Análisis de la heterogeneidad genética del adenocarcinoma ductal de páncreas y su relación con las características de la enfermedad

MSc. María Laura Gutiérrez Troncoso

Directores:

Dr. Alberto Orfao

Dr. Luis Muñoz Bellvis

Dr. José María Sayagués Manzano

Salamanca, 2015

Departamento de Medicina

D. Alberto Orfao De Matos Correia e Vale, Doctor en Medicina y Cirugía y

Catedrático del Departamento de Medicina de la Universidad de

Salamanca

CERTIFICA:

Que el trabajo doctoral realizado bajo mi dirección por Dña. María Laura

Gutiérrez Troncoso titulado "Análisis de la heterogeneidad genética de los

adenocarcinomas ductales de páncreas y su relación con las características de

la enfermedad", reúne las condiciones de originalidad requeridas para optar al

grado de Doctor en Medicina por la Universidad de Salamanca.

Y para que así conste, firmo la presente certificación en Salamanca a 15

de Junio del año 2015.

Fdo: Dr. Alberto Orfao de Matos

Dr. L. Muñoz Bellvís – Jefe de Servicio Servicio de Cirugía General y del Aparato Digestivo Programa de Trasplante de Páncreas y Páncreas-Riñón (Centro de Referencia Nacional)

Paseo de San Vicente, 58-182 37007 Salamanca

D. Luis Muñoz Bellvís, Doctor en Medicina y Cirugía y Jefe de Servicio de

Cirugía General y Aparato Digestivo del Hospital Universitario de Salamanca

CERTIFICA:

Que el trabajo doctoral realizado bajo mi dirección por Dña. María Laura Gutiérrez

Troncoso titulado "Análisis de la heterogeneidad genética de los adenocarcinomas

ductales de páncreas y su relación con las características de la enfermedad", reúne

las condiciones de originalidad requeridas para optar al grado de Doctor en Medicina

por la Universidad de Salamanca.

Y para que así conste, firmo la presente certificación en Salamanca a 15 de

Junio del año 2015.

Fdo: Dr. Luis Muñoz Bellvís

Departamento de Medicina

D. José María Sayagués Manzano, Doctor en Medicina y Cirugía

CERTIFICA:

Que el trabajo doctoral realizado bajo mi dirección por Dña. María Laura Gutiérrez Troncoso titulado "Análisis de la heterogeneidad genética de los adenocarcinomas ductales de páncreas y su relación con las características de la enfermedad", reúne las condiciones de originalidad requeridas para optar al grado de Doctor en Medicina por la Universidad de Salamanca.

Y para que así conste, firmo la presente certificación en Salamanca a 15 de Junio del año 2015.

Fdo: Dr. José Maria Sayagués Manzano

La presente tesis doctoral incluye cuatro trabajos originales publicados en revistas científicas indexadas en el *Science Citation Report*s que se detallan continuación:

1. Cytogenetic heterogeneity of pancreatic ductal adenocarcinomas: identification of intratumoral pathways of clonal evolution.

<u>María Laura Gutiérrez</u>¹, José María Sayagués¹, María del Mar Abad², Oscar Bengoechea², María González-González¹, Alberto Orfao¹, Luis Muñoz-Bellvis³. Histopathology, 2011, 58(3): 486-97. doi: 10.1111/j.1365-2559.2011.03771.x.

 Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology.

<u>María Laura Gutiérrez</u>¹, Luis Muñoz-Bellvis³, María del Mar Abad², Oscar Bengoechea², María González-González¹, Alberto Orfao¹, José María Sayagués¹. PLosOne, 2011, 6(7):e22315. doi: 10.1371/journal.pone.0022315.

 Identification and characterization of the gene expression profiles for protein coding and non-coding RNAs of pancreatic ductal adenocarcinomas.

<u>María Laura Gutiérrez</u>¹, Luis Corchete⁴, Cristina Teodosio¹, María Eugenia Sarasquete⁴, María del Mar Abad², Manuel Iglesias³, Carmen Esteban³, José María Sayagues¹, Alberto Orfao¹, Luis Muñoz-Bellvis³. Oncotarget, 2015. *En prensa*.

4. Altered interphase FISH profiles of chromosomes 4, 8q24 and 9q34 in pancreatic ductal adenocarcinoma are associated with a poorer patient outcome.

<u>María Laura Gutiérrez</u>¹, Luis Muñoz-Bellvis³, María Eugenia Sarasquete⁴, David Guillermo Hernández-Mejía¹, María del Mar Abad², Oscar Bengoechea², Luis Corchete⁴, María González-González¹, Jacinto García-García³, Marcos Gonzalez⁴, Ines Mota¹, Alberto Orfao¹, José María Sayagues¹. Journal of Molecular Diagnostics, 2014, 16(6): 648-59. doi: 10.1016/j.jmoldx.2014.06.007.

i

¹Servicio General de Citometría-NUCLEUS, Departamento de Medicina y Centro de Investigación del Cáncer (IBMCC-CSIC/USAL); IBSAL, Universidad de Salamanca; ²Departmento de Anatomía Patológica, Hospital Universitario de Salamanca; ³Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario de Salamanca; IBSAL; ⁴Servicio de Hematología, Hospital Universitario, y Centro de Investigación del Cáncer. Salamanca, España.

Índice general

Gl	osario d	le abreviaturas		1
ln [.]	troducc	ión		5
1.	Ade	nocarcinoma du	etal de páncreas (ADCP): aspectos clínicos	5
	1.1.	Etiología del AD	CP	6
	1.2.	Presentación clí	nica	7
	1.3.	Pruebas diagnó	sticas de laboratorio	10
	1.4.	Diagnóstico hist	opatológico	11
	1.4.1	. Caracterís	ticas histopatológicas del ADCP	11
	1.4.2	2. Clasificacio	ón histopatológica del ADCP	13
	1.5.	Estadiaje TNM .		14
	1.6.	El origen celular	del ADCP	15
	1.7.	Lesiones precur	soras del ADCP	17
	1.7.1	Neoplasia	intraepitelial pancreática (PanINs)	17
	1.7.2	2. Neoplasia	quística mucinosa (MCN)	19
	1.7.3	3. Neoplasia	papilar intraductal mucinosa (IPMN)	20
	1.8.	Tratamiento		21
	1.8.1	. Tratamien	to quirúrgico	21
	1.8.2	2. Tratamien	to radio/quimioterápico	22
	1.9.	Evolución clínica	a y pronóstico	23
2.	Gen	ética del ADCP		26
	2.1.	Alteraciones ge	néticas asociadas al ADCP	26
	2.1.1	. Alteracion	es genéticas primarias	27
	2.1.2	2. Alteracion	es genéticas secundarias	30
	2.1.3	3. Alteracion	es de genes no codificantes de proteínas	34
	2.1.4	I. Alteracion	es genéticas asociadas a ADCP familiar o hereditario	39
	2.1.5	5. Vías de se	ñalización celular alteradas en el ADCP	41
	2.	1.5.1. Factore	s de crecimiento celular	41
	2.	1.5.2. Vías de	señalización efectoras de KRAS	42
		2.1.5.2.1. V	ía de RAS/RAF/MEK/MAPK/ERK	43
		2.1.5.2.2. V	ía de PI3K/AKT/mTOR	44

	2.1.5	.2.3. Vía d	le NF-кB/INKK	46
	2.1.5.3.	Vías de seño	alización implicadas en el desarrollo embrionario	47
	2.1.5	.3.1. Vía d	le Hedgehog (Hh)	48
	2.1.5	.3.2. Vía d	le Notch	49
	2.1.5	.3.3. Vía d	le WNT	50
	2.1.5.4.	Vía de señal	lización de TGF-6	51
	2.1.5.5.	Vías de seño	alización de CDKN2A/ARF y TP53	52
	2.1.5.6.	Los genes B	RCA y ATM y la reparación de ADN	54
2.2	. Modelo	s genéticos o	de progresión tumoral	55
2.3	. Impacto	pronóstico	de las alteraciones genéticas en el ADCP	56
2.4	. La hetei	ogeneidad g	genética del ADCP	58
2	2.4.1. He	eterogeneida	ad genética a nivel intertumoral	59
2	2.4.2. He	eterogeneida	ad genética a nivel intratumoral y patrones de ev	olución clonal61
2	2.4.3. Té	cnicas de an	nálisis de la heterogeneidad genética a nivel intra	tumoral63
	esis y objetiv	os		67
Hipót				
Hipót				
•	iales, métod		dos	71
Mateı		los y resulta		
Matei Art	ículo 1: "Het	los y resultad	dos	creático: identificación de las
Matei Art vía:	ículo 1: "Het s de evolució	los y resulta erogeneidad in clonal a ni	dosdosd citogenética en el adenocarcinoma ductal pan ivel intratumoral"	creático: identificación de las
Matei Art vía Art	ículo 1: "Het s de evolució ículo 2: "Aso	los y resulta erogeneidad in clonal a ni ciación entr	dosdosd citogenética en el adenocarcinoma ductal pan ivel intratumoral"re subgrupos genéticos de adenocarcinoma duct	creático: identificación de las 73 tal de páncreas definidos
Matei Art vía: Art me	ículo 1: "Het s de evolució ículo 2: "Aso diante micro	los y resulta erogeneidac en clonal a ni ciación entr earrays de SN	dosd citogenética en el adenocarcinoma ductal pan livel intratumoral" re subgrupos genéticos de adenocarcinoma duct NPs (500K) de alta densidad y la histopatología d	creático: identificación de las 73 tal de páncreas definidos del tumor."87
Matei Art vía: Art me	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei	los y resultaderogeneidaden clonal a ni ciación entr parrays de SM	dosd citogenética en el adenocarcinoma ductal pan livel intratumoral" re subgrupos genéticos de adenocarcinoma duct NPs (500K) de alta densidad y la histopatología d r caracterización de los perfiles de expresión gén	creático: identificación de las73 tal de páncreas definidos del tumor."87 nica de ARNs codificantes y no-
Matei Art vía: Art me	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei	los y resultaderogeneidaden clonal a ni ciación entr parrays de SM	dosd citogenética en el adenocarcinoma ductal pan livel intratumoral" re subgrupos genéticos de adenocarcinoma duct NPs (500K) de alta densidad y la histopatología d	creático: identificación de las73 tal de páncreas definidos del tumor."87 nica de ARNs codificantes y no-
Matei Art vía: Art me Art	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de	los y resultaderogeneidaden clonal a ni ciación entr parrays de SM ntificación y proteínas en	dosd citogenética en el adenocarcinoma ductal pan livel intratumoral" re subgrupos genéticos de adenocarcinoma duct NPs (500K) de alta densidad y la histopatología d r caracterización de los perfiles de expresión gén	creático: identificación de las73 tal de páncreas definidos del tumor."87 nica de ARNs codificantes y no-
Matei Art Vías Art me Art coc	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los	los y resultado erogeneidado en clonal a ni ciación entr parrays de SM ntificación y proteínas en perfiles de a	dosd citogenética en el adenocarcinoma ductal pan ivel intratumoral"	creático: identificación de las
Matei Art Vías Art me Art coo Art	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los ciados con la	los y resultado erogeneidado on clonal a ni ciación entr parrays de SM ntificación y proteínas en perfiles de a a superviven	d citogenética en el adenocarcinoma ductal pan livel intratumoral"	creático: identificación de las
Matei Art Vías Art me Art coo Art	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los ciados con la	los y resultado erogeneidado on clonal a ni ciación entr parrays de SM ntificación y proteínas en perfiles de a a superviven	d citogenética en el adenocarcinoma ductal pan livel intratumoral"	creático: identificación de las
Matei Art Vías Art me Art coo Art	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Ideo lificantes de ículo 4: "Los ciados con la	los y resultados y resultados on clonal a no ciación entresarrays de SM ntificación y proteínas en perfiles de a superviven	d citogenética en el adenocarcinoma ductal pan livel intratumoral"	creático: identificación de las
Matei Art vía: Art me Art coo Art aso Discus	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Ideo lificantes de ículo 4: "Los ciados con la sión	los y resultados y resultados on clonal a niciación entresarrays de SM ntificación y proteínas en perfiles de a superviven es citogenét	d citogenética en el adenocarcinoma ductal pan ivel intratumoral" re subgrupos genéticos de adenocarcinoma duct NPs (500K) de alta densidad y la histopatología o caracterización de los perfiles de expresión gén n el adenocarcinoma ductal de páncreas" alteración de los cromosomas 4, 8q24 y 9q34 an ncia de los pacientes con adenocarcinoma ducta	creático: identificación de las
Matei Art vía: Art me Art coo Art aso Discus	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Ideo lificantes de ículo 4: "Los ciados con la sión	los y resultados y resultados on clonal a no ciación entroparrays de SM ntificación y proteínas en perfiles de a superviven es citogenét del ADCP	d citogenética en el adenocarcinoma ductal pan livel intratumoral"	creático: identificación de las
Mater Art vías Art coc Art aso Discus inti	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los iciados con la sión	los y resultaderogeneidaden clonal a niciación entraderrays de SM ntificación y proteínas er perfiles de a superviven es citogenét el ADCP	dos	creático: identificación de las
Mater Art vías Art coc Art aso Discus 1. inti	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los ciados con la sión Alteracion ratumoral en Los perfile	los y resultado erogeneidado in clonal a niciación entresarrays de SM ntificación y proteínas en perfiles de a superviven es citogenéta el ADCP s de alteración de expresión	d citogenética en el adenocarcinoma ductal pan ivel intratumoral"	creático: identificación de las
Mater Art vías Art coc Art aso Discus 1. inti 2. 3. 4.	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los ciados con la sión Alteracion ratumoral en Los perfile Patrones c Asociación	los y resultado erogeneidado no clonal a nicciación entrogeneidado no ciación entrogeneidado y proteínas en perfiles de asuperviven es citogeneida el ADCP s de alteracion entre los por entre l	d citogenética en el adenocarcinoma ductal pan livel intratumoral" re subgrupos genéticos de adenocarcinoma duct NPs (500K) de alta densidad y la histopatología de caracterización de los perfiles de expresión gén n el adenocarcinoma ductal de páncreas" alteración de los cromosomas 4, 8q24 y 9q34 an nocia de los pacientes con adenocarcinoma ducta ticas más frecuentes y patrones de evolución clo ciones genéticas del ADCP y su asociación con la n génica (GEP) en el ADCP	creático: identificación de las
Mater Art vías Art coc Art aso Discus 1. inti 2. 3. 4. clín	ículo 1: "Het s de evolució ículo 2: "Aso diante micro ículo 3: "Idei lificantes de ículo 4: "Los ciados con la sión Alteracion ratumoral en Los perfile Patrones c Asociación ico del ADCF	los y resultado erogeneidado no clonal a ni ciación entro parrays de SM ntificación y proteínas en perfiles de a superviven es citogenéto el ADCP s de alteración entre los por composito entre los por compositos entre los	d citogenética en el adenocarcinoma ductal pan ivel intratumoral"	creático: identificación de las

Bibliografía	
-	
Anexo	177

Glosario de abreviaturas

A

aCGH: arrays de hibridación genómica comparada (del inglés comparative genomic hybridization arrays)

ACSL: acetyl-CoA sintetasa

ADCP: adenocarcinoma ductal de páncreas **AJCC**: *American Joint Committee on Cancer*

ALDH: aldehído deshidrogenasa

AREG: anfiregulina ARNm: ARN mensajero

AU: unidades arbitrarias (del inglés arbitrary units)
AUC: área bajo la curva (del inglés area under the curve)

В

B-H: método de corrección de Benjamini y Hochberg

BMP: proteína morfogénica del hueso (del inglés bone morphogenic protein)

BMPER: regulador endotelial de unión a las proteínas BMP (del inglés bone morphogenic proteín regulator)

BRCA: cáncer de mama de inicio temprano (gen; del inglés *breast cancer, early onset*) **BRLMM:** del inglés *bayesian robust linear model with mahalanobis distance classifier*

C

CA: antígeno carbohidratado

CASP: caspasa CCND1: cilcina D1

CD: grupo o cluster de diferenciación (del inglés cluster differentation)

CDH1: E-cadherina CDH2: N-cadherina

CDK: quinasa dependiente de ciclina (del inglés cyclin-dependent kinase)

CEA: antígeno carcinoembrionario

CGH: hibridación genómica comparada (del inglés comparative genomic hybridization)

CI: intervalo de confianza (del inglés confidence interval)

CLDN: claudina

CNV: variación en el número de copias (del inglés copy number variation; también anotado como cambio en el

número de copias, CNC)

COQ10A: homologo A de la coenzima Q10 (del inglés coenzyme Q10 homolog A)

CSC: célula madre tumoral (del inglés cancer stem cell)

D

DCLK1: del inglés doublecortin and Ca2+/Calmodulin-dependentk kinase like 1

DPC4: delecionado en cáncer pancreático *locus* 4 (del inglés *deleted in pancreatic cancer, locus* 4; también conocido como SMAD4)

Ε

EGF: factor de crecimiento epidérmico (del inglés epidermal growth factor)

EGFR: receptor del factor de crecimiento epidérmico (del inglés epidermal growth factor receptor)

EMT: transición epitelial-mesenquimal (del inglés epitelial-mesenchymal transition)

EU: ecoendoscopía

F

FAMMM: melanoma familiar atípico con molas múltiples (del inglés familial atypical multiple mole melanoma)

FDR: tasa de descubrimientos falsos (del inglés false discovery rate)

FFPE: fijación en formaldehído y conservación en parafina (del inglés formalin-fixed paraffin emmbedded)

FGD1: gen 1 contenedor del dominio FYVE Rho GEF y PH (del inglés FYVE, RhoGEF and PH domain

containing 1)

FGF: factor de crecimiento de fibroblastos (del inglés fibroblast gowth factor)

FGFR: receptor del factor de crecimiento de fibroblastos (del inglés fibroblast gowth factor receptor)

FN: fibronectina

FOXL: del inglés Forkhead

FSCN: fascina **FU:** fluorouracilo

G

GEO: del inglés Gene Expression Omnibus

GEP: perfil de expresión génica (del inglés gene expression profile)

GPRC: receptor de clase C asociado a la proteína G (del inglés G protein-coupled receptor, class C)

Н

HAcaBox: pequeños ARN nucleolares de tipo caja H/ACA

HCA: análisis de agrupaciones jerárquicas (del inglés hierarchical clustering analysis)

HGF: factor de crecimiento de hepatocitos (del inglés hepatocyte growth factor)

HH: Hegdehog

hp_ miR: región tallo-lazo del miARN

hTERT: telomerasa (del inglés telomerase reverse transcriptase)

H&E: hematoxilina y eosina

ı

ICGC: Internacional Cancer Genome Consortium

iFISH: hibridación *in situ* fluorescente sobre núcleos interfásicos (del inglés *interphase fluorescence in situ hybridization*)

IGF: factor de crecimiento de tipo insulina (del inglés insulin-like growth factor)

IGFR: receptor del factor de crecimiento de tipo insulina (del inglés insulin-like growth factor receptor)

IL: interleucinas

ILK: quinasa ligada a integrina (del inglés integrin linked kinase)

IPA: Ingenuity Pathways Software

IPMN: neoplasia papilar intraductal mucinosa (del inglés intraductal papillary mucinous neoplasms)

J

JNK: protein quinasas de la familia c-jun con un grupo amino terminal (del inglés c-Jun N-terminal kinase JNK)

K

Kb: kilobases

KNN: del inglés k-nearest neigbour

KRT: queratinas o citoqueratinas (del inglés keratin)

L

LGALS: galectina

LNR: tasa de ganglios resecados positivos de todos los ganglios analizados (del inglés lymph node ratio)

LOH: pérdida de heterocigosidad (del inglés *loss of heterozygozity*) **LSI**: sonda específica de *locus* (del inglés *locus specific identifier*)

M

M: mujer

M: metástasis a distancia

MAPK: protein quinasa activada por mitógeno (del inglés mitogen activated protein kinase)

Mb: megabases

MCN: neoplasia quística mucinosa (del inglés mucinous cystic neoplasms)

MCR: región mínima común de alteración genética (del inglés *minimal common region*) **MHC:** complejo mayor de histocompatibilidad (del inglés *major histocompatibility complex*)

miARN: microARN

MMP: metaloproteasa de matriz extracelular (del inglés *matrix metaloproteinase*) **MRI:** resonancia magnética nuclear (del inglés *magnetic resonance imaging*)

MSLN: mesotelina

mTOR: proteín quinasa serina-treonina de mamífero diana de rapamicina (del inglés mechanistic target of

rapamycin, serine/threonine kinase)

MUC: mucina (también anotada como apomucina)

Ν

N: ganglios linfáticos infiltrados por células tumorales

ND: información no disponible; también anotado como NA (del inglés not available)

NF-KB: factor nuclear KB (del inglés nuclear factor KB)

NS: estadísticamente no significativo

O

OCT: Compuesto de temperatura óptima de corte (del inglés optimal cutting temperature)

OMS: Organización Mundial de la Salud

P

PAM: análisis de predicción para microarrays (del inglés prediction analysis for mnicroarrays)

PanIN: neoplasia intraductal pancreática (del inglés pancreatic intraepithelial neoplasia)

PARP: polimerasa poli-(ADP-ribosa)

PCA: análisis de componentes principales (del inglés principal component analysis)

PDGF: factor de crecimiento derivado de plaquetas (del inglés platelet-derived growth factor)

PDGFR: receptor del factor de crecimiento derivado de plaquetas (del inglés *platelet-derived growth factor receptor*)

PET: tomografía por emisión de positrones (del inglés positrón emission tomography)

PGC: pepsinógeno C

PI3K: fosfatidilinositol-3- quinasa (del inglés phosphatidylinositol-4,5-bisphosphate 3-kinase)

PLC: fosfolipasa C

PLS: del inglés partial least squares

Q

QT: quimioterapia

R

RB: proteína del Retinoblastoma

RMA: normalización robusta multi-array (del inglés robust multi-array average)

ROC: Característica Operativa del Receptor (del inglés receiver operating characteristic)

RQ-PCR: reacción reversa cuantitativa en cadena de la polimerasa en tiempo real (del inglés *real-time quantitative reverse transcription polymerase chain reaction*)

RSPO3: del inglés R-spondin 3

RT: radioterapia

RX: sin márgenes de resección quirúrgica; muestra tumoral obtenida de biopsia intraoperatoria **R0**: márgenes de resección sin infiltración microscópica por células tumorales (negativos) **R1**: márgenes de resección microscópicamente infiltrados por células tumorales (positivos)

S

SA: marcaje con fluorescencia en azul (del inglés spectrum aqua)

SAM: análisis de la significancia del microarray (del inglés significance analysis of microarray)

SD: deviación estándar (del inglés standard deviation)

SE: error estándar (del inglés standard error)

SERPINB5: maspina **SFN:** stratifina

SG: supervivencia global

SG: marcaje con fluorescencia en verde (del inglés *spectrum green*)

SHH: Sonic hedgehog

SLPI: proteasa inhibidora de la secreción de leucocitos (del inglés secretory leukocyte peptidase inhibitor)

SMO: del inglés "Smoothed"

SN: sistema nervioso (también anotado como NS)

snARN: pequeño ARN nuclear **snoARN:** pequeño ARN nucleolar

SNP: polimorfismo de nucleótido único (del inglés single nucleotide polymorphism)

SO: marcaje con fluorescencia en naranja (del inglés *spectrum orange*)

SPP1: osteopontina

SVM: del inglés support vector machines

\$100: proteínas de unión al calcio de la familia \$100

T

T: tamaño del tumor

TAC: tomografía axial computerizada

TGF: factor de crecimiento transformante (del inglés transforming growth factor)

TGFR: receptor del factor de crecimiento transformante (del inglés transforming growth factor)

TGM: transglutaminasa

TNFR: receptor del factor de necrosis tumoral (del inglés tumor necrosis factor receptor)

TSPAN: tetraspanina

U

UTR: región no traducida (del inglés untranslated region)

V

V: varón

VCAN: versican

VEGF: factor de crecimiento vasculo-endotelial (del inglés vascular endothelial growth factor)

VEGFR: receptor del factor de crecimiento vasculo-endotelial (del inglés vascular endothelial growth factor

receptor)

W

WNT: del inglés "wingless"

Introducción

1. Adenocarcinoma ductal de páncreas (ADCP): aspectos clínicos

El adenocarcinoma ductal de páncreas (ADCP) es un tumor maligno e invasivo que se origina a partir del componente glandular exocrino del páncreas. El páncreas exocrino representa alrededor del 80% de la masa total del órgano y está compuesto por tres tipos celulares de origen epitelial: células acinares, células ductales y células centroacinares. Todas ellas desempeñan funciones en la producción y distribución de zimógenos digestivos al tracto gastrointestinal[1] (Figura 1). Actualmente se cree que el origen más probable del ADCP estaría en las células epiteliales ductales, ya que las células transformadas muestran entre otras características, una semejanza morfológica con éstas[2].

Dentro de las neoplasias del páncreas, el ADCP es el tumor más común (>85% de los casos) y de peor pronóstico[3, 4]. A pesar de presentar una incidencia relativamente moderada respecto a otros tipos de tumores sólidos, el ADCP es una de las neoplasias con mayor tasa de mortalidad tanto en hombres como en mujeres, tasa que prácticamente iguala la incidencia del tumor[1]. Así, el ADCP constituye la quinta causa de muerte relacionada con cáncer en los países desarrollados, con cerca de 240.000 muertes al año en el mundo[5, 6]. En España, la incidencia debida a este tumor se encuentra entre las más bajas de Europa con 7 (vs. 9-12) nuevos casos diagnosticados al año por cada 100.000 habitantes[7, 8].

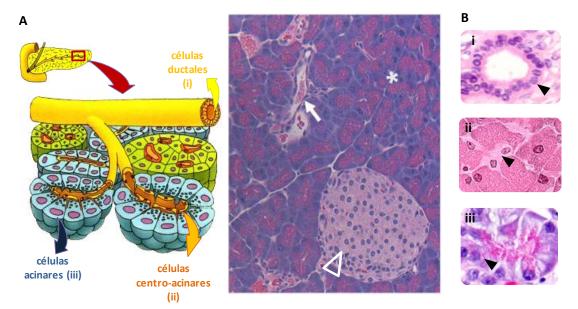


Figura 1. Representación esquemática de la anatomía del páncreas. El páncreas es una glándula que está compuesta por dos unidades funcionales diferentes, una endócrina y otra exocrina. A la izquierda en el panel A, se muestra un esquema de los principales componentes del parénquima pancreático; a la derecha del mismo, se observa una fotografía microscópica de éste a nivel histológico con tinción de H&E (100X). En el esquema y en verde, se muestran el componente endocrino del páncreas (islotes de Langerhans; flecha vacía en la micrografía), en amarillo y naranja se señalan las células ductales (i; flecha blanca en la micrografía) y centroacinares (ii), respectivamente, mientras que en azul se destacan las células acinares (iii) dispuestas en acinos (* en la micrografía). En el panel B se destacan los tres componentes celulares exocrinos, indicados con flechas: células ductales (i; 200X), células centroacinares (ii; 1000X) y células acinares en cuyo interior se observan los gránulos de zimógeno (coloración eosinófila) que contienen las enzimas digestivas (ii; 600X).

1.1. Etiología del ADCP

La gran mayoría de los ADCP son tumores esporádicos; así, únicamente 7-10% de los casos presentan antecedentes familiares, definidos comúnmente por la existencia de antecedentes de cáncer de páncreas en al menos dos familiares de primer grado, o bien por su desarrollo en el contexto de algún síndrome hereditario como el síndrome de Peutz-Jeghers, el síndrome de Lynch, el síndrome de melanoma familiar atípico con molas múltiples (FAMMM), el síndrome hereditario de cáncer de mama y ovario, o la pancreatitis hereditaria[6, 9].

De entre los factores de riesgo con mayor relevancia en la actualidad, merece destacar: el consumo de tabaco y de (grandes cantidades) alcohol; antecedentes familiares de pancreatitis crónica; edad avanzada; sexo masculino; diabetes mellitus; obesidad; ingesta de dietas ricas en grasas y en carnes y bajas en vegetales y folato; algunas exposiciones de tipo ocupacional (p.ej. la exposición a níquel); un grupo sanguíneo no-O; el origen étnico Afro-americano y; posiblemente la infección por *Helycobacter pylori* y padecer

enfermedad periodontal[3, 6, 10]. Aunque se trata de una enfermedad compleja y multifactorial, el hábito de fumar y los antecedentes familiares parecen factores dominantes. De este modo, se estima que en alrededor de 20% de los casos el tumor está relacionado directamente con el hábito de fumar y el riesgo de padecer esta enfermedad en fumadores es 4 veces superior al de los no fumadores. Por otro lado, un individuo con antecedentes familiares de cáncer de páncreas en parientes de primer grado, presenta un riesgo hasta 9 veces superior de padecerlo, respecto al de la población general. Este riesgo aumenta con el número de familiares afectos, incrementándose hasta 32 veces en familias con 3 o más familiares de primer grado con dicha enfermedad, lo cual confirma el importante componente genético del ADCP[6, 11].

1.2. Presentación clínica

La mayoría de los pacientes con ADCP no presenta síntomas hasta el momento en el que el tumor invade los tejidos adyacentes o hasta que desarrolla enfermedad metastásica. Aun cuando se observan síntomas de forma temprana, la naturaleza inespecífica de los mismos hace que en muchos casos estos no sean interpretados correctamente, o que incluso puedan pasar desapercibidos para el paciente[12]. De entre los síntomas tempranos de la enfermedad merece destacar la distensión epigástrica, flatulencia, malestar general, vómitos, náuseas o diarrea[13, 14]; en la Tabla 1 se recogen las manifestaciones clínicas más frecuentes en el ADCP.

Con la progresión de la enfermedad, los pacientes pasan a presentar síntomas relacionados con la compresión de estructuras adyacentes a la masa tumoral en crecimiento (conducto biliar, nervios celíacos y mesentéricos, conducto pancreático principal y duodeno)[12](Figura 2, panel A), síntomas que son especialmente típicos de los tumores que se localizan en la cabeza del páncreas (>75% de los casos)[15]. Estos últimos síntomas, incluyen dolor epigástrico que irradia a la espalda, falta de apetito, pérdida de peso, ictericia indolora, coluria y acolia, pancreatitis y trombosis de aparición y desaparición aleatoria (10% de los casos); habitualmente, estos dos últimos síntomas son un indicio de enfermedad avanzada[12]. Por el contrario, cuando la lesión se localiza en el cuerpo y/o la cola del páncreas el tumor es frecuentemente asintomático hasta el momento en que la enfermedad se transforma en localmente avanzada o metastásica. En estos casos los síntomas más comunes están asociados a dolor en cinturón irradiando a la espalda por infiltración de los plexos nerviosos posteriores[12].

El diagnóstico de ADCP suele sospecharse en base a las manifestaciones clínicas de la enfermedad (Tabla 1), siendo clave para su confirmación la realización de estudios de imagen de alta resolución[15]. A pesar de la dificultad que entraña la obtención de una imagen nítida de la región retroperitoneal mediante técnicas de imagen abdominal, la prueba diagnóstica pre-quirúrgica de elección de ADCP es la tomografía axial computerizada (TAC) trifásica[6, 16]. No obstante, a menudo, la ecografía abdominal constituye el primer paso que confirma la sospecha diagnóstica de ADCP. Mediante la ecografía abdominal pueden detectarse masas generalmente >2 cm, con una sensibilidad del 76-83% y una especificidad de en torno al 90%[14].

Tabla 1. Manifestaciones clínicas más frecuentes en pacientes con ADCP

SÍNTOMAS Y SIGNOS	% CASOS	SÍNTOMAS Y SIGNOS	% CASOS
Flatulencia	61%	Diarrea	15%
Hiperperistaltismo	41%	Distensión epigástrica	10-15%
Náuseas y vómitos	31-41%		
Dolor epigástrico	42-97%	Acolia	25%
Anorexia y pérdida de peso	50-90%	Dolor en zona izquierda del tronco y/o en el cuadrante superior izquierdo del abdomen	<25%
Ictericia indolora	38-81%	Fiebre de origen desconocido	15-20%
Depresión	25-75%	Edema	10-21%
Diabetes de inicio temprano	70%	Vesícula palpable (signo de Courvoisier-Terrier)	10-15%
Prurito	50-60%	Pancreatitis	3%
Coluria	39%	Tromboflebitis	2%
Masa abdominal palpable	24-28%		

En sombreado se destacan los síntomas y signos más tempranos de la enfermedad

En la mayoría de los casos, en la ecografía se observa una masa poco ecogénica que distorsiona la morfología normal del páncreas, siendo las zonas de mejor visualización la cabeza y el cuerpo del páncreas. La ecografía puede también contribuir a la detección de diseminación metastásica hepática y de obstrucción de las vías biliares, hallazgo frecuente en aquellos casos en los que la enfermedad causa pancreatitis crónica[14, 16].

La TAC trifásica constituye la técnica de imagen de mayor precisión diagnóstica, a la vez que proporciona la mejor definición sobre la posible naturaleza resecable del tumor, proporcionando información sobre la afectación de ganglios regionales, la invasión de órganos vecinos y la grasa peripancreática, la existencia de trombosis de la vena esplénica o mesentérica y la presencia de metástasis hepáticas y/o de carcinomatosis peritoneal[14, 16]. En la TAC abdominal, el ADCP habitualmente se manifiesta por un aumento de tamaño de la vesícula biliar, con una sombra de partes blandas, esplenomegalia y ascitis, entre otros hallazgos. En tumores localizados en la cabeza del páncreas suele observarse un ensanchamiento del arco duodenal (Figura 2, B) y compresión externa con erosión e irregularidad del duodeno; a su vez, en los tumores del cuerpo y la cola del páncreas puede

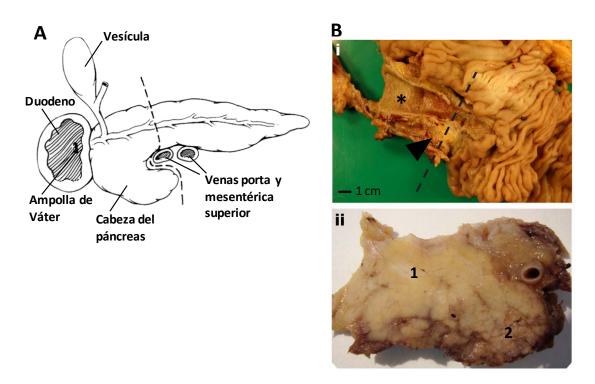


Figura 2. Anatomía (macroscópica) del páncreas. En el panel A se señalan las estructuras anatómicas anastomosadas al páncreas. Se indica con trazo punteado la línea de resección quirúrgica utilizada en la técnica de duodenopancreatectomía cefálica. Panel B: material fijado de un ADCP de cabeza de páncreas; i) la flecha indica una tumoración típica, de aspecto marrón-grisáceo, firme y mal delimitada, adosada al duodeno el cual presenta una clara dilatación (*); ii) corte transversal de la tumoración en el plano indicado por la línea punteada de la imagen anterior (i): se observa un área difusa que borra el patrón nodular normal del páncreas (1), diferente de la zona más distal (2) donde se distingue mejor un patrón similar al del páncreas normal.

detectarse deformidad y aplanamiento del antro gástrico y rigidez del estómago, o bien desplazamiento del colon y del estómago[14]. La prueba tiene una fiabilidad diagnóstica del 83-94% para los carcinomas pancreáticos, con valor predictivo positivo para determinar la posibilidad de intervención quirúrgica curativa del 80%; de forma específica, la TAC tiene una precisión diagnóstica para ADCP de cerca del 70%[14]. Una alternativa al TAC es la ecoendoscopía (EU) o la resonancia magnética nuclear (MRI), especialmente indicadas en pacientes que presentan intolerancia al contraste intravenoso empleado en la TAC[16].

Una vez realizado el diagnóstico del tumor primario, se recomienda el análisis de tórax y de las estructuras óseas mediante TAC o tomografía de emisión de positrones (de sus siglas en inglés, PET) con el fin de investigar la posible existencia de adenopatías mediastínicas o de metástasis pulmonares y/u óseas; en ocasiones puede estar recomendado realizar una exploración laparoscópica para la detección de metástasis peritoneales[6].

1.3. Pruebas diagnósticas de laboratorio

Lamentablemente, al igual que ocurre con los síntomas de la enfermedad, frecuentemente los hallazgos analíticos en el ADCP son inespecíficos, no existiendo hasta el momento marcadores diagnósticos específicos de ADCP. De entre los marcadores tumorales, el único que se sigue investigando en la rutina hospitalaria son los niveles en plasma/suero del antígeno carbohidratado 19.9 (CA19.9), una glicoproteína de superficie celular relacionada con el antígeno de Lewis[17]. En general, niveles elevados de CA19.9 (>37 U/ml) se asocian con neoplasias pancreáticas; sin embargo, la baja sensibilidad y especificidad de la prueba le dan un carácter diagnóstico meramente orientativo, al asociarse en ensayos prospectivos a un valor predictivo positivo <1%[3, 9, 18]. El motivo de la especificidad limitada de este marcador se debe a la existencia de falsos positivos debido a la presencia de niveles elevados de CA19.9 en otras neoplasias del tubo digestivo (p.ej. tumores gástricos, de colon o del tracto biliar) y en algunas enfermedades inflamatorias no tumorales como pancreatitis, hepatitis y cirrosis[14]. A ello debe añadirse que, aproximadamente un 5-14% de la población general sintetiza de forma deficiente el antígeno CA19.9, al no expresar el antígeno de Lewis[19]. Como consecuencia, solo el 65% de los ADCP potencialmente resecables, presentan niveles elevados de CA19.9 al diagnóstico[20], lo que limita además la sensibilidad de este marcador, especialmente en tumoraciones <3 cm, y en aquellos casos que no presentan metástasis a distancia (niveles <100-200 U/ml)[6]; por el contrario, en pacientes con niveles elevados de CA19.9, este sería un marcador útil disminución para el seguimiento del paciente. dado que la valores de CA19.9 habitualmente indican una respuesta favorable al tratamiento y un aumento de los mismos, tras alteración o descenso, podría reflejar la recurrencia del tumor[14]. Además del CA19.9 se ha explorado la posible utilidad de otros marcadores tumorales utilizados en la rutina hospitalaria para el rastreo diagnóstico de otras neoplasias epiteliales como el antígeno carcinoembrionario (CEA) y el antígeno de cáncer 125 (CA125) que muestran una eficiencia inferior a la del marcador CA19.9, con una sensibilidad y especificidad del 30%-60% y de cerca del 80%, respectivamente. Sin embargo, la determinación de los niveles séricos de ambos marcadores en pacientes diagnosticados de ADCP y con niveles elevados de CEA y/o CA125 puede ser útil a la hora de evaluar la respuesta al tratamiento y/o el desarrollo de enfermedad metastásica[21].

Debido a lo anteriormente expuesto, numerosos grupos de investigación han centrado sus esfuerzos en la búsqueda e identificación de biomarcadores de ADCP para su detección en muestras de sangre, suero/plasma, saliva, bilis y en biopsias de ADCP y de secreciones pancreáticas obtenidas mediante punción-aspiración con aguja fina guiada por

ecografía, con el fin de discriminar pacientes con ADCP de otras enfermedades benignas; a modo de ejemplo, recientemente se han descrito en un estudio retrospectivo, 5 marcadores candidatos (AGR2, REG1B, SYCN, LAMC2 y CA125), seleccionados mediante la aplicación de técnicas de proteómica comparativa sobre 400 muestras de suero de individuos con ADCP, enfermedades pancreáticas benignas y adultos sanos. Los resultados de este estudio indican que la determinación conjunta de los niveles en plasma de CA19.9, CA125 y LAMC2 mejorarían significativamente el diagnóstico diferencial del ADCP, respecto a cuando se utiliza el antígeno CA19.9 de forma aislada[22]. Finalmente se ha sugerido que otras proteínas séricas como CEACAM1, MIC-1, TIMP-1 y la osteopontina (SPP1), COL6, REG4[23-27] e incluso algunos microARNs (miARN) y otros ARN no codificantes[21, 28-33], entre otros muchos marcadores[25, 34-56], podrían ser de utilidad en el diagnóstico del ADCP, sin que por el momento se hayan incluido en la rutina clínica.

1.4. Diagnóstico histopatológico

1.4.1. Características histopatológicas del ADCP

La mayoría de los ADCP presentan un aspecto macroscópico de masa blancaamarillenta, fibrosa, firme y pobremente definida, que distorsiona la arquitectura lobular del páncreas (Figura 2, B); con frecuencia el tumor presenta necrosis central y/o forma grandes quístes[12]. A nivel microscópico, se observa habitualmente un patrón glandular con estructuras del tipo ductal, secretoras de mucina y con distintos grados de diferenciación y atipia celular[57] (Figura 3, D-F). Recientemente se han identificado otras variantes menos frecuentes de carcinoma de páncreas con diferenciación ductal; de ellas merece destacar el adenocarcinoma medular, el hepatoide, los tumores adenoescamosos, el carcinoma de células en anillo de sello pancreático, el carcinoma no diferenciado y el carcinoma no diferenciado con células gigantes de tipo osteoclasto[6]. El diagnóstico diferencial entre el ADCP y estos subtipos poco frecuentes de carcinoma pancreático requiere de la presencia de una estructura típica en la cual la glándula rompe la arquitectura lobular atravesando el parénquima, pudiendo encontrarse adyacente a las arterias musculares, sin su afectación. La invasión perineural y vascular son características del ADCP invasivo, pudiendo incluso observarse en lesiones primarias pequeñas, lo cual refleja una propensión temprana a la invasión a distancia[12] (Figura 3, B y C).

Son también rasgos característicos a tener en cuenta en el diagnóstico de la enfermedad la presencia de un lumen incompleto con residuos de tejido necrótico, la

existencia de glándulas que tocan directamente la grasa en ausencia de un nexo de estroma y un perfil inmunohistoquímico peculiar, asociado a expresión de mesotelina y de CEA con pérdida de expresión de la proteína SMAD4/DPC4[12]. La existencia de proliferación de un estroma denso de fibroblastos, en presencia de células inflamatorias, células pancreáticas estrelladas y depósito de componentes de la matriz extracelular (p.ej. colágeno, fibronectina y metaloproteinasas) –i.e. estroma fibroso o desmoplásico (Figura 3, D-F)- constituye otro hallazgo característico del ADCP (Figura 3 A) que obliga al diagnóstico diferencial con la pancreatitis crónica, especialmente en tumores bien diferenciados[58, 59] (Figura 3 D).

A nivel celular, se observan microvellosidades en la superficie luminar de las células y gránulos de mucina en el citoplasma[57, 58]; también suele observarse un pleomorfismo nuclear importante, evidenciable en parte por la existencia de núcleos en una misma glándula con un área hasta 4 veces superior a lo que sería normal[12].

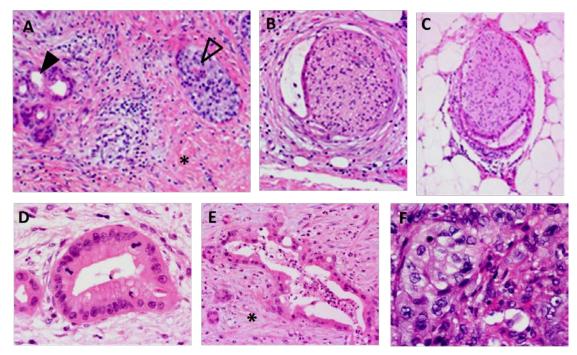


Figura 3. Histología patológica del páncreas. Fotografías microscópicas de tejido con pancreatitis crónica y ADCP teñido con H&E (100X). A: Corte histológico de pancreatitis crónica. En la imagen se observan zonas con inflamación crónica moderada mezclada con fibrosis intensa (*) y atrofia de los acinos. Por el contrario, persisten los ductos de morfología regular (indicado con una flecha negra) y los islotes de Langerhans (flecha vacía). B y C: Cortes de ADCP con imágenes de invasión tumoral perineural y vascular, respectivamente. D-F: Cortes de tejido de ADCP según el sistema de clasificación histopatológica de Adsay; D: Grado I (tumores bien diferenciados) presencia de glándulas bien formadas, de bordes fácilmente discernibles. E: Grado II (tumores moderadamente diferenciados) con un patrón general de glándulas fusionadas, imperfectas, de bordes mal definidos o con una formación irregular multilaminar (arquitectura cribiforme). F: Grado III (tumores pobremente diferenciados) definido por patrones no glandulares que incluyen áreas en forma de cordón, con infiltración celular individual y crecimiento en nidos o focos. También se observa que el componente exocrino está completamente sustituido por una fuerte reacción desmoplásica que lleva a que el tumor esté formado en un alto porcentaje por estroma fibroso (*).

1.4.2. Clasificación histopatológica del ADCP

De la misma forma que ocurre con otros tumores sólidos, el ADCP puede presentar distintos niveles de diferenciación histológica, según el grado de reminiscencia morfológica que muestra el tumor respecto al tejido pancreático normal. Así, el aspecto morfológico del ADCP puede variar desde el de un tejido con glándulas bien diferenciadas, al de un tumor con glándulas parcialmente diferenciadas, células individuales invasivas productoras de mucina, o lesiones focales "sólidas" de células neoplásicas[12]. En este sentido, la clasificación propuesta por la Organización Mundial de la Salud (OMS)[58, 59], define tres grados histológicos: i) el ADCP bien diferenciado (o grado I), con glándulas bien diferenciadas, típicamente completas, productoras de mucina, con células de forma cuboidal a columnar, cuyos núcleos ovales con una orientación basal uniforme presentan cromatina dispersa y un pleomorfismo nuclear mínimo asociado a una baja frecuencia de imágenes mitóticas; ii) el adenocarcinoma moderadamente diferenciado (o grado II) que por el contrario, comúnmente muestra un lumen glandular incompleto, con núcleos pleomórficos, nucléolos grandes e irregulares y presencia (común) de mitosis atípicas y, finalmente; iii) el adenocarcinoma pobremente diferenciado (o grado III) compuesto por glándulas pobremente formadas, con la presencia de células individuales infiltrantes y áreas "sólidas" de células neoplásicas, asociadas a baja producción de mucina; en este último grupo de ADCP, las células presentan además un pleomorfismo nuclear prominente con núcleos muy largos y nucléolos grandes, múltiples y muy irregulares, siendo las mitosis, incluso las atípicas, muy comunes[12].

Pese a esta clasificación, merece resaltar que el ADCP es un tumor morfológicamente muy heterogéneo con gran variabilidad histológica tanto a nivel intertumoral como intratumoral (con la existencia de áreas con diferente grado de diferenciación en un mismo tumor), lo cual dificulta una clasificación reproducible con impacto pronóstico, a diferencia de lo que ocurre en otros tumores[60, 61]. Por este motivo, Adsay et al.[61] propusieron una alternativa al esquema de graduación histológica clásico de la OMS, basado en el sistema de puntuación aplicado para el cáncer de próstata[62]. A diferencia de la clasificación establecida por la OMS, en la que se combinan aspectos subjetivos a veces difíciles de valorar como la producción de mucina o la actividad mitótica sobre áreas del componente de mayor grado, y sin tener en cuenta el patrón global del tumor, el sistema propuesto por Adsay et al.[61] considera la existencia de un patrón (mayor) predominante y un patrón (menor) secundario; incluso permite considerar la presencia de un tercer componente en aquellos casos en los que este incluya un área >1 mm de largo o que represente >5% de todo el tumor. En términos generales, los patrones histológicos puntúan entre 1 y 3 según presenten: un patrón con unidades tubulares bien

diferenciadas, de bordes fácilmente discernibles (1 punto); un patrón con glándulas fusionadas imperfectas de bordes mal definidos o con una formación irregular multilaminar (arquitectura cribiforme) (2 puntos) y; un patrón no glandular que incluya áreas en forma de cordón, con infiltración por células individuales y crecimiento en nidos o focos (3 puntos). La puntuación global para cada tumor se obtiene mediante suma de los patrones observados en el conjunto de toda la pieza tumoral, traduciéndose dicha puntuación en un sistema de graduación global que incluye: grado I o de tumores bien diferenciados (puntuación global ≤ 3) (Figura 3 D); grado II o de tumores moderadamente diferenciados (puntuación global de 4) (Figura 3 E) y; grado III o de tumores pobremente diferenciados (puntuación global ≥5)[61] (Figura 3 F).

1.5. Estadiaje TNM

El objetivo último de los estudios de imagen realizados al diagnóstico en pacientes con ADCP es el estadiaje del tumor[6]. De entre otros sistemas, el sistema TNM de la *American Joint Committee on Cancer* (AJCC) es el sistema más empleado. Este modelo de estadiaje se basa en el tamaño del tumor (T), la afectación ganglionar (N) y la presencia de metástasis a distancia (M), agrupando los ADCP en 5 estadios: 0, I, II, III y IV[63]. Los avances ocurridos en los últimos años en las técnicas de diagnóstico por imagen han contribuido de forma notable a incrementar la precisión del estadiaje prequirúrgico, especialmente en lo que se refiere a la detección de invasión local y el compromiso ganglionar regional. En base a estos hallazgos, cada tumor se definirá como siendo: extirpable (estadios 0 a IB; tumores localizados), posiblemente extirpable (estadio IIA; tumores extendidos fuera del páncreas pero que no afectan ni las arterias ni los vasos locales), no extirpables (estadio IIB; casos localmente avanzados con invasión de estructuras adyacentes como la vena mesentérica superior, el tronco celíaco, la vena porta y la aorta) y, enfermedad metastásica (estadios III y IV)[6, 10].

No obstante lo anterior, en 15-20% de los casos se observan hallazgos inespecíficos asociados a imágenes de masa abdominal, lo cual obliga al empleo de métodos diagnósticos adicionales con el objetivo de establecer el grado de resecabiliad del tumor[14]. En una proporción significativa de casos, sólo es posible confirmar si existe o no posibilidad de resección quirúrgica en el mismo momento de la intervención, siendo necesario el análisis histopatológico de las piezas de resección para el estadiaje definitivo del tumor. En este sentido merece destacar además que, aunque el diagnóstico por imagen proporcione fuertes indicios de la existencia de una masa pancreática con invasión de los órganos

adyacentes, es recomendable confirmar esos hallazgos y descartar la posible existencia de enfermedad benigna (p.ej. pancreatitis autoinmune), debido a que el compromiso inflamatorio del páncreas puede proporcionar con frecuencia imágenes similares a las de los procesos neoplásicos[6]. En estos pacientes, aunque puede realizarse un diagnóstico citológico mediante biopsia con aguja fina guiada por EU o TAC, en la mayoría de los casos y ante la sospecha fundada de la presencia de una neoplasia, no es recomendable la obtención de muestras de citología, ya que la resección de la masa constituye un beneficio terapéutico *per se*[6]. Más aún, el estudio histológico de la pieza tumoral extirpada, además de confirmar de modo definitivo el diagnóstico de cáncer de páncreas, resulta clave a la hora de establecer con precisión el subtipo concreto de tumor.

1.6. El origen celular del ADCP

En la actualidad, la mayoría de los modelos de transformación y progresión tumoral del ADCP postulan que las células neoplásicas de estos tumores surgirían a partir de una conversión metaplásica de células epiteliales ductales (transición de una forma celular madura a una forma inmadura), cambios que irían precedidos por alteraciones de tipo displásico (crecimiento y comportamiento celular anormal), de forma similar a los modelos teóricos establecidos para los tumores de colon[64, 65]. Sin embargo, hasta la fecha no existe evidencia directa de que el inicio del proceso de malignización tenga lugar en células epiteliales del sistema ductal[1, 2]. Incluso, algunos estudios muestran la expresión focal de marcadores específicos de linaje no ductal –incluidos factores endocrinos y enzimas pancreáticas- en las células precursores del ADCP; estos hallazgos sugieren la existencia de cierta plasticidad en el proceso de transformación tumoral[66]. De acuerdo con esta hipótesis, diferentes estudios en tejidos tumorales humanos y en modelos animales, muestran la existencia de metaplasia ductal-acinar asociada a ADCP, sugiriendo un posible origen acinar[2].

