Expert Systems with Applications xxx (2012) XXX—-XXX

]

Expert
Systems
with
Applications 8
An Infornational
Joumal

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

Model for assigning roles automatically in egovernment virtual organizations

Carolina Zato, Juan F. De Paz *, Ana de Luis, Javier Bajo, Juan M. Corchado

Departamento Informdtica y Automadtica, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

ARTICLE INFO ABSTRACT

Keywords:
Multi-agent systems
Virtual organizations
Queuing theory
Task planning
E-goverment

When working in conjunction with multiagent systems, virtual organizations attempt to simulate the
functions and interactions of entities in different environments. Recent studies have addressed the prob-
lem of assigning roles to agents that form part of the organization, and incorporating new agents to carry
out certain tasks. However, these studies are limited to defining the norms and rules that determine the
behavior of the organization. The present study proposes a virtual organization model for egovernment
environments to assign resources and minimize the required personnel by forecasting workloads. To this
end, a neural network, queuing theory, and CBR are used to obtain an efficient distribution. Queuing
theory can establish the number of agents with a specific role that are necessary to maximize profits,
while the network distributes roles among agents according to their respective efficiency. The final part
of the paper is focused on validating the plan developed inside a case study centered on e-government in

order to obtain empirical results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Various studies have explored the concept of planning in virtual
enterprises or organizations (Camarinha-Matos & Afsarmanesh,
2007; Fenga & Yamashiro, 2006; Verter & Dincer, 1992; Wu, Fuh,
& Nee, 2002). Nevertheless, these studies have focused on defining
the objective parameters and functions of problems, which inhibits
their broader application. Furthermore, these systems neglect to
address potential demands and thus provide plans based on the
current workload at a given time. Other studies seek to optimize
the allocation of resources to maximize efficiency and minimize
costs by means of different heuristic or precise optimization tech-
niques (Fenga & Yamashiro, 2006; Verter & Dincer, 1992; Wu et al.,
2002). The main problem in these cases stems from the dynamic
aspect of work scenarios and the difficulty in finding a balance be-
tween time spent on planning and time spent on implementing
plans, which is the key to adapting to the needs of organizations
such as these that require frequent replanning. We therefore pro-
pose the need to create a system that is capable of carrying out
an efficient planning system not only for current and existing work,
but for the prediction of future work as well.

Planning strategies are commonly based on minimizing objec-
tive and multiobjective functions, and matching offers and
demands (Camarinha-Matos & Afsarmanesh, 2007). The problems

* Corresponding author. Tel.: +34 923294400x1926.
E-mail addresses: carol_zato@usal.es (C. Zato), fcofds@usal.es (J.F. De Paz),
adeluis@usal.es (A. de Luis), jbajope@usal.es (J. Bajo), corchado@usal.es
(J.M. Corchado).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.01.185

that arise from objective functions are resolved by exact or
heuristic means. The exact methods, such as linear programming
(Kabadi & Punnen, 2008), nonlinear programming (Shi, Lu, &
Zhang, 2005; Wan, Yang, & Izquierdo, 2009) and graph theory,
ensure that an optimal solution is provided in execution time
according to the number of existing variables. Early research in vir-
tual organizations was based on optimization through whole linear
programming (Fenga & Yamashiro, 2006; Verter & Dincer, 1992).
However, techniques such as linear or nonlinear programming
are not applicable to NP-Hard problems. Moreover, it is inherently
difficult for these techniques to define constraints and objective
functions because the objective function must present all of the
existing combinations in order to define the variables, and this
number of combinations can be quite high. As a result, it is neces-
sary to either resort to heuristics to solve optimization problems
(Wu et al., 2002) in which the parameters of the objective function
are calculated, or to combine heuristic techniques with linear pro-
gramming to solve these types of problems (Verter & Dincer, 1992).
It is advisable to use metaheuristic techniques (Kim & Park, 2004;
Kolonko, 2009; Porto, Kitajima, & Ribeiro, 1996; Taillard, 1994) to
solve these types of problems, as they can obtain efficient solutions
in reasonable execution times.

This study proposes a multiagent based Virtual Organization
(VO) model with planning and resource distribution capabilities,
as well as the ability to estimate work demands in order to both
determine the number of resources needed and, according to the
number of demands, to distribute work resources in such a way
that maximizes profits and minimizes delays. The planning system
will be developed according to a case-based reasoning (CBR)

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185
mailto:carol_zato@usal.es
mailto:fcofds@usal.es
mailto:adeluis@usal.es
mailto:jbajope@usal.es
mailto:corchado@usal.es
http://dx.doi.org/10.1016/j.eswa.2012.01.185
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa
http://dx.doi.org/10.1016/j.eswa.2012.01.185

2 C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx

system (Kolodner, 1993) which can be integrated into the various
stages of reasoning techniques in order to estimate resources. This
estimation is based on queuing theory and planning, and uses a
variant of a multilayer perceptron that incorporates unsupervised
learning. The planning mechanism is applied to virtual organiza-
tions (Boella, Hulstijn, & van der Torre, 2005; Esteva, Rodriguez,
Sierra, Garcia, & Arcos, 2001; Markus, Ingo, Josef, & Helmut,
2010; Rocha & Oliveira, 1999) of agents (Durfee, Lesser, & Corkill,
1989) to simulate the behaviour of the organization in its planning
and allocation of work for the given e-government case study. Due
to the high number of procedures and users involved in this type of
entity, it is essential to have a good planning system that can
ensure the work is carried out successfully and in a timely manner,
and that the staff allocated to the project is the minimal number
required to successfully meet future challenges.

Section 2 of this paper presents the state of the art for the dif-
ferent concepts used: multiagent systems, virtual organizations,
and task planning methods. Section 3 presents the proposed model
and includes solutions for a dynamic distribution of roles and sub-
sequent task assignments. The solution is explained in detail in
Section 4, which also includes the case study and corresponding re-
sults. Finally, Section 5 presents our conclusions and future work.

2. Virtual organizations and multi-agent architectures

The technology of dynamic agent organizations that auto-adjust
to obtain advantages from their environment is more than suitable
for coping with the development of this type of system. These
organizations could appear in emergent or dynamic agent socie-
ties, such as grid domains, peer-to-peer networks or other contexts
where agents dynamically group together to offer compound ser-
vices. However, although technology, on a theoretical level, seems
to be able to allow the development of this new kind of system, it is
still necessary to investigate theories, models, mechanisms, meth-
ods and tools in order to develop systems with reorganization
capabilities that provide them with the ability to adapt to environ-
mental changes.

Multi-agent systems are characterized by being autonomous,
reactive, proactive, socially skilled, etc. (Wooldridge & Jennings,
1995) and therefore are perfectly suited for creating organizational
models in which each agent can send and receive messages with an
individual, organization or actor in the real society that is being
modelled (David, Marietto, Sichman, & Coelho, 2004). Additionally,
the interaction between agents can correspond to interactions
existing in the real world (David, Marietto, Sichman, & Coelho,
2004). There are many agent-based social simulation models that
try to analyze different social phenomena (David, Marietto, Sich-
man, & Coelho, 2004; Epstein & Axtell, 1996). Schelling (1978)
carried out the first agent-based social simulation in which each
person was represented by an agent and the interaction between
these agents represented relevant social processes. Nevertheless,
there is still much work to be done, especially in the field of auto-
mated re-organization of virtual organizations (David, Marietto,
Sichman, & Coelho, 2004).

The open MAS (Bajo, Corchado, Botti, & Ossowski, 2009; Zambo-
nelli, Jennings, & Wooldridge, 2003) should allow the participation
of heterogeneous agents, which change over time, with architec-
tures and even with different languages. For this reason, we cannot
rely on agent behavior when it is necessary to establish controls on
the basis of norms or social rules that can affect the organizational
architecture and the agents residing within it. This is one of the
reasons that encourage the use of virtual organizations (VO). A
VO (Esteva, Rodriguez, Sierra, Garcia, & Arcos, 2001) is an open sys-
tem designed for grouping, for the collaboration of heterogeneous
entities, and for when there is a separation between form and func-

tion that defines their behavior. Early works, such as that of Rocha
and Oliveira (1999) propose initial versions of open MAS based on
the definition of the Market agent, which assumes the role of coor-
dinator and selects the agents that belong to the organization
according to a set of restrictions. Other more recent works (Mark-
us, Ingo, Josef, & Helmut, 2010) provide a 3D simulation of the
behavior of Open MAS, although its operation continues to be
based on the definition of restrictions that are validated by the
SMA Ameli prior to executing a transition. Other trends such as
(Boella, Hulstijn, & van der Torre, 2005) define standards of coop-
eration between agents according to their interaction, and use
BDI models to establish behavior. Camarinha-Matos and Afsarm-
anesh (2007) raised the issue of coordination within virtual organi-
zations and, since it is no longer a question of problems that are
limited to a simple matching between needs and resources but
one that involves multiple variables, suggested that these systems
be used to assist in the decision-making process.

