Computational Intelligence, Volume 24, Number 2, 2008

REPLANNING MECHANISM FOR DELIBERATIVE AGENTS
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This paper proposes a replanning mechanism for deliberative agents as a new approach to tackling the frame
problem. We propose a beliefs desires and intentions (BDI) agent architecture using a case-based planning (CBP)
mechanism for reasoning. We discuss the characteristics of the problems faced with planning where constraint
satisfaction problems (CSP) resources are limited and formulate, through variation techniques, a reasoning model
agent to resolve them. The design of the agent proposed, named MRP-Ag (most-replanable agent), will be evaluated
in different environments using a series of simulation experiments, comparing it with others such as E-Ag (Efficient
Agent) and O-Ag (Optimum Agent). Last, the most important results will be summarized, and the notion of an
adaptable agent will be introduced.
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1. INTRODUCTION

Agents are intelligent, autonomous, adaptive systems, which live in changeable sur-
roundings (Wooldrige and Jennings 1995). Currently, we don’t have a common successful
methodology for the design of agents. Strategies that are purely deliberative (Laird, Newell,
and Rosenbloom 1987; Georgeff and Ingrand 1989), reactive (Agre and Chapman 1987,
Brooks 1995), and hybrid (Firby 1987; Ferguson 1992), only seem to work in very specific
examples. Deliberative agents use symbolic representation and abstract reasoning to generate
plans with which to achieve their objectives. Reactive agents do not have internal symbolic
representations of their environment, and they act by responding to the stimulus of the envi-
ronment. Hybrid strategies combine both deliberative and reactive strategies. Various authors
have concurred that the problems faced by designers are different manifestations of the frame
problem (Fodor 1987; Shoham 1987), and it has been suggested that to avoid the situation,
artificial systems should use (1) representations of the world directed toward action (Cherniak
1986) and (2) tools based on dynamic systems to formulate the relationship between the agent
and its environment (Van Gelder 1998).

The first of the requisites—to have a system with representations directed toward the
action—can be achieved by using a beliefs, desires, and intentions (BDI) deliberative agent
model (Bratman 1987) that, together with a case based reasoning (CBR) motor (Aamodt and
Plaza 1994), constitutes the base of a planning system based on previous case-based planning
(CBP) (Carbonell 1983; Hammond 1989; Corchado and Laza 2003; Corchado et al. 2004).
This type of model meets the conditions needed to introduce a representation and a reasoning
based on the action (Pollack 1992).

As far as the second requirements—the formulation of an agent-world system—are con-
cerned, it has been demonstrated that any dynamic model of a coupled system cannot be
resolved analytically (Abraham, Abraham, and Shaw 1992). Given this situation, the alter-
native is to use a constructive methodology (Sloman 1994)—an agent model is constructed
using iterative modeling, which will define how it behaves to changes in the environment. To
make the agent model compatible with the dynamic requirements, it needs to meet two con-
ditions: (1) necessary condition—it must be formulated using analytical techniques and meet
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the requirements of a solution—and (2) sufficient condition—the model must be complete
(Hale and Kogak 1991).

With the previous hypotheses we propose the design of a MRP-Ag (most-replanable
agent) architecture. First, the planning space is introduced, within which the agent represents
the plans in terms of its accumulated objectives and the resources consumed. In this space,
the plans, which maintain a constant efficiency, are represented by straight lines. These types
of plans, known as geodesic plans, are especially interesting for our problem. On one hand,
(1) they represent plans that are less risky in a changing environment, and on the other, (2)
they meet the Bellman conditions of optimality (Bellman 1957), which allow us to work with
dynamic programming techniques.

Second, to deal with restrictions imposed by constraint satisfaction problems (CSPs)
(Sam-Haround 1995), a restrictions space is built (generally a non-Euclidean hyperplan)
within the planning space, and a set of techniques based on variation calculation (Schutz
1993) is developed to calculate the geodesic plans within it. As a result of this, a family of
plans is obtained, compatible with the restrictions imposed, which constitutes the way to pass
from a current state to an objective state, maintaining the conditions of constant efficiency
throughout the process.

Third, the notion of replanning and the concept of easily replanable plan is introduced,
which is formulated using techniques based on Jacobi fields (Lee 1997). Given the set of
geodesic plans, these types of techniques allow us to determine which of them present greatest
density of alternative plans in an environment and thus, in the event of interruption, can count
on the greatest number of proximate plans with which to continue. For the replanning agent
design proposed to meet the hypothesis initially presented, it must fulfill the condition of
being a complete solution of the dynamic agent—world system. This will be tested using the
Green’s theory of operators (Snieder 1994).

The last part of the paper compares the behavior of MRP-Ag with two other agents defined
as, E-Ag (Efficient Agent) and O-Ag (Optimum Agent). Their behavior in environments
with different levels of dynamism are evaluated, as well as the effect learning has on each
one.

The paper ends with a summary of the most significant results. In the section on fu-
ture work, we propose the notion of a type of agent we could call adaptable agent (dif-
ferent from adaptive agents), which may be of interest in the area of artificial intelligence
systems.

The paper is structured as follows. In Section 2, we show the implications in our de-
sign to accept the hypothesis of “representations directed toward action” and the hypothesis
of “dynamic agent—world interaction.” The first requires an agent with a case-based plan-
ning motor, and the second implies that the behavior of the agent can be formulated as a
environment-based dynamic system. In Section 3, an agent model is proposed that possesses
capacity for replanning. For this, a planning space (Section 3.1), techniques for determining
minimal risk plans (3.2), and a heuristic that allows us to select the most replanable plan (3.3)
are introduced. The model will only be compatible with the initial hypothesis if it conforms
to the requirements that make it a solution for the dynamic system presented in Section 2.
This requires two characteristics: (1) the model designed should have the expressive capacity
to find an invariant in the system (Section 4.1) and (2) the model should be sufficient to
constitute a complete solution for the system (Section 4.2).

The paper ends with the presentation of results of experiments (Section 5) whereby
the behavior of the MRP-Ag was evaluated in comparison with other designs. Last, we
summarize the most significant results, which point toward the future work that needs to be
done.
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2. TWO HYPOTHESES TO FACE THE FRAME PROBLEM

In this paper, instead of presenting new techniques for which the model constructs suc-
cessful plans, a strategy is proposed that allows us to generate flexible replanning. Given a
problem E, the agents don’t look for the “best plan” to resolve it, but look for the plan that,
in the event of interruption, is most easily replanned at any point of time. To carry out this
task, two hypotheses are assumed, which derive from cognitive science (Clark 1997):

Hypothesis 1: First, agents should have a type of representation system to represent knowl-
edge that is dependent on the agent, the context, and the orientation of the
action. In these cases, we say that the agents are embodied.

Hypothesis 2:  Second, the agents and their environments are interpreted as coupled ele-
ments that a dynamic system defines as unique. We can say that these types
of agents are embedded in the environment.

In the following section, we examine the implications of both hypotheses.

2.1. Embodied Agents: CBP-BDI Agent Model

A representation based on an action requires an agent architecture in which the way to
acquire and process the knowledge of the world, at the reasoning stage, is closely related to
the way in which plans are constructed and used, in the phase of execution. In this section, we
show how such a requirement can be achieved through a BDI agent model (Bratman 1987)
in which a CBP reasoning motor has been incorporated (Carbonell 1983; Hammond 1989)
using plans that have already been experienced.

First, we will introduce the terminology used within the paper for a BDI agent.

