
249

XVIII Simposio Internacional de Informática Educativa
SIIE 2016, pp. 249-254

© Ediciones Universidad de Salamanca

A virtual laboratory for multiagent systems: Joining
efficacy, learning analytics and student satisfaction

Luis Castillo
Dpt. Computer Science and Artificial Intelligence

University of Granada
18071 Granada, SPAIN
l.castillo@decsai.ugr.es

Abstract— This study introduces a distributed virtual
laboratory for a multiagent programming course which has been
very satisfactorily adopted by students, with a success rate of
nearly 80%. It also aims at capturing the daily activity of students,
providing the basis for data-driven assessment. Finally, it also
allows for using process mining technologies to unveil successful
and failed behaviors of students enabling the teacher for an early
detection and intervention to improve their learning experience1.

Keywords—Learning analytics, data-driven assessment,
multiagent systems

I. INTRODUCTION

The use of virtual and remote laboratories to provide an
enhanced learning experience for students is gaining interest in
multiple disciplines as new communication technologies are
widely adopted [5][6]. Their detailed implementation depends
on the subject being taught [10] like computers networks,
robotics, electronics but also psychology, biology, physics or
chemistry. But they share also many common features [10] like
enforcing privacy, scheduled access or support for reporting and
assessment. This paper presents the distinguishing features, the
results obtained and the main conclusions drawn after three
academic courses of the setup of a virtual laboratory for
multiagent systems programming in “Agent-based
development”, a 4th-year course of the degree of Computer
Engineering at the University of Granada (Spain). There have
been many implementations of virtual laboratories based on
multiagent technology [16], but they mostly use agents as a
vehicle to implement the infrastructure, not as a learning goal by
itself. This paper focuses on mastering the technology and to
foster a sound adoption of high-quality multiagent programming
skills in distributed environments and it provides as a solid base
to overcome the most important drawbacks of regular
laboratories (explained in the next section). In addition to this,
the implementation of a virtual laboratory grants students the
access to the laboratory 24 hours a day, 7 days a week, so that
they have more opportunities to improve their work. However,
given that the virtual laboratory records all the interactions
between the implemented agents, it ended up providing an
extensive set of logged data which reflects how students have
faced the practice work, day by day, and, therefore, providing a
solid background for the use of several learning analytics [5].
This huge amount of information is not always easy to interpret
[15], but this paper focuses on both data-driven assessment and
the discovery of true patterns of successful and failed behaviors,

1 Partly funded by TIN2015-71618-R (MINECO/FEDER)

an analysis that has shown a great potential for behavior change
among the students [13][14].

II. DESIGN OF THE VIRTUAL LABORATORY

The course “Agent-based development” is strongly
structured between theory and practice classrooms. Theory is
devoted to general multiagent models, regardless of the
programming language used to develop them, and it ranges from
agents introduction, autonomy, communication and agent’s
societies. Practice laboratory is focused on implementing the
theoretical models in Java programming language on top of
Magentix 2 Agent Platform [4] on a variety of problems.
Practice laboratory is organized in teams of 5-6 students to
promote collaborative development and transverse
competencies [1]. The main drawbacks found when students
develop multiagent systems by themselves in a regular
laboratory could be summarized as follows.

• Agents are situated entities, that is, their behavior depends
on their environment, very often partly controllable. When
student teams are left alone, the implementation of the
access to and modification of the environment, the
perception of agents and the interaction with other agents
are full of programming shortcuts and tricks and therefore
not fully satisfactory from a high-quality learning point of
view. For instance, they tend to implement the environment
as a shared memory object, something that is not forbidden
in object-oriented programming, but it is not very
recommendable in agent-based programming since every
agent might execute in a different platform with different
memory arrangements and accesses. It is preferable to
communicate agents via message passing instead of sharing
memory.

• The dialogue and message passing between agents follow
strict protocols (e.g. the contract-net standard protocol
designed by FIPA, the Foundation for Intelligent and
Physical Agents [7]) which need to be adhered to. When
implemented by the same team, these protocols could be
partly ignored, but relying on external agents to validate the
communication protocol requires a carefully crafted
implementation of message passing.

Perhaps the most distinguishing feature of this virtual
laboratory is that it has been designed to overcome these
difficulties and to foster higher quality programming skills.

