuron in the output layer. Input vec-
tor is presented to the network; the output of the
network is the concentration of pseudo-nitzschia
spp for a given water mass. Initially, three vec-
tors are randomly chosen from the training data
set and used as centers in the middle layer of the
RBF network. All the centers are associated with
a Gaussian function, the width of which, for all the
functions, is set to the value of the distance to the
nearest center multiplied by 0.5 (see [28] for more
information about RBF network).

Training of the network is carried out by pre-
senting pairs of corresponding input and desired
output vectors. After an input vector has activated
each Gaussian unit, the activations are propagated
forward through the weighted connections to the
output units, which sum all incoming signals. The
comparison of actual and desired output values en-
ables the mean square error (the quantity to be
minimized) to be calculated.

The closest center to each particular input vec-
tor is moved toward the input vector by a percent-
age a of the present distance between them. By us-
ing this technique the centers are positioned close
to the highest densities of the input vector data
set. The aim of this adaptation is to force the cen-
ters to be as close as possible to as many vectors
from the input space as possible. The value of a
is linearly decreased by the number of iterations
until its value becomes zero; then the network is
trained for a number of iterations (1/4 of the total
of established iterations for the period of training)
in order to obtain the best possible weights for the
final value of the centers.

A new center is inserted into the network when
the average error in the training data set does not
fall by more than 15% after n iterations (where n is
calculated dividing the value that corresponds to
the 3/4 parts of the total of iterations among the
maximum number of centers of the hidden layer,
50). To calculate the place where the new center
will be inserted, the center C, with the greatest
accumulated error is selected. A new center is then
inserted near C with an average of the input data
vectors of the two near centers.

4.5. Fuzzy System Operation

The construction of the revision subsystem is
carried out in two main steps.

(i) First, a Sugeno-Takagi fuzzy model [31] is
generated using the trained RBF network config-
uration (center and weights). In order to trans-
form a RBF neural network to a well interpretable
fuzzy rule system, the following conditions should
be satisfied:

– The basis functions of the RBF neural net-
work have to be Gaussian functions.

– The output of the RBF neural network has to
be normalized.

– The basis functions may have different vari-
ances.
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– A certain number of basis functions for the
same input variable should share a mutual
center and a mutual variance.

(ii) A measure of similarity is applied to the
fuzzy system with the purpose of reducing the
number of fuzzy sets describing each variable in the
model. Similar fuzzy sets for one oceanographic
parameter are merged to create a common fuzzy
set to replace them in the rule base. If the re-
dundancy in the model is high, merging similar
fuzzy sets for each variable might result in equal
rules that also can be merged, thereby reducing
the number of rules as well. Figure 5 shows how
the fuzzy sets generalization is carried out given a
variable (i.e. temperature).

a. 0.9 b. 0.8

c. 0.7 d. 0.6

Fig. 5. Different levels of generalization in a fuzzy set.

In our model, four fuzzy inference subsystems
have been created, starting from the first (with no
generalization at all), with different generalization
degrees for carrying out the revision of the initial
prediction (see Figure 5). When similar fuzzy sets
are replaced by a common fuzzy set representative
of the originals, the system’s capacity for gener-
alization increases. Four fuzzy sets are associated
with each case class. The importance value of the
fuzzy set that best suits a particular class is in-
creased and the other three are proportionally de-
creased. This process is carried out because it is
difficult to ascertain in advance the optimum level
of generalisation for a given data set.

Given a problem descriptor and a forecast pro-
posed for it, each of the four fuzzy inference sub-
systems generate a solution that is pondered ac-

cording to the importance vector associated GCS
class to witch it belongs, as previously before.

The value generated by the revision subsystem
is compared with the prediction carried out by the
RBF and its difference (in percentage) is calcu-
lated. If the initial forecast doesn’t differ by more
than 10% of the solution generated by the revi-
sion subsystem, this prediction is supported and
its value is considered as the final forecast. If, on
the contrary, the difference is greater than 10%,
the average value between the value obtained by
the RBF and that obtained by the revision subsys-
tem is calculated, and this revised value adopted
as the final output of the system. This threshold
has been identified after carrying out several ex-
periments and following the advice of human ex-
perts.

