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Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation
of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement
(GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an
approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties.
This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measure-
ments and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel
mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed
techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The devel-
oped framework significantly outperforms GUM approach, achieving a reduction of 28 % in measurement uncertainty.

INTRODUCTION

In recent years, some people and organisations have
become more concerned about the effects of exposure to
electric and magnetic fields (EMFs) on human health
from both power and radiofrequency sources(1, 2). Power
EMFs are generated, for example, in the production,
transport, distribution and use of electricity(3, 4).
Radiofrequency EMFs are produced, for example, by
microwave ovens, cordless phones, broadcasting trans-
missions or medical applications(5, 6). As a consequence,
official governments and international organisations
have unevenly developed optional recommendations
and binding policies that establish maximum levels of
exposure to EMFs.

In Europe, Recommendation 1999/519/EC(7) and
Directive 2013/35/EU(8) establish guidelines on
maximum exposure levels for general public and
workers, respectively. The former is based on action
and limit values from the 1998 Guidelines for limiting
exposure to time-varying EMF by International
Commission on Non-Ionising Radiation Protection
(ICNIRP)(9). The latter is derived from action and
limit values in the 2010 Guidelines for limiting expos-
ure to time-varying EMF by ICNIRP(10).

To ensure compliance with such frequency-depend-
ent limits, recommendations and policies commonly
describe measuring procedures to evaluate the field
levels by means of EMF sensors(11, 12).

Broadband measurements with isotropic and true
root-mean-square (RMS) field probes are often suffi-
cient when they throw values far from reference levels.
Conventional probes determine the RMS of the
incident field strength on their partial sensors. Their

root-sum-of-squares is compared with the minimum
reference level at the frequency range of operation.

Narrowband measurements with fast-Fourier trans-
form or superheterodyne spectrum analyzers are more
convenient when broadband readings are close to refer-
ence levels. Omnidirectional antennas measure the field
strength in three mutually perpendicular polarisations.
Their root-sum-of-squares is compared with the refer-
ence level in the corresponding frequency band.

Regardless of the type of procedure carried out,
broadband or narrowband, all measurement data are
subject to some uncertainty and a measurement result
must be given in association with some quanti-
tative indication of its quality(13, 14). Without such an
indication, measurement results cannot be compared,
either among themselves or with reference levels.

The Guide to the Expression of Uncertainty in
Measurement (GUM), originally published by the
International Organization for Standardization (ISO)(15),
has been a staple in uncertainty analysis for nearly two
decades(16, 17). However, its inaccuracy when tackling
non-linear systems and the inconsistency between Type
A (frequentist) and Type B (Bayesian) assessment pro-
cesses shown herein have lead to a vast variety of uncer-
tainty analysis alternatives(18–21). Supplement 1 to the
GUM (GUMS1) was concerned to overcome its limita-
tions by means of a Monte Carlo (MC) method suitable
for non-linear models(22). Alternatively, Bayesian-like
approaches treat unknown parameters as random vari-
ables facilitating the combination of prior knowledge
with information from observed data(23).

Most authors have adopted the GUM framework
for uncertainty analysis in EMF measurements(24 – 30).
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Only a few references concerning electromagnetic
compatibility testing can be found following a
GUMS1 approach(31, 32). Besides the aforementioned
drawbacks, the assessment of EMF exposure implies
two additional circumstances that require a different
approach. First, the lack of inclusion of pertinent
prior information may generate an uncertainty over-
estimation that requires the acquisition of additional
measurements(12, 33). Secondly, the dynamic nature of
propagation channel in urban, suburban, residential
and rural areas may cause a misinterpretation of ex-
posure risk when the involved distributions are mod-
elled with static models(34 – 36).

The aim of this study is 4-fold:

† to show the suitability of Bayesian perspective for
the expression of uncertainty in the assessment of
EMF exposure;

† to find prior information from measurement
equipment or surrounding environment that may
reduce such uncertainty;

† to dynamically adapt the involved distributions to
observed data by non-parametric models such as
kernel mixtures;

† to develop a generalised method for uncertainty
analysis in EMF measurements that facilitates the
integration of the above-mentioned points within
a unified framework.

Notations: f (x), F(x) and Efxg denote the probability
density function (PDF), the probability distribution
function and the expected value of the random vari-
able x, respectively.

MATERIALS AND METHODS

The following sections describe conventional uncer-
tainty propagation techniques in comparison with the
proposed adaptive Bayesian framework for uncer-
tainty analysis. Next, they likewise outline the experi-
mental set-up along with the uncertainty components
introduced by the EMF measurement equipment.

Uncertainty propagation

Conventional GUM and GUMS1 approaches are
based on a model,

y ¼ gðxÞ; ð1Þ

such that the information regarding the set of input
quantities x ¼ fxngn[1,. . .,N is propagated through the
model to the output quantity of interest, y, in this case
the EMF field strength (see Figure 1)(31). The main
difference between GUM and its Supplement lies in
that the former propagates uncertainties through the
model, whereas the latter propagates PDFs(37).

The basic steps for uncertainty propagation are
summarised as follows(15, 22):

† Formulation: develop a model, y ¼ g(x), relating
the quantity intended to be measured, y, to the set
of input quantities, x ¼ fxngn[1,. . .,N.

† Propagation: propagate the uncertainties, u(xn),
or PDFs, f (xn), through the model to obtain the
combined uncertainty, uc(y), or PDF, f (y).

† Summarising: use the combined uncertainty,
uc(y), or PDF, f (y), to obtain a coverage interval
containing y with a specified probability.

