Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 38, Issue 5, May 2011
E ISSN 0957-4174

ELSEVIER

Expert
Sysiems
with
Applications

An International
Journal

Editor-in-Chief
Jay Liebowitz

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Expert Systems with Applications 38 (2011) 5486-5499

Contents lists available at ScienceDirect 3 .
W?I?ams
- i .:1
Expert Systems with Applications e

journal homepage: www.elsevier.com/locate/eswa

S-MAS: An adaptive hierarchical distributed multi-agent architecture for
blocking malicious SOAP messages within Web Services environments

Cristian I. Pinzén?, Javier Bajo®*, Juan F. De Paz®, Juan M. Corchado®

4 Universidad Tecnoldgica de Panamd, Campus Metropolitano “Dr. Victor Levi Sasso”, Via Ricardo J. Alfaro, Panama
b Departamento Informdtica y Automdtica Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

ARTICLE INFO ABSTRACT

During the last years the use of Web Service-based applications has notably increased. However, the
security has not evolved proportionally, which makes these applications vulnerable and objective of
attacks. One of the most common attacks requiring novel solutions is the denial of service attack
(DoS), caused for the modifications introduced in the XML of the SOAP messages. The specifications of
existing security standards do not focus on this type of attack. This article presents the S-MAS architec-
ture as a novel adaptive approach for dealing with DoS attacks in Web Service environments, which rep-
resents an alternative to the existing centralized solutions. S-MAS proposes a distributed hierarchical
multi-agent architecture that implements a classification mechanism in two phases. The main benefits
of the approach are the distributed capabilities of the multi-agent systems and the self-adaption ability
to the changes that occur in the patterns of attack. A prototype of the architecture was developed and the

Keywords:
Multi-agent system
Case-based reasoning
Web Services

XML message
Security problems

results obtained are presented in this study.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Web Services have become increasingly relevant not only within
private networks for companies and organizations, but also at the
level of inter-communication. This trend to inter-communication
in the Web Services has made the security a key element in
open architectures. However, basic Web Service specifications
themselves do not address any security topics. Several additional
specifications as WS-Security (Oasis, 2004), WS-SecurityPolicy
(Della-Libera & Zolfonoon, 2005), WS-Trust (Anderson et al.,
2005), WS-SecureConversation (Anderson et al., 2004) etc. for
Web Services security exists, but all these standards focus on the
aspects of message integrity and confidentiality and user authenti-
cation and authorization. Then, it is necessary to investigate in no-
vel method to protect the servers from denial of services attacks
(DoS), which cause malicious or altered Web Services, and affect
the availability of the Web Services (Gruschka & Luttenberger,
2006). DoS attacks are due to the fact that XML messages must be
parsed in the server, which opens the possibility of an attack if
the messages themselves are not well structured or if they include
some type of malicious code. Resources available in the server
(memory and CPU cycles) of the provider can be drastically reduced
or exhausted while a malicious SOAP message is being parsed. A

* Corresponding author. Tel.: +34 639771985.
E-mail addresses: cristian_ivanp@usal.es (C.I. Pinzén), jbajope@usal.es, jbajope@
upsa.es (J. Bajo), fcofds@usal.es (]J.F. De Paz), corchado@usal.es (J.M. Corchado).

0957-4174/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.10.088

DoS attack is successfully carried out when it manages to severely
compromise legitimate user access to services and resources.

Some approaches focus on preventing DoS attacks to Web Ser-
vices architectures (Bebawy, Sabry, El-Kassas, Hanna, & Youssef,
2005; Chonka, Zhou, & Xiang, 2009; Gruschka & Luttenberger,
2006; Im & Song, 2005; Loh, Yau, Wong, & Ho, 2006; Padmanabhuni,
Singh, Kumar, & Chatterjee, 2006; Srivatsa, Iyengar, Yin, & Liu,
2008; Wang, 2006; Ye, 2008; Yee, Shin, & Rao, 2007), but present
as main disadvantage their low capacity to adapt themselves to
the changes in the patterns of attack, which causes a reduction of
the effectiveness of these methods when slight variations in the
behaviours of the known attacks happen or when new attacks ap-
pear. Moreover, most of the existing approaches are based on a
centralized perspective, which provides facilities for DoS attacks.
In this sense, and focusing on performance aspects, centralized ap-
proaches can become a bottleneck when security is vulnered, caus-
ing a reduction of the overall performance of the application.
Another approaches focus on providing solutions to DoS attacks
in Web Services environments with a perspective similar to tradi-
tional layer 2-4 firewalls and application level firewalls which no
longer viewed as an effective way for providing a solution to the
Web Services. The use of Web Services over HTTP makes it hard
to use traditional layer 2-4 firewalls to block malicious web ser-
vices traffic (Bebawy et al., 2005).

Taking into account the limitations of the existing approaches
and the particularities of the new trends in DoS attacks, this paper
presents a distributed hierarchical multi-agent architecture for

C.I. Pinzon et al./ Expert Systems with Applications 38 (2011) 5486-5499 5487

dealing with DoS attacks in Web Service environments. The pro-
posed architecture is based in our previous research in SQL injec-
tion attacks (Bajo, Corchado, Pinzén, Paz, & Pérez-Lancho, 2008;
Pinz6N, Paz, & Bajo, 2008) where a multi-agent architecture SQL-
MAS was developed. In this way, some resources are reused and
the knowledge acquired in this previous work is adapted to get
an evolution of the architecture. The S-MAS architecture has a
four-tiered hierarchical design that is better capable of task distri-
bution and error recovery. The classification mechanism integrated
within the multi-agent architecture has also evolved, incorporating
a two-phase strategy to classify SOAP messages. The first phase ap-
plies the initial filter for detecting simple attacks without requiring
an excessive amount of resources. The second phase involves a
more complex process which ends up using a significantly higher
amount of resources. In this way, a strategy in two-phase improves
the overall response time of the classification mechanism, facilitat-
ing a quick classification of those incoming SOAP messages with
significative features during the first phase. The second phase is
executed only for those SOAP messages with complex characteris-
tics identified as suspicious during the first phase and requiring a
more detailed evaluation. Each of the phases incorporates a CBR-
BDI (Laza, Pavé, & Corchado, 2003) agent with reasoning, learning
and adaptation capabilities.

The idea of a CBR mechanism is to exploit the experience
gained from similar problems in the past and then adapt suc-
cessful solutions to the current problem. The CBR engine initiates
what is known as the CBR cycle, which is comprised of four
stages. The approach presented in this paper proposes a classifier
agent for the first phase (CBRMAS-L1) that incorporates a classi-
fication strategy based on a classification tree, and a classifier
agent for the second phase (CBRMAS-L2) that incorporates a
neural network. Each of these classification strategies is incorpo-
rated into the respective re-use stage of the CBR cycle integrated
into the corresponding agent. As a result, the system can learn
and adapt to the attacks and the changes in the techniques used
in the attacks. The model proposed in this study is innovative,
since proposes a new perspective to address the DoS attacks
problem in Web Services environments. The model is not aimed
at replacing the existing security solutions, but to be estab-
lished as an additional layer to cover the lacks of the previous
approaches.

The rest of the paper is structured as follows: Section 2 presents
the problem that has prompted most of this research work. Section
3 focuses on the details of the multi-agent architecture; Section 4
explains in detail the classification model designed in two phases.
Section 5 describes a case study based on a multi-agent system
that provides Web Services in a shopping mall. Finally, the final re-
sults and conclusion are presented in Section 6.

2. Work web service security problem description

One of the most frequent techniques of a DoS attack is to ex-
haust available resources (memory, CPU cycles, and bandwidth)
on the host server. The probability of a DoS attack increases with
applications providing Web Services because of their intrinsic use
of the XML standard. The server uses a parser, such as DOM and
Xerces to syntactically analyze all incoming XML formatted SOAP
messages. When the server draws too much of its available
resources to parse SOAP messages that are either poorly written
or include a malicious code, it risks becoming completely
blocked.

Attacks usually occur when the SOAP message either comes
from a malicious user or is intercepted during its transmission by
a malicious node that introduces different kinds of attacks.