250

© Ediciones Universidad de Salamanca

luis castillo

a virtual laboratory for multiagent systems: joining efficacy, learning analytics and student satisfaction

XVIII Simposio Internacional de Informática Educativa
SIIE 2016, pp. 249-254

Roughly speaking, this virtual laboratory consists of a server
which runs a multiagent system who controls several virtual
worlds and the students must connect to the server, with their
own multiagent system, in order to solve several problems in
these virtual worlds, by interacting with the agents in the server
under a strict communication protocol (see Fig. 3).

A. The problem
The server contains several virtual worlds. Every virtual

world is a square matrix that represents open spaces (in color
white), obstacles (in black) and goals (in red) as it is shown in
Fig. 1. Students’ agents must enter into one of these virtual
worlds, perceive their local surroundings, navigate through the
open spaces (by using some exploratory heuristic), avoid
obstacles and try to reach the goal.

Fig. 1. Some of the virtual worlds to be solved by the students (upper pictures).
Agents implemented by the students must log into one of these worlds and try
to reach the goal (red-colored cells) by navigating the world and avoiding the
obstacles (black-colored cells). Some of the worlds are not solvable because the
goal is not reachable in order to force students’ agents to reason about
unsolvability. Possible successful trajectories (lower pictures) are depicted in
green

Agents’ perception of the environment is critical for solving
these worlds. In this virtual laboratory, students can configure
which of the following sensors are plugged into their agents (any
combination of them):

• A GPS which tells the agents its coordinates (x,y) in the
virtual world.

• A Battery sensor. Every agent is fed with a battery, with a
limited capacity, and its charge decreases as long as the
agent executes a movement. The charge of the battery
should never be completely depleted.

• A Radar sensor which informs the agent about the type of
cells that surrounds the agent in a 5x5 local perception (see
Fig.2.b).

• A Scanner sensor which acts as a goal detector and tells the
agent the distance to the goal measured from each of the 5x5
surrounding cells (see Fig. 2.c).

Based on their perception, every agent may decide to execute
one of the following actions in their environment by
implementing any heuristic or search procedure.

• LOGIN. Enter into any of the virtual worlds.

• MOVE. Move the agent to one of the 8 adjacent cells and
expends a certain amount of battery. If the destination cell

is an obstacle, or the agent runs out of battery, the agent
crashes and it is logged out of the virtual world.

• REFUEL. The agent fully recharges its battery. Agents are
allowed to recharge their battery as many times as they
wish.

(a) (b) (c)
Fig. 2. An agent (the green cell in the middle of each figure) has a local
perception of their environment: only the 5x5 surrounding cells (a) may be
perceived. The Radar (b) shows the 5x5 cells that sourrounds the agent and
informs whether it is an empty cell (value 0), an obstacle (value 1) or a goal
(value 2). The Scanner (c) shows the distance from every surrounding cell
towards the goal

The access to the virtual world and the environment of the
agents is completely controlled and managed by the agents in the
server. Thus, every agent implemented by students must follow
the next steps, under a continuous sense-think-act loop:

1) Connect to the server. This is implemented through the
regular Magentix 2 API and it is described in the next
section.

2) Log agent(s) into a virtual world. There are two versions for
each world, either with a single agent or multiple agents, all
of them searching for the same goal. In the latter, agents
must coordinate to avoid exploring twice the same area or
to avoid crashing with each other.

3) Perceive the environment. Students should implement one of
the following perception models.

a) Synchronous perception. The agent receives a message
from the server for each sensor attached to the agent,
indicating the reading of that sensor, just after the
execution of any action of the agent. It requires a subtle
management of the incoming messages of the agent so
that no reading could be lost nor to desynchronize
movements and perceptions.

b) Asynchronous model. The agent decides when to read
the sensors by sending a message to the server with a
request. The requesting agent will receive a response
message with all the readings at that time. It is easy to
manage but some readings might be lost if the
requesting agent does not react fast enough.

4) Decide next action. Common choices of the students are
reactive agents with memory, greedy algorithms or A*
search.

5) Execute the desired action. Agents in the server receive a
request from one of the students’ agents, they simulate the
execution of the action in the virtual world and inform back
the agent of the result obtained.