In recent years, coordination mechanisms with agents have
been proposed in different ways (Jennings & Wooldridge, 1998),
the most common of which are the mediated methods. The inter-
mediary methods play an important role in artificial societies in a
way similar to what occurs in human societies.

There are many coordinator models, of which the two primary
and opposing methods are global and individual coordination. In
global coordination, the MAS determines and plans the actions of
the agents, while in the individual coordination, the MAS com-
pletes the autonomy of the agents.

The present study proposes a global planning model developed
by THOMAS that can carry out a global coordination in an organi-
zation. THOMAS (Carrascosa et al., 2009) arose from the need to
support open multi-agent systems in virtual organizations. The
architecture presents the infrastructure needed to develop the con-
cepts of agents, and applies splitting, abstraction and organization
techniques while taking all requirements into account.

The use of THOMAS implies that the organizations are com-
posed of Hierarchical Organizational Units in which a supervisor
agent has control over all other members, coordinates the tasks,
and centralizes the planning and decision process. The THOMAS
(Carrascosa et al., 2009) platform additionally provides new adap-
tation methods that allow the structure to be changed so that it
may adapt to the external changes.

Approaches towards the integration of multi-agent systems
with SOA and Web Service have recently been explored (Ardissono,
Petrone, & Segnan, 2004). Some developments are centred on com-
munication between these models, while others are centred on the
integration of distributed services, especially Web Services, into
the structure of the agents. Oliva, Natali, Ricci, and Viroli (2008)
have developed a Java-based framework to create SOA and Web
Services compliant applications, which are modelled as agents.
Communication between agents and services is performed by
using what they call “artifacts” and WSDL (Web Service Definition
Language). Shafiq, Ding, and Fensel (2006) propose a gateway that
allows interoperability between Web Services and multi-agent sys-
tems. Liu (2007) propose a multi-agent architecture to develop in-
ter-enterprise cooperation systems using SOA and Web Service
components and communication protocols. Walton (2006) present
a technique to build multi-agent systems using Web Services,
defining a language to represent the dialogs among agents. There
are also frameworks, such as Sun’s Jini and IBM’s WebSphere,
which provide several tools to develop SOA-based systems. Jini
uses Java technology to develop distributed and adaptive systems
over dynamic environments. Rigole, Holvoet, and Berbers (2002)
have used Jini to create agents on demand in a home automation
system, where each agent is defined as a service in the network.
WebSphere provides tools for several operating systems and pro-
gramming languages. However, the systems developed using these

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx 3

frameworks are not open at all because the framework is closed
and services and applications must be programmed using a specific
programming language that supports their respective proprietary
APIs (Application Programming Interface).

3. Planification models

In its broadest sense, the problem of planning consists of estab-
lishing an appropriate order of execution to a set of activities
according to specific critiera such as efficiency, quality, time, cost,
etc. Recent interest in the field of business and economics, and the
corresponding need to provide answers to the problems of
planning, has led many researchers to propose new planning
mechanisms using Artificial Intelligence (Tupia, 2004). One such
example is the task scheduler, which can be defined as a set of
tasks that must be executed by a group of heterogeneous entities,
and whose purpose it is to find an order and distribution that min-
imizes the number of available resources and can meet the restric-
tions of each individual task.

When looking to solve planning problems, there are generally
two available options to choose from: exact methods and approxi-
mate methods. The first is an optimal method that consists of calcu-
lating the exact solution; this may involve lengthy computations,
which make this approach impractical. The second alternative in-
volves the use of heuristic methods to calculate a near-optimal
solution; this option is less time-consuming, which justifies its use.

The nature of the problems is combinatorial and therefore the
time required to find the optimal solution grows exponentially
with the number of tasks considered. These problems fall within
the scope of combinatorial optimization and can be considered,
at best, NP (non-deterministic polynomial) problems. These prob-
lems do not have a polynomial algorithm that resolves them, but
they do have an algorithm that provides a non-optimal solution,
although it is very time-consuming for the few instances it pro-
vides. However, the majority of the combinatorial optimization
problems belong to NP-hard problems (a subset of NP problems).
This situation justifies the application of heuristic algorithms for
the search of solution in reasonable time.

Heuristics is one of several procedures of approximation.
Although the solutions provided by a heuristic approach are gener-
ally quite good, heuristics cannot guarantee that the optimal solu-
tion for a problem will actually be found. Furthermore, in most
cases it is difficult to adapt these algorithms to a problem that is
only slightly different from those for which the algorithm was cre-
ated in the first place. One example of a heuristic algorithm is the
voracious algorithm (AVM), which selects the optimal option dur-
ing each step of a problem solving process with the goal of finding
an optimal general solution. This algorithm is also referred to as
greedy myopic: greedy because it always selects the best candidate
to form part of the solution; and myopic because the selection is
unique and unmodifiable, as it does not analyze beyond the effects
of having selected an element as part of the solution. Some exam-
ples of these applications can be found in these studies (Tupia &
Mauricio, 2004).

The heuristic algorithms that are easily adapted to other prob-
lems are called meta-heuristics. Meta-heuristics are intelligent
strategies for designing, improving and optimizing general heuris-
tic procedures and providing them with a higher performance
compared to traditional heuristics. The most common meta-heu-
ristics algorithms are commented below.

3.1. GRASP algorithm

The term GRASP Algorithm is an acronym for Greedy, because of
the criteria used by the algorithm in choosing the optimal value

after each step of selecting a candidate; Randomized, because the
algorithm randomly chooses a candidate from the list it has ob-
tained; Adaptive, because it is capable of adapting to different
application contexts or relevant modifications of the model; and
Search Procedure, because it searches within a space or neighbor-
hood, randomly evaluating a set of possible solutions.

While the AVM algorithm focuses on selecting the candidate
with the best value at a given time, the GRASP algorithm broadens
the restriction to select not necessarily the best solution, but one
within a given set of values. Each possible solution is evaluated
by an objective function, thus ensuring the selection of a better
solution than that provided by the voracious algorithm. These
values are not necessarily local optimal values, but they are the pri-
mary means of finding one by using a local search. Examples of the
application of this algorithm in a planning process can be found in
these studies (Andres, Miralles, & Pastor, 2008; Binato, Hery, Loe-
wenstern, & Resende, 2000; Kim & Park, 2004).

3.2. Tabu search

This algorithm performs a local search based on the notion that
a specific solution can be improved by applying minor changes. For
each solution a set of neighbor solutions are calculated; the algo-
rithm then selects the best solution to continue with the next step.
The algorithm stores a search history to prevent the iteration from
entering into a loop and becoming confined to local values. There
are usually two types of memory: the short term memory that
stores the most recent searches; and the long term memory that
contains older searches. The short term memory consists of a tabu
list that stores information regarding the most recently accessed
solutions, so that, any solutions matching a case in the tabu list
are summarily rejected. The following publications reviewed some
task planning cases in which the application of these algorithms
had an effective result (Chambers & Barnes, 1996; Porto, Kitajima,
& Ribeiro, 1996; Taillard, 1994).

3.3. Simulated annealing

Simulated Annealing is based on a close analogy between the
process of thermodynamic physics and that of a combinatorial
optimization problem. The traditional local search algorithms start
with an initial solution that is gradually transformed into other
solutions that are in turn improved by the addition of minor
changes or mutations. If the new solution is better than the previ-
ous result, the solution is updated and the system repeats the pro-
cess until it is no longer possible to obtain a better solution. In this
way, the search ends with a local optimum that is not necessarily a
global optimum. One way of avoiding this type of problem is to di-
rect the result to a worse solution. However, if the search is in fact
leading to a good solution, these kinds of escape movements must
be very carefully applied because the system could be leading to a
global minimum. Simulated Annealing must be carried out with a
probability function that reduces the probability of the escape
movements leading to worse solutions during the search, which
would in turn assume that the solution is closer to a global opti-
mum.. Some studies related to the use of this method for task plan-
ning can be found in Kolonko (2009), Steinhofel, Albrecht, and
Wong (1999) and van Laarhoven, Aarts, and Lenstra (2002).