The following list contains descriptions of some known types of
attacks that can result in a DoS attack, as noted in Jensen,

Gruschka, Herkenhoner, and Luttenberger (2007), Loh et al.
(2006), Yee et al. (2007) .

e Oversize payload: When executed, it reduces or eliminates the
availability of a web service while the CPU, memory or band-
width are being tied up by a massive mailing with a large
payload.

Coercive parsing: Just like a message written with XML, an XML
parser can analyze a complex format and lead to an attack in
which a service is rejected because the memory and processing
resources are being used up.

Injection XML: This is based on the ability to modify the struc-
ture of an XML document when an unfiltered user entry goes
directly to the XML stream and the message is captured and
modified during its transmission.

e SOAP header attack: Some SOAP message headers are overwrit-
ten while they are passing through different nodes before arriv-
ing at their destination. It is possible to modify certain fields
with malicious code.

Replay attack: Sent messages are completely valid, but they are
sent en masse over short periods of time in order to overload
the web service.

All web service security standards focus on strategies indepen-
dent from DoS attacks (Gruschka & Luttenberger, 2006). In the
following, we will revise those works that focus on denial of
web service attacks and will compare to our approach as shown
in Table 1.

Im and Song present and adaptive approach (Im & Song, 2005),
which extends the proposal of Schuba et al. (1997), that is based on
a tool located in a firewall aimed at monitoring and detecting SYN
flooding attacks. This tool examines the TCP packages and catego-
rizes the IP addresses into different states. The extension proposed
by Im and Song (2005) adapts the initial approach to Project the
Web Services and introduces some improvements consisting on
adding priorities to the states and examining the incoming and
outgoing packages of the server. Only SYN flooding attacks in
web services environments are considered. Bebawy et al. propose
the tool “Nedgty” (Bebawy et al., 2005) based on a Web Service
firewall model. The target operating system for Nedgty is the Linux
0S. Nedgty secures Web Services by applying business specific
rules in a centralized manner. It works at the application level as
a stand-alone application and its design is a hybrid of a fully
fledged proxy. This solution secures Web Services by intercepting
packets going to the server, determining the Web Services specific
packets, and checking them for any malicious content. In addition,
it filters out unauthorized requests that originate from IP addresses
that are not allowed. Wang (2006) introduce the session based
ideas into the access of Web Services and develop a fair share
based filtering algorithm. The proposed architecture is based on
the two-phase access model. In the first phase, the Web service
container will bind the related user information (user name) to a
customized WSDL version for the requester user and return this
file. In the second phase, when the user sends a Web service re-
quest, the Web Services container can recognize the user informa-
tion. Based on the current working load information, a filter
component will decide that whether or not this request can be
passed into the Web services engine. The algorithm and a set of
parameters are defined. A XML Firewall is proposed by Loh et al.
(2006). The architecture of the XML Firewall is divided into three
modules, namely Core Engine, Administrative Interface, and Data-
base. The Core engine is the main component that processes and
handles SOAP messages. Messages that are sent to a Web Service
are intercepted and parsed to check the validity and the authentic-
ity of the contents. If the contents of the messages do not conform
to the policies that have been set, the messages will be dropped by

5488 C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499
Table 1
Comparison of selected models approaches vs. S-MAS.
DoS defense Nedgty A fair share XML CheckWay PreSODoS ID/IP Twofold DDoS and SOTA & S-MAS
mechanism (Bebawy based filtering Firewall Gateway (Padmanabhuni framework mechanism XDoS XDetector
(Im & Song, etal, algorithm (Loh (Gruschka & et al., 2006) (Yee et al.,, (Srivatsa defense (Chonka
2005) 2005) (Wang, 2006) et al., Luttenberger, 2007) et al,, 2008) system (Ye, et al., 2009)
2006) 2006) 2008)
Distributed No No No No No No No No No Yes Yes
approach
Learning No No No No No No Yes No No Yes Yes
ability
Adaptive No No No No No No Yes No No No Yes
ability
Balances the No No No No No No - - No Yes Yes
workload
Tolerance to No - No No Yes - - Yes - - Yes
failure
Scalability - Yes Yes Yes - Yes Yes - Yes Yes Yes
Positive and - - - No - - - - - Yes Yes
negative
false
Time - - Nearly real - Nearly real time - - Nearly real ~ Nearly real - Nearly
response time time time real
time
Ubiquity No No No No No No No No No Yes

the firewall. Three successfully implemented filtering policies,
namely message size filtering, syntax parsing, and XML schema
validation have been tested with valid and invalid SOAP messages.
Gruschka and Luttenberger (2006) propose an application level
gateway system “Checkway”. They focus on a full grammatical val-
idation of messages by Checkway before forwarding them to the
server. To do this, they consider that Web Service messages are
XML documents and these are usually defined by an XML Schema,
written in the XML Schema definition language—a grammar lan-
guage for XML. Checkway generates an XML Schema from a Web
Service description and validates all Web Service messages against
this schema. The approach presents a centralized model ori-
ented to detect concrete type of attack inside Web Services.
Padmanabhuni et al. (2006) propose PreSODoS. This framework re-
lies on content introspection to detect any XDoS possibility. PreSO-
DoS use a Patricia Trie based representation so that the schemas
and the request messages can be compared and validated in a per-
formance efficient manner. PreSODoS leverages existing security
infrastructures. An adaptive framework for the prevention and
detection of intrusions was presented in Yee et al. (2007). Based
on a hybrid focus that combines agents, data mining and diffused
logic, it is supposed to filter attacks that are either already known
or new. Agents that act as sensors are used to detect violations to
the normal profile using the data mining technique such as cluster-
ing, association rules and sequential association rules. The anoma-
lies are then further analyzed using fuzzy logic to determine
genuine attacks so as to reduce false alarms. If an attack is being
detected, a specific component will act to prevent the attack from
happening. An approach to handle DoS attacks by using a twofold
mechanism is presented by Srivatsa et al. (2008). First, an admis-
sion control is performed to limit the number of concurrent clients
served by the online service. Admission control is based on port
hiding that renders the online service invisible to unauthorized cli-
ents by hiding the port number on which the service accepts
incoming requests. Second, a congestion control is performed on
admitted clients to allocate more resources to good clients. Con-
gestion control is achieved by adaptively setting a client’s priority
level in response to the client’s requests in a way that can incorpo-
rate application-level semantics. The experiments show that the
techniques incur low performance overhead. In addition, the pro-
posed techniques can be easily deployed into existing Web/appli-
cation servers. A approach to countering DDoS and XDoS Attacks

against Web Services is presented by Ye (2008). The system carries
out request message authentication and validation before the re-
quests are processed by the Web Services providers. The scheme
has two modes: the normal mode and the under-attack mode. A
component called “operations provider” decides which mode the
system works in. In the under-attack mode, the service requests
need to be authenticated and validated before being processed.
Since the system is constructed from Web Services, it can be
formed and reconfigured easily. Finally, a recent solution proposed
by Chonka et al. (2009) presents a Service Oriented Traceback
Architecture (SOTA) to cooperate with a filter defense system,
called XDetector. XDetector is a Back Propagation Neural Network,
trained to detect and filter XDoS attack message. SOTA is a trace-
back system that is constructed on the basis of Web Services and
is able to traceback to the source of the malicious message. Once
an attack has been discovered and the attacker’s identity known,
XDetector can filter out these attack messages.

Table 1 presents a comparison of S-MAS with the current ap-
proaches aimed at detecting DoS attacks in Web Services environ-
ments. Those parameters that could not be evaluated are marked
with a hyphen.

According to the results shown in Table 2, S-MAS outperforms
the existing models with respect to:

o Distributed approach: S-MAS is based on a multi-agent architec-
ture that can execute tasks derived from the classification pro-
cess in a distributed way.

e Adaptive ability: S-MAS includes two types of intelligent CBR-
MAS agents that were designed to learn and adapt to changes
in attack patterns, new attacks, and types of user behaviour.