For the completion of the preceding steps, the GUM
exploits the law of propagation of uncertainty, which
expresses the idea that uncertainties in the inputs
beget uncertainties in an output calculated from
them. For example, in the case of N uncorrelated
input quantities, the law of propagation of uncer-
tainty takes the form,

u2
cðyÞ ¼

XN

n¼1

@g
@xn

� �2

u2ðxnÞ; ð2Þ

where the partial derivatives are named sensitivity
coefficients(38). After obtaining the combined stand-
ard uncertainty, uc(y), the GUM recommends to give
an expanded uncertainty about the measurement
result that encompasses a fraction p of the density
f (y), characterised by such a result and its combined
standard uncertainty. For practical considerations,
the most common is to consider an interval
[y2kuc(y), y þ kuc(y)]. Note that if f (y) is Gaussian
and the effective number of degrees of freedom of
uc(y) is of significant size, k ¼ 1.96 and k ¼ 2.58
produce an interval with a confidence level of �95
and 99 %, respectively.

For the same uncertainty computation, the
GUMS1 utilises an alternative approach based on the

Figure 1. The Supplement 1 to the GUM obtains the PDFs
for the input quantities and propagates them through the

model to obtain the PDF for the output.
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MC method. It basically consists of randomly gener-
ating a number M of MC trials in which a sample
vector is drawn from the known PDFs of the inputs.
Each drawn vector is propagated to the output
through g(x), obtaining a set of M samples of f (y).
For example, in the case of N independent input
random variables, the MC method takes the form,

fðyÞ ¼
ð1

�1

� � �
ð1

�1

fðx1Þ � � � fðxNÞ

dðy� gðx1; . . . ; xNÞÞdx1 � � � dxN

� 1
Mh

XM
m¼1

K
y� gðxðmÞ1 ; . . . ; xðmÞN Þ

h

 !
; ð3Þ

where xm ¼ fxðmÞn gn[1;...;N is a realisation of the set
of input quantities x ¼ fxngn[1;...;N

(39). In Equation (3),
Kð�Þ is a function called kernel and h is a positive
number called bandwidth(40, 41). The GUMS1 utilises
a uniform kernel to approximate f (y) by a histogram;
however, more flexible choices, such as a standard
Gaussian kernel, can achieve better accuracies(42).
After obtaining the empirical PDF for y, f (y), the
GUMS1 seeks to provide a 100p % coverage interval
from the distribution function, F(y), with p[[0, 1].
From such a distribution, the coverage interval is
given by [F21(a), F21( pþa)], where a[[0, 12p] and
the quantile function,

F ð�1ÞðaÞ ¼ inf fy [ R : FðyÞ � ag: ð4Þ

Uncertainty propagation methods are well suited to
handle situations where there exists exact knowledge
of the input quantities and their distributions, and of
their relationship with the output quantity. However,
such methods suffer from the absence of a unified
framework to incorporate prior knowledge about the
quantity of interest, in this case prior knowledge
about the EMF distribution. Moreover, uncertainty
propagation techniques lack a systematic method-
ology to dynamically adapt to observed data in a
changing propagation environment. On the contrary,
the Bayesian point of view is particularly advanta-
geous to tackle such problems. As shown below, im-
portance sampling under such an approach facilitates
a generalised fusion of observed data and prior infor-
mation. Moreover, the proposed methodology
permits the use of more flexible choices to model
observed data and prior information such as adaptive
kernel mixtures.

Bayesian uncertainty

As stated in the GUM, one can assume that the com-
bined standard uncertainty is a reliable estimate
of possible error in the measurement if there is a
sound basis that all influence factors are properly

characterised(15). This section considers the Bayesian
approach for optimal modelling of all error sources in
the output, enabling the use of this modelling as a re-
liable measure of uncertainty.

Within the Bayesian framework, all model para-
meters involved in the measurement process are
regarded as random variables, not as a description of
their variability but as a description of the uncer-
tainty about their true values(23). Under such a para-
digm, given a prior distribution, f (y), and the
likelihood function, f (zjy), the main task is to infer
the posterior distribution, f (yjz). The prior distribu-
tion expresses the uncertainty about the output, y,
before seeing the data. The likelihood function
conveys the information provided by the observed
data, z. The posterior distribution accounts for the un-
certainty about the output, y, after seeing the data, z.

The prior knowledge about the output can come
from several avenues. Next sections describe different
choices suitable for measuring the levels of exposure
to EMF.

The likelihood function models the probability of the
observed data given the field strength, y. Next sections
develop an adaptive likelihood that considers both the
measurement bias (systematic effects) and the dynamic
nature (random errors) of the EMF measurements.

The posterior distribution summarises all the infor-
mation regarding y collected by the prior knowledge
and the likelihood. From the Bayes’ rule, the posterior
density is immediately obtained as

fðyjzÞ ¼ fðyÞf ðzjyÞÐ
fðyÞfðzjyÞ dy

;

a fðyÞfðzjyÞ: ð5Þ

From f (yjz), one can evaluate the measurement un-
certainty where the most common is to provide the
shortest 100p % credible interval or 100p % highest
probability density interval, with p[ [0, 1](22, 43, 44).
Calling F(yjz) the posterior distribution function asso-
ciated with f(yjz), the shortest 100p % credible interval is
[F(21)(ajz), F(21)( pþajz)], where a is obtained from the
quantile function as

arg min
a[½0;1�

fF ð�1Þð pþ ajzÞ � F ð�1ÞðajzÞg

s:t: p [ ½0; 1�; pþ a [ ½0; 1�
: ð6Þ

The basic steps of the Bayesian method for uncer-
tainty analysis can be summarised as follows:

† Initialisation: obtain the prior PDF, f (y). If the
prior knowledge is conveyed by the input quan-
tities, x ¼ fxngn[1,. . .,N, use the GUMS1 method
to propagate the priors, f (xn), through the model
to obtain f (y).
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† Update: correct the difference between f (y) and
f (yjz) in light of the observed data via the likeli-
hood, f (zjy).