3.4. Genetic algorithms

The general purpose of evolutionary algorithms is to guide the
stochastical search in producing a set of structures from which
the most appropriate solutions are selected iteratively and a qua-
si-optimal solution is ultimately found. Unlike other methods,
there is not just one solution, but an entire set of solutions for each

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

4 C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx

iteration of the algorithm. These methods are based on generating,
selecting, combining, and replacing solutions. Because they man-
age several solutions at a time during the search process, the exe-
cution time tends to be greater than other meta-heuristic
algorithms. In general terms, a genetic algorithm consists of a pop-
ulation of solutions coded in the same way as chromosomes. The
chromosomes have a fitness value that quantifies the ‘goodness’
of a solution to the problem. The number of opportunities for
reproduction will be determined according to this value. There is,
furthermore, some probability that these chromosomes will
mutate. The main advantages of genetic algorithms include their
ease in adapting to both general and specific problems, their broad
theoretical base, which can easily hybrid with other paradigms,
their easy implementation, and the number of empirical tests that
provide specific operators. These algorithms have been used in sev-
eral planning problems, such as those found in Lee, Wang, and
Miao (2008), Shi, Lu, and Zhang (2005) and Yu and Buyya (2006).

In recent years, many task planning theories have been pro-
posed with varying rates of success. In Seda (2007) the authors
present an interesting mathematical model applied to the problem
of task planning. A review of different comparative studies (Pach-
eco & Casado, 2003; Rodriguez, 2003) on the efficiency of various
meta-heuristics indicates that no single technique stands out
clearly above the rest. In the present study, we have opted to apply
a neural network in an attempt to reduce the execution time below
that of the previously studied hetaheuristic models.

4. Proposed architecture

The proposed architecture is an organization model for egover-
ment environments that incorporates agents with capabilities for
automatically generating work plans and distributing tasks. The
core of the system is a novel plan-based planning mechanism that
interacts with a BDI model through the implementation of web
services, which allows for self-adaptive capabilities in different
environments. The system additionally provides communication
mechanisms to facilitate integration with the SOA architecture.

The proposed model was designed to develop a planning mech-
anism to coordinate the agents located inside the virtual organiza-
tions. To this end, a set of roles and activities are defined according
to these needs. Agents with certain roles act as service coordinators
and controlers; the services are responsible for implementing the
behaviour of the agents and processing the information, which
facilitates tasks involving replication and modulation. In the
proposed system, the roles in the platform are hierarchical: the
higher organizational layer contains roles from the platforms
responsible for the task distribution functionalities; and the lower
layers contain the processes roles, which are responsible for devel-
oping the tasks.

The model proposed in this paper focuses on developing a plan-
ning mechanism to coordinate the agents found in the VO. We will
first identify the roles that these agents can assume:

e Processor role: Responsible for carrying out the activities
required for each specific task. For this reason, the agent will
specialize in a specific activity according to the type of tasks
the system must resolve.

Planner role: Designs the overall plan to be implemented by the
organization. Sets the number of processor agents and distrib-
utes tasks according to the role they play. Replans according
to the size of the input queue or the inability to accomplish
an activity with a plan.

Distributor role: Distributes tasks according to their completion
by the agents and checks that each task is being processed
within the time limits established for the plan.

e Coordinator: Performs the general control of the system. Com-
municates with the THOMAS platform elements to carry out
control actions (connect, disconnect, exceptions, etc.).

e Manager role: This agent manages all the information of the task
and communicates to the user.

Fig. 1 illustrates the different agents of the system and the inter-
actions among them. The task list, which stores the activities to
carry out in the multi-agent system, is shown in the upper corner;
the agents and the interconnections can be seen in the center of the
image.

The service layer is responsible for carrying out the functional-
ity of the different agents. This ensures a separation between the
functionality and the business logic. The behavior of the agents is
independent of the agent itself since the functionality depends
on the roles that the agent has at a particular moment. In order
to achieve this separation, the role distributor assigns web services
that integrate the behavior of CBP-BDI and reactive models associ-
ated with each role. The reactive models are based on the defini-
tion of dynamic rules that are analyzed and interpreted by the
BRMS (Business Rule Management System). There two different
services associated with the roles: planner and reactive. The plan-
ner service incorporates tasks from the CBP-BDI model assigned to
the planner role, while the reactive model incorporates a business
rules reasoning engine that interprets the business logic of the
system.

The service layer includes a service called Facilitator Directory
that provides information on the various services available, and
manages the XML file for the UDDI (Universal Description Discov-
ery and Integration). To facilitate communication between agents
and services the architecture integrates a communication layer
that provides support for the FIPA-ACL (Foundation for Intelligent
Physical Agents-Agent Communication Language) and SOAP (Sim-
ple Object Access Protocol) protocols (Bauer & Huget, 2003).

One of the major problems in the development of an architec-
ture based on a multi-agent system is that there are currently no
clear standards or well developed methodologies for defining the
steps of analysis and design that need to be taken. There are at
present a number of methodologies: Gaia (Wooldridge, 2000),
AUML (Agent UML) (Corchado & Laza, 2003), INGENIAS (Pavén,
Goémez, Fernandez, & Valencia, 2007), TROPOS (Giorginia, Mylopo-
ulos, & Sebastiani, 2005), MESSAGE (EURESCOM, 2001). The main
approach of agent-oriented methodologies is centered on the indi-
vidual actions of the agents, many of which have been developed
from extensions of object-oriented methodologies or from knowl-
edge engineering, while others have started from totally indepen-
dent developments. The majority of these methodologies define
the phases of analysis and design, whereas only some (like Tropos,
Prometheus, MaSE, MASSIVE) also detail the implementation
phase. They assume that the agents have common objectives, are
benevolent, and cooperate with each other to reach these common
objectives. The social rules are not specifically defined, and the
social structure, which is presented by the system, emerges from
the interactions of the agents, yet remains undefined as well, both
in the analysis and in the design of the actual methodology. For this
reason, these types of methodologies are not useful by themselves
for the development of open multiagent systems, and they only al-
low the development of closed systems in which the participation
of external agents is not admitted, is normally nonreliable and
uncooperative, and includes self-interested behaviours (Argente,
2005).

The main approach of an organization-oriented methodology is
centered on its own organization of the system, and takes its objec-
tives, structures and social norms into account. These methodolo-
gies primarily detail the analysis phase and in some cases the
design phase. However, it is necessary to have an agent-oriented

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx 5

[s [
|

CBR
Theory Queues
Genetic algorithm

~Agents’ Organization

—

Planification

e
~ Planner.
Manager

/

//

/

=
..,e-—ﬁ'@/

User \, Solicitor

\
\\\

A

N aAaAl

N — Proccessor,

List of Services ' -

Service i: description
Service j: description

[

Service choice

Rl /

Planification

Asignation
Control

A g
A

Fig. 1. Outline of proposed model.

methodology to complete the internal aspects of the agents and
the implementation of the system, even though in the majority
of the cases there is no explanation as to how this support is actu-
ally done. In addition, some of the proposals are merely extensions
of agent-oriented methodologies, although many are independent
developments that apply organizational theories and surroundings
as the bases.

When the concept of organization is identified as the central
point of the methodology, the social structure will be specifically
defined for this purpose, indicating the objectives, roles, hierar-
chies, groups, interactions and topology of the system. Assuming
the agents are heterogeneous, the participation of external and
internal agents is allowed. Furthermore, the social norms define
not only the mechanisms for including external agents within
the society, but also the control mechanisms for the behaviour of
the agents according to the restrictions imposed by the system.
For these reasons, these methodologies are the most suitable for
modelling both open and closed multiagent systems. Nevertheless,
they are still in an incipient phase of development and lack some
formalisms and appropriate methodological guidelines for carrying
out the analysis, design and complete implementation of a multi-
agent system and, especially, of an open system (Argente, Julian,
Valero, & Botti, 2005).

The present study uses GORMAS methodology because it covers
all the specific needs that arise with virtual organizations, having
been created precisely for this purpose. In particular, the methodo-

logical guide offers an iterative procedure that makes it possible to:
(i) specify the mission of the system; (ii) analyze the required tasks
and processes, on the basis of services and products; (iii) determine
the dimensions of the organization (departmentalization, special-
ization, centralization, coordination and normalization); (iv) select
the suitable structure according to the specified dimensions; (v)
identify the processes of information and decision; (vi) specify the
open characteristics of the system (functionality to publish; control
of external agents); (vii) determine the mechanisms (rules) for con-
trolling agent behaviours; and (viii) specify the reward system to
promote the behaviours that most interesting to the organization
(Valero, Argente, Giret, Julian, & Botti, 2005).

