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Abstract. A hybrid neuro-symbolic problem-solving model is presented in which the aim is to forecast parameters
of a complex and dynamic environment in an unsupervised way. In situations in which the rules that determine
a system are unknown, the prediction of the parameter values that determine the characteristic behaviour of the
system can be a problematic task. In such a situation, it has been found that a hybrid case-based reasoning system
can provide a more effective means of performing such predictions than other connectionist or symbolic techniques.
The system employs a case-based reasoning model to wrap a growing cell structures network, a radial basis function
network and a set of Sugeno fuzzy models to provide an accurate prediction. Each of these techniques is used at a
different stage of the reasoning cycle of the case-based reasoning system to retrieve historical data, to adapt it to the
present problem and to review the proposed solution. This system has been used to predict the red tides that appear
in the coastal waters of the north west of the Iberian Peninsula. The results obtained from experiments, in which
the system operated in a real environment, are presented.

1. Introduction

Forecasting the behaviour of a dynamic system is, in
general, a difficult task, especially if the prediction
needs to be achieved in real time. In such a situation one
strategy is to create an adaptive system which possesses
the flexibility to behave in different ways depending on
the state of the environment. This paper presents the ap-
plication of a novel hybrid artificial intelligence (AI)
model to a forecasting problem over a complex and dy-
namic environment. The approach, which is discussed,
is capable of producing satisfactory results in situations
in which neither artificial neural network nor statistical
models have been sufficiently successful.

The oceans of the world form a highly dynamic sys-
tem for which it is difficult to create mathematical

models [1]. Red tides are the name for the discoloura-
tions caused by dense concentrations of microscopic
seaplants, known as phytoplankton. The discolouration
varies with the species of phytoplankton, its pigments,
size and concentration, the time of day, the angle of the
sun and other factors. Red tides usually occur along the
north west coast of the Iberian Peninsula in late summer
and autumn [2]. The prevailing southerly winds cause
cold, nutrient-rich water to rise up from the deeper re-
gions of the ocean to the surface, a process known as
upwelling. Swept along with this upwelled water are
dinoflagellate cysts, the resting stages of the organism,
which lie dormant in the sediments on the sea floor. The
high nutrient concentrations in the upwelled water, to-
gether with ideal conditions of temperature, salinity
and light, trigger the germination of the cysts, so that
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the dinoflagellates begin to grow and divide. The rapid
increase in dinoflagellate numbers, sometimes to mil-
lions of cells per liter of water, is described as a bloom of
phytoplankton (concentration levels above the 100,000
cells per liter). Concentration of the bloom by wind and
currents, as well as the dinoflagellates’ ability to swim
to the surface, combine to form a red tide. If condi-
tions at the water’s surface become unfavourable for
the dinoflagellates, for example, if the nutrients are de-
pleted or the bloom is dispersed by wind and currents,
the dinoflagellates will again form dormant cysts and
sink to the sea floor. This study focusses on the pseudo-
nitzschia spp diatom dinoflagellate, which causes am-
nesic shellfish poisoning (or ASP).

An artificial intelligence approach to the problem
of forecasting in the ocean environment offers poten-
tial advantages over alternative approaches, because
it is able to deal with uncertain, incomplete and even
inconsistent data. Several types of standard artificial
neural networks (ANN) have been used to forecast the
evolution of different oceanographic parameters [3-5].
The reported work shows how difficult it is to train
neural networks to successfully forecast time series
of oceanographic and/or biological parameters such as
the temperature, chlorophyll and salinity of the water.
Statistical models such as Auto-Regressive Integrated
Moving Averages (ARIMA) have been applied, but the
results obtained so far have indicated that neural net-
works (although not accurate enough) have a greater
facility for forecasting such parameters than statistical
models [6].

An important aim in the current work is to develop
a universal forecasting mechanism, in the sense that
it might operate effectively anywhere, at any point, in
coastal waters, and at any time of the year without hu-
man intervention. The results obtained to date suggest
that the approach described in this paper appears to
fulfil these aims.

The study is based on the successful results obtained
with the hybrid case-based reasoning system reported
[4-6] and used to predict the evolution of the temper-
ature of the water ahead of an ongoing vessel, in real
time. The hybrid system proposed in this paper is an
extension and an improvement of the previously men-
tioned research. The retrieval, reuse, revision and learn-
ing stages of the CBR system have been modified or
changed for two reasons: to adapt the hybrid system to
the afore-mentioned problem and to completely auto-
mate the reasoning process of the proposed forecasting
mechanism.

The structure of the paper is as follows: first a brief
overview of the basic concepts that characterize the
case-based reasoning model is presented; the red tide
problem domain is briefly outlined; the hybrid neuro-
symbolic system is explained; and finally, the results
obtained to date with the proposed forecasting system
are presented and analyzed.