III. SETTING EVERYTHING UP

The setup of this distributed virtual laboratory obeys the
architecture depicted in Fig. 3. The base hardware is a dedicated

251

luis castillo

a virtual laboratory for multiagent systems: joining efficacy, learning analytics and student satisfaction

XVIII Simposio Internacional de Informática Educativa
SIIE 2016, pp. 249-254

© Ediciones Universidad de Salamanca

server intel Xeon running Ubuntu Linux with a VPN access
restricted only to computers from inside of the campus of the
University of Granada (despite of which the server received
about 100 daily refused connections to sshd coming from
unknown IPs). The multiagent platform is Magentix 2 [4] with a
Java-based message broker [9]. This allows the server to open a
virtual host for each team of students with an additional privacy
reinforcement: every group must provide a username, a
password and a virtual host when connecting to the server and
every virtual host runs a different, hermetic, multiagent system
to control the virtual worlds. That means that each virtual host
and their associated multiagent controllers act independently of
each other, avoiding name conflicts between agents and
avoiding messages leaks from one group to another so that every
group of students has a completely independent and safe area to
effectively carry out their laboratory work.

Fig. 3. Arquitecture of the virtual laboratory for distributed multiagent systems.
It is supported by a Xeon server with a double security barrier. Students’s
groups must both connect through the University’s VPN, and provide an
additional username and password to connect to their own multiagent system.
All multiagent systems in the server log all the transactions and have access to
several virtual worlds

Students are allowed to connect to their associated controller
multiagent system and interact with them to solve all virtual
worlds as commented in Section II. Students’ teams also have
full control of their associated controller agents in their virtual
host. Should any of these associated controller agent crash,
students, by themselves, are allowed to reboot the controller
multiagent system, so that teams are completely independent
and don’t need to rely on the teacher to interact, log into and play
with any virtual world. Therefore, a 24x7 availability of the
virtual laboratory is completely granted and the server is online
all the time during the development of the course, since the last
three academic years.

In addition to this, each controller multiagent system in the
server logs all the activity and message exchange with the
students’ multiagent sytem (including sensor readings and
agents’ trajectories as in 0). Every transaction is stored as a
JSON string [8] and it contains a timestamp, the agents involved
in the transaction and the body of the message passed (also a
JSON string) as it is shown in Fig. 8.

IV. RESULTS

Before entering into the detailed results of this distributed
virtual laboratory, it is worth saying that, in order to provide
further efficacy and autonomy of the teams of students and to
promote additional transverse competencies, the whole practice
work follows a SCRUM agile methodology [1] and it has
provided excellent performance results during the past three
years from a software engineering point of view.

This architecture allows the virtual laboratory to be an
effective means from the point of view of the learning
experience, due to the following reasons.

• It fosters the adoption of best multiagent programming
practices among students since, in order to solve the virtual
worlds, student’s multiagent systems must interact with an
already implemented multiagent system in the server, who
controls the environment and its perception, simulate the
execution of the actions in the environment, avoid the use
of shared memory and enforce the adherence to strict
agents communication protocols.

• It provides a safe environment with a double security
barrier.

• It allows the autonomous development of the practice work
for each team, avoiding interferences with other teams and
does not require the presence of the teacher to reboot their
virtual server in the exceptional case of crash of the
controller multiagent system.

Indeed, the academic grades obtained by students in the
“Agent-Based Development” course during the last three years
have been very good, as it is shown in Fig. 4, with an average of
79% of success. The global satisfaction and engagement
measured in official questionnaires based on Likert scales are
also outstanding (shown in Fig. 5) reaching 4.86 out of 5 in the

last year.

Fig. 4 Final academic result of the whole course (theory and practice) during
the last three years showing a very good success rate of 79% in average

252

© Ediciones Universidad de Salamanca

luis castillo

a virtual laboratory for multiagent systems: joining efficacy, learning analytics and student satisfaction

XVIII Simposio Internacional de Informática Educativa
SIIE 2016, pp. 249-254

Fig. 5 Students satisfaction and engagement gathered by an official personal
and anonymous survey among students

Furthermore, the logs registered by the controller multiagent
systems in the server also unveil information of great value from
a learning analytics point of view. Just to give an idea of the size
of these logs, only in the third year, 2.2GB of transactions have
been logged in disk [17], what amounts for more than 11.5
million transactions, with more than 4500 work sessions opened
(login requests into a virtual world).

A. Data driven assessment
This section refers to the support to the evaluation of students

based on valuable information extracted from the massive log of
transactions like that summarized in Fig. 8. This log of
transactions constitutes a footprint of students performance at
any time during the course, since the server of the virtual
laboratory is running non-stop, and there are several measures
that could provide additional insight for the evaluation of
students’ performance [5] like the following items.

• Single team measures. Indicators of the performance of a
single team.

o Number of trials. Number of work sessions opened
in the same world until the world has been solved
for the first time.

o Time elapsed from the first access to the world to
its first solution.

o Absolute time elapsed to the first solution of a
world since the beginning of the course.

o Number of different solutions found for the same
problem. Each solution might have a different
length (number of movements until the goal is
reached).