(1) The environment M and the changes that are produced within it, are represented from
the point of view of the agent. Therefore, the world can be defined as a set of variables
that influence a problem faced by the agent:

M= {1, 1,..., 17} withs < oo. (1)

(2) The beliefs are vectors of some (or all) of the attributes of the world taking a set of
concrete values:
B={bj/b={t{.%.....7,},n<s VieN} _, <M. )
(3) Astate of the world (e; € E) is represented for the agent by a set of beliefs that are true
at a specific moment in time .
Let £ = {e;};cn set of status of the world if we fix the value of #, then

e =1{b', b5, ...bI"} _ S B V.1 3)

(4) The desires are imposed at the beginning and are applications between a state of the
current world and another that it is trying to reach

d:EZE 4)

. e — ot

(5) Intentions are the way that the agent’s knowledge is used to reach its objectives. They are
reduced to the need to determine whether there is compatibility between the knowledge
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that the agent possesses and the requirements to be able to attain its desires. A desire is
attainable if the application 7, defined through » beliefs exists:

n)
i:BxBx---xBxE—E. (5)
(b1,byy e, b,,e0) — e*
In our model, intentions guarantee that there is enough knowledge in the beliefs base
for a desire to be reached via a plan of action.
(6) We define an agent action as the mechanism that provokes changes in the world making
it change the state,
E— FE (6)

aj . e 7 aj(e)=e;”

(7) Agent plan is the name we give to a sequence of actions that, from a current state e,
defines the path of states through which the agent passes to reach the other world state.

Pl ™
puleo) = ey, = ap(ep—1) = -+ = (ay o ---oap)(ey), 3)
o ano- - oa. ©)

Below we present the attributes that characterize the plans of a case base, which allows us to
relate BDI language with the parameters of interest within a CBP. We consider CSP problems
to lend the model generality (Sam-Haround 1995). These types of problems don’t only search
for solutions but also have to conform to a series of imposed restrictions. Based on studies
on the theory of action (Davis 1979; Allen 1984), we will select the set of objectives for
a plan and the resources available as a variable upon which the CSP problems impose the
restrictions. A plan p is expressed as

p=(E,O,O R, R, where

(1) E is the environment, but it also represents the type of problem faced by the agent,
characterized by £ = {ey, e*}, where e, represents the starting point for the agent when
it begins a plan and e* is the state or states that it is trying to attain;

(2) O indicates the objectives of the agent and O’ are the results achieved by the plan; and

(3) R are the total resources and R’ are the resources consumed by the agent.

In Table 1, we show the indicators derived from the attributes that we have shown and

which we will use to identify and contrast the quality of the different plans (# means cardinal
of a set).

TABLE 1.  Indicators of Plan Quality

] . . o . #0O'NO

Eﬁicqcy Qf the plan: Relationship between objectives attained and E;= T) (10)
objectives proposed

Cost of the plan: Relationship between the resources used and the C = i—’; (11)

resources available

Efficiency of the plan: Relationship between the objectives attained and the ~ Ejy = #(O#’Rm, 9 (12)
resources consumed

# means cardinal of a set.
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As a representation of a plan p in the database, we use a more compact expression,

p =(E, F(O; R) = 0), where

(1) F(O; R) = 0Oistherestriction function of the plan or quality function. Not all plans that
obtain certain objectives by consuming resources are equally acceptable. This function
demands that some minimum objectives are attained and a maximum consumption of
resources for the plan to be considered acceptable. F' determines the level in which the
solution is adequate or not, keeping in mind the relationship between objectives and
resources. For simplicity, we consider a single action plan p; = p, a; = a, so that:

—,.-E— FE
p =d. e = aleg)=e; (13)

From the point of view of the BDI agent, to execute a plan p, beginning from ¢ and
aiming to achieve the state e, the agent needs to

(1) have characterized state e : {0, ...,b°} = Bl C B;

(2) have characterized state e : {b},..., b} = B2 C B;

(3) know how to execute action a; and

(4) know that the action allows it to pass from ¢ to ey, in other words, to be able to guarantee
that the intention exists.

If we have a defined problem E = {ey, e}, a plan p to solve the problem can be char-
acterized by the relationships between the objectives reached and the resources consumed
between both states.

We can assume then that the agent doesn’t just have knowledge about the world, however,
given a problem, it possesses knowledge that allows it to relate its world beliefs with the
objectives and resources of any state during the course of a solution plan. This condition
guarantees that there is communication between the BDI structure of the agent and its CBP
reasoning motor as can be seen in Figure 1. Figure 1 shows the internal structure of a
CBP-BDI agent. The agent posses beliefs and has desires. The intentions are constructed
to achieve desires by using the knowledge contained in the beliefs. The intentions are then
processed applying CBP. If the agent receives new perceptions, the belief base changes, thus
the intentions can change and a replanning action can be necessary.

The general functioning process is derived by following the typical phases of a case
based system (Aamodt and Plaza 1994; eliminating the revision phase). We use the name
CBP system (or methodology) to describe a procedural information process in which past
experiences are used to decide how to deal with a new problem, which share similarities with
previous problems (Carbonell 1983; Hammond 1989).

These experiences, stored as cases, act dynamically on each CBP cycle.

The reasoning process of a system of this type carries out the following stages (Figure 2):

(1) Retrieval: Given a state of the perceived world e( and the desire that the agent encounters
in a state e* # e, the system searches the case base, previously checked by the intention
function through which the system gains sufficient knowledge, for plans that have
resolved similar problems.

(2) Adaptation/Reuse: From the previous phase, we obtain a set of possible solutions for
the agent {py, ..., p,}. In this phase, in accordance with the planning model G (defines
how the agent is going to behave when facing changes in the environment), the system
uses the possible solutions to propose a solution p*.

G(eo, p1y.--» pn)=p~. (14)
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FIGURE 1. BDI-CBP based on plans.
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FIGURE 2. Life cycle of a CBP.

(3) Learning/Retention: The plan proposed may attain its objective or fail in its develop-
ment. The information on the quality of the final optimum plan denoted by w s(p*) in
the cycle is stored for the future and is directly proportional to (1) the initial value of
optimum plan denoted by w;(p*) and (2) the “rate of use” w(N), where N is the number
of times it has been used in the previous cycles of similar problems (Heckerman 1998).

wr(p) = wi(pH)a(N). (15)

The model proposed conforms to the conditions required to obtain a representation and
reasoning based on the action (Pollack 1992). The set of action capabilities of the system
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restricts what type of plans are possible that, at the same time, frame how the agent’s reasoning
model has ended up, ultimately fixing the type of representation of the world that the system
has.

2.2. Embedded Agents: Dynamic World—Agent System

Below we model the dynamic relationship between the behavior of the agent and the
changes in the environment.

We represent the behavior of agent A by its function action a4(t) Vt, defined as a
correspondence between one moment in time ¢ and the action selected by the agent,

Agent A = {a4(t)}iercn- (16)

We determine the behavior of the environment E by a sequence of states e(t) through
which it passes over time,

E = {e(t)}iercn, (17)

which we call environment evolution function. The variation of the function e(¢) has at least
two possible sources:

(1) A term thatrepresents the random changes of any environment with stochastic behavior.
(2) A term that collects the changes in the environment provoked by the agent behavior in
search for its objectives.

From the definition of the action function a 4(t), we can define a new relationship that
collects the idea of an agent’s action plan,

. Tx4 — 4
Pa: (t.as(t)) —~ pa(t)’ (18)

in the following way:
palta) =Y aialt; — ti-y), (19)
i=1

where a; 4 indicates action i carried out by agent A.

Given the dynamic character that we want to print onto our agent, we propose as a
definition of the agent plan, the continuous extension of the previous expression in other
words:

paltn) = / "au(ydr. (20)

fo

The variation of the agent plan p 4(¢) will be provoked essentially by:

(1) The changes that occur in the environment and that force the initial plan to be modified.
(2) The knowledge from the success and failure of the plans that were used in the past,
which are favored or discarded via learning.

As we have demonstrated so far, both the plan p,(#)—that represents the agent—and
the environment evolution function e(?)—that characterizes the environment—are related to
each other. Together they form a system of coupled equations:
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e(t) = F(eo(t), au(1)),
Py = G(e(?), pa(t)),

where £ is the abbreviation of F(O; R), O are the objectives that can be expressed through
the states achieved and R are the resources that can be expressed by means of agents’ ac-
tions. Therefore, F(O; R) and F(ey(t), a4(t)) be different forms of denoting to the same
function F.