Por otro lado, existen evidencias que sugieren que el potencial transformante de las células pancreáticas no depende únicamente del tipo celular, sino también del contexto en el que se localiza la célula tumoral (p.ej., inflamatorio). La asociación entre pancreatitis crónica y ADCP ha sido documentada en diversos estudios epidemiológicos[6, 9], en los que se describe la existencia de un riesgo acumulado de ADCP en pacientes con pancreatitis crónica de 1,8% a los 10 años, riesgo que se incrementa hasta el 4% a los 20 años[67]. Estos hallazgos sugieren que es posible que las células pancreáticas, bajo ciertas condiciones, sufran una transformación neoplásica[68-71], concepto que ha sido contrastado

en los trabajos de Guerra *et al.*[72, 73] donde se muestra cómo ratones adultos portadores de mutaciones somáticas del gen *KRAS* en las células acinares y centroacinares pancreáticas no desarrollan ADCP ni lesiones PanIN, a menos que se induzca previamente una pancreatitis crónica.

Más recientemente, se ha sugerido la existencia de células madre tumorales (de sus siglas en inglés, CSC) cuyo papel sería clave en el origen del ADCP[74, 75]. Las CSC del ADCP se definen funcionalmente como aquellas células con capacidad tanto de autorenovarse, como de recapitular el tumor primario cuando se administran o localizan de forma ectópica; sin embargo, a diferencia de las CSC de otras neoplasias, las CSC del ADCP presentan quimio-resistencia asociada a un gran potencial migratorio e invasivo. Estas características específicas de las CSC respecto a otro tipo de células tumorales de ADCP, apoyan su relevancia en el desarrollo inicial del tumor[76]. Según Penchev et al.[77] las CSC del ADCP se caracterizan por presentar expresión de los antígenos de superficie CD44, CD24, CD133, EpCAM, CXCR4, c-Met y del enzima aldehído deshidrogenasa (ALDH), así como por la capacidad de formar esferas tumorales en cultivos líquidos. Sin embargo, de la población global de CSCs, sólo una minoría -aquellas CSC portadoras de mutaciones en KRAS que logren superar los mecanismos de senescencia mediante la supresión de la proteína p21 v/o mutación de TP53- tendrían capacidad de iniciar la progresión v crecimiento tumoral[71]. Otros autores en cambio, sugieren la existencia de una población de células progenitoras (o CSC facultativas) más que un compartimiento real de CSCs. En este sentido, se ha identificado una subpoblación de células con características similares a las de las CSCs pancreáticas denominadas células centroacinares; estas células se localizan en la unión ductal-acinar y presentan capacidad de diferenciarse tanto a células ductales como a células acinares, característica que les convierte en candidatas a ser la célula diana responsable del origen del ADCP[78]. Más aún, en algunos trabajos se describe la activación de forma exclusiva y persistente de la vía de señalización de desarrollo embrionario Notch en las células centroacinares adultas, lo cual da aún mayor peso a la hipótesis de que esta población celular podría ser la verdadera precursora del ADCP[79]. Sin embargo, a pesar de contar con esta información, hoy se piensa que podría no existir una población homogénea de CSCs, sino que más bien existirían diferentes subpoblaciones celulares con la capacidad de formar tumores y que evolucionarían de forma distinta según el momento de progresión del tumor, lo cual explicaría por qué aún no se ha logrado identificar de forma definitiva en el ADCP la población de CSC iniciadoras del tumor[71, 77].

1.7. Lesiones precursoras del ADCP

La información derivada de los estudios histopatológicos del ADCP sugiere la existencia de 3 formas morfológicamente no invasivas de neoplasia pancreática, que podían ser precursoras del ADCP (Figura 4)[80]. De acuerdo con las características histológicas observadas en estas lesiones pre-neoplásicas, se considera que estas derivan del componente epitelial ductal del páncreas. Así, las células neoplásicas de estas lesiones premalignas presentan un parecido fenotípico con las células que constituyen el componente del epitelio ductal normal ya que ambas comparten una forma cuboidal, la expresión de antígenos/proteínas ductales y el crecimiento en estructuras de tipo tubular[66]. De estos tres tipos de lesiones, las más frecuentes y ampliamente estudiadas son las lesiones premalignas microscópicas ductales conocidas como neoplasias intraepiteliales pancreáticas (abreviadas según sus siglas en inglés como PanINs)[81-83]. Los otros dos tipos de lesiones precursoras, han sido descritas más recientemente, tratándose de lesiones de mayor tamaño (lesiones macroscópicas, visibles mediante técnicas de imagen como la TAC o la ecografía) con forma de quíste y/o con dilatación de los ductos pancreáticos mayores, conocidas como neoplasia quística mucinosa (según sus siglas en inglés, MCN) y neoplasia papilar intraductal mucinosa (según sus siglas en inglés, IPMN)[60, 80, 84].

1.7.1. Neoplasia intraepitelial pancreática (PanINs)

Las lesiones de páncreas en la PanIN han sido identificadas de forma recurrente como lesiones neoplásicas con origen en los ductos pancreáticos de pequeño calibre (<0,1-0,5 cm de diámetro)[80, 84]. Estas lesiones suelen observarse en muestras de tejido pancreático como un espectro de alteraciones morfológicas divergentes respecto a los ductos normales, y que parecen representar diferentes estadios de crecimiento con un componente displásico progresivamente mayor hasta alcanzar el grado de carcinoma invasivo[60] (Figura 4, A). Estas características facilitan su diferenciación y subclasificación en 3 grados, según su aspecto morfologico y el grado de atipia nucleo-citoplasmática[80, 84]:

a. El primer grupo, está integrado por *lesiones de bajo grado o PanIN1*, constituidas por células epiteliales columnares largas cuyos núcleos, de aspecto redondeado y uniforme, están orientados basalmente y presentan abundante mucina supranuclear; a su vez, se diferencian en dos subtipos según muestren un aspecto de lesiones planas (denominadas PanIN1A) o papilares, micropapilares y pseudoestratificadas basalmente (PanIN1B)[84, 85].

- b. Las lesiones de grado intermedio o PanIN2, son más complejas arquitectónicamente que las anteriores, generalmente muestran un aspecto papilar y presentan un mayor grado de alteración nuclear, incluyendo pérdida de la polaridad nuclear, presencia de un marcado pleomorfismo, hipercromasia y pseudoestratificación nuclear, sin observarse prácticamente imágenes mitóticas[80, 84, 85].
- c. Finalmente, *las lesiones de grado elevado o PanIN3* constituirían la etapa inmediatamente anterior al carcinoma *in situ*. De todas las lesiones PanIN, estas son las que muestran un mayor grado de displasia, junto a una gran complejidad arquitectónica, aunque en ellas las células ductales se mantienen dentro de los límites de la membrana basal del epitelio. En estas lesiones se observan estructuras cribiformes y papilares constituidas por grupos de células individuales y de células que forman estructuras de tipo ductal, las cuales surgen desde el epitelio e invaden el lumen. Con frecuencia muestran necrosis luminar y una atipia nuclear marcada, definida por la existencia de núcleos alargados, pleomórficos y pobremente orientados, así como por la presencia de nucleolos prominentes. En este tipo de lesiones, suelen observarse figuras mitóticas, a veces anormales[68, 80, 84].

La elevada prevalencia de las lesiones de tipo PanINs en muestras provenientes de intervenciones quirúrgicas y de autopsias, demuestra que se trata de lesiones relativamente comunes cuya frecuencia aumenta con la edad, localizándose habitualmente en la cabeza del páncreas, al igual que ocurre con el ADCP invasivo[80, 84]. Además, merece destacar que en el ADCP la incidencia de PanINs es superior en el tejido asociado a ADCP invasivo, que en el componente tisular que muestra pancreatitis crónica. En este sentido, se ha sugerido que las lesiones PanIN 1 y 2 podrían estar presentes en alrededor de 16% de los tejidos pancreáticos normales, y de 60% de tejidos asociados a pancreatitis crónica, en los cuales se observaría todo el espectro de lesiones PanINs, incluyendo lesiones de tipo 3, presentes en alrededor de 4% de los casos. Finalmente, las lesiones PanIN de tipo 3 están presentes en 40% de los ADCP en los que la frecuencia global de lesiones PanINs llega a alcanzar el 80% de los casos[84]. En conjunto, estos hallazgos sugieren la existencia de una estrecha asociación entre las lesiones PanINs y el ADCP. De acuerdo con esta hipótesis, merece destacar además que las lesiones de bajo grado suelen estar asociadas a presencia de pequeñas cantidades de estroma normal alrededor de los ductos pancreáticos de donde surgen, mientras que las lesiones más avanzadas están habitualmente asociadas a una expansión acentuada del estroma y a componente inflamatorio[68].

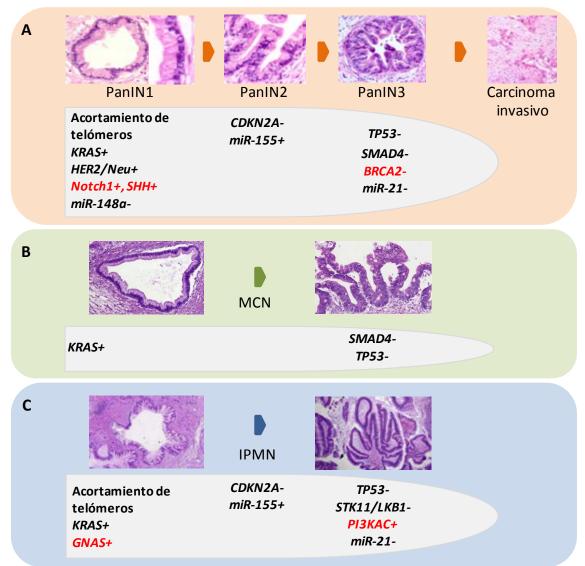


Figura 4. Modelos genéticos hipotéticos de progresión tumoral desde lesiones precursoras a ADCP. En el esquema se describe la secuencia temporal hipotética de desarrollo de un grado progresivo de displasia y los cambios genéticos subyacentes (de izquierda a derecha) en los tres tipos de lesiones precursoras (a nivel histológico) del carcinoma ductal pancreático invasivo. En el panel A se representa esquemáticamente la secuencia hipotética de alteraciones que ocurrirían desde las lesiones PanIN, mientras que en los paneles B y C, se esquematiza la progresión desde los precursores MCN e IPMN, de bajo a grado alto grado de displasia (de izquierda a derecha), respectivamente. La pérdida de función de los genes involucrados se representa como (-), mientras que la ganancia de función se muestra como (+); en negro se muestran las alteraciones genéticas comunes a (al menos) dos de las lesiones precursoras, mientras que en rojo se destacan aquellas que son específicas de alguna de ellas.

1.7.2. Neoplasia quística mucinosa (MCN)

Las lesiones pre-neoplásicas de tipo MCN están constituidas por formaciones neoplasicas epiteliales de tipo quístico de gran tamaño (generalmente >8 cm) asociadas a secreción de mucina (Figura 4, B); macroscópicamente, éstas lesiones generalmente se identifican como lesiones múltiples agrupadas en la cabeza y cuerpo del páncreas sin

presentar comunicación con el sistema pancreático ductal, separadas entre sí por una pseudocápsula fibrosa que delimita sus márgenes[86, 87].

A nivel microscópico, los quistes están recubiertos por células epiteliales productoras de mucina con distinto grado de atipia arquitectónica y citológica[86, 87]. Subyacente a esta capa, se encuentra un estroma denso característico, de tipo ovárico, que expresa gran cantidad de receptores de estrógeno y progesterona[86, 87]. Como las lesiones PanIN, las lesiones MCN pueden clasificarse según sus características citológicas e histológicas en lesiones displásicas de grado bajo, intermedio y alto; sin embargo, a diferencia de las lesiones PanIN, la resección quirúrgica tiene carácter curativo en los casos no invasivos, mientras que en los invasivos la supervivencia global está significativamente acortada (entre 15% y 60% a los 5 años)[87, 88], dependiendo de que llegue o no a realizarse un diagnóstico precoz de las mismas[80].

1.7.3. Neoplasia papilar intraductal mucinosa (IPMN)

El tercer subtipo de lesiones precursoras del ADCP, lo constituyen las IPMNs (Figura 4, C). Se trata de lesiones intraductales productoras de mucina, habitualmente localizadas en el ducto pancreático mayor, aunque también pueden encontrarse en otros ductos periféricos de gran calibre[86]. Microscópicamente, estas lesiones se caracterizan por la presencia de un epitelio mucinoso con o sin proyecciones papilares, que presenta distinto grado de atipia citológica e histológica, de forma similar a lo que ocurre en las lesiones PanINs[86]; en su conjunto se incluye un amplio espectro de lesiones con diferentes perfiles fenotípicos. Así, de igual forma que en los demás subtipos de lesiones pre-malignas, las IPMNs se clasifican en lesiones displásicas de grado bajo, intermedio y alto; además, dependiendo del grado de diferenciación epitelial se subdividen también en lesiones de tipo intestinal, pancreático-biliar, gástrico u oncocítico. Estos subtipos, suelen coexistir en un mismo tumor aunque con distinta representatividad, por lo que a la hora de establecer el subtipo global de la lesión se considera el componente dominante presente en cada caso[88]. Además de diferenciarse de las lesiones PanIN por su crecimiento característico en grandes estructuras de tipo quístico y su diferenciación epitelial, los IPMN presentan un perfil de expresión diferencial para algunas apomucinas, principalmente MUC1, MUC2 y MUC5AC[80, 89], y un pronóstico significativamente mejor con una tasa de supervivencia global a 5 años de entre 77% y 100%. A pesar de esto, en el 30-50% de los casos estas lesiones estan asociadas a carcinoma invasivo e incluso metastásico[57, 89], y por consiguiente, a un peor pronóstico (supervivencia global a 5 años del 34-62%)[88].

1.8. Tratamiento

Aunque en los últimos años se han incorporado nuevos fármacos al tratamiento del ADCP, el tratamiento quirúrgico sigue constituyendo el principal pilar del tratamiento de estos tumores.

1.8.1. Tratamiento quirúrgico

Desde la segunda mitad de la década de los 40 cuando Whipple *et al.* desarrollaron los procedimientos de duodenopancreatectomía, hasta hoy, la resección quirúrgica completa continúa siendo el único tratamiento potencialmente curativo en pacientes con ADCP[15, 66]. Diferentes factores como la ausencia de síntomas clínicos específicos (Tabla 1) y de biomarcadores altamente característicos para el diagnóstico temprano de la enfermedad, junto con la dificultad para realizar una evaluación correcta por imagen del tumor, determinan que la mayoría de los pacientes (85%) sean diagnosticados en estadios avanzados de la enfermedad, lo cual limita las posibilidades de realizar una resección quirúrgica completa del tumor al diagnóstico[68, 90].

En los casos en los que el tumor está localizado únicamente en el páncreas, el tipo de resección quirúrgica realizada (duodenopancreatectomía cefálica, pancreatectomía corporo-caudal, pancreatectomía distal o total), dependerá de la localización y del tamaño del tumor[3, 15]. En la gran mayoría de los casos restantes (85%), el tumor no es extirpable, debido a la presencia de metástasis a distancia de tipo linfático, peritoneal, visceral o pleural (50% de los casos), o y/o invasión vascular o linfática peripancreática (35% de los casos), por afectación de la arteria o vena mesentérica superior, arteria hepática y/o tronco celíaco[3, 10, 15]. En estos casos, las células tumorales procedentes del tumor primario, infiltran mediante vía linfática y sanguínea la vena esplénica o la porta, desarrollando metástasis principalmente hepáticas (80% de los ADCP metástasicos), y/o trombosis; por todo ello, en estos pacientes, tras evaluar una posible intervención con resultados paliativos[91], se suele optar por adoptar una conducta conservadora asociada a un seguimiento del paciente mediante evaluación secuencial de los niveles del antígeno CA19.9 y revisiones periódicas con estudios de imagen cada 3-6 meses[10]. Esto es debido a que la intervención quirúrgica curativa con extirpación completa del tumor a nivel local, generalmente no aporta un beneficio adicional, existiendo además datos que indican que la supervivencia para los pacientes operados con márgenes de resección microscópicamente infiltrados -o positivos- (márgenes de resección R1) es comparable a la de aquellos que reciben radio/quimioterapia, en ausencia de cirugía[10].

Finalmente, merece destacar que la mortalidad debida a los procedimientos quirúrgicos en pacientes operados de ADCP es relativamente baja (<5%) en centros hospitalarios de referencia (al menos 15-20 intervenciones al año)[92]; pese a ello, la supervivencia global de los pacientes con ADCP a 5 años es únicamente del 15-20%[6], incluso en pacientes con tumores en los que puede realizarse una intervención de tipo R0 (márgenes de resección negativos), es decir, una intervención quirúrgica curativa[14, 90].

1.8.2. Tratamiento radio/quimioterápico

En la actualidad, el tratamiento radio/quimioterápico se considera un tratamiento adyuvante recomendado para pacientes que han sido sometidos a una intervención quirúrgica, incluso curativa, debido a la gran tasa de recurrencia locoregional observada en su ausencia[4]. Sin embargo, desde la introducción en los años 90 de la gemcitabina, un análogo de nucleósido asociado a respuesta clínica (p.ej. reducción de dolor y de pérdida de peso corporal)[75], ha habido relativamente pocos avances.

Durante este tiempo se han ensayado diferentes protocolos de tratamiento quimioterápico (p.ej. basados en el uso complementario de 5-fluorouracilo -5-FU- y/o ácido folínico) o la administración combinada de radio y quimioterapia, siendo en general los resultados poco alentadores[6, 10]. De hecho, hasta el momento no se ha logrado superar el beneficio obtenido en términos de supervivencia libre de enfermedad y de supervivencia global de los pacientes con ADCP tratados con cirugía y gemcitabina vs. 5-FU o ácido folínico, como se refleja en los ensayos clínicos randomizados de fase III llevados a cabo por el grupo de investigación de Oettle et al. y por el European Study Group for Pancreatic Cancer (CONKO-001 y ESPAC-1, respectivamente)[93]. Por todo ello, la gemcitabina de forma aislada o en combinación con el 5-FU, continúa siendo el agente de primera línea en el tratamiento quimioterápico del ADCP, sin que habitualmente esto se traduzca en un mejor pronóstico a largo plazo, debido a la elevada tasa de resistencia del ADCP a estos y a otros tratamientos ensayados hasta la fecha. De este modo, en el ADCP el tratamiento adyuvante, con frecuencia adquiere una naturaleza paliativa[4, 75].

Por otro lado, otros factores como la existencia de un importante tiempo de espera entre el momento del diagnóstico, la cirugía y la recuperación post-operatoria, y finalmente, el comienzo del tratamiento adyuvante, junto con la existencia de tasas muy elevadas de resecciones de tipo R1 con infiltración en los bordes del tejido de resección quirúrgica, apuntan hacia la necesidad de implementar terapias pre-quirúrgicas. En este sentido, el desarrollo y disponibilidad de nuevas drogas como el fármaco anti-estroma nab-paclitaxel, así como el uso de nuevos protocolos donde se combinan anticuerpos monoclonales como erlotinib y fármacos como algunos análogos de platino, fluoropirimidinas, capecitabina o

FOLFIRINOX (5-FU, leucovorin, irinotecan y oxaliplatin) con gemcitabina (con o sin radioterapia) han mostrado una ventaja significativa en ensayos clínicos de fase III cuando se administran como terapia neoadyuvante pre-operatoria en pacientes con ADCP metastásico[93, 94]; sin embargo, el uso de algunos regímenes como FOLFIRINOX trae asociada una toxicidad muy elevada y un deterioro significativo de la calidad de vida del paciente[94]. Por todo ello, en la actualidad se sigue considerando que no existe una evidencia definitiva que apoye el uso rutinario de este tipo de tratamientos neoadyuvantes en el ADCP resecable, fuera del entorno de un ensayo clínico[93].

Finalmente, merece destacar que actualmente están bajo investigación diversos agentes complementarios con capacidad de potenciar los efectos quimioterápicos de la gemcitabina; entre estos agentes se incluyen: i) el fármaco JP1201, un agente mimético de Smac que actúa revirtiendo la actividad inhibidora de la apoptosis de Smac en las células de ADCP tratadas; ii) el Resveratrol que actúa a través de la supresión de marcadores de proliferación, angiogénesis, invasión y metástasis y,iii) la timoquinona, un fármaco derivado de extractos vegetales con efectos anti-inflamatorios y proapoptóticos sobre las células del ADCP[95, 96].

1.9. Evolución clínica y pronóstico

Habitualmente, el ADCP es una enfermedad silente hasta las fases avanzadas de desarrollo del tumor, que suelen coincidir con el diagnóstico de la enfermedad. La evolución natural del tumor en ausencia de una intervención terapéutica se asocia inicialmente con infiltración de los tejidos cercanos al páncreas, los grandes vasos sanguíneos y la cavidad peritoneal; solo posteriormente el tumor metastatiza a distancia, siendo principalmente el hígado y los pulmones los organos diana de dichas metástasis[97]. Así, debido a que al diagnóstico, con frecuencia existe invasión de los órganos y/o tejidos cercanos, la tasa de supervivencia al año del ADCP es ya de tan solo un 15-20%, reduciéndose a los 3 años aún más, hasta el 2-4%[98, 99]. Únicamente en aquellos casos en los que el tumor es pequeño (≤2cm), se localiza en la cabeza del páncreas y no existen metástasis ganglionares ni invasión de órganos vecinos, pueden esperarse tasas de supervivencia del 20-25% a los 5 años[16] con una mediana de supervivencia de 15-19 meses[98] tras exéresis quirúrgica completa del tumor. Esto es debido a que en el 80% de los casos la enfermedad recidiva a nivel local y en gran medida presenta también metástasis a distancia (50% de los casos)[3]. Por este motivo, en la actualidad se cree que deben seguir investigándose diferentes

estrategias de actuación temprana basadas en la utilización de quimioterapia (con o sin radioterapia), de forma adyuvante o neoadyuvante [90].

Respecto a los pacientes operables con enfermedad invasiva, los resultados muestran una supervivencia significativamente superior para aquellos casos que presentan enfermedad localmente avanzada respecto a los tumores metastásicos, con medianas de supervivencia de 9-15 vs. 3-6 meses, respectivamente. En estos casos se ha descrito un posible beneficio (en un 30% de los tumores no operables debido a enfermedad localmente avanzada) del tratamiento neoadyuvante administrado de forma previa a la intervención quirúrgica, lo cual les permitiría alcanzar una supervivencia similar a la de los pacientes con tumores extirpables en ausencia de enfermedad diseminada, no sometidos a ningún tipo de tratamiento neoadyuvante[6].

Ante todo lo anteriormente expuesto, es lógico pensar que los parámetros relacionados con la resección quirúrgica del tumor -márgenes de resección, tamaño tumoral y afectación ganglionar- constituyen los factores pronósticos más relevantes en el ADCP[10]. En este contexto, dentro de los tumores extirpables quirúrgicamente aquellos que presentan un mayor tamaño (>2cm), con grado histológico avanzado (pobremente diferenciado), márgenes de resección positivos y afectación ganglionar, presentan también un peor pronóstico[6]. Precisamente, de todos los factores pronósticos actuales, el grado de afectación linfática es uno de los pocos validados de forma clara[15]. Así, la tasa de ganglios positivos sobre el total de ganglios resecados analizados (conocido como índice LNR, de sus siglas en inglés) constituye un factor pronóstico independiente para la supervivencia global de los pacientes con ADCP sujetos de duodenopancreatectomía: mediana de supervivencia global de 25 meses para pacientes con un LNR de 0; 22 meses para un LNR≤0,2; 15 meses para LNRs de entre 0,2 y 0,4, y; de 12 meses para LNR superiores a 0,4[100].

Respecto a la invasión ganglionar, algunos estudios llegan a sugerir además que la invasión diferencial en grupos ganglionares anatómicamente distintos podría tener también un valor pronóstico independiente. Así, la invasión de ganglios cercanos (adyacentes) al páncreas parece estar asociada con una supervivencia global más prolongada, respecto a la invasión ganglionar remota (p.ej. de grupos ganglionares cercanos a la vena porta hepática, la raíz mesentérica, retroperitoneales o en la región inter-aorto-cava) que se asociaría a una supervivencia global significativamente más corta[3].

De acuerdo también con lo expuesto anteriormente, en la actualidad se reconoce que además de la posible relevancia pronóstica de la biología del tumor, el valor predictivo de los factores pronósticos conocidos antes mencionados presentaría una fuerte dependencia del centro hospitalario en el que se desarrolla la cirugía, la experiencia del equipo quirúrgico y del estudio anatomopatológico realizado[92]. A modo de ejemplo, la precisión con la que se

realiza la determinación de un margen libre de tumor, depende de las técnicas de marcado con tinta para su evaluación por el anatomopatólogo y del criterio utilizado para definir "la limpieza del margen" (la distancia entre el margen de resección y el tumor), del cual dependerá a su vez la determinación de afectación tumoral o no del margen de resección[3]. De la misma forma, en aquellos tumores que presentan mayor tamaño (>2cm de diámetro) y que habitualmente se asocian a un peor pronóstico, esta asociación podría reflejar, además de una mayor agresividad del tumor (tiempo de evolución del mismo en el momento de la resección, con mayor probabilidad de invasión linfática y de micrometástasis), la mayor dificultad técnica que entraña su extirpación completa y por tanto, el mayor riesgo de que los márgenes de resección sean positivos[3]. En este sentido, se ha descrito una mayor supervivencia global entre pacientes N0 en los que se incrementa el número de ganglios analizados: mediana de supervivencia de 20 meses (p<0.0001) cuando se analizan ≥10 ganglios vs. 15 meses cuando se analiza un menor número de ganglios[3].

Aunque se han identificado otros factores pronósticos en el ADCP, como el grado de diferenciación tumoral, diferentes autores refieren datos discordantes respecto a su impacto en la supervivencia global, posiblemente debido también a la dificultad que conlleva la correcta evaluación histológica de este tipo de tumores y el grado de subjetividad de la misma debido a la experiencia requerida[3]. Pese a todo ello, la mayoría de los estudios reflejan un mejor pronóstico para los tumores bien diferenciados respecto a los ADCP moderadamente y pobremente diferenciados. Otros parámetros histológicos que se han asociado con una supervivencia global significativamente más corta incluyen la presencia de focos de fibrosis y necrosis en más del 25% del área del tumor[3].

En términos generales, el número limitado de factores pronósticos disponibles en la actualidad y su naturaleza están probablemente directamente relacionados con el diagnóstico tardío de la enfermedad y la ausencia de tratamientos adyuvantes eficaces.

Estos resultados refuerzan dos importantes paradigmas de esta neoplasia. Por un lado, el que el ADCP, una vez localmente avanzado o metastásico, es en general incurable y, por otra parte, el que el mayor impacto en la supervivencia posiblemente estaría relacionado con la detección temprana de la neoplasia pancreática antes de que ocurra la invasión locoregional y/o a distancia[80]. Sin embargo, queda también en evidencia el escaso peso que hasta la fecha tienen las características biológicas del tumor, respecto a los parámetros directamente relacionados con el manejo clínico del paciente.

2. Genética del ADCP

2.1. Alteraciones genéticas asociadas al ADCP

En la actualidad se acepta que la transformación neoplásica habitualmente ocurre como resultado de una cascada de eventos moleculares que conllevan la alteración de los mecanismos normales de control de la proliferación, la diferenciación y/o la supervivencia celular, así como de las interacciones de las propias células con su microambiente[101, 102]. De esta forma, en las últimas décadas se han definido distintos modelos de evolución clonal en el ADCP, modelos que se apoyan principalmente en las diferencias citogenéticas detectadas entre diferentes tumores, sin que hasta la fecha se haya podido confirmar la existencia de esos patrones de evolución clonal a nivel intratumoral, en células individuales de un mismo ADCP[103-105].

En términos globales, estudios basados principalmente en técnicas de citogenética convencional[103, 105, 106], hibridación genómica comparada (de sus siglas en inglés, CGH)[104, 107-120], y análisis de pérdida de heterozigosidad (de sus siglas en inglés, LOH)[121-131] sobre muestras tumorales y líneas celulares de carcinoma pancreático, describen con relativa frecuencia la presencia en el ADCP de cariotipos complejos asociados a patrones citogenéticos heterogéneos. Estos cambios citogenéticos consisten en su mayoría en pérdidas de material genético a nivel de los cromosomas 1p, 3p, 4q, 6, 8p, 9p, 10q, 17p, 18q, 21q y/o 22q, así como nulisomía del cromosoma Y en varones, junto con ganancias de los cromosomas 1q, 3q, 5p, 7, 8q, 11q, 17q y 20q[66, 104, 105, 113, 116, 118, 132]. Estas alteraciones incluyen no solo cambios en el número de copias de las secuencias afectadas a nivel del ADN, sino también mutaciones activadoras en oncogenes y silenciadoras en genes supresor de tumor, modificaciones epigenéticas y mutaciones en el ADN mitocondrial, entre otras anomalías[133, 134]. Dentro de ellas, se cree estarían incluidas aquellas que contribuyen de forma decisiva a la transformación neoplásica y a la progresión maligna del ADCP.

En general, hoy se considera que la presencia simultánea de múltiples alteraciones genéticas en una misma célula neoplásica podría estar relacionada con un mayor tiempo de evolución desde la transformación tumoral a la aparición de las manifestaciones clínicas, lo cual facilitaría a su vez la evolución clonal del tumor[135, 136]. En este sentido, aquellas neoplasias en las que se detecta un número reducido de anomalías genéticas de tipo primario presentarían un grado de malignidad en principio inferior al de los tumores en los que se detecta ya un acumulo importante de alteraciones genéticas secundarias, especialmente aquellas que se asocian con una mayor tasa de progresión clínica y biológica

de la enfermedad. Mientras que la identificación de las alteraciones primarias es fundamental a la hora de conocer los mecanismos implicados en el proceso de transformación neoplásica, el estudio de las anomalías genéticas/moleculares secundarias revestiría especial interés a la hora de determinar el grado de agresividad y malignidad del tumor[136-138].

2.1.1. Alteraciones genéticas primarias

La anomalía genética más frecuentemente detectada en el ADCP (75-90% de los casos) es la activación constitutiva del oncogén KRAS (localizado en el cromosoma 12p12.1) por mutaciones puntuales en el codón 12 y raramente, en los codones 13 y 61[20, 139]. KRAS es un miembro de la familia RAS de proteínas con actividad GTPasa que media una gran variedad de funciones celulares incluyendo la proliferación, diferenciación, supervivencia, motilidad, invasión y remodelamiento del citoesqueleto; además, como se discutirá más adelante, RAS participa en diversas vías de señalización, principalmente en aquellas que involucran las proteín quinasas activadas por mitógeno (MAPK) y las vías de señalización de la fosfatidilinositol-3-quinasa (PI3K) y del factor nuclear κΒ (NF-κΒ)[60]. Dicha alteración, constituiría así, la primer anomalía genética conocida en estos tumores, siendo detectable ya en lesiones ductales con atipia mínima, en las que tendría como consecuencia la activación de las vías de señalización intracelulares antes mencionadas[80, 134]. En aquellos casos menos habituales (5-15%) en los que no se detecta mutación en KRAS, suelen observarse mutaciones en el gen BRAF, otro gen activador implicado también en la vía RAS/RAF/MAPK, corroborando así la importancia de esta vía en la génesis del ADCP[134].

De acuerdo con esta hipótesis, diferentes estudios sobre muestras de tejido tumoral y modelos murinos, han demostrado que las mutaciones en el gen *KRAS* son una de las primeras alteraciones genéticas que estarían implicadas en la progresión de las lesiones pre-malignas (PanINs) a ADCP, siendo posiblemente un paso clave en la patogénesis del ADCP, al proporcionar una ventaja proliferativa a las células transformadas, de forma previa al desarrollo de carcinoma invasivo[72, 140]. Hoy se considera que las mutaciones en *KRAS* podrían ocurrir de forma esporádica en células de tejido pancreático normal[80], ya que se observan con relativa frecuencia en pacientes con pancreatitis crónica[141] y en aproximadamente 30% de las lesiones neoplasicas tempranas de tipo PanIN; sin embargo, su aparición condicionaría la transformacion maligna, al detectarse en casi la totalidad de los pacientes que presentan enfermedad avanzada[60, 66]. En las lesiones pre-malignas de tipo MCN e IPMN, las mutaciones en *KRAS* se cree constituirían también uno de los primeros

eventos genéticos, incrementándose su frecuencia de forma gradual desde las lesiones adenomatosas al carcinoma *in situ*, de ambos tipos de neoplasias[80, 142].

Además de la activación oncogénica de KRAS, hoy se conoce que la pérdida de la integridad de los telómeros mediada por su acortamiento progresivo, constituiría también uno de los primeros eventos moleculares tempranos en el ADCP. En este sentido, el acortamiento de los telómeros es ya evidenciable en >90% de las lesiones PanINs, incluyendo las lesiones de bajo grado, así como en las lesiones precursoras de tipo IPMN[78, 143, 144]. En células normales, los telómeros tienen como función importante la prevención de la erosión cromosómica que ocurre a medida que la célula se divide. Este acortamiento se cree constituye una de las causas principales de la existencia de inestabilidad cromosómica asociada а pérdidas, ganancias y reordenamientos cromosómicos. promoviendo también la transformación maligna en los tumores pancreáticos[80]. En condiciones normales, la existencia de inestabilidad cromosómica se controla mediante inducción de apoptosis; sin embargo, la presencia simultánea de mutaciones que afectan al gen TP53 (o de alteraciones en esta vía de señalización) junto a inestabilidad cromosómica facilitaría la génesis tumoral[60, 145].

De la misma manera que en otros tumores epiteliales, se ha constatado también la implicación del factor de crecimiento epidérmico y sus receptores (de sus siglas en inglés, EGF y EGFR, respectivamente; Tabla 2) en el desarrollo del cáncer de páncreas[142]. La unión de EGF a sus receptores, desencadena una cascada de fosforilación con una posterior traducción de señales que inducen activación de la proliferación celular, angiogénesis y metástasis, así como la disminución de la muerte celular por apoptosis[146]. En este sentido, la existencia de amplificación de estos genes con la sobreexpresión concomitante de sus productos, puede facilitar el desarrollo de una proliferación incontrolada de las células tumorales/transformadas[147]. Entre 10% y 60% de los ADCP, y algunas de sus lesiones precursoras, presentan alteraciones en la expresión de diversos receptores y factores de crecimiento de esta familia, sin que exista una relación clara con el pronóstico o la supervivencia de la enfermedad; entre otras, estas incluyen alteraciones del propio gen EGFR, HER2/neu, HER3 y de sus ligandos EGF, TGF-α y anfiregulina (AREG). El bloqueo de HER2/neu en el ADCP, disminuye el crecimiento celular y la tumorogénesis in vitro, posiblemente debido a la inhibición de la angiogénesis a nivel tumoral y la existencia de apoptosis a nivel de las células endoteliales[60]. En lesiones primarias, la sobreexpresión del producto de HER2/neu (p158), se correlaciona de forma positiva con el grado de hiperplasia, observándose en 82% de las lesiones PanIN1, 86% de las lesiones PanIN2, 92% de las PanlN3 y en un 70% de los ADCP infiltrantes[148, 149] (Tabla 2). De la misma manera, un elevado porcentaje de casos presentan también amplificación y sobreexpresión

del oncogén *AIB1* (*NCOA3*; 20q12)[139]. Finalmente, se ha descrito recientemente la existencia de casos portadores de mutaciones activadoras de la proliferación celular en el oncogén *GNAS* (20q13)[88]. De acuerdo con los resultados referidos, las mutaciones del gen *GNAS* podrían ser específicas de lesiones IPMN, al detectarse exclusivamente en ADCP asociados a IPMN, y al estar ausentes en MCN y otros tumores quísticos del páncreas (Tabla 2). En la Tabla 2 se describe la frecuencia relativa de las principales alteraciones genéticas primarias detectadas hasta la fecha en el ADCP y las lesiones premalignas asociadas a este tumor.

Tabla 2. Alteraciones genéticas primarias presentes en el ADCP y sus lesiones pre-malignas.

Gen y	Región	Tipo de alteración genética (%)				Referencias
alteración	cromosómica	ADCP	PanINs	IPMN	MCN	bibliográficas
Acortamiento de telómeros		(95%)	PanIN1 (90%)	(50%)		[11, 88, 143, 150, 151]
AIB1	20q12	A (10-60%); SE (65%)	SE (23%)			[12, 139]
BRAF	7q34	A/M (5-15%)	A/M +	M (2,7%)		[11, 12, 88, 142, 152]
CLDN4	7q11	hM (89-92%); SE (94-100%)	SE +	SE (>73%)	SE+	[11, 88, 142, 153]
CLDN18	3q22	SE (80%)	SE+	SE +	SE+	[88, 153]
COX2	1q25	SE (67-90%)	SE+			[20, 88]
EGFR	7p12	SE (50%); A (65%); M (4%)	SE+	M (7,5%)*	A (65%); SE (61%); M (Ca 4%)	[65, 142, 147, 151]
FSCN1	7p22	SE (85%)	SE +	SE +		[153-155]
GNAS	20q13	M -	M -	M (66%)	M -	[88]
HER2/Neu	17q21	A (10-60%); SE (21-80%)	SE (PanIN1 82%, PanIN2 86%, PanIN3 92%)			[20, 65, 139, 147- 149, 156-158]
KRAS	12p12	M (53-95%)	M (PanIN1 36-44%, PanIN2 y 3 87%)	M (Ad 33%, Calnv 50-89%)	M (Ad 20%, DisM 33%, Ca 89%)	[20, 65, 78, 80, 142, 150, 157, 159]
MDM2	12q14	A y SE (66%)	SE +			[157, 160]
MMP-7	11q21	SE (88%)	SE (PanIN1 >70%)			[159, 161]
MUC1	1q21	SE (100%)	SE+	SE + **	SE Calnv +	[88, 139, 153, 162, 163]
MUC4	3q29	SE (85%)	SE +	SE -	SE -	[88, 153, 162]
MUC5AC	11p15	SE (40-100%)	SE+	SE+	SE +	[88, 139, 153, 162, 164]
MUC6	11p15	SE (40-100%)	SE +	SE +/-	SE -	[88, 153, 162, 164, 165]
P21	6q21	SE (85%)	SE (PanIN1 16-32%, PanIN2 56%, PanIN3 80%)			[88, 139, 150, 157, 166]
PSCA	8q24	hM (30-54%); SE (60%)	SE (PanIN1 30%, PanIN2 40%, PanIN3 60%)		SE+	[11, 134, 139, 153, 159]
S100A4	1q21	hM (50-76%); SE (93%)	SE +	SE (>73%)		[11, 88, 167]
S100P	4p16	hM (57-88%); SE (95%)	SE +	_	SE+	[11, 153, 165]

A: amplificación; Ad: adenoma; Ca: carcinoma in situ; Calnv: carcinoma invasivo; DisM: displasia moderada; HM: hipermetilación; hM: hipometilación; M: mutación; SE: sobreexpresión; *: en IPMN tipo Intestinal; ** en IPMN tipo pancreaticobiliar y oncocítico; +: presencia de la alteración; -: ausencia de la alteración; +/- : débil en IPMN de tipo Intestinal y pancreáticobiliar, y fuerte en oncocítico. Todas las alteraciones corresponden a ganancias de función.

Además de las anomalías genéticas descritas, se han observado también cambios en la expresión de distintos genes ya en las fases iniciales de la enfermedad (Tabla 2); de entre ellos, merece destacar las alteraciones en la expresión de distintos miembros de la

familia de las metaloproteasas de la matriz extracelular (MMPs)[37]. Las MMPs participan en la degradación de los componentes de la matriz extracelular, actuando como un elemento clave en la remodelación tisular promoviendo la angiogénesis y degradando la membrana basal y los componentes de la matriz extracelular. Por todo ello, las MMPs contribuyen a la carcinogénesis, ofreciendo a las células tumorales las condiciones nutritivas óptimas para su establecimiento en el tejido primario en el que se localicen, y facilitando su circulación y asentamiento a distancia[157, 168]. Hasta la fecha se han implicado diferentes tipos de MMPs en la transformación de los ADCP, de las que merece destacar la MMP-7, que se sobreexpresa ya en las primeras etapas de las lesiones pre-neoplásicas PanIN[159], a diferencia de lo que ocurre con otras metaloproteasas de esta familia (p.ej. MMP-2 y MMP-9) que se encuentran sobreexpresadas únicamente en tumores invasivos[169] (Tabla 2).

Otras proteínas cuya expresión está alterada en el ADCP y sus lesiones premalignas, incluyen: distintos marcadores gástricos de diferenciación epitelial, como el pepsinógeno C (PGC), MUC6, KLF4, GATA6, SOX-2, FOXI1, MDM2 y TFF1[84, 159, 165]; la fascina (FSCN1), una molécula que promueve la movilidad y la capacidad de invasión de las células tumorales pancreáticas[154, 170]; proteínas de adhesión celular (p.ej. claudina 4 y 18; CLDN4 y CLDN18, respectivamente)[84]; proteínas de unión a calcio (p.ej. las proteínas de la familia S100: S100A y S100P)[6, 11, 84]; proteínas reguladoras del ciclo celular como p21[159]; proteínas que intervienen en la progresión tumoral y angiogénesis como COX2, u; otras proteínas como PSCA, la queratina 19 (KRT19), el receptor de clase C asociado a la proteína G (GPRC5A), la proteasa inhibidora de secreción de leucocitos (SLPI), la stratifina (SFN), tetraspanina 1 (TSPAN1) y transglutaminasa 2 (TGM2)[134, 171]. Merece destacar que además de encontrarse sobreexpresadas en ADCP invasivo, muchas de estas proteínas incrementan su expresión de forma gradual, en paralelo con la progresión histológica de la enfermedad[84, 134, 159]. Incluso algunas de ellas como las mucinas, muestran un patrón de expresión diferencial en los distintos tipos de lesiones premalignas, estando el perfil de expresión en las lesiones PanIN caracterizado por la sobreexpresión de MUC1, MUC4, MUC5AC y MUC6, mientras que las lesiones de tipo MCN y las IPMN de tipo intestinal se caracterizan por la expresión de MUC2 [84] (Tabla 2).

2.1.2. <u>Alteraciones genéticas secundarias</u>

Del amplio abanico de alteraciones genéticas y moleculares secundarias que se detectan en el genoma de la célula tumoral del ADCP (Tabla 3) merece destacar por su relevancia la inactivación de 3 genes supresores de tumor asociados con la progresión tumoral.

En primer lugar, la pérdida de función de los genes CDKN2A/p16 y ARF/p14, yuxtapuestos en el cromosoma 9p21 en 80-95% de los ADCP[11]. La proteína p16 codificada por este gen, juega un papel fundamental en el control de la transición entre las fases G1 y S del ciclo celular, mediante su unión a quinasas dependientes de ciclinas (CDKs)[80]. De esta forma, la pérdida de p16 contribuye a la supervivencia celular, la angiogénesis y la invasión tumoral. Generalmente, la inactivación de CDKN2A ocurre por 3 mecanismos diferentes: mutación del gen asociada a pérdida del segundo alelo (40% de los casos), deleción bialélica (40% de los casos) y silenciamiento génico a través de mecanismos de hipermetilación del promotor del gen (20% de los casos)[80, 157]. La inactivación de este gen raramente aparece en tejido pancreático sano. No obstante, suelen detectarse mutaciones germinales en este gen en ADCP familiares y en pacientes con melanoma múltiple familiar atípico, por lo que se piensa que la pérdida de este gen supresor podría jugar un papel central en la génesis del ADCP, al menos en algunas formas familiares de estos tumores[60]. En las formas esporádicas, se observa ya pérdida de expresión de p16 en las lesiones moderadamente avanzadas con displasia, en 30% de las lesiones PanIN1, 55% de las PanIN2 y aproximadamente el 71% de las PanIN3[60], afectando finalmente a un tercio de los ADCP[159]. Además esta alteración está presente también en los precursores IPMN con displasia de alto grado, sin conocerse exactamente la frecuencia de la misma en MCN[11].

La segunda alteración secundaria más relevante por su frecuencia en el ADCP (55%), es la pérdida de la región cromosómica 18q21 que constituye una de las alteraciones más característica de estos tumores[37, 172, 173]. Esta deleción conlleva la inactivación del gen DPC4 (del inglés, deleted in pancreatic cancer 4, también conocido como gen SMAD4), un regulador transcripcional de la cascada de señales de TGF-β[174]. Varios estudios muestran pérdida de función de este gen por deleción homocigótica en aproximadamente 30% de los ADCP, mientras que en otro 20-25% de los casos se observan mutaciones en un solo alelo del gen asociadas a pérdida de heterozigocidad[37, 60, 134]. La pérdida de expresión/mutación de SMAD4 conduce a un control defectuoso de la inhibición del crecimiento, la diferenciación, migración y apoptosis mediados por TGF-8[60]. Sin embargo. se postula también que la pérdida de SMAD4 en el ADCP podría influir además en modular la interacción del tumor con el micromedioambiente, más que en la regulación de la proliferación de las células tumorales. Esto es debido a que la restauración de la expresión normal de SMAD4 en líneas celulares tiene un impacto mínimo sobre el crecimiento in vitro, mientras que in vivo promueve la represión de la angiogénesis y el remodelamiento de la matriz extracelular[60]. Habitualmente, esta alteración se ha asociado con los estadios más avanzados de las lesiones PanIN[127], el comportamiento invasivo de los MCN, y más raramente, con el componente invasivo de los IPMN (3%)[11, 80], lo cual apoyaría su papel

Tabla 3. Alteraciones genéticas y moleculares secundarias presentes en el ADCP y sus lesiones pre-

malignas Gen y	Región		de alteración genéti			Referencias
alteración	cromosómica	ADCP	PanINs	IPMN	MCN	bibliográficas
Ganancia de	función	1	:		:	
AKT2	19q13	A (10-60%); SE (10-20%)				[12, 65, 139, 151]
CCND1	11q13	SE (60-85%); A (8%)	SE (PanIN2 33%, PanIN3 50%)			[108, 109, 139, 159]
CDX2	13q12	SE (5%)		SE (67-90%)*		[66, 89, 153, 159]
СМҮС	8q24	A/SE (32-60%)			SE+	[11, 110, 134, 151, 175]
FGF3	11q13	SE (13%)				[108]
FGF4	11q13	SE (16%)				[119]
GUCY2F	Xq22	MB (3%)				[151]
HGF	7q21	SE (87%)	SE +		SE+	[60]
MET	7q31	SE (87%)	SE +		SE+	[60, 88]
MIB1	18q11	SE (59%)	SE (PanIN1 1-3%, PanIN2 14%, PanIN3 22%)			[139, 159, 176]
MMP-2	16q13	SE (94%)	1 ami 10 22 70)			[161, 162, 169]
MMP-9	20q11	SE (93%)				[162, 169]
MSLN	16p13	hM (29-89%); SE (55%)	SE+	SE (>73%)		[80, 88, 139, 142
MUC2	11p15	SE (4%)	SE -	SE +*	SE+	153] [88, 89, 153]
MYB	6q22	A y SE (10-20%)	OL -	OL 1	OL 1	[12, 139]
NTRK3	15q25	MB 1%)				[12, 139]
SERPINB5	18q21	SE (>90-100%); hM (94%)				[11, 153, 177 178]
TOP2A	17q21	A y SE (10%)				[139, 159]
VEGF	6p12	SE (93%)				[60, 179]
Pérdida de fu	· ·	1 = (5575)	:	ı		,
ACVR1B	12q13	DH/LOH/M (2- <10%)				[11, 12, 152]
ACVR2	2q22	M (<10%)				[12]
ARF	9p21	D (40-100%)	D (PanIN1 27-33%, PanIN2 55%, PanIN3 71%)			[180]
BAX	19q13	MB (4%)	,			[151]
BRCA1	17q21	I (50%)				[151, 181]
BRCA2	13q12	DH (7%)				[65, 151]
CDH1	16q22	M (<5); I (43%)		HM +		[11, 162, 182]
CDKN2A	9p21	M (40%); DH (40%); HM (15-20%); I (42%); LOH (13-90%)	M (PanIN1 30%, PanIN2 55%, PanIN3 71%)	D (53%); HM (50%)		[20, 84, 139, 142, 148, 150, 157, 159]
DUSP6/ MKP-3	12q22	l (53%)	l -	I (15-33%)		[183, 184]
FANCC	9q22	M (<10%)				[152]
FANCG	9p13	M (<10%)				[152]
FBXW7	22q12	LOH/M (<5-<10%)				[11, 12, 152]
hMLH1	3p21	HM (3-15%)		HM (Ca. 20%)		[11, 60, 88, 151]
hMSH2 LKB1/	2p21 19q13	HM (4%)	M/D/LOH -	LOH/M (25%)	M/D/	[139] [11, 60, 65, 88
STK11 MAP2K4/	,	DH/M y D (4-<10%)#	IVI/D/LON -	LOI //IVI (25%)	LOH -	152, 185]
MKK4	17p12	DH/M y LOH (2-4%)				[11, 12, 151]
PI3K	3q26	M -	M -	M 7-20*	M -	[88, 89]
SMAD4	18q21	D (45-85%); DH (30-35%); M y LOH (20-30%); LOH (90%)	I (PanIN3 30-100%)	D (3-38%)	D/LOH (Ad 14%, Ca.100%)	[11, 20, 65, 66 78, 88, 139, 157]
TGFBR1	9p22	DH/MB (<10-2%)				[12, 134, 151, 152]
TGFBR2	3p22	DH/MB (4-<10%)				[11, 12, 134, 151, 152]
TP53	17p13	LOH (95%); M (27-75%)	LOH (PanIN1 0- 18%); M (PanIN3 41%	M (50-63%)	M/LOH (Ad-, Ca 40%)	[11, 20, 65, 78, 88, 150, 151, 157]
RB1	13q14	M (<10%)				[134, 151]
RUNX3	1p36	LOH (34%)				[130, 152]

A: amplificación; Ad: adenoma; Ca.: carcinoma in situ; D: deleción; DH: deleción homocigótica; HM: hipermetilación; hM: hipometilación; LOH: pérdida de heterozigosidad; M: mutación, MB: mutación bialélica SE: sobreexpresión; I: inhibición de la expresión; *: en IPMN de tipo intestinal; # mutación puntual en un alelo y deleción en el otro alelo; +: presencia de alteración; -: ausencia de alteración.

32

como una alteración secundaria involucrada en la progresión de la enfermedad (Tabla 3).

Finalmente, el gen supresor de tumor TP53, localizado en el brazo corto del cromosoma 17, y que es uno de los genes más frecuentemente alterados en cáncer, también se encuentra inactivado en tumores infiltrantes de páncreas con una frecuencia de entre un 50% y 75% de los casos (Tabla 3)[20]. En el ADCP, las mutaciones de TP53 ocurren a lo largo de toda su secuencia génica, asociándose en 95% de los casos a LOH[157]. En aquellas células que presentan daño en su ADN, p53 facilita la puesta en marcha de los mecanismos de reparación de dichas lesiones; no obstante, si el daño es severo, p53 se encarga de inducir la muerte celular programada o apoptosis. Así, la inactivación de p53 impide la reparación del ADN, a la vez que facilita la supervivencia y crecimiento de células portadoras de alteraciones cromosómicas complejas, cooperando con el efecto de otras alteraciones en la acumulación de daño genético, incluido el acortamiento de los telómeros[60]. El aumento progresivo de las alteraciones asociadas a daño de ADN e inestabilidad genómica que ocurre en el ADCP se asocia con la transformación maligna característica de la enfermedad avanzada; además, coopera con la resistencia al tratamiento quimioterápico convencional[60]. Desde el punto de vista ontogénico, la mutación de TP53 se detecta ya en los estadios tardíos de las lesiones PanINs que han adquirido aspecto displásico[127], en el componente invasivo de los MCN[80] y en la displasia de alto grado de las lesiones IPMN[11]. Por el contrario, la sobreexpresión de CDX2 y la inactivación del gen PIK3 (3q26) han sido descritas únicamente entre los IPMN de tipo intestinal, sin detectarse prácticamente en otro tipo de lesiones precursoras de ADCP[88, 159] (Tabla 3).