Table 2

Problem description first phase - CBRSOAP-L1.
Fields Type
IDService Int i
Subnet mask String m
SizeMessage Int s
NTimeRouting Int n
LengthSOAPAction Int 1
TFMessageSent Int w

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

e Balances the workload: S-MAS was designed to distribute the
classification task load throughout the various layers of the
hierarchical architecture.

e Tolerance to failure: S-MAS has a hierarchical design that can
facilitate error recovery through the instantiation of new
agents.

e Scalability: S-MAS is capable of growing (by means of the
instantiation of new agents) according to the needs of its
environment.

e Ubiquity: S-MAS provides a ubiquitous alert mechanism to
notify security personnel in the event of an attack.

Some aspects of S-MAS, such as response time or the required
initial learning period can be considered as a disadvantage when
compared to other solutions. Nevertheless, S-MAS provides a much
more efficient classification once the system acquires experience,
and a reasonably low response time. The S-MAS architecture
presents novel characteristics that have not heretofore been
considered in previous approaches. The next section presents the
S-MAS architecture in greater detail.

3. S-MAS architecture

Agents are characterized by their autonomy; which gives them
the ability to work independently in real-time environments
(Carrascosa, Bajo, Julian, Corchado, & Botti, 2008). Furthermore,

Coordination Layer .
Coordinator
Agent

T’@H.

Solid Classification

5489

when they are integrated within a multi-agent system they can
also offer collaborative and distributed assistance in carrying out
tasks (Corchado, Bajo, & Abraham, 2008). One of the main
characteristics of the multi-agent architecture proposed in this
paper is the incorporation of CBR-BDI (Laza et al., 2003) delibera-
tive agents, CBRMAS classifier agents, that use an intrusion detec-
tion technique known as anomaly detection. In order to carry out
this type of detection, it is necessary to extract information from
the structure and content of the SOAP messages, the message
processing tasks, and any activity among web service users. Our
proposal is a distributed, hierarchical multi-agent architecture
integrated for four levels with distinct BDI agents called “S-MAS”.
The hierarchical structure makes it possible to distribute tasks on
the different levels of the architectures and to define specific
responsibilities. The architecture S-MAS presented in Fig. 1
shows the four levels with BDI agents organized according to their
roles.

e Traffic agents: Capture any traffic directed towards the server.
JPCAP (Fujii, 2000) is the API used to identify and capture any
traffic that contains SOAP message packets. The captured SOAP
messages are sent to the next layer in order to carry out the
classification process. In addition to these tasks, Traffic agents
use an IP register to monitor user activities. This type of moni-
toring makes it possible to identify suspicious activities similar
to message replication attacks.

q

Interface Agent

Classification

\ Result

Layer XMLAnalyzer CBRMAS-L2
Agent) Agents
Supervisor Agent
Raw XML text
& others
lightweight parameters

Classification Layer

®HD!

CBRMAS-L1
Agents

Meonitoring Layer

Raw XML text &
parameter of the
headers

<] < -
Leg Requests @w

Database

Traffic

Agents

Fig. 1. Design of the multi-agent architecture proposed.

5490

e CBRMAS-L1 agents: These advanced agents are the first-part
of the core of the multi-agent architecture. These CBR-BDI
agents are located on layer 2 of the architecture and are in
charge of executing the first phase of the classification process
based on the data sent by the Traffic agents. These agents
initiate a classification by incorporating a CBR engine that in
turn incorporates a decision tree strategy in the re-use phase.
The main goal of this initial phase is to carry out an effective
classification, but without requiring an excessive amount of
resources.
CBRMAS-L2 agents: These CBR-BDI agents complete the classifi-
cation process from layer 3 of the architecture. These advanced
agents are the second-part of the core of the multi-agent archi-
tecture. In order to initiate this phase, it is necessary to have
previously started a syntactic analysis on the SOAP message
to extract the required data. This syntactic analysis is performed
by the XMLAnalyzer Agent. Once the data have been extracted
from the message, a CBR mechanism is initiated by using a Mul-
tilayer Perceptron (MLP) neural network in the re-use phase.

Supervisor agent: This agent supervises the XMLAnalyzer agent

since there still exists the possibility of an attack during the

syntactic processing of the SOAP message. This agent is located
in layer 3 of the architecture.

o XMLAnalyzer agent: This agent executes the syntactic analysis of

the SOAP message. The analysis is performed using SAX

(Brownell, 2002) as parser. Because SAX is an event driven

AP, it is most efficient primarily with regards to memory usage,

and strong enough to deal with attack techniques. The data

extracted from the syntactic analysis are sent to the CBRMAS-

L2 agents. This agent is also located on layer 3 of the

architecture.

Coordinator agent: This agent is in charge of supervising the cor-

rect overall functioning of the architecture. Additionally, it over-

sees the classification process. Each time a classification is
tagged as suspicious, the agent interacts with the Interface

Agent to request an expert review. Finally, this agent controls

the alert mechanism and coordinates the actions required for

responding to this type of attack. This agent is located on layer

4 of the architecture.

o Interface agent: This agent was designed to function in different
devices (PDA, Laptop, and Workstation). It facilitates ubiquitous
communication with the security personnel when an alert has
been sent by the Coordinator Agent. Additionally, it facilitates
the process of adjusting the global configuration of the architec-
ture. This agent is also located in the highest layer of the
architecture.

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

The following section describes the functionality of the classi-
fier agents located layers 2 and 3 of the proposed hierarchical
structure.

4. Mechanism for the classification of SOAP message attack

The application of agents and multi-agent systems facilitates
taking advantage of the inherent capabilities of the agents. Never-
theless, it is possible to increase the reasoning and learning
capabilities by incorporating a case-based reasoning (CBR) mecha-
nism into the agents. In the case at hand, a CBR classifier agent
(CBR-BDI) is responsible for classifying the incoming SOAP mes-
sages. In the BDI (Beliefs Desires Intentions) model, the internal
structure of an agent and its capacity to choose is based on mental
aptitudes: agent behaviour is composed of beliefs, desires, and
intentions (Laza et al., 2003). A BDI architecture has the advantage
of being intuitive and capable of rather simply identifying the pro-
cess of decision-making and how to perform it.

Case-based reasoning is a type of reasoning based on the use of
past experiences (Aamodt & Plaza, 1994). The purpose of case-
based reasoning systems is to solve new problems by adapting
solutions that have been used to solve similar problems in the past.
The fundamental concept when working with case-based reason-
ing is the concept of case. A case can be defined as a past experi-
ence, and is composed of three elements: A problem description
which describes the initial problem, a solution which provides
the sequence of actions carried out in order to solve the problem,
and the final state which describes the state achieved once the
solution was applied. The way in which cases are managed is
known as the case-based reasoning cycle. This CBR cycle consists
of four sequential steps: retrieve, reuse, revise and retain (Aamodt
& Plaza, 1994). A CBR engine requires the use of a database with
which it can generate models such as the solution of a new prob-
lem based on past experience.

In the specific case of SOAP messages, a case memory is managed
for each service offered by the Web Service environment, which
permits it to handle each incoming message based on the particular
characteristics of each web service available. Each new SOAP mes-
sage sent to the architecture is classified as a new case study object.
Focusing on the problem that is of interest to us, we will represent a
typical SOAP message which consists of a type of wrapping that
contains an optional heading and a mandatory body of text with a
useful message load, as depicted in Fig. 2a and b.

Based on the structure and content of the SOAP message, the
message processing tasks, and any activity among web service
users we can obtain a series of descriptive fields.

SOAP ENVELOPE

SOAP HEADER
(Optional)

| HEADER BLOCK |

I HEADER BLOCK I

SOAP BODY (required)

SOAP MESSAGE

<s:Envelope
xmlins:s="http://www.w3.0rg/2001/06/s0ap-envelope">
<s:Header>
<m:transaction xmlns:m="soap-transaction"
s:mustUnderstand="true">
<IDtransaction>10</IDtransaction>
</m:transaction>
</s:Header>
<s:Body>
<n:Order xmlIns:n="urn:OrderService">
<from><fullname>Jame Cook</fullname>
<dept>Accounting</dept> </from>
<to> <fullname>Harold Wright</fullname>
<dept>HumanResources</dept> </to>
<order>
<quantity>1</quantity>
<item>Laptop</item>
<forder>
</n:Order>
</s:Body>
</s:Envelope>

a) SOAP Message Structure

b) SOAP Message Contents

Fig. 2. (a) SOAP message structure and (b) SOAP message content.