• Collective measures. Competitive indicators of the
performance among different teams.

o Quickest team: the one with the lowest time
elapsed or lowest number of trials.

o Early bird: team with the lowest absolute time
elapsed.

o Most efficient team: the one with the lowest
solution length.

o Most sound team: the one with the highest number
of worlds solved.

These values, which are obtained from the logged
transactions in real time, provide valuable insight for evaluating
the performance of each team, making visible the invisible and
showing a real measure of the progress of every team as a key
component of the final grades. The experience during the last
three years shows that this information is extremely valuable for
teachers but, since it is obtained in real time, it may be used
purposely. Indeed, the key performance indicators of the
progress of every team are made public every two weeks to all
the teams so that all teams are aware of the progress of the
remaining teams, what produces some expected changes in the
behavior of the teams to improve their performance by self
regulation [5][13].

B. Discovering patterns of success and failure
Logged transactions are very valuable from the student’s

evaluation point of view, but they are a very rich source of
information for other purposes too. It also provides a footprint
on how students have solved every world, step by step, and a
sort of record of the strategy followed by each team to try to
solve all the worlds. The use of process mining techniques [11]
might unveil these hidden strategies and see it as the process
followed by students until they reached the goal. In order to do
that, raw data logs must be filtered to adapt to the simple CSV
format required by a free process mining tool like Disco [2]. This
filtering leaves out administrative logs and focuses particularly
on the interactions among the students’ agents and the server’s
agents and, more specifically, on the requests to perform an
action which come from the students’ agents. Thus, starting from
a raw log like that shown in Fig. 8 of about 11.5 millions of
transactions, the filtered log, like that shown in Fig. 9, reduces
to a little more than 1.6 million records, filtering out useless
transactions from the point of view of this investigation. This
last figure shows the five more relevant items of information
extracted from the raw record:

1) The Case ID. It is extracted from a random key generated at
the beginning of each LOGIN operation (see Fig. 8) and it
univocally distinguishes every work session of the students.

2) The Agent. It is the name of the team of students.

3) Timestamp. The date and time record of the transaction.

4) The field Activity refers to the action requested by students
to be executed in the virtual world. There are regular actions
allowed by the server like LOGIN, MOVE, REFUEL (as
explained in Section II.A) plus an additional SUCCESS
activity. This activity informs that the corresponding world
has been solved and it is automatically detected when the
students’ agents are notified of a reading of the Radar which
shows that the agent is located over a goal cell of the world
(please refer to Fig. 2 for details about agent’s perceptions).

5) The field Resource refers to the virtual world in which the
transaction took place. There are 10 different maps named
from “map1” (the leftmost empty map in Fig. 1) to “map10”
(the rightmost unsolvable map is map9).

Our experience in process mining problems indicates that
having a massive and clean record of activity, like that shown in
Fig. 9, is not enough for obtaining good results with any process
miner. The reason is that out of the 1.6 million of clean

253

luis castillo

a virtual laboratory for multiagent systems: joining efficacy, learning analytics and student satisfaction

XVIII Simposio Internacional de Informática Educativa
SIIE 2016, pp. 249-254

© Ediciones Universidad de Salamanca

transactions there are many mistaken cases which should be
filtered out too, not to affect to the final result, that is:

• There are incomplete records due to an unexpected
interruption of the case:

o Agents which have crashed into an obstacle.

o The Java implementation of any of the students’
agents freezes and stops sending messages to the
server.

o Students decided to interrupt their agents by hand
while they debug their agents.

o Students’ agents do not follow the strict protocol
of communication and, therefore, they are logged
out of the server, stopping the case.

o Agents in the server receive an unreadable
message (usually due to empty messages or bad
JSON formatting) what causes the sender agent to
be logged out of the server.

• There is just one world which never ends with SUCCESS
(rightmost world in Fig. 1 which cannot be solved because
it is a dead end).

• There are failed LOGIN actions into inexistent worlds or
requests to execute an unknown action.

• There are synchronization problems within students’ agents
which do not detect on time that they have reached the goal
(see Fig. 6). An early detection of this problem would warn
the students of the committed mistake in order to repair it.

Once these incorrect cases are detected and filtered out,
DISCO process miner can be used to detect hidden, but useful,
behaviors of the students, taking into account that each team
might have implemented different exploratory techniques to
solve each world. The most important findings of DISCO are the
following ones.