2. CBR Systems Overview

Although knowledge-based systems (KBS) represent
one of the commercial successes resulting from arti-
ficial intelligence research, their developers have en-
countered several problems [7]. Knowledge elicitation,
a necessary process in the development of rule-based
systems, can be problematic. The implementation of a
KBS can also be complex, and, once implemented, it
may also be difficult to maintain. With the aim of over-
coming these problems [8] proposed a revolutionary
approach, case-based reasoning, which is, in effect, a
model of human reasoning. The idea underlying CBR
is that people frequently rely on previous problem-
solving experiences when solving new problems. This
assertion may be verified in many day to day problem-
solving situations by simple observation or by psycho-
logical experimentation [9]. Since the ideas underlying
case-based reasoning were first proposed, CBR sys-
tems have been found to be successful in a wide range
of application areas [7, 10, 11].

A case-based reasoning system solves new problems
by adapting solutions that were used to solve previous
problems [12]. The case base holds a number of cases,
each of which represents a problem together with its
corresponding solution. Once a new problem arises, a
possible solution to it is obtained by retrieving similar
cases from the case base and studying their recorded
solutions. A CBR system is dynamic in the sense that,
in operation, cases representing new problems together
with their solutions are added to the case base, redun-
dant cases are eliminated and others are created by
combining existing cases.

A CBR system analyses a new problem situation,
and by means of indexing algorithms, retrieves pre-
viously stored cases, together with their solution, by
matching them against the new problem situation, then
adapts them to provide a solution to the new problem
by reusing knowledge stored in the form of cases, in the
case base. All of these actions are self-contained and
may be represented by a cyclic sequence of processes,
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Figure 1. The classic CBR cycle.

in which human interaction may be needed. Case-based
reasoning can be used by itself or as part of another
intelligent or conventional computing system. Further-
more, case-based reasoning can be a particularly appro-
priate problem-solving strategy when the knowledge
required to formulate a rule-based model of the domain
is difficult to obtain, or when the number or complexity
of rules relating to the problem domain is too great for
conventional knowledge acquisition methods.

A typical CBR system is composed of four sequen-
tial steps which are called into action each time a new
problem is to be solved [7, 10, 13]. Figure 1 outlines
the basic CBR cycle.

The purpose of the retrieval step is to search the case
base and select one or more previous cases that most
closely match the new problem situation, together with
their solutions. The selected cases are reused to gener-
ate a solution appropriate to the current problem situ-
ation. This solution is revised if necessary and finally,
the new case (i.e. the problem description together with
the obtained solution) is stored in the case base. Cases
may be deleted if they are found to produce inaccurate
solutions, they may be merged together to create more
generalised solutions, and they may be modified, over
time, through the experience gained in producing im-
proved solutions. If an attempt to solve a problem fails
and it is possible to identify the reason for the failure,
then this information should also be stored in order to
avoid the same mistake in the future. This corresponds
to a common learning strategy employed in human
problem-solving. Rather than creating general relation-
ships between problem descriptors and conclusions, as
is the case with rule-based reasoning, or relying on gen-
eral knowledge of the problem domain, CBR systems
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(1) Retrive the most relevant case(s).

(11) Reuse the case(s) to attempt to resolve the
problem.

(111) Revise the proposed solution if necessary.

(iv) Retain the new solution as a part of a new
case.

are able to utilise the specific knowledge of previously
experienced, concrete problem situations. A CBR sys-
tem provides an incremental learning process because
each time a problem is solved, a new experience is re-
tained, thus making it available for future reuse.

In the CBR cycle there is normally some human in-
teraction. Whilst case retrieval and reuse may be au-
tomated, case revision and retention are often under-
taken by human experts. This is a current weakness
of CBR systems and one of their major challenges. In
this paper, a method for automating the CBR reason-
ing process is presented for the solution of problems
in which the cases are characterised predominantly by
numerical information.

2.1.  CBR Systems for Forecasting
Several researchers [14, 15] have used k-nearest-
neighbour algorithms for time series predictions. Al-
though a k-nearest-neighbour algorithm does not, in
itself, constitute a CBR system, it may be regarded as a
very basic and limited form of CBR operation in numer-
ical domains.Nakhaeizadeh [14] uses a relatively com-
plex hybrid CBR-ANN system. In contrast, Lendaris
and Fraser [15] forecast a data set simply by search-
ing a given sequence of data values for segments that
closely match the pattern of the last n measurements
and then supposing that similar antecedent segments
are likely to be followed by similar consequent seg-
ments. Other examples of CBR systems that carry out
predictions can be found in [16-18].

In most cases, the CBR systems used in forecast-
ing problems have flat memories with simple data
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representation structures using k-nearest-neighbour
metric in their retrieve phase. K-nearest-neighbour
metric are acceptable if the system is relatively stable
and well understood, but if the system is dynamic and
the forecast is required in real time, it may not be pos-
sible to easily redefine the k-nearest-neighbour metrics
adequately. The dominant characteristic of the adapta-
tion stage used in these models are similarity metrics
or statistical models, although, in some systems, case
adaptation is accomplished manually. If the problem
is very complex, there may be no planned adaptation
strategy and the most similar case is used directly, but
itis believed that adequate adaptation is one of the keys
to a successful CBR paradigm. In the majority of the
systems, surveyed case revision (if carried out at all)
is performed by human expert, and in all the cases the
CBR systems are provided with a small case-base. A
survey of such forecasting CBR systems can be found
in [19].