C.I. Pinzon et al./ Expert Systems with Applications 38 (2011) 5486-5499 5491

4.1. First phase of the mechanism of classification - CBRMAS-L1 agents

The main goal of this initial phase is to carry out an effective
classification, but without requiring an excessive amount of re-
sources and time. As a CBR strategy is used, it is necessary to define
the case structure used by the CBRMAS-L1 agents. The fields of the
case are obtained from the headers of the packages of the HTTP/
TCP-IP transport protocol. Table 2 shows the fields taken into con-
sideration to describe the problem.

As can be seen in Table 2, the description of a case is given by
the tuple c = (i, m, s, n, I, w, R/C.im, X, X"), where i represents the ser-
vice identifier, m the subnet mask, s the message length, n the
number of seconds for the travel of the message, | the length of
the header SoapAction, w the elapsed time from the arrival of the
last n messages, R/c;n, is the solution provided by the decision tree
associated to the service and to the subnet mask, x” represents the
class predicted by the CBR strategy x” € X={aq, g, u}, where a, g, u
represent the values attack, good and undefined, x" is the real class
X' eX={a, g u}.

The CBR strategy is integrated into a BDI agent, obtaining a
CBR-BDI agent. The integration of the CBR system and the BDI
agent is defined as follows: believes - problem description and
rules; intentions - set of relieves and rules that represent the state
transitions required to achieve the final state; desires - X = {qa, g, u}.
The initial state is defined by means of the set of believes that store
the values for the subnet mask and the service web identifier, (i, m,
¢, ¢, ¢, ¢). The intermediate states describe the decision process
executed, taking into account the application of rules over the set
of rules.

The cases memory contains a set of cases C={c} and is frag-
mented for each of the Web Services available in the server. This
structure facilitates the depuration and analysis of the services in
an independent manner. Separately to the cases memory, the agent
incorporates a rules memory, constructed as a set of inductive
rules defined as R={ry,...,r;} with ri=(l; A---Aly) » X; where
Iy = (dis, 05, R) /dis € {i,m,s,n, [, w,xP,x"}, 0, € O, with 0={=, #, >,
<, &, =}, x;€ X. The rules memory is also fragmented for each of
the services and for each of the subnet mask, in a way that R/C;,
represents the rules associated to those cases belonging to the ser-
vice i and the subnet mask m. For notation considerations, to iden-
tify a property of a case, we use the case, a point and the property.
For example, ¢;, represents the property m (subnet mask) of the
case j.

When the agent receives a request to classify a new case c;.q, a
new execution of a CBR cycle is carried out. The following para-
graphs describe the stages of a CBR cycle executed by a CBRMAS-
L1 agent in charge of a first phase classification.

e Retrieve: During this stage, those cases associated to the
requested web service and the corresponding rules memory
are retrieved. The storage and recovery of rules from the rules
memory facilitates a notably reduction of the process time for
the classification. The retrieve strategy is carried out as follows:
- If there is not tree associated to the service and the subnet

mask, then it is necessary to recover the cases for the service
and the subnet mask:

Cim :fs(c) = {Cj.im S C/Cj.i = Cny1s Cj~m = Cn+1-m} (1)

where Gj; represents the case j and i the service identifier.
- The rules memory associated with the set of cases R/c;n, is
retrieved.

e Reuse: Knowledge extraction is especially important when com-
plex algorithms that use hard computing techniques and that
generate models in an automatic way are used. Human experts
are much confident when they know exactly why or at least

how a solution to a problem has been calculated. CART is a non-
parametric statistical method for extraction of knowledge in
classifications. The extracted information is represented in a
binary decision tree, which allows individuals to be classified
from the root node. Keeping the kind of dependent variable in
mind, CART can be separated into two types: classification tree,
if the dependent variable is categorical; and regression tree in
the case of a continuous dependent variable.

The reuse stage is only executed if not decision tree R/c.;, asso-

ciated to the cases c;, is available, and in order to do so, the

rules are generated using the CART algorithm. R/c;,, = CART(C i)

where R/c;, is the rules memory associated to the service iden-

tifier and to the subnet mask. The CART algorithm has been
modified in order to have an automatic discretization of the val-
ues to a set of categories. The modification includes a first step
to normalize the variable into the interval [0,1] and then, the
values are discretized into one of the following categories
depending on the closest value {very low = 0.1, low = 0.3, med-
ium = 0.5, high = 0.7 and very high = 0.9}. This way, the genera-
tion of rules using the CART algorithm is more efficient than
working with a greater level of categories. The discretization

is only carried out for the variables s, n, I, w.

Revise: Once the set of rules has been retriever, the classification

for the case cu+14m is obtained using the set of rules that

previously classified the elements of the same type

Cni1x = R/Cim(Cni1)- If 17 € R/Cim then, it is the rule that classifies

cn+1- The new case is classified as follows:

- If m; > pu||#{cj € G, /cjw = u} > W, then, it is necessary to
execute the CBR of the second phase. Where C,, CC is the
set of cases classified for r; and m; represents the percentage
of misclassified cases of C;; using the rule r;. # represents the
number of elements of the set. The general idea is to verify if
the error rate of the rule exceeds a certain threshold, and
then, verify that the number of cases belonging to the set
of elements classified using the rule not exceeds a certain
threshold defined as a function of the total number of ele-
ments in C,].

- Else if #{c¢; € C;,/cjw = g}/#C;; > oz then the case is classi-
fied as good and the revision finishes.

- Else if #{¢; Cr}/Cj.xP = u}/#C,l. > o the case is classified as
suspicious and the second phase classification mechanism
is executed.

- Else if #{¢; er/cjvxp = a}/#er > o, the case is classified as
attack and the revision finishes.

Retain: If the set of rules was generated because it did not pre-

viously exist, then R/c;y is stored in the rules memory if the

classification obtained was good. If the classification was
erroneous and the misclassification was detected by an expert
or if the CBRMAS-L2 of the second phase was invoked,
then it is necessary to regenerate the decision tree: R/cin, =
CART(CV,‘m U Cp+1)

Fig. 3 shows the stages of the CBR cycle for the CBRMAS-L1
agent.

4.2. Second phase of the mechanism of classification - CBRMAS-L2
agents

The second phase of the mechanism of classification is carried
out by means of CBRMAS-L2 agents. As these agents are CBR-BDI
agents, it is necessary to provide a case description. The fields
are extracted from the SOAP message and provide the case descrip-
tion for the CBRMAS-L2 agents. Table 3 presents the fields used in
describing the problem for the CBR in this layer. Applying the
nomenclature shown in the table above, each case description is
given by the following tuple:

5492

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

N\ /] Chrtii
> 1dService (1) i

Vi N Subnet Mask | (m)

HTTP/ SizeMessage 8/
NTimeRouting (n}
o LengthSoapAction (1) -
i TFMessageSent () Decg‘f;_['_l'ree
i [(1 G GO S
Rlcg,
Extraction of Fields from 1?
Haaders HTTP and TCP-IP Cpnye = BRI Cin Cnr) o
e Rules associated Sy
To classify
elements of the
- same lype m
Description of the new case [_,’(/‘f{/ . S nERlcy, B Chinim (new case)
ot o) o |« B

Con = F(C) = (€1m €CLCss = CougisCim = Cnrtm) 7y | D
n=Js Jim Ji = Cnkir Cim = Cnlm ‘E-’i"l‘ ?"’L k:;_f_t-"y, \Ric] If M2 By | #(c,eC, fc,, =u) > iy =CBR Heav

set of cases . " " — ‘\\ \:_:, vl A . i /B 1 2= Y

associated with the o | IR.’ - TNl = - i Else if #{C_; € cr‘ ICJ.,_.- =g} 'r#crf > &y =Good

servi ! ey b L ——— . -

pshy-pushoviid | % i Case Memory — ~~==~~""Ryles set Elseif#{c;eC, fc, , =u} #C, > a, = Suspicious
™ | i & .
o —& ILE Else if #{c; e C,f n'cjﬂ, a}f#C,f > &z Bad

(1 Retieve] o

Update Rule memory
If Classification = Success then

(3 “Revise |

\os

Ric,,

Else

Ricy, =CART(c, ey,

[4 “Retain |

Fig. 3. Stages of the CBR cycle of a CBRMAS-L1 agent in the first phase of the classification mechanism.