This system of equations represent a general world—agent model (the plan of actions
p4(t) characterizes the agent and the evolution function e(¢) to the environment) and allows
it to formulate its dynamic nature. The conclusions that we can obtain through the analysis
of the solutions will be general and independent of the specific form F (abbreviation of
F(0; R)), with which the world varies—in terms of the type of the environment and its level
of dynamism—and the particular strategy G that the agent uses to plan p 4(¢).

Applying the theory of dynamic systems (Abraham and Shaw 1992; Norton 1995), we
obtain the first result: The system is not autonomous (a system is autonomous if the properties
that characterize the system are independent of time), and therefore, there is no general theory
that indicates how to resolve the equations in this case. The study is made then of qualitative
manner, where:

21

(1) Function F isn’t known (the behavior of the world is stochastic) and is considered
simply as a generating source of changes, which are only known when they are
produced.

(2) Function G, which defines how the agent is going to behave when facing changes in the
environment, is obtained through a process of constructive design:

(i) A sequence of stages is constructed, which determines the way in which the agent
processes the information that it receives to deploy the plans in the environment.

(i1) Itdemonstrates thatthe model G obtained is compatible with the dynamic conditions
that the system demands, as shown in equation (21).

In the next section, we develop the model for behavior G of the agent and step by step
we justify the reasons why the constructive process has been carried out in this way.

3. MRP-AGENT: A REPLANNING AGENT MODEL

The objective in this section is to introduce an architecture for a planning agent that
behaves—and selects its actions—by considering the possibility that the changes in the
environment block the plans in progress. We call this agent MRP because it continually
searches for the plan that can most easily be replanned in the event of interruption.

The MRP architecture will have at its base, a CBP-BDI system (see Section 2), and will
manipulate its knowledge by following a model G that allows it to determine the best plan
according to the replanning criteria.

To demonstrate the process of construction for the behavior model G of the MRP agent,
we need to introduce the notation and the terminology that we are going to use to represent
a planning problem.

(1) Given an initial state ey, we use the term “planning problem” to describe the search for
a way of reaching a final state e¢* that meets a series of requirements.
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(2) We define “restrictions or requirements of a problem” as the relationship between vari-
ables of efficacy and efficiency that determines the level in which the solution is adequate
or not.

f(01,....,0)=0
F(O;R) = g(Ri,...,R) =0 (22)
h(O1,....,0; Ry, ..., R) =0,

where f is a function that depends on the objectives that must be achieved and g is the function
depending on the resources that can be used, both are lineal combinations of binary variables
that take value zero or one depending on if the objective wants to be reached or not or if the
resource is needed or not, and # is the hyperplan of equations of / and g.

(1) Solution is the sequence of accessible states between one that allows it to reach the final
state and conforms to the restrictions,

Sz{eo,el,...,enze*} (23)

and “solution plan” is the sequence of actions that the agent needs to carry out to generate a
solution S.

Pn=a,0---0dj. (24)

The general scheme is as follows: Given a problem E = {ey, e*}, for which we seek a
solution S conforming to certain restrictions F(O; R) = 0, the agent MRP will seek a plan
p that consists of a methodology CBP (Carbonell 1983) that forms the base of experienced
plans and proposes a plan that considers the possibility that the changes in the environment
interrupt its development. In the following subsections, the complete process is shown in
detail.

3.1. Agent Planning Space

Given a discrete variable X that can take values of a numerable set that we represent as
X = {xi}ien, (25)

we can define the associated accumulated variable, that we denote as Ac(X). This is a new
variable constructed by assigning each of the possible values x; taken by variable X, the total
of previous results.

If X is discrete, the value ith of the variable Ac(X) is defined as

Ac(x)=Y x; Vx € X. (26)
j:l

If the variable X is continuous and its values in the interval [a, b] , and it is represented
by function x(¢); we define the variable Ac(X) at a point x; € [a, b]:

Ac(x;) = /Xix(t)dt Vx; € [a, b]. (27)
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Given a problem E and a plan p(¢), we can construct functions Ob and Rc¢ accumulated
from the objectives and costs of the plan. For all time points #; we can associate two variables:

Ob(t;) = f ' o) dt, (28)

Re(t;) = / ' R(t)dt. (29)

This allows us to construct a planning space (or space representing the environment for
planning problems) as a vectorial hyperdimensional space, where each axis represents the
accumulative variable associated with each objective and resource.

The planning space, defined in this way, conforms to the following properties:

Property 1: The representation of the plans within the planning space are always
monotonously growing functions. Given that Ob(¢) and Rc(¢) are functions defined as
positive (see definition), function p(¢) expressed at these coordinates is constant or grow-
ing.

Property 2: In the planning space, the straight lines represent plans of constant efficiency. If
the representation of the plans is straight lines, the slope of the function is constant and
coincides with the definition of the efficiency of the plan.

d _AO)
g P =cte s im e

cte. (30)

In an n-dimensional space, the extension of the straight concept line is called a geodesic
curve. In this sense, we can introduce the notion of geodesic plans that are defined as those
that maintain efficiency at a constant, throughout their development.

The concept of a geodesic plan can be better understood through the idea of a plan of
minimum risk. If the environment is changeable, any other relationship with efficiency that
isn’t constant will imply that the agent makes plans for the future (it considers that in the
future certain efficiency relationships will be met and as such, it makes sense to assume
greater or lesser efficiency ratios). In an environment that changes unpredictably, any plan
that is distal to the geodesic plan means that a certain risk is accepted.

3.2. Agent Reasoning Model: Construction of G(¥)

Given a problem E, the agent must search for the plan that determines a solution with
a series of restrictions F(O; R) = 0. To deal with the restrictions, we are going to make a
change in the coordinates: Instead of seeking plans of constant efficiency that are adjusted to
F(O; R) = 0, we construct the hyperplan that collects all such information and we calculate
the straight line within it (in general non-Euclidean).

(1) Inthe plans base, we seek those plans that are initially compatible with the problem faced
by the agent, with the requirements imposed on the solution according to the desires,
and in the current state (Aamodt and Plaza 1994). If we represent all the possible plans
{p1, ..., p,} within the planning space, we will obtain a subset of states that the agent
has already attained in the past to resolve similar problems.

(2) With the mesh of points obtained (generally irregular) within the planning space and us-
ing interpolation techniques, we can obtain a working hyperplan /(x) (that encapsulates
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the information on the set of restrictions from restored experiences), from which we
can calculate geodesic plans.

(3) Starting from the values given for { f (x;)};=1... », where X = {x;};—; ., are variables in
the planning space, the theory of functions of radial base as combinations of B-Splines
proposes an expression of A(x) in the following way (Reuter et al. 2003):

h(x) = m(x)+ Zlid)(ﬂx —Xill2)x, x; € E)'td, Ai €NV, 31

where the coefficients vector A; encapsulates all the information needed to manage the re-
striction associated with a problem; The coefficients A; of the function A(x) are determined
by demanding that / satisfies the interpolation conditions:

h(xj)= f(x;). j=1,....n. (32)

and functions ¢(x) are a complete base of orthogonal functions. Duchon (1977) has demon-
strated that the selection of cubic functions are the most suitable in interpolation problems
for obtaining the smoothest function (Hegland, Roberts, and Altas 1997).

P(x) = (Ix12)°. (33)

The system of equations (32) can be resolved by the conjugated gradient method, or
directly, and the cost of the solution is at most the order O(k?) (Beatson and Light 1997). The
computational pack used to make these calculations is known as JSpline+ (Spline library for
Java), which uses a B-splines radial bases functions (Duchon 1997), so that the information
on the restrictions space /(x) can be reduced to tackling the coefficient vector 1.

3.2.1. Calculating Efficient Plans. The variation calculation (Schutz 1993) consists
in a set of mathematical techniques that allows us to know the geodesic paths between one
point in a non-Euclidean space and a set of points represented by a function that we call the
function of final states, which we denote as f; f.