The exposed revision subsystem improves the
generalization ability of the RBF network. Fuzzy
models, especially if acquired from data, may con-
tain redundant information in the form of simi-
larities between fuzzy sets. As similar fuzzy sets
represent compatible concepts in the rule base, a
model with many similar fuzzy sets becomes re-
dundant, unnecessarily complex and computation-
ally demanding. The simplified rule bases allow us
to obtain a more general knowledge of the system
and gain a deeper insight into the logical structure
of the system to be approximated.

4.6. Retain

As mentioned before, when the real value of the
concentration of pseudo-nitzschia spp is known, a
new case containing the problem descriptor and
the solution is stored in the case base. The impor-
tance vector associated with the retrieved class is
updated in the following way: The error percentage
with respect to the real value is calculated. The re-
vision subsystem that has produced the most accu-
rate prediction is identified and the error percent-
age value previously calculated is added to the de-
gree of importance associated with the fuzzy sub-
system in question. As the sum of the four impor-
tance values associated to a class has to be one,
the four values are normalized, the sum dividing
up accordingly between them. When the new case
is added to the case base, its class is identified. The
class is updated and the new case is incorporated
into the network for future use.
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Table 3

Summary of results using the CBR-ANN-FS Hybrid System

OK Not detected False alarms

191/200 8 1

5. Results

The hybrid forecasting system has been tested
along the north west coast of the Iberian Penin-
sula with data collected by the CCCMM from the
year 1992 until the present. The prototype used
in this experiment was set up to forecast the con-
centration of the pseudo-nitzschia spp diatom of
a water mass situated near the coast of Vigo, a
week in advance. Red tides appear when the con-
centration of pseudo-nitzschia spp is higher than
100.000 cell/liter. Although the aim of this exper-
iment is to forecast the value of the concentration,
the most important is to identify in advance if the
concentration is going to exceed this threshold.

The average error in the forecast was found to
be 26.043,66 cell/liter and only 5.5% of the fore-
casts had an error higher than 100.000 cell/liter.
Although the experiment was carried out using a
limited data set (geographical area A0 ((42◦28.90’
N, 8◦57.80’ W) 61 m)), it is believed that these
error value results are significant enough to be ex-
trapolated along the whole coast of the Iberian
Peninsula.

Table 3 shows the predictions carried out with
success (in absolute values and %) and the erro-
neous predictions differentiating the not detected
blooms from the false alarms.

Figure 6 shows the absolute value of the differ-
ence between the actual concentration of pseudo-
nitzschia spp and the forecast value obtained using
the hybrid system.

As it indicates, the combination of different
techniques in the form of the hybrid CBR system
previously presented, produces better results that
a RBF neural network alone. This is due to the
effectiveness of the revision subsystem and the re-
training of the RBF neural network with the cases
recovered by the GCS network.

Table 4 shows the same information as the table
above but with a RBF neural network. The best
results were obtained with a configuration of 50
neurons in the hidden layer, maintaining the input
layer (with 18 neurons) and the output layer (with
1 neuron) constant.

Fig. 6. Absolute value of the error using a CBR-ANN-FS

Hybrid System.

Table 4

Summary of results using a RFB

OK Not detected False alarms

185/200 8 7

Fig. 7. Absolute value of the error using a Radial Basis
Function Network.

Figure 7 also shows the absolute value of the
error with the RBF network. Further experiments
have been carried out to compare the performance
of the CBR-ANN-FS hybrid system with several
other forecasting approaches. These include stan-
dard statistical forecasting algorithms and the ap-
plication of several neural networks methods. The
results obtained from these experiments are listed
in Table 5.

Table 5 shows the number of successful predic-
tions (in absolute value and %) as well as the
blooms not detected and false alarms for each
method. From Table 5, it can be calculated that
the forecasting error generated by the hybrid sys-
tem is less than 37,9% of the corresponding value
produced by the best statistical technique. In the
same way, it improves, by 42,9% the results gen-
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Table 5

Summary of results using statistical techniques

Not False

Method OK detected alarms

ARIMA 174/200 10 16

Quadratic Trend 184/200 16 0

Moving Average 181/200 10 9

Simp. Exp. Smooth. 183/200 8 9

Lin. Exp. Smooth. 177/200 8 15

Table 6

Average error in the forecast with other techniques and the
CBR-ANN-FS Hybrid System

Aver. error

Method Type (cel/liter)

CBR-ANN-FS Hybrid System 26.043,66

RBF ANN 45.654,20

FIR ANN –

ARIMA Statistics 71.918,15

Quadratic Trend Statistics 70.354,35

Moving Average Statistics 51.969,43

Simp. Exp. Smoothing Statistics 41.943,26

Lin. Exp. Smoothing Statistics 49.038,19

erated by the RBF neural network working alone.
The hybrid system is more accurate than any of
the other techniques studied during this investiga-
tion. The performance of the hybrid system is bet-
ter than the other methods at each of the individ-
ual geographical monitoring points.