Table 3

Case description second phase - CBRSOAP-L1 agents.
Fields Type Variable
IDService Int i
MaskSubnet String m
SizeMessage Int s
NTimeRouting Int n
LengthSOAPAction Int 1
MustUnderstandTrue Boolean u
NumberHeaderBlock Int h
NElementsBody Int b
NestingDepthElements Int d
NXMLTagRepeated Int t
NLeafNodesBody Int f
NAttributesDeclared Int a
CPUTimeParsing Int c
SizeKbMemoryParser Int k

c=(i,m,s,n,Lu,h,b.d.t.f ack P/Cin X" X) (1)

For each incoming message received by the agent and requiring
classification, we will consider both the class that the agent predicts
and the class to which the message actually belongs. x” represents
the class predicted by the CBRMAS-L2 agents belonging to the
group. X’ € X ={a, g, u}; g and u represent attack, good and unde-
fined, respectively; and x" is the class to which the attack actually
belongs x" € X = {a, g, u}, P/c.i, is the solution provided by the neural
network MLP associated to service i and subnet mask m.

The reasoning memory used by the agent is defined by the fol-
lowing expression: P={py,...,pn} and is implemented by means of
a MLP neural network. Each P; is a reasoning memory related to a

group of cases dependent of the service and subnet mask of the cli-
ent. The Multilayer Perceptron (MLP) is the most widely applied
and researched artificial neural network (ANN) model. MLP net-
works implement mappings from input space to output space
and are normally applied to supervised learning tasks (Gallagher
& Downs, 2003). The Sigmoidal function was selected as the MLP
activation function, with a range of values in the interval [0,1]. It
is used to detect if the SOAP message is classified as an attack or
not. The value 0 represents a legal message (non attack) and 1 a
malicious message (attack). The sigmoidal activation function is
given by

1
T 1lte™

f®)

The CBR mechanism executes the following phases:

Retrieve: Retrieves the cases that are most similar to the current
problem, considering both the type of Web service to which the
message belongs and the subnet mask that contains the message.

@)

e Expression 3 is used to select cases from the case memory based
on the type of Web service and the subnet mask.

Cim :fs(c) = {Cj S C/Cj.i = Cni1is Cj-m = Cn+1-m}

3)

e Once the similar cases have been recovered, the neural network
MLP P/c;, associated to service i and subnet mask m is then
recovered.

Reuse: The classification of the message is begun in this phase,
based on the subnet mask and the recovered cases. It is only

C.I. Pinzon et al./ Expert Systems with Applications 38 (2011) 5486-5499 5493

necessary to retrain the neural network when it does not have pre-
vious training. The entries for the neural network correspond to
the case elements s, n, [, u, h, b, d, t, f, a, c, k. Because the neurons
exiting from the hidden layer of the neural network contain sig-
moidal neurons with values between [0, 1], the incoming variables
are redefined so that their range falls between [0.2-0.8]. This trans-
formation is necessary because the network does not deal with val-
ues that fall outside of this range. The outgoing values are similarly
limited to the range of [0.2, 0.8] with the value 0.2 corresponding
to a non-attack and the value 0.8 corresponding to an attack. The
training for the network is carried out by the error Backpropaga-
tion algorithm (Lecun, Bottou, Orr, & MUller, 1998). The weights
and biases for the neurons at the exit layer are updated by follow-
ing equations:

whi(t+1) = wi(t) + n(d 1)
(4)
(5)

— YR (1 = YRWRyP + u(why(t) — wh(t —

OR(£+1) = 03(0) +n(d = ¥ (1 = YR)yg + RO () — OF(t — 1))

The neurons at the intermediate layer are updated by following
a procedure similar to the previous case using the following
equations:

M
Wh(E+ 1) = wi(0) +n(1 = y])y} <Z - 1—yk)ykwk]>
k=1
+ p(wy(t) — wi(t - 1)) (6)
M
P (E+1)=07(t) +n(1 =Yy} <Z -0 1—y,<)y,<wk,>
k=1

+ (07 (6) — 0 (t - 1)) (7)

where Wﬁj represents the weight that joins neuron j from the inter-
mediate layer with neuron k from the exit layer, t the moment of
time and p the pattern in question. df, represents the desired value,
¥ the value obtained for neuron k from the exit layer, yJ’? the value
obtained for neuron j from the intermediate layer, # the learning
rate and p the momentum. 6} represents the bia value k from the
exit layer. The variables for the intermediate layer are defined anal-
ogously, keeping in mind that i represents the neuron from the en-
trance level, j is the neuron from the intermediate level, M is the
number of neurons from the exit layer.

When a previously trained network is already available, the
message classification process is carried out in the revise phase.
If a previously trained network is not available, the training is car-
ried out following the entire procedure beginning with the cases
related to the service and subnet mask, as shown in Eq. (8).

p, = MLP'(Ci) (8)

Revise: This phase reviews the classification performed in the
previous phase. The value obtained by exiting the network
¥y = P}(cny1) may yield the following situations:

e If y > py then it is considered an attack.

e Otherwise, if y < u, then the message is considered a non-
attack or legal.

e Otherwise, the message is marked as suspicious and is filtered
for subsequent revision by a human expert. To facilitate the
revision, an analysis of the neural network sensibility is shown
so that the relevance of the entrances can be determined with
respect to the predicted value.

Retain: If the result of the classification is suspicious or if the
administrator identifies the classification as erroneous, then the
network P/c;, repeats the training by incorporating a new case
and following the BackPropagation training algorithm.

pr = MLP'(Cim U Cp1))

Fig. 4 shows the stages of the CBR cycle for the CBRMAS-L2
Agents, which constitute the second and last phase of the classifi-
cation mechanism. The next section describes a case study devel-
oped to evaluate a prototype of the architecture presented in this

paper.

5. Case study

A case study was proposed to test the effectiveness of a S-MAS
prototype. The prototype was evaluated by a previously developed
multi-agent system installed in the Tormes shopping mall
(Corchado, Bajo, DePaz, & Rodriguez, 2009). An intelligent environ-
ment based on the use of Wi-Fi, Bluetooth and RFID and handheld
devices was implemented in this mall. The intelligent environment
improves the services offered in the shopping mall by providing
personalized services through handheld devices. The clients can re-
ceive personalized promotions, recommendations about products
or shops and guiding suggestions. They can also receive news or
advises of their particular interest, or information about other cli-
ents with similar preferences (with whom they can communicate),
as well as make use of indoor location services. The core of the
intelligent environment is a CBP agent. The CBP agent attends to
clients requesting suggestions. The clients then use their personal
agents installed on their handheld devices (PDA, mobile phone,
etc.) to interact with the intelligent environment. The CBP agent
proposes guidance suggestions depending on client preferences
and the shops’ capabilities.

The prototype implemented in this case study focused on the
capacity to capture and classify SOAP messages in the shopping
mall. To do this, the prototype incorporated the Traffic agents,
the CBRMAS classifier agents and the XMLAnalyzer agent. These
agents provide facilities to capture traffic, analyze the messages
and provide a classification. The traffic agents were adapted to
facilitate their download and installation in the handheld devices
of the users in the shopping mall, in order to capture SOAM mes-
sages. The classifier agents were distributed between the PCs avail-
able for the experiment. Fig. 5 presents the architecture of the
system used to implement and evaluate the preliminary prototype
for the approach presented in this paper. As can be seen in Fig. 5,
the approach presented in this paper to monitor and detect XML
attacks is integrated within the previously existing multi-agent
system in the shopping mall. Concretely, the security layer is
located as an intermediate layer between the user’s agents and
the reasoning agents (planner and shop agents). In the inferior side
of the image, it is possible to observe the different users that have
access to the system using the Wi-Fi network of the mall or remote
networks.