Además de las tres alteraciones genéticas antes mencionadas en el ADCP, se han descrito otras anomalías secundarias. Entre ellas se incluyen: la amplificación y sobreexpresión del oncogén *CMYC* codificado a nivel del cromosoma 8q24, y que está presente en 32-60% de los ADCP[133, 134, 175, 186], y otras alteraciones menos frecuentes (<30% de los casos)[11] como la inactivación de los genes supresores de tumor *TGFBR1* (*ALK5*; 9q22), *TGFBR2* (3p22)[6, 11], *RB1* (13q14)[134], *MAP2K4/MKK4* (17p11), *FBXW7* (*CDC4*; 4q31)[11], *ACVR1B* (12q13)[11, 134], *ACVR2* (2q22), *BAX* (19q13), *FANCC* (9q22), *FANCG* (9p13)[151], *LKB1/STK11* (19q13), *PTEN* (10q23)[2] y *RUNX3* (1p36)[152], la hipermetilación y/o mutación de genes reparadores del daño del ADN como *hMLH1* (3p21), *hMSH2* (2p21) y *BRCA2* (13q12)[65, 139] y la activación de los genes *MYB* (6q21)[139], *TOP2A* (17q21), *GUCY2F* (Xq22) y *NTRK3* (15q25)[151, 159] (Tabla 3).

En cuanto a los patrones globales de expresión génica característicos del ADCP, se han descrito alteraciones en múltiples proteínas sobreexpresadas en los estadios avanzados de la enfermedad (Tabla 3). De ellas merece destacar: la sobreexpresión del gen *AKT*, elemento efector de la vía de señalización de *PI3K* con funciones en la regulación de la

supervivencia, el tamaño y la proliferación celular; la expresión incrementada del factor de crecimiento de tipo insulina (IGF) cuya señalización regula la supervivencia, invasión y angiogénesis en diferentes neoplasias[60]; la sobreexpresión de VEGF, que promueve la proliferación de células endoteliales y la angiogénesis; la sobreexpresión de maspina (SERPINB5) que interviene en la regulación de la capacidad de invasión y metástasis de las células ductales[177, 187, 188] y; la expresión incrementada de los factores de crecimiento de fibroblastos (p.ej. FGF3 y FGF4) que intervienen en la mitogénesis, angiogénesis y posiblemente también en los procesos desmoplásicos[60, 188]. De la misma manera, se ha observado, tanto en lesiones PanIN como en el ADCP, un aumento de la expresión del receptor MET y su ligando, así como del factor de crecimiento de hepatocito (HGF), que regulan la movilidad, invasión y proliferación celular y cuya alteración se ha relacionado con la progresión de diferentes tumores[60]. Por el contrario, la sobreexpresión de otros genes como la mesotelina (*MSLN*), *CCND1* y *MIB1* (Ki-67) se detecta en algo más de la mitad de los ADCP y sólo en una fracción de las lesiones PanIN avanzadas, sin haberse descrito en las lesiones pre-malignas de bajo grado o en el epitelio normal[80] (Tabla 3).

A esta serie de alteraciones, se le suma la inactivación mediada por desregulación de la expresión génica en genes como el gen supresor de tumor *BRCA1*[151, 181], la fosfatasa quinasa *MAP3* (*DUSP6/MKP-3*) de la vía RAS-MAPK[171, 183] y la proteína de adhesión celular E-caderina (CDH1), cuya pérdida de función se ha asociado a la progresión tumoral en diferentes neoplasias, debido al incremento de la proliferación, invasión y/o metástasis[11] (Tabla 3).

2.1.3. Alteraciones de genes no codificantes de proteínas

Hasta la fecha, las secuencias de ADN mejor estudiadas del genoma humano son aquellas que incluyen los genes que codifican para proteínas. Sin embargo, los exones de estos genes sólo se corresponden con el 1,5% a 2% de todo el genoma, si se toman en cuenta las regiones no-traducidas de los genes (UTRs, según sus siglas en inglés). En este sentido, sólo en las últimas dos décadas se ha profundizado en el conocimiento de la mayor parte del genoma que corresponde a la porción no-codificante, valorándose cada vez más su implicación en el funcionamiento, tanto de procesos fisiológicos normales, como de los procesos patológicos incluido el cáncer. Dentro de esta categoría de genes, los más conocidos y primeros en ser descritos son los genes que codifican para microARNs o miARN[189]; estos genes están constituidos por pequeños ARNs monocatenarios (~22 nucleótidos) transcritos a partir de genes que frecuentemente se encuentran en regiones intrónicas o integrados en las regiones UTR de los genes. Hoy se conoce que los miARNs constituyen un mecanismo regulador post-transcripcional de la expresión que afecta a más

del 60% de los genes codificantes de proteínas y que actúan, tanto mediante represión de la traducción, como a través de la inducción de la degradación de múltiples ARN mensajeros (ARNm) diana, a los que reconocen por un mecanismo de complementariedad de bases entre toda o parte de la secuencia del miARN [190].

Diferentes estudios demuestran que este tipo de ARNs desarrolla un papel clave en funciones reguladoras del desarrollo, la proliferación, diferenciación, apoptosis y respuesta al estrés. Incluso, se han descrito algunos patrones de expresión de miARNs característicos de diferentes neoplasias humanas, que en algunos casos resultaron más informativos que los propios patrones de expresión de ARNm, en lo que respecta a la identificación de mecanismos patogénicos de la enfermedad[191].

De forma específica, se han demostrado alteraciones en el patrón de expresión de miARNs en tejidos pancreáticos tumorales así como en líneas celulares de cáncer de páncreas[30, 192, 193] e incluso en muestras de suero de pacientes con ADCP[28, 29] (Tablas 4-6). Entre las alteraciones descritas, merece destacar por un lado, la elevación de los niveles de miR-21, miR-143, miR-155, miR-196a o miR-221 que regulan negativamente la expresión del distintas dianas genéticas como TP53INP1, TGFBR2, maspina (SERPINB5), MDM2, RUNX2, p27, algunos miembros de la familia de los genes supresores de tumor SMAD (SMAD1, SMAD5), BCL2 y varios genes supresores de tumor conocidos como PTEN, entre muchos otros genes[30, 194-196] (Tabla 4); por otra parte, la disminución de la expresión de los miARNs let-7, miR-96, miR-216 y miR-217 en células de ADCP, miARNs que actúan como reguladores directos de la expresión de los genes KRAS y AKT[30, 194, 195] (Tabla 5). Por el contrario, la alteración de la expresión de los miARNs miR-200 (Tabla 6) y miR-34a (Tabla 5) constituirían eventos tardíos en el ADCP, ya que ocurrirían únicamente en ADCP invasivos en los que se asocia la sobreexpresión del primero con la inhibición de la expresión de E-caderina (CDH1) mientras que la inhibición por hipermetilación del segundo estaría relacionada con la represión de la senescencia y de la proliferación celular[142].

Más aún, algunos estudios sugieren la existencia de una alteración en la regulación de miARNs, ya como parte de los eventos tempranos asociados a las fases iniciales de la ontogenia del ADCP. Así, la sobreexpresión de los miARNs miR-10b, miR-21, miR-155 y miR-196b (Tabla 4) está presente ya en las lesiones precursoras PanIN e IPMN más avanzadas[11, 88, 197, 198], mientras que la ausencia de expresión de miR-148a (Tabla 5) por hipermetilación del ADN, podría observarse incluso en las lesiones PanIN de bajo grado (PanIN1 y 2), sin que existan de momento datos acerca de su posible alteración en lesiones de tipo IPMN o MCN[142] (Figura 4).

Tabla 4. miARN frecuentemente sobreexpresados en ADCP

miARN	Región cromosómica	Genes diana validados#	Significado clínico	Referencias bibliográficas
miR-10b	2q31	AKT1, CD44, EGFR1, HOXB1, HOXB3, HOXD10, HOXB4, MAPK8, MMP2, PLAUR, PTEN, RHOC, RHOD, SERPINE1, TWIST	Supervivencia más corta	[199, 200]
miR-21	17q23	BCL2, BTG2, CDC25A, HNRPK, IL6, LRRFIP1, MARCKS, MET, MYC, NIFB, PDCD4, PTEN, RECK, RTN4, SERPINB5, SPRY2, STAT3, TAP63, TGFBR2, TIMP3, TM1, TPM1, TP531NP1	Supervivencia más corta	[192, 193, 201- 206]
miR-23a	19p13	BCL2, CD4, CDKN1A, FOXO3, KRAS, LAMC2, MYC, PAK1, PDGFRB, PTEN, SMAD4, VGFA	-	[201]
miR-31	9p21	BAX, CDKN2B, ICAM1, IL8, JAK2, KRT15, KRT16, KRT17, MCM2, RHOA, SMAD3, TNF, TP53	Supervivencia más corta	[201]
miR-100	11q24	AKT1, BIRC3, CDH3, EGR2, FGFR3, MMP13, MUC16, MYC, ODZ1, PTEN, SOX2, TP53	-	[201]
miR-125a-5p	19q13	ATM, AKT1, BCL2, BRCA1, CDKN1A, CD80, CTSD, COX8A, CXCR4, ELA2, ERBB2, ERBB3, MDM2, MYC, RB1, RARA, SOX2, TP53	-	[201]
miR-144	17q11	APOE, CCND2, CDK4, GATA1, GATA2, HOXB3, KRAS, MYC, MAPK8, NOTCH1, PTEN, ROBO2, TLR4, TNF, TWIST1, ZEB1, ZEB2	-	[205, 207, 208]
miR-155	21q21	AID, ARID2, AGTR1, BACH1, CDKN1A, CEBPB, CYR61, FADD, FOS, FOXP3, FOXO3a, HIVEP2, IFN-GRA, JARID2, MTO10, RIPK1, RUNX2, RHOA, SHIP1, SMAD1, SMAD5, TP53INP1, WNT2, ZIC3, ZNF652	Supervivencia más corta	[192, 193, 201- 204, 209]
miR-181a, b, c	1q32; 9q33; 19p13	ATM, BCL2, BCR, CDKN1B, ERBB2, GATA1, GATA6, IL6, LIN28, MMP9, NCAM1, PML, SMAD4, STAT1, TWIST1, TGFB1, TGFB1, WT1	-	[192, 203, 204]
miR-196a, b	7p15	AKT1, ANXA1, BMP4, CD33, DDX20, ERG, FLT3, GEMIN4, HOXA7, HOXA10, HOXB4, HOXB8, HOXC8, HOXD1, HMGA2, NCOA6, NPC1, PAX7	Supervivencia más corta	[193, 203, 205]
miR-203	14q32; 12q13; 17q21	ABL1, API5, BIRC5, BCL11B, CDKN2A, ELAVL2, EPHA2, EPHB7,FOS, HGF, H3F3A, IL6, MDB6, MECP2, RUNX2, SOCS3, SOX6, TP53INP1	Supervivencia más corta	[193, 205, 209]
miR-210	11p15	ACVR1B, ACVR1B, COX10, EFNA3, E2F3, EGR3, FGFRL1, GIT2, HOXA1, HOXA9, ISCU, KRAS, MIB1, MNT, RAD52, ROS1, ZNF462	Supervivencia más corta	[209]
miR-211	15q13	BNIP3L, BBC3, DKK2, FRAP1, IGF2R, MITF, POU3F2, PRAME, RUNX2, SLC1A1,TBK1,TLR4	Resitencia a Gemcitabina	
miR-221	Xp11	BIM, BMF, CDKN1B, CDKN1A, CDKN1C, CXCR4, EGFR, ERBB2, ICAM1, KIT, MDM2, PI3K, PUMA, PTEN, P27, P57, TP53, TEK, VCAM1	Peor pronóstico	[192, 193, 201, 203, 204]
miR-222	Xp11	ANGPTL2, BIM BMF, CDH7, CDH8, CTCF, ELAVL2, H3F3A, IRF2, KIT, MLL, MMP1, PUMA, PTEN, P27, PDCD10, P57, SOD2, STAT5A, SOX1, TP53INP1, VEZF1	Supervivencia más corta	[193, 203, 209]
miR-224	Xq28	BAX, CD40, CDC42, EP300, JUNB, LOX, MAP2K1, MAPK1, PDCD4, RARA, RET, SAMD2, SMAD4, SMAD5, SRC, STAT1, TGFB1, VEGFA	Peor pronóstico	[193]

se muestran ejemplos de genes diana validados según la base de datos de Mirwalk[210] y los trabajos referenciados en la tabla.

Tabla 5. miARN frecuentemente inhibidos en ADCP

miARN	Región cromosómica	Genes diana validados#	Significado clínico	Referencias bibliográficas
let-7b	22q13	AMIGO2, BCL2, CCND1, CDK6, FGF13, IL6, KRAS, MAPK21IP1, MYC, NRAS, PXDN, SLC12A2, SOX2, SRC, STAT1, TP53, TGFB1	-	[205]
miR-29c	1q32	NOTCH1, NOTCH2, GLI1, SMAD3, SMAD7, JUN, BCL2, MYC, COL4A2, PAX3, WNT5A, SPARC, GATA4, TMEM132D, PI3KCA, FGA	Peor pronóstico	[193]
miR-30a, e	6q13; 1p34	AMIGO2, ANXA2, CBFB, CDKN2A, CDH1, CTSC, FERMT2, GALNTL2, ITGA2, LAMC1, MET, PODXL, RNMT, SHH, SLC7A1, SOX2, TMEM59	-	[201]
miR-34a	1p36	BCL2, CDKN1A, COL11A2, E2F3, E2F5, FASN, HNF4A, MYB, MDM2, NOTCH1, PTEN, TP53	Peor pronóstico	[205]
miR-130b	22	BMPER, BRAF, CCND2, CD44, CXCR4, FOS, FRAP1, IGF1R, IL1B, KRT12, MET, PROM1, RET, RIT2, RUNX2, STAT3, TGFB1, WNT5A	Peor pronóstico	[211]
miR-133a	***	CDKN2A, CDC42, CLDN5, EGFR, ERG, FSCN1, HSCN4, JAK2, MMP14, MYC, PIK3CA, RHOA, SLC2A4, SRF, STRAP, WHSC2, WT1	-	[193]
miR-141	12p13	BMP2, CDH17, EGF, FOXP3, INHBC, JAG2, JUN, MAPKAPK5, MAPK9, PDGFRB, SNAI1, SNAI3, SHH, TGFB2, TWIST1, ZEB1, ZEB2,	-	[201]
miR-148a, b	7p15; 12q13	APC, BHLHB5, CCKBR, DICER1, DNMT1, HLA-G, HLA-E, IFNA1, IL6, JAG1, SOX6, TLR3, TLR4, TLR9	-	[193, 201, 203]
miR-216a, b	2p16	AKT, ABACA1, CDKN2A, COX8A, EGFR, ELOVL6, KRAS, MMP14, PDX1, TP53, VEGFA	-	[193]
miR-217	2p16	AKT1, COX8A, EGFR, ERBB4, ERBB2, GLI1, HMOX1, ILK, KRAS, MMP14, NRAS, PTEN, PDX1, ROBO1, SMO, SSND1 TP53, TP63, SMAD2	-	[193, 201]
miR-375	2q35	DNMT1, DPT, FOZM1, GATA3, IL13, IL1A, IL23A, IL10, IL17C, JAK2, JAK2, MAPK3, MAPK14, MTPN, PDK1, RHOA, PDCD4, PPARG, VIM, YES1	Supervivencia más corta	[201]
miR-379	14q32	ABCC1, ABCC2, ATP8A2, ATP8A2, HGF, JUN, MSH3, MAS1, MDM4, MTPN, NF2, NR1I2, PDGFA	-	[201]

se muestran ejemplos de genes diana validados según la base de datos de Mirwalk[210] y los trabajos referenciados en la tabla; en el caso que se detalle más de una variante, se muestran los genes diana comunes a cada miARN. *** dos *loci* conocidos para el mismo miARN, uno localizado en 18q11 y el otro en 20q13.

Al contrario de lo que ocurre con los miARNs, el conocimiento sobre el funcionamiento y la relevancia de otros tipos de ARNs pequeños no codificantes en procesos neoplásicos, sigue siendo muy limitado. Dentro de esta categoría de moléculas, se incluyen los ARNs pequeños nucleolares (snoARNs) que como indica su nombre se localizan en el nucleolo y guían la maduración de los ARN ribosomales, el ARN de transferencia y los ARNs pequeños nucleares (snARNs) implicados en la regulación de la expresión génica mediante mecanismos de metilación (en el caso de la subclase de snoARNs llamada C/D box) y pseudo-uridulación (en el caso de la subclase H/ACA box) del ARN; también se incluyen los snARNs, que forman parte de la maquinaria que interviene en los procesos de *splicing* del pre-ARNm (conocida también como *spliceosoma*)[212]. Algunos

Tabla 6. miARNs cuyo nivel de expresión en ADCP varía según lo descrito en diferentes trabajos

miARN	Región cromosómica	Genes diana validados#	Significado clínico	Referencias bibliográficas
let-7d	9q22	ACTA2, BRCA1, BRCA2, CDKN2D, E2F, EGFR, FBXW7, IFNA2, IL6, IL10, KRAS, KIT, LAMP3, LIN28, MMP8, MYC, NRAS, S100A4, SLC27A4, TWIST1	-	[209]
let-7f-1-star	9q22	CCND1, COL1A1,COX8A, ELF4, GLI1, IL17A, IL2RA, IL6, KRAS, LAMP3, MCL, NKB1, NPM1, NRAS, SLC7A5, STAT1, TGFB1, TRIM17, TP53	-	[205, 209]
miR-30d-star	8q24	BCL6, GADPH, GNAI2, ITGB4, JUN, MET, NT5E, NOTCH2, RCAN2, SERPINE2, SHH, TGFB1, TGFR1, TMEM43, WDR68, WNT5A	Peor pronóstico	[205, 209]
miR-96	7q32	AKT , KRAS	-	[193]
miR-143	5q32	AKT1, CASP2, CDKN1A, COX8A, KRAS, IL23A, IL8, MYC, MAP4K1, NCALD, RHOD, RREB1, STAT6, SLC12A5, SIP1, TP53, VAMP8, ZEB1, ZEB2	-	[193, 201, 203, 209]
miR-145	5q32	CCND1, CFTR, CDH1, CDH11, CDKN1A, CTSC, EGF, EGFR, ERBB2, FSCN1 FSCN1, HOXA9, IGF1, JAK2, KRAS, KRT7, KLF4, KRT7, MAPK14, MUC1, MYC, RREB1, SOX2, SRF, STK7, STAT1, TP53, VEGFA	-	[193, 209]
miR-146a	5q34	BRCA1, BRCA2, EGFR, IRAK1, IKBA, IL1B, IL6, IL10, KIT, MTA2, MMP13, NFKB, NFKB1, NOTCH1, SMAD4, SNAI2, STAT3, TBX21, TNF	-	[193, 195, 205]
miR-200a, b, c	1p36; 1p36; 12p13	AKT1, CCND1, CCND2, CDH1, CDKN1B, EGF, EGFR, GLI1, GLI2, GLI3, JAG2, MAP3K10, SIP1, SNAI1, SNAI2, SNAI3, TWIST1, ZEB1	Peor/ mejor ^Ω pronóstico	[195, 203, 213]

se muestran ejemplos de genes diana validados según la base de datos de Mirwalk[210] y los trabajos referenciados en la tabla; para el caso de que se detalle más de una variante, se muestran los genes dianas comunes a cada microARN.; Ω ganancias en miR-200c.

trabajos han asociado la existencia de alteraciones en los snoARNs a procesos tumorogénicos en los que existiría un fallo en el procesamiento normal de los ARN ribosomales, y por ende, alteraciones en la traducción, lo cual significaría que estas moléculas tienen un papel relevante como reguladores de la expresión proteica[214]. En este sentido, se ha descrito una biogénesis ribosomal hiperactiva como característica de distintos tumores; esta alteración estaría directamente relacionada con un aumento de la expresión de diferentes snoARNs en muestras de cáncer de mama y de próstata[215] y con la sobreexpresión del *SNORA42* en cáncer de pulmón[216], alteraciones todas ellas relacionadas con mecanismos carcinogénicos mediados por la vía de señalización de *TP53*. A pesar de que el conocimiento actual sobre la importancia de los snoARN y snARN en el ADCP, sigue siendo muy limitado, sí se ha descrito que la expresión del snRNA U2 podría ser útil a la hora de discriminar entre muestras de suero/plasma de pacientes con ADCP o con carcinoma colorectal, y muestras de individuos sanos[32].

2.1.4. Alteraciones genéticas asociadas a ADCP familiar o hereditario

Hasta la fecha se han identificado un número relativamente importante de síndromes genéticos asociados a una mayor predisposición a padecer cáncer de páncreas, en distintas familias afectadas (Tabla 7). Entre estos síndromes se incluye el síndrome de Peutz-Jeghers, el síndrome de Lynch II, el síndrome de melanoma familiar atípico con molas múltiples, el síndrome hereditario de cáncer de mama y ovario, y el síndrome familiar de poliposis adenomatosa. Además, en este contexto se incluyen también algunos pacientes con pancreatitis hereditaria, ataxia telagiectasia y fibrosis quística, que presentan un riesgo incrementado de padecer ADCP[217]. Sin embargo, una proporción significativa de todos los casos de cáncer pancreático hereditario ocurren en familias que no presentan ninguno de estos síndromes[9]. En estos casos, el término de "cáncer de páncreas familiar" agrupa a aquellas familias con al menos dos miembros de primer grado afectos de ADCP[9, 11], constituyendo su estudio un contexto propicio para entender mejor algunas de las alteraciones genéticas de los ADCP y su significado[139, 157].

Tabla 7. Alteraciones genéticas asociadas a ADCP de origen familiar/hereditario.

Gen	Región cromosómica	Síndrome hereditario asociado	Tipo de alteración en ADCP familiar (%)	Referencias bibliográficas
BRCA1	17q21		M (<10%)	[11, 60]
FANCC	9q22	Cáncer de mama y ovario	M (<10%)	[11, 60]
FANCG	9p13	hereditario	M (<10%)	[11, 60]
PALB2	16p12		M (>3%)	[11, 60]
BRCA2	13q12	Cáncer de mama y ovario hereditario Cáncer colorectal no-polipósico heredado (Lynch II) Cáncer de páncreas familiar	} M (4-19%)	[12, 139, 151, 157]
N/C	4q32-q34	Cáncer de páncreas familiar		[218, 219]
ATM	11q23	Cáncer de páncreas familiar Ataxia-telagiectasia	M (<20%)	[151]
CDKN2A/ARF	9p21	Melanoma familiar atípico con molas múltiples (FAMMM) Lynch II	M (<20%)	[60]
hMLH1 hMSH2 hMSH6 hPMS2 hPMS1	3p21 2p21 2p16 7p22 2q31	Lynch II	M (<20%) M (<20%)	[11, 12, 60, 88] [60, 151] [11, 60, 151] [151] [9]
EP300 MAP2K4/MKK4	22q13	Cáncer de mama, colorectal y de páncreas hereditario	DH/M (4- <10%)	[12] [134, 139, 152]
PRSS1 SPINK1	7q34 5q32	Pancreatitis hereditaria	M (<1%) M (<20%)	[60, 151] [60, 151]
LKB1/STK11	19q13	Peutz-Jeghers	M (4-6%)	[11, 12, 60, 139]
VHL	3p25	Von Hippel-Lindau	SE (3%)	[60, 153]
APC	5q21	Poliposis adenomatosa familiar	M	[11]
TP53	17p13	Li-Fraumeni	M (30%)	[88, 157]

N/C: no conocido; DH: deleción homocigótica; M: mutación; SE: sobreexpresión; Todas las alteraciones conllevan pérdida de función del gen asociado, con excepción de las alteraciones del gen VHL que están asociadas a ganancia de función, y las de la región 4q32-34 cuyo significado sigue siendo incierto.

De entre todos los genes asociados a la ontogénesis/predisposición a ADCP familiar, las mutaciones germinales en los genes supresores de tumor *BRCA1* y *BRCA2* (codificados en los cromosomas 17q21 y 13q12, respectivamente), responsables del desarrollo de tumores en pacientes con síndrome de cáncer de mama y ovario familiar[9, 181] y de algunos casos de síndrome de Lynch II, han sido las más frecuentemente investigadas. Así, las mutaciones del gen *BRCA2*, se calcula estarían presentes en 4-19% de los pacientes con historia familiar de ADCP[139, 157, 220]; en estos pacientes la mutación suele asociarse a pérdida del otro alelo, alteración que suele representar un evento relativamente tardío en individuos que heredan una mutación germinal heterozigota[159] (Tabla 7).

Respecto a las mutaciones del gen *BRCA2*, merece destacar también que estas se observan en alrededor del 7% de los ADCP esporádicos[65] (Tabla 3). La expresión de *BRCA2* es necesaria para el mantenimiento de la estabilidad genómica ya que la proteína codificada por este gen interviene en la regulación de los procesos de reparación del ADN asociados a recombinación homóloga; así, el déficit de BRCA2 daría lugar a la acumulación de múltiples alteraciones genéticas y alteraciones cromosómicas que pueden terminar favoreciendo el desarrollo de tumores, incluidos tumores agresivos[66]. En este sentido, las mutaciones heredadas en *BRCA2* incrementan el riesgo de padecer cáncer de páncreas[65], sugiriendo que estas mutaciones podrían facilitar la progresión maligna de lesiones precursoras ya existentes en el tejido pancreático, más que desempeñar un papel clave en las fases iniciales de la ontogenia tumoral[221]. De acuerdo con esta hipótesis, con relativa frecuencia las mutaciones de *BRCA2* están ausentes en las lesiones pre-malignas tempranas, observándose fundamentalmente en las lesiones PanIN más avanzadas[60].

Otra anomalía asociada al ADCP familiar son las mutaciones germinales del gen *LKB1/STK11* (localizado en el cromosoma 19p13) característica de los pacientes con síndrome de Peutz-Jeghers[9]. Este gen tiene funciones relevantes en la polaridad celular y el metabolismo, observándose frecuentemente mutaciones somáticas del mismo en los IPMN, y menos frecuentemente, en las PanIN y en el ADCP esporádico (4-6% de los casos; Tabla 3 y Tabla 7)[11, 60, 80]; los datos recopilados sobre este gen sugieren pueda potencialmente tratarse de un gen supresor de tumor[180].

Además de las mutaciones ya mencionadas, se han descrito otras alteraciones genéticas asociadas a una mayor predisposición a padecer ADCP. Entre ellas se incluyen las mutaciones germinales con pérdida de función en los genes *SPINK1*, *APC*, *PRSS1*[11] y *ATM*[217], alteraciones en los genes reparadores del ADN *hMLH1*, *hMSH2*, *hMSH6*, *hPMS1* y *hPMS2*[9], así como alteraciones que afectan a un locus de susceptibilidad a ADCP localizado en la región cromosómica 4q32-34[9, 218, 219] (Tabla 7).

2.1.5. Vías de señalización celular alteradas en el ADCP

A pesar del incremento observado en las últimas décadas en el conocimiento de lo que podría denominarse el "paisaje genómico" del ADCP, su aplicación clínica continúa siendo un reto, ya que a día de hoy, no existen tratamientos capaces de actuar de forma directa sobre las alteraciones genéticas más frecuentes en estos tumores (p.ej. las mutaciones de *KRAS* o de *CDKN2A*)[222]. El conocimiento y comprensión de la interrelación existente entre las alteraciones que ocurren simultáneamente en células de ADCP, funcionalmente asociadas y organizadas en una o más vías de señalización celular[133], podría ser la clave para superar estas dificultades, permitiendo el diseño de drogas dirigidas de forma específica a vías de señalización celular concretas, desreguladas en el ADCP, más que a una o varias alteraciones genéticas específicas. En esta sección describimos de forma abreviada las alteraciones asociadas a las vías de señalización intracelular más frecuentemente alteradas y relevantes en el ADCP (Figura 5).

2.1.5.1. Factores de crecimiento celular

Varios estudios han demostrado el incremento en la expresión de diferentes factores de crecimiento en el ADCP, que podrían ser elementos clave en el desarrollo y progresión tumoral, y que actúan como señales extra- e intracelulares capaces de inducir crecimiento tumoral, migración celular y angiogénesis, principalmente a través de las vías de RAS/RAF/MEK/MAPK/ERK, PI3K/AKT, NF-κB y Notch[60, 79, 223] (Figura 5). Entre otros factores, en el ADCP se ha observado sobreexpresión de los receptores del factor de crecimiento epidérmico (EGFR, HER2 y HER3) y de sus ligandos EGF y TGF-α, proteínas que median una gran variedad de efectos sobre la célula tumoral y normal, incluyendo la proliferación y diferenciación, de manera dependiente de la interacción receptor-ligando específica que ocurra[79]. A pesar de la complejidad de los efectos biológicos de esta vía de señalización de EGF, en modelos murinos se ha observado que la inhibición farmacológica de esta vía inhibe el crecimiento celular *in vitro* y la carcinogénesis debido en parte, a la disminución de la angiogénesis y a la activación de los fibroblastos a través de un bucle autocrino[60, 79].

De forma similar, se ha descrito expresión de algunos otros miembros de esta familia en las células del ADCP como el receptor tirosin-quinasa MET y su ligando o el factor de crecimiento de hepatocito (HGF). La expresión de estos factores de crecimiento en células tumorales y en células del estroma tumoral de páncreas, se ha relacionado con la regulación de la movilidad, invasión y proliferación celular desde las lesiones pre-neoplásicas PanIN

hasta el ADCP[60]. Así mismo, la sobreexpresión de factores de crecimiento fibroblástico (FGF) y de la molécula de membrana glypican-I (molécula que media la interacción de FGF con su receptor), se ha descrito también con relativa frecuencia en tumores primarios de páncreas (60% de los casos), relacionándose su sobreexpresión con la proliferación, adhesión, motilidad celular y la angiogénesis (FGFR3b y FGFR3c), la capacidad de migración e invasión tumoral (FGF10 y FGFR2)[79], así como con procesos desmoplásicos (bFGF)[60]. Además, la expresión de FGF juega un importante papel en la modulación de la transición epitelial-mesenquimal (de sus siglas en inglés, EMT), de acuerdo también con sus funciones en la regulación de la diferenciación celular durante el desarrollo embrionario temprano del páncreas[79].

Por otra parte, una porción significativa de los ADCP sobreexpresan el receptor del factor de crecimiento de tipo-insulina IGF-IR y su ligando IGF-I tanto en las células tumorales como en el estroma. La activación de esta vía de señalización está asociada a la regulación del crecimiento[224] bajo un mecanismo mediado por niveles elevados de insulina en el páncreas exocrino, lo que proporciona a las células tumorales una ventaja en el crecimiento[224]; por otra parte, los niveles de expresión de IGF-IR y su ligando están asociados además a la supervivencia de las células tumorales tanto *in vitro* como *in vivo*[60].

Por último, de forma recurrente se ha descrito la existencia de una producción aumentada de VEGF que mediante su unión a receptores específicos (VEGFR-1 y VEGFR-2), promueve la proliferación de células endoteliales y por tanto, la angiogénesis. En el ADCP, la expresión de VEGF se correlaciona además con una densidad microvascular elevada, la progresión de la enfermedad, un mayor riesgo de diseminación metastásica y peor pronóstico[223]; especial mención en relación con estos efectos merece VEGF-C, factor de crecimiento que se ha relacionado con la invasión de ganglios linfáticos y el desarrollo de metastásis[60].

Otros factores de crecimiento que se han asociado con la patogénesis del ADCP incluyen: i) los factores de crecimiento derivados de plaquetas (PDGFα y PDGFβ) y sus receptores (PDGFR), que estimulan la angiogénesis y contribuyen a la formación del estroma tumoral[224] y; ii) las proteínas morfogénicas del hueso (BMPs) y sus receptores (BMPR), que estarían asociados con el desarrollo del ADCP a través de la vía de señalización de TGF-β[79].

2.1.5.2. Vías de señalización efectoras de KRAS

Las vías de señalización principales y mejor estudiadas en el ADCP son las asociadas a *KRAS*. *KRAS* interviene en una gran variedad de procesos celulares incluyendo

la proliferación, diferenciación, supervivencia, motilidad, invasión y remodelamiento del citoesqueleto[60].

En el ADCP, existen dos mecanismos principales de activación de KRAS: a través de vías de señalización que tienen su origen en receptores de factores de crecimiento (p.ej. por sobreexpresión y/o mutación activadora de EGFR) o mediante mutaciones activadoras de KRAS, presentes en más de 90% de los ADCP (Tabla 2)[225]. Estas últimas con frecuencia ocurren en regiones cercanas al dominio catalítico de GTP del gen y resultan en una activación constitutiva de KRAS, evento esencial para el inicio, progresión y mantenimiento de estos tumores[226], aunque este no es el único gen implicado en el desarrollo de la enfermedad[227]. La expresión aberrante y constitutiva de la vía de señalización de KRAS provoca así, un aumento en la expresión de los ligandos de EGFR -particularmente de TGFα- estableciendo un bucle autocrino/paracrino que resulta en la auto-estimulación de las células tumorales mediante señales proliferativas y una estimulación continua del crecimiento celular[227]. Como resultado final, se establece una estimulación constitutiva de RAS con activación encadenada de diferentes vías de señalización[227] como la vía de las proteín quinasas activadas por mitógeno o MAPKs (RAS/RAF/MEK/MAPK/ERK), la del fosfatidilinositol-3-quinasa o PI3K (PI3K/AKT/mTOR), la vía de NF-κB, la de las GTPasas pequeñas RAL (RalGDS/p38MAPK), RAC, RHO, RASSF1, NF1, p120GAP, TIAM1 y la de las señales oncogénicas controladas por la fosfolipasa C (PLC)[225, 227]; de todas ellas, las tres primeras son las mejor caracterizadas.

2.1.5.2.1. Vía de RAS/RAF/MEK/MAPK/ERK.

RAS esta constituifo por una familia de proteínas intracelulares con actividad serinatreonina-quinasa que habitualmente son activadas por estímulos extracelulares (p.ej. señales mitogénicas), y que en última instancia dan lugar a la fosforilación/activación de varios factores nucleares de transcripción, promoviendo así la progresión en el ciclo celular y la división celular[78]. En esta secuencia, la proteína KRAS activa la familia de quinasas RAF (CRAF1, ARAF y BRAF) mediante una secuencia compleja de eventos que incluyen fosforilaciones e interacciones proteína—proteína y proteína—lipidos, que desembocan en la activación secuencial de MEK1/2 (MAPKK) y de las MAPKs efectoras finales ERK1 y ERK2[227]. De acuerdo con esto, la inhibición farmacológica y genética de MAPK mediante la inhibición de MEK, da lugar a una disminución de la proliferación celular y una parada del ciclo celular, en líneas de ADCP y modelos *in vivo* de la enfermedad[60].

RAS/RAF/MEK/MAPK/ERK es una vía de señalización compleja, regulada por varios bucles de retroalimentación que se encuentra vinculada con otras vías de señalización como la de PI3K/AKT/mTOR, JNK, PKC, PKA, NF-κB, WNT/β-catenina, Hedgehog, Notch y

SMAD. Además, también presenta efectos funcionales redundantes respecto a las de otras vías de señalización, aspecto que tiene importantes implicaciones clínicas, incluidas las relacionadas con la resistencia del ADCP a fármacos inhibidores de RAS-ERK[225]. Esta complejidad molecular se refleja también en los mecanismos de regulación de la vía RAS/RAF/MEK/MAPK/ERK. Así, a modo de ejemplo, cabe mencionar la regulación negativa que ejerce sobre esta vía el miARN let-7, cuya inhibición promueve la proliferación celular a distintos niveles, mediante la represión de la expresión de KRAS asociada a activación directa de MAPK[191]. Como consecuencia de la activación de la vía de RAS en el ADCP, se ve alterada la expresión de varias moléculas relacionadas con diferentes procesos celulares relevantes. Así, la activación de esta vía puede inducir expresión de marcadores de senescencia (p16, p15 y p21) generando una parada del ciclo celular en fase G1; a su vez la vía de RAS coopera con la vía PI3K/AKT/mTOR para la promoción de la progresión del ciclo celular mediante la inducción de cilcina D1 (CCND1) y la represión de p27KIP1, y promueve la supervivencia de células tumorales mediante la inhibición de proteínas proapoptóticas (p.ej. las proteínas BIM y BAD) y la inducción de expresión de proteínas antiapoptoticas (BCL2, BCL-XL y MCL-1). Además, la vía de RAS/RAF/MEK/MAPK/ERK contribuye a que las células afectadas puedan evadir los mecanismos de senescencia mediante la activación de la subunidad catalítica de la telomerasa (hTERT), lo cual antagoniza el acortamiento de los telómeros y contrarresta los efectos de la detención del ciclo celular o la muerte celular en respuesta al daño del ADN mediado por p53 y p21. A través de la regulación de la motilidad celular mediada por la vía RHO/RAC-actina, esta vía induce también la invasión y migración celular, asociadas al remodelamiento del micromedioambiente y de las interacciones entre las células tumorales y las células estromales, endoteliales e inmunes presentes en el mismo, a cargo de las MMPs. Finalmente, esta vía está implicada también en la EMT y el mantenimiento del fenotipo mesenquimal en las células de ADCP (a través de la vía de TGF-β-SMAD), activando la expresión de genes mesenquimales (SNAIL, SLUG, TWIST y ZEB) e inhibiendo la expresión de genes epiteliales[225].

2.1.5.2.2. Vía de PI3K/AKT/mTOR

En el ADCP, la activación de KRAS va habitualmente asociada también a activación de la vía de PI3K cuya señalización, junto con otras señales de supervivencia que actúan por debajo de RAS (factores de crecimiento, citoquinas y hormonas), generan señales antiapoptóticas y de crecimiento celular[227], implicadas en la proliferación y la regulación del tamaño y la supervivencia de células tumorales[60, 78].

PI3Ks está constituida por una familia de enzimas transmisoras de señales intracelulares que fosforilan fosfolipidos (inositol). La inducción de IPI3K y de PDK1 resulta en la fosoforilación/activación de AKT/PKB y posteriormente, de la proteín quinasa serinatreonina de mamífero diana de rapamicina (mTOR), p70^{S6K} y las GTPasas RAC, elementos claves a la hora de promover los efectos de esta vía de señalización sobre el crecimiento celular[60]. Como efecto final derivado de la activación de AKT/PKB, la vía de PI3K/AKT/mTOR regula la supervivencia celular a través de la regulación de la expresión de proteínas asociadas a la apoptosis como las proteínas BCL2, BAD, BCL-XL y la caspasa 9 (CASP9)[227, 228], y de la actividad de factores de transcripción como FOXO, NF-kB o CMYC[228]. Por otra parte, mTOR proporciona a las células tumorales una ventaja proliferativa mediante la promoción de la síntesis proteica[227], la formación de metástasis[229] y la autorenovación de las CSC del ADCP.

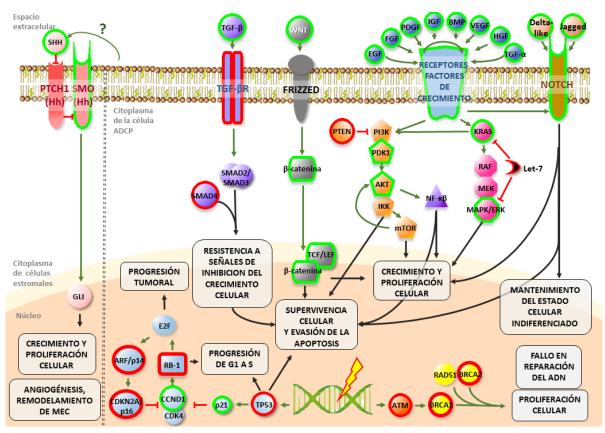


Figura 5. Diagrama esquemático ilustrando los elementos clave de algunas de las vías de señalización celular más relevantes en la patogénesis de los ADCP. Las vías de RAS-RAF-MEK-MAPK/ERK, PI3K-AKT/mTOR, Hedgehog, Notch, Wingless(WNT)/β-catenina y TGF-β están representadas en la parte superior del esquema, mientras que las vías del ciclo celular relacionadas con *CDKN2A/ARF* y p53, así como con los mecanismos de reparación del ADN asociados a los genes *ATM*, *BRCA1* y *BRCA2* están representadas en la parte inferior del esquema. Las moléculas remarcadas en rojo se corresponden con los genes con presentan pérdida de función en los ADCP, mientras que aquellas en verde representan los genes con ganancia de función en estos tumores; las flechas verdes indican activación mientras que las líneas rojas con extremo romo indican inhibición. MEC: matriz extracelular.

Al contrario de lo que ocurre con KRAS, las mutaciones activadoras de PI3K son poco frecuentes en el ADCP (Tabla 3), de igual forma que las deleciones y mutaciones en su mayor antagonista, el gen supresor de tumor PTEN. Sin embargo, se ha demostrado de forma reiterada la activación de esta vía en el ADCP, observándose una expresión anormalmente elevada de AKT en cerca del 60% de los tumores primarios y en la mayoría de las líneas celulares de ADCP[227], asociada a pérdida de expresión de PTEN en cerca de 75% de estos tumores [228]. Además, en estudios realizados en varios modelos in vivo, la pérdida de función de PTEN, con la consiguiente activación de la vía de la PI3K, se ha observado induce un incremento de la tasa de formación de estos tumores[226]. De forma similar, la inactivación genética de PDK1 en modelos murinos de ADCP portadores de mutaciones de KRAS, bloquea completamente el desarrollo de alteraciones asociadas al ADCP, como la metaplasia acinar-ductal pancreática, el desarrollo de lesiones PanIN, y la aparición de ADCP propiamente dicho[226]; estos hallazgos indican que la vía de PI3K/PDK1, además de ser necesaria para la formación del ADCP, acelera el crecimiento de estos tumores. En este sentido también, Huan et al.[230] han encontrado que la metaplasia acinar-ductal pancreática puede inducirse específicamente en ratas expuestas a factores de predisposición a ADCP como la ingesta de alcohol y la inflamación pancreática, a través de la vía PI3K/AKT/IKK, mediante el aumento de los niveles de expresión de TNF-α y RANTES.

2.1.5.2.3. Vía de NF-κB/INKK

A diferencia del tejido pancreático normal, la mayoría de los tumores (>70%) y líneas celulares de ADCP, muestran una activación constitutiva de la vía de señalización de la familia de factores de transcripción nuclear NF-κB[60, 231]. Diferentes estudios han analizado *in vitro* la importancia de NF-κB en el desarrollo del tumor primario y en el proceso de metastátización del ADCP, en relación con su papel en el control de la inflamación, el ciclo celular, la apoptosis o la EMT[228].

La activación de NF-κB -RelA(p65), RelB, c-Rel, p50/p105 (NF-κB1) y p52/p100 (NF-κB2)- habitualmente está asociada a fosforilación de la proteín quinasa IKK, y mediante este mecanismo, la ubiquitinación y degradación del inhibidor de NF-κB Iκβ, en el citoplasma; como consecuencia, se libera el dímero p50/p65 que se transloca al núcleo donde activa la transcripción de genes diana con secuencias de ADN de elementos de respuesta a NF-κB en sus promotores[228]. Así, en el ADCP la expresión de los genes diana *BCL-XL* y *XIAP* promueve crecimiento, invasión y angiogénesis a nivel tumoral, y mediante la expresión de TRAIL, contribuye a la resistencia del tumor a la necrosis; a su vez, la expresión de *MMP-9*, *VEGF* y *SHH* inducen resistencia a la apoptosis por parte de las células tumorales[231]. En este sentido, aunque sigue sin conocerse con precisión el modo como ocurre la activación

de NF-κB, se postula que el mecanismo desencadenante de la activación de esta vía estaría relacionado con la activación de la vía RAS, ya que la mayoría de las líneas celulares de ADCP con alteraciones de RAS presentan activación del complejo IKK[231]. Por otra parte, hoy se conoce también que existen otros mecanismos que contribuyen a la estimulación de NF-κB en el ADCP, entre los que se incluyen la pérdida de *PTEN* y la activación de EGFR, VAV, y las vías de señalización de Notch y Hedgehog (Hh)[228, 231]. Además, su activación también está asociada a la respuesta al estrés (p.ej. a la inflamación pancreática), a citoquinas pro-inflamatorias (interleucinas) provenientes tanto de células inmunes como de células del estroma tumoral. De acuerdo con estos hallazgos, hoy se conoce que varias citoquinas actúan como inductores de la vía de NF-κB en células de ADCP, a la vez que sus genes son también diana de NF-κB, generándose así un bucle de amplificación autocrino/paracrino que mantiene la activación constitutiva de la vía NF-κB[227], apoyando la implicación de esta vía en la transformación celular asociada a inflamación pancreática[191].

2.1.5.3. Vías de señalización implicadas en el desarrollo embrionario

La evidencia de que los programas moleculares del desarrollo embrionario del páncreas Hedgehog, Notch y wingless (WNT)/β-catenina, emergen de nuevo durante el desarrollo de ADCP, asienta en dos hallazgos importantes. Por un lado, los derivados de los estudios de los perfiles de expresión génica (de sus siglas en inglés, GEP) de las células tumorales del ADCP que demuestran una reactivación de los elementos clave de estas vías como son los genes PDX, sonic hedgehog (SHH), SMO y β-catenina. Estos genes se encuentran inactivos en tejido pancreático adulto -o al menos están limitados a un compartimento celular específico minoritario- reactivándose sin embargo, de forma gradual, desde las lesiones PanINs de bajo grado hasta las lesiones pre-malignas más avanzadas, el carcinoma in situ y el ADCP invasivo[60, 159, 165, 232]. Además, su activación también puede estar reprimida durante gran parte del desarrollo pancreático (como en el caso de los genes/vías de señalización de Notch), favoreciendo así la diferenciación celular, activándose en el momento que se desarrollan las lesiones PanIN y el ADCP[60, 165]. La segunda evidencia proviene de datos funcionales que apoyarían la importancia de la reactivación de programas embrionarios en la patogénesis del ADCP, por ejemplo, mediante el bloqueo farmacológico de la señalización de SHH con ciclopamina, agente que induce apoptosis de células de ADCP in vitro y pérdida de tumorogenicidad en ensayos con xenoinjertos[60]. Todo ello sugiere que estas vías estarían implicadas en la iniciación y el mantenimiento del ADCP.

2.1.5.3.1. Vía de Hedgehog (Hh)

Normalmente, la vía de señalización de Hedgehog (Hh) está regulada negativamente por el gen supresor de tumor *PTCH1* que inactiva la proteína Smoothed (SMO). Cuando los ligandos de Hh (entre ellos SHH) se unen a PTCH1, contrarrestan la inhibición de SMO e inician una cascada de señales que resulta en la activación de los factores de transcripción GLI (GLI1 y GLI2), con la consiguiente transcripción de genes implicados en el crecimiento y proliferación celular, angiogénesis, remodelamiento de la matriz extracelular y la homeostasis celular[60], como *CCDN1*, *NMYC*, p21, *BCL2*, las proteínas WNT o los factores de transcripción de la familia de Forkhead[232, 233]. Por lo tanto, esta ruta posee un papel crucial en la regulación, crecimiento y organización de los patrones histológicos de diferentes órganos, particularmente de los gastrointestinales, incluyendo el páncreas[78, 133].

Mientras la inhibición de la vía Hh es crítica para el desarrollo completo del páncreas, su activación sostenida es un elemento clave en la patogénesis del ADCP[79]. Diferentes estudios indican que la activación oncogénica de KRAS contribuiría, al menos en parte, a la activación de la vía Hh en las fases iniciales del ADCP[234], a través de la vía de RAS y activando directamente sobre los efectores GLI[140]. Además, se ha demostrado que las proteínas GLI actúan en la vía de KRAS a nivel de los efectores RAF-MAPK, propiciando la proliferación y la viabilidad de las células del ADCP, mecanismo que está regulado de forma independiente de SMO[79] y directamente a través de la vía de TGF-β[233]. También se ha observado que el ADCP se caracteriza por mostrar expresión aberrante de los ligandos del regulador PTCH1 (presente en 70-75% de los ADCP), detectable durante todas las fases de la progresión tumoral. A pesar de esta evidencia, algunos estudios en modelos de ratón con ADCP, muestran que las células epiteliales del ADCP no responderían directamente a los ligandos de Hh y que incluso serían refractarias a su inhibición, por lo que para su activación existiría una dependencia del micromedioambiente tumoral, y especialmente de las células pancreáticas estrelladas y de los fibroblastos asociados al tumor[233]. De acuerdo con estos resultados, se plantea que de los ligandos de Hh mediarían la tumorogénesis de manera paracrina, de modo que las células tumorales ductales secretarían SHH para inducir los genes diana promotores de tumor en el estroma adyacente[235], donde los fibroblastos asociados al tumor expresan niveles elevados de SMO asociados a una mayor actividad de GLI[224]. Por otra parte, algunos autores sugieren que la secreción de los ligandos de esta vía por las células del ADCP constituiría un mecanismo de estimulación de las CSCs pancreáticas, facilitando así también la formación de metástasis[236]. De acuerdo con toda esta evidencia, se ha comprobado que la inhibición de la vía Hh no solo aumenta la supervivencia y reduce la formación de metástasis en modelos murinos de ADCP tratados

con gemcitabina, sino que además, reduce también la formación de lesiones desmoplásicas e incrementa la neovascularización del tumor[233, 234].

2.1.5.3.2. Vía de Notch

Entre las funciones de la vía de señalización de Notch, se incluyen la promoción de la auto-renovación de los progenitores pancreáticos, el mantenimiento de las poblaciones de células madre, el control del destino de las células durante la embriogénesis y la regulación de la proliferación y la apoptosis celular[237, 238].

En esta vía, a menudo activada a través de la vía de EGFR[231], las proteínas ligando (Delta-like y Jagged) se unen a la porción extracelular de las proteínas transmembranas Notch (Notch1-4) induciendo una rotura proteolítica de las mismas con la subsecuente liberación de su porción intracelular; este fragmento intracelular se transloca al núcleo donde induce la expresión de reguladores transcripcionales de la familia HES, que dirigen el destino y la proliferación celular durante la embriogénesis[78, 133]. Además de este efecto, también modulan la actividad de algunos reguladores del ciclo celular como p21/Waf1/Cip1, y de HER2, y promueven la activación de las vías de señalización de NF-κB y PI3K[231]. Mediante este mecanismo, Notch regula el destino de las células en el desarrollo embrionario normal del páncreas, aunque su función principal parece ser el mantenimiento de las células pancreáticas progenitoras en un estado indiferenciado[79]. La inactivación de esta vía en las células progenitoras pancreáticas conlleva una diferenciación acelerada y prematura a células pancreáticas endocrinas, mientras que la sobreexpresión de la misma durante el desarrollo detiene el programa de diferenciación tanto endocrino como exocrino y mantiene las células pancreáticas en un estado indiferenciado[237].

De acuerdo con estos hallazgos, esta vía se encuentra activa durante la progresión de lesiones PanIN a ADCP. En este sentido, varios estudios *in vitro* sugieren que Notch presenta funciones oncogénicas[237] relacionadas con la promoción del crecimiento de las células del ADCP, a través de una señalización autocrina. La inhibición genética o farmacológica de la vía en células ductales del ADCP, conlleva una reducción de la proliferación, la capacidad de invasión celular y un incremento de la apoptosis, mientras que su activación induce un fenotipo de tipo ductal más indiferenciado[79]. Por el contrario, estudios recientes en modelos de ratón han demostrado que Notch tendría además una función supresora de tumor, en el contexto del desarrollo de lesiones PanIN; en estos estudios, la expresión de Notch1 en ratones portadores de mutaciones de *KRAS*, inhibe la formación de lesiones PanIN, sugiriendo la posibilidad de que Nocth pueda actuar como inhibidor del desarrollo de lesiones PanIN tempranas, a la vez que actuaría como promotor

de su progresión en los estadios más avanzados, una vez que estas lesiones se hayan establecido[237].