† Summarising: use the posterior, f (yjz), to obtain a
coverage interval containing y with a specified
probability.

The resulting interval is often difficult to calculate
analytically and it must be approximated numerically
from samples of f (yjz). However, it is possible to
obtain samples from the posterior, f (yjz), by imple-
menting an importance sampling approach in which
the prior, f (y), plays the role of importance func-
tion(45). The idea behind this approach is to correct
the difference between the posterior and the sampled
prior by adding a weight to each sample. This weight
is the result of evaluating the corresponding sample in
the likelihood, f (zjy). Finally, a resampling step pro-
duces a set of M samples, fymgm[1,. . .,M, that leads to
an approximation to the posterior of the form,

fðyjzÞ � 1
Mh

XM
m¼1

K
y� ym

h

� �
; ð7Þ

from which it is straightforward to obtain the 100p %
credible interval in a similar fashion to GUMS1. A
possible implementation of resampling can be the
generation of a sample from the uniform distribution
Uð0; 1Þ and the selection of yc such that the generated
sample is greater than the cumulative sum of the
weights fvmgm[1,. . .,M up to c but not up to (c 2 1)(45).

If sampling from the prior distribution is not pos-
sible, the use of an importance distribution, p (y),
allows drawing samples and obtaining weights as the
algorithm in Appendix A shows. Note that the pro-
posed implementation avoids the computation of the
normalising constant in Equation (5). In order to im-
plement such an algorithm, it is mandatory to com-
pletely define the prior density and the likelihood
function. Next two sections develop such models.

Prior information for EMF measurements

As aforementioned, the additional information pro-
vided by prior knowledge contributes to better interpret
the risks of exposure to EMF and avoid unnecessary
extra measurements. Such prior knowledge can come
from several avenues, e.g. vague knowledge, manufac-
turer specifications or past experiences. This study con-
siders the following types of prior distributions:

(1) Reference prior: a default no informative prior that is
the same as the Jeffreys’ prior for the presented uni-
variate problem(33). The Jeffreys’ prior is defined as,

fðyÞ a
ffiffiffiffiffiffiffiffiffiffi
IðyÞ

p
; ð8Þ

where IðyÞ is the Fisher information given by the
variance of the score function:

IðyÞ ¼ �E
@2log fðzjyÞ

@y2

� �
: ð9Þ

(1) Vague prior: a prior density of high spread that
incorporates vague knowledge such as the range
of operation of the measuring device. For
example, if the manufacturer specifications
provide lower and upper limits of operation, a
and b, respectively, the vague prior can be given
by a uniform distribution:

fðyÞ ¼
1

b� a
for a � y � b

0 otherwise

8<
: : ð10Þ

(2) Informative prior: a prior that conveys informa-
tion from the modelling of the propagation
channel and EMF sources or from historical
EMF data collected in a similar environment to
the one being assessed. For example, an inform-
ative prior may harbor statements such as ‘the
received EMF strength at a ground level in urban
areas generally falls below a given threshold’ or
‘the measured EMF strength in the vicinity of
schools is commonly under a certain level’. The
former requires an exhaustive study of all influ-
ence factors in a three-dimensional space that is
neither cost-effective nor resilient to environmen-
tal changes(46). The latter accommodates prior
distributions from measurements performed in
analogous areas (urban, rural, etc.), inside the
same facility type (hospital, school, etc.), and
with similar surroundings (transmitting antennas,
skyscrapers, etc.)(35). Following this second ap-
proach, this study fits historical data stored in the
same facility with a three-component Gaussian
mixture. A three-component Gaussian mixture is
well suited for EMF strength measurements since
each component corresponds to a different type
of traffic (at night, working or rush hours)(47). The
data consisted of thousands of uncorrelated values
measured in tens of points during different time
slots. Such data were fitted with the Expectation-
Maximization (EM) algorithm with starting values
obtained through k-means clustering(48),

fðyÞ ¼
X3

i¼1

viffiffiffiffiffiffi
2p
p

si
exp �ðy� miÞ

2

2s2
i

 !
: ð11Þ
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Adaptive likelihood for EMF measurements

Conventional uncertainty budgets in EMF measure-
ments include an uncertainty component accounting
for the random error (or repeatability) in the measure-
ments. This component has traditionally been modelled
by a zero-mean Gaussian distribution(28, 32) or
neglected(25). However, these assumptions do not hold
for small sample sizes or fast-changing propagation
environments. Lognormal, Rice, Rayleigh, Suzuki,
Nakagami, Weibull, extreme-value or Gaussian mixture
distributions have demonstrated to fit more accurately
fading data in urban, suburban or indoor areas(47, 49–51).
As illustrated in the following, the random error contri-
bution to uncertainty is better captured by a non-para-
metric approach based on a mixture of kernels.