To evaluate our proposal it was necessary to determine the Web
Services available in the previous existing multi-agent system
(Corchado et al., 2009). As the solution was based in a multi-agent
architecture, it is possible to easily obtain the roles that play the
agents as well as the Web Services that will be offered in the sys-
tem. This information is shown in Table 4.

In the case study, we have focused on the CBP Planner agent,
and specifically in the planner role, because it is the agent with a
greater number of services available and that deals with a high
number of variability in the messages, since the number of ele-
ments in the messages varies depending on the request type. Now-
adays, the system is installed and working in the mall and,
although the results obtained are satisfactory, certain technical
problems related to the Bluetooth network were detected. An aver-
age of 65 clients daily connects to the system through their hand-
held devices to make use of the services provided in the mall. The
average number of queries processed by the CBP agent varies

5494

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

(s,n,l,u,h, b, d,t,fa.ck)

Sigmoidal
Activation
Function

Solution defined
by the Naural
Natwork
Description of the new case ‘ T
* I Y =
I a4
c=li,msnbuhbdl, fachkPleg 1) ! I ®
s Xy Cim m| |
:h=fs(c)={:'mec"'c'j=cn 182 Cjm = Cx l—m} I 1 19158
3 &k s e I C.Jm) in |
| R

set o' cases
associated with the
web service identifier

d Subnet Mask =T
S P={pyrl) =

’ g

Update Case memory

— ‘ S S _
% Case Memo@“ —-———

entries for the
neural network

" py=MLF (cy,)

X={agu w._ Soltion

generated

- g Value obtained

by the Neural Y = B (epn)

{ new case jf

| If ¥ 2 i then illegal message

b} 4 Network for the
——@ 9= / <f;:\41$
a4 p _%) | 3 | nevi case l H\“D
A

A

L 4
Previols Neural
Network Trained

If ¥ <H¥2 then legal message

Else suspect (revision by human expert)

7, = MLP'(c; \V60)

«
Retraining of the
Neural Network if

the classification is

ermoneus

[4 Retain |

Fig. 4. Stages of the CBR cycle of a CBRMAS-L2 agent in the first phase of the classification mechanism.

between 12 and 16 per user, which generates an amount of 1040-
1200 requests per day. The users’ requests are mainly aimed at
obtaining plans oriented to facilitate routes for shopping. The gen-
eration of routes requires to optimize the time available, to modify
the plans in real-time and recover of previously stored plans.
Another important group of requests are those oriented to close
active sessions and to identify users. Finally, another significative
group of requests (over 65 daily request) are those aimed at resolv-
ing incidents, complete surveys, etc.

All the previous mentioned services require an open platform,
with Communications capabilities to connect clients, shoppers
and directorship in the mall. All the requests from the users and
processed in the multi-agent system are codified using SOAP mes-
sages. These SOAP messages can be sent from different devices, as
PDAs, Smart Phone, laptops, etc. connected to the local network of
the Shopping mall “as shown in Fig. 6” or via internet. The struc-
ture of the SOAP messages, for the Web Services offered by the
CBP agent in the planner role, is defined through the information
presented in Tables 5-9. This information represents the data asso-
ciated to each of the plans.

A client profile contains information about a client’s personal
data (gender, economic level, postal code, number of children,
and date of birth) and interests, and retail data (retail time and fre-
quency, monthly profit — both business and product).

The global restrictions are applied on the whole plan and not on
each of the individual shops.

The restrictions contain information about the time and money
available Table 7.

A route is a list representing the suggestion presented to the
client, available Table 8.

The route consists of various stages, each of which contains
information such as the shop visited by the client, arrival time,
the time spent in the shop, the products consumed by the client,
and the next destination, available Table 9.

The structure of the SOAP messages for the Web Services of a
CBP agent playing the planner role is shown in Table 10.
Table 10 presents the fields required for the services as inputs.
Furthermore, the fields of the outputs that the services provide
are also shown.

An important information to take into account for each of the
SOAP messages is the variability of the length of the messages.
The variability in the number of elements and the level of nesting
in the SOAP messages depends on the type of operation that exe-
cutes the Web service. Generalizing for the Web Services to assess,
the approximate size of the SOAP messages sent by users ranges
varies from 30 kB to 950 kB. Once defined the structure of the SOAP
messages for a CBP agent playing the planner role, the next step in
the evaluation of the solution is to set a timeframe for monitoring
the execution environment and to provide information with input
data to the prototype, and a period of 10 days can be considered as
significative to evaluate the system, due to the significant volume
of SOAP messages generated during a working day. As the proto-
type requires a memory of cases containing previous experiences,
the first 5 days were used to obtain initial information and the last
5 days to test the effectiveness of the solution. The procedure was
developed by capturing the incoming SOAP messages indepen-
dently of their origin, the local network or remote access via the
Internet. This would facilitate later generation of the memories of
cases taking into account the subnet masks. During the first 5 days
a total of 1231 SOAP messages were obtained (after filtering

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

5495

i

Q v‘ I O Shop Agent
(Ci Pl
K.J (’ ' Planner U;a;fe Haa':,
Shop Agent | - g Incidents Manager Recover Plan
= | Analyst Update Database
CBP Agent Clients Manager Assess Plan
Connection via
HTTP with the Direct connectior
apglication with tha gpplication
CBRMAS-L2 Agent
SOAPMAS XMLAnalyzer Agent
ARCHITECTURE CBRMAS-L1 Agent
Traffic Agent

Table 4

Remote connection
(Internet)

y A X

8 o8 o

()

Local Network - WIFI

SOAP Message

4 A B
§ =

ﬁwf Q“!‘J

Users connected by using several devices

Fig. 5. Scenario of the previous multi-agent system installed in the shopping mall and the location of the S-MAS.

Agents with the roles and Web Services available.

Planner Incidents Analyst Clients
manager manager

CBP Agent with the roles and Web Services available
createPlan addIncident addUser userList
modifyPlan modifylncident analyzeSales identifyUser
recoverPlan deletelncident analyzePromotions closeSesion
updateDatabase querylncident addSurvey
evaluatePlan querylncidents analyzeSurvey

modifySurvey

querySurvey

querySurveys

Communicator

Finder Profile manager

User Agent with the roles and Web Services available

sendMessage

Promotions
manager

addUser
deleteUser
modifyUser
queryUser
queryUsers

userLocation

Store operator

Shop agent with the roles and Web Services available

addPromotion
deletePromotion
modifyPromotion
queryPromotion
queryPromotions

addProduct
deleteProduct
modifyStock
queryStock

non-relevant messages). Table 11 details the distribution of the
SOAP messages obtained for each of the Web Services provided
by the CBP agent.

The messages retrieved were SOAP messages under normal
operating conditions (legal messages). However, our approach re-
quires malicious messages to identify when a message corresponds
to an attack or not. To achieve this goal, we developed a set of ille-
gal SOAP messages on the basis of the knowledge about the struc-
ture of the Web Services and SOAP messages used in the system. A
set of 325 maliciously SOAP messages were generated, obtaining a
total of 1556 SOAP messages. The distribution of the maliciously
SOAP messages is presented in Table 12.

With this initial information it was possible to generate the
memories of cases for each of the CBRMAS agents used in the
phases of the classification mechanism. Once the cases memories
were generated, the evaluation was carried out in the following
5 days. At this stage, we consider a specific number of users. The
users selected for the evaluation sent queries during 5 days that
were captured and analyzed by the classification mechanism. The
queries of the users came both from the local network and form
the Internet. As the clients in the mall submit legal queries, we
decided to introduce malicious SOAP messages in order to check
the classification mechanism. These malicious SOAP messages
were launched form the local network and form different remote
Internet locations (different networks). During the 5 days of the

5496
NOKIA =
iy
Preferences
Cinema live free or die
45-22:00
Coffe 19:30-20:00
Trousers 0-50C
Shirt
Restaurant 21:00-24:15}
Fig. 6. Example of web service accessible form a handheld device.
Table 5

Problem description structure.