Case, Agent, Timestamp, Activity, Resource
zsr2f57z,Achernar,19/11/2015_12:36:03,MOVE,map1
zsr2f57z,Achernar,19/11/2015_12:36:03,SUCCESS,map1
zsr2f57z,Achernar,19/11/2015_12:36:03,MOVE,map1
zsr2f57z,Achernar,19/11/2015_12:36:03,SUCCESS,map1
zsr2f57z,Achernar,19/11/2015_12:36:03,MOVE,map1
zsr2f57z,Achernar,19/11/2015_12:36:04,SUCCESS,map1
zsr2f57z,Achernar,19/11/2015_12:36:04,MOVE,map1

Fig. 6. Synchronization problem between perceptions of the agent and its
requested activities which illustrates a deviated behavior of agents that are not
aware of having reached the goal and continue moving unnecesarilly

The most frequent process mined at the beginning of the
course is shown in Fig. 7. It means that the most common
activity requested to the server is LOGIN into map1. Even many
groups only execute that action and then close the session
immediately after. This is because, at the beginning, almost none
of the groups have implemented any exploratory heuristic yet
and just log into the simplest world (map1) to test the
communication and the JSON encoding of the messages. Soon
after that, they start moving in map1 until they solve it. Some
groups recharge the battery at the beginning but others don’t
because it is not needed to solve this tiny world. There are some
synchronization problems to solve yet (like unnecessary

transitions from SUCCESS back to MOVE) as explained above.
Then they move into map2 (second map from the left in Fig. 1)
and just start moving like in map1 but do not solve it yet (since
it requires a more complex exploratory heuristic with obstacle
avoidance).

Fig. 7. General process mined at the beginning of the course. Boxes are logged
activities and arc are transitions from one activity to another. Numbers close to
arcs and boxes indicate the frequency that this transition has been recorded. The
start and end of sessions is marked with circles at the top and bottom of the
process

These results would seem quite obvious but they are not. If
one segments the data logged depending on the final grade of
students one might find interesting differences. For example, the
process mined taking into account only the data coming from the
team with the highest grade (honor) shows a sort of systematic
behavior: first solve map1, then solve map2 then directly move
to the most difficult one (map9). On the opposite side, the
process mined for the team with the lowest grade shows that they
solve the easiest world (map1) and then they successively
wander into other worlds without any success, giving up the
search very soon. These mined processes unveil the different
progress of teams, but they also highlight the differences among
teams’ performance. These differences might be used for the
teacher to help students to perform better based on the
segmentation of the data logged.

V. CONCLUSIONS

This study has shown a learning experience consisting of a
distributed virtual laboratory that fosters the acquisition of high
quality skills and habits in multiagent programming. The grades
obtained by students and their satisfaction are very high, as
shown by anonymous surveys, since the experience was setup,
three years ago. In addition to this, it has shown to be an
excellent platform for capturing the daily activity of students in
order to use standard process mining tools. These tools unveil
hidden behaviors of students, which could be used to improve

254

© Ediciones Universidad de Salamanca

luis castillo

a virtual laboratory for multiagent systems: joining efficacy, learning analytics and student satisfaction

XVIII Simposio Internacional de Informática Educativa
SIIE 2016, pp. 249-254

their learning experience. In the future, these mined processes
could also be used to feed an automatic virtual assistant which
could guide students on how to succeed in the laboratory work
by understanding what they have done and what there is left to
do. But, instead of basing these suggestions in standard learning
routes created by the teacher [3] these suggestions would be
based on what their laboratory companions are really doing or
did to succeed.

REFERENCES
[1] L. Castillo, “The use of SCRUM for laboratory sessions monitoring and

evaluation in a university course. Enforcing transverse competencies”,
SIIE 2014.

[2] DISCO Process miner. https://fluxicon.com/disco/. 2016
[3] L. Castillo, L. Morales, A. González-Ferrer, J. Fdez-Olivares, D.

Borrajo, E. Onaindía. Automatic generation of temporal planning
domains for e-learning problems. Journal of Scheduling (2010), vol. 13,
n. 4, p. 347-362.

[4] J. M. Such, A. García-Fornes, A. Espinosa and J. Bellver. Magentix2: A
privacy-enhancing Agent Platform. Engineering Applications of
Artificial Intelligence (2013) vol. 26, n.1, p. 96–109. http://www.gti-
ia.upv.es/sma/tools/magentix2/index.php

[5] New Media Consortium. NMC Horizon Report > 2014 Higher Education
Edition. 2014

[6] B. Balamuralithara, P. C. Woods. Virtual Laboratories in Engineering
Education: The Simulation Lab and Remote Lab. Comput Appl Eng
Educ 17:108, p118, 2009.