Let z be the measured EMF strength in a given
time instant and the measurements, z ¼ fzigi[1,. . .,S,
a set of S i.i.d. samples from such a random variable
and assume that the set of measurements is obtained
under the same propagation conditions, method and
equipment. Consequently, the S measurements are
affected by the same EMF strength, y, and systematic
effects, b, that may change for any set of samples col-
lected in a different time instant if measurement con-
ditions, method or equipment is altered(12). Calling z̄
the sample mean of the set of measurements, the like-
lihood function of the EMF strength can be approxi-
mated as (see Appendix B)

fðzjyÞ;

/Eb

YS

j¼1

XS

i¼1
exp �ðzj � zi þ z̄� y� bÞ2

2h2

 !( )
:

ð12Þ

Equation (12) has no closed-form solution except
for very specific cases such as a Gaussian bias.
Nevertheless, the general procedure shown in
Appendix A does not require a closed-form expression
for the likelihood but only its evaluation in the gener-
ated samples, f ~ym gm[1;...;M : To this aim, Appendix C
proposes a systematic MC algorithm to approximate
the value of the likelihood for a given sample, ~ym; that
enables the use of intricate bias distributions.

Measurement equipment and procedure

The validity of the proposed method was assessed with
broadband electric field (E-field) measurements per-
formed by a radiation meter and an isotropic field
probe (whereas the application of the proposed model
to narrowband measurements is straightforward). This
section briefly describes the experimental equipment
and measurement procedure utilised in such a process.

The broadband radiation meter used was the Wandel
and Goltermann EMR-300. This high-frequency mon-
itoring device measures the EMF from 100 kHz to 60
GHz(52). It is used for high-sensitivity and high-
dynamic range surveys. The EMR-300 instrument can
be operated with a wide range of different probe types.

The isotropic field probe selected to work with the
EMR-300 was the Wandel and Goltermann non-
directional E-field probe type 8.3. This wideband
probe allows measurements of EMF strengths from
100 kHz to 3 GHz(52). It is used for high-linear
response and high-sensitivity measurements. The
E-field probe type 8.3 provides typically a minimum
reading of 0.5 V m21 with a dynamic range of 60 dB.

The probe was mounted on the Agilent 11968C
antenna tripod at 150 cm high and 50 cm away from
obstacles (e.g. walls or vehicles) to guarantee the first

Figure 2. Measurements taken both outside and inside an office building recreated common circumstances found during a
typical campaign of assessment of exposure levels to EMF.
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Fresnel zone clearance. As Figure 2 reflects, two
mobile phone base stations were emitting 260 and
430 m away from the building, respectively. Outdoor
points and one of the indoor points were in line-of-
sight to base stations. All indoor points were collected
on the second floor (15 m from the ground) where
there were three IEEE 802.11 access points along the
corridor. In the following, two cases are considered:

† Individual measurements: measurements collected
at Points 1–6 in Figure 2 and sampled with the
minimum time interval, 0.4 s, to guarantee similar
conditions(52).

† Averaged measurements: measurements stored at
Point 7 in Figure 2 and averaged over the recom-
mended 0.1-h interval(9). Each averaged value is
obtained by the radiation meter from a different
set of measurements, guaranteeing the independ-
ence among averaged measurements.

Uncertainty contributions in EMF measurements

The most relevant contributions to the uncertainty
budget in broadband measurements are associated with
the repeatability of indication, the radiation meter, the
probe and the location. Except for the repeatability of
indication, which accounts for the random error, all
other influence factors will be treated as systematic
effects(12). The results of this study are obtained by as-
suming independence among all the uncertainty com-
ponents contributing to the bias. This represents a mild
assumption since the thorough selection of measure-
ment equipment and procedure can ensure that pos-
sible dependencies are avoided or minimised. Table 1
summarises such contributions that are presented
afterwards.

Uncertainties associated with the repeatability of
indication gather all random errors in a set of mea-
surements collected in a short distance of time, under
the same propagation conditions, by the same oper-
ator and with the same instrumentation. The repeat-
ability is then connected with the sole source of
random uncertainty. This type of uncertainty is
encoded by the density f (zjy, b), typically a zero-mean
Gaussian (a kernel mixture in this study).

Uncertainties associated with the radiation meter
are as follows:

† Resolution: the uncertainty is a function of the
least significant digit in the display readout or the
ability to distinguish between two close but differ-
ent values of the measurand(15). It is usually mod-
elled by means of a uniform distribution of length
the resolution of the radiation meter centred at
zero.

† Modulation error: the waveform of the field source
may provoke the diode detector to leave the
square-law region when driven at higher signal
levels and no longer operate as a true RMS recti-
fier. The distribution of this component is com-
monly assumed to be uniform with boundaries
obtained from manufacturer tests(53).

Uncertainties associated with the probe are as follows:

† Frequency response: the flatness within the fre-
quency range of operation becomes a key factor
in situations with emissions from multiple or
unknown frequencies (in such cases, it is not pos-
sible to correct the measurement through correc-
tion factors). In this study, a uniform distribution
models the worst flatness in frequency as a con-
tributor to the measurement uncertainty.

Table 1. Uncertainties associated with broadband measurements.

Influence factor PDF [dB] U(xn) [dB]

Whole system
Repeatability of indicationa N ð0:00; sðzÞ=

ffiffiffiffi
S
p
Þ sðzÞ=

ffiffiffiffi
S
p

Radiation meter
Resolution U ð�0:07; 0:07Þ 0.04
Modulation error U ð�1:00; 1:00Þ 0.58

Probe
Frequency response U ð�2:05; 2:73Þ 1.38
Magnetic field suppression U ð�0:83; 0:83Þ 0.48
Non-linearity U ð�0:18; 0:26Þ 0.13
Anisotropy U ð�0:05; 0:05Þ 0.03
Temperature variation U ð�1:50; 0:20Þ 0.49

Location
Coupling from nearby objects U ð�0:83; 0:83Þ 0.48

The term sð�Þ accounts for the sample standard deviation, while S denotes the number of measurements.
aIn the proposed Bayesian uncertainty analysis, the repeatability of indication is modelled with the adaptive density,

f (zjy,b), in Appendix B.
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Table 2. Uncertainty analysis for S individual measurements from GUM, GUMS1 and Bayesian perspectives.