2.1.5.3.3. Vía de WNT

De la misma manera que las rutas de señalización de Hh y Notch, la vía de WNT es una ruta de señalización requerida para la proliferación, morfogénesis y diferenciación de varios órganos. La traducción de señales de la misma constituye un componente integral de la organogénesis pancreática promoviendo la expansión y el desarrollo del páncreas exocrino. A su vez, esta vía ha sido identificada como una de las vías de señalización más comúnmente alteradas en el ADCP[239].

Las señales de esta cascada molecular se desencadena debido a una amplia variedad de proteínas WNT traducidas a través de una vía canónica (dependiente de βcatenina) y/o una vía no-canónica (independiente de β-catenina), con el objetivo de controlar diferentes funciones biológicas como el destino de las células durante el desarrollo, el control de la polaridad celular y el movimiento celular[240]. La vía canónica de WNT/βcatenina está caracterizada por un acumulo a nivel nuclear de β-catenina no fosforilada; el mecanismo molecular por el que funciona incluye la unión de los ligandos de WNT a los receptores de la familia de proteínas Frizzled y a sus co-receptores. La unión de estos ligandos da lugar a la inactivación de un complejo citoplásmático de proteínas que incluye las proteínas APC y axina, y que promueve la degradación de β-catenina en el proteosoma, proteína que se acumula en el citoplasma y luego en el núcleo, donde finalmente se une a los factores TCF/LEF[233] para incrementar la expresión de los genes diana de la vía (p. ei. CCND1 y CMYC)[240]. Por el contrario, las señales de la vía no-canónica de WNT son transducidas por un mecanismo completamente distinto, a través de una vía de señalización dependiente de DVL o de una vía dependiente de calcio, propiciando la sobreexpresión de varias proteínas G efectoras como RHOA, RHOU, RAC y CDC42, y de proteínas quinasas de la familia c-jun con un grupo amino terminal (JNK)[239].

La vía de WNT es necesaria para el desarrollo normal del páncreas. Sin embargo, quizás más que la propia vía de señalización, serían importantes en el desarrollo embrionario, los patrones de expresión espacio-temporal de los distintos miembros de la familia WNT, que serían los que finalmente dictarían el resultado de la señalización. Así, la activación de la vía canónica de WNT/β-catenina da lugar a diferentes efectos durante el desarrollo del páncreas, dependiendo de la localización y el momento en que ocurra[79]. Así, durante la embriogénesis temprana del páncreas, la deleción de β-catenina en las células epiteliales del páncreas, induce la aparición de un fenotipo exocrino y endocrino, mientras que más adelante en el desarrollo, esta misma alteración produce la pérdida

completa del tejido exocrino aunque mantiene la presencia de células progenitoras. La activación constitutiva de WNT en células pancreáticas tempranas resulta en la agenesia (falta de desarrollo) del órgano, mientras que la estabilización postnatal de β-catenina en células exocrinas progenitoras induce un incremento de la masa pancreática con una representación equitativa de todos los linajes celulares[79]. De la misma manera, el papel funcional de WNT/β-catenina durante la iniciación del ADCP parece ser variable, ya que estudios en modelos murinos en los que se estabiliza/sobreexpresa β-catenina en distintos compartimentos celulares del páncreas y durante diferentes momentos del desarrollo embrionario del ratón, desencadenan efectos diferentes entre los que se incluye la aparición de agenesia exocrina, la formación de cistos, el incremento de la proliferación acinar, la aparición de masas pancreáticas asociadas a una proliferación exocrina, o incluso, la formación de grandes tumores benignos morfológica y molecularmente distintos a del ADCP; sin embargo, en ningún caso se ha observado el desarrollo y formación de ADCP. Por lo tanto, la β-catenina tendría la capacidad de activar la proliferación del páncreas exocrino, mientras que, si bien puede inducir carcinogénesis pancreática, su sobreexpresión aislada no es suficiente para iniciarla[233]. De acuerdo con esta hipótesis, diferentes estudios in vitro muestran que la inhibición de la vía de WNT inhibiría la proliferación celular, induciría apoptosis y retrasaría la formación de lesiones PanIN, efectos que estarían modulados por las proteínas SMADs, la activación de los factores GLI de la vía Hh y por la vía Notch[79, 240].

Finalmente, mientras que la vía canónica de WNT (WNT/β-catenina) está firmemente establecida en el ADCP, el papel biológico y el significado clínico de la vía no-canónica está aún por esclarecer. En este sentido, aunque existen algunas discrepancias respecto a la expresión de los ligandos de la vía no canónica de WNT en el ADCP, algunos estudios sugieren que la sobreexpresión de WNT5a tendría funciones paracrinas sobre el estroma del ADCP[239], mientras que otro de los ligandos de esta vía, WNT2, estaría asociado con el potencial metastásico de estos tumores[240].

2.1.5.4. Vía de señalización de TGF-\(\beta \)

TGF-β es una citoquina anti-inflamatoria involucrada en el crecimiento, la apoptosis, y la diferenciación celular[241]. Normalmente, TGF-β actúa mediante una cascada de fosforilaciones que termina con la formación de un complejo heterodimérico activo constituido por las proteínas SMAD2, SMAD3 y SMAD4. Este complejo se transloca al núcleo y regula la transcripción de varios genes con efectos supresores sobre la carcinogénesis, inhibiendo el crecimiento celular y la promoción de la apoptosis[242].

Durante las etapas tempranas del desarrollo del ADCP y las lesiones pre-neoplásicas PanIN de bajo grado, esta vía se mantiene reprimida; sin embargo, en los estadios más avanzados, las células no responden a los efectos inhibidores del crecimiento debido a la presencia de mutaciones en las proteínas SMADs o la expresión de inhibidores de la señalización de TGF-β, y por tanto, la vía de TGF-β (bloqueada) actúa como un factor promotor de tumor[241].

La importancia de la vía de señalización de TGF-β en el ADCP radica en que las alteraciones descritas de las proteínas SMAD y/o los defectos referidos en los receptores de TGF-β, están presentes en cerca de 90% de los tumores primarios y/o en líneas celulares de ADCP (Tabla 3)[60]. En general, el efecto de estas alteraciones es el silenciamiento de la vía de TGF-β, lo cual establece la inhibición de la proliferación y el mantenimiento del fenotipo epitelial de las células ductales del ADCP[79]. Específicamente, la pérdida de función de SMAD4 que altera la cascada de señalización de TGF-\(\beta\), está presente en los estadios avanzados de las lesiones PanIN3 e impide a las células tumorales responder correctamente a la señal inhibitoria del crecimiento de TGF-β, asociándose por lo tanto con la progresión e invasión tumoral. Paradójicamente, también se ha encontrado sobreexpresión de isoformas de TGF-β en el ADCP, sugiriendo que la hiperactivación de la vía también podría promover -más que antagonizar- el crecimiento tumoral[231]. En este sentido, Zang et al.[242] han encontrado que junto con la inhibición del crecimiento celular que se produce con la activación de la vía de TGF-β en células de ADCP (a través de la fosforilación de SMAD3), simultáneamente se da la activación de otro miembro de la familia (SMAD7) que se transloca al núcleo y retiene la proteína β-catenina en el núcleo, no solo atenuando el efecto inhibidor del crecimiento, sino que activando también VEGFA, factor que promueve la vascularización tumoral. Esto estaría de acuerdo con la noción de que TGF-β tiene un efecto paracrino como promotor tumoral, a través de la inducción de cambios en el estroma mediante la alteración de los componentes de la matriz extracelular, y la estimulación de la angiogénesis y la inmunosupresión[223, 231]. En este sentido, se ha observado que la expresión de TGF-β aumenta en el ADCP durante la progresión, a la vez que lo hace en el estroma asociado al tumor[60]. De esta manera, la pérdida de función de SMAD4 en las células del ADCP, podría tener un papel clave en la modulación de la interacción del tumor con el micromedioambiente, más relevante incluso que su efecto sobre el control del crecimiento celular tumoral per se[60].

2.1.5.5. Vías de señalización de CDKN2A/ARF y TP53

Actualmente se considera que en el ADCP, los principales genes reguladores del ciclo celular son los genes supresores de tumor CDKN2A(INKA4)/p16, ARF/p14 y TP53. En

condiciones normales, cuando la célula se acerca al punto de control de la transición G1-S en el ciclo celular, esta puede, o bien progresar hacia la fase de síntesis de ADN y la división celular, o mantenerse en un estado quiescente. En estas condiciones, la activación de la quinasa dependiente de ciclina CDK4 (mediante su unión a la ciclina CCDN1) permite la progresión de la célula más allá del punto de restricción, a través de la fosforilación/activación de la proteína del retinoblastoma (RB1) y la subsecuente liberación del factor de transcripción E2F secuestrado por RB1 o fosforilado en células en reposo; E2F desencadena la transcripción de genes necesarios para la progresión de la célula de la fase G1 a la fase S del ciclo celular[157]. Por el contrario, cuando el inhibidor de la quinasa dependiente de ciclina p16^{CDKN2A} se une a CDK4, previene la interacción entre CDK4 y CCND1 e induce la parada del ciclo celular en fase G1. En el primer caso, la liberación del factor E2F -mediada por la fosforilación de RB1- causa a su vez, la transcripción del gen ARF que promueve la activación de la fosfoproteína nuclear de unión al ADN, p53. Tras su activación, p53 actúa retroalimentando la inhibición del punto de control G1 a nivel de CDKN2A/RB, evitando así la progresión de la célula desde la fase G1 a S y, por lo tanto, la proliferación celular; además, p53 también mantiene la parada en el siguiente punto de control del ciclo celular, entre las fases G2 y M. p53 se activa además en respuesta al estrés celular (p.ej. daño del ADN) induciendo así, la parada del ciclo celular, facilitando la reparación del ADN, a la vez que propicia la senescencia y apoptosis celular e induce cambios en el metabolismo celular a través del estímulo de la transcripción de otras proteínas reguladoras como el inductor de la apoptosis p21[157]. De acuerdo con esto, la respuesta de p53 al estrés es crucial en la prevención de la formación de tumores, al permitir por un lado, la reparación del daño en el ADN antes del inicio de la fase de síntesis de ADN y de la entrada en mitosis, y propiciando por otra parte, la muerte de células dañadas.

La alteración de estas vías de señalización en el ADCP frecuentemente está asociada a la pérdida de expresión/función de las proteínas p16^{CDKN2A}, p14^{ARF} y p53, y a un incremento de la proliferación celular y la progresión tumoral[60]. En estos tumores, las pérdidas/mutaciones de los genes supresores de tumor *CDKN2A/ARF* ocurren ya en lesiones pre-malignas de bajo grado, estando presentes en más del 90% de los ADCP (Tabla 2); funcionalmente, conllevan la pérdida del efecto represor de *RB1* sobre la entrada en fase S. Por otro lado, la inactivación del gen *TP53* constituye otra alteración molecular relativamente frecuente en el ADCP (27% a 95% de los casos; Tabla 2), perdiendo además con ella las células tumorales, los mecanismos de control de la reparación del daño celular, lo cual favorece la acumulación de alteraciones genéticas y por ende, la generación de una importante inestabilidad genómica característica del ADCP[60].

De acuerdo con todo lo anterior, se ha observado pérdida de expresión de p16^{CDKN2A} in situ, ya desde las lesiones PanIN de bajo grado, asociándose estas pérdidas al acortamiento de telómeros[60], lo cual propicia además, la aparición de divisiones asimétricas asociadas a inestabilidad genómica. Finalmente, merece destacar que hoy se reconoce que las alteraciones de *CDKN2A* podría tener también un importante papel en la progresión del ADCP, ya que en modelos murinos se ha visto que las mutaciones de *CDKN2A* cooperan con las mutaciones de *KRAS* en el desarrollo del ADCP, e incluso aceleran la progresión tumoral, especialmente cuando ambos se asocian a mutaciones de *TP53*[60], incrementando el potencial oncogénico de las mutaciones de *KRAS*[171].

2.1.5.6. Los genes BRCA y ATM y la reparación de ADN

Los mecanismos de reparación de las lesiones del ADN son cruciales a la hora de mantener la integridad genómica de las células, de modo que normalmente, cuando las células no logran reparar el daño, entran en apoptosis y previenen su replicación anormal. Dentro de los mecanismos moleculares de reparación de ADN, son especialmente relevantes en el ADCP, los mecanismos de recombinación homóloga, asociados a las alteraciones de los genes *BRCA1*, *BRCA2* y de la proteína de unión a BRCA, *PALB2*, ya que en estos tumores, estas alteraciones se asocian a oncogénesis, susceptibilidad de transformación maligna y resistencia a la quimioterapia y/o radioterapia[243, 244]. Los mecanismos mediante los cuales estas moléculas responden a las roturas de la doble cadena del ADN incluyen, entre otros, la fosforilación de BRCA1 mediada por el gen supresor de tumor *ATM*. La fosforilación de BRCA1 conlleva la formación de un complejo multiproteico activo que incluye BRCA1 fosforilado, BRCA2 y la proteína RAD51, complejo que se une posteriormente al ADN en el lugar donde se reconoce existe daño y donde comienza la reparación del mismo. [221, 245].

En las células del ADCP, la inactivación y/o mutación de *BRCA2* -presentes en un 7% de los ADCP esporádicos y en 7-19% de los casos familiares o hereditarios-generalmente están asociados con la producción de una proteína mutada más corta que no interacciona con RAD51; este defecto tiene como consecuencia, el acumulo de alteraciones genéticas pro-tumorales, poniendo además en peligro el mantenimiento de la estabilidad genómica de las células del ADCP[243]. De forma similar, las mutaciones/pérdida de función de los genes *ATM* (>20% de los casos de ADCP familiares), *BRCA1* (50% de los casos de ADCP esporádicos) y *PALB1*, tienen un efecto parecido sobre esta vía de señalización y reparación del ADN (Tabla 3 y Tabla 7). Sin embargo, como ya se ha comentado anteriormente, *BRCA2* no funciona como un gen indispensable a la hora de prevenir la transformación neoplásica, sino que, para que una célula pancreática sufra un proceso de

transformación tumoral, esta necesita haber inactivado procesos como la senescencia y apoptosis celular, mediante la alteración de la regulación de las vías de respuesta al daño celular, para que el daño genético pueda ser tolerado por la célula en transformación, función que estaría asociada al gen *TP53* y su pérdida de función en el ADCP[60, 221].

2.2. Modelos genéticos de progresión tumoral

Desde hace tiempo se considera que existe una relación ontogénica entre las distintas lesiones pre-malignas descritas en apartados anteriores de esta introducción, y el ADCP. Dicha asociación viene avalada por la mayor incidencia de dichas lesiones premalignas en las estructuras ductales alteradas del tejido pancreático residual de pacientes con ADCP, su distribución espacial que se asemeja a la de los tumores malignos, y la naturaleza gradual que desde el punto de vista histológico muestran las alteraciones morfológicas respecto al aspecto de los ductos normales, sugiriendo pueden representar estadios progresivos del crecimiento displásico, asociados también a tasas de proliferación celular progresivamente superiores, a medida que aumenta el grado de displasia de dichas lesiones (p.ej. PanIN)[66]. No obstante, la evidencia definitiva, ha sido la demostración de la presencia de alteraciones genéticas compartidas entre las lesiones pre-malignas, muestras de carcinoma in situ, y de ADCP[159]. De acuerdo con ello, hoy se considera que las alteraciones que tienen lugar en las lesiones pre-malignas ocurren (o al menos se acumulan) en una secuencia temporal bien definida, más que de manera aleatoria (Figura 4). En esta secuencia, algunas alteraciones tempranas -alteraciones genéticas primarias-, tendrían un papel clave en la iniciación del crecimiento neoplásico, mientras que las alteraciones secundarias más tardías, se asociarían a la transformación maligna, crecimiento tumoral y la invasión[84, 127, 150, 246]. De acuerdo con estos modelos genético-moleculares de progresión tumoral, de igual forma que sucede a nivel histológico, existiría también un acúmulo secuencial de múltiples cambios genéticos desde las lesiones PanIN1 hasta las lesiones PanIN3, el carcinoma in situ y, finalmente, el ADCP[217].

En esta secuencia, los eventos tempranos asociados al ADCP corresponderían a mutaciones puntuales activadoras del gen *KRAS*, el acortamiento de los telómeros, la amplificación del oncogén *HER2/NEU* y/o la expresión de genes de las vías del desarrollo HH y Notch, observadas todas ellas de forma característica ya en las lesiones PanIN1. En una etapa posterior, tendría lugar la inactivación de los genes *CDKN2A/p16* (detectable ya en lesiones PanIN2), *SMAD4/DPC4*, *TP53* -generalmente bialélicas- y *BRCA2*, así como la sobreexpresión de maspina[60, 85, 139, 159, 247], alteraciones presentes todas ellas,

ya a nivel de las lesiones PanIN3 (Figura 4, A). La adquisición de otras mutaciones y alteraciones genéticas/moleculares a nivel de las lesiones PanINs de alto grado de displasia y en tumores pancreáticos invasivos, como son la sobreexpresión de las claudinas *CLDN4* y *CLND18*, de los genes *EGFR y HGF*, de la metaloproteasa *MMP-7*, de las mucinas MUC4 y MUC5A, de *MET*, *MIB1*, *MSLN* y de las proteínas de unión al calcio S100A4 y S100P, así como de los miARNs miR-10b, miR-21, miR-155, miR-196b, o la pérdida de función de los miARNs miR-34, miR-148a y miR-217, se asocia ya a la transformación a ADCP[1, 60, 80, 88, 142, 159, 165, 167, 197, 198, 248, 249].

Aunque para las lesiones pre-malignas de tipo MCN e IPMN no se ha definido hasta la fecha una secuencia de adquisición de alteraciones genéticas asociada a la ontogenia y transformación maligna, todo indica que también existiría una progresión histológica y genética a lo largo de las diferentes etapas de desarrollo de estas lesiones[60]. Así, en las lesiones MCN, entre los eventos más tempranos destacarían también las mutaciones de *KRAS*, seguidas de la inactivación de *TP53* y *SMAD4/DPC4* detectables ya en el componente invasivo del tumor[80] (Figura 4, B). A su vez, las lesiones IPMN, también presentan mutaciones de *KRAS* desde los estadios más tempranos del desarrollo de las mismas, aumentando su prevalencia con el grado de displasia histológica; en estos tumores, las mutaciones de *KRAS* irían seguidas de la inactivación del gen *STK11/LKB1*, la adquisición de mutaciones activadoras de *Pl3K*, y de la sobreexpresión de maspina[250]; por el contrario, es muy poco frecuente la inactivación de *SMAD4*[80] (Figura 4, C).

En conjunto, todos estos hallazgos sugieren que los cambios moleculares observados en las lesiones pre-malignas (PanIN, MCN e IPMN) de carcinoma de páncreas, se solapan, al menos en parte, con las del ADCP, mostrando estos últimos tumores una complejidad genética muy superior; estos resultados dejan abierta la posibilidad de que dichas lesiones pre-malignas puedan reflejar, o variaciones de una vía común de transformación maligna ductal, o vías diferentes de transformación tumoral[60, 78] (Figura 4).

2.3. Impacto pronóstico de las alteraciones genéticas en el ADCP

Pese a la gran cantidad y variedad en las alteraciones genéticas descritas hasta la fecha en el ADCP, siguen siendo relativamente pocos los trabajos en los que se demuestra de forma fehaciente su asociación con el pronóstico de la enfermedad. En este sentido, se ha descrito que los pacientes con mutaciones de *KRAS* presentan una supervivencia global significativamente más corta, un mayor grado de invasión local y una mayor frecuencia de

metástasis[20, 251-253]. Por otro lado, la presencia de mutaciones de *KRAS*, detectadas tanto en muestras de pacientes con pancreatitis familiar como en sujetos aparentemente sanos, podría identificar un subgrupo de individuos con alto riesgo de padecer cáncer de páncreas[20, 150].

Otras alteraciones citogenéticas que se han asociado con el pronóstico de los pacientes con ADCP incluyen las ganancias de los cromosomas 8q[107], 20q y 17q23[119], la deleción o inactivación del cromosoma 1p36 y/o del gen RUNX3[119, 130], y las deleciones de los cromosomas 4g [254] y 18g21 [255], alteraciones que podrían tiener un impacto adverso sobre la supervivencia de los pacientes, aunque su verdadero significado pronóstico está aún por confirmar. De igual manera, algunos estudios muestran una asociación entre mutaciones aisladas en el gen TP53, la presencia simultánea de mutaciones de los principales genes implicados en la génesis del ADCP (KRAS, CDKN2A, TP53 y SMAD4) [256] y/o la sobreexpresion del gen EGFR, y con una menor supervivencia de los pacientes con ADCP; sin embargo, hasta la fecha, estos hallazgos no han sido confirmados en otros trabajos[20]. En esta misma línea, se discute en la actualidad si las pérdidas de SMAD4 tienen o no impacto pronóstico en el ADCP[173], debido a que se han referido resultados contradictorios en diferentes estudios respecto a la relación entre las alteraciones del gen SMAD4 y la supervivencia[3, 60, 129, 252, 257]; así, mientras que algunos autores sugieren que tanto la presencia de mutaciones como la pérdida de expresión de SMAD4 podrían constituir marcadores moleculares asociados a otras características de mal pronóstico como la presencia de ADCP pobremente diferenciados [20] o el desarrollo de metástasis a distancia[11], sigue sin confirmarse el impacto pronóstico de esta alteración sobre la supervivencia [173, 258]. Resultados similares han sido descritos para la pérdida de expresión de p16 [37, 157], la sobreexpresión de Her2/neu [149, 158, 252, 259], MUC1, MSLN[260], VEGF[179], de las proteínas de la vía de señalización de Hedgehog Shh y Gli[261], y varios antígenos de membrana celular (p.ej. CD44, CD24 y EpCAM)[262], entre otras moléculas[263]. La sobreexpresión de MUC17 y la inhibición de la proteína AP2α constituirían también según datos preliminares, marcadores pronósticos independientes asociados a la presencia de metástasis linfáticas y una supervivencia significativamente más corta[264]. De forma similar, se ha descrito que la expresión de varios miARNs podría constituir también un factor pronóstico en el ADCP[194, 205, 265]. En este ámbito, merece destacar la asociación entre la expresión de miR-10b, miR-21, miR-31, miR-130b, miR-155, miR-196a2, miR-203, miR-221, miR-222, miR-375 y la supervivencia de los pacientes con ADCP[21, 192, 193, 199-201, 203, 266] (Figura 4).

Finalmente, existe también un importante número de estudios en los que se han asociado perfiles de expresión génica del ADCP con la respuesta al tratamiento radio/quimioterápico, destacando especialmente la respuesta a gemcitabina. En este

sentido, el análisis retrospectivo de pacientes incluidos en diferentes estudios/ensayos clínicos (p.ej. RTOG 9704, ESPAC1 y ESPAC3) sugiere que los pacientes que presentan una sobreexpresión del gen *hENT1*, principal mediador de la incorporación de gemcitabina a las células tumorales del ADCP, se beneficiarían en mayor medida de quimioterapia adyuvante con gemcitabina tras una resección curativa del tumor[93]; no obstante, otros ensayos clínicos de fase III (AIO-PK0104 y CONKO-001) no han podido confirmar estos resultados[94]. En paralelo, se ha sugerido que el aumento de expresión de la proteína HuR de unión al ARN, (proteína que interviene en la catalización de la gemcitabina a su forma activa), y de miR-211 en pacientes con ADCP tratados con gemcitabina, se asociaría a una mayor supervivencia global [21, 267].

2.4. La heterogeneidad genética del ADCP

A diferencia de lo que ocurre en otro tipo de tumores sólidos, como el cáncer de mama, pulmón, próstata o el cáncer gástrico, donde se han puesto en práctica sistemas de estadiaje clínico y molecular con una importante utilidad pronóstica y terapéutica, la predicción de la supervivencia y el pronóstico de los pacientes con ADCP (aunque habitualmente es letal) continúa siendo relativamente incierta. Posiblemente, uno de los principales motivos por los que carecemos de factores pronósticos en el ADCP, esté relacionado con el hecho de que gran parte de los trabajos enfocados a la detección de las alteraciones genéticas en estos tumores no consideran la gran heterogeneidad histológica y genética que estos presentan a nivel inter- e intratumoral [268]. En el contexto de un tejido tumoral tan complejo y heterogéneo como el páncreas de los pacientes que padecen ADCP, resulta difícil identificar subgrupos de tumores con un posible comportamiento clínicobiológico similar y a la vez, distinto de otros subgrupos . Aún más, dentro de un mismo tumor en el que existen zonas con distintas características histopatológicas cuyas células son portadoras de alteraciones genéticas diferentes, cada una de ellas podría conferir un significado pronóstico distinto. De hecho, tanto las lesiones PanIN de alto grado como los estadios de carcinoma invasivo están asociados a una importante inestabilidad genómica, representando un grupo de neoplasias con un alto grado de heterogeneidad genética en las que las alteraciones detectadas varían ampliamente, no sólo entre distintos tumores, sino incluso, dentro de un mismo tumor[162].

2.4.1. Heterogeneidad genética a nivel intertumoral

Actualmente, existen muy pocos trabajos en los que se haya podido relacionar la existencia de subgrupos de ADCP con distintos perfiles clínicos, histopatológicos y/o moleculares, y que además, tengan un impacto significativo a la hora de definir subgrupos de pacientes con distinto pronóstico y/o susceptibles de responder a tratamientos específicos. Probablemente debido al pronóstico fatal de la gran mayoría de los pacientes con ADCP, la mayor parte de los estudios disponibles en los que se han intentado establecer subgrupos biológicos de ADCP asociados a un comportamiento clínico distinto, se han centrado, más que en la definición de subgrupos de tumores con impacto pronóstico independiente de tratamiento, en la identificación de grupos de pacientes que pudieran beneficiarse de tratamientos específicos [269]

Desde el punto de vista farmacogenético, Lowery et al.[220] han definido un subgrupo de pacientes con ADCP portadores de mutaciones de los genes *BRCA1* y *BRCA2* que potencialmente podrían actuar como diana terapéutica curativa, de combinaciones de inhibidores de la poli-(ADP-ribosa) polimerasa (PARP) y cisplatino; y merece destacar además que estos pacientes suelen presentar una respuesta parcial al tratamiento. De hecho, este estudio es el primero en el que se describe una asociación entre características genéticas del ADCP y la respuesta al tratamiento.

Los resultados de Lowery et al.[220] han sido confirmados recientemente en un trabajo liderado por el Internacional Cancer Genome Consortium (ICGC)[270]. Así, el ICGC clasificó 100 ADCP en 4 subtipos genéticos distintos con impacto clínico, según el perfil de reordenamientos cromosómicos de tipo estructural, obtenidos mediante secuenciación global del genoma y análisis de las variaciones en el número de copias de secuencias específicas del ADN (de sus siglas en inglés, CNV), como reflejo de las alteraciones moleculares subyacentes[244]. Según la clasificación propuesta, los ADCP se agruparían en tumores i) "estables" cuando presentan menos de 50 alteraciones cromosómicas de tipo estructural; ii) "localmente reordenados" cuando muestran alteraciones focales en uno o dos cromosomas, iii) "dispersos", cuando contienen un grado moderado de alteraciones cromosómicas no aleatorias, pero en un número menor a 200 alteraciones estructurales, e; iv) "inestables" cuando el número de alteraciones estructurales es elevado (>200) probablemente debido a una mayor inestabilidad genética y/o a defectos en los mecanismos de reparación del ADN. Este último grupo de ADCP "inestables" incluye además aquellos tumores que muestran un patrón genético de inactivación de los genes de reparación del ADN -BRCA1, BRCA2 o PALB2-, por el que se define también un perfil de tumores con sensibilidad a agentes que inducen daño en el ADN. Así, los resultados de este estudio establecen un precedente a la hora de optimizar los criterios de inclusión de pacientes con

ADCP en ensayos clínicos con inhibidores de PARP: la utilización como criterio de inclusión en el esnayo, la definición de los perfiles genéticos tumorales en base a la determinación conjunta del estado mutacional de la vía de señalización de BRCA y del grado de inestabilidad genómica presente en las células de ADCP, en vez de la detección puntual de mutaciones deletéreas en *BRCA1* y *BRCA2*-.

Precisamente, con la introducción de los nuevos métodos de análisis masivo del genoma se ha logrado una caracterización molecular del ADCP con una profundidad sin precedentes, un pre-requisito fundamental a la hora de abordar la identificación de los distintos subgrupos moleculares de ADCP. De acuerdo con ello, el grupo de Collisson et al.[271] definió por primera vez 3 subtipos distintos de tumores primarios y líneas celulares humanas y murinas- de ADCP, en base a su GEP, clasificándolos según su fenotipo molecular en: i) tumores "clásicos"; ii) ADCP "cuasi-mesenquimales", y; iii) ADCP de "tipo exocrino". Además, estos autores demostraron que estos subgrupos moleculares de ADCP se asociaban, tanto con la respuesta al tratamiento, como con el pronóstico de la enfermedad. De acuerdo con este sistema de estratificación, aquellos pacientes con ADCP de tipo "clásico" no sólo presentaban mejor pronóstico, respecto a los de tipo "cuasimesenquimal", sino que además en los estudios in vitro realizados, mostraban una mayor sensibilidad a terapias dirigidas frente a las vías de señalización de RAS/MAPK (por ej. erlotinib o ARNs antisentido inhibidores génicos de KRAS); en contrapartida, los ADCP de tipo "cuasi-mesenquimal responderían mejor a las terapias convencionales (p.ej. gemcitabina).

De forma similar, otros autores han identificado también GEPs que permitirían diferenciar subgrupos de pacientes con ADCP con un pronóstico diferente. Así, Stratford *et al.* [272] han encontrado que la sobreexpresión de 6 genes (*FOSB, KLF6, NFKBIZ, ATP4A, GSG1 y SIGLEC11*) diferenciaría, dentro de los ADCP, aquellos pacientes que desarrollan enfermedad metastásica, de los que no lo hacen. A su vez, Haider *et al.* [273] identifican en un meta-análisis, un GEP constituido por la expresión diferencial de 36 genes asociado a una supervivencia más corta y peor pronóstico; cuatro de estos 36 genes (*ITGA5, KIF4A, CDC45 y NOSTRIN*) coinciden con los identificados en otros estudios donde, de manera similar, se detectaron perfiles de expresión con impacto pronóstico sobre la supervivencia de los pacientes con ADCP[271, 274]. Finalmente, en estudios más recientes del ICGC se ha identificado un nuevo subgrupo de ADCP que según el GEP de 4 genes asociados a las vías de señalización de la guía axonal -la vía de SLIT/ROBO (*ROBO, ROBO3*) y la vía de las semaforinas (*SEMA3A y PLXNA1*)-, estaría asociado a peor pronóstico y menor supervivencia[275, 276].

En paralelo con los trabajos antes referidos, diferentes autores han evaluado la implicación de las mutaciones puntuales y de cambios en la expresión de genes

individuales, implicados en el desarrollo y transformación maligna del ADCP (*KRAS*, *TP53*, *CDKN2A* y *SMAD4*), en el pronóstico de la enfermedad, siendo los resultados obtenidos en general contradictorios. Así, mientras que Yachida *et al.*[256] establecen una relación directa entre el número de alteraciones presentes en estos genes y la supervivencia global de la enfermedad, Dal Molin *et al.*[277] encuentran perfiles mutacionales similares entre el ADCP de pacientes que presentan una supervivencia extremadamente alta para esta enfermedad (>10 años) y los demás tumores, sugiriendo que las mutaciones en estos genes no serían determinantes a la hora de establecer el pronóstico y evolución de la enfermedad.

2.4.2. <u>Heterogeneidad genética a nivel intratumoral y patrones de evolución clonal</u>

Si en la actualidad, el conocimiento acerca de la variabilidad genética del ADCP a nivel intertumoral es limitada, lo es aún más, la información disponible sobre la heterogeneidad genética/molecular del ADCP a nivel intratumoral y, su significado clínico.

Los primeros trabajos a este respecto estaban dirigidos a la caracterización de clones portadores de distintas alteraciones cromosómicas, identificados mediante citogenética convencional[103, 106, 127]. Con ellos se logró identificar los perfiles citogenéticos del ADCP encontrándose hasta 58 clones con dotación citogenética distinta coexistentes en un mismo tumor, para un total de más de 500 anomalías citogenéticas diferentes identificadas en el conjunto de los tumores analizados[103, 106].

En una segunda fase, el estudio de la heterogeneidad genética del ADCP a nivel intratumoral, se centró en el análisis y comparación de los perfiles citogenéticos [104] y de expresión génica[162] en distintas regiones del tumor. Con estos estudios se concluye que en cada ADCP existen: i) alteraciones cromosómicas "región-independientes" (definidas como aquellas alteraciones presentes en todas de las glándulas de un mismo tumor) y que posiblemente están relacionadas con los eventos iniciadores de la carcinogénesis, y; ii) alteraciones "región-dependientes" (aquellas que se detectan en una glándula o en varias, pero no en todas las glándulas del tumor) que serían fruto de la inestabilidad cromosómica en las células tumorales a nivel local, y base de la generación de heterogeneidad genética a nivel intratumoral. Utilizando una estrategia similar, Nakamura et al.[162] investigaron las posibles diferencias entre distintas zonas de un mismo tumor analizando la variabilidad genética y genómica existente entre las células del ADCP localizadas en la zona periférica del tumor y aquellas ubicadas en la zona central del mismo. En términos generales, estos autores constataron que los ADCP presentan una gran heterogeneidad a nivel intratumoral con GEPs distintos en ambas regiones. Así, mientras que en las regiones periféricas las células expresaban genes relacionados con la división, la adherencia y la migración celular -

p.ej. MMP-2, AMIGO2, versican –(VCAN), galectina 1 (LGALS1) y fibronectina (FN1)- como parte de la adaptación del tumor al micromedioambiente para poder permanecer en un estado de continua división celular, adhiriéndose al tejido no-tumoral vecino mientras se prepara para la invasión, las células de la zona central del tumor expresaban un perfil de genes implicados en la regulación de la proliferación celular, la respuesta al estrés, el metabolismo de carbohidratos y hexosa, y la muerte celular -p.ej S100A8, distintas mucinas (MUC1, MUC4 y MUC5B) o EP300-.

Los estudios más recientes en los analiza la heterogeneidad que se genética/genómica del ADCP a nivel intratumoral, se han centrado en establecer la posible relación clonal existente entre las distintas lesiones neoplásicas presentes en el tejido tumoral de cada paciente [278, 279]. En este tipo de análisis, conocido como "secuenciación comparativa de lesiones"[280], se comparan las alteraciones genómicas presentes en el tumor primario y en una o varias metástasis de cada paciente empleando (habitualmente) técnicas de análisis y secuenciación masiva, lo cual permite establecer las posibles vías de evolución clonal del tumor, de forma individualizada en cada paciente. De forma similar a lo descrito por Harada et al.[104], con estos últimos estudios, se han identificado alteraciones (en este caso, mutaciones) presentes en todas las muestras del tumor (tumor primario y metástasis) analizadas para un mismo paciente ("mutaciones fundadoras"); este tipo de mutaciones representarían hoy mutaciones que se han ido acumulando durante la evolución de las lesiones pre-malignas (p.ej. PanIN) hasta el desarrollo del ADCP. Así, dentro del tumor primario las mutaciones fundadoras constituirian marcadores genéticos del clon celular tumoral ancestral y por ello, estarían presentes en la práctica totalidad de las células del tumor. Entre estas mutaciones se incluyen muchas mutaciones implicadas en la formación del ADCP (p.ej. mutaciones de KRAS, CDKN2A, TP53 y SMAD4), así como mutaciones de otros genes previamente descritos como responsables del desarrollo del ADCP[133, 279]. Además de las mutaciones fundadoras, estos autores identificaron también mutaciones presentes sólo en parte de las muestras analizadas de cada paciente (p.ej. mutaciones exclusivas del tumor primario o de las metástasis), y que posiblemente surgen con posterioridad a las mutaciones fundadoras, así estas mutaciones, representarían un marcador de evolución (sub)clonal a partir del clon ancestral ("mutaciones asociadas a progresión")[279]. De esta manera, definiendo los clones ancestrales de un tumor primario como aquellos que únicamente presentan mutaciones fundadoras, y los subclones derivados de éstos como aquellos que presentan ambos tipos de mutaciones, se puede alcanzar a identificar las vías de evolución clonal dentro de cada tumor y así, reconstruir la relación filogenética entre los distintos clones que coexisten en el mismo. Mediante esta estrategia, el análisis de la firma genética de cada muestra estudiada, mostró que las metástasis a distancia surgen a partir, tanto del clon original no-metastásico ancestral, como de múltiples subclones existentes ya en el ADCP primario (al menos 4 en cada muestra analizada); una vez en el órgano colonizado, distintos subclones continúan evolucionando genéticamente. Así, la heterogeneidad genética de las metástasis refleja la heterogeneidad ya presente en el tumor primario, constituido por una mezcla de múltiples subclones, cada uno de los cuales se ha expandido y evolucionado genéticamente de manera independiente en la metástasis[278, 279]. Más aún, según resultados recientes, la amplia heterogeneidad intratumoral del ADCP, podría venir predeterminada ya por las características del tumor primario, debido a la existencia en éste de distintas poblaciones de células iniciadoras de tumor o CSCs[77], presentes ya en las lesiones precursoras del ADCP[281]. En este sentido, adquiere especial relevancia la posibilidad de poder llegar a identificar células morfológica y funcionalmente distintas a la gran mayoría de las células del ADCP, con función y capacidad de célula iniciadora de tumor, y que estarían presentes ya tanto en muestras de tejido pancreático de lesiones pre-malignas como en el ADCP invasivo; estas propiedades se han atribuido a células que expresan la proteína DCLK1 (*Doublecortin and Ca2+/Calmodulin- Dependent Kinase-Like 1*) [281].

De acuerdo con modelos predictivos elaborados a partir de estos estudios genéticos y de estudios de proliferación celular, hoy se cree que pasaría al menos una década (~12 años) desde la aparición de la mutación iniciadora y el nacimiento de una célula ductal fundadora del clon ancestral no-metastático; además, se requerirían al menos 5 años más (~7 años) desde la aparición de ese clon ancestral hasta la adquisición de capacidad metastásica, siendo esta un determinante precoz de riesgo de muerte del paciente a corto plazo (~3 años). Con ello se calcula que desde las primeras fases de la carcinogénesis hasta la muerte del paciente habría un período promedio de 21 años[279], similar al tiempo de progresión estimado para otros tumores[282], tiempo que proporciona la oportunidad de realizar una detección temprana del ADCP en un período medio (calculado) de aproximadamente 10 años, en el que la enfermedad aún se encuentra en una etapa curativa, antes de que en el tumor primario se desarrollen clones con potencial metastásico[279].

2.4.3. Técnicas de análisis de la heterogeneidad genética a nivel intratumoral

Pese a la disponibilidad de un número creciente de estudios en los que se describen las alteraciones genéticas presentes en pacientes con ADCP, la información disponible acerca de la heterogeneidad genética de los tumores individuales y de las vías intratumorales de evolución clonal, siguen siendo hoy por hoy muy limitada. De hecho, sólo Kowalski *et al.* (2007)[105] han propuesto modelos de evolución clonal intratumoral basándose en técnicas de citogenética convencional, y no se ha estudiado hasta el

momento su relación con las características clínicas de la enfermedad. Esto es debido entre otras razones, a las limitaciones de las técnicas citogenéticas y moleculares que habitualmente se emplean para el estudio de estos tumores. Por un lado, los métodos citogenéticos convencionales, aunque permiten la obtención de una visión global de las alteraciones citogenéticas presentes en una misma célula o un grupo de células tumorales, presentan también una baja sensibilidad debido a la necesidad de obtener metafases, especialmente si tenemos en cuenta la baja tasa proliferativa de los tejidos tumorales in vitro[283, 284] y la posibilidad de que ocurra una selección clonal en cultivo. Así mismo, otra limitación de esta metodología radica en el hecho de que únicamente permite el análisis de un pequeño porcentaje de todas las células tumorales (células en mitosis), representando estas habitualmente una proporción minoritaria (<1%) de la celularidad global. Por otra parte, las técnicas de biología molecular requieren de la extracción y purificación de ácidos nucleicos a partir de su localización natural, la célula; por este motivo, resulta difícil la obtención de información específica sobre células o poblaciones celulares concretas presentes en una muestra biológica heterogénea, lo cual representa una importante limitación a la hora de profundizar en el conocimiento de la heterogeneidad clonal a nivel intratumoral. Además, el ADCP con frecuencia presenta una reacción desmoplásica característica, por lo que en una proporción importante de estos tumores las células tumorales únicamente constituyen un pequeño porcentaje de todas las células del tumor[116, 284, 285]. Ante estas circunstancias, los cambios genéticos presentes únicamente en un clon minoritario podrían verse enmascarados por las células normales/reactivas cuando se utilizan técnicas moleculares en las que se aislan los ácidos nucleicos del total de la masa tumoral y no se estudian de forma específica las células neoplásicas individualmente. Incluso, la propia heterogeneidad citogenética intraglandular podría contribuir a la deteccion subóptima de los cambios cromosómicos/genéticos con la utilización de técnicas clásicas de biología molecular[104].

Ante esta situación, el estudio de la heterogeneidad genética del ADCP a nivel intratumoral, requiere de aproximaciones metodológicas que permitan realizar un análisis dirigido a la detección de las alteraciones genéticas que de forma específica están presentes en células individuales. Para ello, las técnicas a emplear deben ser capaces de evaluar globalmente la celularidad del tumor, evitando el cultivo de células tumorales y la necesidad de obtener metafases; además, deben proporcionar información simultánea sobre múltiples alteraciones a nivel de células individuales. En este sentido, nuestro grupo ha demostrado previamente que el empleo de técnicas de hibridación *in situ* fluorescente sobre núcleos interfásicos (iFISH), se adapta al estudio de la heterogeneidad genética a nivel intratumoral, particularmente cuando se emplean simultáneamente varias sondas diferentes conjugadas con fluorocromos de distinto color y que permiten estudiar de forma simultánea varias

alteraciones. Con esta aproximación metodológica, pueden caracterizarse de forma específica los distintos clones de células tumorales coexistentes en un tumor, incluso cuando algunos de estos clones de células tumorales están presentes en la muestra en una frecuencia relativamente baja[137, 138, 286, 287]. Aunque esta aproximación no permite obtener una información global del genoma -ya que sólo detecta las alteraciones genéticas frente a las que van dirigidas las sondas empleadas-, facilita el estudio simultáneo de varias regiones del genoma de forma rápida, sensible, específica y reproducible, tanto sobre núcleos interfásicos como en cromosomas metafásicos[138, 287]. En este sentido, su combinación con la información derivada de otras técnicas como la CGH, aCGH (arrays de CGH) y los microarrays de polimorfismos de nucleótido único (de sus siglas en inglés, SNPs) permitiría la identificación simultánea de múltiples regiones cromosómicas específicas que están alteradas de forma recurrente en el ADCP[104, 108-110, 112-116, 118-120, 288]. Aunque, la resolución de estas técnicas cito-moleculares es relativamente limitada y no permiten detectar pequeñas alteraciones (por debajo de 1 Mb para CGH y aCGH) [113, 120, 283, 289], sí permitirían obtener una imagen global de las alteraciones de tipo CNV y LOH presentes en un tumor. En este sentido, el análisis masivo de los SNPs presentes a lo largo de todo el genoma, empleando microarrays de alta densidad ha mejorado enormemente la sensibilidad de los aCGH, detectando anomalías cromosómicas con una elevada resolución (por debajo de 2,5 Kb) y permitiendo una definición más precisa de la magnitud de las mismas[283, 290]. Estas nuevas tecnologías han contribuido a ya identificar regiones cromosómicas alteradas no detectadas con otras técnicas, incluido el análisis de LOH mediante microsatélites y aCGH, a su vez, permiten también el análisis de cientos de miles/millones de SNPs en un corto periodo de tiempo[284, 291].

Al igual que ocurre con otros métodos basados en *arrays* de ácidos nucleicos, los análisis de *microarrays* de SNPs no resultan óptimos para la detección de heterogeneidad genética a nivel intratumoral [283]. En este sentido, la combinación de la información proveniente de los *microarrays* de ácidos nucleicos junto con la derivada de las técnicas de análisis sobre células individuales como la iFISH, resulta especialmente atractiva, al permitir un barrido de todo el genoma para identificar las alteraciones más habituales, incluyendo las alteraciones genéticas presentes de forma específica en cada tumor y, posteriormente, la construcción de un panel de sondas de iFISH dirigidas a su detección a nivel de células individuales. Finalmente, el análisis de los patrones de expresión génica a nivel de ARNm y sus reguladores no proteicos, proporcionaría información complementaria sobre el impacto global de dichas alteraciones genéticas en cada paciente, y los posibles mecanismos patogénicos de la enfermedad, incluida la identificación de potenciales dianas terapéuticas.

Hipótesis y objetivos

En la actualidad se conoce que el ADCP es una neoplasia histológica y genéticamente heterogénea. No obstante, la información disponible acerca de los patrones genéticos de evolución clonal y de los mecanismos moleculares implicados en la enfermedad (ya sea en su desarrollo y progresión biológica o en su transformación maligna) y su comportamiento clínico, sigue siendo limitado, especialmente en lo que se refiere a la identificación de biomarcadores con utilidad diagnóstica y de posibles dianas terapéuticas. Esto adquiere especial relevancia en el ADCP dado que este constituye un tumor cuya presentación al diagnóstico típicamente ocurre ya en estadios avanzados de la enfermedad y que además es resistente a la práctica totalidad de los tratamientos convencionales existentes y evaluados hasta la fecha. Todo ello condiciona que el ADCP continúe constituyendo una de las neoplasias malignas más agresivas, con una elevadísima tasa de mortalidad a los 5 años.

Un número creciente de estudios indica que el comportamiento clínico y biológico de una neoplasia depende en gran medida de las alteraciones genéticas subyacentes y de las interacciones entre las células tumorales y el micromedioambiente que las rodea, traducidas a su vez en distintos perfiles de alteración genética y de expresión génica, que para el ADCP, siguen sin conocerse en profundidad, especialmente en lo que se refiere a las distintas vías de evolución clonal existentes a nivel intratumoral. Por otra parte, hoy sabemos que el comportamiento de las células tumorales del ADCP (y de otros tumores) no solo depende de las alteraciones que afectan a genes que codifican para proteínas, sino que

existen otros mecanismos de regulación de la expresión de los mismos que con frecuencia están alterados de manera diferente en distintos tumores; entre estos se incluyen alteraciones en la expresión de miARNs o cambios epigenéticos que finalmente también contribuyen a determinar los patrones de expresión génica (a nivel de mARN y proteínas) que en última instancia condicionaran el comportamiento biológico de células del tumor y el comportamiento clínico de la enfermedad. La utilización de técnicas que permiten el análisis de las alteraciones cromosómicas a nivel de células individuales, en combinación con técnicas moleculares de análisis global del genoma y su perfil de expresión, nos permitirá profundizar en el conocimiento de la heterogeneidad genética y de las vías de evolución clonal existentes, tanto a nivel intratumoral en cada paciente, como a nivel intertumoral entre distintos pacientes con ADCP, proporcionando así información clave para determinar el impacto de las distintas alteraciones genéticas en el comportamiento biológico, histopatológico, clínico y pronóstico del ADCP.

Ante estos antecedentes, en el presente trabajo doctoral nos hemos planteado como **objetivo general** profundizar en el conocimiento de las alteraciones genéticas y genómicas del ADCP, con especial énfasis en las vías de evolución clonal presentes a nivel intratumoral, y su impacto en el comportamiento clínico y biológico de la enfermedad. Para ello hemos delineado cuatro **objetivos específicos**:

- 1. Definir mediante marcajes simultáneos para diferentes secuencias de ADN (iFISH multicolor) la frecuencia y los patrones de alteraciones cromosómicas presentes en células individuales a nivel intratumoral, y establecer la posible relación evolutiva existente entre ellos, con el fin de identificar las vías evolución clonal presentes en el ADCP y su relación con las características clínicas e histopatológicas más relevantes de la enfermedad.
- 2. Realizar un análisis (más) exhaustivo de los cambios genómicos de las células tumorales de pacientes con ADCP, mediante *microarrays* de polimorfismos de nucleótido único (SNPs) de alta densidad, con el fin de identificar dentro de las regiones cromosómicas y secuencias génicas alteradas de forma recurrente en el ADCP, aquellas que pudieran jugar un papel relevante en el proceso oncogénico, la progresión tumoral y el comportamiento clínico e histopatológico del tumor, y los posibles genes implicados.
- **3.** Determinar mediante *microarrays* de expresión los perfiles de expresión génica a nivel de ARN del ADCP, investigando tanto la expresión de genes que codifican para proteínas como de genes no codificantes de proteínas.
- **4.** Establecer la posible asociación existente entre distintas alteraciones cromosómicas y perfiles de evolución clonal presentes en el ADCP y el pronóstico de la enfermedad, con especial énfasis en la identificación de aquellas anomalías génicas asociadas a una mayor supervivencia.

Materiales, métodos y resultados

En esta sección de la memoria se describen los pacientes y los materiales y métodos empleados, así como los resultados obtenidos en relación con cada uno de los objetivos planteados, mediante la inclusión de los artículos científicos originales redactados y publicados como consecuencia del trabajo realizado. Cada uno de los artículos referidos está precedido de un breve resumen en castellano que facilita una revisión rápida de la información contenida en los mismos.

Artículo 1: "Heterogeneidad citogenética en el adenocarcinoma ductal pancreático: identificación de las vías de evolución clonal a nivel intratumoral"

Objetivos: A pesar de los grandes avances alcanzados en los últimos años en el conocimiento de las alteraciones genéticas presentes en el adenocarcinoma ductal de páncreas (ADCP), la información disponible acerca de la heterogeneidad citogenética y de las vías de evolución clonal a nivel intratumoral, continúa siendo muy limitada, debido a la baja sensibilidad de las técnicas utilizadas hasta el momento para su estudio. En el presente trabajo analizamos la frecuencia y el tipo de alteraciones cromosómicas y los patrones de evolución clonal a nivel intratumoral, en muestras de tumores primarios de 36 pacientes con ADCP, correlacionando los hallazgos citogenéticos con las características clínicas e histopatológicas más relevantes de la enfermedad.

Materiales, métodos y resultados: La identificación de las alteraciones cromosómicas presentes en los ADCP estudiados, se llevó a cabo mediante técnica de hibridación *in situ* fluorescente multicolor sobre núcleos interfásicos, utilizando una batería de 48 sondas dirigidas a regiones de los 24 cromosomas humanos, descritas como alteradas en el ADCP. Mediante este procedimiento, se detectaron dos vías de evolución clonal claramente diferentes: 1) una presente en la mayoría de los casos (>80%) y en la que el clon tumoral ancestral observado se caracterizaba por presentar pérdidas aisladas o combinadas de regiones de los cromosomas 9p, 17p y/o 18q, asociadas con del(8p), nulisomía Y y/o ganancias del brazo largo del cromosoma 8; y 2) otra minoritaria, en la que los clones ancestrales se caracterizaban por presentar otras alteraciones genéticas que frecuentemente incluían del(4p) asociada a un comportamiento clínico más agresivo de la enfermedad. Los clones secundarios de ambos grupos de tumores habitualmente presentaban también pérdidas a nivel de las regiones cromosómicas 9p, 17p y/o 18q.