Traditionally, CBR systems have been combined
with other technologies like artificial neural networks,
rule-based systems, constraint satisfaction problems
and others, producing successful results [20] and [11],
but the particularities of the problem described mean
that these techniques are not the most appropriate for
obtaining an accurate prediction.

3. The Red Tides Problem Domain

Recently red tides have been very much in the news.
Dinoflagellates are usually regarded as the causative
organisms, but not all red tides are caused by dinoflag-
ellates and not all dinoflagellates cause red tides. Even
the colour factor is variable: so-called red tides may be
brown, yellow, green, etc. Some red tides may be very
extensive and several square kilometers of ocean may
be affected, even to the extent that satellites have been
used to track blooms. Surface waters of these blooms
are associated with the production of toxins, resulting
in mortality of fish and other marine organisms. Toxic
blooms of dinoflagellates fall into three categories: (1)
blooms that kill fish but few invertebrates; (2) blooms
thatkill primarily invertebrates; (3) blooms that kill few
marine organisms, but whose toxins are concentrated
within the siphons, digestive glands, or mantle cavities
of filter-feeding bivalve mollusc such as clams, oysters,
and escallops.

What causes such blooms? A range of factors seem to
be involved, but very little definite information is avail-
able. In some places there seems to be a strong correla-

tion between the occurrence of upwelling (nutrient-rich
waters coming in from deep water) and such blooms
[21]. But, in other areas, the blooms have been found to
be associated with tidal turbulence or they seem to be
set off by heavy rainfall on the land, the runoff washing
phosphates into the sea and also lowering the salinity,
all factors which seem to favour dinoflagellate growth.
Itis also thought that Vitamin Bj,, which is required by
most dinoflagellates, may also be washed into the sea
from the soil and salt-marsh areas, where it is produced
by bacteria and blue-green algae. Humic substances
have also been suggested as possible causative agents.

3.1. Recent Trends

The nature of the red tides problem has changed con-
siderably over the last two decades around the world.
Where formerly a few regions were affected in scattered
locations, now virtually every coastal state is threat-
ened, in many cases over large geographic areas and
by more than one harmful or toxic algal species [22].
Few would argue that the number of toxic blooms, the
economic losses from them, the types of resources af-
fected, and the number of toxins and toxic species have
all increased dramatically in recent years in all over the
world. Disagreement only arises with respect to the rea-
sons for this expansion. Possible explanations include:
(a) species dispersal through currents, storms, or other
natural mechanisms; (b) nutrient enrichment of coastal
waters by human activities, leading to a selection for,
and proliferation of, harmful algae; (c) increased aqua-
culture operations which can enrich surrounding wa-
ters and stimulate algal growth; (d) introduction of
fishery resources (through aquaculture development)
which then exposes itself to the presence of indigenous
harmful algae in the surroundingwaters; (e) dispersal
of the species via ship ballast water or shellfish seeding
activities; (f) long-term climatic trends in temperature,
wind speed, or insolation and (g) increased scientific
and regulatory scrutiny of coastal waters and fishery
products and improved chemical analytical capabili-
ties that lead to the discovery of new toxins and toxic
events [23].

3.2.  Models

Models of dinoflagellate blooms have been developed
from several different perspectives. Kamykowski [24]
examined the response of a swimming dinoflagellate to



internal waves and showed that accumulation of motile
and non-motile cells may occur due to an internal wave
field, with the accumulation of vertically migrating
cells being most significant. These models consider
only the physics of the wave field and the swimming
behavior of the phytoplankton, without regard to the
phytoplankton response to nutrients or light. Others
have examined the response of phytoplankton to the
flow field of Langmuir cells [25] or to 2-dimensional,
cross-frontal circulation [26], to name just two of
many physical systems that have been studied in this
theoretical context. The growth and accumulation of
individual harmful algal species in a mixed planktonic
assemblage are exceedingly complex processes in-
volving an array of chemical, physical, and biological
interactions. Our level of knowledge about each of
the many species varies significantly, and even those
most widely studied remain poorly characterized with
respect to bloom or population dynamics. Resolution
of various rate processes integral to the population
dynamics (i.e., input and losses due to growth, grazing,
encystment, and physical advection) has not been
accomplished, but is fundamental to the long-term
management of fishery resources or marine habitats
affected by harmful algae. Many of the processes are
difficult to quantify in the field because harmful species
often represent only a small fraction of the biomass
in natural samples. The end result is that despite the
proven utility of models in so many oceanographic dis-
ciplines, there are no predictive models of population
development, transport, and toxin accumulation. There
is thus a clear need to develop models for regions sub-
ject to red tides, and to incorporate biological behavior
and population dynamics into those simulations [23].