The following sections detail the two most innovative elements
in the system: the CBP-BDI task planning role that specializes in
coordinating tasks; and a dynamic distribution mechanism for
tasks and roles based on the creation of rules.

4.1. Role planner

The role planner is responsible for carrying out the planning as
the tasks are received. This agent is in charge of receiving the task
list, establishing the number of agents needed to accomplish the
activities, and putting the tasks in order so that any delays have
the least possible impact on the overall plans. In Fig. 2, we can
see the information stored in the task list. The information for each
task is:

Task 1 Task 2

Task3 |

| TaskN

{IdTask, TaskType, Benefit, AccruedBenefit, DateEntry, Deadline, Duration} - Agent

Fig. 2. Task list information.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

6 C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx

o IdTask: Identifies the global task in the system with a unique ID.
e TypeTask: Each task requires a set of activities that can be
performed sequentially or in parallel. These activities can be
considered as subtasks of the global task. This field establishes
the current state of the global task and, consequently, the next
activity or step that must be performed. From this point
forward, the word task will be employed to refer to any activity
performed to resolve the final task, bearing in mind that each
task is defined by IdTask and TypeTask.

Profit: Total profit gained from executing a task for a specific
case. This field is important when determining the number of
agents needed to minimize losses from not performing certain
tasks..

Accumulated profit: Total accumulated profit from previously
completed subtasks that will be lost if the current task is not
completed on time.

o Arrival time: This date establishes the arrival time of the task to
the system. This field is important for determining the arrival
rate of specific activities for a given date.

Deadline: Maximum amount of time allowed for resolving the
case. This value is preset for each type of task.

e Duration: Total time used in finalizing the task.

e Agent: The agent responsible for carrying out a task.

Based on the list of cases that need to be developed, the role
planning agent selects the number of agents needed to support
demand while minimizing costs, and distributes tasks among the
agents. The tasks are distributed in so as to minimize any replan-
ning required to complete the tasks in the previously determined
time. This process is summarized in the Fig. 3, which displays a
task list received by the planner agent, who then determines the
most suitable number of processor agents and distributes the
tasks.

If there are not enough agents to finalize the tasks, the system
puts the cases in the best order to minimize losses. The system
should always work under stable conditions, which is to say, those
in which the utilization rate is less than 1.

The replanning process can be carried out according to different
situations:

e New task: The system replans when it receives a new task. This
mechanism would not be very useful if the arrival rate were
high because the system would spend too much time
replanning.
Periodically: The system replans every specific period of time. If
the system were to follow this procedure, it would be necessary
to establish the period of time based on the arrival rate. How-
ever, as the arrival rate is not constant, this procedure could
be ineffective. For example, it may be necessary to replan with
the addition of only one task, while twenty new tasks are wait-
ing to be reviewed.
e Accumulated number of unassigned tasks: Instead of replanning
each time a new task arrives, the system replans only after there
are a specific number of tasks waiting to be assigned to an agent.

Task Queue

A Planner Agent

e Inability to schedule: the system initiates the replanning
process when delays by the processing agents have made it
impossible to complete the most recent plans.

The first two options can be considered as simple systems with
few tasks. In order to build a system that can adapt to different sce-
narios, the proposed system replans according to the number of
tasks waiting to be assigned, and whether the previous plan can
be successfully completed. The system establishes a threshold of
5%, based on the number tasks in the previous queue, before initi-
ating a replanning process. It also creates a new distribution upon
receiving an urgent task whose duration is similar to the maximum
resolution term.

4.2. Planification model

The planning model explained in this section is associated with
the planner role. The role planner agent has the capability to learn
from previous cases. The agents adopt the CBP (Case-Based Plan-
ning) model, which is a special type of CBR (Kolodner, 1993).

While CBP is derived from CBR, it is specially designed to gener-
ate plans (sequences of actions) (Castro, Navarro, Sdnchez, & Zurita,
2009; Corchado, Bajo, De Paz, & Tapia, 2008). In CBP, the proposed
solution for solving a given problem is a plan. This solution is gen-
erated by taking into account the plans applied for solving similar
problems in the past. The problems and their corresponding plans
are stored in a memory of plans. The reasoning mechanism gener-
ates plans using past experiences and planning strategies, which is
how the concept of Case-Based Planning is obtained (Glez-Bedia &
Corchado, 2002). The problem description (initial state) and solu-
tion (situation when final state is achieved) are represented as
beliefs, the final state as a goal (or set of goals), and the sequences
of actions as plans. The CBP cycle is implemented through goals
and plans. When the goal corresponding to one of the stages is acti-
vated, different plans (algorithms) can be executed concurrently to
achieve the goal or objective. Each plan can activate new sub-goals
and, consequently, cause the execution of new plans. In practice,
what is stored is not only a specific problem with a specific solu-
tion, but also additional information about how the plans have
been derived. As with case-based reasoning, the case representa-
tion, the organization of the memory of plans, and the algorithms
used in every stage of the case-based planning cycle are essential
in defining an efficient planner.

To carry out the planning process the agent follows the CBR-BDI
planning model. The first point in the definition of a CBR-BDI mod-
el is the definition of case (1).

C:{tl/tl:(ld5~ldt‘b737f7p7d~a)~ l:]n} (1)

where t; presents the task i, ids is the identifier of the task type, idt
the process, b benefit, B the accrued benefit, f the entry, p the term, d
the duration, and a the ID of the agent that performed the task. The
application of the different stages of reasoning is performed as
follows:

Task Queue

necessary number of

Calculation of the
Proccesor Agents

Task Distribution
among the available

Processor Agents

Fig. 3. Planning process.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx 7

Input: Cy, cu41, N, eMax, cost
Output: number, TaskList, Average

Error + {;
Average + {;
TaskList < retrieveTask(cp1);

foreach x € TaskList do

e + calculateError(x, Cp, Nyz);

if e > eMaz then
SimilarTasks ¢+ retrieveSimilarTasks(x, eMax);
Average « calculateAverage(c,, SimilarTasks);

end

else

| Average + calculateAverage(Chr);

end

Error + Error U {e};

Average + Average U {Average};

end

[number, TaskList] +— calculateAgents(C;, Average, cost);

Fig. 4. Definition of the number of total services.

Upon receiving a new case c,+; composed of the elements indi-
cated in (1), the planning agent creates a new plan by applying the
different stages of the reasoning cycle as described in the following
sections:

In retrieve phase the system retrieves the most similar cases to
the current case c,.;. The most similar cases are those that contain
the greatest number of tasks most similar to those in the current
queue. In order to improve the search process, information about
the number of tasks for each type of activity is added to the infor-
mation in the memory of plans. The search of the stored tasks is
limited to a predefined period of time, which can vary according
to the type of services that have been given to the organization.
The number of recovered cases is defined in advance in order to
subsequently carry out the reuse phase. The set of retrieved cases
is defined as C, C C.

During the revise phase, the system uses the information
retrieved from the memory of cases C, in order to generate the plan
associated with the new case cp.+q. The retrieved information is
adapted by means of the queuing theory and genetic algorithms.
The retrieved information is used, first of all, to determine the ar-
rival rate and the service rate for each case. The queuing theory
then determines the number of services needed for a case. The
information obtained from the retrieved cases is used to calculate
the average service time. Statistic sampling is used to calculate the
maximum error for the value obtained with a specified confidence
level. If after calculating the error the specified threshold is ex-
ceeded, the system will select the size of the minimum sample to
reduce the error down to the indicated value so that the threshold
is no longer exceeded. Fig. 4 shows the algorithm used to calculate
the total number of required services.

The calculateServices function is carried out by the algorithm
shown in Fig. 5; the process is described in detail in Section 4.2.2.

The algorithm used during the reuse phase is described in Fig. 6.
The system distributes tasks among the agents according to a neu-
ral network. It already has the list of tasks to organize, the length of
each task based on the agents, and the maximum time allowed to
complete the process. The exit matrices for the WeightEstimate-
HiddenLayer and WeightEstimateOutputLayer algorithms contain
the assignments and execution order of the tasks for each of the
agents. The estimation process followed by the neural network is
explained in greater detail in Section 4.2.3. The learning process
uses the common retro-propagation algorithm.