In general, the simplest variation problem is given when f; f is only one point in the
space, f; f = e*, and the geodesic g that links ey with e* is obtained Figure 3.

In a problem where the set of end points is n > 1, variation techniques with mobile
frontiers are used, which offer us a set of geodesics between the starting point and each one
of the points of the final set. If f; f = {e, ..., e, }, we obtain a geodesia set {g], ... gn].

)

FIGURE 3. Geodesic g linking: Initial and final state.



88 COMPUTATIONAL INTELLIGENCE

Below we apply variation calculation techniques for the planning problem that has been
set.

Given a problem E that seeks a plan that allows it to pass from one state of the world eq
to a state e* € f; f conforming to restriction F(O; R) = 0, we can construct the hyperplan of
restrictions /(x), with which we apply variation calculation. Suppose, for simplicity’s sake,
that we have a planning space of dimension 3 with coordinates {O, R;, R,}.

Between the state ey and the objective states f; f and over the interpolation surface 4 (x),
the Euler Theorem (Glez-Bedia and Corchado 2002; Jost and Li-Jost 1998) guarantees that
we will obtain the expression of the geodesic plans by resolving the following system of
equations:

oL d JL
3R, dOdR,
(34)
oL d oL
3R, dOIR,
where R; is the function acculmulated R, O is the function of accumulated O and L is the
distance function on the hyperplan /(x),
L= / dl. (35)
h

To obtain all the geodesic plans that, on the surface A(x) and beginning at ey, allows us
to reach any of the states e* € f; f, we must impose as a condition of the surrounding that
the initial state is ey = (Qg, Ry).

Using variation techniques, we obtain expressions for all the geodesic plans that, begin-
ning at ey allows us to attain the desired state.

3.2.2. Heuristics: Searching for Easily Replanable Solutions. Once plans have been
obtained that will create efficient solutions between the current state and the set of solution
states, we will be able to calculate the plan around it (along its trajectory) by a denser
distribution of geodesic plans (in other words, a greater number of geodesic plans in its
environment). The tool that allows us to determine this is called the minimum Jacobi field,
associated with the solution set (Lee 1997).

With a set of geodesics {g,(x)},cn over A(x), we select one which we call gy. Mathemat-
ically, the Jacobi field of gy over A(x) is defined as the field of gy variations throughout the
set {g,(x)},en. The definition is an extension of the derived notion as shown below. We can
see here, a way of introducing a derived idea that is different from the standard.

Ifthere is a function f : [a, b] — N, where x € [a, b] anditist € (—&, ). We can build
the set of functions {/,(x)};c(—¢,¢) formed by functions that are small interferences of the
function f(x):

{hi(x)/ hi(x) = f(x +1),V1 € (—¢, ¢)}. (36)
If we take the variations to a differential limit ¢z € (—e¢, ¢)
[y tim by (x) = tim £x + 1) (37)

we can obtain the derived definition of f(x).

Impelled by this way of constructing the function derivate, we can now introduce the
concept of field of variation in a geodesic g on a surface S. gy : [0, 1] — S be a geodesic
over a surface S. Let & : [0, 1]x[—¢&, €] — S be a variation of gy so that for each t € (—s¢, ¢),
the set {ht(S)}tE(fe,s):
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(1) hs(s)Vt € (—¢, ¢) are geodesic in S.
(2) They begin at gy(0), in other words, they conform to %,(0) = go(0) V¢ € (—s¢, ¢&).

In these conditions, taking the variations to a differential limit, we obtain:

, , d d
lim{h(s) = gols +0) = lim{h(s, 0) = 52| =TL =Ty GY)
We give the term Jg (s) to the Jacobi field of the geodesic gy for the set {g,(x)},en,
and in the same way that the definition has been constructed, we give a measurement for the
distribution of the other geodesics of {g,(x)},cny around gy throughout the trajectory.
Given a set of geodesics, some of them are always g* that, in their environment, have
a greater distribution than other geodesics in a neighboring environment. This is equiva-
lent to saying that it presents a variation in the distribution of geodesics lower than the
others and therefore the Jacobi field associated with {g,(x)},cny reaches its lowest value

at Jg-.
Let’s return to the MRP agent problem that, following the recuperation and variation
calculation phase, contains a set of geodesic plans {py, ..., p,}. If we select the p* that has

a minimum Jacobi field value, we can guarantee that in the event of interruption, it will have
around it a greater number of geodesic plans to continue. To select this plan would mean to
select the solution that can most easily revert to another if it is interrupted.

For our problem, the minimum Jacobi field is synonymous with the capacity for replan-
ning. This suggests the following definition:

Given a problem E with certain restrictions F(O; R) = 0, and a set of final desirable
states f; f, and given a set of geodesic plans that define the routes of constant efficiency
between the initial ey and each of the elements of the final states {ey, ..., e, }, we define the
most replanable solution (MRS)) as geodesic plan p* with minimum associated Jacobi field
associated with the set {g,(x)},cn.

In this way, the behavior model G for the MRP agent is defined. For each problem FE that
it represents, the agent selects the most replanable solution defined as that geodesic plan with
minimum Jacobi field, that is expressed

G(eo,pl,...,p,,)=p*<:>3neN/JnEJg*zMi]{[ngn. (39)
ne

With this result, we can characterize the agent’s mode of behavior. If the plan p* is not
interrupted, the agent will reach a desired state e; =e* € f f j € {1,..., m}. Below, in
the learning phase, a weighting w /(p) is stored where N becomes N+1 (see Section 2.2. A
specific expression for Bayesian learning will be outlined in Section 5). With the updating
of weighting w +(p*), the planning cycle of the CBP motor is completed. Below we see what
happens if p* is interrupted.

3.2.3. Life Cycle of the Agent: Dynamic Replanning. Let’s suppose that the agent has
initiated a plan p*, but at a moment ¢ > fy, the plan is interrupted due to a change in the
environment.

The geodesic planning (the section of plans with a constant slope in the planning space)
meets the conditions of the Bellman principle of optimality (Bellman 1957); in other words,
each on of the plan’s parts is partially geodesic between the selected points.

This guarantees that if g, is geodesic for interrupted e in #; because ey changes to ey,
and g is geodesic to e; that is begun in the state where gy has been interrupted, it follows
that

g = go + g1 is geodesic to e = ey(t; — to) + e1(tr — 1).
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FIGURE 4. Model for behavior G(¥).

Interruption

In other words, we can construct our global plan in “pieces.” If each time the environment
changes and interrupts the execution plan, a new geodesic plan is selected, the overall plan
will be geodesic.

The dynamic process follows the CBP cycle recurrently: Each time a plan finds itself
interrupted, it generates from the state reached so far, the surroundings of the plans from the
case base and adjusts them to the new problem. With this, it calculates the geodesic plans
and selects the one that meets the minimum conditions of the associated Jacobi field. In this
way, the dynamic planning model of the agent G(¢) is characterized as can be observed in
(Figure 4).

In the dynamic context, the following properties of G(¢) are particularly relevant:

Property 1. All the Jacobi fields are variations of geodesics.

It can be demonstrated (Milnor 1973) that there exists a isomorphism among all Jacobi
fields, that are constructed between the end points.

Property 2. All the geodesic variations are Jacobi fields (Milnor 1973).

These two results allow us to introduce the concept of a global Jacobi field. We call
global Jacobi field or dynamic Jacobi field J(t) that Jacobi field, formed by a set of partial
or successive Jacobi fields. The above properties allow us to ensure that the change from one
partial Jacobi field and the next preserves the conditions of a Jacobi field because it produces
a change between geodesics.