4. Forecasting Red Tides

In the current work, the aim is to develop a system
for forecasting one week in advance the concentra-
tions (in cells per liter) of the pseudo-nitzschia spp,
the diatom that produces the most harmful red tides, at
different geographical points. The approach builds on
the methods and expertise previously developed in ear-
lier research [3-5]. The problem of forecasting, which
is currently being addressed, may be simply stated as
follows:

e Given: a sequence of data values (representative of
the current and immediately previous state) relating
to some physical and biological parameters,
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e Predict: the value of a parameter at some future
point(s) or time(s).

The raw data (sea temperature, salinity, PH, oxygen
and other physical characteristics of the water mass)
which is measured weekly by the monitoring network
for toxic proliferations in the CCCMM (Centro de
Control da Calidade do Medio Marino, Oceanographic
environment Quality Control Centre, Vigo, Spain),
consists of a vector of discrete sampled values (at 5 me-
ters’ depth) of each oceanographic parameter used in
the experiment, in the form of a time series. These data
values are complemented by additional data derived
from satellite images, which is received and processed
daily, and other data belonging to ocean buoys that
record data on a daily basis. In the present study,
the parameter for prediction is the concentration of
pseudo-nitzschia spp in a given water mass one week in
advance.

4.1.  The Hybrid Forecasting System

In order to forecast the concentration of pseudo-
nitzschia spp. ata given point a week in advance, a prob-
lem descriptor is generated on a weekly basis. A prob-
lem descriptor consists of a sequence of Nsampled data
values (filtered and pre-processed) recorded from the
water mass to which the forecast will be applied. The
problem descriptor also contains various other numeri-
cal values, including the current geographical location
of the sensor buoys and the collection time and date.
Every week, the concentration of pseudo-nitzschia spp
is added to a problem descriptor forming a new in-
put vector. The problem descriptor is composed of a
vector with the variables that characterise the problem
recorded over two weeks. The prediction or output of
the system is the concentration of pseudo-nitzschia spp.
one week later, as indicated in Table 1.

The forecast values are obtained using a neural net-
work enhanced hybrid case-base reasoning system.
Figure 2 illustrates the relationships between the pro-
cesses and components of the hybrid CBR system.
The cyclic CBR process shown in the figure has been
inspired by the work of [4] and [5]. The diagram
shows the technology used at each stage, where the
four basic phases of the CBR cycle are shown as
rectangles.

The retrieval stage is carried out using a Growing
Cell Structures (GCS) ANN. The GCS facilitates the
indexation of cases and the selection of those that are
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Table 1. Variables that define a case.

Variable Unit Week
Date dd-mm-yyyy Wno1, Wy
Temperature Cent. degrees W1, W,
Oxygen milliliters/liter ~ W,_;, W,
PH acid/based W1, W,
Transmitance % Wa—1, Wy
Fluorescence % W,—1, W,
Cloud index % Wa—1, Wy
Recount of diatoms cell/liter Wu_1, W,
Pseudo-nitzschia spp cell/liter Wo_1, Wy
Pseudo-nitzschia spp (future)  cell/liter W1

most similar to the problem descriptor. The reuse of
cases is carried out with a Radial Basis Function (RBF)
ANN, which generates an initial solution creating a
model with the retrieved cases. The revision is carried

New problem

(I) RETRIEVE

out using a group of pondered Fuzzy systems that iden-
tify potential incorrect solutions. Finally, the learning
stage is carried out when the real value of the concentra-
tion of pseudo-nitzschia spp is measured and the error
value is calculated, and updating the knowledge struc-
ture of the whole system. The cycle of operations of
the hybrid system is explained in the following section
in detail.

The neural networks used in the current study are:
(a) Growing Cell Structures (GCS) [27] which are
a variation of Kohonen’s Self-Organising Maps and
provide the basis for powerful information retrieval
applications and similarity visualization tools offering
serveral advantages over both non-self-organising
neural networks and the Kohonen self-organising maps
cited above, and (b) the Radial Basis Function (RBF)
[28], in which the input layer is a receptor for the input
data, whilst the hidden layer performs a non-linear
transformation from the input space to the hidden layer

space.

(II) REUSE
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Expert’s score
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Figure 2. Hybrid neuro-symbolic system.
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Table 2. Summary of results using a RFB with information
coming from several weeks.

Incorrect Not False
Weeks MAE predictions detect. alarms
1 36,553.06 15 8 4
2 32,573.88 9 5 7
3 46,798.66 15 5 10

4.2.  System Operation

The forecasting system uses data from two main
sources: (i) the data (coming from the buoys and mon-
itoring net) used to create a succession of problem de-
scriptors, characterizing the current forecasting situa-
tion; (ii) data derived from satellite images stored on
a database. The satellite image data values are used
to generate cloud and superficial temperature indices
which are then stored with the problem descriptor
and subsequently updated during the CBR operation.
Table 1 shows the variables that characterise the prob-
lem. Data from the previous 2 weeks (W,_;, W,)) is
used to forecast the concentration of pseudo-nitzschia
spp one week ahead (W,11).