The revise phase is automatically initiated as the agents finish
their tasks. The agent updates the duration of the tasks as they

Input: C,, Average, cost
Output: number, Tasks

SortedTasks «+ sortProfitTask();

f 0

Tasks « 0;

for i=1 to #SortedTusks do

Lq + QueuningElements(C,, Medio[i], s=1);

Wy « calculateAverageWait(Lg. A);

L + SystemElements(Lq, A, Averageli]):

duration + calculateAverageDuration(Cy, SortedTasks|i], eMax);
profit + calculateAverageProfit(Cy, SortedTasks|i], eMax);
[fb, services] + calculateProfit(L, Averagali], duration, profit);
p + updateUtilizationRate(\, Averageli]);

if p > 1 then endFor;

£ 41y

Tasks + Tasks U SortedTasksl[i];
number « number + services:

end

Fig. 5. Calculation of the number of services.

Input: Tasks, Duration, maximumTime
Output: Tasks, WeightEstimateHiddenLayer,
Weight EstimateOutputLayer

iteration + 0:

while iteration < Max && IlconstantError do
|Weight EstimateHiddenLayer, WeightEstimateOutputLayer,
OutputHiddenLayor, OutputOutputLayer, output] < compute(Tasks,
Duration, maximumTime, WeightHiddenLayer, WeightOutputLayer):

[WeightHiddenLayer, WeightOutputLayer| «
learnBackPropagation(OutputHiddenLayor, OutputOutputLayer,
Tasks, output);

end

Fig. 6. Task assignment.

are completed and then replans if it receives a message from the
processor agent regarding the impossibility of completing a plan
under the existing temporal restrictions.

The retain phase stores the plan at the end of the business day.
The new memory of cases C' is defined as follows: C = CU c,+1 Any
plans that originated prior to a specific date are removed in order
to limit the size of the memory.

4.2.1. Calculation of maximum error

In order to estimate the number of processor agents needed and
to assign tasks, it is first necessary to estimate the average duration
for each kind of task in general and for each of the agents in partic-
ular. The process of calculating the duration of tasks is done by first
determining thelevel of maximum error allowed for a given confi-
dence level.To this end, the system establishes the level of confi-
dence and calculates the level of error obtained from a sample
size. Eq. (2) defines the average interval of a given sample and
population.

=

L s -n
=Xx+k
K vn—1VN-

where X represents the average, k is the value Z of a N(0, 1) that
belongs to a predetermined level of confidence, N is the size of
the population, n is the sample size, and s is the deviation.

Eq. (2) is simplified if N > n by approximately 100 times. Under
this condition, the equation can be reduced to the following
expression (3).

@)

—

L S _
=X+k—=Xx+e 3
2 e 3)
where n, represents that N > n by approximately 100 times.
Therefore, we can obtain the expression (4) that determines the
sample size used to establish a maximum error.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

8 C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx

Ao A Az Anz Ans An
ARVE-BE G &
k—Q/ | < et
I Hz Ha Ha Ha Hps1

Fig. 7. Birth-death process.

e =03

4)
Sc represents the quasivariance; the others variables have been pre-
viously indicated.

Finally, the sample size is defined by Eq. (5) in the first stages of
the system when the condition N>>n is not satisfied.

()

The equations presented in this section establish the number of ele-
ments that must be retrieved in order to limit any obtained errors.
This process can limit access to the memory and remove old cases
that have not already been accessed.

4.2.2. Dynamic planning roles

The number of agents that should be available in the system is
estimated dynamically. The intention is for the number of agents to
meet the demand and ensure that the system utilization factor p is
less than 1. The queuing theory is used to calculate the prediction.
The queuing theory originated from a study of telephony in
Denmark in 1909 (Erlang, 1909). The study involved the provision
of services to clients with an unknown set of demands. Queuing
theory was expressed as a birth-death process, which defines the
relationship between the arrival of tasks and their service so that
the problem balances out in such a way that all tasks can be ad-
dressed. Fig. 7 illustrates this problem.

The likelihood of the system belonging to state k can be defined
according Fig. 7, where state k means that there are k tasks in the
system queue.

If there are no tasks in the system queue, the relationship
between the input to state O and the output to this state can be
defined as:

1Py = JoPo (6)
20
My

Using the previous expression (6) we can assume that the probabil-
ity of finding zero tasks in the system queue (Py) multiplied by the
arrival rate must be equal to the probability of finding one task in
the system queue that will be addressed immediately.

The following expression can be defined in the state n-1

P, =

Po (7)

j~n—2Pn—2 + ﬂnPn = ;Ln—lpn—l + ,unqpn—l (8)
,unPn =)~n—1Pn71 + ,un,lpn—1 - /ln—ZPn—Z (9)
Pn = (/ln—lpn—l + ,unqpn—l - ;Ln—ZPn—Z)/Mn (]0)
Using (10) and replacing P,_; we have

Ao Ane
P,,:ﬁPO:cnPO (11)

The problem of planning multiple tasks can be simplified to a case
of planning a single task for each type of task. Thus, a plan is per-
formed independently for each task so that the average waiting
time and average queue length can be calculated independently.
The average waiting time and the overall average length is simpli-
fied to calculating the average values for each of the tasks. In the
case of the M/G/s model where s=1,2,3,... is the number of

agents, the arrival rate 4, = 2 = etc, the service rate for when there
are n processes is defined by the following Eq. (12) (Martin, 2003):

Ny n=1,2,..
‘u”i{s,u n>s

5s—=1 (12)

where u represents the average service rate for s available agents.
This value depends on both the agents and the machine found.

Assuming that the system is in a stable condition (i.e., it meets
the utilization factor p = (4/us) < 1), the probability that n tasks
exists (P,) in the system is given by Eq. (13) (Martin, 2003)

{,Po n=01,...5-1
Pp =Py = RN (13)
W(@) Py n>s
where
1
PO_ 1 n oS
Z;:O/ﬁ_!"'_slv_u],lﬁ
i n=12,.s-1
Cn " ; n-s (14)
we() n=s

Having defined the probability that n tasks exist in the system, it is
possible to define the number of tasks L, in the system queue and
the average waiting time W, of tasks at the end of the system
(15) (Martin, 2003):

=) 1 L
Ly = n—sPp=Pp——— Wy=22 15
q ;()n OS!HSSﬂ(l—ﬁ)Z/ q 2 ()

To determine the optimal number of agents we make an estimate
that minimizes the cost function, which depends on both the num-
ber of agents used and the waiting time in the queue. The function
is defined in a particular way for each service depending on the
actual costs of each agent in the system. The following profit func-
tion is provided (16).

f(L,Po,...,Poq, 1 ,p.b) = fy(L,pt',pb) —k - s (16)

' 5B — (p/u)b-s-(1—p) siL-u'>p-s-(1—p)
Fb(L.,u-,pb)—{Lb SL-w<p-s-(1-p) (17)

where k is a constant associated with the cost of having an agent
working, b the average benefit of performing the task, u' is the
average time to complete the task, obtained from the service rate,
p the average time to execute a task. If we exceed the conditions
of stability, f, is counted only up to the utilization factor 1. The uti-
lization factor p varies according to the new services added to the
queue until it reaches the utilization factor of 1.

Following the cost function given in (7), we introduce the global
cost function (18) that takes into account the implementation of
the various services.

> Y 1 L
Ly= n—-sPy=Pp——— ——> W,==2 18
1= (- Sy (18)

where f; is calculated from Eq. (7). Because the stability conditions
may not always be given, it is necessary to calculate the terms in
order of benefit depending on the type of the task so that when
you reach the utilization factor of 100% we end calculating the sum-
mation terms. Once the optimization function defined in (9) the
maximum value is calculated iteratively starting with number of
agents equal to 1, the fixed value is the first local maximum that
corresponds to the global maximum.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx 9

Maximum weight. The task

is assigned to ‘*m

The tasks are ordered
according to me)/e\gths

0.1

Tasks

Agents

Tasks

Execution order

Tasks

Agents

Color represents that the agent with the some color will
carry out the task

Fig. 8. Structure of the neural network that represents the task assignment and determines the order in which the tasks are executed.

4.2.3. Task assignment

The tasks are assigned by a multilayer perceptron that contains
unsupervised learning. In this network the propagation rule and
the error function used in the retro-propagation algorithm are
modified in order to allow for unsupervised learning. The first
point to consider with regards to the problem is the architecture
of the network that will be used. The architecture is defined by
the number of tasks and the number of available agents. In this
way, the number of neurons at the entry and exit layers is defined
by the number of tasks, while the number of the intermediate lay-
ers is established by the number of agents.