Point Method S ¼ 5 S ¼ 10 S ¼ 50 S ¼ 100

ŷ uc(y) 95 % c.i. ŷ uc(y) 95 % c.i. ŷ uc(y) 95 % c.i. ŷ uc(y) 95 % c.i.

1 GUM 4.59 1.72 1.22,7.96 4.51 1.72 1.14, 7.89 4.29 1.72 0.92, 7.66 4.29 1.72 0.92, 7.66
GUMS1 4.60 1.73 1.36, 7.82 4.54 1.73 1.32, 7.78 4.28 1.73 1.01, 7.51 4.29 1.73 1.04, 7.59
Reference 4.49 1.68 1.26, 7.61 4.56 1.69 1.12, 7.55 4.27 1.66 1.22, 7.35 4.35 1.70 1.31, 7.54
Vague 4.40 1.65 1.09, 7.39 4.59 1.66 1.40, 7.71 4.27 1.67 1.22, 7.39 4.30 1.68 1.32, 7.53
Informative 4.37 1.10 2.19, 6, 41 4.65 1.29 1.89, 6.09 4.65 1.24 1.95, 5.97 4.23 1.20 2.05, 6.54

2 GUM 4.94 1.72 1.56, 8.32 5.02 1.72 1.65, 8.39 5.15 1.72 1.77, 8.52 5.16 1.72 1.79, 8.53
GUMS1 4.93 1.72 1.68, 8.16 5.02 1.72 1.83, 8.26 5.14 1.73 1.80, 8.31 5.16 1.73 1.92, 8.43
Reference 4.88 1.64 1.87, 7.93 5.06 1.65 2.17, 8.35 5.04 1.65 1.98, 8.19 5.12 1.71 2.08, 8.38
Vague 4.83 1.60 1.87, 7.89 5.00 1.65 2.04, 8.09 5.09 1.62 2.42, 8.03 5.10 1.71 2.01, 8.15
Informative 4.73 1.18 2.06, 6.01 4.78 1.16 2.11, 6.14 4.59 1.09 2.59, 6.72 4.64 1.14 2.55, 6.86

3 GUM 2.21 1.74 1.19, 5.61 2.00 1.72 21.38, 5.38 1.97 1.72 21.40, 5.34 1.91 1.72 21.46, 5.28
Reference 2.12 1.65 20.96, 5.22 1.92 1.68 20.98, 5.24 1.89 1.67 21.28, 4.99 1.83 1.70 21.18, 5.20
Vague 2.12 1.64 20.76, 5.25 1.89 1.71 21.11, 5.26 1.77 1.65 21.38, 4.99 1.75 1.70 21.22, 5.28
Informative 3.48 1.12 1.39, 5.51 3.31 1.14 1.17, 5.53 3.29 1.14 1.30, 5.37 3.20 1.23 1.07, 5.53

4 GUM 28.22 1.86 211.86, 24.57 28.11 1.77 211.59, 24.64 26.88 1.73 210.26, 23.50 26.33 1.72 29.71, 22.96
GUMS1 28.21 1.85 211.73, 24.64 28.12 1.76 211.44, 24.76 26.85 1.73 210.14, 23.61 26.33 1.73 29.59, 23.10
Reference 28.20 1.73 211.45, 25.04 28.09 1.73 211.41, 25.02 26.92 1.67 210.17, 23.73 26.29 1.75 29.45, 23.17
Vague 28.22 1.70 210.92, 24.74] 28.07 1.74 211.17, 24.80 26.92 1.62 210.16, 24.20 26.28 1.73 29.62, 23.29
Informative 28.46 1.58 211.31, 25.33 28.35 1.59 215.16, 29.26 27.27 1.59 29.76, 24.09 26.68 1.65 29.79, 23.78

5 GUM 211.08 1.92 214.85, 27.31 213.02 2.01 216.95, 29.09 214.28 1.78 217.76, 210.80 214.24 1.74 217.66, 210.83
GUMS1 211.08 1.92 214.77, 27.38 213.03 2.02 216.93, 29.15 214.67 1.77 218.06, 211.36 214.24 1.74 217.53, 210.98
Reference 211.21 1.70 214.18, 28.09 213.01 1.77 216.07, 29.88 214.58 1.69 217.70, 211.71 214.26 1.69 217.52, 211.16
Vague 211.22 1.68 214.09, 28.09 213.02 1.75 215.98, 29.96 214.52 1.68 217.59, 211.70 214.33 1.67 217.83, 211.55
Informative 210.55 1.41 213.30, 27.93 212.11 1.57 215.16, 29.26 213.71 1.66 216.48, 210.54 213.51 1.44 216.35, 210.95