Several experiments have been carried out over a
testing data set in order to identify theoptimum num-
ber of weeks for constructing a case. Table 2 shows a
summary of the results using the hybrid system to pre-
dict the concentration of pseudo-nitzschia spp a week
ahead. Each row shows the results obtained when fore-
casting the concentration of pseudo-nitzschia spp using
data of the last 1, 2 and 3 weeks to construct the cases.

Table 3. Summary of technologies employed by the hybrid system.
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The best results were obtained using data of 2 weeks
previous (W,,_;, W,).

Two situations of special interest are those cor-
responding to the false alarms and the blooms not
detected. The former refers to predictions of bloom
(concentration of pseudo-nitzschia >100,000 cell/liter)
which don’t actually materialize (real concentration
<100,000 cell/liter). The latter, more significant oc-
currence arises when a bloom exists but the model
fails to detect it. Another unwelcome situation oc-
curs when the number of predictions exceeds an ab-
solute error of 100,000 cell/liter (Iabelled as incorrect
predictions).

The cycle of forecasting operations (which is re-
peated every week) proceeds as follows:

First a new problem instance is created from the pre-
processed data cited above.

When a new problem is presented to the system, the
GCS neuronal network is used to obtain k more similar
cases to the given problem (identifying the class to
which the problem belongs, see Table 3).

In the reuse phase, the values of the weights and cen-
ters of the neural network used in the previous forecast
are retrieved from the knowledge base. These network
parameters together with the k retrieved cases are then
used to retrain the RBF network and to obtain an ini-
tial forecast of the concentration of pseudo-nitzschia
spp (see Table 3). During this process the values of the
parameters that characterise the network are updated.

In the revision phase, the initial solution proposed by
the RBF neural network is modified according to the
responses of the four Fuzzy revision subsystems. Each
revision subsystem has been created from the RBF net-
work using neurofuzzy techniques [29]. For each class

CBR-stage Technology Input Output Process
Retrieval GCS network. Problem descriptor. k similar cases. All the cases (k) that belong to the same class to
which the GCS associates the problem case are
retrieved.
Reuse RBF network. Problem descriptor. Initial solution: The RBF network is retrained with the & retrieved
k similar cases. concentration of cases.
pseudo-nitzschia spp.
Revision 4 Fuzzy systems. Problem descriptor. Confirmed solution: Four Fuzzy systems are created using the RBF
Initial solution. concentration of network configuration with different degrees of
pseudo-nitzschia spp. generalization.
Retain GCS network. Problem descriptor. Configuration parameters The configurations of the GCS network, the RBF

RBF network.
4 Fuzzy systems.

Forecasting error.

of the GCS network,
RBF network and 4

network and the Fuzzy subsystems are updated
according to the accuracy of the forecast.

Fuzzy systems.
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of the GCS neural network a vector of four values is
maintained (see Table 3). This “importance” vector is
initialised with a value of (0.25, 0.25, 0.25, 0.25) and
represents the accuracy of each revision subsystem with
respect to a class. The sum of the four values of the vec-
tor should be one. During revision, the class-associated
“importance” vector to which the problem case belongs
is used to ponder the outputs of each fuzzy revision
system. Each vestor value is associated with one of the
four revision subsystems. For each forecasting cycle,
the value of the importance vector associated with the
most accurate revision subsystem is increased and the
other three values are proportionally decreased. This
is done in order to give more relevance to the most
accurate revision subsystem.

The revised forecast is then retained temporarily in
the forecast database. When the real value of the con-
centration of pseudo-nitzschia spp is measured, the
forecast value for the variable can then be evaluated,
through comparison of the actual and forecast value
and the error obtained (see Table 3). A new case,
corresponding to this forecasting operation, is then
stored in the case base. The forecasting error value
is also used to update the importance vector asso-
ciated with the revision subsystems of the retrieved
class.

4.3.  Growing Cell Structures Operation

The GCS used in this work is characterized by a two-
dimensional space, where the cells (neurons) are con-
nected and organized into triangles. Each cell in the
network is associated with a weight vector, w, of the
same dimension than the input data. At the beginning
of the learning process, the weight vector of each cell is
initialized with random values [30]. The basic learning
process in a GCS network consists of topology mod-
ification and weight vector adaptations carried out in
three steps. The training vectors of the GCS network
are the cases stored in the CBR case-base, as indicated
in Fig. 2.

In the first step of each learning cycle, the cell ¢, with
the smallest distance between its weight vector, w., and
the actual input vector, x, is chosen as the winner cell
or best-match cell.

The second step consists in the adaptation of the
weight vector of the winning cells and their neighbours.