Once the network topology has been defined, the next step is
to consider the problem needs and objectives. For the problem
of assignment presented in this study, it is not only necessary to
assign the tasks to the agents, but to consider the order in which
the agents actually receive their assignments, given that the order
of assignments is important to ensure the timely completion of
the tasks. The assignment of the tasks and the order of assignment
are determined according to a weighted value. The weight of the
connection between the entry and the intermediate layers deter-
mines the assignment; the values are continuous during the
learning phase, but they become binary during the estimating
phase so that only the greatest value is 1 and the remainder are
0. The weight of the connexions between the neurons at the inter-
mediate and the exit layers determine the order in which the
tasks are executed. These values are continuous during the train-
ing phase, but during the estimating phase they become natural
according to the position of the value given to the weight when
it has exited the neuron of the intermediate layer. For those tasks
with zero weight at the connection of the intermediate entry
layer, the weight of the connection between the neuron for the
intermediate and the exit layer is zero. Fig. 8 provides an example
of the transformation of the continuous values to binary and
whole numbers during the estimating phase. The first neuron at
the entry layer is assigned to the first neuron from the intermedi-
ate layer because it has a greater weight value. At the exit layer,
the order is determined by the maximum value of the weights
for each of the neurons from the intermediate layer; this allows
the second neuron at the exit layer to have a value of 1. The value
of the weight of the last neuron at the exit layer is ignored since
the last neuron at the entrance layer is associated with the second
layer of the intermediate layer.

The first step in describing how the neural network operates
will include a detailed description of the estimation phase in which
weights are used to calculate the value of the neural network exit.

1. wf represents the weight element for the intermediate entrance
layer that corresponds to the neuron i from the entrance layer,
and j represents the neuron at the intermediate layer. The
matrix is defined according to the the original weights w;; from
the network.

1 wj = maxw;,
wé = X
v 0 wymaxw,

X

2. The exit of the neurons from the intermediate layer is repre-
sented by the following equation:

yi=>

wex;
i

3. Wj, is the matrix for the weights from the intermediate exit
layer, where j is the index of the entrance neuron and k is the
exit neuron. The values for the matrix are defined as follows:

W;k ={wp/wy =1,i=k}
Wj, = sort({wy/wy; = 1,i = k})
W = X/, = wh)

4. The exit of neuron k is defined according to the duration of the
x—1 tasks preceding task k. The result is the sum of the duration
of each of these tasks. Task i precedes task x if both tasks are
associated with the same agent, and if the weight of task i is
greater than that of task k. The duration depends as much on
the agent as on the task itself.

Zy :Z

dx

5. The final error function is defined by the following expression in
which M, represents the maximum execution time for task k:

>

(My—2)

N —

Using the estimates for the exits, the learning phase can be carried
out by applying the retro-propagation algorithm for the multilayer
perceptron so that the weights adjust automatically, thus minimiz-
ing the definition of error.

5. Case study

The proposed system can be applied to different business envi-
ronments and organizations that require task planning. However,
this study was primarily motivated by the need for a platform that
could create an effective distribution of work and fall in line with
the new business goals generated by a recently installed e-Admin-
istration system. The result of this particular innovation within the
field of Public Administration is to establish a new work mecha-
nism that requires changes in the organization.

The case study presents a society that focuses on processing cases
of Public Administration that have been received by telematics
means. This society of agents was designed using the GORMAS de-
sign methodology, which uses various stages of analysis, structural

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

10 C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx

Minimizar recursos

N

OPursues Pll]a\n
S //Ilixpedieme
Resolver incidencla Consultar Expediente
OPursues o Tramitacién Mi
—_—
: Sistema de tramitacion
Maximizar efectividad Servicio Tramitacion li
Asignacion Generar Plan
Proveedor ; -\ i

TR

FAx X i

Coordinador Tramitador Distribuidor Plandmdor

Servicio

Control incidencias

Serwclo

Informacion Plan

‘ OProduces. T

OProduces

Fig. 9. Diagram of the organizational model. System mission.

design and dynamic design to specify the services offered by the
organization, its structure, and the norms that dictate its behavior.
The system was implemented and based on the previously men-
tioned THOMAS architecture (Carrascosa et al., 2009; Giret et al.,
2009) and on the model proposed in Section 3. The system is meant
to simulate the behavior of the Planner Agent, which ensures that
the entire organization is provided with a global plan to successfully
solve all cases.

The model proposed for this case study was adapted according
to the particular specializations of the Processing Agents. These
specializations are related to the three types of cases that will be
taken into account: Scholarship Processor, Tax Processor, and Fine
Processor. Each task in the entry queue is characterized by the case
with which it is associated, and its current state or phase.

There are different services within the virtual organization, each
of which can assume different roles. This way, when a Processer
Agent receives a case, a service will be registered within the SF
module of the THOMAS architecture. The service can be executed
by the role that processes the case and will contain all the opera-
tions that the agent needs to carry out its task.

Following the methodological guidelines we can observe the re-
sults in Fig. 9 for one of the first tasks that must be performed. The

|4 Sistema de recomendacién para el reparto de tareas

figure instantiates the functional view (mission) of the organiza-
tional model, which includes the products and services offered
by the system, the type of environment, the global objectives,
interest groups and the information they consume.

6. Results

The program used in this study simulates the behavior of the
Planner agent within a virtual organization. While the simulation
is taking place, the actions are statistically analyzed for their per-
formance and the system makes recommendations regarding the
distribution of tasks.

Fig. 10 displays an image of the program in operation. The task
queue shows the tasks waiting to be processed. Once the task was
assigned, the Tax Processor was immediately delayed (as indicated
by the red cross), requiring the Planner agent to replan (as indi-
cated by the hourglass next to the Planner) since it has now
become impossible to continue with the original plan.

With the aim of evaluating the proposed planning mechanism,
and assuming the final goal is to process all the cases within the
allotted time frame while yielding the greatest possible profit mar-

) i |

TAREAS PENDIENTES (130) SIHAACION
Expedente Fechalimite Dwadén Agente ~ ’ ’ ’ ’
M52 130 agosto 2010 09:58 23 M2 -
8103 i o B4 .
p22s 15 B2 . @ “ o
11 ss 1 E >
M15S 30 agosto 2010 10:04 9 Ms
BLIL 30 agosts 2010 10:07 |14 Bs)
M8 30 agosto 2010 10:07_|12 M3)
Mass 130 agosto 2010 10:08 19 M4
1052 130 agosto 2010 10:10 45 1n
101 130 agosto 2010 10:12 32 12
1333 r-] 15
M126 2% M1
863 [Tz B3
1022 [0 agosto 2010 10:19 |22 15
8154 [0 agosto 2010 10:23 |19 B2
1073 30 agosto 2010 10:26 |12 4
s Y ITEmm - - 3) @ @)) ‘, @ ®x @
350 30 agosto 2010 10:27 |58 6 -
T & Configuraddn
.
pel 1] 30 3g05t0 2010 15 a S planficacdn Planficacén
® 09:33 Cllcudo ndmero de agentes @ Plansficacdn con CBR.

Fig. 10. System interface.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx 11

Table 1
Configuration of the genetic algorithm.

Population: 20

Cross: multipoint

Mutation: alter the assignment order and alter the assignment
Elitism: 10%

Stop criteria: 500 iterations or no improvement in 4 generations

60
50 ;"'.\
40

30 r — “=t==Genetic algorithm

r 4 i “B=Neural network
20 y 7 4

10

VR VM- O OVNDNO~D ~O0Z

Test 1 Test 2 Test3

2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

900

====Genetic algorithm

«@=Neural network

et = S3C e+ mrmh DD

Test 1 Test 2 Test3

Fig. 11. Comparative results for task planning.

gin, the system was tested with three different case lists. As previ-
ously mentioned, prior versions of this planning model used a genet-
ic algorithm to assign tasks. However, the following section will
show that the results obtained from the neural network improve
efficiency as well as profit and the number of cases successfully
processed.

The genetic algorithm contained an aptitude function defined in
the same way as the error function used for the neural network so
that the results obtained would be comparable. The genetic
algorithm used a multipoint cross-connection and mutation oper-
ators to alter both the order of task assignment to agents, and the
assignment of the agents themselves. The mutation operators were
selected randomly for each iteration; the random mutation of the
least efficient chromosomes was also permitted to avoid falling
into local minima. The configuration selected in the genetic algo-
rithm is shown in Table 1.