We can observe that a minimum global Jacobi field J(#) also meets Bellman’s conditions
of optimality (Bellman 1957); in other words, a minimum global Jacobi field must select
minimum Jacobi fields in pieces

Jmin(t) - {Jmin(tl - tO)a Jmin(tZ - tl)a R Jmin(tn - tn—l)}- (40)

If on the one hand, successive Jacobi fields generate one Jacobi field, and on the other
hand, minimum Jacobi fields generate a minimum Jacobi field, the MRP agent that follows
a strategy of replanning G(¢), as indicated, to survive a dynamic environment, it generates a
global plan p*(t) that, faced with all possible global plans {p,(¢)},cn, presents a minimum
value in its Jacobi field Jg:(¢) = J,«(2).

Until now, we have formally defined an agent that, in a dynamic environment, seeks plans
that lend it greater capacity for replanning. In the next section, we show that the planning
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mechanism proposed G(¢) meets with the necessary and sufficient conditions for it to be a
solution for an agent—world system.

4. DEMONSTRATING THE DYNAMIC COMPATIBILITY FOR MRP-AGENT

In the section that follows, we will demonstrate that the MRP, whose planning model
G (t) continuously selects the geodesic p*(¢) with a minimum Jacobi field value until reaching
objective J,«(t), is compatible with the binomic agent-world dynamic and conforms to the
conditions to be the system solution.

4.1. Necessary Conditions in Non-Autonomous Dynamic Systems

In Section 2.2, we explained that in non-autonomous dynamic systems, where in general
there is no quantitative solution, a constructive resolution focus is employed. We now see,
in detail, what should be required of the model obtained for it to be a solution in a non-
autonomous dynamic system.

In the first place, we summarize the procedural phases of analytic resolution in an au-
tonomous system. An autonomous dynamic system (for simplicity’s sake, one-dimensional
and first-order) can be represented by

%x(z‘) = u(x), (41)

in which the evolution of x(#) is given by u(x). The source of change u(x) is usually repre-
sented as if it had been obtained from a potential V' (x):

Vix)=— / u(x)dx, (42)
so that the evolution x(¢) over time always follows the direction of the minimums of potential.

d d

—x(t) = ——V(x). 43

Tx(t) = =V () (43)

In this type of system, to calculate the solution x(¢) is mathematically equivalent to
finding an invariant quantity of a system,

C(x(2), V(x),t) = cte. (44)

The meaning of C in the problem can be understood, if we adopt a systemic perspective
(Beer 1995). From this viewpoint, for a system in interaction that changes over time, to
survive as a global structure, some invariant property needs to persist that will conserve the
structure of the interaction (Maturana and Varela 1980; Beer 1995).

To know the value of C is equivalent to resolving the problem, and according to the
Hamilton principle for autonomous systems, for all possible values of C, this will take a
stationary value (maximum or minimum).

In our problem, the equation that we are trying to resolve is not autonomous,

d
S PO =s(1) (45)
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and as such, we have constructed a planning model G(¢) that generates a plan p(¢) that,
expressed by its coordinates {O;, Ry}, x, conforms, at each moment of time ¢, to

9J(t)

= 46
90,0Rx (46)

d
—p(t) = —
5, PO
in other words, the evolution of p(¢) follows the minimums of the global Jacobi field.
By analogy, with this autonomous case, in the interaction between the agent and the
world, there exists an invariant quantity in the system,

C(p(t), J(t), t) = cte (47)

that allows the survival of the coupled set independently of the changes that occur. Therefore,
the model G(¢) conforms to the conditions necessary to be considered a solution for the
agent—world system (Abraham et al. 1992).

Intuitively we can attempt to find a meaning for this variable C that relates to the fact that
with each interruption, the system selects the plan of constant efficiency whose minimum
value of Jiyin p=().

In the same way that we constructed G(¢), the agent selects a plan that always seeks the
greatest replanning capacity. The choice of p*(¢) seeks the maximum replanning potential ,
which is an end value that is reached throughout the process. Therefore, we are able to
understand C(¢) as the measurement of the replanning capacity of the system. From this
point of view, we can say that, for an agent to survive in a dynamic environment, it must seek
the solution of least risk and with greatest replanning capacity.

We have proven that, the replanning strategy guarantees the condition required to be the
solution for the system. Below we see the sufficient condition.

4.2. Sufficient Condition

Green’s functions represent a way of expressing behavior that follows the response of
a system o(¢) faced with a stimulus function i(¢) that comes from outside (Snieder 1994).
To express the response of a system in terms of Green’s functions, we need the “response—
impulse” function that represents the response of the system to a momentary stimulus, written
as §(¢). The stimulus function is a function that depends on #; in each moment, ¢ is a constant
that takes the value 0 if there is no interruption of the plan and the value 1 if there has been
one because it only interests us to know the system response when there is a stimulus, and
those stimuli take place with the interruptions of the plan.

In our case, these types of momentary stimuli are interruptions to our plans. In these
cases, the system responds with a strategy that we have called G(¢).

Green'’s functions allow us to express and calculate the relationship between the stimulus
and the response of a system through the product of convolution with its Green’s function
(Snieder 1994):

o(t) = / h G(t, @)i(0)do < o(t) = G(t) @ i(¢). (48)

o0

If in the planning problem, we understand plan p(#) to be the response function of the
system faced with stimulus in the environment F'(¢) and that for each interruption §(¢) the
agent behaves according to G(¢) as many times as its Green’s function, then,

pt) = / h G(i, ) F(a)da. (49)

oo



REPLANNING MECHANISM FOR DELIBERATIVE AGENTS 93

With this result, we are going to propose a new way of resolving the equation of evolution
p(?) in a dynamic environment,

d t) =s(t 50
TP = s(). (50)

To give a specific solution p(#) to the equation above, it isn’t enough simply to have a
general expression of the type of function p(¢), the conditions of the problem’s surroundings
must also impose themselves (initial state ey, final state e*, and restrictions F(O; R) = 0).

It can be demonstrated (Snieder 1994) that if the initial plan p(¢) of the system is static,

d
—po(t) =0, 51
o po(?) (51)
which we express as
Po(t) = polt, eo, fs /o Ezy), (52)

then the expression of a specific solution for the dynamic problem p,(¢), conforming to the
conditions of the surroundings,

Ds :ps(eO’ fsf’ Eff) (53)
takes the following form in terms of the system’s Green’s function:
PO =pi+ [ G wF@da. (54
—00

where py(t) is the initial plan, F'(¢) is the behavior of the environment, and G(¢) is the planning
model.

We can conclude that model G(¢) contributes all the sufficient information needed to
completely characterize an expression of the plan p(¢) throughout time, compatible with a
dynamic perspective of the interaction between the agent and the environment. If we add
to this the previous result, we can ensure that model G(¢) for the behavior of the agent
conforms to conditions that are both necessary and sufficient to be considered a solution
for the system.

5. EXPERIMENTAL EVALUATION

To prove the validity of our model, in this section, we design an experiment that allows us
to obtain empirical information from a simulation platform. Two new agents will be defined,
E-Ag and O-Ag, with the same architecture as the MRP agent, but with strategies that are
less prudent when selecting action plan p*(¢). Their results will be compared in different
environments.

In the first place, the behavior models for the new agents will be introduced and then the
different simulation environments will be defined. After that, the three architectures will be
implemented and an analysis will be made of the results in terms of the parameters of quality
(efficacy, efficiency, etc.). Finally, we define how the process of learning influences each of
the agents.

5.1. Types of Agents

The architectures of E-Ag and O-Ag are equivalent to those of MRP-Ag: BDI structures
with a CBP motor that generates a set of geodesic plans {g;,(x)},cn for a determined problem.
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Nevertheless, in the adaptation phase the plan p* that presents a minimum Jacobi field

value is not selected:

(1

2

The efficient agent, E-Ag selects the geodesic plan p* that allows it to pass from current
state e to the state e; = e* € f;f j € {l,..., m} that conforms to the condition of
maximum efficiency. The sub-index in e indicates that goes associated to the chose
state e. Each e; € E (abbreviated by e) has a representation within the space {O, R} in
such a way that it can be associated with a measurement of its efficiency,

O,
Efp =7 (55)

The agent E-Ag therefore calculates the maximum of the function E ;s and applies
variation calculation between the two fixed states.