In the third step, a signal counter is assigned to each
cell, which reflects how often a cell has been chosen as
winner.

procedure RETRIEVE (input: vy, confGCS; output: K, P)
{
00 Dbegin.
01 CD « @ /* vector of pairs (cell, distance) */
02 for each cell ¢ € confGCS do
03 compute_distance: dc « DIS(vy, Wc)
04 assign_cell-distance-pair: CD « (c, d.)
05 order_by_distance(CD) /* ascending */
06 for each pair p « CD do
07 K < get_cases_from_cell(p)
08 if | K| >0 then
09 go_to_line 10 /* non-empty cell */
10 end.
}

Figure 3.  GCS-based case retrieval.

Growing cell structures also modify the overall net-
work structure by inserting new cells into those regions
that represent large portions of the input data, or re-
moving cells that do not contribute to the input data
representation.

Each cell of the GCS neural network has an associ-
ated weighted vector. These weighted vectors are used
by the fuzzy systems during the revision stage, as will
be shown later.

Figure 3 provides a more concise description of
the GCS-based case retrieval regime described above,
where v, is the value feature vector describing the new
query case X, GCS is the set of cells describing the
GCS topology after the training and K is the retrieved
set of most relevant cases.

The neural network topology of a GCS network is in-
crementally constructed on the basis of the training data
presented to the network. Effectively, such a topology
represents the result of the basic clustering procedure
(see Fig. 3). Such a topology has the added advantage
that inter-cluster distances can be precisely quantified.
Since such networks contain explicit distance informa-
tion, they can be used effectively in CBR to represent
an indexing structure which indexes sets of cases in the
case base and a similarity measure between case sets.

4.4. Radial Basis Function Operation

The RBF network used in the framework of this ex-
periment, uses 18 input neurons (see Table 1), between
three and fifty neurons in the hidden layer and a sin-
gle neuron in the output layer. Input vector is pre-
sented to the network; the output of the network is the
concentration of pseudonitzschia spp for a given water



mass. Initially, three vectors are randomly chosen from
the training data set and used as centers in the middle
layer of the RBF network. All the certers are associ-
ated with a Gaussian function, the width of which, for
all the functions, is set to the value of the distance to
the nearest center multiplied by 0.5 (see [26] for more
information about RBF network).

Training of the network is carried out by presenting
pairs of corresponding input and desired output vec-
tors. After an input vector has activated each Gaussian
unit, the activations are propagated forward through the
weighted connections to the output units, which sum
all incoming signals. The comparison of actual and de-
sired output values enables the mean square error (the
quantity to be minimized) to be calculated.

The closest certer to each particular input vector is
moved toward the input vector by a percentage a of the
present distance between them. By using this technique
the certers are positioned close to the highest densities
of the input vector data set. The aim of this adaptation is
to force the certers to be as close as possible to as many
vectors from the input space as possible. The value of
a is linearly decreased by the number of iterations until
its value becomes zero; then the network is trained for
a number of iterations (1/4 of the total of established
iterations for the period of training) in order to ob-
tain the best possible weights for the final value of the
certers.

A new certer is inserted into the network when the
average error in the training data set does not fall by
more than 15% after n iterations (where n is calculated
dividing the value that corresponds to the 3/4 parts of
the total of iterations among the maximum number of
centers of the hidden layer, 50). To calculate the place
where the new center will be inserted, the center C,
with the greatest accumulated error is selected. A new
certer is then inserted near C with an average of the
input data vectors of the two near certers.

4.5. Fuzzy System Operation

The construction of the revision subsystem is carried
out in two main steps:

(1) First, a Sugeno-Takagi fuzzy model [31] is gener-
ated using the trained RBF network configuration
(center and weights). In order to transform a RBF
neural network to a well interpretable fuzzy rule
system, the following conditions should be satis-
fied:
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e The basis functions of the RBF neural network
have to be Gaussian functions.

e The output of the RBF neural network has to
be normalized.

e The basis functions may have different vari-
ances.

e A certain number of basis functions for the
same input variable should share a mutual cen-
ter and a mutual variance.

(i) A measure of similarity is applied to the fuzzy
system with the purpose of reducing the number
of fuzzy sets describing each variable in the model.
Similar fuzzy sets for one oceanographic param-
eter are merged to create a common fuzzy set to
replace them in the rule base. If the redundancy
in the model is high, merging similar fuzzy sets
for each variable might result in equal rules that
also can be merged, thereby reducing the number
of rules as well. Figure 4 shows how the fuzzy set
generalization is carried out given a variable (i.e.
temperature).

In our model, four fuzzy inference subsystems have
been created, starting from the first (with no general-
ization at all), with different generalization degrees for
carrying out the revision of the initial prediction (see
Fig. 4). When similar fuzzy sets are replaced by a com-
mon fuzzy set representative of the originals, the sys-
tem’s capacity for generalization increases. Four fuzzy
sets are associated with each case class. The impor-
tance value of the fuzzy set that best suits a particular
class is increased and the other three are proportion-
ally decreased. This process is carried out because it is
difficult to ascertain in advance the optimum level of
generalisation for a given data set.

Given aproblem descriptor and forecast proposed for
it, each of the four fuzzy inference subsystems generate
a solution that is pondered according to the importance
vector associated GCS class to which it belongs, as
previously mentioned.