Three sets of cases were designed:

e Test 1: 400 cases introduced within a simulated 32 hour
workweek

e Test 2: 800 cases introduced within a period of 60 hours.

e Test 3: 1300 cases placed in the entry queue within a period of
70 hours

Previously, the system had a memory of 700 cases based on
cases where the values had been altered by a poisson distribution

o

o - e

b /

/
7
e
7
-
S 4 .
< 7
~
-
= o - — Neural Network
g g1 - — Genetic Algorithm
_

T T T T T
20 40 60 80 100

Tasks

Fig. 12. Execution time in milliseconds for the tasks and estimate process.

according to the arrival rate established for each of the test cases.
Fig. 11 shows the comparative data obtained from substituting the
genetic algorithm with the neural network in the three test cases.

The top chart displays the comparison between the number of
cases that were not processed within the stipulated period of time.
For the first test, in which there were fewer cases, we can see that
the network does not indicate an improvement in the results.
However, as the number of cases increased and were introduced
in a smaller period of time, the network reduced the number of
unprocessed cases from 3.77% to a best case of 2.46%.

The bottom chart is even more significant because it reveals the
lost profits. A point system is used to assign a value to the benefit
field for each record. It takes various aspects into account, such as
the type of record, the economic gain expected, previous work, the
assigned agent, etc.

As with the test using lost cases, the first test does not demon-
strate a significant improvement. However, the distance between
losses is greater when the system employs a larger entry queue.
The graph shows how the neural network in test 3 manages to
reduce lost profits from 1845 units to 1490 units.

The comparison between the genetic algorithm and the neural
network also included a comparison of execution times and the
final efficiency rate for the solution obtained. To perform this com-
parison, we calculated the execution time for the network and the
genetic algorithms for various numbers of tasks. The x-axis repre-
sents the number of tasks waiting in the queue prior to the plan-
ning, and the y-axis represents the time. The results can be seen
in Fig. 12.

We can see that the execution time has a greater increase for
the genetic algorithms while the increase in the neural network
remains more proportional to the number of elements in the plan-
ning process, with a more linear movement than the genetic
algorithm.

In the next step, we performed stress tests on the system, which
randomly eliminated an agent prior to the planning process. Fig. 13
shows the number of tasks completed on time for each of the plan-
ners. We can see that the number of tasks completed on time is
greater for the neural network than for the genetic algorithm.

For this study, the Mann-Whitney U-test was applied to the
proportion of tasks finished on time. It was a non-parametric test
in which it is not necessary to make assumptions on the data dis-
tribution, as with the t-test. The test determines two values: Hy
and H,. Hy shows whether the data in both groups presents the
same distribution, whereas H; determines whether there is a

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

12 C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx

— Neural Network
— Genetic Algorithm

1.00

percentage [0, 1]
088 090 092 094 096 098

20 40 60 80 100

Tasks

Fig. 13. Percentage of tasks completed on time for different numbers of tasks.

difference in the distribution of the error distance data. The result
obtained was 0.0473, which implies that the difference is signifi-
cant and, consequently, that the proportion of unfinished tasks is
the result of a different distribution.

7. Conclusions and future work

This article has presented a virtual organization model with a
task planning mechanism that can make recommendations when
distributing tasks in a dynamic environment. Virtual organizations
were proposed as the mechanism for a business model and in-
cluded all of the characteristics that compose a real life scenario.
Because of their many advantages, virtual organizations are ideal
for simulating the behavior of a business entity in which planning
and coordination are the keys to success.

The use of the neural network as a mechanism for exploring the
search area and achieving optimal productivity was effective with-
in the proposed problem, which is characterized by the complexity
that results from the significant number of options and combina-
tions available. The use of the queuing theory allowed us to estab-
lish the number of agents needed to optimize resources. Both
methods were satisfactorily incorporated into the CBR reasoning
cycle, specifically in the reuse phase. This demonstrates once again
the facility in extending the CBR-BDI architecture to incorporate
different techniques in its functionality.

The proposed model was developed using a real-life scenario,
with the e-Administration providing a detailed explanation of the
required steps for adapting the model, identifying the roles, and
other details regarding the characterization of the different tasks.

Finally, one of the principal achievements of this work is in val-
idating the proposed planning model by means of an implemented
simulation. The results obtained confirm that the planning process
provided notable improvement and, in refining the cases used in
the CBR reasoning cycle, also achieved a higher level of learning
and adaption within a dynamic environment.

Future work includes:

e To explore other heuristic and metaheuristic methods to test
different formulas for assigning tasks. To establish a value of
effectiveness for each method and provide the user with recom-
mendations for different plans according to their success rate.

e To include the developed model within a complete e-Adminsi-
tration system. This system could provide a more complete con-
trol of personnel, cases and resources, while allowing for
efficient distribution within the organization.

e To design and implement the complete organization, including
a model of all of the required policies and services.

e Future work would propose a revision in the neural network to
address the anomalies in the functionality that were detected in
the present study, specifically the problem of giving equal
weight to the delays and progress. This problem is important
if the utilization factor were particularly low, although if the
factor were close to 1 it would not make a significant difference.
The queuing theory contributes towards ensuring that the utili-
zation factor remains high. To solve this problem, it would be
necessary to modify the defined error function so as to adjust
the importance of delays and thus refine the retropropagation
algorithm being used. The only adjustment that is currently
being made to avoid this problem is with the error arising from
delayed tasks.

Acknowledgements

Special thanks to the Institute of Cancer of Salamanca for the
information and technology provided. This work was supported
by the Spanish Ministry of Science TIN 2009-13839-C03-03 Project.

References

Andres, C., Miralles, C., & Pastor, R. (2008). Balancing and scheduling tasks in
assembly lines with sequence-dependent setup times. European Journal of
Operational Research, 187(3). 1212-122.

Ardissono, L., Petrone, G., & Segnan, M. (2004). A conversational approach to the
interaction with Web Services. Computational Intelligence, 20, 693-709.

Argente, E. (2005). A proposal for an organizational-oriented MAS methodology. In
Proceedings of the autonomous agents and multi agent systems AAMAS’ 05
(pp. 1370). ACM Press.

Argente, E., Julian, V., Valero, S., & Botti, V. (2005). Towards an organizational MAS
methodology. In Proceedings of the CCIA’05. Recent advances in artificial
intelligence research and development. Frontiers in artificial intelligence and
application (pp. 397-404). 10S Press.

Bajo, J., Corchado, J. J., Botti, V., & Ossowski, S. (2009). Practical Applications of
Agents and MAS: Methods+ Techniques and Tools for Open MAS. Journal of
Physical Agents, 3(2).

Bauer, B., & Huget, M. P. (2003). FIPA modeling: Agent class diagrams. Working
draft, Foundation for Intelligent Physical Agents. <www.auml.org>.

Binato, S., Hery, W., Loewenstern, D., & Resende, M. G. (2000). A GRASP for job
scheduling. Technical Report No. 00.6.1 AT&T Labs Research.

Boella, G., Hulstijn, J., & van der Torre, L. (2005). Virtual organizations as normative
multiagent systems. In Proceedings of the 38th Hawaii international conference on
system sciences (pp. 1-10).

Camarinha-Matos, L. M., & Afsarmanesh, H. (2007). A framework for virtual
organization creation in a breeding environment. Annual Reviews in Control., 31,
119-135.

Carrascosa, C., Giret, A., Julian, V., Rebollo, M, Argente, E., & Botti, V. (2009). Service
oriented MAS: An open architecture (short paper). In Proceedings of 8th
international conference on autonomous agents and multiagent systems (AAMAS
2009), Budapest, Hungary (pp. 1291-1292).

Castro, J. L., Navarro, M., Sanchez, J. M., & Zurita, J. M. (2009). Loss and gain functions
for CBR retrieval. Information Science, 179(11), 1738-1750.

Chambers, J., & Barnes, W. (1996). Taboo search for the flexible-routing job shop
problem. Technical report TAY 2.124, Department of Computer Sciences,
University of Texas, USA.

Corchado, J. M., Bajo, J., De Paz, Y., & Tapia, D. 1. (2008). Intelligent environment for
monitoring alzheimer patients, agent technology for health care. Decision
Support Systems, 44(2), 382-396.

Corchado, J. M., & Laza, R. (2003). Constructing deliberative agents with case-based
reasoning technology. International Journal of Intelligent Systems, 18(12),
1227-1241.

David, N., Marietto, M. B., Sichman, J. S., & Coelho, H. (2004). The structure and logic
of interdisciplinary. Research in agent-based social simulation. Journal of
Artificial Societies and Social Simulation, 7(3).

Durfee, E. H., Lesser, V. R, & Corkill, D. D. (1989). Trends in cooperative distributed
problem solving. IEEE Transactions on Knowledge and Data Engineering, 1(1),
63-83.