Table 6 shows the average error obtained with
the hybrid model (Fig. 6), a standard RBF net-
work (Fig. 7), an ARIMA model (Fig. 8), a
Quadratic Trend (Fig. 9), a Moving Average (Fig.
10), a Simple Exp. Smoothing (Fig. 11), a Brown’s
Linear Exp. Smoothing (Fig. 12) and a Finite Im-
pulse Response ANN [3], which was not able to
converge for this type of problem.

Table 7 shows the number of predictions with
an absolute error greater than 100.000 cell/liter.
As it clearly shows, the hybrid system, once again,
provides the best results.

Figures 8 to 12 show the absolute value of
the difference between the actual concentration of
pseudo-nitzschia spp and the forecast value.

In Summary, this paper has presented a problem-
solving method that combines a case-based rea-
soning system integrated with two artificial neural
networks and a set of fuzzy inference systems in

Table 7

Number of predictions with an error ≥ 100.000 cell/liter

Method Incorrect predictions

CBR-ANN-FS 12

RBF 17

ARIMA 38

Quadratic Trend 14

Moving Average 20

Simple Exp. Smoothing 18

Brown’s Linear Exp. Smoothing 25

Fig. 8. Absolute value of the error using ARIMA
(1,0,0)x(0,1,0)26.

Fig. 9. Absolute value of the error using Quadratic Trend
(−8.407, 44 + 2.369, 34t − 14, 839t2).

order to create a real time autonomous forecasting
system. The forecasting system is able to produce
a forecast with an acceptable degree of accuracy.

Although the accuracy of the forecast depends,
to a great extent, on the quality of the cases and
the geographical monitoring point, it is believed
that good quality forecasts may be obtained even
with data collected several years before and be-
longing to other geographical points.



12 F. Fdez-Riverola and J.M. Corchado. / Hybrid neuro-symbolic system for forecasting

Fig. 10. Absolute value of the error using Moving Average
(order = 4).

Fig. 11. Absolute value of the error using Simple Exponen-
tial Smoothing (α = 0, 704).

Fig. 12. Absolute value of the error using Brown’s Linear
Exponential Smoothing (α = 0, 3613).

The method employs a case-based reasoning to
wrap a growing cell structures network (for the in-
dex tasks to organize and retrieve relevant data),
a radial basis function network (that contributes
generalization, learning and adaptation capabili-
ties) and a set of Sugeno fuzzy models (acting as
experts that revise the initial solution) to provide
a more effective prediction. The resulting hybrid

system thus combines complementary properties
of both connectionist and symbolic AI methods.
The results obtained may be extrapolated to pro-
vide forecasts further ahead using the same tech-
nique, and it is believed that successful results may
be obtained. However, the further ahead the fore-
cast is made, the less accurate the forecast may be
expected to be. The system cannot be used in a
particular geographical area if there are no stored
cases from that area. Once the system is in op-
eration and it is forecasting, a succession of cases
will be generated, enabling the hybrid forecasting
mechanism to work autonomously.

In conclusion, the hybrid reasoning problem
solving approach provides an effective strategy
for forecasting in an environment in which the
raw data is derived from the different sources,
mentioned previously. The model presented here
will be tested in different water masses and a
distributed forecasting system will be developed
based on the model in order to monitor 500 km of
the North West coast of the Iberian Peninsula.

Acknowledgements

This work is financed by the project: Develop-
ment of techniques for the automatic prediction of
the proliferation of red tides in the Galician coasts,
PGIDT-00MAR30104PR, inside the Marine Pro-
gram of investigation of Xunta de Galicia. The au-
thors want to thank the support lent by this insti-
tution, as well as the data facilitated by the CC-
CMM.

References

[1] M. Tomczak and J. S. Godfrey. Regional Oceano-
graphic: An Introduction. Pergamon, New York, 1994.

[2] E. Fernández. Las Mareas Rojas en las Rías Galle-
gas. Technical Report, Departamento de Ecoloǵia y
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