The system tackles the interruptions and the dynamic of the problem using a mech-
anism of continuous recall to the case base. The plan p.(¢) (associated plan with state
e) obtained through this technique, meets with Bellman’s condition of optimality (to
follow a constant maximum efficiency trajectory requires that maximum values are
followed in pieces) and allows us to define a model E s¢(¢) characterized by selecting
the most efficient plan,

De = 1}1/162}34 E rr(pn)- (56)

The second of the agents that we call O-Ag, selects the geodesic plan p; € {g,(x)}nen
that allows it to pass from the current state ep to astatee; =e* € f;f j=1,...,m
using the minimum sequence of actions. Geometrically, this minimum plan p; is the one
that unifies the initial state ¢y and a final state e* so that the minimum value is reached
within the operating distance.

To calculate this plan py, it is necessary for the set of final states f; f to conform to
the equation of transversibility (Jost and Li-Jost 1998). This mathematical condition
ensures that the plan obtained to resolve the equation is the one which passes from
an initial state ej to a state e* € f; f in conditions of ortogonality. The ortogonality
guarantees that the plan that results from it will have a minimum longitude.

The plan p; obtained from this equation conforms to the condition of being

pi=Min L(py). (57)
neN

The O-Ag planner tackles interruption in an identical way to the other two planners
described, through a mechanism of continual recall from the case base. In the same way
as the ones above, the strategy meets Bellman’s conditions of optimality (a minimum
plan p;(¢) is the plan that is also minimum for each of its pieces), which allows it to
define a dynamic L(¢) behavior model.

In this way it is possible to characterize the three types of agents by their associated

Green’s function, which we describe as:

o FEr(t) select the plan that tends towards the most efficient state.
e [L(t) select the plan with least stages to reach e* € f; f.
e G(¢) selects the most replanable until reaching a e* € f; 1.
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5.2. Definition of the Types of Dynamic Environments

A dynamic environment changes, and this is detected by the agent from the change in
its beliefs. The dynamism of an environment is characterized for the agent, not only by the
number of beliefs that change K but also by the frequency f of change that is measured by
the period T between consecutive changes.

We call the unit of time in the simulation process fn. In each period of time At = 4
the system executes an action, it adapts beliefs B toward the state of the world and updates
its plans in the case base BC compatible with the problem £ and knowledge B.

tsm = f(tp, dim B, dim B P) where ¢, is the time of the timer implemented

In these conditions, we define 4y, = rt,, where r is sufficiently large for the system to
update its values before carrying out the next action.

In general, an action a of an agent is executed when the system possesses a knowledge
that is given by a set of beliefs:

{bi,....bj} = a. (58)
For simplicity’s sake we assume a unitarian relationship between a belief and an action.
bi = a;. (59)

If all beliefs were true, the most complete plan would be the one that uses a number of actions
equal to size m of the set of beliefs B. In these conditions we can define the variables K and
T more precisely:

(1) We call the number of beliefs that change within a given period, K If we know that
m = dim B, we have limited the value of &

k € {0, m). (60)

(2) We use T to describe the period of time between consecutive changes in the beliefs
about the world. This parameter is delimited between the minimum period of time in
the experiment g, and the maximum time that it could take to reflect the longest plan:

T e {tsim’ ttotal}- (61)

To carry out specific experiments we take a set of beliefs m = dim B = 20 that is consid-
ered sufficiently large to be able to see how the agents respond when faced with interruptions,
but sufficiently small to be able to tackle the complete set of plans generated by the CBP.
The objective of this experiment is to observe the behavior of the planner in the event of
interruptions and not the efficiency in terms of response time. To be able to observe the
above-mentioned we consider significant a set of 20 beliefs. If the planner is capable of re-
planning with a set of 20 beliefs, it will also be able to do it with a set of hundreds or thousand
beliefs, and the planner also has replanning possibilities. Once the replanning ability has been
demonstrate it could be of interest, for a future work, to establish a metric for the response
time. This metric would depend on the similarity algorithm or the organization of the cases
memory. This leads us to design experiments with four types of environments:

(1) Quasi-aesthetic environments: Very few beliefs k£ change, and the changes are very
infrequent (in other words, the period between changes is very large)

Eo={(k,T) kel0,5),T e(15,20]). (62)
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(2) Environments of little change: Few beliefs k change, and the changes produced are of
a low frequency,

E ={(k,T) kel[5,10), T e (10, 15]}. (63)

(3) Changing environments: A significant number of beliefs & change, and changes are
more frequent,

E, ={(k,T) ke[l0,15),T e (5, 10]}. (64)

(4) Extremely dynamic environments: Many changes in beliefs in each cycle and changes
are very frequent,

Ey={(k,T) ke[l5,20),T e(l,5]). (65)

In these environments, a problem is proposed and the three types of agents are introduced.
E-Ag, O-Ag, and MRP-Ag, compete to be the best planner.

5.3. Implementation

For the implementation of the three agents, an architecture is constructed of three layers:
(1) memory layer, where the information of case base resides in the form of beliefs and plans
that are periodically updated; (2) processing layer that controls the planning process; and (3)
presentation layer which constitutes the interface with the user.

5.3.1. Memory Layer. Given a set of beliefs B compatible with problem E, we can
generate a plan base CBP that contains all the possible plans produced by the combinations
of compatible beliefs. For the experiments, only some will be used. In Figure 5, we present
the algorithm used for implementing the CBR agent.

The consultations made to the memory (relational database SQL server) use SQL lan-
guage to access the data on beliefs and plans. The database motor used is Microsoft Sql
Server 2000.

Once generated, we activate some of those available to be used by the system. When the
environment changes, some of these plans will remain unused and other possible plans are
activated.

5.3.2. Processing Layer. The implementation of the application is developed in JAVA
language, version j2sdkl.4.1., for the logic of the three types of planner E 7(¢), L(t), and G(¢),
as well as the connection with the database.

The mathematical calculations for obtaining %(x), through Duchon techniques, the set of
geodesics {g,(x)},en through the resolution of the Euler and transversability equations, or
for obtaining the Jacobi field, are carried out using the programme® Mathematica 5.2 and
the libraries Jspline+ and Jlink for java.

In Figure 6, we present a pseudocode of the scheme for implementing the planning model
of the three agents (except in the specific choice of the geodesic plan). A different geodesic
plan will be determined p.(¢), p;(t), and p*(¢) depending on the agent being used—E-Ag,
0O-Ag, or MRP-Ag.

5.3.3. Presentation Layer. A last layer is developed so that the designer can specify
and control the values of the simulation and its monitoring. It is an interface layer placed
between the designer and the system.
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Algorithm 10.7 CBR Generator
1: Vectors B, O, R

2:inti, j, k

3: while i<dimB

4: b; « Believe i (B)

5: B« B-{b}

6: O « O(by

7: R « R(b)

8: iy « b, {O, R}

9: CBR ¢«Stores (i)

10: kt++

11: IntentionConstruction (i, O, R, B){
12: forj =0 toj < dimB

13: b, < Believe_j (B)

14: B ¢ B-{b}

15: if (ix, b;) # 0 then

16: 0«0 +0(b)
17: R <R + R(b)
18: Iy «ir A b,,{O,R}
19: CBR «Stores (i)
20: K++

21: IntentionConstruction (i, O,
R, B)

22: Jj+t)

23: i++

FIGURE 5. CBR generation.
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Algorithm 10.6 Planning dynamics

1: Vectors B, O, R
2: Vector Plan
3: while planning

4:  if Present Believe b; <dimPlan then

5: if Present Believe b; = = True then

6: B «B-{b;}

7: O « O(b)

8: R « R(b)

9: Present Believe++

10: if not

11: /* Present Believe b; = = False */
12: Re-planning

13: if not

14: /* serendipity */

15: if present R < available R then

16: Re-planning

17: if not

18: /* Plan finished */

19: Bayesian weight update (present plan)

20: if 3 plan global then

21: Bayesian weight update (global plan)

FIGURE 6. Implementation of the replanning process.