Conclusiones: Nuestros resultados muestran que la progresión citogenética en el ADCP es un proceso que ocurre en varias etapas que dan lugar a múltiples subclones con diferentes alteraciones cromosómicas dentro de un mismo tumor. Además, estos resultados sugieren que las vías específicas de evolución clonal y las alteraciones cromosómicas a estas asociadas, podrían modular el comportamiento clínico de la enfermedad.

constrains cellular proliferation and regeneration. 13 Thus, p16 $^{\rm INK4A}$ expression in SPSC, coupled with its low Ki67 proliferative index, supports the notion that SPSC represents a regressive phenomenon.

Nevertheless, its early presence during menstruation, together with the absence of other morphological candidates for the role of a regenerating epithelium involved in the lining of the extensively denuded endometrial surface, requires further investigation.

In practical differential diagnosis, however, p16^{INK4A} positivity identifies SPSC but does not differentiate it entirely from serous carcinoma of the endometrium. Although p53 is expressed in both serous carcinoma of the endometrium and SPSC, the staining pattern is different, being strong and diffuse in serous carcinoma and its precursors, but weak and heterogeneous in SPSC. The Ki67 index, however, is high in serous carcinoma and very low in SPSC.¹⁴

Furthermore, the strong p16 $^{\rm INK4A}$ positivity present in desquamated SPSC cells that may be found in cervical cytological samples could be a pitfall in the differential diagnosis of HPV-related lesions. Finally, it must be borne in mind that both mesonephric and tubal metaplasia are also p16 $^{\rm INK4A}$ -positive, and these conditions could therefore cause additional false-positive results in p16 $^{\rm INK4A}$ screening of cytological specimens.

Alina Nicolae Ovidiu Preda José Aneiros-Fernández José Palacios¹ Michele Biscuola¹ Francisco F. Nogales

Department of Pathology, San Cecilio University Hospital, Granada, and ¹Department of Pathology, University Hospital Virgen del Rocío, Seville, Spain

- Nogales-Ortiz F, Puerta J, Nogales FF Jr. The normal menstrual cycle. Chronology and mechanism of endometrial desquamation. Obstet. Gynecol. 1978; 51; 259–264.
- Gersell DJ. Endometrial papillary syncitial change. Another perspective. Am. J. Clin. Pathol. 1993; 99; 656–657.
- Zaman SS, Mazur MT. Endometrial papillary syncitial change: a nonspecific alteration associated with active breakdown. Am. J. Clin. Pathol. 1993; 99; 741–745.
- Shah SS, Mazur MT. Endometrial eosinophilic syncitial change related to breakdown: immunohistochemical evidence suggests a regressive process. *Int. J. Gynecol. Pathol.* 2008; 27; 534–538.
- Nielsen GP, Stemmer-Rachamimov AO, Shaw J et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest. 1999; 79: 1137–1143.

- Mariño-Enríquez A, González-Rocha T, Burgos E et al. Transitional cell carcinoma of the endometrium and endometrial carcinoma with transitional cell differentiation: a clinicopathologic study of 5 cases and review of the literature. Hum. Pathol. 2008; 39; 1606–1613.
- Yemelyanova A, Ji H, Shih IeM et al. Utility of p16 expression for distinction of uterine serous carcinomas from endometrial endometrioid and endocervical adenocarcinomas: immunohistochemical analysis of 201 cases. Am. J. Surg. Pathol. 2009; 33; 1504–1514.
- Crum CP, Nucci MR, Mutter GL. Altered endometrial differentiation (metaplasia). In Crum CP, Lee KR eds. Diagnostic gynecologic and obstetric patholog. Philadelphia, PA: Saunders, 2006; 520– 544.
- Abell MR. Endometrial biopsy: normal and abnormal diagnostic characteristics. In Gold JJ ed. Gynecologic endocrinolog. New York: Harper and Row, 1975; 156–190.
- Hendrickson MR, Kempson RL. Endometrial epithelial metaplasias: proliferations frequently misdiagnosed as adenocarcinoma. Report of 89 cases and proposed classification. *Am. J. Surg. Pathol.* 1980; 4; 525–542.
- Silverberg SG, Kurman RJ. Tumors of the uterine corpus and gestational trophoblastic disease. In Rosai J and Sobin LH eds. Atlas of tumor pathology, 3rd series. Washington, DC: Armed Forces Institute of Pathology, 1992; 200–204.
- Buckley CH, Fox H. Biopsy pathology of the endometrium. New York: Raven Press, 1989.
- Krishnamurthy J, Ramsey MR, Ligon KL et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006; 443; 453–457.
- Quddus MR, Sung CJ, Zheng W et al. p53 immunoreactivity in endometrial metaplasia with dysfunctional uterine bleeding. Histopathology 1999; 35; 44–49.

Cytogenetic heterogeneity of pancreatic ductal adenocarcinomas: identification of intratumoral pathways of clonal evolution

 $\label{eq:doi:doi:10.1111/j.1365-2559.2011.03771.x} DOI: 10.11111/j.1365-2559.2011.03771.x$

Information about the cytogenetic heterogeneity of individual pancreatic ductal adenocarcinomas (PDACs) and their intratumoral pathways of clonal evolution remains very limited. Interphase fluorescence *in-situ* hybridization (iFISH) is a highly sensitive and convenient technique for the investigation of intratumoral cytogenetic heterogeneity, particularly when two or more different probes are simultaneously assessed, even when minor tumour cell clones are present in a tumour sample. We applied iFISH to investigate the intratumoral patterns of cytogenetic abnormalities associated with clonal evolution and correlated them with the most relevant features of the disease.

Diagnostic tissue specimens from 36 sporadic PDAC patients who underwent surgical tumour resection at the Division of Hepatobiliary and Pancreatic Surgery of the University Hospital of Salamanca (Spain) were

© 2011 Blackwell Publishing Ltd, Histopathology, 58, 477–500.

analysed (Table 1). The methods used for multicolour iFISH studies have been previously described in detail, 1 and the probes used (n = 48) are listed in Table S1.

All 36 PDAC tumours showed numerical abnormalities for one or more chromosome probes. Structural abnormalities were more frequent than numerical alterations involving entire chromosomes. The most frequent abnormalities were del(17p) (77%), del(18q) (75%), del(9p) (70%), del(8p) (55%) and nulisomy Y (76%). Specific gains were found at lower frequencies, and they mainly involved chromosomes 1q (39%), 15q

(39%) and 8q (38%) (Figure 1; Table 2). Previous studies suggest that most of these abnormalities are non-random changes occurring at different steps of pancreatic carcinogenesis. 2-4

The use of multicolour iFISH allowed evaluation of the intratumoral genetic heterogeneity of PDAC in almost every patient (35/36, 97%), as reflected by the presence of two or more highly represented (>10% of all tumour cells) tumour cell clones carrying different chromosomal abnormalities. Interestingly, among these clones, one could systematically be identified as

Table 1. Clinical and biological characteristics of patients with pancreatic ductal adenocarcinomas (n = 36)

Case ID	Gender	Age (years)	CA19.9 serum levels	Site of primary tumour	Histological grade	Tumour size (mm)	TNM stage	!	LNR	Perineural invasion	Vascular invasion	Type of surgical resection
1	F	74	>500	Head	I	20	T3N0M0	IIA	0/17	+	-	R0
2	F	59	69.2	Head	I	18	T1N0M0	IA	0/4	+	-	R0
3	Μ	74	144	Head	I	25	T2N1M0	IIB	3/25	+	-	R1
4	F	79	177	Head	I	25	T2N1M0	IIB	3/28	+	-	R0
5	Μ	64	41.4	Head	I	22	T3N1M0	IIB	3/16	+	-	R1
6	F	73	377	Head	I	20	T3N0M0	IIA	0/10	+	-	R0
7	Μ	50	<2.5	Head	I	35	T2N1M0	IIB	3/31	+	-	R1
8	Μ	67	<2.5	Head	I	20	T3N1M0	IIB	5/8	+	+	R1
9	Μ	61	23.1	Head/body	I	50	T4N1M1*	IV	NA	-	-	-
10	Μ	76	57.7	Head	I	27	T3N0M0	IIA	0/16	+	-	R0
11	Μ	58	319	Head	I	20	T2N1M0	IIB	4/25	-	-	R0
12	Μ	77	>500	Head	П	35	T3N1M0	IIB	4/29	+	-	R0
13	Μ	73	<2.5	Head	П	20	T3N1M0	IIB	1/27	_	-	R0
14	Μ	61	3	Head	П	30	T2N0M0	IIA	0/27	+	-	R1
15	Μ	51	>500	Head	П	25	T3N1M0	IIB	1/18	+	+	R1
16	Μ	71	19	Head	П	22	T3N0M0	IIA	0/24	+	-	R0
17	Μ	88	89	Head	П	20	T3N0M0	IIA	0/18	-	-	R1
18	Μ	74	399	Head	П	25	T2N0M0	IIA	0/15	_	-	R1
19	F	73	295	Head	П	40	T4N1M1*	IV	1/3	_	-	-
20	Μ	74	45.3	Head	П	35	T2N1M0	IIB	5/5	+	-	R1
21	Μ	65	<2.5	Head	П	30	T3N1M0	IIB	2/24	+	-	R0
22	F	45	41	Head	П	20	T3N1M0	IIB	2/35	+	-	R0
23	Μ	76	NA	Tail	П	50	T3N0M0	IIB	0/7	+	-	R0

^{© 2011} Blackwell Publishing Ltd, Histopathology, 58, 477-500.

 Table 1. (Continued)

	Number of patients	LMO4*			P-value							
Clinicopathological parameter	(n = 140) (%)	0–≤55%	55–≤70%	>70%	χ^2							
24	F	78	59	Head	II	30	T3N1M0	IIB	1/28	+	+	R1
25	M	63	350	Tail	II	60	T3N1M0	IIB	2/11	+	-	RO
26	M	60	313	Head	III	NA	T3N0M0	IIA	0/0	+	-	RO
27	M	74	315	Head	III	40	T3N0M0	IIA	0/37	_	-	RO
28	M	56	>500	Head	III	30	T3N0M0	IIA	0/32	+	-	RO
29	F	45	>500	Head	III	35	T2N1M0	IIB	9/72	+	-	RO
30	M	78	176	Head	III	35	T2N1M0	IIB	1/27	+	-	RO
31	M	62	58	Head	III	28	T3N0M0	IIA	0/13	+	-	R0
32	F	76	124	Body/tail	III	58	T2N1M0	IIB	1/16	· –	-	R0
33	M	46	<2.5	Body	III	40	T3N0M0	IIA	0/18	+	-	RO
34	F	70	393	Head	III	35	T3N1M0	IIB	1/7	_	-	RO
35	Μ	48	51	Head	Ш	15	T3N1M0	IIB	5/32	_	-	R0
36	F	41	150	Head	III	27	T3N1M0	IIB	2/25	+	-	R1

M, Male; F, female; CA19.9, carbohydrate-associated antigen; LNR, lymph node ratio expressed as number of positive lymph nodes among all lymph nodes analysed; R0, negative microscopic resection margins; R1, positive microscopic resection margins; NA, data not available.

^{*}Tumour sample obtained from an intraoperative biopsy.

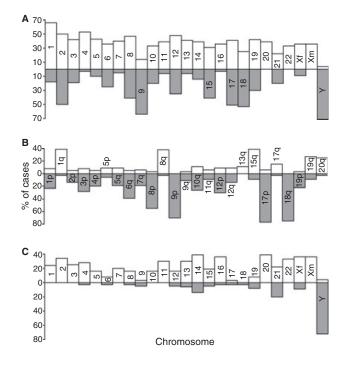


Figure 1. Overall frequency of numerical chromosome gains (\square) and losses (\square) involving specific chromosome regions (B), whole chromosomes (C) or both (A) in primary pancreatic ductal adenocarcinomas (n=36); the specific chromosomes or chromosome regions are listed inside the bars of each panel. Xf, chromosome X in females; Xm, chromosome X in males.

@ 2011 Blackwell Publishing Ltd, $\it Histopathology,~\bf 58,~477-500.$

Table 2. Frequency of numerical and structural abnormalities detected for each chromosome region analysed in pancreatic ductal adenocarcinomas (n = 36)

	Ch	Chromosomes	some	3S																				
	—	2	3	4	2	9	7	∞	0	10		12 13	13 1	14 1	2	16 17	7 18	8 19	20	21	22	×	X	>
Normal	16	47	39	44	47	39	25	14	22	47	. 99	17 53		47 28	28 6	61 8	8 22	2 28	33	28	29	55	64	24
Gains Disomy																							36	4
p ⁺ d	5	5	5	5	9	ı	ı	ı	1	1	ı	9	I		I	1	I	I	-1	I	I	1	I	I
d ₊	23	I	1	1	ı	ı	c	*9	ı	1		9	∞	1	I		3‡ -	19	1	I	I	ı	I	I
p_/_d	3	I	1	1	ı	ı	I	ı	ı	1		I	I	1	I		1	I	1	I	I	ı	I	I
Trisomy	19	17	14	1	∞	c	ı	ı	c	œ	16	5	8	11 11		3	л М	3	∞	m	7	9	ı	I
Tetrasomy	5	7	∞	14	c	5	20	16	ı	œ	4	11 22		28	8	33 –	ı	5	25	14	22	27	ı	I
Tetrasomy/trisomy	I	Ω	Ω	m	5	ı	ı	ı	ı	1		I	I	1	I	1	I	I	1	5	I	ı	I	I
Other polyploidies	ı	33	I	I	I	ı	ı	ı	ı	ı		С	ı	1	ı	1	I	I	9	1	I	ı	I	I
Polysomy/p ⁺	I	I	I	ı	3	ı	ı	ı	ı	ı		I	I	1	I	1	I	æ	1	I	I	I	ı	I
Polysomy/q ⁺	33	I	I	ı	0	ı	c	n	ı	m	n	m	 			1	I	3	c	1	I	ı	I	I
Polysomy / del(p)	∞	1	12	20	n	ı	I	7	С	1	ı	∞	I	1	I	29	1	c	1	I	I	ı	I	I
Polysomy/del(q)	I	I	I	1	12	228	4	ı	ı	14	9	п	I		0	1	25	9	1	I	I	ı	I	I
Polysomy/del(p)/q ⁺	I	I	1	1	ı	ı	I	12	ı	1		1	I	1	I	1	I	I	1	I	I	ı	I	I
Polysomy/del(p)/del(q)	I	ı	ı	ı	ı	1	ı	3	8	1	ľ	I	I	1	I		3 -	I	ı	ı	ı	I	ı	I
Losses Nulisomy	I	I	1	I	I	I	I	1	I	I	1		-	_	I	1	I	I	1	I	I	I	1	72
Monosomy	I	I	I	m	I	Э	I	* M	2	1	ı	2	6	4	2	m	m	∞	I	20	I	6	I	I
Monosomy ∕ p ⁺	I	I	3	1	I	I	I	ı	I	ı		I I	I	-	I	1	I	I	I	I	I	I	I	I
Monosomy/q ⁺	I	I	I	I	I	***	ı	ı	ı	_∞	ω.	ı	I		36 –	I	I	I		I	I	ı	I	I

^{© 2011} Blackwell Publishing Ltd, Histopathology, 58, 477–500.

Table 2. (Continued)

	Chr	omo	Chromosomes	S																					İ
	_	1 2 3	3	4	2	4 5 6 7 8	7		6	10	11	12	13	14	15	16	9 10 11 12 13 14 15 16 17 18 19 20 21 22	18	19	20	21	22	Xŧ	, mx	>
Monosomy/p ⁻ /q ⁺	I	I	ı	I	I	ı	ı	ı	I	ı	I	ı	I	I	ı	ı	3	ı	I	ı	I	I	ı	ı	-1
Monosomy/p ⁺ /q ⁺ -	I	I	ı	I	I	I	I	3	I	I	I	ı	I	I	ı	I	3	I	I	I	I	I	I	ı	1
del(p)	5	5 3 16	16	I	3	I	ı	19	53	I	I	19	ı	ı	ı	I	39	I	14	ı	I	I	ı	ı	I
del(q)	3	I	ı	I	7	7 17§	5	I	ı	12 3	3	8	I	ı	I	I	I	90	3	3	ı	ı	I	ı	- 1
del(p)/del(q)	I	I	ı	I	I	I	I	I	3	I	ı	3	I	I	I	I	I	I	ı	I	I	I	ı	·	- 1
del(p)/q ⁺	10 –	I	ı	I	I	I	I	- 14†† 3		I	1	ı	I	I	ı	1	3‡	I	2	I	ı	I	1	ı	- 1
																									ı

Results expressed as percentage of altered tumours; Xf, Chromosome X in females; Xm, chromosome X in males; +, gain of a chromosome arm; del, loss of a chromosome arm; –, gain of the 13q14 and 13q34 chromosome regions in 3% and 5% of the cases, respectively.

*C-MYC amplification.

*Gain of one copy of the ERBB2 gene. ‡Gain of the13q34 locus.

SDeletion of the 6q21 and 6q23 chromosome regions found in 5% and 3% of the cases respectively.

13 % of the cases had tetrasomy associated to gains of two 6q21 loci and deletion of two 6q23 loci while another 3% of the cases had tetrasomy associated with del(6q21) and amplification of the 6q23 locus.

**Gain of the 6q21 chromosome region.

††3% of the cases showed del(8p22) with amplification of C-MYC.

Table 3. Correlation between the cytogenetic patterns detected for the 24 individual human chromosomes analysed by interphase fluorescence *in-situ* hybridization in pancreatic ductal adenocarcinomas (n = 36)

	Chromosome patterns					
	Chromosome 8		Chromosome 9		Chromosome 17	
Chromosome patterns	Diploid del(p) Polysomy	Polysomy / del(p)	Diploid del(p) Polysomy	Polysomy/del(p)	Diploid del(p) Polysomy / del(p) Diploid del(p) Polysomy / Polysomy / del(p) Diploid del(p) Polysomy / del(p)	Polysomy/del(p)
Chromosome 9 Diploid del(p)	P < 0.001					
Polysomy/del(p)	$r^2 = 0.633$					
Chromosome 17 Diploid del(p)	P = 0.001		P = 0.008			
Polysomy	$r^2 = 0.533$		$r^2 = 0.453$			
Polysomy/del(p)						
Chromosome 18 Diploid del(q)						
Polysomy	P < 0.001		P < 0.001		<i>P</i> < 0.002	
Polysomy/del(q)	$r^2 = 0.705$		$r^2 = 0.697$		$r^2 = 0.509$	

Results reported as Pearson correlation coefficient (r^2). Only cytogenetic patterns from those chromosomes showing a statistically significant correlation (P < 0.05) are displayed.

the ancestral tumoral cell clone because it carried cytogenetic abnormalities common to all other clones, whereas the later clones displayed additional cytogenetic abnormalities (Table S2). On the basis of these findings, a hypothetical model of clonal evolution can be proposed with two clearly distinct pathways. Most frequently, ancestral tumour clones showed either isolated or combined losses of chromosomes 9p, 17p or 18g (alone or in association with losses of chromosome 8p, gains of chromosome 8q and nulisomy Y); in a smaller subgroup of PDACs, del(4p) appeared to be the earliest chromosomal abnormality (Table S2; Table 3; Figures 2 and 3). These findings confirm and extend previous observations on the cytogenetic progression of PDAC, and indicate that the most frequent cytogenetic pathway involves chromosomes 17p, 18q and 9p. However, they also suggest that other abnormalities (e.g. structural changes of chromosome 8 and nulisomy Y) are also required in many patients to promote malignant transformation, as they were found in the ancestral tumour clones in a significant proportion of cases in association with del(17p), del(18q) and del(9p). To date, no study has found del(8p), +8q and -Y to be associated with early events in the development of PDAC. Despite this, recent studies have identified the c-myc protein as a key regulator in PanIN-3 lesions.⁵ Similarly, nulisomy Y has also been considered to be a differentiating characteristic between malignant and benign pancreatic disease,6 in line with our observations.

Several studies have assessed the cytogenetic heterogeneity of PDAC; however, only Kowalski *et al.* (2007)³ have proposed a model of clonal evolution for

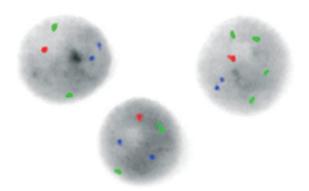


Figure 2. Representative pictures of cell nuclei from a patient carrying two different tumour cell clones in their pancreatic ductal adenocarcinoma, as defined by simultaneous hybridization for chromosomes 8p22 (red spots), 8p11.1 (blue spots) and 8q24 (green spots): one clone shows one copy for 8p22, two copies for 8p11.1 and two copies for 8q24, whereas the other has acquired two extra copies for chromosome 8q24.

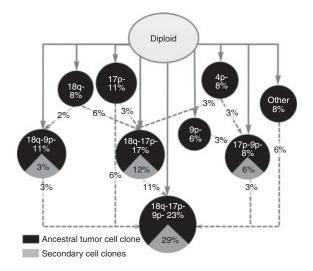


Figure 3. Genetic heterogeneity of pancreatic ductal adenocarcinoma tumours (n=36): hypothetical intratumoral pathways of clonal evolution for the 24 chromosomes (48 probes) analysed by interphase fluorescence in-situ hybridization. Percentages show the frequency of cases carrying a tumour cell clone with a specific cytogenetic profile for chromosomes 4 [del(4p)], 9 [del(9p)], 17 [del(17p)] and 18 [del(18p)]; it is of note that these abnormalities were frequently found in association with del(8p), gains of 8q and/or nulisomy Y in males. Cases labelled as 'other' include three tumours (8%): one had simultaneous gains of chromosomes 12p and 11q in association with del(19p), another displayed losses of chromosomes 8p, 12p, 19p and 21q, monosomy 6 and monosomy 15 (both associated with gains of the long arm of these latter two chromosomes), and the remaining case displayed isolated gains of 13q34.

PDAC, based on conventional cytogenetics. They also reported abnormalities involving chromosomes 8p, 17p and 18 representing early genomic imbalances; conversely, other early abnormalities defined by the same authors (e.g. changes involving chromosomes 1p, 15p, 7q and -5) were not found in the ancestral clones of our tumours. Interestingly, a subset of our PDACs showed del(4p) in their ancestral tumour clones. Although abnormalities of chromosome 4p have not been characterized in detail in PDAC, in our series polysomies of chromosome 4—frequently preceded by del(4p)—were associated with unique disease features: more advanced histological TNM stage (P = 0.05) and higher rate of early deaths (P = 0.04) (Table 4). These observations, suggesting that, in PDAC, clonal pathways involving early changes at chromosome 4p could be associated with different disease behaviour, require further confirmation in larger series of patients. Sequential cytogenetic evolution of individual tumours was frequently followed in secondary clones by further losses of chromosomes 9p, 17p and/or 18q independently of the earliest cytogenetic changes. Overall, this further

© 2011 Blackwell Publishing Ltd, Histopathology, 58, 477–500.

Table 4. Pancreatic ductal adenocarcinoma (n = 36): association between specific chromosomal abnormalities and the most relevant clinical, histopathological and biochemical features of the disease

					F	3	-	ي ا			0	-			
				CA19.9 level		grade	nodes	II S	TNM stage		by iFISH	No. of clottes by iFISH	Ç.	û	Exitus
Chromosome status	No. of cases	Age (years)* P	Tumour size (mm)*	>37 U/ml P (%)) d	/ (%) P	N (%)	Ь	IIB/IV (%)	Ь	4. 3 (%) (%)	3 4 (%)	4 (%) P	I	Yes (%) P
1p36 Normal	15	68 ± 11 (41–84) 0.3	3 2.9 ± 1.1 (2–5.8)	0.8 66	0.2 47	7 0.021	09	0.7	29	0.7	40 ,	1 47 1	13 (0.8 60	0.7
Altered	21	63 ± 11 (45–78)	3.0 ± 1.0 (1.5–6)	85	98	١,0	52		22		33 (57 1	10	52	١
2p11 Normal	20	66 ± 11 (41–78) 0.8	8 2.9 ± 0.9 (1.8–5)	0.9 93	0.05 55	5 0.04	45	0.2	50	0.1	40	55	5 (0.4 63	0.5
Altered	16	64 ± 13 (45–84)	3.1 ± 1.3 (1.5–6)	65	88	_ ~	69		75		31	50 1	19	20	_
4p11 Normal	8	63 ± 12 (41–78) 0.3	3 2.8 ± 1.1 (1.8–6)	0.5 78	0.9 61	1 0.3	44	0.2	78	0.04	39	56	9	0.6 48	0.04
Altered	18	67 ± 11 (45–84)	3.1 ± 1.1 (1.5–5.8)	9/	78	_ ~	29		44		33 (50 1	17	72	١
4p16 Normal	16	62 ± 12 (41–78) 0.3	3 2.7 ± 0.7 (1.8–4)	0.4 79	0.9 63	3 0.4	44	0.2	44	0.05	44	50	9	0.6 44	0.2
Altered	20	67 ± 11 (45–84)	3.2 ± 1.3 (1.5–6)	75	75	10	9		75		30	55 1	2	65	١
5p15 Normal	20	65 ± 11 (41–78) 0.7	7 2.8 ± 0.9 (1.8–5)	0.5 65	0.05 50	0.005	5 50	9.0	50	0.1	40	55	5 (0.4 45	0.2
Altered	16	$65 \pm 13 (45-84)$	3.3 ± 1.2 (1.5–6)	93	94		63		75		31	50 1	19	69	۱ ـ
6q21 Normal	15	69 ± 10 (45–84) 0.8	8 2.9 ± 0.9 (1.8–5)	0.8 67	0.2 60	0.3	30	0.02	40	0.03	47 ,	47) 9	0.5 47	0.7
Altered	21	$62 \pm 12 (41-77)$	3.0 ± 1.1 (1.5–6)	85	2/2		71		92		29	57 1	14	62	۱
7p11 Normal	23	66 ± 11 (41–84) 0.6	5 2.8 ± 0.9 (1.8–5)	0.4 70	0.1 57	7 0.03	39	0.008	43	0.04	44	52	4 (0.2 57	6.0
Altered	13	$63 \pm 13 (45-78)$	$3.2 \pm 1.4 (1.5-6)$	92	92	5	85		92		23 !	54 2	23	54	

^{©~2011}Blackwell Publishing Ltd, $\it Histopathology,~{\bf 58},~477-500.$

 Table 4. (Continued)

					CA19.9 level		Tumour grade		Lymph nodes		TNM stage		No. of clones by iFISH	lones	by	Exitus	sns
Chromosome status	No. of cases	Age (years)*	А	Tumour size (mm)*	>37 U/ml P (%)	Ь	/ / (%) P		N1 (%)		IIB/IV (%) P	2 %	\$\sqrt{2} 3 (%) (%)	4 (%)	<i>P</i>	Yes (%)	Ь
7q31 Normal	20	67 ± 9.7 (46–84)	0.5	2.8 ± 0.9 (1.8–5)	0.3 65	0.05 50		0.005	40 (0.04 4	45 0.0	0.03 35	9 9	5	0.4	55	6:0
Altered	16	63 ± 13 (41–78)		3.2 ± 1.3 (1.5–6)	93	94	\		75	1 00	81	38	3 44	18	I	99	ı
8p11 Normal	4	66 ± 11 (41–78)	1.0	2.8 ± 0.9 (1.8–5)	0.5 63	0.03 47		0.02	53 (0.7 5	53 0.3	3 37	7 58	5	0.5	53	0.7
Altered	22	65 ± 12 (45–84)		3.2 ± 1.3 (1.5–6)	94	94	4		59		71	35	5 47	18	İ	29	ı
8q24 Normal	12	68 ± 8 (50–78)	0.3	3.1 ± 1.3 (1.8–6)	0.9 50	0.06 42		0.01) 29	0.3 6	9.0 29	5 50) 42	∞	0.5	50	9.0
Altered	24	63 ± 13 (41–84)		2.9 ± 1 (1.5–5.8)	91	83	~		20	ועו	58	29	9 28	13	İ	28	ı
9p21 Normal	∞	65 ± 13 (41–78)	1.0	2.8 ± 0.7 (1.5–6)	0.7 88	0.4 75		0.7	87 (0.04 8	87 0.0	0.08 38	3 24	38	0.02	50	0.7
Altered	28	65 ± 11 (45–84)		3.3 ± 1.7 (1.8–6)	75	89	σ.	. •	46	ועו	54	36	5 61	3	İ	22	ı
10q23 Normal	17	64 ± 12 (41–78)	9.0	3.0 ± 0.9 (1.8–5)	0.4 77	0.9 50		0.5	0 14	0.1	41 0.0	0.02 47	7 47	9	4.0	53	0.8
Altered	19	$67 \pm 11 \ (45-84)$		2.9 ± 1.3 (1.5–6)	78	94	4	. •	89		62	26	5 58	16	İ	28	1
11 Normal	20	65 ± 11 (41–78)	0.8	2.9 ± 0.8 (1.8–5)	1.0 74	0.6 65		0.5	40 (0.04 5	50 0.1	1 45	5 50	5	0.3	90	0.5
Altered	16	65 ± 12 (45–84)		3.1 ± 1.3 (1.5–6)	81	75	ıC		75		75	25	5 56	19	İ	63	ı
12p13 Normal	11	(82–65) ± 2 (9–78)	0.5	2.8 ± 0.9 (1.5–6)	0.7 55	0.03 64		9.0) 99	9 6.0	64 0.8	3 45	5 55	0	0.3	55	6.0
Altered	25	63 ± 13 (41–84)		3.0 ± 1.1 (1.8–5)	88	72	5		99	9	09	32	2 52	16		99	

©~2011Blackwell Publishing Ltd, $\it Histopathology,~58,~477-500.$

G	
Œ	
~	
2	
_	
7	
7	
~	
0	
()	
\sim	
4.	
•	
<u>e</u>	
٩	
Ta	

															1
				CA19.9 level		Tumour grade		Lymph nodes	TNM stage		No. of clones by iFISH	ones b		Exitus	
Chromosome status	No. of cases	Age (years)* P	Tumour size (mm)*	>37 U/ml P (%)	Ь	/ (%) P	N (%)) P	IIB/IV (%) P	28	3 (%)	4 (%)	Ь	Yes (%) P	
14q23 Normal	8	65 ± 11 (41–78) 0.9	3.0 ± 0.9 (1.8–5)	0.5 59	0.01	61 0.3	3 50	0.5	56 0.5	50	50	0	0.05	.0 44	0.2
Altered	18	$65 \pm 12 (45-84)$	2.9 ± 1.3 (1.5–6)	94		78	61	ı	29	22	99	22		29	
15p11 Normal	10	65 ± 11 (41–78) 0.8	2.9 ± 1.1 (1.8–5)	0.7 70	0.5	6.0 0.9	9 30	90.0	30 0.02	2 70	30	0	0.03	30 0.	90.0
Altered	26	$65 \pm 12 (45-84)$	3.0 ± 1.1 (1.5–6)	80	. –	69	9	ı	73	23	62	15		65	
17p11 Normal	20	66 ± 11 (41–78) 0.8	2.8 ± 0.9 (1.8–5)	99 62	0.05	60 0.2	2 40	0.04	40 0.004	34 45	55	0	0.05	50 0.	0.5
Altered	16	65 ± 13 (45–84)	3.0 ± 1.3 (1.5–6)	93		81	75	I	88	25	90	25		63	
17q Normal	19	66 ± 10 (41–78) 1.0	2.8 ± 0.9 (1.8–5)	0.5 71	0.4	53 0.	0.04 41	0.1	41 0.02	2 53	47	0	0.04	47 0.	0.3
Altered	17	$64 \pm 13 (45-84)$	3.1 ± 1.2 (1.5–6)	83		84	89	ı	79	21	28	21		63	
18q21 Normal	1	71 ± 6 (61–78) 0.08	3.0 ± 1.0 (2–5)	0.5 57	0.2	62 0.6	9 75	0.2	87 0.08	3 50	38	12	9.0	50 0.	0.7
Altered	25	$63 \pm 12 (41-84)$	2.9 ± 1.1 (1.5–6)	82		71	20	I	54	32	22	7		22	
20p11 Normal	17	66 ± 11 (41–78) 0.8	2.7 ± 0.9 (1.8–5)	0.3 75	0.8	53 0.	0.04 35	0.02	41 0.02	2 24	71	2	0.1	36 0.	0.02
Altered	61	$65 \pm 12 (45-84)$	3.1 ± 1.2 (1.5–6)	80		84	74		79	46	36	2		74	
20q13 Normal	16	65 ± 12 (41–76) 0.9	3.0 ± 0.9 (2–5)	0.5 73	0.8	8.0 29	8 25	0.00	33 0.02	33	58	∞	6.0	33 0.	9.0
Altered	20	$65 \pm 11 (45-84)$	2.9 ± 1.2 (1.5–6)	79		71	71	I	75	37	90	13		29	

^{©~2011}Blackwell Publishing Ltd, $\it Histopathology,~58,~477-500.$

Table 4. (Continued)

						CA19.9 level		iour le	Tumour Lymph grade nodes		No. o TNM stage iFISH	No. e iFIS	No. of clones by iFISH	nes by	_	Exitus	
Chromosome status		No. of cases Age (years)*	Ь	Tumour size (mm)* P		>37 U/ml (%) P	/ <i>B</i>	P	N %	= 5	/ N1 B/IV (%) P (%) P		22 3 4(%) (%) (%) P	4 (%)	Ь	Yes (%) P	Ь
22q11 Normal	24	66 ± 10 (41–78)	0.7	66 ± 10 (41–78) 0.7 2.9 ± 0.8 (1.8–5) 0.9 75	6.0		0.7 63 0.2 50 0.3 54	0.2	90 (0.3 5.		2 46	90	4	0.2 46 50 4 0.02 58	58	9.0
Altered	12	63 ± 14 (45–84)		3.2 ± 1.5 (1.5–6)		82	83	1	29	7	75	∞	8 67 25	25		90	
Yq12† Normal	9	71 ± 7 (61–78)	0.03	0.03 4.0 ± 1.3 (2.7–6) 0.01 80	0.01		0.5 67 0.7 33 0.3 50	0.7	33 (0.3 5		7 33	0.7 33 67 0	0	0.6 17 0.03	17	0.03
Altered:	19	63 ± 10 (46–77)		$2.7 \pm 0.68 (1.5-4)$		63	74	1	58	28	α	32	32 53 16	16		89	

CA19.9, Carbohydrate-associated antigen; N1, regional lymph node infiltration; grade II, moderately differentiated tumours; grade III, poorly differentiated tumours; iFISH, interphase fluorescence in-situ hybridization.

Those chromosome regions that are not displayed in this table did not show statistically significant association (P > 0.05) with the clinical, histopathological and serum variables analysed.

*Mean \pm standard deviation (range). †Results refer exclusively to male patients (n = 25).

Nulisomy Y.

supports the notion that, despite PDAC being characterized by a multiplicity of genetic changes and profiles, combined losses of chromosomes 9p, 17p and/or 18q are relevant events in the malignant progression of the tumour, and that other coexisting cytogenetic changes-e.g. del(4p), nulisomy Y and chromosome 8 alterations-may further modulate the behaviour of the disease. In line with this hypothesis, nulisomy Y was also associated with unique disease features: younger males displaying smaller tumours and a worse clinical outcome (Table 4). In turn, cytogenetic changes involving chromosomes 7, 10q23 and 20 were associated with more extensive disease at diagnosis (histologically more advanced tumours, infiltration of regional lymph nodes, increased CA19.9 serum levels and/or worse clinical outcome) (Table 4), as previously reported. 2,4,7

In summary, our results show that progression of PDAC is a multistep process leading to the emergence within individual tumours of multiple clonal populations with different chromosome abnormalities and different pathways of clonal evolution.

ACKNOWLEDGEMENTS

This work was partially supported by grants from Gerencia Regional de Salud de Castilla y León (Valladolid, Spain; 86/A/06), Fundación Memoria de Don Samuel Solórzano Barruso (Salamanca, Spain; FS/15-2007-2008), Caja de Burgos (Obra Social, Burgos, Spain) and RTICC from the Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Madrid, Spain; RD06/0020/0035-FEDER). M. L. Gutiérrez was supported by a fellowship from the International Union Against Cancer (Geneve, Switzerland; ICR/06/063). J. M. Sayagués and M. González are supported by grants (CP05/00321 and FI08/00721, respectively) from the Ministerio de Ciencia e Innovación (Madrid, Spain).

> María Laura Gutiérrez José María Sayagués María del Mar Abad¹ Oscar Bengoechea¹ María González-González Alberto Orfao Luís Muñoz-Bellvis²*

Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, ¹Departamento de Patología, Hospital Universitario de Salamanca and ²Unidad de Cirugía Hepatobiliopancreática y Transplante de Páncreas, Departamento de Cirugía, Salamanca, Spain

*Both authors have equally contributed to this study and they should both be considered as last author.

- 1. Sayagues JM, Abad MM, Melchor HB et al. Intratumoural cytogenetic heterogeneity of sporadic colorectal carcinomas suggests several pathways to liver metastasis, I. Pathol. 2010; 221: 308-319.
- 2. Harada T, Okita K, Shiraishi K et al. Detection of genetic alterations in pancreatic cancers by comparative genomic hybridization coupled with tissue microdissection and degenerate oligonucleotide primed polymerase chain reaction. Oncology 2002; 62; 251 - 258.
- 3. Kowalski J, Morsberger LA, Blackford A et al. Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes. Cancer Genet. Cytogenet. 2007; 178; 26-
- 4. Schleger C, Arens N, Zentgraf H, Bleyl U, Verbeke C. Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH). I. Pathol. 2000: 191: 27-32.
- 5. Pan S, Chen R, Reimel BA et al. Quantitative proteomics investigation of pancreatic intraepithelial neoplasia. Electrophoresis 2009; 30; 1132-1144.
- 6. Wallrapp C. Hahnel S. Boeck W et al. Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis. Int. J. Cancer 2001; 91; 340-344.
- 7. Tsiambas E, Karameris A, Lazaris AC et al. EGFR alterations in pancreatic ductal adenocarcinoma: a chromogenic in situ hybridization analysis based on tissue microarrays. Hepatogastroenterologu 2006: 53: 452-457.

SUPPORTING INFORMATION

Additional Supporting information may be found in the online version of this article:

Table S1. Characteristics of the 48 fluorescence in-situ hybridization (FISH) probes directed against different genes, loci and centromeric regions of the 24 human chromosomes used in the present study.

Table S2. Pancreatic ductal adenocarcinoma (n = 36): distribution and detailed cytogenetic characteristics of the tumour cell clones identified by interphase fluorescence in-situ hybridization (iFISH) in each tumour sample analysed.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Artículo 2: "Asociación entre subgrupos genéticos de adenocarcinoma ductal de páncreas definidos mediante microarrays de SNPs (500K) de alta densidad y la histopatología del tumor"

Objetivos: Seguramente que muchos de los genes y de las vías de alteración genética asociados de forma específica al adenocarcinoma ductal pancreático (ADCP) siguen sin conocerse, debido a la baja resolución que presentan las técnicas utilizadas hasta la fecha para su estudio. En el presente trabajo, utilizamos técnica de *microarrays* de polimorfismos de nucleótido único (SNPs) de alta densidad (500K) para: i) definir las regiones cromosómicas que más frecuentemente presentan alteraciones en el número de copias (CNV) de ADN en muestras tumorales de pacientes con ADCP y; ii) correlacionar los perfiles genéticos encontrados con las características clínicas e histopatológicas más relevantes de la enfermedad.

Materiales y métodos: En conjunto, analizamos un total de 20 muestras pareadas de ADN tumoral y ADN normal (leucocitario) obtenidas al diagnóstico. En todos los casos, se analizó el patrón de CNV del ADN tumoral empleando técnica de *microarrays* de SNPs y se llevaron a cabo estudios de hibridación *in situ* fluorescente sobre núcleos interfásicos (iFISH) para la detección de las anomalías numéricas de 12 cromosomas diferentes, incluyendo aquellos que habitualmente se encuentran alterados en ADCP.

Resultados: En conjunto, nuestros resultados mostraron que los tumores primarios de ADCP frecuentemente presentan (70%) ganancias a nivel de los cromosomas 1q, 7q, 8q y 20q, junto con pérdidas de material genético a nivel de los cromosomas 1p, 9p, 12q, 17p y 18q, en cuyas regiones están codificados múltiples genes relacionados con cáncer y específicamente con ADCP. De acuerdo con el patrón de alteraciones encontradas, los ADCP estudiados podrían subdividirse en dos grupos de pacientes con perfiles genéticos distintos y caracterizados por ganancias en las regiones cromosómicas 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 y 22q13.32 (grupo 1; n = 9) versus ganancias en 1q21.1 y pérdidas de material cromosómico en las regiones 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 y Xp22.33 (grupo 2; n=11). Desde el punto de vista clínico y histopatológico, encontramos una asociación significativa entre los tumores del grupo 1 y tumores histológicamente bien/moderadamente diferenciados (grado I/II) y de pequeño tamaño, mientras que los tumores del grupo 2 mostraron en general mayor tamaño y menor grado de diferenciación (grado III).

Conclusiones: Estos hallazgos confirman la complejidad y heterogeneidad genética del ADCP y proporcionan evidencia a cerca de la posible asociación entre el perfil citogenético y las características histopatológicas del tumor. Además, identificamos distintas regiones cromosómicas que albergan múltiples genes asociados a cáncer, como regiones posiblemente relevantes en la patogénesis del ADCP.

Association between Genetic Subgroups of Pancreatic Ductal Adenocarcinoma Defined by High Density 500 K SNP-Arrays and Tumor Histopathology

María Laura Gutiérrez¹, Luís Muñoz-Bellvis², María del Mar Abad³, Oscar Bengoechea³, María González-González¹, Alberto Orfao¹*, José María Sayagués¹,

1 Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain, 2 Unidad de Cirugía Hepatobiliopancreática y Trasplante de Páncreas, Departamento de Cirugía, Hospital Universitario de Salamanca, Salamanca, Spain, 3 Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain

Abstract

The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP)-arrays to define those chromosomal regions which most commonly harbour copy number (CN) alterations and loss of heterozygozity (LOH) in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70%) extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9) versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11). From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/ moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterogenity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.

Citation: Gutiérrez ML, Muñoz-Bellvis L, Abad MdM, Bengoechea O, Gonzalez-Gónzalez M, et al. (2011) Association between Genetic Subgroups of Pancreatic Ductal Adenocarcinoma Defined by High Density 500 K SNP-Arrays and Tumor Histopathology. PLoS ONE 6(7): e22315. doi:10.1371/journal.pone.0022315

Editor: Giuseppe Novelli, Tor Vergata University of Rome, Italy

Received March 17, 2011; Accepted June 19, 2011; Published July 21, 2011

Copyright: © 2011 Gutiérrez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported by grants from the Gerencia Regional de Salud de Castilla y León, Valladolid, Spain (86/A/06 and GRS432/A/09), Fundación Memoria de Don Samuel Solórzano Barruso, Salamanca, Spain (FS/15-2007-2008), Caja de Burgos (Obra Social) Burgos, Spain and the RTICC from the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain (RD06/0020/0035-FEDER). JM Sayagués and M González are supported by grants (CP05/00321 and F108/00721, respectively) from the Ministerio de Ciencia e Innovación, Madrid, Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

1

Competing Interests: The authors have declared that no competing interests exist.

- * E-mail: orfao@usal.es
- These authors contributed equally to this work.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a 5-year mortality rate of almost 100%. As in other types of cancer, understanding of the molecular mechanisms involved in tumor development and progression is a prerequisite to improve early diagnosis and therapy. Usage of a wide battery of techniques such in situ fluorescence hybridization (FISH), comparative genomic hybridization (CGH) and array-CGH (aCGH), has allowed identification of multiple specific recurrently altered chromosomal areas in PDAC tumors; most frequently reported alterations include losses of chromosomes 8p, 9p, 17p and 18q, together with gains of chromosomes 3q, 8q and 20q [1–4]. However, the identification of the specific genes targeted by such abnormalities has proven difficult with these approaches, partially

due to the fact that these techniques have a relatively limited resolution. In fact, the highest resolution of such approaches applied so far to the study of PDAC are based on aCGH[5,6] which has proven to be still relatively limited in resolution for detailed characterization of small regions carrying genetic changes and the identification of the involved genes.

The development of wide-genome approaches such as high-density single nucleotide polymorphism (SNP)-arrays, has further improved the sensitivity of aCGH and provided the opportunity for large scale genotyping with a more accurate definition of the magnitude of the abnormalities detected, through the identification of copy number variation (CNV) and loss of heterozigosity (LOH) for hundreds of thousands of SNPs[7]. This allows highly precise mapping of those genetic changes occurring across the entire genome in a major fraction of all tumor cells, providing a

July 2011 | Volume 6 | Issue 7 | e22315

promising starting point for the identification of novel candidate genes affected by such genomic alterations and profiles. To the best of our knowledge, only Jones et al and Harada et al[8,9] have previously applied the SNP-array technology to primary PDAC samples and none of them has investigated so far the potential association between SNP-array profiles of copy number alterations and tumor histopathology.

In the present study, we applied higher density 500 K SNP arrays with a 2.5 Kb of resolution, to a series of 20 PDAC tumors vs. paired peripheral blood (PB) samples from an identical number of patients who underwent complete tumor resection. Our major goal was to map the most common reccurrent chromosomal alterations present at diagnosis in PDAC tumors and correlate them with the histopathological subtypes of the disease. Overall, the copy number values (CNV) obtained confirm that primary PDAC frequently (>70%) carry extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q; these chromosomal regions, contain multiple cancer genes known to be directly related to PDAC disease. Most interestingly, we show for the first time the existence of two major groups of PDAC defined on the basis of the altered SNP-array profiles which showed a close association with tumor histopathology.

Materials and Methods

Patients and samples

Tissue specimens were obtained at diagnosis from 20 sporadic PDAC patients (15 males and 5 females) -mean age of 67 years (range: 45 to 84 years)-. All patients underwent surgical tumor resection at the Division of Hepatobiliary and Pancreatic Surgery of the University Hospital of Salamanca (Salamanca, Spain), between October 2003 and October 2008. The study was approved by the local ethics committee of the University Hospital of Salamanca (Salamanca, Spain) and written informed consent was given by each individual prior to entering the study, according to the Helsinki Declaration.

Tumors were diagnosed and classified according to Adsay et al. [10] with the following distribution: 5 cases corresponded to well-differentiated/grade I tumors; 7 to moderately-differentiated/grade II, and; 8 to poorly-differentiated/grade III PDAC. Histopathological grade was confirmed in all cases in a second independent evaluation by an experienced pathologist. Most tumors (18/20, 90%) were localized in the head of the pancreas; the remaining two cases were localized in the pancreatic body and body/tail, respectively. Mean tumor size at diagnostic surgery was of 3.0 ± 0.95 cm; 10 cases corresponded to TNM stage IIA tumors and the other 10 to TNM stage IIB. The most relevant clinical and laboratory patient characteristics are summarized in table 1.

Once histopathological diagnosis had been established, part of the tumor sample showing both macroscopical and microscopical infiltration was used to prepare single cell suspensions for iFISH and SNP-array studies. From the paraffin-embedded tissue samples, sections were cut from three different areas representative of the tumoral tissue and placed over poly L-lysine coated slides. All tissues were evaluated after hematoxylin-eosin staining to confirm the presence and determine the quantity of tumor cells infiltrating the material to be studied by SNP-arrays. For SNParray studies, tumor DNA was extracted from freshly-frozen tumor tissues mirror cut to those used for iFISH analyses, which contained ≥70% tumor cells. In turn, normal DNA was extracted from matched PB leucocytes from the same patient. For both types of samples (tumor tissue and PB leucocytes), DNA was extracted using the QIAamp DNA mini kit (Qiagen, Hilden, Germany) following the manufacturer's instructions.

SNP-array studies

Paired samples of purified tumoral DNA and normal PB DNA from individual patients were hybridized to two 250 K Affymetrix SNP Mapping arrays each (NspI and StyI SNP arrays; Affymetrix, Santa Clara, CA, with a median resolution of 2.5 Kb and an average distance between SNPs of 5.8 Kb), using a total of 250 ng of DNA per array, according to the instructions of the manufacturer. Fluorescence signals were detected using the GeneChip Scanner 3000 (Affymetrix) and data stored in CEL files. Analysis of paired tumoral/normal CEL files containing data on the SNP-array results was done using the Genotyping Console software (GTC v2.1, Affymetrix). Genotypes were generated using the BRLMM algorithm included in the GTC software. The mean call rate for individual SNPs was systematically ≥86.5% (median of 98.6%). Copy number (CN) alterations and loss of heterozigocity (LOH) were inferred by a Hidden Markov Model-based algorithm implemented in the GTC software program, using parameter settings recommended by Affymetrix for tumoral/ normal paired samples and a minimum physical length of at least 5 consecutive SNPs for putative genetic alterations. "Genetic gains" (CN≥2.5) and "losses" (CN≤1.7) were defined according to GTC working criteria. In turn, "high CN gains" and "homozygous losses" were considered to be present when CN values ≥4 and CN≤0.3 were found, respectively.

At every locus, LOH was assumed to be present when a single allele was detected in tumor DNA from heterozygous individuals at a greater percentage than the other allele; it was further subclassified as either true LOH, when loci at which one of the parental copies of a chromosome was deleted, or as copy neutral LOH (cnLOH), when tumoral DNA displayed two copies of a chromosomal region from one parent in the absence of the allele derived from the other parent. Analysis of LOH was restricted to DNA sequences from autosomal chromosomes.

Interphase fluorescence in situ hybridization (iFISH) studies

In all cases, iFISH studies were performed on an aliquot of the single cell suspension prepared from the tumor sample. A set of 12 locus-specific FISH probes directed against DNA sequences localized in 11 different human chromosomes and specific for those chromosomal regions more frequently gained or deleted in PDAC, were systematically used to validate the results obtained with the SNP-arrays (Table 2). The methods and procedures used for the iFISH studies have been previously described in detail[11].

Statistical Methods

For all continuous variables, mean values and their standard deviation (SD) and range were calculated using the SPSS software package (SPSS 12.0 Inc, Chicago, IL USA); for dichotomic variables, frequencies were reported. In order to evaluate the statistical significance of differences observed between groups, the Mann-Whitney U and X2 tests were used for continuous and categorical variables, respectively (SPSS). A multivariate stepwise regression analysis (regression, SPSS) was performed to examine the correlation between the chromosomal abnormalities found by iFISH versus SNP-array techniques. Hierarchical clustering analysis was performed to classify cases according to their CN genetic profile by using the Cluster 3.0 software (PAM software; http://www-stat.stanford.edu/~tibs/PAM). Clustering was run using an Euclidean distance metric and the average linkage method. For visualization of dendograms the TreeView software 1.0.4[12] was used. P-values <.01 were considered to be associated with statistical significance.

Table 1. Clinical and biological characteristics of patients with PDAC (n = 20).