6 GUM 29.81 2.17 214.07, 25.55 213.25 3.74 220.58, 25.92 215.84 2.00 219.76, 211.91 216.13 1.87 219.79, 212.47
GUMS1 29.80 2.15 214.05, 25.71 213.25 3.74 220.53, 25.95 215.87 2.00 219.72, 212.06 216.15 1.88 219.66, 212.46
Reference 29.93 1.68 213.11, 26.97 213.21 1.60 216.73, 210.79 215.71 1.70 218.89, 212.75 216.14 1.66 219.37, 213.13
Vague 29.88 1.67 212.94, 26.97 213.29 1.56 216.32, 210.80 215.68 1.70 218.76, 212.31 216.16 1.63 219.32, 213.08
Informative 29.89 1.58 212.61, 26.80 212.09 1.45 214.88, 29.59 214.84 1.58 218.11, 212.21 215.11 1.51 218.58, 212.81

c.i. denotes confidence interval or credible interval, as applicable. Estimated means and uncertainties are in dBV m21 and dB, respectively.
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† Magnetic field suppression: in the E-field mode,
the contribution of the undesired magnetic field
components must be eliminated. Without add-
itional information, this uncertainty component
is modelled as a uniform random variable of
length reported in the specification(52).

† Non-linearity: the variability in the response of
the radiation meter to changes in the E-field
strength is closely tied to the diode detector. Such
variability is assumed to follow a uniform distri-
bution limited by the minimum and maximum
linearity correction factors provided in the cali-
bration certificate.

† Anisotropy: the anisotropy is the maximum devi-
ation from the radiation pattern of an isotropic
antenna(54). It is commonly represented by a
uniform distribution parametrised by values spe-
cified in the calibration certificate.

† Temperature variation: the technical specification of
the sensor reports the highest deviation related to
the minimum and maximum temperature of oper-
ation(52). This component is characterised by a
uniform distribution limited by such a deviation.

Uncertainties associated with the location of the probe
arise when conducting objects or high-dielectric-
constant elements are placed near the point of measure-
ment(11). Objects such as metal fences, motor vehicles
or house wiring play the role of reradiators or scatterers
that alter the impedance match between the probe’s
antenna and its detector. Under the described measur-
ing conditions, if the distance between the field probe
and small perturbing objects is .20 cm the contribu-
tion of this uncertainty component is no .10 % of the
measured EMF strength(11). Such value provides the
semi-amplitude of the uniform distribution that
conveys this uncertainty contribution.

RESULTS AND DISCUSSION

This section compares the performance of the uncer-
tainty analyses provided by GUM, GUMS1 and the

proposed adaptive Bayesian approach. It first assesses
the case of reporting the uncertainty from a set of in-
dividual measurements. Afterwards, it provides a par-
allel study when the measurements are averaged over
the recommended 0.1-h interval.

Individual measurements

In order to illustrate how the proposed framework
operates, Table 2 summarises the results of an uncer-
tainty analysis carried out at Points 1–6 in Figure 2.
It includes the expected value, standard deviation and
95 % coverage intervals estimated with 5, 10, 50 and
100 measurements. It calls:

† GUM: the conventional uncertainty analysis
detailed at GUM. All sensitivity coefficients were
set to 1 and the coverage factor to k ¼ 1.96(15).
Table 2 reports confidence intervals for the most
optimistic case in which the coverage factor is
obtained from a Gaussian distribution. The
Student’s t-distribution would provide wider inter-
vals for small sample sizes.

† GUMS1: the MC approach outlined in the
Supplement 1 to the GUM. The number of MC
experiments was fixed to 10 000(22).

† Reference: the proposed adaptive framework
based on the Jeffreys’ prior. For the sake of simpli-
city, the Jeffreys’ prior was obtained considering a
Gaussian random error and a uniform systematic
error. The importance sampling was accomplished
with 10 000 MC realisations (see Appendix A).

† Vague: the proposed adaptive framework with a
uniform prior that models the range of operation
of the measurement equipment. The importance
sampling was carried out with 2000 MC trials
(see Appendix A).

† Informative: the proposed adaptive framework
with a prior mixture obtained by the EM algo-
rithm above explained. The importance sampling
was performed with 1000 MC experiments (see
Appendix A).

Figure 3. The dynamic nature of the EMF is better captured by the proposed adaptive uncertainty analysis performed with:
(A) 5 individual measurements in an outdoor environment (Point 1); (B) 100 individual measurements in an outdoor
environment (Point 1); (C) 5 individual measurements in an indoor environment (Point 4); (D) 100 individual measurements

in an indoor environment (Point 4).
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Table 3. Uncertainty analysis for S averaged measurements from GUM, GUMS1 and Bayesian perspectives.

Time Method S ¼ 5 S ¼ 10 S ¼ 50 S ¼ 100

ŷ uc(y) 95 % c.i. ŷ uc(y) 95 % c.i. ŷ uc(y) 95 % c.i. ŷ uc(y) 95 % c.i.

8 a.m.210 a.m. GUM 25.26 1.82 28.82, 21.69 24.89 1.75 28.32, 21.46 23.97 1.72 27.35, 20.59 23.61 1.72 26.98, 20.23
GUMS1 25.25 1.82 28.71, 21.76 24.88 1.73 28.20, 21.63 23.97 1.71 27.21, 20.77 23.62 1.71 26.83, 20.36
Reference 25.31 1.74 28.51, 22.31 24.77 1.69 27.87, 21.48 24.00 1.66 27.31, 20.98 23.66 1.71 26.54, 20.15
Vague 25.37 1.70 28.73, 22.31 24.82 1.63 27.87, 21.59 24.04 1.66 27.30, 20.95 23.65 1.69 26.57, 20.15
Informative 26.04 1.52 28.50, 22.84 25.59 1.63 28.77, 22.71 24.89 1.46 27.43, 22.12 24.60 1.49 27.31, 21.97