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

~

ProblemDescription

Object type

Case Id

Initial Location
Client Profile
Client Preferences
Restrictions

Integer
Coordinate
ClientProfile
ArrayList of ProductPreference
ArrayList of restriction

Table 6
Product preference structure.

ProductPreference Object type
MinimumPrice Float
MaximumPrice Float
StartTime Date
FinishTime Date
Product type Integer
Shop type Integer
Table 7

Planning restrictions.

Restrictions

Object type

TotalTime Time
TotalMoney Float
Table 8

Plan structure.

Plan Object type
Caseld Integer
route Route
Quality Float

tests, a total number of 1065 legal SOAP messages and 300 mali-
cious SOAP messages were processed, which makes a total of

1365 messages.

Table 9

Route definition for a guidance suggestion.
Route Object type
shop Shop
ArrivalTime Time
ServiceTime Time
RetailProducts ArrayList of product
NextShop Route

Table 10
Summary of the structure of the SOAP messages, taking into account the parameters
used as inputs for the Web Services and the parameters used as outputs.

Web Service Input-Web Service Output-Web Service
createPlan Tables 5-7

updatePlan Tables 5-8 Tables 8, 9
recoverPlan Tables 5-7 Tables 8, 9
updateDatabase Tables 8, 9

assessPlan Tables 8, 9

Finally, to conclude the description of the case study some tech-
nical aspects of equipment used to conduct the tests are provided.
These aspects are an influential factor in the results obtained, since
the performance of the system is a critical factor when assessing
this type of approach. The prototype, and more specifically the
mechanism of classification was tested using two standard PC con-
nected via a 100 Mbps Ethernet network, using a physical switch
which in turn was connected to the local network in the mall to
capture the SOAP messages sent by users. Each PC was an HP Pavi-
lion Intel Core 2 Duo E7200 with 4 GB RAM. The tasks for the clas-
sification mechanism were distributed among the two PC. Next
section presents the results and the conclusions obtained.

6. Results and conclusions

SOAP messages used for communication in Web Services envi-
ronments are vulnerable to DoS attacks. A DoS attack launched on
a Web Services environment is a potential threat and can severely
compromise the availability of the Web Services. A new approach
is presented in this article based on a new hierarchical multi-agent
distributed architecture, S-MAS, for blocking malicious SOAP mes-
sages. S-MAS, unlike the centralized solutions (Bebawy et al., 2005;
Chonka et al., 2009; Gruschka & Luttenberger, 2006; Im & Song,
2005; Loh et al., 2006; Padmanabhuni et al., 2006; Srivatsa et al.,
2008; Wang, 2006; Ye, 2008; Yee et al., 2007), is an adaptive ap-
proach that combines the advantages of multi-agent systems, such
as autonomy and distributed problem solving (Corchado et al.,
2008), with the adaptation and learning capabilities of CBR sys-
tems (Corchado & Laza, 2003; Corchado, Laza, Borrajo, Luis, &
ValiNo, 2003). Moreover, the user of decision trees and neural net-
works provides prediction and classification abilities, and their
combination improves the overall functioning of the system.

The core of the architecture presented in this paper is the two-
phases classification mechanism specifically designed to analyze

Table 11
Distribution of the SOAP messages captured by
each of the web services of the planner role.

Web Service Total messages
createPlan 185
updatePlan 326
recoverPlan 441
updateDatabase 123
assessPlan 156

C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499 5497

Table 12
Distribution of the total of malicious SOAP
messages.
Web Service Mensajes
Maliciosos
createPlan 110
updatePlan 35
recoverPlan 85
updateDatabase 73
assessPlan 22

and classify the SOAP messages. The two-phases mechanism pro-
vides a hybrid alternative in which a first classifier filters the mes-
sages with a low-resource consumption and provides an initial
classification. The second classifier is only executed when the first
classifier could not provide a reliable result. The second classifier
provides a high reliable classification, but with high-resource and
time consumption and uses as input data the elements obtained
from the SOAP messages after a syntactic analysis of the structure
and XML content of the messages.

The solution presented in this paper provides a new alternative
for dealing with DoS attacks in Web Services environments, even
when not overlooked penalizing response time required to execute
the second phase of the classification mechanism. However, this
penalty in response time is offset by the success of the solution
because the procedure implemented in this latest phase of the
classification mechanism allows a robust classification. Another
important point to note in our solution is the ability to provide dis-
tributed and hierarchical capabilities. The distributed approach
and the hierarchical design of the architecture helps to distribute
tasks and to clarify how these tasks are assigned according to the
roles of the different agents in each layer of the architecture, not
forgetting the added capabilities offered by hierarchical structure
for easy errors recovery. When an agent in a concrete layer is com-
promised, the agent is eliminated and a new instance is created
without affecting the rest of agents in the same layer or other lay-
ers of the architecture. Finally, a classification into two phases al-
lows automatic solving of most of the incoming SOAP messages,
reducing the possible intervention of a human expert to solve
the final classification.

To check the validity of the proposed model, we elaborated a
series of tests. The results obtained were promising, which allows
us to conclude that S-MAS can be considered a good alternative for
detecting and blocking of malicious SOAP message. The tests were
conducted as follows: The first step was to generate the cases
memories for the CBR engine of the CBRSOAP agents in every phase
of the classification mechanism. Memories are made of cases
involving the legal messages as well as maliciously messages.
The cases memories were generated from the messages received
in the first 5 days of monitoring the application installed in the
mall, as explained in the case study. The next step was to test
the prototype with a set of test performed with data obtained dur-
ing the last 5 days of monitoring. The tests allow us to evaluate the
global efficiency of the architecture by comparing different mean-
ingful parameters before and after the implementation of the sys-
tem in the test environment. The following paragraphs describe
the experiments and discuss the conclusions obtained.

The first element to evaluate is the response time of S-MAS ap-
proach by analyzing the response time depending on the size of the
messages. For this test we took a set of 200 messages of varying
sizes and were entered into the system during the five testing days.
Before entering the data into the system the information stored for
those cases was deleted. As the system evolved during the days of
testing, the response time is improved, but the message size di-
rectly affects the response time. The results obtained for this test

are shown in Fig. 7. In Fig. 7, the X-axis shows the size of the SOAP
messages (kB), while the Y-axis shows the response time in milli-
seconds (ms).

The next element to evaluate is the percentage of false positives
and false negatives generated by S-MAS, which are shown in Fig. 8.
The results obtained after the tests and shown in Fig. 8 show that
each of the radios represent the day of the test, and the breadth of
the graph represents the percentage detected for the false positives
and false negatives. In parentheses is represented the time lapse
(in days) from the construction of the cases memories and the total
number of cases stored.

To validate the evolution of the system, we proceeded to check
the error rate as the cases were registered in the system. In Fig. 9, it
is possible to see the result obtained, and the decreasing trend in
the system. The X-axis represents the number of cases and the
Y-axis the percentage of errors found for the number of cases. It
is clear that a large number the pattern of training improves the
percentage of prediction. As we are working with CBR systems,
which depend on a larger amount of data stored in the cases mem-
ory for each user, the percentage of success in the prediction in-
creased. CBR systems need to draw from initial information (past
experiences) in order to generalize efficient results.

As the number of cases in the cases memory of the CBRMAS-L1
agent increases, the number of times that it is necessary to execute
a CBR cycle of the CBRMAS-L2 agent decreases, and this fact pro-
duces a reduction of the total execution time of the system. In
Fig. 10 can be seen the percentage of execution for each of the CBR-
MAS agents along the 5 days following to the initiation of the sys-
tem, and the average time in milliseconds (ms) obtained for the

70

Time Response

e et L L o T T
MmO WO OO W Mmao na;mq-n-.u:ﬂ-e-m
WOMAMNDNA®OONTHNMNG DR NN S @
d oo oWy amuc;g el W oS 1 oo 00
uQU!Quﬂmmmm-—-wumuu:u\gmuumnrsﬂ
HH A NNMM T TWW DY~~~ R

Messagesize

Fig. 7. Evaluation of the response time depending on the size of the messages for
the five testing days.

(1,1637)
14

12
10

(5,2856) - = (2,1959)
M % false positive
M % false negative
(4,2593) (3,2255)

(days, cases)

Fig. 8. Percentage of false positives and false negatives detected in the system.