			CA19.9										
Case ID	Gender	Age (years)	serum levels (U/ml)	Localization of primary tumor	Histological grade	Tumor size (cm)	TNM stage		LNR	Perineural Invasion	Vascular Invasion	Type of surgical resection	Genetic subgroup*
1	F	74	>500	Head	I	2	T3N0M0	IIA	0/17	+	=	R0	1
2	М	74	144	Head	1	2.5	T2N1M0	IIB	3/25	+	-	R1	1
3	F	79	177	Head	1	2.5	T2N1M0	IIB	3/28	+	-	R0	1
4	М	64	41.4	Head	1	2.2	T3N1M0	IIB	3/16	+	-	R1	2
5	F	73	377	Head	T	2	T3N0M0	IIA	0/10	+	-	R0	2
6	М	77	>500	Head	II	3.5	T3N1M0	IIB	4/29	+	-	R0	1
7	М	73	<2.5	Head	II	2	T3N1M0	IIB	1/27	-	=	R0	1
8	М	61	3	Head	II	3	T2N0M0	IIA	0/27	+	-	R1	1
9	М	51	>500	Head	II	2.5	T3N1M0	IIB	1/18	+	+	R1	1
10	М	88	89	Head	II	2	T3N0M0	IIA	0/18	-	-	R1	1
11	М	74	45.3	Head	II	3.5	T2N1M0	IIB	5/5	+	=	R1	2
12	М	65	<2.5	Head	II	3	T3N1M0	IIB	2/24	+	-	R0	2
13	М	60	313	Head	III	NA	T3N0M0	IIA	0/0	+	=	R0	2
14	М	74	315	Head	III	4	T3N0M0	IIA	0/37	-	-	R0	2
15	М	56	>500	Head	III	3	T3N0M0	IIA	0/32	+	=	R0	1
16	F	45	>500	Head	III	3.5	T2N1M0	IIB	9/72	+	-	R0	2
17	М	78	176	Head	III	3.5	T2N1M0	IIB	1/27	+	-	R0	2
18	М	62	58	Head	III	2.8	T3N0M0	IIA	0/13	+	-	R0	2
19	F	76	124	Body/tail	III	5.8	T2N1M0	IIB	1/16	-	=	R0	2
20	М	46	<2.5	Body	III	4	T3N0M0	IIA	0/18	+	-	R0	2

M: male; F: female; CA19.9: carbohydrate associated antigen; LNR: lymph node ratio expressed as number of positive lymph nodes from all lymph nodes analyzed; R0: negative microscopic resection margins. R1: positive microscopic resection margins. NA: data not available. *as defined by hierarchical clustering analysis of CNV obtained by SNP-arrays studies.

doi:10.1371/journal.pone.0022315.t001

Table 2. Correlation between the numerical changes detected by 12 iFISH probes and CN values obtained with the SNP-arrays for the same chromosomal regions in 20 PDAC.

FISH probe	Chromosome localization	iFISH probe length (kb)	N. of SNPs* inside the region identified by the FISH probe	R2 (P-value)
LSI N-MYC	2p24	200	38	0.70 (0.001)
LSI <i>D5S23</i>	5p15	450	118	0.60 (0.005)
LSI SEC63	6q21	275	275	0.76 (<0.001)
LSI MYB	6q23	740	88	0.56 (0.01)
LSI <i>D7</i> S486	7q31	200	33	0.62 (0.004)
LSI CMYC	8q24	600	159	0.79 (<0.001)
LSI <i>PTEN</i>	10q23	368	49	0.70 (0.001)
LSI TEL	12p13	350	98	0.76 (<0.001)
LSI <i>LAMP1</i>	13q34	550	92	0.55 (0.012)
LSI HER2	17q11	109	10	0.59 (0.006)
LSI BCL2	18q21	750	153	0.64 (0.002)
LSI AML1	21q22	500	111	0.60 (0.005)

All probes were purchased from Vysis Inc (Chicago, IL, USA), except for the 6q21 and 12p13, which were obtained from QBIOgene Inc (Amsterdam, The Netherlands). **Affymetrix 500 K SNP array plataform; iFISH: Interphase fluorescence *in situ* hybridation. doi:10.1371/journal.pone.0022315.t002

Results

Frequency and type of chromosomal abnormalities detected by SNP-arrays

Identification of chromosomal regions throughout the whole genome of PDACs with CN alterations and LOH showed that those chromosomal regions most frequently lost were 17p12 (15/20 cases; 75%), followed by 1p35, 9p22, 12q23 and 18q21 (14/20 cases; 70%) (Table 3). Similarly, gains were frequently observed at chromosomes 1q21.2 and 8q24.3 (15/20 cases; 75%), followed by chromosomes 7q36 and 20q13 (14/20 cases; 70%). Gains and losses of many other chromosomal regions were identified at lower frequencies (≤65%; Table S1).

In adittion, large chromosomal regions displaying LOH were also detected in most PDAC tumors (80% of cases) at chromosomes 17p13.1–17p11.2 (7.5 Mb) and 17p13.3–17p13.1 (6.9 Mb) (Table 3). Noteworthy, the latter region showed complex patterns of genetic changes including LOH (10/20 cases; 50%), cnLOH (3/20 cases, 15%) and cnLOH associated with total or partial CN gains (3/20 cases, 15%). Additional LOH regions were identified on chromosome 9p (n=8 regions that expanded from 9p21.1 to the 9p24.1 chromosome band), and chromosome 18q (n=4 regions at 18q12.1–18q12.3 and another 2 regions in 18q21.1 and 18q22.1–18q22.2, respectively). Interestingly, LOH at chromosome 9p mainly involved regions associated with deletions of one copy of specific chromosomal areas, while LOH at chromosome 18q displayed more complex patterns of LOH in association with cnLOH.

Correlation between the chromosomal changes detected by SNP-arrays and iFISH

Overall our results showed a high degree of correlation between the SNP-array and iFISH results with a mean R2 of 0.65 ± 008 (range: 0.55 to 0.79) between both methods (Table 2). In addition, chromosomal abnormalities identified in those chromosomal regions evaluated by iFISH were similar to those found by SNP-array studies: gains/amplifications at 2p24 were detected in 30% of the cases by iFISH versus 20% by SNParrays studies (R2 = 0.70; p<0.001) as well as at 5q31 found in 25% of cases by iFISH vs. 30% by SNP-arrays studies (R2 = 0.60; p < 0.005) and 8q34 (55% Vs. 50%; R2 = 0.79; p < 0.001); similarly, gains/amplifications and deletions of 7q31 (20% and 20% vs. 5% and 10%, respectively; R2 = 0.62; p<0.004), 10q23 (10% and 20% vs. 5% and 10%; R2 = 0.70; p < 0.001), 12p13 (20% and 45% vs. 15% and 25%; R2 = 0.76; p < 0.001), 13q34 (25% and 15% vs. 55% and 10%; R2 = 0.55; p<0.012), 17q11 (15% and 10% vs. 25% and 20%; R2 = 0.59; p<0.006); similarly, deletions of chromosomes 6q21 (50%) vs. 40%, respectively; R2 = 0.76; p<0.001), 6q23 (35% vs. 40%; R2 = 0.56; p<0.01), 18q21 (75% vs. 49%; R2 = 0.64; p<0.002) and 21q22 (45% vs. 40%; R2 = 0.60; p = 0.005), were detected at similarfrequencies with both methods.

Cancer-associated genes coded in chromosomal regions frequently altered in PDAC

By integrating the genomic public data (Ensembl relase 59, Human build GRCh37) with our CN and LOH results, we sought to identify regions which showed recurrent CN changes containing at least one known and well-characterized gene (Table 4). Accordingly, CN gains were frequently detected (≥75%) in those chromosomal regions coding for the *PSCA*, *SLURP1*, *NTSR1*, *CDH4*, *BAI1*, *TARS2*, *GML*, *OGFR* and *PTPRN2* genes, which have been described to be involved in cancer and/or pancreatic functions. Remarkably, from these

genes, the PSCA, NTSR1, OGFR and TNFRSF6B genes have also been associated with pancreatic malignancies and the sonic hedgehog gene has been directly related to stem-cellness. In turn, the most commonly deleted gene was MYOCD, a cancer related gene which also displayed LOH in most of our cases (80%; Table 3); other frequently deleted cancer-associated genes included the EYA3, NR2C1, PTAFR, and the DCC cancer associated genes which have also been involved in pancreatic cancer. In turn, common regions of LOH also included two genes that have been involved in pancreatic cancer: the RPH3AL and SERPINF1 genes at chromosome 17p13. Noteworthy, regions of LOH identified in chromosome 18q12 also contain genes that have been reported to be involved in pancreatic malignant tumors, e.g. the MAPRE2 gene found to be deleted by LOH in 50% of the cases and by cnLOH in another 20% of the tumors. Other cancer-associated genes coded in those chromosomal regions displaying LOH in a relatively high proportion of cases are listed in Table 3.

Association between the CNV and LOH profile of PDAC tumors and other disease characteristics

Univariate analysis revealed a significant association between gains of the 10q26.13–q26.3, 11q13.1–q13.4 and 22q13.1–q13.32 chromosomal regions and grade I/II tumors (p \leq 0.03). Similarly, a significant association was found between cases with gains at the 10q26.13, 10q26.3, 11q13.1and 22q13.1–q13.32 chromosomal regions and smaller tumor sizes (average tumor size of 2.5 cm vs. 3.4 cm; p \leq 0.04), whereas Xp22.33 losses were associated with larger tumors (median tumor size of 3.5 cm vs. 2.6 cm; p=0.03) (Table S2). No other significant associations were found between specific genetic changes and other disease features (gender, age, CA19.9 serum levels, localization of primary tumor, TNM stage, LNR, perineural invasion, vascular invasion and type of surgical resection).

Hierarchical clustering analysis of the 20 PDAC tumors studied according to their CNV and LOH profiles showed the existence of two well-defined groups of tumors (Figure 1). All 9 PDAC tumors from group 1 showed gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions, while group 2 consisted of 11 cases who shared gains of the 1q21.1 chromosomal region together with a relatively high frequency of losses (≥64% of cases) of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and for Xp22.33 chromosomal regions. Interestingly, the former group also showed a high rate of well/ moderate-differentiated grade I/II PDAC tumors (8/9 cases, 89%; p = 0.03), while group 2 patients mainly corresponded to poorly-differentiated, grade III carcinomas (8/11 cases, 73%; p = 0.03) (Figure 1). Twelve cancer-associated genes mapping in six of these regions were identified to be altered: the INPP5A (at 10q26.3), CDX1, CAMK2A (at 5q32), MB and APOL6 (both at 22q13.1) genes among the former (group 1) cases, and the SFRS13A (1p36.11), VPS53, FAM57A, GEMIN4, ELP2P and GLOD4 (all of them at 17p13.3) and the CSF2RA and the IL3RA (both at Xp22.33) genes, all deleted among group 2 cases (Figure 1).

Discussion

PDAC are heterogeneous tumors that frequently display complex genetic profiles as confirmed in the present study where multiple CNV and LOH regions were identified in every case analyzed. Overall, our findings indicate that the genetic profile of primary PDAC is defined by imbalanced losses of

Table 3. Most frequently (>70%) detected regions of gain, loss and LOH in PDAC genotyped on the Affymetrix 500 K SNP array platform (n = 20).

Chromo	osomal (Chr) region (bp)	Chromosome band	Length (Kb)	N. of SNPs in the altered region	% of altered cases	Genes involved* (N. of genes)	
CN Loss	ses						
chr1:	28,370,650-28,562,758	p35.3	192	16	70%	EYA3, PTAFR	(3)
chr9:	14,980,485-15,038,399	p22.3	57.9	10	70%		(1)
:hr12:	95,450,296-95,526,343	q23.1	76	16	70%	NR2C1	(2)
:hr17:	2,981,856-3,082,150	p13.3	100	23	70%		(2)
	9,200,905-9,347,984	p13.1	347	38	70%		(1)
	11,246,600-11,347,984	p12	101	36	75%		(1)
	12,306,804-12,540,753	p12	234	44	75%	MYOCD	(2)
	47,053,989-47,085,681	q21.1	31.7	9	70%		(0)
	47,095,478-47,133,926	q21.1	38.5	11	70%		(1)
chr18:	50,371,940-50,528,205	q21.2	156	29	70%	<u>DCC</u>	(1)
	53,612,861-53,710,464	q21.31	97.6	26	70%		(1)
CN Gair	ns						
chr1:	147,306,690-147,521,567	q21.2	214.9	8	75%		(6)
	150,306,335-150,329,391	q21.3	23	5	70%	PRPF3	(1)
	150,355,573-150,496,340	q21.3	140.8	30	70%	TARS2, ECM1	(5)
chr7:	154,876,017-154,924,521	q36.3	48.5	18	70%		(1)
	155,386,030–155,490,447	q36.3	104	22	70%		(1)
	157,638,633-157,783,490	q36.3	91	20	70%	PTPRN2	(1)
chr8:	142,428,444–142,726,810	q24.3	298	46	70%	PTP4A3	(3)
		•					(2)
		•					(1)
	143,564,928–143,854,26	•		30		BAI1, <u>PSCA</u> , SLURP1	(20)
						GML	(3)
chr12: 95,450,296-95,526,343 q23.1 76 16 70% NR2c chr17: 2,981,856-3,082,150 p13.3 100 23 70% 9,200,905-9,347,984 p13.1 347 38 70% 11,246,600-11,347,984 p12 101 36 75% 12,306,804-12,540,753 p12 234 44 75% MYO 47,053,989-47,085,681 q21.1 31.7 9 70% chr18: 50,371,940-50,528,205 q21.2 156 29 70% chr18: 50,371,940-50,528,205 q21.2 156 29 70% CN Gains chr1: 147,306,690-147,521,567 q21.2 214,9 8 75% 150,306,335-150,329,391 q21.3 23 5 70% PRPF 150,306,335-150,329,391 q21.3 140.8 30 70% TARS chr2: 154,876,017-154,924,521 q36.3 48.5 18 70% 157,638,633-157,783,490 q36.3 104 22 70% chr8: 142,428,444-142,726,810 q24.3 298 46 70% PTPA 143,374,709-143,355,971 q24.3 602.8 99 75% 143,374,709-143,355,971 q24.3 602.8 99 75% chr20: 55,633,244-55,734,303 q13.32 101 26 70% chr20: 55,633,244-55,734,303 q13.32 101 26 70% chr20: 55,633,244-55,734,303 q13.32 101 26 70% 55,744,225-55,754,966 q13.32 107 10 70% BMP 59,755,109-59,777,020 q13.33 46.7 8 70% CDH chr9: 7,641,255-9,061,636 p24.1-p23 142.04 433 75% PTPR 62,246,579-62,376,958 q13.33 130 24 70% NSF 19,032,340-20,480,069 p22.1-p21.3 1447.7 290 75% 21,050,888-21,143,835 p21 q21.3 135.6 19 75% 22,002,094-23,164,592 p21.3 135.6 19 75% 21,370,303-21,505,928 p21.3 135.6 19 75% 22,002,094-23,164,592 p21.3 135.6 19 75% 21,370,303-21,505,928 p21.1 938.8 190 70% chr17: 0-6,858,022 p13,3-p13.1 6858 988 80% RPH- SERVINGENERAL PARCE PROPAL		(2)					
						BMP7	(1)
		•				5 0	(1)
							(1)
		•				NTSR1, OGFR	(15)
	62,246,579-62,376,958	q13.33	130	24	70%	STMN3, RTEL1, ZGAPT, SLC2A4RG, ARFRP1, <u>TNFRSF6B</u>	(9)
LOH							
chr9:	7,641,255–9,061,636	p24.1-p23	1420.4	433	75%	PTPRD1	(2)
	9,415,137–17,868,117	p23-p22.2	8453	2138	75%	PTPRD1, TYRP1, NFIB, ZDHHC21, CER1, PSIP1, BNC2, SH3GL2	(16)
	19,032,340-20,480,069	p22.1-p21.3	1447.7	290	75%	PLIN2, RPS6, MLLT3	(9)
	21,060,888-21,143,835	p21.3	82.9	25	75%		(2)
	21,370,303-21,505,928	p21.3	135.6	19	75%		(5)
	22,902,094–23,164,592	p21.3	262.5	37	75%		(0)
	25,043,325-27,458,065	p21.3-p21.2	2414.7	539	75%	TUSC1,TEK, NCRNA00032	(9)
	30,978,599–31,917,398	p21.1	938.8	190	70%		(0)
chr17:	0-6,858,022	p13.3–p13.1	6858	988	80%	RPH3AL, FAM57A, GEMIN4, YWHAE, CRK, SERPINF2, SERPINF1, SMYD4, RPA1, HIC1, MNT, TM4SF5, NUP88, XAF1SMYD4, RPA1, HIC1, MNT, P2RX5, CAMKK1, ATP2A3, CYB5D2, MYBBP1A, ALOX15, PELP1, TM4SF5, PLD2, SLC25A11, RNF167, PFN1, USP6, NUP88, DHX33, XAF1, ALOX12	(132

Table 3. Cont.

Chromo	osomal (Chr) region (bp)	Chromosome band	Length (Kb)	N. of SNPs in the altered region	% of altered cases	Genes involved* (N. of genes)	
	9,849,290–17,282,737	p13.1-p11.2	7433.5	1343	80%	MYH1, MYH3, MAP2K4, MYOCD, NCOR1, ZNF624, TNFRSF13B, MPRIP, FLCN	(57)
:hr18:	28,634,894-29,240,123	q12.1	605	78	70%		(1)
	29,328,366-31,452,672	q12.1-q12.2	2124	147	70%	MAPRE2	(10)
	33,893,503-36,183,722	q12.2-q12.3	2290	415	75%		(1)
	36,600,581-40,107,505	q12.3	3506.9	657	75%	PIK3C3	(4)
	41,807,620-42,006,021	q21.1	198.4	18	75%		(3)
	61,651,678-66,668,993	q22.1-q22.2	5017	1036	70%	CDH19, SOCS6	(9)

*Only cancer-associated genes (in bold) or genes related to pancreas (underlined) are shown. doi:10.1371/journal.pone.0022315.t003

chromosomes 1p, 9p, 12q, 17p and 18q together with gains of the 1q, 7q, 8q and 20q chromosomal regions. These results confirm previous analyses using chromosome banding techniques[13,14], CGH[15], aCGH[1,2,4,16], low-resolution 100K SNP-arrays[8] and gene sequencing combined or not with SNParray technology [9,17]. Despite a high correlation was also found between the SNP-array results and iFISH analyses performed on the same series of primary tumors samples - as regards the most commonly deleted (e.g. 17p, 18q, 9p and 8p) and gained (e.g. 1q, 15q and 8q) chromosomal regions[11]-, a higher frequency of deletions at chromosomes 1p and 17q, and gains at chromosomes 7q and 20q were found by SNP- arrays vs. iFISH technique (around 70-75% vs. 5-25%, respectively). Such discrepancies could be explained, at least in part, by the increased sensitivity of the SNP-array vs. iFISH studies in the identification of small interstitial changes[18].

A more detailed analysis of the most frequently altered chromosomal regions shows that they contain multiple cancerassociated genes, including several genes which have been specifically related to PDAC. Among others, these latter genes consisted of gained genes such as the PSCA gene, a plausible PDAC tumor marker associated with pancreatic cancer progression[19-22], the TNFRSF6B gene (a member of the tumor necrosis factor receptor family) which is amplificated in many tumors [23-26] and whose overexpression blocks growth inhibition signals in PDAC[27], and the NTSR1 and OGFR genes, involved in cancer progression[28-30], modulation of angiogenesis[31] and regulation of cell proliferation[32]. In turn, frequently deleted genes of interest were the RPH3AL gene, a potential tumor suppressor gene related with insulin exocytosis[33], the SERPINF1 gene which has been detected to be involved in many epithelium derived tumors[34,35], and the MAPRE2 gene, previously found to be lost in leukemic cells[36], pancreatic cancer[37] and esophageal squamous cell carcinoma[38]; interestingly, deletion of other cancer associated genes which have not been previously associated to pancreatic malignances (MYOCD[39,40], NR2C1[41] and PTAFR[42]) were found at higher frequencies than other (e.g. CDKN2A, TP53 or SMAD4[43,44]) genes shown to be recurrently altered/deleted in PDAC. These results underline the potential role of several previously unexplored tumor suppressor genes in the pathogenesis of PDAC. In turn, genes which have been previously found to be amplified in PDAC patients by SNP-arrays[8], such as the SACP2 gene, were also altered in our series but at a lower frequency (e.g. 60% vs. 40% of cases, respectively). Such variability could be partially related to the lower number of patients analyzed and the effect of studying paired tumoral/normal DNA samples in the resolution of the SNP-array for detection of CN alterations.

Most interestingly, is the observation that based on the overall genetic profile of PDAC tumors detected by SNP-arrays two well defined groups of PDAC tumors emerge which are differentially characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1) and by gains at 1q21.1 with coexisting losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2), respectively. From the clinical and histopathologicall point of view, while group 1 PDAC mostly corresponded to smaller well/moderately differentiated grade I/II cases, group 2 mainly consisted of larger and poorly-differentiated PDAC. Among the few well/moderately differentiated carcinomas included in this latter group, 2/3 cases showed intermediate cytogenetic features with coexistence of gains of chromosomes 1q21.1 together with gains of chromosomes 10q, 22q and 11q. Whether these two distinct cytogenetic profiles reflect different cytogenetic pathways vs. sequential stages of development of PDAC, remains to be determined. However, the identification of rather different and non-overlapping chromosomal changes in both groups of tumors would support they could more likely reflect two genetically different diseases. Further studies in larger series of patients are warranted to elucidate this question and determine the specific role of those cancer associated genes (INPP5A, CDX1, MB, CAMK2A, APOL6 vs. VPS53, FAM57A, GEMIN4, SFRS13, ELP2P, GLOD4, CSF2RA and IL3RA), differentially altered in both groups of tumors. In this regard, it should be noted that from those genes, two or more are involved in common intracellular pathways such the cytokinecytokine receptor interactions involving Jak-STAT signaling (IL3RA and CSF2RA genes) or RNA processing pathways (GEMIN4 and SFRS13A genes) [45,46]. Further analyses of gene expression profiles may contribute to determine their relevance in the pathogenesis of PDAC.

In summary, in the present study we confirm the cytogenetic complexity and heterogenity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the most frequently altered regions identified harbor multiple cancer-associated genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.

Table 4. Genes most commonly gained and lost in PDAC: chromosomal localization and altered frequencies (n = 20).

			CN gene alteration						
Gene	Coded name	Chromosomal localization	Gains	High Copy Gain	Total Gains	Heterozygous deletion	Homozygous deletion		
Prostate stem cell antigen	PSCA	8q24.2	45%	35%	80%	0%	0%	0%	
Secreted LY6/PLAUR domain containing 1	SLURP1	8q24.3	45%	35%	80%	0%	0%	0%	
Neurotensin receptor 1	NTSR1	20q13	45%	35%	80%	0%	0%	0%	
Cadherin 4, type 1, R-cadherin	CDH4	20q13.3	40%	35%	75%	0%	0%	0%	
Brain-specific angiogenesis inhibitor 1	BAI1	8q24	40%	35%	<i>75%</i>	0%	0%	0%	
Threonyl-tRNA synthetase 2, mitochondrial	TARS2	1q21.3	60%	15%	<i>75%</i>	0%	0%	0%	
Glycosylphosphatidylinositol anchored molecule like protein	GML	8q24.3	50%	25%	75%	0%	0%	0%	
Opioid growth factor receptor	OGFR	20q13.33	40%	35%	<i>75%</i>	0%	0%	0%	
Protein tyrosine phosphatase, receptor type, N polypeptide 2	PTPRN2	7q36	35%	35%	<i>70</i> %	10%	0%	10%	
Bone morphogenetic protein 7	BMP7	3q42	65%	5%	70%	0%	0%	0%	
PRP3 pre-mRNA processing factor 3 homolog	PRPF3	1q21.1	60%	10%	70%	0%	0%	0%	
Extracellular matrix protein 1	ECM1	1q21	55%	15%	<i>70%</i>	0%	0%	0%	
Protein tyrosine phosphatase type IVA, member 3	PTP4A3	8q24.3	50%	20%	70%	0%	0%	0%	
Stathmin-like 3	STMN3	3q43	35%	35%	<i>70%</i>	5%	0%	5%	
Regulator of telomere elongation helicase 1	RTEL1	20q13.3	35%	35%	70%	5%	0%	5%	
Zinc finger, CCCH-type with G patch domain	ZGPAT	20q13.3	35%	35%	<i>70%</i>	5%	0%	5%	
SLC2A4 regulator	SLC2A4RG	20q13.33	35%	35%	70%	5%	0%	5%	
ADP-ribosylation factor related protein 1	ARFRP1	20q13.3	35%	35%	<i>70%</i>	5%	0%	5%	
Tumor necrosis factor receptor superfamily, member 6b, decoy	TNFRSF6B	20q13.3	35%	35%	70%	5%	0%	5%	
Dipeptidyl-peptidase 6	DPP6	7q36.2	50%	10%	60%	10%	0%	109	
Sonic hedgehog	SHH	7q36	60%	0%	60%	0%	0%	0%	
Laminin, alpha 5	LAMA5	20q13.2-q13.3	40%	20%	60%	0%	0%	0%	
Insulin-like growth factor 1 receptor	IGF1R	15q26.3	30%	25%	55%	0%	0%	0%	
Baculoviral IAP repeat-containing 7	BIRC7	20q13.3	15%	40%	<i>55%</i>	5%	0%	5%	
Endosulfine alpha	ENSA	1q21.3	55%	0%	55%	0%	0%	0%	
Epidermal growth factor receptor	EGFR	7p12	25%	25%	50%	0%	0%	0%	
Myocardin	MYOCD	17p11.2	0%	0%	0%	75%	0%	759	
Eyes absent homolog 3	EYA3	1p36	0%	0%	0%	70%	0%	709	
Nuclear receptor subfamily 2, group C, member 1	NR2C1	12q22	0%	0%	0%	70%	0%	709	
Platelet-activating factor receptor	PTAFR	1p35-p34.3	0%	0%	0%	70%	0%	709	
Deleted in colorectal carcinoma	DCC	18q21.3	0%	0%	0%	70%	0%	709	
Myeloid/lymphoid or mixed-lineage leukemia; translocated to, 3	MLLT3	9p22	0%	0%	0%	60%	5%	659	
Cadherin 7, type 2	CDH7	18q22.1	0%	0%	0%	65%	0%	659	
Basonuclin 2	BNC2	9p22.2	0%	0%	0%	60%	0%	609	
Cyclin-dependent kinase inhibitor 2A	CDKN2A	9p21	0%	0%	0%	55%	5%	609	
Cadherin 19, type 2	CDH19	18q22.1	0%	0%	0%	60%	0%	609	
Replication protein A1, 70kDa	RPA1	17p13.3	0%	0%	0%	55%	0%	559	
TEK tyrosine kinase, endothelial	TEK	9p21	0%	0%	0%	50%	5%	559	
Phosphoinositide-3-kinase, class 3	PIK3C3	18q12.3	0%	0%	0%	55%	0%	559	

doi:10.1371/journal.pone.0022315.t004

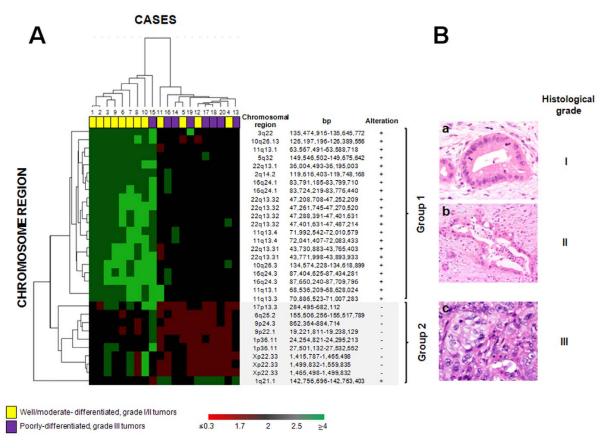
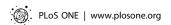


Figure 1. Association between tumor specific cytogenetic profiles and histopathological features. Panel A: Hierarchical clustering analysis of the CNV and LOH genetic profile of PDAC cases defined by the Affymetrix 500 K SNP-array (n = 20). Two well-defined groups of patients (p = 0.03) were identified: group 1 includes tumors showing gains of chromosomes 2q, 3q, 5q, 10q, 11q, 16q and 22q and a high rate of grade I/II PDAC tumors (tumor cases highlighted in yellow), while group 2 predominantly included cases with losses of chromosomes 1p, 6q, 9p, 17p and Xp, and gains of chromosome 1q, in association with a higher frequency of poorly-differentiated/grade III carcinomas (tumor cases highlighted in purple). CNV obtained for each chromosomal region are represented in a color code: red corresponds to chromosomal losses (CN≤1.7), green to chromosomal gains (CN≥2.5) and black to a normal CN value of 2. The color intensity represents the magnitude of the change, down to CN values <0.3 (homozygous deletions) and up to CN values ≥4 (high gains/amplification). Known cancer-associated genes coded in these chromosomal regions and found to be altered include the INPP5A (at 10q26.3), CDX1, CAMK2A (at 5q32), MB and APOL6 (both at 22q13.1) genes gained among group 1 cases and the 5FR513A (1p36.11), VP553, FAMS7A, GEMINA, ELP2P and GLOD4 (all of them at 17p13.3) and the CSF2RA and the IL3RA (both at Xp22.33) genes deleted in group 2 cases. Panel B: Illustrating histopathological pictures corresponding to group 1 -histologic grades I and II PDACs characterized by typically well-formed glands and less well-defined glands with an incomplete glandular lumina, respectively (images a and b)-, and group 2 - grade III PDAC showing non-structured glands and solid sheets of neoplastic cells (c)- PDAC cases. Original magnification: (a) x200; (b) x100; (c) x400. doi:10.1371/journal.pone.0022315.g001

Supporting Information

Table S1 Frequently detected regions (≤65%) of gain, loss and LOH in PDAC tumors (n = 20) genotyped on the Affymetrix 500 K SNP array platform. (DOC)


Table S2 Association between specific CN alterations found in PDAC tumors (n = 20) and both tumor size and histopathology. (DOC)

Author Contributions

Conceived and designed the experiments: AO JMS LM-B . Performed the experiments: MLG JMS MG-G. Analyzed the data: MLG JMS AO LM-B. Contributed reagents/materials/analysis tools: AO LM-B OB MdMA. Wrote the paper: MLG AO JMS .

References

- Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, et al. (2007) Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation. Br J Cancer 96: 373–382.
- Nowak NJ, Gaile D, Conroy JM, McQuaid D, Cowell J, et al. (2005) Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 161: 36–50.
- Harada T, Okita K, Shiraishi K, Kusano N, Kondoh S, et al. (2002) Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res 62: 835–839.
- Aguirre AJ, Brennan C, Bailey G, Sinha R, Feng B, et al. (2004) High-resolution characterization of the pancreatic adenocarcinoma genome. Proc Natl Acad Sci U S A 101: 9067–9072.

July 2011 | Volume 6 | Issue 7 | e22315

- 5. Harada T, Chelala C, Crnogorac-Jurcevic T, Lemoine NR (2009) Genome-wide analysis of pancreatic cancer using microarray-based techniques. Pancreatology 9. 13-24
- 6. Karhu R. Mahlamaki E. Kallioniemi A (2006) Pancreatic adenocarcinoma -genetic portrait from chromosomes to microarrays. Genes Chromosomes Cancer 45: 721–730.
- 7. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37: 4181–4193. gkp552 [pii];10.1093/nar/gkp552 [doi].
- Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, et al. (2008) Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 27: 1951–1960.

 Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, et al. (2008) Core signaling
- pathways in human pancreatic cancers revealed by global genomic analyses Science 321: 1801–1806.
- Adsay NV, Basturk O, Bonnett M, Kilinc N, Andea AA, et al. (2005) A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. Am J Surg Pathol 29: 724–733.
- Gutierrez MI., Sayagues JM, Del Mar AM, Bengoechea O, Gonzalez-Gonzalez, et al. (2011) Cytogenetic heterogeneity of pancreatic ductal adenocarcinomas: identification of intratumoral pathways of clonal evolution. Histopathology 58: 486–497. 10.1111/j.1365-2559.2011.03771.x [doi].
- Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20: 3246–3248. 10.1093/bioinformatics/bth349 [doi];bth349
- Gorunova L, Johansson B, Dawiskiba S, ndren-Sandberg A, Jin Y, et al. (1995) Massive cytogenetic heterogeneity in a pancreatic carcinoma: fifty-lkaryotypically unrelated clones. Genes Chromosomes Cancer 14: 259–266.
- Gorunova L, Hoglund M, ndren-Sandberg A, Dawiskiba S, Jin Y, et al. (1998) Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23: 81-99.
- 15. Schleger C, Arens N, Zentgraf H, Bleyl U, Verbeke C (2000) Identification of Schieger C, Arens N, Zenigrai H, Bieyi C, Verbee C (2000) Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH). J Pathol 191: 27–32.
 Heidenblad M, Schoenmakers EF, Jonson T, Gorunova L, Veltman JA, et al. (2004) Genome-wide array-based comparative genomic hybridization reveals
- multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines, Cancer Res 64: 3052-3059.
- 17. Yachida S, Jones S, Bozic I, Antal T, Leary R, et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467: 1114–1117. nature09515 [pii];10.1038/nature09515 [doi].
- Walker BA, Morgan GJ (2006) Use of single nucleotide polymorphism-based mapping arrays to detect copy number changes and loss of heterozygosity in multiple myeloma. Clin Lymphoma Myeloma 7: 186–191.

 19. Rodriguez JA, Li M, Yao Q, Chen C, Fisher WE (2005) Gene overexpression in
- pancreatic adenocarcinoma: diagnostic and therapeutic implications. World J Surg 29: 297–305.
- Grubbs EG, bdel-Wahab Z, Tyler DS, Pruitt SK (2006) Utilizing quantitative polymerase chain reaction to evaluate prostate stem cell antigen as a tumor marker in pancreatic cancer. Ann Surg Oncol 13: 1645–1654.
- Yagn WB, Cai F, Cheng CT, Cao G, Qin ZY (2008) [Expression of prostate stem cell antigen and Claudin-4 in human pancreatic carcinoma]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 30: 728–731.
 22. Adsay NV, Basturk O, Cheng JD, Andea AA (2005) Ductal neoplasia of the
- pancreas: nosologic, clinicopathologic, and biologic aspects. Semin Radiat Oncol 15: 254–264. S1053-4296(05)00033-0 [pii];10.1016/j.semradonc.2005. 04.001 [doi]
- 23. Sung HY, Wu HG, Ahn JH, Park WY (2010) Dcr3 inhibit p53-dependent apoptosis in gamma-irradiated lung cancer cells. Int J Radiat Biol 86: 780–790. 10.3109/09553002.2010.484481 [doi].
- 24. Chen G, Luo D (2008) Over-expression of decoy receptor 3 in gastric precancerous lesions and carcinoma. Ups J Med Sci 113: 297–304. http://urn.kb.se/resolve?urn=urn:nbn:se:pub:diva-240 [pii].
- Ho CH, Chen CL, Li WY, Chen CJ (2009) Decoy receptor 3, upregulated by Epstein-Barr virus latent membrane protein 1, enhances nasopharyngeal carcinoma cell migration and invasion. Carcinogenesis 30: 1443-1451. bgp135 [pii];10.1093/carcin/bgp135 [doi].
- Chen C, Zhang C, Zhuang G, Luo H, Su J, et al. (2008) Decoy receptor 3 overexpression and immunologic tolerance in hepatocellular carcinoma (HCC)

- development. Cancer Invest 26: 965-974. 906932905 [pii];10.1080/ 07357900801975256 [doi].
- Tsuji S, Hosotani R, Yonehara S, Masui T, Tulachan SS, et al. (2003)
- Fashi S, Hosotain K, Holichard S, Massi T, Huacini SS, et al. (2003) Endogenous decoy receptor 3 blocks the growth inhibition signals mediated by Fas ligand in human pancreatic adenocarcinoma. Int J Cancer 106: 17–25. Swift SL, Burns JE, Maitland NJ (2010) Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 70: 347–356. 0008-5472.CAN-09-1252 [pii];10.1158/0008-5472.CAN-09-1252 [doi].
- Dupouy Š, Viardot-Foucault V, Alifano M, Souaze F, Plu-Bureau, et al. (2009) The neurotensin receptor-1 pathway contributes to human ductal breast cancer
- progression. PLoS One 4: e4223. 10.1371/journal.pone.0004223 [doi]. Gui X, Guzman G, Dobner PR, Kadkol SS (2008) Increased neurotensin receptor-1 expression during progression of colonic adenocarcinoma. Peptides 29: 1609–1615. S0196-9781(08)00185-X [pii];10.1016/j.peptides.2008.04.014
- Blebea J, Mazo JE, Kihara TK, Vu JH, McLaughlin PJ, et al. (2000) Opioid growth factor modulates angiogenesis. J Vasc Surg 32: 364–373. S0741-5214(00)91981-5 [pii];10.1067/mva.2000.107763b [doi].
 Zagon IS, Donahue RN, McLaughlin PJ (2009) Opioid growth factor-opioid
- growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am J Physiol Regul Integr Comp Physiol 297:
- diverse human cancers. Am J Physiol Regul Integr Comp Physiol 297: R1154–R1161. 00414.2009 [pii];10.1152/ajpregu.00414.2009 [doi]. Smith JS, Tachibana I, Allen C, Chiappa SA, Lee HK, et al. (1999) Cloning of a human ortholog (RPH3AL) of (RNO) Rph3al from a candidate 17p13.3 medulloblastoma tumor suppressor locus. Genomics 59: 97–101. 10.1006/geno.1999.5864 [doi];S0838-7543(99)95864-0 [pii]. Wagsater D, Lofgren S, Zar N, Hugander A, Dimberg J (2010) Pigment epithelium-derived factor expression in colorectal cancer patients. Cancer Invest 93: 979–973, 10.3106/07357501.0037255675 [doi]
- 28: 872–877. 10.3109/07357901003735675 [doi]. Zhou D, Cheng SQ, Ji HF, Wang JS, Xu HT, et al. (2010) Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. J Cancer Res Clin Oncol 136: 1719–1727. 10.1007/s00432-010-0830-y [doi].

 Casagrande G, te KG, Basso G (2006) The effects of siRNA-mediated inhibition
- of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B leukemia cell line. Haematologica 91: 765–771.
- Abiatari I, Gillen S, DeOliveira T, Klose T, Bo K, et al. (2009) The microtubuleassociated protein MAPRE2 is involved in perineural invasion of pancreatic cancer cells. Int J Oncol 35: 1111–1116.
- Wang Y, Zhou X, Zhu H, Liu S, Zhou C, et al. (2005) Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway. Oncogene 24: 6637–6645. 1208819 [pii];10.1038/sj.onc.1208819 [doi].
- Kimura Y, Morita T, Hayashi K, Miki T, Sobue K (2010) Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine
- as an elective moder of growth arrest and differentiation in human tuterine leiomyosarcoma cells. Cancer Res 70: 501–511. 0008-5472.CAN-09-1469 [pii];10.1158/0008-5472.CAN-09-1469 [doi].

 Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, et al. (2007) Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell 11: 133–146. S1535-6108(06)00379-5 [pii];10.1016/j.ccr.2006.11.022 [doi]. Mu X, Chang C (2003) TR2 orphan receptor functions as negative modulator
- for androgen receptor in prostate cancer cells PC-3. Prostate 57: 129–133. 10.1002/pros.10282 [doi]. de Oliveira SI, Andrade LN, Onuchic AC, Nonogaki S, Fernandes PD, et al.
- (2010) Platelet-activating factor receptor (PAF-R)-dependent pathways control (2016) Hateret-activating factor receptor (FAI-X)-dependent pMC Cancer 10: 200. 1471–2407–10–200 [pii];10.1186/1471-2407-10-200 [doi].

 Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A (2008) Pancreatic carcinogenesis. Pancreatology 8: 110–125.

 Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, DePinho RA (2006)
- Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:
- Huang dW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. nprot.2008.211 [pii];10.1038/nprot.2008.211 [doi]. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:
- Database for Annotation, Visualization, and Integrated Discovery. Genome Biol

Artículo 3: "Identificación y caracterización de los perfiles de expresión génica de ARNs codificantes y no-codificantes de proteínas en el adenocarcinoma ductal de páncreas"

Objetivos: Pese a los importantes avances que se han alcanzado en la última década en relación con el conocimiento de los mecanismos moleculares subyacentes al funcionamiento normal de las células pancreáticas y su alteración neoplásica en pacientes con adenocarcinoma ductal de páncreas (ADCP), este conocimiento sigue sin traducirse en un beneficio clínico claro para estos pacientes. En este trabajo, evaluamos por primera vez, la heterogeneidad molecular de los ADCP mediante el estudio simultáneo de los perfiles de expresión génica (GEP) a nivel de ARN, tanto de genes que codifican como de los que no codifican para proteínas.

Materiales y métodos: Para abordar este objetivo, analizamos ARNm, microARNs, ARNs pequeños nucleolares y ARNs largos intergénicos de 27 tumores primarios (ADCP) empleando técnica de *microarrays* de expresión, comparando los perfiles tumorales encontrados con el perfil de tejidos pancreáticos no tumorales.

Resultados: De forma global, nuestros resultados permitieron definir un GEP común a todos los ADCP, y que está caracterizado por la sobreexpresión de genes asociados con la proliferación, la invasión local y la capacidad metastásica de las células del ADCP junto con una alteración significativa de las etapas más tempranas de la respuesta inmune de tipo celular, potencialmente asociado con migración celular mediada por procesos inflamatorios. A la vez, nuestros resultados confirman y amplían datos previos acerca de la heterogeneidad y complejidad genética de los ADCP, que presenta dos GEP únicos y claramente distintos: un grupo mayoritario de tumores presenta un perfil genético/genómico de tipo epitelial mientras que un segundo grupo minoritario presenta un perfil del tipo mesenquimal.

Conclusiones: Nuestros hallazgos reflejan la posible existencia de distintas vías de alteración tumoral en el ADCP, vías que estarían implicadas en la oncogénesis y progresión de estos tumores. Por otra parte, nuestros resultados sugieren un papel importante del micromedioambiente tumoral, particularmente del sistema inmune en el desarrollo y progresión del ADCP, con potenciales implicaciones diagnósticas y terapéuticas.

Identification and characterization of the gene expression profiles for protein coding and non-coding RNAs of pancreatic ductal adenocarcinomas

María Laura Gutiérrez¹, Luis Corchete², Cristina Teodosio¹, María Eugenia Sarasquete², María del Mar Abad³, Manuel Iglesias⁴, Carmen Esteban⁴, José María Sayagues^{1,*}, Alberto Orfao^{1,*} and Luis Muñoz-Bellvis^{4,*}

Correspondence to: Alberto Orfao, email: orfao@usal.es

Keywords: pancreatic ductal adenocarcinoma, gene expression profile, mRNA, non-coding RNA, EMT-like tumors

Received: February 13, 2015 Accepted: May 13, 2015 Published: May 22, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Significant advances have been achieved in recent years in the identification of the genetic and the molecular alterations of pancreatic ductal adenocarcinoma (PDAC). Despite this, at present the understanding of the precise mechanisms involved in the development and malignant transformation of PDAC remain relatively limited. Here, we evaluated for the first time, the molecular heterogeneity of PDAC tumors, through simultaneous assessment of the gene expression profile (GEP) for both coding and non-coding genes of tumor samples from 27 consecutive PDAC patients. Overall, we identified a common GEP for all PDAC tumors, characterized by an increased expression of genes involved in PDAC cell proliferation, local invasion and metastatic capacity, together with a significant alteration of the early steps of the cellular immune response. At the same time, we confirm and extend on previous observations about the genetic complexity of PDAC tumors as revealed by the demonstration of two clearly distinct and unique GEPs (e.g. epithelial-like vs. mesenchymal-like) reflecting the alteration of different signaling pathways involved in the oncogenesis and progression of these tumors. Our results also highlight the potential role of the immune system microenvironment in these tumors, with potential diagnostic and therapeutic implications.

INTRODUCTION

In recent years, important advances have been achieved in the identification of the genetic and molecular alterations of pancreatic ductal adenocarcinoma (PDAC). Such studies have also shown that PDAC is a genetically highly-heterogeneous and complex group of tumors [1-6]. However, the knowledge about the precise mechanisms underlying the development and malignant transformation of PDAC, still remain largely unknown. In this regard,

global gene expression profiling (GEP) at both the mRNA and the protein levels has proven to allow identification of distinct molecular tumor subtypes in many different human cancer types [7-9]. In recent years, many GEP studies have been also reported in PDAC [4, 10-24]; such studies, have mainly focused on the definition of molecular signatures associated with disease progression; but, to the best of our knowledge, only Collisson *et al.* [25] described (three) PDAC subtypes based on microarray analysis of GEP which were associated with different clinical outcomes and

¹ Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL (University of Salamanca), Salamanca, Spain

² Cancer Research Center and Service of Hematology (University Hospital of Salamanca), Salamanca, Spain

³ Department of Pathology (University Hospital of Salamanca), Salamanca, Spain

 $^{^{4}}$ Service of General and Gastrointestinal Surgery and IBSAL (University Hospital of Salamanca), Salamanca, Spain

^{*}These authors have equally contributed to this study and they should both be considered as last author

therapeutic responses: the classical, quasi-mesenchymal and exocrine-like subtypes of PDAC tumors. Currently, it is well-established that the cellular mechanisms involved in tumor genesis and progression depend, not only on the protein-coding GEP, but also on the expression profile of post-transcriptional regulators such as the miRNAs. Thus, simultaneous assessment of the mRNA and the non-coding RNA gene expression profiles may contribute to a better understanding of the molecular pathways of PDAC and a more accurate definition of the distinct molecular subtypes of these tumors. To date, only a few studies by Donahue et al. [26] and Frampton et al. [27] have combined global mRNA and miRNA expression analysis of PDAC tumors. In the former study, combined GEP data and DNA copy number alterations were investigated in a cohort of 25 primary PDAC tumors in an attempt to identify tumoral molecular profiles associated with a distinct patient survival. By contrast, Frampton et al. [27] analysed the impact of miRNA expression on the whole mRNA GEP in a small cohort of PDAC tumors (n = 9) and cell lines (n = 2) aiming at the identification of functional miRNAmRNA interactions that could contribute to PDAC growth.

Here we evaluate the molecular heterogeneity of PDAC tumors based on simultaneous assessment of the overall GEP of both coding mRNA and non-coding RNA genes -including miRNA, small nucleolar and large intergenic RNAs- in primary tumor samples from 27 consecutive PDAC patients vs. non-tumoral pancreatic tissue. Overall, our results define a common GEP for all PDAC tumors, at the same time they confirm and extend on previous observations about the existence of two clearly distinct molecular subtypes of PDAC.

RESULTS

The global transcription profile of PDAC tumors

Supervised analysis of the PDAC GEP showed a total of 1,428 mRNA and 171 small RNA deregulated genes, with an average expression level ≥ 2-fold difference in PDAC tumors (n = 27) vs. non-PDAC pancreatic tissues (n = 5) (FDR < .0001; Supplementary Tables 2 and 3). More than half of these mRNA transcripts were up-regulated in PDAC samples (923/1428; 64%) while most small RNA transcripts (135/171; 78%) were downregulated in PDAC samples. Among other genes, POSTN, SULF1, GREM1 and DKK1 mRNAs and the miR-203, miR-708, miR-31 and miR-4298 miRNA transcripts were those found to be overexpressed at the greatest levels, while the ALB, PDIA2, SYNCN, RBPJL mRNAs and the miR-216-a and miR-216-b, miR-217, miR-148a and miR-4286 miRNAs were those showing the most pronounced down-regulation across all PDAC samples analyzed (Table 1). ROC curve analysis based on those mRNA and miRNA transcripts differentially expressed in PDAC vs. non-tumoral pancreatic tissues, revealed a combination of just 5 genes (S100A11, GPR137B, SULF1, POSTN and miR-155) that allowed accurate classification (32/32 samples correctly classified) of PDAC tumor vs. non-tumoral pancreatic tissues (Table 2).

The gene expression profiling of PDAC vs. nontumoral pancreatic tissues defines two molecular subgroups of PDAC tumors

Despite there were global differences in the GEP of PDAC vs. non-tumoral pancreatic tissues (Table 1; Supplementary Tables 2 and 3), both unsupervised PCA (Figure 1A) and HCA (Figure 1B), showed two well-defined subgroups of PDAC tumor samples with distinct GEP: 1) a major group consisting of 24/27 PDAC samples (GEP-A subgroup of tumors) and 2) a minor subgroup of three PDAC tumors which clustered together, clearly apart from the GEP-A PDAC tumors (GEP-B subgroup of PDAC). Of note both the GEP-A and GEP-B subgroups of PDAC tumors also clustered separately from the non-tumoral pancreatic tissue samples (n = 5; Figure 1).

Taking in account these GEP-based subgroups of PDAC tumors, supervised analysis showed a total of 2,594 mRNA and 214 small RNA altered genes among GEP-A and GEP-B tumors vs. non-tumoral pancreatic tissue samples (Table 1; Supplementary Tables 2 and 3). Upon comparing the GEP of the GEP-A and GEP-B subgroups of PDAC tumors: 1,605/2,594 (62%) and 181/214 (85%) differentially expressed mRNA and small RNA genes were associated with the GEP-A cluster, respectively, while 1,522/2,594 (59%) and 103/214 (48%) mRNA and small RNA genes were associated with the GEP-B cluster, respectively; a total of 533 (21%) mRNA and 70 (33%) small RNA transcripts were simultaneously altered in the two subgroups of PDAC tumors (Supplementary Tables 2 and 3). The altered gene profile common to the GEP-A and GEP-B tumors included increased expression of mRNA coding for the RAC1 and RHOC GTP-binding proteins, the insulin-like growth factor binding protein 3 (IGFBP3), several members of the S100A and the MMP gene families (e.g.: S100A6, 11 and 16, and MMP2, 11 and 14), as well as the PDAC-associated miRNAs miR-155 and miR-203, which are known to be typically altered in PDAC; in addition, both subgroups of PDAC tumors also showed loss of expression of normal pancreatic genes such as the CELA2A (pancreatic elastase), the CEL, PNLIP, PNLIPRP1 and PNLIPRP2 genes (pancreatic lipases and related proteins), the SERPINI2 serin peptidase inhibitor gene and the miR-216, miR-217 and miR-148 miRNAs. In turn, those genes which were found to be differentially altered in the GEP-A and GEP-B tumor subgroups, included, among other, the KRAS oncogene, the CEACAM1 and CEACAM5 epithelial

Table 1. Top 20 up- and down-regulated mRNA and miRNA and other small non-coding RNA transcripts in PDAC (n=27) vs. non-tumoral pancreatic tissues (n=5).