The value generated by the revision subsystem is
compared with the prediction carried out by the RBF
and its difference (in percentage) is calculated. If the
initial forecast doesn’t differ by more than 10% of
the solution generated by the revision subsystem, this
prediction is supported and its value is considered
as the final forecast. If, on the contrary, the differ-
ence is greater than 10%, the average value between
the value obtained by the RBF and that obtained by
the revision subsystem is calculated, and this revised
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Figure 4. Different levels of generalization in a fuzzy set.

value adopted as the final output of the system. This
threshold has been identified after carriying out sev-
eral experiments and following the advice of human
experts.

The exposed revision subsystem improves the gen-
eralization ability of the RBF network. Fuzzy models,
especially if acquired from data, may contain redun-
dant information in the form of similarities between
fuzzy sets. As similar fuzzy sets represent compatible
concepts in the rule base, a model with many similar
fuzzy sets becomes redundant, unnecessarily complex
and computationally demanding. The simplified rule
bases allow us to obtain a more general knowledge of
the system and gain a deeper insight into the logical
structure of the system to be approximated.

4.6. Retain

As mentioned before, when the real value of the con-
centration of pseudo-nitzschia spp is known, a new case
containing the problem descriptor and the solution is
stored in the case base. The importance vector associ-
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ated with the retrieved class is updated in the following
way: The error percentage with respect to the real value
is calculated. The revision subsystem that has produced
the most accurate prediction is identified and the error
percentage value previously calculated is added to the
degree of importance associated with the fuzzy sub-
system in question. As the sum of the four importance
values associated to a class has to be one, the four val-
ues are normalized, the sum dividing up accordingly
between them. When the new case is added to the case
base, its class is identified. The class is updated and the
new case is incorporated into the network for future
use.

5. Results

The hybrid forecasting system has been tested along
the north west coast of the Iberian Peninsula with data
collected by the CCCMM from the year 1992 until
the present. The prototype used in this experiment was
set up to forecast the concentration of the pseudo-
nitzschia spp diatom of a water mass situated near



Table4. Summary of results using the CBR-ANN-

FS hybrid system.
OK OK (%) Not detect.  False alarms
191/200 95.5 8 1

the coast of Vigo, a week in advance. Red tides ap-
pear when the concentration of pseudo-nitzschia spp
is higher than 100,000 cell/liter. Although the aim of
this experiment is to forecast the value of the con-
centration, the most important aspect is to identify in
advance if the concentration is going to exceed this
threshold.

The average error in the forecast was found to be
26,043.66 cell/liter and only 5.5% of the forecasts had
an error higher than 100,000 cell/liter. Although the ex-
periment was carried out using a limited data set (geo-
graphical area A0 ((42°28.90° N, 8°57.80° W) 61 m)),
it is believed that these error value results are signifi-
cant enough to be extrapolated along the whole coast
of the Iberian Peninsula.

Table 4 shows the predictions carried out with suc-
cess (in absolute values and %) and the erroneous pre-
dictions differentiating the not detected blooms from
the false alarms.

Figure 5 shows the absolute value of the difference
between the actual concentration of pseudo-nitzschia
spp and the forecast value obtained using the hybrid
system.

As it indicates, the combination of different tech-
niques in the form of the hybrid CBR system previ-
ously presented, produces better results than a RBF
neural network alone. This is due to the effectiveness
of the revision subsystem and the re-training of the RBF
neural network with the cases recovered by the GCS
network.

CBR-ANN-FS Hybrid System
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600000
400000 {
200000 I
0 I
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Figure 5. Absolute value of the error using a CBR-ANN-FS hybrid
system.
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Table 5. Summary of result using a RFB.

OK OK (%) Notdetect. False alarms
185/200 92.5 8 7
RBF [9X50X1]
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Figure 6. Absolute value of the error using a radial basis function
network.

Table 5 shows the same information as the table
above but with a RBF neural network. The best re-
sults were obtained with a configuration of 50 neurons
in the hidden layer, maintaining the input layer (with
18 neurons) and output layer (with 1 neuron) output
constant.

Figure 6 also shows the absolute value of the er-
ror with the RBF network. Further experiments have
been carried out to compare the performance of the
CBR-ANN-FS hybrid system with several other fore-
casting approaches. These include standard statistical
forecasting algorithms and the application of several
neural networks methods. The results obtained from
these experiments are listed in Table 6.

Further experiments have been carried out to
compare the performance of the CBR-ANN-FS hybrid
system with several other forecasting approaches.
These include standard statistical forecasting

Table 6. Summary of results using statistical techniques.