Figure 7 shows how the designer can introduce the data about the problem (initial stage,
restrictions function, etc.) and the type of agent being used to attain a solution plan. The
system allows the possibility to make evaluations with a single agent or with various at
the same time. The designer can configure the simulation, choosing the planning strategy.
The designer can also interact to the agents once they have been instantiated, gaining access
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CBR generator

System desires Automatic
F(O, R)=0,e0 -
Efficient d.
Optimum d. . y
MRS d. |Select (desires) I |P03|ble casesl
Start r[:{ Planning I’H Planner type
Start simulation

Plan

FIGURE 7. Presentation layer.

to their internal structures (beliefs, desires, intentions, plans) and to inspect the agent’s state
and the planning steps.

5.4. Types of Experiment

To evaluate the behavior of each agent, we measure the quality of the plans. In Table 2, we
show the different attributes used to characterize the planning models. Different experiments
are proposed to measure how the results of the planning change according to the strategy used
and the dynamism of the environment. The conclusions are shown in the following tables
where:

(1) Files: Characterize the different environments by (k.7).

(2) Columns: The first column makes reference to the data related to the experiment (number
of simulations C?¢, number of series that reached the final state Ce, and their percentage
relationship); the second shows the data of the average case (number of actions or beliefs
used N., median number of interruptions ;, efficacy E7,, cost e, and efficiency e /)
and last, a third, which offer the results of the relative efficiency e s1, and the percentage
Ce02 with which the adjustments of the planner to the environment are measured.

TABLE 2. Quality Indicators Used to Characterize Plans

Ni Interruptions Number of replannings carried out up to the completion of the plan
Efo Efficacy Achieved objectives vs. possible objectives

es, Consumption Resources used vs. resources available

err Efficiency Objectives reached vs. resources used

Nc Plan stages Number of actions or beliefs used

erfr Relative efficiency Efficiency of the plan in terms of the number of stages

Cet Success Percentage of cases that reach a solution state vs. the total number
Ce02 Success 0.20 Percentage of successful cases that reach values within the top 20%
Ct Simulations Number of simulations

Ce Number series Number of series that reached the final state
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These classifications are developed from a series of simulation experiments (approximately
100) with different requirements to define its final states.

5.4.1. Experiment 1: Agents E-Ag vs. Agents O-Ag. In the first place, we propose to
measure the difference in results between the strategy £ /(¢) and L(f) in different dynamic
environments. The following data are obtained:

Independent of the requirement at the outset, the experiments show that (Table 3):

(1) In EO, E-Ag behaves better: The environment hardly changes and the strategy is able to
develop without interruptions.

(2) InE1 and E2, the O-Ag agents are more successful than those of E-Ag: both quantita-
tively (a larger number of cases reached the desired state) and qualitatively (there are
more cases which while meeting the desired requisites have values within an interval
of 0-20% of their most desired values).

(3) InE3and F4,inhighly dynamic environments, the results of both structures deteriorated
and were similar.

These results lead us to conclude that the optimal planning strategy L(¢), which seeks the plan
with greater e = %{, and the efficient E s(7), which seeks the plan with greater e/ = %,
don’t function in highly dynamic environments—their strategy is not designed for these types
of contexts.

5.4.2. Experiment 2: Agents O-Ag vs. Agents MRP-Ag. Below, in Table 3, we present
the results of the experiments that compared the planning strategy L(¢) with the planning
strategy G(¢). The structure of the experiments is identical to the one previously indicated.
The data found, presented in Table 4, reflects that, depending on the type of environment, the
success of each strategy is distributed as follows:

From these results we can conclude that

(1) Inenvironments E0, £1, and £2, with few interruptions (less that 10), the O-Ag agents
are more suitable.

TABLE 3. Comparison of Results between E-Ag and O-Ag

Strategy Typical Case Quality
Ct Ce Cet Nc ero Ey, err erfr Ce02
E-Agents
EO 100 78 0.78 11 0.49 0.51 0.86 0.07 0.6
E1l 98 55 0.55 10 0.46 0.53 0.82 0.08 0.3
E2 93 32 0.32 13 0.32 0.62 0.62 0.04 0.1
E3 97 12 0.12 12 0.28 0.69 0.40 0.03 0.02
O-Agents
EO 97 81 0.81 7 0.56 0.58 0.91 0.13 0.4
El 100 61 0.61 6 0.52 0.59 0.88 0.14 0.2
E2 99 48 0.48 10 0.45 0.62 0.71 0.07 0.08

E3 98 18 0.10 8 0.26 0.71 0.36 0.04 0.06
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TABLE 4. Comparison of Results between O-Ag and MRP-Ag

O-Agents
Strategy Typical Case Quality
Ct Ce Cet Nc ero Eg, err Ersy Ce02
EO 100 83 0.83 8 0.55 0.61 0.90 0.11 0.3
El 96 69 0.69 7 0.53 0.60 0.88 0.11 0.3
E2 93 51 0.51 8 0.48 0.64 0.75 0.09 0.07
E3 98 20 0.20 9 0.28 0.76 0.38 0.04 0.05
MRP-Agents
Strategy Typical Case Quality
Ct Ce Cet Nc ero err err errr Ce02
EO 98 79 0.79 11 0.51 0.64 0.79 0.07 0.4
El 95 64 0.64 12 0.47 0.68 0.69 0.05 0.3
E2 97 56 0.56 12 0.42 0.71 0.59 0.04 0.3
E3 100 41 0.41 14 0.39 0.83 0.46 0.03 0.2

They don’t only plan in such a way that they achieve a greater number of successful
cases, but they are fundamentally different by having higher Ce0.2 indices than the
plans proposed by MRP-Ag.

(2) InE3and E4 environments with a higher degree of dynamism (greater variation between
beliefs and greater frequency), the best results are presented by MRP-Ag architecture.
The higher number of successful cases Ce contrast with some levels that are relatively
low in terms ofthe Ce(2 parameter (in comparison with the O-Ag agents in environments
of little change). This result is somehow predictable, because the success of the MRP
strategy is based on prudent decisions, seeking benefits in the long term at the cost of
plans with more efficient levels in the final state.

The results of these environments, together with those obtained in experiment 1, allow us
to confirm that the O-Ag architectures propose a better strategy for environments of /little
dynamic. However, for more dynamic environments, the ability of the MRP agents to de-
sign plans that predict situations leading to future interruption makes them more successful
decision motors than the other strategies.

5.4.3. Comparison of General Results. Below we present the average results of various
series of experiments with the three types of agents (in the sample 10 series have been carried
out with 100 simulations). The results are compared for the following values:

(1) Median ey, represented as ey, determines the average attained by the agents to reach

a successful final state in relation to the number of plan stages e; = Li where n

indicates the size of the sample (» = 1000). "
(2) Standard deviation ‘, that measures the level of concordance between the measurements
and the median value.
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TABLE 5. Comparison of Results E-Ag, O-Ag, and MRP-Ag

E-Ag O-Ag MRP-Ag
e o g egr o Iz egr o Iz
EO 0.04 0.01 0.006 0.07 0.02 0.005 0.13 0.03 0.005
El 0.03 0.01 0.004 0.08 0.01 0.002 0.14 0.02 0.003

E2 0.01 0.008 0.002 0.04 0.006 0.002 0.07 0.008 0.002
E3 0.01 0.004 0.002 0.03 0.003 0.002 0.04 0.002 0.002

(3) Interval of confidence for u, that determines the probability that the true median value
is found at a certain distance from the average value eg. If we want reliability with a
rate of error & = 00.5, we will use ¢ of Student, t = 1.960 as the value.