12 p.m.22p.m. GUM 22.84 1.72 26.22, 0.54 22.84 1.72 26.21, 0.53 23.57 1.72 26.94, 20.19 23.71 1.72 27.08, 20.34
GUMS1 22.86 1.73 26.08, 0.39 22.84 1.73 26.09, 0.39 23.58 1.73 26.80, 20.27 23.73 1.71 26.95, 20.51
Reference 22.97 1.73 25.99, 0.20 22.90 1.69 26.00, 0.18 23.55 1.69 26.71, 20.56 23.70 1.69 27.04, 20.51
Vague 23.03 1.69 26.05, 0.00 22.93 1.70 25.97, 0.15 23.54 1.65 26.71, 20.56 23.75 1.70 26.85, 20.48
Informative 22.93 1.68 26.16, 20.22 23.83 1.58 26.63, 20.99 24.44 1.57 27.12, 21.44 24.64 1.42 27.19, 21.74

Mixed GUM 23.65 1.73 27.04, 20.26 23.32 1.73 26.70, 0.06 23.74 1.72 27.12, 20.36 23.58 1.72 26.95, 20.21
GUMS1 23.67 1.74 26.94, 20.40 23.31 1.72 26.61, 20.10 23.74 1.73 26.98, 20.45 23.59 1.73 26.80, 20.33
Reference 23.80 1.69 26.92, 20.58 23.31 1.69 26.24, 0.03 23.64 1.70 26.98, 20.45 23.52 1.70 26.96, 20.59
Vague 23.78 1.67 26.84, 20.62 23.33 1.69 26.63, 20.43 23.71 1.68 26.93, 20.43 23.55 1.68 26.90, 20.64
Informative 24.07 1.56 27.38, 21.36 23.51 1.66 26.88, 20.82 23.87 1.65 27.14, 20.97 23.66 1.67 27.12, 21.11

c.i. denotes confidence interval or credible interval, as applicable. Estimated means and uncertainties are in dBV m21 and dB, respectively.
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The three Bayesian analyses approximated the like-
lihood with 5000 MC samples (see Appendix C).
Notice that in natural units the greatest difference
among all mean values in Table 2 is 0.23 V m21 and
that differences between reference and vague priors
come from approximation. For large sample sizes,
such high-spread priors offer similar results to
GUMS1 due to the reduction of the uncertainty asso-
ciated with repeatability.

Figure 3 illustrates the density functions utilised by
the above methods to calculate the uncertainty, i.e. a
Gaussian density for the GUM approach and a
Gaussian mixture for the MC sampling methods. Note
that Figure 3 does not include the posterior density
function obtained with the reference prior due to its
similarity to the result achieved with the vague prior.

From Table 2 and Figure 3 one can point out
that: (1) the proposed adaptive likelihood handles
the dynamic nature of EMF measurements in a better
fashion than conventional GUM and GUMS1 meth-
ods, particularly in indoor areas; (2) the fusion of
such likelihood with prior information always pro-
duces mean estimates with a remarkable reduction of
measurement uncertainty, especially for small sample
sizes and (3) these improvements result in an overall
reduction in GUM and GUMS1 95 % coverage inter-
vals .11 % when using vague or reference priors, and
.28 % when applying informative priors. Moreover,
vague priors achieve a performance similar to that
with reference priors and reduce the number of
samples required to approximate the posterior.

Averaged measurements

Analogously to the uncertainty analysis for individual
measurements, Table 3 contains the results for aver-
aged measurements collected at Point 7 in Figure 2. It
gathers the same set of uncertainty analyses per-
formed in previous section. In order to reproduce
realistic conditions and assure that all averaged data
are collected under similar conditions, the following
three types of measurements are considered:

† 8 a.m.–10 a.m.: measurements collected from
8 a.m. to 10 a.m. in five different working-days to
emulate the traffic in working hours.

† 12 p.m.–2 p.m.: measurements taken from 12 p.m.
(noon) to 2 p.m. in five different working-days to
recreate the traffic in rush hours.

† Mixed: data sampled with replacement from a set
of 100 measurements from each type of traffic to
simulate areas with changing EMF sources.

Notice that in natural units the greatest difference
among all mean values in Table 3 is 0.08 V m21.

In concordance with previous section, Figure 4 dis-
plays the density functions utilised by the assessed un-
certainty analysis methods.

In light of Table 3 and Figure 4, one can conclude
that: (1) averaging the measurements reduces their
variability, however, the proposed adaptive likelihood
still reflects their residual dynamic behavior, signifi-
cantly appreciable for working traffic; (2) the reduc-
tion in measurement uncertainty is more noticeable if
such likelihood is combined with an informative
prior, independently of the sample size and (3) the use
of the proposed likelihood dwarfs the limits of GUM
and GUMS1 95 % coverage intervals .4 % when
endowed with vague and reference priors, and .11 %
when coupled with informative priors. Furthermore,
estimating posterior distributions with the proposed
approach facilitates a more natural interpretation of
uncertainty credible intervals since the latter contain
the variable of interest with the specified probability.

CONCLUSION

This study has presented a new framework to deal
with uncertainty in EMF measurements. Such a
framework dynamically adapts to measurement data,
which is undoubtedly valuable in areas with pulsed
emissions or discontinuous EMF sources. Moreover,
it establishes a principled methodology to incorporate
measurement bias and prior information in an opti-
mal way from a Bayesian point of view. In addition,

Figure 4. The dynamic nature of the EMF is also better explained by the proposed adaptive uncertainty analysis performed
in the indoor Point 7 with: (A) 5 averaged measurements during working hours; (B) 100 averaged measurements during

working hours; (C) 5 averaged measurements during rush hours; (D) 100 averaged measurements during rush hours.
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the presented techniques are extensible to other types
of measurement and multivariate input or output
quantities.