	_	Fold	Fold Change	Fold Change		Chromosoma	ıl localizatior	1	Transcript
Gene Name	Gene ID	Change T vs. Non-T	GEP-A vs. Non-T	GEP-B vs. Non-T	Chr. band	Start (bp)	Stop (bp)	Strand	description
Up-regulated mRN	A transcripts								
POSTN	ENSG00000133110	46.8	48.7	31.6	13q13	38136720	38172981	-	protein-coding
SULF1	ENSG00000137573	20.5	20.9	17.3	8q13	70378859	70573150	+	protein-coding
GREM1	ENSG00000166923	17.5	13.3	50.9	15q13	33010175	33026870	+	protein-coding
DKK1	ENSG00000107984	16.7	11.9	55.5	10q21	54074056	54077802	+	protein-coding
MMP11	ENSG00000099953	14.7	15.7	6.2	22q11	24110413	24126503	+	protein-coding
INHBA	ENSG00000122641	14.5	14.1	17.2	7p14	41724712	41742706	-	protein-coding
FN1	ENSG00000115414	12.9	12.5	16.8	2q35	216225163	216300895	-	protein-coding
THBS2	ENSG00000186340	12.3	12.1	13.6	6q27	169615875	169654139	-	protein-coding
SEMA3C	ENSG00000075223	12.2	11.1	21.4	7q21	80371854	80551675	-	protein-coding
GALNT5	ENSG00000136542	11.7	11.5	13.7	2q24	158114110	158170723	+	protein-coding
Up-regulated small	RNA transcripts				-				
hsa-mir-203	MI0000283	43	39	75	14q32	104583742	104583851	+	hsa-miR
hsa-miR-708	MI0005543	25	26.7	NS	11q14	79113066	79113153	-	hsa-miR
hsa-miR-31	MI0000089	23.4	25.9	NS	9p21	21512114	21512184	-	hsa-miR
hsa-miR-4298	MI0015830	21.4	14.1	80.3	11p15	1880694	1880766	-	hsa-miR
hsa-miR-155	MI0000681	21.2	21.3	20.5	21q21	26946292	26946356	+	hsa-miR
hsa-miR-21	MI0000077	13.1	12.9	NS	17q23	57918627	57918698	+	hsa-miR
hsa-miR-503	MI0003188	11.6	12.4	NS	Xq26	133680358	133680428	-	hsa-miR
hsa-miR-10a	MI0000266	10.8	10.5	12.7	17q21	46657200	46657309	-	hsa-miR
hsa-miR-199a-3p	*	4.1	4.2	3.5	-	-	-		hsa-miR
hsa-miR-199b-3p	MI0000282	3.9	4	3.2	9q34	131007000	131007109	-	hsa-miR
Down-regulated mi	RNA transcripts								
ALB	ENSG00000163631	-28.9	-26.6	-90.9	4q13	74262831	74287129	+	protein-coding
PDIA2	ENSG00000185615	-23.4	-22.1	-43.3	16p13	333152	337215	+	protein-coding
SYCN	ENSG00000179751	-23	-21.1	-84.6	19q13	39693471	39694906	-	protein-coding
RBPJL	ENSG00000124232	-21	-20.2	-31	20q13	43935491	43945803	+	protein-coding
GNMT	ENSG00000124713	-19.5	-19.7	-17.6	6p21	42928496	42931618	+	protein-coding
PNLIPRP1	ENSG00000187021	-16.8	-15.1	-236.4	10q25	118349897	118368687	+	protein-coding
TRHDE	ENSG00000072657	-16.7	-16.5	-18.1	12q21	72481046	73059422	+	protein-coding
EGF	ENSG00000138798	-16.3	-15.6	-25.6	4q25	110834040	110933422	+	protein-coding
SERPINI2	ENSG00000114204	-16.2	-14.8	-72	3q26	167159577	167196792	-	protein-coding
ERP27	ENSG00000139055	-15	-13.5	-166.5	12p12	15066969	15092016	-	protein-coding
Down-regulated sm	all RNA transcripts				•				
hsa-miR-216a	MI0000292	-68.1	61	-1250.2	2p16	56216085	56216194	-	hsa-miR
hsa-miR-217	MI0000293	-31.1	-27.7	-1834.4	2p16	56210102	56210211	-	hsa-miR
hsa-miR-216b	MI0005569	-26	-23.2	-664.4	2p16	56227849	56227930	-	hsa-miR
hsa-miR-148a	MI0000253	-15.3	-13.7	-189.3	7p15	25989539	25989606	-	hsa-miR
hsa-miR-4286	MI0015894	-13.7	-12.7	-38.52	8p23	10524488	10524580	+	hsa-miR
SNORA24	ENSG00000207130	-13.5	-12.5	-32.6	3q21	128433414	128433548	-	snoRNA
ACA24	ENSG00000269893	-13.1	-11.9	-58.1	4q26	119200345	119200475	+	HAcaBox
hsa-miR-130b	MI0000748	-13	-12.2	-31.1	22q11	22007593	22007674	+	hsa-miR
SNORA24	ENSG00000206903	-11.7	-10.7	-48.2	15q22	65577799	65577929	-	snoRNA
hsa-miR-148a-star	MI0000253	-10	-10	-9.9	7p15	25989539	25989606	-	hsa-miR

q-values < .0001; T: tumoral samples; Non-T: non-tumoral samples; GEP-A/B: gene expression profile subgroups of PDAC tumors as assessed by principal component (PCA) and unsupervised hierarchical clustering (HCA) analyses; hsa-miR: human micro-RNA; snoRNA: small nucleolar RNA; HAcaBox: H/ACA box small nucleolar RNA; NS: statistically not-significant; * miRNA transcripts with various annotated stem-loop sequences

marker carcinoembrionary antigens, the SERPINB5 gene, as well as the miR-21, miR-221 and miR-222 miRNAs which were all overexpressed in GEP-A vs. GEP-B tumors (Supplementary Tables 2 and 3).

Supervised analysis further showed differential expression for another 20 genes in GEP-A vs. GEP-B PDAC tumors (Supplementary Table 2). Among other altered genes, these included greater expression in GEP-A (vs. GEP-B) PDAC of the CEACAM6 gene, as well as of genes associated with the inflammatory response and chronic pancreatic diseases such as the integrin $\beta 4$ and $\beta 6$ genes (ITGB4 and ITGB6), the cytochrome b-245 beta polypeptide (CYBB), lysozyme (LZY), the SERPINA1 antiproteinase and the antitrypsin serpin peptidase inhibitor genes, together with genes involved in tumor metastasis and invasion –e.g. the MMP7 matrix metalloproteinase and the tetraspanin 8 (TSPAN8) genes-(Supplementary Table 2).

Functional characterization of deregulated GEP in PDAC tumors

Analysis of the biological and functional significance of the deregulated GEPs observed in our PDAC tumors, revealed > 55 significantly altered canonical pathways vs. non-tumoral pancreatic tissues. Among those pathways more commonly altered in PDAC tumors we observed increased expression of genes involved in axonal guidance, the actin cytoskeleton and/or endocytosis processes such as integrins (TGA5, ITGB1), GTP-ases (RRAS and RAC1) and actin-related proteins (ACTR3); in addition, genes that participate in the early steps of inflammatory cell responses, such as genes associated with leukocyte extravasation, cell adhesion and diapedesis, and with IL-8 signaling, together with genes involved in cell motility, were altered in tumoral tissues from both groups of PDAC, as reflected by an increased expression of the

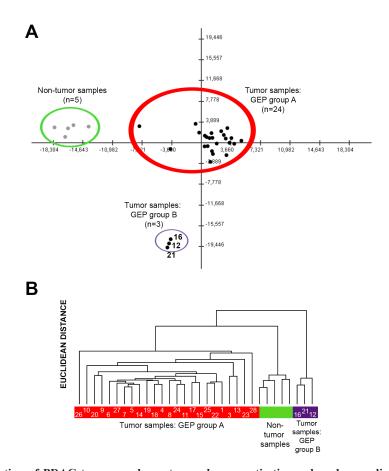


Figure 1: Classification of PDAC tumors and non-tumoral pancreatic tissues based on coding (mRNA) and non-coding (small nuclear and microRNA) gene expression profiles (GEP). Both principal component (Panel A) and unsupervised hierarchical clustering (Panel B) analyses differentiated tumoral vs. non-tumoral tissues (n = 5; color coded in green), at the same time they showed the existence of two major subgroups of PDAC tumors: GEP group A (n = 24; color coded in red) and GEP group B (n = 3; color coded in purple). Case ID of tumors are shown inside the colored bars.

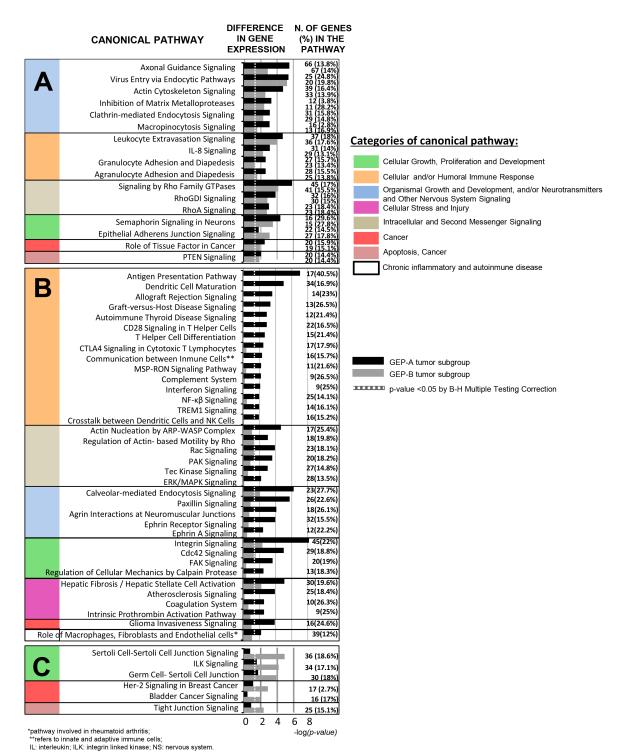


Figure 2: Most representative canonical pathways involved in PDAC tumors as defined by their GEP for both coding and non-coding RNAs (n = 27; p < .05). Shared canonical pathways by the two GEP-A and GEP-B subgroups of PDAC tumors are shown in panel A, while those pathways specific for the GEP-A and GEP-B subgroups of PDAC tumors are displayed in panels B and C, respectively.

Table 2: Receiver operating characteristic (ROC) curve analysis for genes previously selected by the prediction algorithms which better contributed to the discrimination between tumoral and non-tumoral pancreatic tissues (n=27 vs. n=5, respectively).

Gene name	Gene ID	Fold Change T vs. Non-T	q-value (%)	AUC	SE	p-value	CI (95%)
mRNA transcri	pts						
GNMT	ENSG00000124713	-19.5	0	1.00	0.00	< 0.001	1 -1
GPT2	ENSG00000166123	-10.6	0	1.00	0.00	< 0.001	1 -1
KLF15	ENSG00000163884	-6.4	0	1.00	0.00	< 0.001	1 -1
CTTNBP2NL	ENSG00000143079	2.8	0	1.00	0.00	< 0.001	1 - 1
MSN	ENSG00000147065	3.4	0	1.00	0.00	< 0.001	1 - 1
S100A11	ENSG00000163191	4.3	0	1.00	0.00	< 0.001	1 - 1
GPR137B	ENSG00000077585	4.5	0	1.00	0.00	< 0.001	1 - 1
SULF1	ENSG00000137573	20.5	0	0.99	0.02	0.001	0.950 - 1.020
POSTN	ENSG00000133110	46.8	0	0.97	0.03	0.001	0.910 - 1.020
Small RNA tran	nscripts						
hsa-miR-155	MI0000681	21.5	0	1.00	0.00	< 0.001	1 - 1

AUC: area under the curve; SE: standard error; CI: confidence interval; genes showing an AUC >0.96 and fold change >4 that discriminate PDAC tumors vs. pancreatic non-tumoral tissues are displayed in bold.

MMP2, MMP11 and MMP14 matrix metalloproteinases and the MSN (moesin), CDH11 (cadherin 11), RHOC (Ras homolog C) and CFL1 (cofilin 1) genes, in parallel to a decreased expression of the CLDN3 (claudin 3) gene (Figure 2A; Supplementary Table 4). Both subgroups of tumors also displayed increased expression of genes involved in bladder cancer signaling pathways and glioma invasiveness (Figure 2).

Functional characterization of GEP differentially altered in GEP-A and GEP-B PDAC

Canonical pathways found to be deregulated in GEP-A vs. GEP-B PDAC (Figure 2B and 2C) included multiple genes involved in innate and adaptive cellular and humoral immune responses. Among others, these included interleukin 18 (IL18), several IL receptors (IL2RA, IL2RG, IL10RA) and the IL1RN IL-1 antagonist, the CD80 receptor gene, major histocompatibility complex class I (HLA-A, HLA-B, HLA-E and HLA-F) and class II (HLA-DRA, HLA-DMA, HLA-DMB, HLA-DPA1 and -DQB1) molecules, toll-like receptors 4 and 6 (TLR-4 and TLR-6) and both the janus kinase family members 1 and 2 genes (JAK1 and JAK2) and their signal transducer and activator of transcription 2 gene (STAT2). In contrast to GEP-B cases, GEP-A tumors also displayed an altered expression of genes involved in cell stress, injury responses and chronic inflammatory disease pathways; this included overexpression of the COL3A1

and COL10A1 collagen genes, the PLA2G7, 10 and 16 phospholipases, the APOL1 and APOC1 apolipoproteins and the PLAT and PLAU plasminogen activatorassociated kinase genes (Figure 2B and Supplementary Table 5). Conversely, GEP-B tumors displayed a less altered GEP, which consisted of decreased expression of genes related with cell junction and intercellular adhesion -e.g. the E-cadherin (CDH1), OCLN (occludin) and CGN (cingulin) genes, and several members of the claudin gene family (CLDN1, CLDN4, CLDN7 and CLDN10)together with increased expression of the ILK signaling pathway, due to overexpression of the ILK gene and of other genes involved in the ephitelial-to-mesenchymal transition (EMT) such as SNAI1, SNAI2 and vimentin (VIM) (Figure 2C and Supplementary Table 6). Of note, GEP-B tumors also showed a GEP which was associated with other key elements of the GEP signature of EMT; thus, they showed overexpression of the N-cadherin (CDH2), TWIST1 and S100A4 mesenchymal phenotypeassociated markers, together with decreased expression of epithelial phenotype markers such as the CDH1, cytokeratins (KRT8 and KRT18), desmoplakin (DSP), the chymotrypsinogen B1 (CTRB1), insulin (INS) and GCG genes

From all differentially expressed RNA transcripts, a combination of 63 mRNA genes overexpressed in GEP-A and 97 mRNA genes overexpressed in GEP-B tumors (vs. non-tumoral pancreatic tissues) allowed for a clear cut discrimination of these two subgroups of PDAC tumors (Supplementary Table 7). A list of those

highly-discriminant genes which were found to be most differentially expressed (≥10 fold difference) in GEP-A and GEP-B tumors, with a power to classify them with a 100% accuracy, are shown in Table 3. These genes included PDAC epithelial markers (e.g., CEACAM5 and SERPINB5) for the definition of GEP-A tumors and the SNAI2 mesenchymal marker for GEP-B tumors.

Validation of tumor-associated markers with high discriminating power between the GEP-A vs. GEP-B subgroups of PDAC

The discriminating value of those genes differentially expressed (overexpressed) in GEP-A vs. GEP-B PDAC tumors (Supplementary Table 7) was further validated using GEP data from an independent series of PDAC available at the public GEO database (*n* = 27; Figure 3). In line with the findings described above for our cases, 14/14 (100%) PDAC samples previously classified by Collisson *et al.* [25] as showing a "classical PDAC" GEP were shown to have GEP-A-associated markers; in contrast, 7/8 (89%) "quasi-mesenchymal PDAC" tumors as defined by Collisson *et al.* [25] had a typical GEP-B phenotype. In this series, the most discriminating GEP-A and GEP-B genes (higher variation

between samples with an SD = 1) were: 1) ADAM28, CEACAM5, CTSE, CXCR4, EGLN3, LY75, PLAC8, SLC6A14, S100P, TMC5 and TMEM45B, and 2) HOXC6, PAPPA, SNAI2 and VGLL3, respectively (Figure 3).

miRNAs genes which may inhibit gene expression in PDAC

In order to determine the impact of the miRNAs signature on the GEP of PDAC tumors, both the miRNA and mRNA gene expression data sets were combined to investigate potential correlations between miRNAs and mRNA genes which are altered in PDAC. Evaluation of each pair of potential miRNA-mRNA interacting genes identified potential interactions for 51 inversely correlated and 139 positively correlated (absolute value of $R \ge 0.7$; p < .0001) pairs of miRNA-mRNA genes. Based on currently available miRNA target prediction and database tools, such interactions corresponded to 27 predictable and 1 experimentally validated (miR-30a-star/SLC7A6) interactions for the negatively correlated miRNA-mRNA pairs (Table 4). Of note, both the experimentally validated pair of mRNA/miRNA genes and other 4 predicted miRNA-mRNA interactions (miR-130b-star/TSHZ3, miR-148a/BBS7, miR-148a/LIMA1 and miR-30a/PLAUR) were systematically altered in the 27 PDAC samples

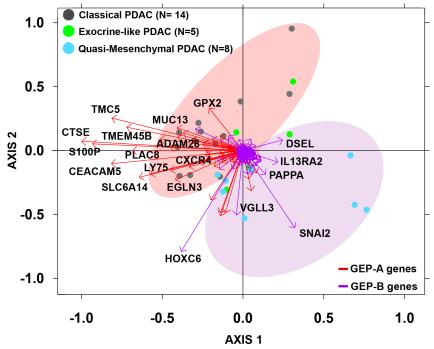


Figure 3: Biplot analysis of 27 PDAC tumors from an independent external validation dataset [25] evaluated for the expression of GEP-A and GEP-B overexpressed tumor markers identified in our series. PDAC samples previously classified by Collisson *et al.* as "classical PDAC" tumors (grey dots) were mostly represented by the expression of GEP-A associated genes (red vectors) while "quasi-mesenchymal PDAC" tumors (light blue dots) were grouped by the expression of GEP-B associated markers (purple vectors).

Table 3: Receiver operating characteristic (ROC) curve analysis for the most overexpressed (≥10 fold greater expression) genes which contribute most to the discrimination between PDAC tumor GEP group A (24 group A tumors vs. 3 group B tumors plus 5 non-tumoral tissues) and group B (3 group B tumors vs. 24 group A tumors plus 5 non-tumoral tissues).

Gene name	Gene ID	Fold Change GEP vs. Non-T	AUC	p-value	CI (95%)
Selected mark	ers for GEP group A	of PDAC			
CEACAM5	ENSG00000105388	58.1	0.96	>0.001	0.882 - 1.028
SLC6A14	ENSG00000087916	34.6	0.99	>0.001	0.951 - 1.019
CST1	ENSG000001170373	23.3	1.00	>0.001	0.999 - 1.000
TSPAN1 LAMC2	ENSG00000117472 ENSG00000058085	22.5 21.0	0.97 1.00	>0.001 >0.001	0.897 - 1.033 0.979 - 1.011
TMPRSS4	ENSG00000033663	20.9	1.00	>0.001	0.979 - 1.011
PLAC8	ENSG00000137048 ENSG00000145287	17.6	0.97	>0.001	0.897 _ 1.033
LCN2		14.3	0.97	>0.001	0.916 _ 1.024
ITGA2	ENSG00000148346 ENSG00000164171	13.9	0.98	>0.001	0.937 _ 1.023
GPX2		13.8	0.98	>0.001	0.923 _ 1.027
MUC13	ENSG00000176153	13.4	0.96	>0.001	0.883 - 1.037
	ENSG00000173702				
CTSE	ENSG00000196188	13.0	0.97	>0.001	0.897 _ 1.033
TMC5	ENSG00000103534	10.5	0.98	>0.001	0.923 _ 1.027
SLPI	ENSG00000124107	10.3	0.97	>0.001	0.910 _ 1.030
SERPINB5	ENSG00000206075	10.2	1.00	>0.001	0.999 _ 1.000
APOL1	ENSG00000100342	10.1	0.96	>0.001	0.883 - 1.037
LAMB3	ENSG00000196878	10.1	0.99	>0.001	0.951 _ 1.019
Selected mark MME	ers for GEP group B	65.9	1.00	0.005	1.000 _ 1.000
	ENSG00000196549				
PSG5	ENSG00000204941	62.6	1.00	0.005	1.000 - 1.000
AK5	ENSG00000154027	48.4	1.00	0.005	1.000 - 1.000
SERPINE2	ENSG00000135919	39.1	1.00	0.005	1.000 - 1.000
KCNK2	ENSG00000082482	33.4	1.00	0.005	1.000 _ 1.000
MFAP5	ENSG00000197614	33.0	1.00	0.005	1.000 - 1.000
TNFRSF11B	ENSG00000164761	31.8	1.00	0.005	1.000 _ 1.000
PSG3	ENSG00000221826	28.5	1.00	0.005	1.000 _ 1.000
IL13RA2	ENSG00000123496	21.9	1.00	0.005	1.000 _ 1.000
CLDN11	ENSG00000013297	21.0	1.00	0.005	1.000 _ 1.000
PAPPA	ENSG00000182752	18.1	1.00	0.005	1.000 _ 1.000
FST	ENSG00000134363	15.5	1.00	0.005	1.000 _ 1.000
POPDC3	ENSG00000132429	14.8	1.00	0.005	1.000 _ 1.000
CDH13	ENSG00000140945	14.1	1.00	0.005	1.000 _ 1.000
FGF5	ENSG00000138675	13.9	1.00	0.005	1.000 _ 1.000
CCBE1	ENSG00000183287	13.6	1.00	0.005	1.000 _ 1.000
XG	ENSG00000103207 ENSG00000124343	13.4	1.00	0.005	1.000 _ 1.000
FAM180A	ENSG00000124343 ENSG00000189320	13.2	1.00	0.005	1.000 _ 1.000
NRN1		13.2	1.00	0.005	1.000 - 1.000
RXFP1	ENSG00000124785	13.2	1.00	0.005	1.000 - 1.000
ACTC1	ENSG00000171509	12.5	0.97	0.003	
	ENSG00000159251				
ALPK2	ENSG00000198796	12.0	1.00	0.005	1.000 - 1.000
RECK	ENSG00000122707	11.9	1.00	0.005	1.000 _ 1.000
TBX15	ENSG00000092607	11.8	1.00	0.005	1.000 _ 1.000
ECM1	ENSG00000143369	11.6	0.97	0.009	0.902 _ 1.031
SNAI2	ENSG00000019549	11.2	1.00	0.005	1.000 _ 1.000
SEMA3D	ENSG00000153993	11.2	1.00	0.005	1.000 _ 1.000
AC0997591	ENSG00000105889	11.0	1.00	0.005	1.000 - 1.000
TBX18	ENSG00000112837	11.0	1.00	0.005	1.000 _ 1.000
HMOX1	ENSG00000100292	11.0	1.00	0.005	1.000 - 1.000
THVIOAT		10.0	1.00	0.005	1.000 _ 1.000
VGLL3	ENSG00000206538	10.8	1.00	0.005	1.000 _ 1.000
	ENSG00000206538 ENSG00000149485	10.8	1.00	0.005	1.000 _ 1.000

ROC curve analyses were performed only for genes previously selected by the prediction algorithms; q-values<.0001; GEP-A/B: gene expression profile subgroups A and B of PDAC tumor as assessed by PCA and unsupervised HCA; Non-T: non-tumoral samples; AUC: area under the curve; CI: confidence interval.

Table 4: miRNA-mRNA interactions in PDAC samples (n=27) identified by Spearman correlation analysis of the expression signal identified for those transcripts differentially expressed in pancreatic tumoral vs. non-tumoral tissues as detected by the Affymetrix HuGene 1.0 ST and microRNA 2.0 expression arrays.

miRNA	Gene Name	Gene ID	ρ	Classification of Interaction	Source of validation/prediction
hsa-miR-30a-star	SLC7A6	ENSG00000103064	-0.74	Validated	IPA; miRSystem; Tarbase5
hsa-miR-1180	BMPER	ENSG00000164619	-0.73	Predicted	PITA, RNAhybrid
hsa-miR-1180	RSPO3	ENSG00000146374	-0.72	Predicted	PITA, RNAhybrid
hsa-miR-1244	C10orf118	ENSG00000165813	-0.71	Predicted	Mirwalk; miRanda; PICTAR5
hsa-miR-130b	TSHZ3	ENSG00000121297	-0.72	Predicted	miRanda; PICTAR5
hsa-miR-130b	CSPG4	ENSG00000173546	-0.75	Predicted	PITA, RNAhybrid
hsa-miR-145	JMJD5	ENSG00000155666	-0.76	Predicted	DIANAmT; miRSystem; Mirwalk; PICTAR5; PITA; Targetscan
hsa-miR-145	KIT	ENSG00000157404	-0.71	Predicted	miRanda; PICTAR5; Targetscan
hp_hsa-miR-148a	TSPAN15	ENSG00000099282	-0.76	Predicted	PITA, RNAhybrid
hp_hsa-miR-148a	ACSL5	ENSG00000197142	-0.79	Predicted	IPA: Moderately
hp_hsa-miR-148a	CTSE	ENSG00000196188	-0.72	Predicted	MiRanda; RNAhybrid
hp_hsa-miR-148a	SLC44A4	ENSG00000204385	-0.79	Predicted	Mirwalk
hp_hsa-miR-148a	TNFRSF21	ENSG00000146072	-0.71	Predicted	Mirwalk
hsa-miR-148a	BBS7	ENSG00000138686	-0.73	Predicted	IPA: Moderately; DIANAmT; miRanda; miRDB; Mirwalk; PICTAR5; Targetscan
hsa-miR-148a	LIMA1	ENSG00000050405	-0.73	Predicted	MiRanda; mirwalk; PITA; RNAhybrid
hsa-miR-148a	SNX24	ENSG00000064652	-0.71	Predicted	Mirwalk; miRanda; PICTAR5
hsa-miR-181c	OSR2	ENSG00000164920	-0.73	Predicted	PITA, RNAhybrid
hsa-miR-193b	SLC25A45	ENSG00000162241	-0.73	Predicted	IPA: Moderately; DIANAmT; Mirwalk; miRanda; PICTAR5; Targetscan
hsa-miR-216a	PPP1R15A	ENSG00000087074	-0.70	Predicted	Mirwalk
hsa-miR-23a	COQ10A	ENSG00000135469	-0.76	Predicted	PITA, RNAhybrid
hsa-miR-23a	KIT	ENSG00000157404	-0.81	Predicted	Mirwalk; PICTAR5
hsa-miR-23a	ZNF828	ENSG00000198824	-0.73	Predicted	Mirwalk; PICTAR5
hsa-miR-29c	PIM1	ENSG00000137193	-0.70	Predicted	Mirwalk
hsa-miR-29c	FST	ENSG00000134363	-0.72	Predicted	RNAhybrid
hsa-miR-30a	PLAUR	ENSG00000011422	-0.70	Predicted	RNAhybrid
hsa-miR-362-5p	FGD1	ENSG00000102302	-0.81	Predicted	Mirwalk
hp_hsa-miR-423	RSPO3	ENSG00000146374	-0.76	Predicted	PITA, RNAhybrid
hsa-miR-939	WDR63	ENSG00000162643	-0.73	Predicted	Mirwalk; DIANAmT; miRanda; PICTAR5; Targetscan

p-values<0.0001; IPA: Ingenuity Pathways Software; Moderately: moderately significant level of prediction by IPA software database.

analyzed; in turn, another 10 predicted miRNA-mRNA pairs were specifically altered in GEP-A cases (miR-148a stem loop transcript/ACSL5, CTSE, SLC44A4, TNFRSF21 or TSPAN15, and miR-23a/COQ10A) or in GEP-B tumors (miR-1180/BMPER, miR-1244/C10orf118, miR-362-5p/FGD1 and the miR-423 stem loop transcript/RSPO3).

DISCUSSION

PDAC is currently recognized as a genetically heterogeneous group of tumors, but limited information exists about the biological significance of such variability. In order to gain insight into the genetic heterogeneity of PDAC, here we analyzed for the first time, the global coding and non-coding GEP of a relatively large cohort of PDAC tumors vs. non-tumoral pancreatic tissues. Overall, our results showed two clearly defined subtypes of PDAC which shared a GEP clearly distinct from that of non-tumoral pancreatic tissues. Globally, this included increased expression of genes linked to PDAC cell proliferation, local invasion and metastatic capacity. Thus, the most top-ranked altered networks (e.g.: axonal guidance, inhibition of matrix metalloproteinases, semaphorin, epithelial adherent junction and Rho family of GTPases signaling pathways) are directly involved in cell-cell and cell-matrix adhesion, extracellular matrix degradation and tissue remodeling, angiogenesis, tumor cell migration and invasiveness [28-31]. In addition, cytoskeleton remodeling which is essential for cell movement and growth, is also altered in PDAC tumor cells as reflected by the alteration of axonal guidance, actin cytoskeleton, virus-entry via endocytosis, clathrinmediated endocytosis, macropinocytosis signaling, as well as signaling pathways activated by the Rho family of GTPases [28-30, 32]; of note, many of such processes had been previously described to be altered in PDAC [27, 29, 30, 33]. PDAC tumors also showed a significant alteration of the early steps of cellular immune responses; this is possibly due to a host response against the tumor[34], as reflected by the alteration of cell adhesion, diapedesis and extravasation, IL8 signaling and antigen presentation via macropinocytosis signaling [35]. However, since the tumors here analyzed represented relatively advanced stages of the disease, alteration of such pathways could also be due to inflammation-mediated cell migration mechanisms [36]. Altogether, these processes found to be altered in PDAC encompass a pro-tumoral scenario; in such scenario PDAC tumor cells secrete factors that actively enhance recruitment of immune cells, while activated immune cells, produce cytokines and growth factors that may exert a direct effect on the tumor cells and the stroma [37]. This hypothesis was fully supported by the observation of areas containing significant leucocyte infiltrates in the tumoral vs. non-tumoral pancreatic tissues, through immunostainings for CD45 and CD15 of formalin-fixed, paraffin-embedded tissues from the same cases (data not shown).

Interestingly, in addition to the common GEP, the two subgroups of PDAC here identified also showed clearly different GEPs. Thus, enrichment in genes involved in the innate and adaptative immune response was predominantly detected in GEP-A vs. GEP-B cases, even when both subgroups of tumors presented similar levels of infiltration by inflammatory cells (data not shown). These findings, together with the increased expression of genes correlated to immune and chronic pancreatic diseases, cellular stress and injury conditions, among GEP-A vs. GEP-B cases, point out the potential involvement of immune selection mechanisms (e.g.: selection of non-immunogenic tumor-cell variants) in the former subgroup of PDAC[30]. Additionally, GEP-A tumors also showed an altered expression of genes involved in cell proliferation, angiogenesis, cell motility, invasion and tumor progression (e.g. genes involved in the MSP-RON, actin nucleation by the AR-WASP complex and by the Rho, Rac, PAK, Cdc42, integrin, ERK/MAPK, Paxilin, FAK, NF-KB, calpain protease and glioma tumor invasiveness pathways [28, 38-48], among other genes [31, 49, 50]), would confer a highly-aggressive phenotype to GEP-A tumor cells. Of note, GEP-A tumors retained an epithelial GEP phenotype which includes an increased expression of epithelial markers, carcinoembrionary antigens (CEACAM1, CEACAM6 and CEACAM5) and cytokeratins (KRT7 and KRT19).

In contrast to GEP-A tumors, GEP-B PDAC cases showed fewer specifically altered canonical pathways, despite an overall similar number of altered genes was found in both subgroups of tumors (1,183 vs. 1,012 altered genes in GEP-A vs. GEP-B cases, respectively). Of note, GEP-B cases showed no specific GEPs associated to tumor cell proliferation; moreover, they had decreased expression of genes linked to canonical pathways associated with immune responses. Thus, GEP-B tumors had: i) enhanced self-defense mechanisms against complement-dependent cytotoxicity. as reflected by overexpression of the KIT mast cellassociated molecule[51]; ii) defective expression of major histocompatibility complex (MHC) molecules which are that frequently involved in tumor immune escape [52], and/or: iii) greater cancer-driven immunosuppression as a consequence of increased expression of the programmed cell death 1 ligand 2 (PDCD1LG2) [53] and the VGFC[51] genes. Most interestingly, our results indicate activation of epithelial-mesenchymal transition (EMT) genes in GEP-B tumors as depicted by their higher expression of mesenchymal signature genes (e.g. CDH2, SNAI1, SNAI2 and VIM) and other EMT-related genes (e.g. S100A4), together with decreased expression of epithelial markers (e.g: CEACAM6, EPCAM, CDH1, KRT8 and KRT18) [54-56], which activate the integrin linked kinase (ILK) signaling pathway [57], inhibit genes involved in cell-cell junction signaling pathways and expression of adhesion molecules (e.g. DSG2, DSC2 and PKP2 genes) [58]. Altogether, these results suggest that in GEP-B tumors, immunosuppression linked to an EMT phenotype could be involved in the pathogenesis of PDAC. Whether immunosuppression precedes or develops after acquisition of an EMT phenotype, remains to be determined.

Overall, the above results confirm and extend on previous observations about the existence of distinct molecular subgroups of PDAC tumors as identified by GEP, including a "classical epithelial" and a "quiasimesenchymal" subtype of PDAC[25]. However, despite this, we failed to detect a third subtype of PDAC tumors with an exocrine-like phenotype, as previously described by Collisson et al. in a larger patient cohort [25]. Such apparently discrepant results could potentially be due to differences in the size of the cohort analyzed (27 tumoral samples in our study vs. 63 PDAC samples in the series of Collisson et al.), the methodology used (e.g. macrodissected freshly-frozen PDAC tissues vs. a mixture of formalin-fixed paraffin-embedded and freshly-frozen PDAC tissues, with or without microdissection), and/or the comparison against non-pancreatic reference tissues done in our series, but not in the study by Collisson et al. [25]. Of note, we also failed to confirm the previously reported association between specific GEP and the clinical and histopathological features of the disease (e.g.: the association between a mesenchymal phenotypes and both adverse tumor features and a poorer prognosis) [25, 56, 59]. Independently of the pathogenic significance of the distinct GEP and tumor phenotypes here described, the understanding of such biological pathways may contribute to better identify more efficient treatment strategies and to e.g. avoid standard PDAC therapy with gemcitabine and 5-fluorouracil in patients with GEP-B, due to the high chemoresistance of PDAC cells with an EMT phenotype to these treatments [56, 60].

Despite all the above, a major concern remains regarding the functional effect of microRNA expression levels on the mRNA transcript expression. Here we identified several miRNAs to be significantly correlated with expression of specific genes at the mRNA level. Among other miRNA-mRNA pairs, the miR-30a-star emerged in our series, as significantly correlated with an increased expression of the SLC7A6 gene transcript. The SLC7A6 (solute carrier 7 member of this family of genes) has known functions in the transport of leucin, being involved in promoting cell growth in many cancers [61, 62] and podocyte development[63]. Furthermore, expression of the miR-30 family of miRNAs is a key element during embryonic pancreatic development to maintain the epithelial phenotype of pancreatic tissues [64], their inhibition mediating an EMT phenotype in several types of cancer [65, 66]. Although, we were not able to detect any other (validated) inverse correlation for other miR-30 elements-genes, decreased expression of miR-30a, miR-30c and miR-30d was found in both GEP-A and GEP-B tumors with an epithelial vs. EMT phenotype, respectively; these results suggest that the EMT phenotype is potentially promoted in all PDAC tumors, but only those tumors carrying additional molecular/genomic alterations associated with immunosuppression and/or activation of ILK signaling could more clearly acquire a mesenchymal phenotype. Other miRNAs found to be altered in PDAC were exclusively deregulated among GEP-A or GEP-B tumors. Interestingly deregulated miRNA genes in GEP-A tumors included the stem loop transcript of miR-148a. The miR-148a miRNA possibly mediates overexpression of genes involved in tumor cell growth (e.g. acetyl-CoA sintetase, ACSL5), migration (e.g. the TSPAN15 tetraspanin) with an effect also on both apoptosis and immune responses (e.g. the TNFRSF21 tumor necrosis factor receptor); in turn miR-23a inhibits the antioxidative effect of the coenzyme Q10 homologe A (COQ10A) gene. In contrast, those miRNA genes which were overexpressed in GEP-B tumors included the miR-1180, miR-362-5p and the miR-423, all of which promote tumor cell proliferation and invasion through e.g. the BMP binding endothelial regulator (BMPER), the FYVE Rho GEF and PH domain containing 1 (FGD1) and the R-spondin 3 (RSPO3) genes.

Interestingly, clear cut discrimination between GEP-A and GEP-B tumors carrying an epithelial vs. mesenchymal-like molecular profile could be obtained via a set of 63 and 97 mRNA genes overexpressed in GEP-A and GEP-B tumors, respectively, as also confirmed in an external series of 27 PDAC patients [25]. These results indicate that these gene signatures could potentially serve in the future as prior knowledge for the discovery of biomarker candidates (i.e: CEACAM5, GPX2, MUC13, S100P and TMEM45B for GEP-A cases, and PAPPA and VGLL3 for GEP-B tumors) that may contribute to more efficient treatment and/or monitoring of both subtypes of PDAC tumors. In addition, in our series a small panel of 5 overexpressed PDAC markers (S100A11, GPR137B, SULF1, POSTN and miR-155) would allow precise distinction between PDAC and non-tumoral pancreatic tissues. In line with this hypothesis, strong expression of the S100A11 and GPR137B genes has been reported at the protein level in PDAC tissues, while SULF1 and POSTN are expressed at more variable patterns [67-69]; of note all four proteins have been also found to be secreted and present in both tumor tissues and the plasma [67, 68, 70] from PDAC patients. Altogether, secretion of these proteins outside the tumor cell, supports the potential utility of these genes as candidate markers for the diagnosis and monitoring of PDAC patients.

In summary, the present study provides evidence for a common GEP of tumor cells in PDAC, at the same time it confirms the genetic complexity and heterogeneity of these tumors with at least two clearly distinct and unique GEPs (e.g. epithelial-like vs. mesenchymal-like genomic profiles), potentially reflecting different pathways involved

in the oncogenesis and progression of PDAC. In addition, our results also highlight the potential role of the tumor microenvironment, particularly of the immune system, in PDAC, with potential diagnostic and therapeutic implications.

MATERIALS AND METHODS

Patients and samples

Tumor tissue specimens were obtained at diagnostic surgery from 27 consecutive sporadic PDAC patients (18 males and 9 females; mean age of 67 years, ranging from 41 to 79 years); in addition, non-tumoral pancreatic tissue specimens were also collected from another 5 patients each having a different pancreatic disease (pancreatic fibrosis with inflammation, chronic pancreatitis, an ampullary tumor, a neuroendocrine tumor and a PDAC, respectively). All PDAC patients underwent surgical tumor resection at the Division of Hepatobiliary and Pancreatic Surgery of the University Hospital of Salamanca (Salamanca, Spain). PDAC tumors were diagnosed and classified according to Adsay et al. [71] with the following distribution: 8 cases corresponded to well-differentiated/grade I tumors; 11 to moderately-differentiated/grade II, and; 8 to poorlydifferentiated/grade III PDAC. Histopathological grade was confirmed in all cases in a second independent evaluation by an experienced pathologist. Most tumors (21/27, 78%) were localized in the head of the pancreas, while the remaining six cases were localized in the pancreatic body (1/27, 4%), the tail (3/27, 11%) and the pancreatic body/tail (2/27, 7%). Mean tumor size at diagnostic surgery was of 3.0±0.82 cm, 6 cases corresponding to TNM stage IIA tumors and 21 to TNM stage IIB. The most relevant clinical and laboratory patient characteristics are summarized in Supplementary Table 1.

Pancreatic tissue samples were collected immediately after surgical resection, snap frozen and stored in OCT at -80°C (Tumor Biobank of the University Hospital of Salamanca, Red de Bancos de Tumores de Castilla y León, Salamanca, Spain). The study was approved by the local ethics committee of the University Hospital of Salamanca (Salamanca, Spain) and informed consent was given by each individual prior to entering the study, according to the Declaration of Helsinki. Once the histopathological diagnosis had been established, sections from the paraffin-embedded tissue samples were cut from three different areas representative of the tumoral tissue with > 70% tumor cell infiltration by hematoxylin-eosin staining, excluding stroma-enriched tumor areas. Selection of the neighbour areas of the tumor containing ≥70% tumor cells was performed on dissected samples stored in OCT.

RNA extraction and gene expression profiling (GEP) microarray studies

For GEP, sample preparation was performed as described in the Affymetrix GeneChip Expression Analysis Manual (Santa Clara, CA, USA). Briefly, each frozen tissue (≥0.3 g) was crushed to powder at cryogenic temperatures and homogeneized in Trizol (Life Technologies, Inc., Rockville, MD). Total RNA was then extracted using the miRNeasy mini kit according to the manufacturer's protocol (Qiagen, Valencia, CA); subsequently, the quality and integrity of the RNA was evaluated in an Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). Total RNA (100-1,000ng) from both tumoral and non-tumoral pancreatic tissues was hybridized to both the Affymetrix Human Gene ST 1.0 Expression and the microRNA 2.0 Expression arrays, according to the instructions of the manufacturer. Fluorescence signals were detected using the GeneChip Scanner 3000 7G (Affymetrix) and data stored as .CEL files.

For data analysis, GEP raw data derived from the Affymetrix Human Gene Expression ST 1.0 microarray and the microRNA 2.0 microarray, was normalized with the Robust Multi-array Average (RMA) algorithm; this included sequentially background correction, intraand inter-microarray well normalization, probe set summarization and calculation of expression signals, respectively[72]. Unsupervised classification of samples and genes -28,869 mRNA and 4,544 human small noncoding RNA transcripts- was performed by principal component (PCA) and hierarchical clustering analyses (HCA) using the expression signal detected for each gene for each probe set, and the MultiExperiment Viewer (MeV, version 4.8.1) [73] and Cluster 3.0 software programs (PAM software; http://www-stat.stanford.edu/~tibs/ PAM). Clustering was run using an Euclidean correlation metric and the average linkage method. For visualization of dendograms, the TreeView software (version 1.0.4) [74] was used. Differentially expressed genes between all tumor samples or GEP-defined subgroups of PDAC samples vs. non-tumoral samples were identified by supervised two-class unpaired Significance Analysis of Microarray (SAM; MeV software) [75] based on a false discovery rate (FDR) cut off of < .0001 and an absolute fold change cutoff of ≥ 2.0 .

In order to identify the best combination of genes for the discrimination between the GEP of PDAC tumors and non-neoplastic pancreatic tissues, a two-step strategy was used. In the first step, five prediction algorithms were used: 1) PAM (PAM software v 2.1; University of Stanford, CA) [76], 2) Partial Least Squares algorithms (PLS; SIMFIT software v.6.9.9; www.simfit.org.uk), 3) Support Vector Machines (SVM), 4) K-Nearest Neigbour (KNN) and, 5) Random Forest algorithms; the latter three algorithms are implemented in the Babelomics suite (http://babelomics.

bioinfo.cipf.es/) [77]. For this purpose, GEP data from two-thirds of the tumoral samples was randomly selected as a training dataset, while the remaining were used to build the validation dataset. In this first step, informative genes were defined as those represented in $\geq 4/5$ analyses. In the second step, the discriminative power of each informative gene was assessed by receiver operating curve (ROC) analysis (SPSS 15.0 Inc, Chicago, IL, USA). Finally, those genes which depicted a high predictive power -area under the curve (AUC) ≥0.96- together with an expression fold change (vs. non-tumoral tissues) > 4, were selected. Validation of genes was performed in the same pancreatic sample series (27 tumoral plus 5 pancreatic non-tumoral samples) applying the PAM and SVM models, using a 10-fold and a leave-one-out-cross validation method, respectively.

For the identification of miRNA candidates acting as gene-regulators in PDAC samples, Spearman correlation analyses were performed to identify significant correlations between individual miRNA and mRNA gene transcripts across tumoral (n = 27) and non-tumoral (n = 27) 5) samples. Each miRNA-mRNA interaction identified was subsequently evaluated with the Ingenuity Pathway Analysis software (IPA, Ingenuity Systems, www. ingenuity.com), as well as with available databases of experimentally validated miRNA interactions (TarBase 6.0 and miRWalk-database) and miRNA target prediction tools (DIANA-microT-CDS v5.0, miRWalk-database and miRecords) [78, 79]. Functional enrichment analysis of deregulated genes, analysis of canonical pathways, correlation networks, as well as gene-gene and genemiRNA interactions were defined using the IPA software.

Validation of gene expression profiles by quantitative real-time PCR assays

TaqMan Gene Expression Assays were used to validate GEP in the same samples used for microarray studies via the Step One Plus Real-Time PCR System -Applied Biosystems (ABI; Foster City, CA, USA) according to the manufacturer's instructions. The assays ID for the genes studied were as follows: Hs 00429010 m1 (PDIA2), Hs 00170815 m1 (POSTN), Hs 00418420 m1 (SCYN), 002220 (hsa-miR-216a), 002337 (hsa-miR-217), 002623 (hsa-miR-155) and 000507 (hsa-miR-203). Each PCR was carried out in duplicate in a final volume of 10 uL using the TaqMan Fast Universal Mastermix (ABI) and the following cycling parameters: incubation at 95°C (20 s), followed by 50 cycles at 95°C (1s) and an incubation at 60°C (20s). GEP and miRNA expression data was normalized against the GAPDH internal housekeeping gene and the RNU43 internal control, and it was further analyzed using the StepOne software (v2.0; ABI). The relative amounts of the quantified genes were calculated using the following equation: $2^{-\Delta CT}$ ($\Delta C_T = C_T GENE-C_T$ GAPDH or RNU43) expressed as arbitrary units (AU); results showed a high degree of correlation between data from both microarrays and RQ-PCR methods, for all genes evaluated ($r^2 \ge 0.66$, p < .0001; Supplementary Figure 1).

External validation series of PDAC tumors

External validation of the predictive value of the differentially expressed genes that discriminated between the distinct GEP-defined subgroups of PDAC tumors found in our series, was performed in a group of previously reported PDAC patients (n = 27). GEP array data files (Affymetrix Human Genome U133 Plus 2.0 Array) are publicly available at the GEO database (accession number GSE17891) [25]. Downloaded data CEL files were normalized using the RMA algorithm and overlapping probe sets were defined on the basis of probe specificity, using the GATExplorer server[80]. Probe sets with the best specificity to the interrogated genes (see Supplementary Table 7) were selected, and the expression signals detected for each gene for each probe set were further analyzed using the column metric preserving biplot assay[81] implemented in the SIMFIT statistical software (http://www.simfit.org.uk/).

Other statistical methods

The Mann-Whitney U test and a linear regression model were used to evaluate the statistical significance of differences observed between groups and to explore the degree of correlation between different variables, respectively (SPSS 15.0 Inc.). P-values \leq .05 were considered to be associated with statistical significance.

ACKNOWLEDGMENTS

We thank Diego Alonso-López from the Bioinformatics Unit, Cancer Research Center (IBMCC-CSIC/USAL), for his technical advice on microarray data analysis.

FINANCIAL DISCLOSURE

This work has been partially supported by grants from the Gerencia Regional de Salud de Castilla y León, Valladolid, Spain (GRS861/A/13), RTICC from the Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Madrid, Spain (RD06/0020/0035-FEDER; RD12/0036/0048-FEDER), Fundación Memoria de Don Samuel Solórzano Barruso, Salamanca, Spain (FS/13-2012 and FS/16-2013). JM Sayagués is supported by grant CP05/00321 from the Ministerio de Ciencia e Innovación, Madrid, Spain.

CONFLICTS OF INTEREST

None to declare.

REFERENCES

- Gutierrez ML, Sayagues JM, Abad MM, Bengoechea O, Gonzalez-Gonzalez M, Orfao A and Munoz-Bellvis L. Cytogenetic heterogeneity of pancreatic ductal adenocarcinomas: identification of intratumoral pathways of clonal evolution. Histopathology. 2011; 58:486-497.
- Gutierrez ML, Munoz-Bellvis L, Abad MM, Bengoechea O, Gonzalez-Gonzalez M, Orfao A and Sayagues JM. Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology. PLoSOne. 2011; 6:e22315.
- Harada T, Okita K, Shiraishi K, Kusano N, Kondoh S and Sasaki K. Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res. 2002; 62:835-839.
- Nakamura T, Kuwai T, Kitadai Y, Sasaki T, Fan D, Coombes KR, Kim SJ and Fidler IJ. Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res. 2007; 67:7597-7604.
- Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, Vilardell F, Wang Z, Keller JW, Banerjee P, Herman JM, Cameron JL, Yeo CJ, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. JClinOncol. 2009; 27:1806-1813.
- Gorunova L, Hoglund M, Andren-Sandberg A, Dawiskiba S, Jin Y, Mitelman F and Johansson B. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes ChromosomesCancer. 1998; 23:81-99.
- Bogaert J and Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol. 2014; 27:9-14.
- 8. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, Chua C, Feng Z, Guan YK, Ooi CH, Ivanova T, Zhang S, Lee M, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013; 145:554-565.
- Allison KH and Sledge GW, Jr. Heterogeneity and Cancer. Oncology (Williston Park). 2014; 28.
- Balagurunathan Y, Morse DL, Hostetter G, Shanmugam V, Stafford P, Shack S, Pearson J, Trissal M, Demeure MJ, Von Hoff DD, Hruby VJ, Gillies RJ and Han H. Gene expression profiling-based identification of cell-surface targets for developing multimeric ligands in pancreatic cancer. Mol Cancer Ther. 2008; 7:3071-3080.
- Lowe AW, Olsen M, Hao Y, Lee SP, Taek Lee K, Chen X, van de Rijn M and Brown PO. Gene expression patterns in pancreatic tumors, cells and tissues. PLoS One. 2007; 2:e323.

- Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008; 321:1801-1806.
- 13. Heidenblad M, Lindgren D, Veltman JA, Jonson T, Mahlamaki EH, Gorunova L, van Kessel AG, Schoenmakers EF and Hoglund M. Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene. 2005; 24:1794-1801.
- 14. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M and Hruban RH. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 2003; 63:8614-8622.
- 15. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, van Heek T, Ashfaq R, Meyer R, Walter K, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002; 160:1239-1249.
- Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, et al. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoSOne. 2012; 7:e43192.
- Nones K, Waddell N, Song S, Patch AM, Miller D, Johns A, Wu J, Kassahn KS, Wood D, Bailey P, Fink L, Manning S, Christ AN, et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer. 2014; 135:1110-1118.
- Stratford JK, Bentrem DJ, Anderson JM, Fan C, Volmar KA, Marron JS, Routh ED, Caskey LS, Samuel JC, Der CJ, Thorne LB, Calvo BF, Kim HJ, et al. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 2010; 7:e1000307.
- Mees ST, Mardin WA, Schleicher C, Colombo-Benkmann M, Senninger N and Haier J. Role of tumor microenvironment on gene expression in pancreatic cancer tumor models. J Surg Res. 2011; 171:136-142.
- Zhang G, Schetter A, He P, Funamizu N, Gaedcke J, Ghadimi BM, Ried T, Hassan R, Yfantis HG, Lee DH, Lacy C, Maitra A, Hanna N, et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One. 2012; 7:e31507.
- Wang L, Tsutsumi S, Kawaguchi T, Nagasaki K, Tatsuno K, Yamamoto S, Sang F, Sonoda K, Sugawara M, Saiura A, Hirono S, Yamaue H, Miki Y, et al. Whole-

- exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res. 2012; 22:208-219.
- Buchholz M, Braun M, Heidenblut A, Kestler HA, Kloppel G, Schmiegel W, Hahn SA, Luttges J and Gress TM. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene. 2005; 24:6626-6636
- Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG, Hruban RH, Goggins M and Leach SD. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res. 2005; 65:1619-1626.
- Sun T, Kong X, Du Y and Li Z. Aberrant MicroRNAs in Pancreatic Cancer: Researches and Clinical Implications. Gastroenterol Res Pract. 2014; 2014;386561.
- Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011; 17:500-503.
- Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Calvopina JH, Patel SG, Wu N, Hindoyan A, Farrell JJ, Li X, Dawson DW and Wu H. Integrative survival-based molecular profiling of human pancreatic cancer. ClinCancer Res. 2012; 18:1352-1363.
- 27. Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel N, Gall TM, De Giorgio A, Pinho FG, Fulci V, et al. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology. 2014; 146:268-277 e218.
- Heasman SJ and Ridley AJ. Mammalian Rho GTPases: new insights into their functions from *in vivo* studies. Nat Rev Mol Cell Biol. 2008; 9:690-701.
- Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, Chang DK, Cowley MJ, Gardiner BB, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012; 491:399-405.
- Schiarea S, Solinas G, Allavena P, Scigliuolo GM, Bagnati R, Fanelli R and Chiabrando C. Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. J Proteome Res. 2010; 9:4376-4392.
- Crivellato E. The role of angiogenic growth factors in organogenesis. Int J Dev Biol. 2011; 55:365-375.
- Pyrzynska B, Pilecka I and Miaczynska M. Endocytic proteins in the regulation of nuclear signaling, transcription and tumorigenesis. Mol Oncol. 2009; 3:321-338.
- 33. Sousa CM and Kimmelman AC. The complex landscape of pancreatic cancer metabolism. Carcinogenesis. 2014;

- 35:1441-1450.
- Inman KS, Francis AA and Murray NR. Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol. 2014; 20:11160-11181.
- 35. Kerr MC and Teasdale RD. Defining macropinocytosis. Traffic. 2009; 10:364-371.
- Reymond N, d'Agua BB and Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013; 13:858-870.
- Luo G, Long J, Zhang B, Liu C, Xu J, Ni Q and Yu X. Stroma and pancreatic ductal adenocarcinoma: an interaction loop. Biochim Biophys Acta. 2012; 1826:170-178.
- Yao HP, Zhou YQ, Zhang R and Wang MH. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer. 2013; 13:466-481.
- Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T and Condeelis J. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol. 2005; 168:441-452.
- Kwiatkowska A and Symons M. Signaling determinants of glioma cell invasion. Adv Exp Med Biol. 2013; 986:121-141
- Fang JY and Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005; 6:322-327.
- 42. Moreno-Layseca P and Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 2014; 34:144-153.
- 43. Radu M, Semenova G, Kosoff R and Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014; 14:13-25.
- Whale A, Hashim FN, Fram S, Jones GE and Wells CM. Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed). 2011; 16:849-864.
- Wells A, Huttenlocher A and Lauffenburger DA. Calpain proteases in cell adhesion and motility. Int Rev Cytol. 2005; 245:1-16.
- Tsuda M and Tanaka S. Roles for crk in cancer metastasis and invasion. Genes Cancer. 2012; 3:334-340.
- Sulzmaier FJ, Jean C and Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014; 14:598-610.
- 48. Noort AR, van Zoest KP, Weijers EM, Koolwijk P, Maracle CX, Novack DV, Siemerink MJ, Schlingemann RO, Tak PP and Tas SW. NF-kappaB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J Pathol. 2014; 234:375-385.
- Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L and Condeelis J. Macrophage contact induces RhoA GTPase signaling to trigger tumor

- cell intravasation. Oncogene. 2014; 33:4203-4212.
- Iozzo RV, Zoeller JJ and Nystrom A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells. 2009; 27:503-513.
- Evans A and Costello E. The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol. 2012; 3:270.
- 52. Chen XH, Liu ZC, Zhang G, Wei W, Wang XX, Wang H, Ke HP, Zhang F, Wang HS, Cai SH and Du J. TGF-beta and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells. Mol Immunol. 2015; 65:34-42.
- Messal N, Serriari NE, Pastor S, Nunes JA and Olive D. PD-L2 is expressed on activated human T cells and regulates their function. Mol Immunol. 2011; 48:2214-2219
- Steinestel K, Eder S, Schrader AJ and Steinestel J. Clinical significance of epithelial-mesenchymal transition. Clin Transl Med. 2014; 3:17.
- 55. Xu X, Su B, Xie C, Wei S, Zhou Y, Liu H, Dai W, Cheng P, Wang F and Guo C. Sonic hedgehog-Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One. 2014; 9:e96441.
- Satoh K, Hamada S and Shimosegawa T. Involvement of epithelial to mesenchymal transition in the development of pancreatic ductal adenocarcinoma. J Gastroenterol. 2014.
- Oloumi A, McPhee T and Dedhar S. Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta. 2004; 1691:1-15.
- 58. Franke WW and Rickelt S. Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures. Int J Cancer. 2011; 129:2588-2599
- Lee SH, Kim H, Hwang JH, Shin E, Lee HS, Hwang DW, Cho JY, Yoon YS, Han HS and Cha BH. CD24 and S100A4 expression in resectable pancreatic cancers with earlier disease recurrence and poor survival. Pancreas. 2014; 43:380-388.
- 60. Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, Ali S, Abbruzzese JL, Gallick GE and Sarkar FH. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009; 69:2400-2407.
- 61. Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, Lehman ML, Hendy SC, Buchanan G, Nelson CC, Rasko JE and Holst J. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res.