_ to
=gk — (66)

N
From results (Table 5), we can conclude the following:

(1) In static environments, the strategies E r(f) and L() achieve better results than G(z)
because the initial plans, in general, are the definitive plans.

(2) Indynamic environments, the strategies £ /() and L(¢) do not behave adequately. The
interruptions ensure that the strategy £ ;/(¢) cannot reach the most efficient final states
while in the planning L(¢), the possibility to construct plans with few stages is blocked.
In this case, the model G(¢) constructs long-term plans but ones that guarantee the
objectives (although consuming more resources).

(3) Basically, we can be sure that in dynamic environments, the only strategy that can be
considered successful is the replanning strategy. If the dynamism of the environment is
reduced, G(¢) becomes a costly strategy in terms of resources and any one of the other
two is preferable.

In Figure 8, we represent the behavior of the three types of agents in terms of the dynamism
of the environment.

5.4.4. Experiment 3: Measuring the Effect of Learning. In the following experiments,
the number of times the plan is interrupted is measured (ni = number of interruptions) until
a final state is reached, to determine whether ni changes with learning (Heckerman 1998).

Each plan p has an associated indicator of its success w(p) that is modified each time a
CBP cycle is used, so that

wi(p) +A(p)N
N +1

where w (p) is the final weighting after being used, w;(p) is the initial weighting, N is the
number of times that the plan has been used, and A(p) is a parameter that measures the phase
of the plan where the interruption has been produced:

wy(p) = (67)

number of interruptioned phase

AMp) = . 68
2 number of phases of the plan 68)
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FIGURE 8. Representation of the behavior of agents according to the environment.
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FIGURE 9. Process of updating of the Bayesian weighting.

This rule for updating the weighting of the plans is dynamically applied, both for the global
plans and for each one of the partial plans that are used until reaching a final state. In
Figure 9, we show how in a process where a plan p; is interrupted and is completed, first by
a plan p, and finally by a plan ps, the weightings are updates in each of the plans used and
in the totals generated.

There are a number of other possible sources that may effect A(p):

(1) Random: A(p) could respond to coincidental events from the past, which have occurred,
but which didn’t necessarily have to be produced.
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TABLE 6. Measurement of Learning in O-Ag and MRP-Ag

ni: Number of Interruptions

O-Agents MRP-Agents
Cycles Cycles
10 25 50 75 100 10 25 50 75 100
EO 33 3.1 2.9 2.8 2.3 3.6 32 2.8 2.5 2.4
El 9.3 8.9 8.3 7.9 7.8 9.6 9.1 8.6 7.4 7.3

E2 14.6 14.1 13.8 13.6 12.8 14.3 14.1 13.6 13.2 12.7
E3 17.3 16.8 16.3 16.1 16.1 18.1 17.4 16.5 16.1 15.9

TABLE 7. Measurement of Relative Learning O-Ag and MRP-Ag

10 cycles 50 cycles 100 cycles
cet erfr Ce02 Cet errr Ce02 Cet erfr Ce02
O-Agents
EO 0.79 0.13 0.3 0.81 0.15 0.3 0.82 0.17 0.3
El 0.62 0.12 0.2 0.61 0.13 0.2 0.69 0.13 0.3
E2 0.55 0.09 0.09 0.50 0.10 0.2 0.58 0.10 0.2
E3 0.22 0.04 0.05 0.27 0.06 0.09 0.26 0.05 0.09
MRP-Agents

EO 0.76 0.08 0.4 0.78 0.09 0.4 0.81 0.09 0.3
El 0.63 0.06 0.3 0.65 0.07 0.3 0.62 0.09 0.3
E2 0.58 0.04 0.2 0.59 0.05 0.3 0.61 0.05 0.3
E3 0.43 0.02 0.2 0.46 0.03 0.2 0.49 0.03 0.2

(2) Ciritical points: A(p) could be responding to situations that reveal critical points in the
structure of the plan (situations that are more sensitive to a change in beliefs provoked
by the dynamism of the world).

Our learning model, after several cycles, allows us to detect those stages in the plans that
are more sensitive to changes in the environment. These plans are penalized and gradually
used less. Therefore, the learning guarantees that plans with high w(p) are more robust and
resistant to dynamic environments.

In principle, it seems obvious that w(p) will depend on the staticity/dynamism of the
environment. The measurements are carried out in different environments and the agents
O-Ag and MRP-Ag are compared. From the results of 100 series, we can conclude the
following:

Learning effect (general): A first result guarantees that both agents improve their behavior
with learning. Both are benefited, on average, if they lose the plans that have behaved worse
in the past and select those with the highest w(p) (Table 6).

Learning effect (relative): We are interested in the relative improvement that learning produces
in the two agents; in other words, which functions better when there is little information
(few CBP cycles) or where the agent has learnt (many CBP cycles). In Table 7, we can see
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how in conditions of little information (high uncertainty) the MRP agents behave better
and present greater success values in relative terms.

In terms of learning, we can conclude the in environments of high uncertainty, the MRP-Ag
agents are the most successful.

5.4.5. Conclusions from the Experiments. Based upon the observations, we can sum-
marize the results obtained in three types of environment:

(1)  Very dynamic environments. Both the number of beliefs that change per cycle and the
frequency changes that occur, are high. The original plans do not survive the dynamism
of the environment and the agents need to be flexible and capable of replanning on the
move. One agent with these characteristics is the MRP-Ag, presented in this paper.

(2) Semi-dynamic environments. There are changes in the environment that interrupt our
plans, but not as much as in the very dynamic environments. The best strategy developed
for this is used by the O-Ag that seeks simple plans with few stages, minimizing the
possibility for interruption.

(3) Quasi-static plans. The plans considered at the beginning have a high probability of
being completely realized. In these cases, to select plans of maximum efficiency, as
done by E-Ag, while losing in flexibility, may be the most effective.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced some fundamental ideas for the theoretical analysis of
the agency and theory of planning:

(1) Firstly, different agent architectures based on implemented planning tools have been
considered to fail, because to a lesser or greater extent, when given a criterion, they
seem the most suitable plans to resolve a problem. We believe that theories and agent
models should be based around a concept of flexible replanning (in this sense, we are
in accordance with Jon Elster when he comments (Elster 1999) that “In conditions of
uncertainty, the rational thing is to act as if the worst could happen”).

(2) Inthe paper, we propose a replanning agent model that, using a base of plans, is able to
design and redesign versatile strategies in the event that its plans are interrupted. The
technique that allows us to formulate this behavior is known as the Jacobi field in a set
of geodesics.

(3) This replanning technique should be compatible with other features demanded of dy-
namic agents. In this paper, we demonstrate that the proposed replanning technique
based on Jacobi fields constitutes the base for an invariant property within a dynamic
agent—world system. This could be described in the following way: The condition of
existence of an agent that interacts dynamically with its environment is capable of
replanning. 1f the contrary is true, the changes in the environment will suppress the
conditions of life (and action) for the agent.

(4) Once the MRP is formulated and implemented, together with two other planning
strategies—O-Ag and E-Ag—different simulation experiments have been proposed. The
experimental results show how in environments with a higher level of dynamism, the
only technique that offers resistant plans able to reach their objectives, are those pro-
posed by the MRP agent model.
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FIGURE 10. Scheme for the adaptable agent.

Using results from biological evolutionary systems (Gilbert 1987; Roy and Gilbert 2005),
we can introduce the difference between adaptive systems vs. adaptable systems. While
adaptive systems possess survival techniques that are compatible with the dynamic of a en-
vironment (perception, memory, operative capacity, or planning), adaptable systems possess
another property: The internal ability to modify its own techniques and become systems
adapted to new environments.

Given the models suggested and the results obtained, our line of future work will attempt
to change the strategy according to the environment perceived. This ability in the system
will have great significance in the development of artificial intelligence systems, which are
flexible and adaptable to changes in the environment. In Figure 10, we can see a scheme for
the adaptable system foreseen.

P =FE = {ey, *}. (69)
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