The developed framework entails several advan-
tages concerning conventional uncertainty analysis
techniques: (1) it utilises a non-parametric representa-
tion of EMF measurements to capture their dynamic
nature, which is hindered by conventional uncertainty
analyses; (2) it furnishes a systematic approach to in-
corporate prior information provided by historical
data and previous knowledge, which is accomplished
by means of importance sampling; (3) it enables the
use of flexible prior densities such as kernel mixtures
estimated by EM algorithm, which exhibit an out-
standing performance in comparison with no inform-
ative priors; (4) it enhances the effectiveness of
traditional methods specially for small sample sizes,
which is often the case in the appraisal of exposure to
EMFs.

The proposed adaptive techniques demonstrate a
remarkable improvement in uncertainty analysis cor-
roborated by actual broadband measurements of the
E-field strength. Under the proposed framework, it is
observed a significant uncertainty reduction that may
play a crucial role in many related branches of science
such as electromagnetic compatibility testing and pro-
spective epidemiological studies.
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APPENDIX A. ALGORITHM FOR BAYESIAN
UNCERTAINTYANALYSIS IN EMF
MEASUREMENTS

Algorithm 1 Bayesian uncertainty analysis in EMF
measurements.
1. INITIALISATION:
2. Draw M samples f ~ym gm[1;...;M from the import-
ance density p(y).
3. UPDATE:
4. For m ¼ 1; . . . ;M do
5. (i) WEIGHTING:

vm  
fð~ymÞfðzj ~ymÞ

pð~ymÞ
:

6. End for
7. For m ¼ 1; . . . ;M do
8. (ii) NORMALISATION:

~vm  
vmPM

m¼1 vm
:
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9. End for
10. (iii) RESAMPLING:
11. Draw M samples fymgm[1;...;M from the discrete
distribution,

f ðyjzÞ �
PM

m¼1
~vm dðy� ~ymÞ:

12. SUMMARISING:
13. Approximate the posterior expectation,

A 
XM
m¼1

~vm ~ym or A 1
M

XM
m¼1

ym:

14. Approximate the posterior density,

B 1
h

XM
m¼1

~vm K
y� ~ym

h

� �
;

or

B 1
Mh

XM
m¼1

K
y� ym

h

� �
:

15. Sort the set fymgm[1;...;M and find,

C  arg min
r[½1;M�q�

fyðrþqÞ � yrg;

where q ¼ bpM þ 1=2c is the integer part of
ðpM þ 1=2Þ.
16. Compute the shortest 100p % credible interval
(c.i.),

½D;E�  ½yC ; yðCþqÞ�:

17. Return
Efyjzg  A; f ðyjzÞ  B; c:i: ½D;E�.

APPENDIX B. ADAPTIVE LIKELIHOOD FUNC-
TION FROM EMF STRENGTH MEASURE-
MENTS
Given a set of S i.i.d. measurements, z ¼ fzigi[1;...;S ;
related to the EMF strength, y, and the systematic
effects, b, by a model Efzg ¼ yþ b; the distribution of a
specific measurement, zj, given y and b, can be approxi-
mated by,

fðzj jy; bÞ ¼
1

Sh

XS

i¼1

K
ðzj � zi þ EfzgÞ � ðyþ bÞ

h

� �
;

ðA1Þ

where Kð�Þ and h are a kernel function and its band-
width(42). By selecting a standard Gaussian kernel, it
follows that Efzg ¼ z̄; where z̄ is the sample mean of
the set z ¼ fzigi[1;...;S . Therefore, the distribution of a

specific measurement, zj, given y and b, turns into

fðzj jy;bÞ¼
1ffiffiffiffiffiffi

2p
p

Sh

XS

i¼1

exp �ðzj�ziþ z̄�y�bÞ2

2h2

 !
:

ðA2Þ

Then, the distribution of the set of measurements given
y and b is,

fðzjy;bÞ¼
YS
j¼1

fðzj jy;bÞ: ðA3Þ

And the likelihood function of the field strength
can be approximated by marginalising out the bias,

fðzjyÞ ¼
ð

fðzjy; bÞfðbÞ db ðA4Þ

¼ Ebf fðzjy; bÞg; ðA5Þ

where Ebf � g stands for the expectation with respect
to the bias, b.

APPENDIX C. ALGORITHM FOR THE EVALU-
ATION OF THE ADAPTIVE LIKELIHOOD

Algorithm 2 Function to evaluate the sample ~ym in
the likelihood given by Equation (12).
1: Function LIKELIHOOD_UPDATEð~ym; z; f ðbÞÞ
2: INITIALIZATION:
3: Draw N samples fbngn[1;...;N from the known bias

PDF f (b).
4: BIAS EVALUATION:
5: For n ¼ 1; . . . ;N do
6: For j ¼ 1; . . . ;S do
7: Evaluate fðzj jy; bÞ,

Aj  
1ffiffiffiffiffiffi

2p
p

Sh
�
XS

i¼1

exp �ðzj � zi þ z̄� ~ym�bnÞ2

2h2

 !
:

8: End for
9: Evaluate f (zjy,b),

Bn  
YS
j¼1

Aj :

10: End for
11: MARGINALIZATION:
12: Approximate the likelihood of ~ym;

C  1
N

XN

n¼1

Bn:

13: Return fðzj ~ymÞ  C:
14: End function
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