Epstein,]. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the
bottom up. MIT Press.

Erlang, A. K. (1909). The theory of probabilities and telephone conversations. Nyt
Tidsskrift for Matematik B, 20, 131-137.

Esteva, M., Rodriguez,]., Sierra, C.,, Garcia, P., & Arcos, J. (2001). On the formal
specific ations of electronic institutions. Agent-mediated Electronic commerce,
126-147.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://www.auml.org
http://dx.doi.org/10.1016/j.eswa.2012.01.185

C. Zato et al./Expert Systems with Applications xxx (2012) xXx-xxx 13

EURESCOM (2001). MESSAGE: Methodology for engineering systems of software agents.
Technical report P907-TI1, EURESCOM.

Fenga, D. Z., & Yamashiro, M. (2006). A pragmatic approach for optimal selection of
plant-specific process plans in a virtual enterprise. Journal of Materials
Processing Technology, 173(2,10), 194-200.

Giorginia, P., Mylopoulos, J., & Sebastiani, R. (2005). Goal-oriented requirements
analysis and reasoning in the Tropos term methodology. Engineering
Applications of Artificial Intelligence, 18(2), 159-171.

Giret, A, Julian, V. Rebollo, M., Argente, E., Carrascosa, C., & Botti, V. (2009). An open
architecture for service-oriented virtual organizations. In Seventh international
workshop on programming multi-agent systems. PROMAS 2009 (pp. 23-33).

Glez-Bedia, M., & Corchado, J. (2002). A planning strategy based on variational
calculus for deliberative agents. Computing and Information Systems Journal,
10(1), 2-14.

Jennings, N., & Wooldridge, M. (1998). Applications of Intelligent Agents. Queen Mary
& Westfield College: University of London.

Kabadi, S., & Punnen, A. (2008). A strongly polynomial simplex method for the linear
fractional assignment problem. Operations Research Letters, 36(4), 402-407.
Kim, K. H., & Park, Y. (2004). A crane scheduling method for port container

terminals. European Journal of Operational Research, 156(3), 752-768.

Kolodner, J. (1993). Case-based reasoning. San Francisco: Morgan Kaufmann.

Kolonko, M. (2009). Some new results on simulated annealing applied to the job
shop scheduling problem. European Journal of Operational Research, 113(1),
123-136.

Lee, D. H., Wang, H. Q., & Miao, L. X. (2008). Quay crane scheduling with non-
interference constraints in port container terminals. Transportation Research
Part E, 44, 124-135.

Liu, X. (2007). A multi-agent-based service-oriented architecture for inter-
enterprise cooperation system. In Proceedings of the second international
conference on digital telecommunications (ICDT'07). Washington, DC: IEEE
Computer Society.

Markus, G., Ingo, S., Josef, F., & Helmut, B. (2010). The formation of virtual
organizations by means of electronic institutions in a 3D e-Tourism
environment. Information Sciences, 180, 3157-3169.

Martin, Q. (2003). Investigacion Operativa. Prentice-Hall.

Oliva, E., Natali, A., Ricci, A., & Viroli, M. (2008). An adaptation logic framework for
java-based component systems. Journal of Universal Computer Science, 14(13),
2158-2181.

Pacheco, J. A, & Casado, S. (2003). Estudio Comparativo de Diferentes
Metaheuristicas para la Resolucién del Labor Scheduling Problem. Estudios de
Economia Aplicada, 21(3), 537-557.

Pavén, ., Gémez, |., Fernandez, A., & Valencia, J. (2007). Development of intelligent
multi-sensor surveillance systems with agents. Journal of Robotics and
Autonomous Systems, 55(12), 892-903.

Porto, S., Kitajima,]J. P., & Ribeiro, C. (1996). Performance evaluation of a parallel
tabu search task scheduling algorithm. Parallel Computing, 26(1), 73-90.

Rigole, P., Holvoet, T., & Berbers, Y. (2002). Using Jini to integrate home automation
in a distributed software-system. In Fourth international workshop on distributed
communities on the web, April 03-05, 2002 (Vol. 2468(2), pp. 91-304).

Rocha, A., & Oliveira, E. (1999). An electronic market architecture for the formation
of virtual enterprises. In Proceedings of the IFIP TC5 WG5.3/PRODNET working

conference on infrastructures for virtual enterprises: Networking industrial
enterprises, 1999.

Rodriguez, P. (2003). Discusién y Andlisis de la metaheuristica SN. Depto.
Investigacién Operativa, InCo, FI, UdelaR. Reporte Tecnico 03-02.

Schelling, T. (1978). Micromotives and macrobehavior. New York: W.W. Norton.

Seda, M. (2007). Mathematical models of flow shop and job scheduling problems.
World Academy of Science, Engineering and Technology, 31, 122-127.

Shafig, M. O., Ding, Y., & Fensel, D. (2006). Bridging multi agent systems and web
services: Towards interoperability between software agents and semantic web
services. In Proceedings of the 10th IEEE international enterprise distributed object
computing conference (EDOC’06) (pp. 85-96). Washington, DC: IEEE Computer
Society.

Shi, C, Lu, J., & Zhang, G. (2005). An extended Kuhn-Tucker approach for linear
bilevel programming. Applied Mathematics and Computation, 162(1), 51-63.
Shi, C., Ly,]J., & Zhang, G. (2005). An extended Kuhn-Tucker approach for linear
bilevel programming. Applied Mathematics and Computation, 162(1), 51-63.
Steinhofel, K., Albrecht, A., & Wong, C. K. (1999). Two simulated annealing-based
heuristics for the job shop scheduling problem. European Journal of Operational

Research, 118(3), 524-548.

Taillard, E. (1994). Parallel taboo search technique for the job shop scheduling
problem. Journal on Computing Science, 6, 108-117.

Tupia, M. (2004). Un algoritmo GRASP para resolver el problema de la programacién
de tareas dependientes en maquinas diferentes. In Proceedings of Conferencia
Latino Americana de Informdtica CLEI (30, 2004, Perii) (pp. 129-139).

Tupia, M., & Mauricio, D. (2004). Un algoritmo voraz para resolver el problema de la
programacién de tareas dependientes en maquinas diferentes. RISI, 1(1), 9-18.

Valero, S., Argente, E., Giret, A, Julian, V., & Botti, V. (2005). Goodness and Lacks of
MAS Methodologies for Manufacturing Domains, 3690, 645-648.

van Laarhoven, P., Aarts, E., & Lenstra, J. K. (2002). Job Shop Scheduling by Simulated
Annealing Operations Research, 40(1), 113-125.

Verter, V., & Dincer, M. C. (1992). An integrated evaluation of facility location,
capacity acquisition, and technology selection for designing global
manufacturing strategies. European Journal of Operational Research, 60(1), 1-18.

Walton, C. (2006). Agency and the semantic web. Oxford University Press Inc.

Wan, S., Yang, F., & Izquierdo, E. (2009). Lagrange multiplier selection in wavelet-
based scalable video coding for quality scalability. Signal Processing: Image
Communication, 24(9), 730-739.

Wooldridge, M. (2000). An introduction to multiagent systems. Chichester, England:
John Wiley & Sons.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2), 115-152.

Wu, S. H,, Fuh, J. Y. H., & Nee, A. Y. C. (2002). Concurrent process planning and
scheduling in distributed virtual manufacturing. IIE Transactions, 34, 77-89.

Yu, J., & Buyya, R. (2006). Scheduling scientific workflow applications with deadline
and budget constraints using genetic algorithms. Scientific Programming, 14(3),
217-230.

Zambonelli, F., Jennings, N. R, & Wooldridge, M. (2003). Developing multiagent
systems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology, 12(3), 317-370.

tions (2012), doi:10.1016/j.eswa.2012.01.185

Please cite this article in press as: Zato, C., et al. Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applica-

http://dx.doi.org/10.1016/j.eswa.2012.01.185

	Model for assigning roles automatically in egovernment virtual organizations
	1 Introduction
	2 Virtual organizations and multi-agent architectures
	3 Planification models
	3.1 GRASP algorithm
	3.2 Tabu search
	3.3 Simulated annealing
	3.4 Genetic algorithms

	4 Proposed architecture
	4.1 Role planner
	4.2 Planification model
	4.2.1 Calculation of maximum error
	4.2.2 Dynamic planning roles
	4.2.3 Task assignment

	5 Case study
	6 Results
	7 Conclusions and future work
	Acknowledgements
	References