[7] FIPA, Contract Net Interaction Protocol Specification.
http://www.fipa.org/specs/fipa00029/SC00029H.pdf, 2002.

[8] JavaScript Object Notation JSON, https://en.wikipedia.org/wiki/JSON,
2016.

[9] Apache Foundation. QPID Broker. https://qpid.apache.org/
[10] S.Rigby, M. Dark. Designing a Flexible, Multipurpose Remote Lab

for the IT Curriculum. SIGITE 2006, p. 161-164.
[11] W. van der Aalst. Process Mining: Discovery, Conformance and

Enhancement of Business Processes. Springer, 2011.
[12] Z. Nedic, J. Machotkd, A. Najhlsk. Remote Laboratories Versus Virtual

And Real Laboratories. ASEE/IEEE Frontiers in Education Conference.
2003.

[13] P. Long, G. Siemens. Penetrating the fog: analytics in learning and
education. EDUCAUSE. Sept-Oct 2011, p. 31-40.

[14] K. Verbert, E. Duval, J. Klerkx, S. Govaerts, J.L. Santos. Learning
Analytics Dashboard Applications. American Behavioral Scientist
(2013), p. 1-10.

[15] G. Siemens. Learning Analytics 2011: Reflections.
http://www.elearnspace.org/blog/2011/03/11/learning-analytics-2011-
reflections/

[16] Norman, T. J., & Jennings, N. R. (2002). Constructing a virtual training
laboratory using intelligent agents. International Journal of Continuing
Engineering Education and Life Long Learning, 12(1-4), 201-213.

[17] L. Castillo. Takeaways of this paper: Java source code of server agents,
raw and filtered logs. http://decsai.ugr.es/~lcv/SIIE2016

{"date":"19/11/2015_12:42:27",
 "value":{"agent":"Achernar", "key":"r2bc7snv", "content":{"status":"Subscribing radar sensing to AgenteDirectorPSP"}}}
{"date":"19/11/2015_12:42:27","value":{"agent":"Achernar", "key":"r2bc7snv", "content":{"status":"Waiting for action"}}}
{"date":"19/11/2015_12:42:27","value":{"agent":"Achernar_satellite", "key":"r2bc7snv", "content":{"status":"Sending ACLM",
 "receiver":"AgenteDirectorPSP", "body":{"radar":[1,1,1,1,1,1,1,1,1,1,0,0,2,1,1,0,0,0,1,1,0,0,0,1,1]}}}}
{"date":"19/11/2015_12:42:27",
 "value":{"agent":"Achernar_satellite", "key":"r2bc7snv", "content":{"status":"Waiting for message"}}}
{"date":"19/11/2015_12:42:41",
 "value":{"agent":"Achernar", "key":"r2bc7snv", "content":{"status":"Received ACLM", "sender":"AgenteRobotPSP",
 "body":{"command":"moveSW","key":"r2bc7snv"}}}}
{"date":"19/11/2015_12:42:41", "value":{"agent":"Achernar", "key":"r2bc7snv", "content":{"status":"OK moveSW"}}}

Fig. 8. Sample log of activity (raw format in JSON). Every transaction has a timestamp, the controller agent that records the transaction, and the remaining parameters
like internal states, messages received and sent, perceptions, requests to execute an action, etc. In this case all the records shown belong to the same work session
identified as "key":"r2bc7snv". It may also be seen that during this work session there is a Radar reading that contains a value ‘2’ just in the center of the reading
of the sensor indicating that the corresponding agent has just reached the goal and therefore, the problem has been solved. Only in the third year of the course, this
raw record of transactions stores 2.2GB of data, that amounts for more than 11.5 millions of transactions

Case, Agent, Timestamp, Activity, Resource
v170xpay, Achernar, 16/10/2015_10:33:00, LOGIN, map1
v170xpay, Achernar, 16/10/2015_10:33:00, MOVE, map1
9sgmy1xl, Achernar, 19/11/2015_12:49:01, MOVE, map1
9sgmy1xl, Achernar, 19/11/2015_12:49:01, SUCCESS, map1

Fig. 9. Sample log of activity (clean format for Disco process miner [2]). The cleaning of a raw record like that shown in Fig. 8 throws a total of more than 1.6
millions of clean records