5498 C.I. Pinzon et al. / Expert Systems with Applications 38 (2011) 5486-5499

Error rate

2255

Cases Registered

2593 2856

Fig. 9. Error rate depending on the number of registered cases.

80 1~

70 7

60

50 7
o i B %CBRMAS-L2
£ 40
E W %CBRMAS-L1

30 1 = Time

20 {7

10 7]

0 'F‘f—u'—*lf

1 2 3 4 5 6

days

Fig. 10. Percentage of execution for each of the CBRMAS agents along the five
testing days and average execution time obtained for the classification of services.

execution of the classification of the services. The X-axis shows the
initial and subsequent results obtained during the five testing days
and the Y-axis represents the percentage of use of each of the CBR-
MAS agents, and the evolution of the average time. As can be seen,
the average time decreased as the percentage of the use of the CBR-
MAS-L1 increased.

Finally, we examined the percentage of times that each of the
CBRMAS agents were executed along the five days of testing.
Fig. 11 shows the results obtained for each of the CBRMAS agents,
and, as can be seen, the percentage of times for both agents de-
creases significantly. The percentage of times that the decision tree
is rebuilt is always higher than the neural network, since the neu-
ral network is only rebuilt when the second CBR is invoked and an
error occurs, and the decision tree is always rebuilt when the sec-
ond CBR is invoked. This significantly improves the performance of
the system by decreasing the number of times required to train the
neural network.

The architecture presented in this paper provides a novel strat-
egy for blocking malicious SOAP message. S-MAS evolved from the
previous SQLMAS architecture (Bajo et al., 2008; Pinzén et al.,
2008) that was aimed at detecting and blocking SQL injection at-
tacks. In this sense, S-MAS has improved the design of the SQLMAS
architecture facilitating a distributed perspective, as well as the
distribution of services strategies. Moreover, S-MAS provides a
novel classification method, since implements a two-phases classi-
fication, which notably improves the general performance of the
system and reduces the response time with respect to SQLMAS.
Finally, the classification strategies have been adapted to the needs
of the XML injection problem. As shown in this paper, S-MAS pro-
poses a new distributed perspective for detecting and preventing
attacks and improves the functionalities offered by the existing ap-
proaches. The results are promising and allow us to conclude that

60 1
—— % Tree Regeneration
50 - —— % MLP Regeneration
wn
g 40 -
=
o
o
w 30 -
&
et
g
S 20
[
o
10 -
0 T T T T !
1 2 3 4 5
days

Fig. 11. Percentage of times that each of the CBRMAS agents are executed along the
five testing days.

the S-MAS architecture considerably can be considered as a solid
alternative to prevent and detect DoS attacks in web service envi-
ronments. However, there is still much work to do, especially
checking the validity of our architecture in heterogeneous real
environments. These are our next challenges.

Acknowledgements

This development has been partially supported by the Spanish
Ministry of Science Project TIN2006-14630-C03-03 and The Profes-
sional Excellence Program 2006-2010 IFARHU-SENACYT-Panama.

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues,
methodological variations, and system approaches. Al Communications, 7,
39-59.

Anderson, S., Bohren,]., Boubez, T., Chanliau, M., Della-Libera, G., & Dixon, B. (2004).
Web services secure conversation language (WS-SecureConversation).

Anderson, S., Bohren, J., Boubez, T., Chanliau, M., Della, G., & Dixon, B. (2005). Web
services trust language (WS-Trust).

Bajo, J., Corchado, J. M., Pinzén, C., Paz, Y. D., & Pérez-Lancho, B. (2008). SCMAS: A
distributed hierarchical multi-agent architecture for blocking attacks to
databases. International Journal of Innovative Computing, Information and Control.

Bebawy, R., Sabry, H., El-Kassas, S., Hanna, Y., & Youssef, Y. (2005). Nedgty: Web
services firewall.

Brownell, D. (Ed.) (2002). SAX2. O'Reilly & Associates, Inc.

Carrascosa, C., Bajo,]., Julian, V., Corchado, J. M., & Botti, V. (2008). Hybrid multi-
agent architecture as a real-time problem-solving model. Expert Systems with
Applications, 34, 2-17.

Corchado, J. M., Bajo, J., & Abraham, A. (2008). GerAmi: Improving healthcare
delivery in geriatric residences. Intelligent Systems, IEEE, 23, 19-25.

Corchado, J. M., Bajo, J., DePaz, J. F., & Rodriguez, S. (2009). An execution time
neural-CBR guidance assistant. Neurocomputing.

Corchado, J. M., & Laza, R. (2003). Constructing deliberative agents with case-based
reasoning technology. International Journal of Intelligent Systems, 18, 1227-1241.

Corchado, J. M., Laza, R,, Borrajo, L., Luis, J. C. Y. A. D., & ValiNo, M. (2003). Increasing
the autonomy of deliberative agents with a case-based reasoning system.
International Journal of Computational Intelligence and Applications, 3, 101-118.

Chonka, A., Zhou, W., & Xiang, Y. (2009). Defending grid web services from XDoS
attacks by SOTA.

Fujii, K. (2000). Jpcap - a network packet capture library for applications written in
Java. <http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html>.

Della-Libera, G., Hallam-Baker, P., Hondo, M., Janczuk, T., Kaler, C., & Maruyama, H.
(2005). Web services security policy language version 1.0 (WS-SecurityPolicy).
Gallagher, M., & Downs, T. (2003). Visualization of learning in multilayer perceptron
networks using principal component analysis. I[EEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 33, 28-34.

Gruschka, N., & Luttenberger, N. (2006). Protecting web services from DoS attacks by
SOAP message validation.

Im, E. G. & Song, Y. H. (2005). An adaptive approach to handle DoS attack for web
services. In S. B. Heidelberg (Ed.).

C.I. Pinzon et al./ Expert Systems with Applications 38 (2011) 5486-5499 5499

Jensen, M., Gruschka, N., Herkenhoner, R., & Luttenberger, N. (2007). SOA and web
services: New technologies, new standards - new attacks. In Fifth European
conference on web services.

Laza, R, Pavd, N. R,, & Corchado, J. M. (2003). A reasoning model for CBR_BDI agents
using an adaptable fuzzy inference system. In R. Conejo, M. Urretavizcaya, & J.-L.
P. De-la Cruz (Eds.). Springer.

Lecun, Y., Bottou, L., Orr, G. B., & MUller, K. R. (1998). Efficient BackProp. Neural
networks: Tricks of the trade. Berlin/Heidelberg: Springer.

Loh, Y.-S., Yau, W.-C., Wong, C.-T., & Ho, W.-C. (2006). Design and implementation of
an XML Firewall. In International conference on computational intelligence and
security (Vol. 2, pp. 1147-1150).

OASIS (2004). Web services security: SOAP message security 1.1 (WS-Security
2004).

Padmanabhuni, S., Singh, V., Kumar, K. M. S. & Chatterjee, A. (2006). Preventing
service oriented denial of service (PreSODoS): A proposed approach.

PinzoN, C., Paz, Y. D., & Bajo, J. (2008). A multiagent based strategy for detecting
attacks in databases in a distributed mode. In J. M. Corchado, S. Rodriguez, J.
Llinas, J. M. Molina, International symposium on distributed computing and
artificial intelligence (DCAI2008), Salamanca, Spain, Berlin.

Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A., & Zamboni, D.
(1997). Analysis of a denial of service attack on TCP. Washington, DC, USA: IEEE
Computer Society.

Srivatsa, M., lyengar, A., Yin,]., & Liu, L. (2008). Mitigating application-level denial of
service attacks on Web servers: A client-transparent approach. ACM.

Wang,]. (2006). Defending against denial of web services using sessions.

Ye, X. (2008). Countering DDoS and XDoS attacks against web services.

Yee, C. G., Shin, W. H., & Rao, G. S. V. R. K. (2007). An adaptive intrusion detection
and prevention (ID/IP) framework for web services. In International conference
on convergence information technology (ICCIT '07). Washington, DC, USA: IEEE
Computer Society.