Method OK OK (%) Not detect. False alarms
ARIMA 174/200  87.0 10 16
Quadratic trend  184/200 92.0 16
Moving average 181/200  90.5 10
Simple exp. 183/200  91.5 8

smoothing

Brown’s Lin. 177/200 88.5 8 15

Exp. smooth.
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Table 7. Average error in the forecast with other techniques

. Quadratic Trend
and the CBR-ANN-FS hybrid system.
Average error 1200000
Method Type (cell/liter) o 1000000
g 800000
CBR-ANN-FS Hybrid system  26,043.66 % o000
RBF ANN 45,654.20 g 00000 |
FIR ANN - * 200000 | m]‘h
ARIMA Statistics 71,918.15 oz e
Quadratic trend Statistics 70,354.35 Number :fw:ek FFFFFF
Moving average Statistics 51,969.43 ) ) ]
Simple exp. smoothing Statistics 41,943.26 Zgj_r;%@j:b :to l_utle:’ aél;zi)g;l.le errorusing quadratic rend (—8.407,
Brown’s Lin. exp. smooth.  Statistics 49,038.19
Moving Average
1200000
algorithms and the application of several neural 1000000
networks methods. The results obtained from these E 800000
experiments are listed in Table 6. E 500000
Table 6 shows the number of successful predictions § 00000 !
(in absolute value and %) as well as the blooms not “ 200000 M]
detected and false alarms for each method. From Ta- 0

ble 6, it can be calculated that the forecasting error TESNRESCEFIEEREERE
generated by the hybrid system is less than 37.9% of Humbsriof waek

the corresponding value produced by the best statistical Figure 9. Absolute value of the error using moving average
technique. In the same way, it improves, by 42.9% the (order =4).

results generated by the RBF neural network working

. . Simple Exp. Smoothing
alone. The hybrid system is more accurate than any of ple =xp g

the other techniques studied during this investigation. 1200000
The performance of the hybrid system is better than . 1000000
the other methods at each of the individual geographi- £ 80000
cal monitoring points. g 600000
Table 7 shows the average error obtained with the £ oo
hybrid model (Fig. 5), a standard RBF network (Fig. 6), 200000 L i% ' i i
an ARIMA model (Fig. 7), a Quadratic Trend (Fig. 8), o
a Moving Average (Fig. 9), a Simple Exp. Smoothing ToTEErEeE o2 eEs

Number of week

(Fig. 10), a Brown’s Linear Exp. Smoothing (Fig. 11)
Figure 10. Absolute value of the error using simple exponential
smoothing (a = 0, 704).
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Figure 7. Absolute value of the error using ARIMA (1,0,0) x Figure 11. Absolute value of the error using Brown’s Linear expo-

(0,1,0)26. nential smoothing (¢ = 0, 3613).



Table 8. Number of predictions with an error >100,000 cell/liter.

Method Incorrect predictions
CBR-ANN-FS 12
RBF 17
ARIMA 38
Quadratic trend 14
Moving average 20
Simple exp. smoothing 18
Brown’s Lin. exp. smooth. 25

and a Finite Impulse Response ANN [3], which was
not able to converge for this type of problem.

Table 8 shows the number of predictions with an ab-
solute error greater than 100,000 cell/liter. As it clearly
shows, the hybrid system, once again, provides the best
results.

Figures 7 to 11 show the absolute value of the dif-
ference between the actual concentration of pseudo-
nitzschia spp and the forecast value.

6. Conclusion

In summary, this paper has presented a problem-solving
method that combines a case-based reasoning system
integrated with two artificial neural networks and a set
of fuzzy inference systems in order to create a real time
autonomous forecasting system. The forecasting sys-
tem is able to produce a forecast with an acceptable
degree of accuracy. Although the accuracy of the fore-
cast depends, to a great extent, on the quality of the
cases and the geographical monitoring point, it is be-
lieved that good quality forecasts may be obtained even
with data collected several years before and belonging
to other geographical points.

The method employs a case-based reasoning to wrap
a growing cell structures network (for the index tasks to
organize and retrieve relevant data), a radial basis func-
tion network (that contributes generalization, learning
and adaptation capabilities) and a set of Sugeno fuzzy
models (acting as experts that revise the initial solution)
to provide a more effective prediction. The resulting
hybrid system thus combines complementary proper-
ties of both connectionist and symbolic Al methods.
The results obtained may be extrapolated to provide
forecasts further ahead using the same technique, and
it is believed that successful results may be obtained.
However, the further ahead the forecast is made, the
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less accurate the forecast may be expected to be. The
system cannot be used in a particular geographical area
if there are no stored cases from that area. Once the sys-
tem is in operation and it is forecasting, a succession of
cases will be generated, enabling the hybrid forecasting
mechanism to work autonomously.

In conclusion, the hybrid reasoning problem solving
approach provides an effective strategy for forecasting
in an environment in which the raw data is derived from
the different sources, mentioned previously. The model
presented here will be tested in different water masses
and a distributed forecasting system will be developed
based on the model in order to monitor 500 km of the
North West coast of the Iberian Peninsula.

This work is financed by the project: Development
of techniques for the automatic prediction of the pro-
liferation of red tides in the Galician coasts, PGIDT-
00OMAR30104PR, inside the Marine Program of inves-
tigation of Xunta de Galicia. The authors want to thank
the support lent by this institution, as well as the data
facilitated by the CCCMM.
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