- 2011; 71:7525-7536.
- 62. Wang Q, Tiffen J, Bailey CG, Lehman ML, Ritchie W, Fazli L, Metierre C, Feng YJ, Li E, Gleave M, Buchanan G, Nelson CC, Rasko JE, et al. Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. J Natl Cancer Inst. 2013; 105:1463-1473.
- 63. Sekine Y, Nishibori Y, Akimoto Y, Kudo A, Ito N, Fukuhara D, Kurayama R, Higashihara E, Babu E, Kanai Y, Asanuma K, Nagata M, Majumdar A, et al. Amino acid transporter LAT3 is required for podocyte development and function. J Am Soc Nephrol. 2009; 20:1586-1596.
- 64. Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Mitnala S, Shouche Y and Hardikar AA. The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009; 1:137-147.
- 65. Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zollner H, Munding J, Klein-Scory S, Reinacher-Schick A, Schwarte-Waldhoff I, Schmiegel W and Hahn SA. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012; 33:732-739.
- 66. Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, deVere White RW and Kung HJ. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. 2014; 33:2495-2503.
- 67. Chelala C, Hahn SA, Whiteman HJ, Barry S, Hariharan D, Radon TP, Lemoine NR and Crnogorac-Jurcevic T. Pancreatic Expression database: a generic model for the organization, integration and mining of complex cancer datasets. BMCGenomics. 2007; 8:439.
- 68. Thomas JK, Kim MS, Balakrishnan L, Nanjappa V, Raju R, Marimuthu A, Radhakrishnan A, Muthusamy B, Khan AA, Sakamuri S, Tankala SG, Singal M, Nair B, et al. Pancreatic Cancer Database: an integrative resource for pancreatic cancer. Cancer Biol Ther. 2014; 15:963-967.
- Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Bjorling L and Ponten F. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010; 28:1248-1250.
- Nanjappa V, Thomas JK, Marimuthu A, Muthusamy B, Radhakrishnan A, Sharma R, Ahmad Khan A, Balakrishnan L, Sahasrabuddhe NA, Kumar S, Jhaveri BN, Sheth KV, Kumar Khatana R, et al. Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucleic Acids Res. 2014; 42:D959-965.
- Adsay NV, Basturk O, Bonnett M, Kilinc N, Andea AA, Feng J, Che M, Aulicino MR, Levi E and Cheng JD. A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. AmJSurgPathol. 2005; 29:724-733.
- Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP. Exploration, normalization, and summaries of high density

- oligonucleotide array probe level data. Biostatistics. 2003; 4:249-264.
- 73. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003; 34:374-378.
- Saldanha AJ. Java Treeview—extensible visualization of microarray data. Bioinformatics. 2004; 20:3246-3248.
- 75. Tusher VG, Tibshirani R and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. ProcNatlAcadSciUSA. 2001; 98:5116-5121.
- Tibshirani R, Hastie T, Narasimhan B and Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. ProcNatlAcadSciUSA. 2002; 99:6567-6572.
- 77. Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, et al. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 2010; 38:W210-W213.
- Dweep H, Sticht C, Pandey P and Gretz N. miRWalk—database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. JBiomedInform. 2011; 44:839-847.
- Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009; 37:D105-D110.
- Risueno A, Fontanillo C, Dinger ME and De Las Rivas J. GATExplorer: genomic and transcriptomic explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinformatics. 2010; 11:221.
- 81. Gabriel KR. The biplot graphic display of matrices with application to principal component analysis. Biometrika. 1971; 58:453-467.

Artículo 4: "Los perfiles de alteración de los cromosomas 4, 8q24 y 9q34 analizados mediante FISH están asociados con la supervivencia de los pacientes con adenocarcinoma ductal de páncreas"

Objetivos: La mayoría de los pacientes con adenocarcinoma ductal de páncreas (ADCP) muere durante los primeros 6 meses tras el diagnóstico de la enfermedad. Sin embargo, entre 20-25% de los enfermos que son sometidos a una resección quirúrgica completa del tumor sobreviven a los 5 años, período en el que incluso pueden permanecer libres de recaída. Actualmente, existe un número limitado de estudios en los que se hayan detectado marcadores tumorales capaces de predecir el pronóstico de los pacientes con ADCP e identificar aquellos casos con mayor supervivencia global y supervivencia libre de enfermedad. En el presente trabajo evaluamos el impacto de las alteraciones en el número de copias de ADN de diferentes regiones del genoma en la supervivencia global de pacientes con ADCP.

Métodos: En conjunto analizamos las alteraciones cromosómicas presentes en tumores primarios de 55 pacientes con ADCP, empleando técnica de hibridación *in situ* fluorescente, y su impacto pronóstico. En una segunda fase, validamos el valor pronóstico de las alteraciones encontradas en una serie externa de 44 pacientes con ADCP resecados y estudiados mediante *arrays* de CGH, e identificamos los genes codificados en las regiones cromosómicas con valor pronóstico a través del análisis de *microarrays* de alta densidad de polimorfismos de nucleótido único (SNP) en 20 de los 55 casos incluidos en este estudio.

Resultados: En términos generales, nuestros resultados mostraron que las alteraciones de los cromosomas 4 y 9q34, junto con las ganancias del cromosoma 8q24 en pacientes con ADCP se asocian (de forma independiente de otras variables) con una supervivencia global de pacientes con ADCP significativamente más corta. De acuerdo con estas tres alteraciones citogenéticas, construimos un sistema de puntuación citogenética capaz de identificar pacientes con tasas de supervivencia a los 5 años significativamente diferentes (p<.001): 60%±20%, 16%±8% and 0%±0%, respectivamente.

Conclusiones: Nuestros resultados muestran una asociación significativa entre las alteraciones genéticas presentes a nivel tumoral y la supervivencia global de los pacientes con ADCP y sientan la base para una futura estratificación pronóstica de los pacientes sometidos a una resección quirúrgica completa del tumor. No obstante, se requiere de nuevos estudios encaminados a identificar los genes específicos codificados en estas

regiones cromosómicas, con el fin de determinar su papel funcional a la hora de entender mejor los mecanismos que determinan el impacto clínico de estas alteraciones.

the **Journal of**Molecular
Diagnostics

jmd.amjpathol.org

Altered Interphase Fluorescence *in Situ* Hybridization Profiles of Chromosomes 4, 8q24, and 9q34 in Pancreatic Ductal Adenocarcinoma Are Associated with a Poorer Patient Outcome

María L. Gutiérrez,* Luis Muñoz-Bellvis,[†] María E. Sarasquete,[‡] David G. Hernández-Mejía,* María del Mar Abad,[§] Oscar Bengoechea,[§] Luis Corchete,[‡] María González-González,* Jacinto García-García,[†] Marcos Gonzalez,[‡] Ines Mota,* Alberto Orfao,* and José M. Sayaques*

From the Cytometry General Service-NUCLEUS,* Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca; the Departments of General and Digestive Surgery[†] and Pathology, University Hospital of Salamanca, Salamanca; and the Hematology Service, Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Salamanca, Spain

Accepted for publication June 24, 2014.

Address correspondence to Alberto Orfao, M.D., Ph.D., Centro de Investigación del Cancer, Paseo de la Universidad de Coimbra S/N, 37007 Salamanca, Spain. E-mail: orfao@usal.es. Most patients with pancreatic ductal adenocarcinoma (PDAC) die within 6 months of diagnosis. However, 20% to 25% patients undergoing total tumor resection remain alive and disease-free 5 years after diagnostic surgery. Few studies on tumor markers have predicted patient prognosis and/or survival. We evaluated the effect of tumor cytogenetic copy number changes detected by interphase fluorescence *in situ* hybridization on overall survival (OS) of 55 PDAC patients. The prognostic value of copy number changes showing an effect on OS was validated in an external cohort of 44 surgically resected PDAC patients by comparative genomic hybridization arrays, and the genes coded in altered chromosomes with prognostic value were identified by high-density single-nucleotide polymorphism arrays in 20 cases. Copy number changes of chromosomes 4 and 9q34 with gains of 8q24 were independently associated with shorter OS. On the basis of these three chromosomal alterations, a score is proposed that identifies patients with significantly different (P < 0.001) 5-year OS rates: $60\% \pm 20\%$, $16\% \pm 8\%$, and $0\% \pm 0\%$, respectively. Our results show an association between tumor cytogenetics and OS of PDAC patients and provide the basis for further prognostic stratification of patients undergoing complete tumor resection. Further studies to identify specific genes coded in these chromosomes and their functional consequences are necessary to understand the clinical effect of these changes. (*J Mol Diagn 2014, 16: 648–659; http://dx.doi.org/10.1016/j.j.moldx.2014.06.007*)

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer; most patients die during the first 6 months after diagnosis. In fact, tumor relapses are frequently observed, even after complete tumor resection. However, approximately 20% to 25% of PDAC patients remain alive and even disease-free 5 years after diagnostic surgery. Despite the availability of standard staging and histopathologic information before and after surgery, prediction of the prognosis of PDAC patients undergoing complete surgical tumor resection remains uncertain because patients with similar clinicopathologic disease features may experience a significantly different disease outcome. ^{2,3}

Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology.

Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmoldx.2014.06.007

In the last decades, important advances have been achieved in the identification of recurrent cytogenetic and molecular changes in PDAC. However, unlike in other solid tumors (eg, breast, lung, and prostate cancer), such

Supported in part by Gerencia Regional de Salud de Castilla y León grant GRS861/A/13, Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, grants RD06/0020/0035-FEDER and RD12/0036/0048-FEDER, Fundación Memoria de Don Samuel Solórzano Barruso grant FS/13-2012, and Ministerio de Ciencia e Innovación grants CP05/00321 (J.M.S.), CP13/00080 (M.E.S.), and Fl08/00721 (M.G.-G.).

A.O. and J.M.S. contributed equally to this study as senior authors. Disclosures: None declared.

alterations have not yet contributed to a better prognostic stratification of PDAC patients.4 In this regard, technical limitations of conventional cytogenetics (eg, low sensitivity) may have a negative effect on the identification of chromosomal changes and cytogenetic profiles with a prognostic effect on survival of PDAC patients. In addition, the cytogenetic heterogeneity of tumor cells together with the presence of a desmoplastic reaction with an admixture of a significant proportion of normal or reactive cells with the tumor cells may further contribute to suboptimal detection of chromosomal changes by conventional cytogenetic and molecular analysis of whole tumor samples and nucleic acids extracted from the bulk tumor tissue, respectively.5 Recently, we have evaluated the genetic profile of PDAC tumors by interphase fluorescence in situ hybridization (iFISH) techniques and high-density singlenucleotide polymorphism (SNP) arrays. 6,7 Our results revealed that iFISH is a well-suited approach for the identification of numerical chromosomal changes as confirmed by SNP arrays and the evaluation of the cytogenetic profiles of single tumor cells in individual PDAC tumors.⁶ Although we were not able to find any associations between patient outcome and copy number changes (CNCs) by SNP arrays because of the limited number of patients analyzed, preliminary iFISH data suggested an adverse prognostic effect for specific numerical chromosomal changes, such as those involving chromosomes 4, 20, and Y,6 such results deserving further confirmation in larger series of PDAC patients.

In this study, we evaluated the effect of cytogenetic numerical and structural changes involving chromosomes most frequently altered in PDAC on patient overall survival (OS). Overall, our results indicate that numerical changes of chromosomes 4 and 9q34, together with gains of chromosome 8q24, are associated with a shorter patient OS. On the basis of these three chromosomal alterations, a cytogenetic score was built that identifies patients with significantly different 5-year OS rates of $60\% \pm 20\%$, $16\% \pm 8\%$, and $0\% \pm 0\%$, respectively.

Materials and Methods

Patients and Samples

A total of 55 sporadic PDAC patients (35 men and 20 women; median age, 65 years; age range, 34 to 84 years) diagnosed as having PDAC at the Division of Hepatobiliary and Pancreatic Surgery of the University Hospital of Salamanca (Salamanca, Spain) between 2003 and 2011 were studied. Written informed consent was given by each individual before entering the study, and the study was approved by the institutional ethics committee (University Hospital of Salamanca, Salamanca, Spain) according to the Declaration of Helsinki protocol.

Tumor resection was performed in all but three cases, and it included resection of the pancreas head according to the Whipple procedure with standard lymphadenectomy in the absence of pylorus preservation.⁸ Surgical margins were

systematically analyzed and resection extended whenever required; the retroperitoneal surgical margin was marked with Chinese ink for further histopathologic evaluation. All tumors were diagnosed and classified according to Adsay et al, with the following distribution: 19 well-differentiated grade I tumors, 17 moderately differentiated grade II tumors, and 18 poorly differentiated grade III tumors. Histopathologic grade was confirmed in all cases in a second independent evaluation by an experienced pathologist. Thirty-five of 52 patients (64%) undergoing tumor resection had no infiltration by tumor cells of the retroperitoneal surgical margins (R0), whereas 17 (31%) had microscopical tumor infiltration (R1) (Table 1). At the moment of closing the study, 12 patients remained alive after a median follow-up of 18 months (range, <1 to 108 months). The most relevant clinical patient characteristics are summarized in Table 1.

Once histopathologic diagnosis had been established, sections from the paraffin-embedded tissue samples were cut from three different areas representative of the tumoral tissue and placed over poly-L-lysine coated slides. All tissues were evaluated after hematoxylin and eosin staining to confirm the presence and determine the quantity of tumor cells infiltrating the material to be studied (≥70%), excluding stroma-enriched tumors (Supplemental Figure S1). Selection of tumoral areas was performed on samples stored in OCT at −80°C at the Tumor Biobank of the University Hospital of Salamanca (Red de Bancos de Tumores de Castilla y León, Salamanca, Spain) and were dissected for further iFISH and RNA expression studies to ensure they were enriched in tumor cells.

iFISH Studies

Multicolor iFISH studies were performed on an aliquot of single-cell suspensions containing >70% of tumor cells, prepared from three different areas of the tumor sample, as previously described.⁶ Infiltration of the tumor samples by PDAC cells was further confirmed by the percentage of cells carrying numerical cytogenetic changes by iFISH $(69\% \pm 12\% \text{ cells})$. A set of 21 centromeric and locusspecific FISH probes, directed against DNA sequences localized in those nine chromosomes and chromosomal regions most frequently altered in PDAC55,6,10-12 (EGFL3, ABL2, WHSC1, D4Z1, LPL, D8Z2, D7Z1, D7S486, CMYC, P16, D9Z5, ABL1, TP53, D17Z1, HER2, TOP2A, D18Z1, BCL2, ZNF217, D20Z1, and DYZ1 probes), were used. All probes were purchased from Vysis Inc. (Downers Grove, IL). The precise iFISH techniques and probes used have been previously described in detail in a subgroup of 36 PDAC tumors from those reported in this study.⁶ Quantification of the number of hybridization spots per nuclei was performed on ≥200 cells per sample using a BX60 fluorescence microscope (Olympus, Hamburg, Germany) equipped with a 100× oil objective. Only those spots with a similar size, intensity, and shape were counted in areas with <1% unhybridized cells, whereas doublet signals were considered single spots.

The Journal of Molecular Diagnostics ■ jmd.amjpathol.org

Table 1 Clinical and Biological Characteristics of the Pancreatic Ductal Adenocarcinoma Patients Analyzed

	Finding
Characteristic	(N = 55)
Age, means \pm SD (years)	65 ± 12
Sex	
Female	20 (36)
Male	35 (64)
Tumor size, means \pm SD (cm)	3.2 ± 1.1
Lymph node involvement	
NO	18 (33)
N1	35 (64)
Nx	2 (3)
Site of primary tumor	
Head	44 (80)
Head/body	1 (2)
Body	2 (4)
Body/Tail	4 (7)
Tail	4 (7)
CA19.9 serum levels, means \pm SD (U/mL)	665 ± 2213
Histopathologic grade	
Well differentiated (grade I)	19 (34)
Moderately differentiated (grade II)	17 (31)
Poorly differentiated (grade III)	18 (33)
NA	1 (2)
Surgical resection	
RO	35 (64)
R1	17 (31)
Rx	3 (5)
TNM stage	
IA	1 (2)
IB	2 (4)
IIA	13 (23)
IIB	35 (64)
IV	4 (7)
Adjuvant treatment	
No treatment	19 (34)
Gemcitabine	17 (31)
Gemcitabine and radiotherapy	1 (2)
Gemcitabine and oxiplatin	1 (2)
Gemcitabine, oxiplatin, and radiotherapy	1 (2)
Gemcitabine, capecitabine, and radiotherapy	1 (2)
Gemcitabine and erlotinib	1 (2)
Gemcitabine and tegafur	1 (2)
Radiotherapy	1 (2)
NA	12 (21)
Overall survival, median (range) (mo)	18 (0-108)
Deaths	43 (78)

Data are expressed as number (percentage) of patients unless otherwise indicated.

CA19.9, carbohydrate associated antigen; NA, not available; RO, microscopically negative tumor infiltration of resection margins; R1, microscopically positive resection margins; Rx, tumor sample obtained from an intraoperative biopsy.

External Validation Series of PDAC Tumors

External validation of the prognostic effect of the chromosomal alterations found in our series was performed in a group of previously described PDAC patients who underwent tumor resection (n = 44) from which array CGH (aCGH) data files (Human Genome CGH Microarray Agilent 105A) and clinical data were publicly available at the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo; accession number GSE28732). Downloaded data files were analyzed using the Nexus Copy Number software version 6.1 (Biodiscovery Inc., El Segundo, CA) with the fast adaptive states segmentation technique segmentation algorithm and a threshold for significance of 10^{-6} . To minimize the number of false-positive copy number (CN) calls, log₂ ratios with thresholds of 0.2 and 0.6 for gain and high-gain signals, respectively, and -0.2 and -1.0 for loss and high-loss signals, respectively, were applied. The maximum contiguous probe spacing was 10 Mb, and the minimum number of probes per segment was set to 3. The CN aCGH data were further analyzed to determine the altered (gained and lost) versus unaltered status of the specific chromosomal regions investigated with the iFISH probes used in our cohort. Median OS for this series was 17 months (range, <1 to 107 months); the only case with <1 month OS was considered a postoperative death and therefore excluded from OS analyses.

Identification of CNC by 500K SNP Arrays

To define more precisely the chromosomal alterations detected by iFISH, data from 20 of 55 PDAC patients whose tumors had been analyzed by 500K Affymetrix SNP arrays (Affymetrix Inc, Santa Clara, CA) were used as previously described. Both protein-coding and RNA-coding genes localized within the altered regions were identified through the Ensembl release 70, Human build GRCh37 public database (www.ensembl.org/Homo_sapiens/Info/Index).

Total RNA Extraction and Quantitative Real-Time PCR Assays

At least 0.3 g of the each frozen PDAC tumor specimen (n =28) and nontumoral pancreatic tissue sample (N = 5) was crushed to powder at cryogenic temperatures and homogeneized in Trizol (Life Technologies, Inc., Rockville, MD). Total RNA was then extracted using the miRNeasy mini kit columns according to the manufacturer's protocol (Qiagen, Valencia, CA); subsequently, RNA quality and integrity were evaluated in an Agilent 2100 Bioanalyzer profile (Agilent Technologies Inc., Santa Clara, CA). Expression of the POU5F1B, MYC, and PVT1 genes was analyzed using the Step One Plus Real-Time PCR System (Applied Biosystems, Foster City, CA) in 28 of 55 PDAC cases plus 5 nontumoral (eg, inflammatory) pancreatic tissue samples. For this purpose, the TaqMan Gene Expression Assays (Applied Biosystems) were used according to the manufacturer's instructions. The assay identification numbers for the genes studied were as follows: Hs_01596605_s1 (POU5F1B), Hs00153408_m1 (MYC), and Hs_01069044_m1 (PVT1). Each polymerase chain reaction (PCR) was performed in duplicate in a 10-μL final volume using the TaqMan Fast Universal Mastermix

jmd.amjpathol.org ■ The Journal of Molecular Diagnostics

Table 2 Pancreatic Ductal Adenocarcinoma: Association among Specific Chromosomal Alterations, Histopathologic Features of the Disease, and Overall Survival of Pancreatic Ductal Adenocarcinoma Patients

	No. (%) of patients	Lymph node status (%)*			TNM stage (%) [†]			0S [‡]			
Chromosome status	(N = 55)	NO	N1	P value	I/IIA	IIB/IV	P value	25% (95% CI)	50% (95% CI)	75% (95% CI)	<i>P</i> value [§]
Chromosome 1p36											
Normal	22 (40)	44	34		38	38		40 (18-62)	18 (15-21)	12 (11-13)	
Altered	33 (60)	56	66		62	62		92 (0-222)	19 (16-22)	8 (7-9)	
Chromosome 4											
Normal	37 (67)	67	69		69	67		92 (12-172)	21 (18-24)	12 (8-16)	0.04
Altered	18 (33)	33	31		31	33		21 (16-26)	12 (7-17)	8 (7-9)	
Chromosome 7											
Normal	26 (47)	72	34	0.009	75	36	0.008	50 (14-85)	21 (16-26)	16 (10-21)	
Altered	29 (53)	28	66		25	64		22 (19-25)	16 (9-23)	8 (7-9)	
Chromosome 8q24											
Normal	22 (40)	28	46		25	46		92 (50-134)	23 (0-49)	12 (9-15)	0.01
Altered	33 (60)	72	54		75	54		21 (19-23)	18 (14-22)	8 (6-10)	
Chromosome 9q34											
Normal	44 (80)	83	80		81	79		50 (25-75)	21 (18-24)	12 (8-16)	0.03
Altered	11 (20)	17	20		19	21		19 (17-21)	12 (4-20)	8 (6-10)	
Chromosome 17q											
Normal	26 (47)	67	37	0.04	69	38	0.04	92 (2-181)	22 (18-26)	18 (17-21)	
Altered	29 (53)	33	63		31	62		21 (19-23)	12 (8-16)	8 (7-9)	
Chromosome 18q21											
Normal	12 (22)	11	40	0.03	6	44	0.007	23 (12-34)	12 (10-14)	8 (6-10)	
Altered	43 (78)	89	60		94	56		50 (10-90)	19 (17-21)	12 (11-13)	
Chromosome 20											
Normal	16 (29)	56	14	0.002	56	18	0.005	50 (35-65)	19 (15-23)	8 (0-18)	
Altered	39 (71)	44	86		44	82		23 (20-25)	19 (16-22)	11 (8-14)	
Chromosome Y [¶]											
Normal	10 (18)	27	29		27	29		_	_	_	
Altered	25 (46)	73	71		73	71		21 (-)	16 (9-22)	6 (4-8)	

Statistically significant different results are in bold.

(Applied Biosystems) and the following cycling parameters: incubation at 95°C (20 seconds), followed by 50 cycles at 95°C (1 second) and incubation at 60°C (20 seconds). Gene expression data were normalized against three different internal housekeeping genes (*ACTB*, *B2M*, and *GAPDH*) and analyzed with the StepOne software version 2.0 (Applied Biosystems). Relative quantification was calculated using the following equation:

$$2e^{-\Delta CT} \left[\Delta C_T = C_T \text{ GENE} - C_T \text{ (mean of } ACTB, B2M, \\ GAPDH)\right] \times 10^3 \text{ arbitrary units (AU)}.$$
 (1)

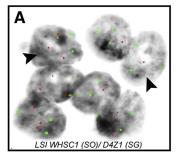
Statistical Analysis

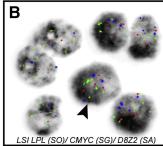
The *U*-test and χ^2 tests were used to evaluate the statistical significance of differences observed between groups for

continuous and categorical variables, respectively (SPSS Inc., Chicago, IL). The OS curves were plotted according to Kaplan and Meier method, and both the log-rank (one-sided) and Wilcoxon tests were used to establish the statistical significance of differences observed between survival curves (SPSS Inc.). Multivariate analysis of prognostic factors for OS was performed using the Cox stepwise regression (forward selection) model (regression, SPSS Inc.) for variables that had a significant association with OS in the univariate analysis. To establish a threshold for a cytogenetic prognostic score, tumors were classified according to the number of chromosomal changes they had from those (n = 3) that had effect in the above OS analyses into three groups: score 0, PDAC patients with no adverse cytogenetic changes; score 1, patients with one adverse cytogenetic change; and score 2, the remaining patients (≥ 2 adverse cytogenetic changes). Patients who did not undergo total tumor resection during surgery (n = 3 cases) and deaths occurring < 1 month after

The Journal of Molecular Diagnostics ■ jmd.amjpathol.org

^{*}A total of 53 of the 55 tumors with lymph node status assessed.


[†]A total of 54 of the 55 tumors with TNM status assessed.


[‡]A total of 51 of 55 tumors with OS data assessed.

[§]P value for OS assessed using the 1-sided log-rank test.

[¶]Y chromosome alterations were exclusively assessed in the 35 males.

OS, overall survival.

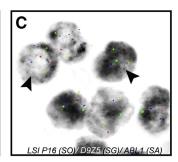


Figure 1 Interphase fluorescence *in situ* hybridization microscopic images of distinct cytogenetic patterns found in pancreatic ductal adenocarcinoma cases for chromosomal alterations with an adverse effect on overall patient survival. **Arrowheads** show chromosome 4 alterations characterized by polyploidy in association or not with del(4p) (A), gains of an entire chromosome 8 or the 8q24 chromosome region (B), and gains and deletions of the 9q34 chromosomal region (C). LSI, locus-specific identifier probe; SA, spectrum aqua; SG, spectrum green; SO, spectrum orange.

surgery (n=1) were excluded from the analyses. $P \le 0.05$ was considered statistically significant.

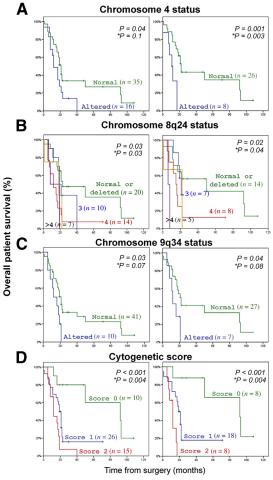
Results

Frequency of Chromosomal Alterations and Its Association with Other Features of the Disease

From all chromosomes analyzed, chromosome 17 was the most frequently altered (50/55; 91%) followed by chromosomes 18 (44/55; 80%), 1 (43/55; 78%), 8 (42/55; 77%), 20 (40/55; 73%), and 9 (39/55; 70%) in the whole series and chromosome Y in males (25/35; 72%). By contrast, less frequently altered chromosomes were chromosomes 7 (53%) and 4 (33%). Most frequently, chromosomal changes consisted of structural alterations [ie, deletions of chromosomes 18q21 (78%), 17p13 (74%), 9p21 (71%), 8p22 (52%), and 1p36 (22%)]; in turn, most common recurrent chromosomal gains involved the 8q24 (38%), 20q13 (26%), and 1q25 (18%) chromosomal regions (Supplemental Table S1).

From the clinical and histopathologic point of view, cytogenetic changes that involve chromosomes 7, 17q, and 20, as well as the lack of chromosome 18q21 abnormalities, were more frequently detected among patients with regional lymph node involvement and histologically more advanced tumors (stage IIB to IV versus stage I to IIA; $P \leq 0.04$) (Table 2). By contrast, no significant association was found between tumor cytogenetics and other disease characteristics, such as patient sex, age, CA19.9 serum levels, tumor size, or histopathologic grade (data not shown).

Prognostic Effect of Chromosomal Changes in PDAC Patients


From the prognostic point of view, no significant association was found between the clinical and biological features of the disease and OS of PDAC patients (Supplemental Figure S2). In contrast, the presence of CNCs of chromosomes 4 and 9q34, as well as CN gains of chromosome 8q24

(Figure 1 and Table 2), were associated with a significantly shorter OS, both for the whole patient series (n = 51); P = 0.04, P = 0.03, and P = 0.03, respectively) and for 34 patients who underwent complete surgical resection of the tumor with negative surgical margins by microscopy (R0 tumors; P = 0.001, P = 0.04, and P = 0.02, respectively) (Figure 2). Multivariate analysis of prognostic factors for OS revealed that these three specific chromosomal changes represented the most informative combination of independent variables to predict for a shorter patient OS (P = 0.001), even after correcting for the most relevant clinical variables, such as histopathologic tumor grade (P = 0.03). Therefore, a scoring system was built based on these three cytogenetic variables to stratify PDAC patients into low- (score 0: no adverse features; n = 10), intermediate- (score 1: one adverse feature; n = 26), and high-risk (score 2: ≥ 2 adverse features; n = 15) groups with significantly different OS rates at 5 years for both the whole series (60% \pm 20% versus 16% \pm 8% versus 0% \pm 0%; P < 0.001) and the patients with negative surgical margins (R0 tumors; $66\% \pm 21\%$ versus $18\% \pm 11\%$ versus $0\% \pm 0\%$, P < 0.001) (Figure 2).

Validation of the Prognostic Value of the Chromosomal Changes Detected by iFISH

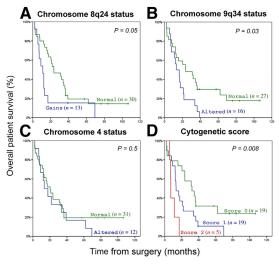
The prognostic effect of chromosomal gains at 8q24 and the CNC of chromosome 9q34 was verified using aCGH data from an independent series of PDAC patients available at the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo; accession number GSE28732) (n=43; P=0.05 and P=0.03, respectively; Figure 3). In contrast to the observations made in our own series, the prognostic effect of the chromosome 4 CNC could not be confirmed in this new independent series of PDAC patients. In turn, consistent with our findings, the overall cytogenetic profile of tumor cells as assessed by the proposed cytogenetic score also revealed a clear association with OS of PDAC patients in this external validation cohort (P=0.008), with OS rates at 5 years for patients with scores of 0 (n=19), 1 (n=19),

jmd.amjpathol.org ■ The Journal of Molecular Diagnostics

Figure 2 Overall survival curves of pancreatic ductal adenocarcinoma patients classified according to the presence versus absence of cytogenetic copy number changes (CNCs) of chromosome 4 (**A**), gains of chromosome 8q24 (**B**), and CNCs of chromosome 9q34 (**C**) and the overall cytogenetic score established on the basis of the three most informative independent prognostic factors (gains of chromosome 8q and CNCs of both chromosomes 4 and 9q) (**D**). The prognostic effect on overall survival for the whole series (n = 51; **left column**) and for patients who underwent complete tumor resection and had negative retroperitoneal surgical margins (R0) (n = 34; **right column**). P values for overall survival were determined by both the log-rank test and the Wilcoxon test (**asterisk**).

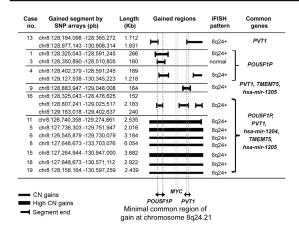
and 2 (n = 5) of 32% \pm 11%, 11% \pm 7%, and 0% \pm 0%, respectively (Figure 3).

Identification of Genes Coded in the 8q24 Chromosomal Region by SNP Arrays


Gains at chromosome 8q24 were investigated by high-density SNP arrays in 20 of 55 PDAC patients and were present in 13 of 20 patients; overall, they spanned for a total length of 7.2 Mb. In more detail, chromosomal regions gained at 8q24 contained a total of 29 genes from which the *POU5F1B*, *PVT1*, and *TMEM75* genes, as well the *hsa-mir-1204* and

hsa-mir-1205 miRNAs genes, were most recurrently involved (Figure 4). Of note, three of these five genes have been reported as gained and/or overexpressed in public pancreatic cancer databases. ^{13–15} They have also been associated with cancer (POU5F1B, PVT1, and hsa-mir-1204), ^{16–18} with the first two genes each being coded in one of the two most common regions of gains (126 and 48 Kb, respectively) identified at chromosome 8q24 (Figure 4).

To evaluate the effect of CNC on the expression of genes coded at these recurrently gained regions at chromosome 8q24, we then analyzed the level of expression of the POU5F1B and PVT1 genes (both coded in the recurrently altered chromosome 8q24 region) (Figure 4) plus the MYC gene, which is coded between the first two genes. Gene expression profiles were analyzed in a subset of 28 tumors versus nontumoral pancreatic tissue (n = 5) by quantitative real-time PCR (Figure 5). Overall, no significant differences (P > 0.05) were detected in the expression of the POU5F1Band PVT1 genes between PDAC tumors and inflammatory pancreatic tissue and between PDAC with and without gains of chromosome 8q24 (Figure 5); in contrast, the relative MYC transcript expression levels were down-regulated in PDAC tumors versus inflammatory pancreatic tissue $(P \le 0.001)$. Furthermore, PDAC tumors displaying 8q24 gains had lower MYC transcript levels than PDAC tumors without this chromosomal alteration (P = 0.02) (Figure 5).

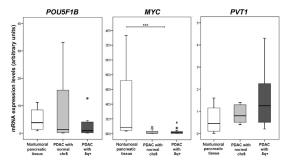

Discussion

Compared with other solid tumors, genetic characterization of PDAC has been clearly delayed. In fact, only in recent

Figure 3 Overall survival curves from an independent external validation cohort of pancreatic ductal adenocarcinoma patients $(n=43)^4$ grouped according to the presence of cytogenetic copy number changes of chromosomes 8q24 (gains of 8q24) (A), 9q34 (B), and 4 (C) by comparative genomic hybridization arrays and the overall cytogenetic score obtained per case for these three alterations (D).

The Journal of Molecular Diagnostics ■ jmd.amjpathol.org

Figure 4 Detailed characterization of the gained 8q24.21 chromosomal segments evaluated by high-density 500K single-nucleotide polymorphism (SNP) arrays in a subset of pancreatic ductal adenocarcinoma patients (*n* = 20). Commonly gained protein-coding and RNA-coding genes localized in these regions included the *P0U5F1P*, *PVT1*, *hsa-mir-1204*, *TMEM75*, and *hsa-mir-1205* genes, the former two genes being localized in the minimal common regions of gain identified at chromosome 8q24. Copy number (CN) gains ≥2.5; high CN gains ≥4.


years it has been found that PDACs are genetically heterogeneous tumors that frequently carry complex cytogenetic profiles with many different numerical chromosomal alterations. Such alterations consist of (eg, combined) losses of chromosomes 1p, 3p, 6, 8p, 9p, 10q, 17p, 18q, 21q, and/ or 22q, as well as nulisomy Y in males, together with gains of chromosomes 1q, 3q, 5p, 7, 8q, 11q, 17q, and 20q, 5,10 in association or not with a wide variety of other molecular changes, including activating mutations of KRAS and inactivation of the p16/CDKN2A, SMAD4/DPC4, and TP53 genes.^{2,19,20} Despite this, currently available information about the effect of genetic changes of PDAC in the histopathologic features and the clinical behavior of the disease remains relatively limited. This is probably due to the following reasons: i) the poor outcome of most PDAC cases; only a small percentage of patients who underwent complete tumor resection (>20% to 25%) had OS rates >5 years²; ii) the limited number of cytogenetic studies based on a relatively large series of patients, which include analysis of patient outcome^{3,21-24}; iii) the variability of the cytogenetic and molecular techniques used; and iv) the variable and even controversial results reported about their prognostic value in PDAC. 21,25-32

Several genetic changes have been previously associated with a poor outcome in PDAC. These changes include a higher DNA content of tumor cells, ²¹ activating *KRAS* mutations, ^{25,31,32} gains of chromosomes 8q, 20q, and 17q23, ^{33,34} losses of chromosome 4 and 18q22, ^{3,4} deletion or inactivation of chromosome 1p36 or both the *RUNX3* and *SMAD4* genes, ^{30,31,34,35} mutations of PDAC driver genes, ³⁶ and differential expression of other genes and miRNAs. ^{30,37–44} Despite a substantially increased number

of molecular studies that evaluate the prognostic significance of a large number of genes known to be altered in individual PDAC tumors, the actual limitations in the prognostic classification of PDAC patients demands further investigation of prognostically informative cytogenetic profiles.

We confirm and extend revious observations about the cytogenetic CNCs of PDAC using iFISH. In addition, we also confirm and extend previous data about the association between specific cytogenetic profiles and the clinical, histopathologic, and prognostic features of the disease. 3,4,6,33,38 Thus, alterations of chromosomes 7, 17q, and 20, together with lack of changes at chromosome 18q, were all associated in our series with more advanced disease at diagnosis, as reflected by, for example, a higher frequency of involvement of regional lymph nodes. These results confirm prior observations about the association between specific genetic abnormalities (ie, numerical copy changes in chromosomes 7 regions and gains and amplifications in 17q and 20q) and both disease progression and metastasis, 10,11,34,45-48 pointing out the potential role in PDAC of genes coded in these chromosomes (eg, the EGFR, MACC1, MERN1/WBSCR22, ZINP, ARPC1A, HGF, MET, 47-53 TOP2A, HER2, BIRC5, GRB7/ TANC2, $^{54-56}$ CDH2, 57,58 NCOA3/AIB1, CTSZ, ZNF217, and $AURKA^{10,46,59,60}$ genes). Despite this, none of these chromosomal alterations had a significant effect on OS in

In contrast, gains of chromosome 8q24, together with CNCs of chromosomes 4 and 9q34, had a significant effect on disease outcome in the whole PDAC patient series and when we restricted the analysis to patients who underwent complete tumor resection and had no infiltration of tumor borders by microscopy (R0 cases). Moreover, we confirmed the prognostic value of chromosome 8q24 gains and of CNCs of chromosome 9q34, but not of those of

Figure 5 *POU5F1B, MYC,* and *PVT1* transcript (mRNA) expression levels as assessed by quantitative real-time polymerase chain reaction in pancreatic ductal adenocarcinoma (PDAC) tumors (n=28) classified according to the presence versus absence of chromosome 8q24 gains compared with nontumoral pancreatic tissue (n=5). *MYC* mRNA levels from PDAC tumor samples carrying gains of chromosome 8q24 were significantly lower than those found in other PDAC tumors (P=0.02) and in nontumoral pancreatic tissue. ***P<0.001.

chromosome 4, in an external series that included 43 PDAC patients analyzed by aCGH.⁴ Validation of our results concerning the prognostic effect of gains of 8q24 and alterations of 9q34 in an independent data set strengthens the evidence of the clinical relevance of both chromosomal changes. Of note, in our series we could not confirm the prognostic value of del(18q22.3), which had been described in studies based on the external validation cohort of analyzed PDAC patients.^{4,61} Such apparently discrepant results could be due to use of the *BCL2* iFISH probe in our study (directed to the 18q21 region), which targets a centromerically retained chromosome 18q region with respect to the deleted 18q22.3 cytoband.

Although a susceptibility locus for PDAC that involves the ABO gene has been identified at chromosome 9q34, such a genome region does not correspond to the minimal common region (MCR) of alteration found among our patients. 62 To the best of our knowledge, this is the first time that the prognostic effect of CNC of chromosome 9q34 is reported in PDAC; it is known that several tumor suppressor genes are coded in this chromosomal region, such as the LAMC3 and the TSC1 genes, 63,64 as well as others with previously oncogenic-associated functions, such as ABL1, SET, NUP214, NOTCH1, and KIA1857-netrin-G2 genes, 65-68 and the miRNAs hsa-miR-199b and hsa-miR-219-2.69 In contrast, instability of chromosome 8 and gains or amplifications of chromosome 8q24 have been previously associated with a poorer prognosis and a more aggressive tumor phenotype among PDAC patients as also found among our patients. 33,34,70 Despite this, the exact role of specific cancer-associated genes coded in this chromosomal region (eg, MYC) in PDAC remains unclear. 71-74 Upregulation of MYC represents a hallmark of several different types of cancer, however, expression data from half of our cases revealed down-regulation of MYC in tumor versus inflammatory tissues, particularly among the patients harboring 8q24 gains. These results suggest that the oncogenic role of MYC takes place earlier in the development of the tumor⁷¹ and/or that there are other genes, apart from MYC, that are coded in this chromosomal region that play a more prominent role (eg, the SQLE, NOV, ENPP2, and PRNCR1 genes and/or the PVT1 noncoding complex locus). 16,72,74-76 In addition, we cannot fully rule out that the absence of MYC overexpression in tumor specimens carrying gains of 8q24 is due to partial contamination of the samples with RNA derived from stromal cells or (selective) RNA degradation. However, previous studies using whole genome sequencing techniques also found no correlation between MYC CN gains and MYC overexpression in PDAC tumors.⁷⁷ Consistent with these findings, we also failed to show a significant association between gains of chromosome 8q24 and the levels of expression of other cancer-associated genes coded in the MCR of gain at chromosome 8q24. In turn, a significant proportion of cases with 8q24 gains (n = 8/13) displayed more extended CN gains by SNP arrays, pointing out the

potential implication of other genes encoded in this chromosomal region, outside the MCR of gain, which could be responsible for conferring a poorer prognosis for PDAC cases carrying gains of chromosome 8q24. Further studies are required to determine the specific molecular mechanisms that may help explain the association of chromosome 8q24 gains and the poorer outcome of PDAC patients.

Regarding the CNCs of chromosome 4, although we could not confirm their prognostic effect in the external validation series analyzed, a susceptibility locus at chromosome 4q32-34^{1,78} and an association between the presence of alterations of chromosome 4p and 4q and the outcome of PDAC patients have been previously reported by others.^{3,34} Potential candidate genes in these locations include tumor suppressors encoded in the 4p16-p15 region, such as the LETM1, FGFR1, STIM2, has-miR-218, SLIT2-ROBO1, and SH3BP279-84 genes, as well as those in chromosome 4q (eg, PCDH10, TET2, CDC4/FBXW7, HPSE, FAT1, and NDST 4^{85-90}), in addition to other widely described cancer-associated genes, such as KIT, VEGFR2, PDGFRA, WHSC1, and FGFR3 genes. 91-94 The precise clinical role of such alterations and the specific genes involved in the altered loci therefore deserve further investigation.

Of note, multivariate analysis revealed an independent effect on OS for the presence of CNCs of chromosomes 4 and 9q34, as well as of gains of chromosome 8q24. On the basis of these results, a cytogenetic scoring system was built that allowed stratification of PDAC patients into three risk groups with significantly different OS rates, including a good-prognosis subgroup of approximately 20% of all PDAC resected patients with median OS of >3 years, as also confirmed in the external validation series. 4 To the best of our knowledge, this is the first time a scoring system based on combined assessment of cytogenetic alterations investigated by iFISH is proposed for PDAC patients, with an apparently improved risk stratification over previously proposed scoring systems based on combined evaluation of the mutational status and differential expression of four genes (ie, KRAS, CDKN2A, TP53, and SMAD4).³⁶ Although further prospective studies in larger independent cohorts of PDAC patients in which the functional effect of these chromosomal changes (and the specific genes involved) are required to validate our findings, the cytogenetic scoring system proposed here may contribute to refined risk stratification and more efficient risk-tailored treatment and/or monitoring of PDAC patients.4

In summary, we found a clear association between tumor cytogenetics and OS of PDAC patients and provide the basis for further prognostic stratification of patients undergoing complete tumor resection. Further studies devoted to the identification of specific genes coded in chromosomes 4, 8q24, and 9q34, including integrated analyses with the tumor cell gene expression profiles and phenotype of

patients carrying these chromosomal changes, are necessary for a better understanding of their clinical effect.

Supplemental Data

Supplemental material for this article can be found at http://dx.doi.org/10.1016/j.jmoldx.2014.06.007.

References

- Eberle MA, Pfutzer R, Pogue-Geile KL, Bronner MP, Crispin D, Kimmey MB, Duerr RH, Kruglyak L, Whitcomb DC, Brentnall TA: A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am J Hum Genet 2002, 70: 1044-1048
- Vincent A, Herman J, Schulick R, Hruban RH, Goggins M: Pancreatic cancer. Lancet 2011, 378:607

 –620
- Luebke AM, Baudis M, Matthaei H, Vashist YK, Verde PE, Hosch SB, Erbersdobler A, Klein CA, Izbicki JR, Knoefel WT, Stoecklein NH: Losses at chromosome 4q are associated with poor survival in operable ductal pancreatic adenocarcinoma. Pancreatology 2012. 12:16–22
- 4. Lee JH, Giovannetti E, Hwang JH, Petrini I, Wang Q, Voortman J, Wang Y, Steinberg SM, Funel N, Meltzer PS, Wang Y, Giaccone G: Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin Cancer Res 2012, 18:524–533
- Harada T, Okita K, Shiraishi K, Kusano N, Kondoh S, Sasaki K: Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res 2002, 62: 835–839
- Gutierrez ML, Sayagues JM, Abad MM, Bengoechea O, Gonzalez-Gonzalez M, Orfao A, Munoz-Bellvis L: Cytogenetic heterogeneity of pancreatic ductal adenocarcinomas: identification of intratumoral pathways of clonal evolution. Histopathology 2011, 58:486–497
- Gutierrez ML, Munoz-Bellvis L, Abad MM, Bengoechea O, Gonzalez-Gonzalez M, Orfao A, Sayagues JM: Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology. PLoS One 2011. 6:e22315
- Jones L, Russell C, Mosca F, Boggi U, Sutton R, Slavin J, Hartley M, Neoptolemos JP: Standard Kausch-Whipple pancreatoduodenectomy. Dig Surg 1999, 16:297

 –304
- Adsay NV, Basturk O, Bonnett M, Kilinc N, Andea AA, Feng J, Che M, Aulicino MR, Levi E, Cheng JD: A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. Am J Surg Pathol 2005, 29:724

 –733
- Nowak NJ, Gaile D, Conroy JM, McQuaid D, Cowell J, Carter R, Goggins MG, Hruban RH, Maitra A: Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 2005, 161: 36-50
- Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, Bhakta V, Caulee K, Mahon PC, Lemoine NR: Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation. Br J Cancer 2007, 96:373

 –382
- Kowalski J, Morsberger LA, Blackford A, Hawkins A, Yeo CJ, Hruban RH, Griffin CA: Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes. Cancer Genet Cytogenet 2007, 178:26–35
- Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, et al: BioMart Central Portal: an open database network for the biological community. Database (Oxford) 2011, 2011:bar041

- Cutts RJ, Gadaleta E, Hahn SA, Crnogorac-Jurcevic T, Lemoine NR, Chelala C: The Pancreatic Expression database: 2011 update. Nucleic Acids Res 2011, 39:D1023—D1028
- Chelala C, Hahn SA, Whiteman HJ, Barry S, Hariharan D, Radon TP, Lemoine NR, Crnogorac-Jurcevic T: Pancreatic Expression database: a generic model for the organization, integration and mining of complex cancer datasets. BMC Genomics 2007, 8:439
- Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, Mao JH, Yu M, Miller MA, Santos JL, Kalloger SE, Carlson JW, Ginzinger DG, Celniker SE, Mills GB, Huntsman DG, Gray JW: Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res 2007, 13:5745–5755
- 17. White KL, Sellers TA, Fridley BL, Vierkant RA, Phelan CM, Tsai YY, Kalli KR, Berchuck A, Iversen ES, Hartmann LC, Liebow M, Armasu S, Fredericksen Z, Larson MC, Duggan D, Couch FJ, Schildkraut JM, Cunningham JM, Goode EL: Variation at 8q24 and 9p24 and risk of epithelial ovarian cancer. Twin Res Hum Genet 2010, 13:43-56
- Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M: Pvt1-encoded microRNAs in oncogenesis. Retrovirology 2008. 5:4
- Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321:1801–1806
- Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491:399–405
- Stoecklein NH, Luebke AM, Erbersdobler A, Knoefel WT, Schraut W, Verde PE, Stern F, Scheunemann P, Peiper M, Eisenberger CF, Izbicki JR, Klein CA, Hosch SB: Copy number of chromosome 17 but not HER2 amplification predicts clinical outcome of patients with pancreatic ductal adenocarcinoma. J Clin Oncol 2004. 22:4737—4745
- Lozano-Leon A, Perez-Quintela BV, Iglesias-Garcia J, Urisarri-Ruiz A, Larino-Noia J, Abdulkader I, Varo E, Forteza J, Dominguez-Munoz JE: Clinical relevance of epidermal growth factor receptor (EGFR) alterations in human pancreatic tumors. Oncol Rep 2011, 26:315

 –320
- Aumayr K, Soleiman A, Sahora K, Schindl M, Werba G, Schoppmann SF, Birner P: HER2 gene amplification and protein expression in pancreatic ductal adenocarcinomas. Appl Immunohistochem Mol Morphol 2014, 22:146–152
- Kuuselo R, Simon R, Karhu R, Tennstedt P, Marx AH, Izbicki JR, Yekebas E, Sauter G, Kallioniemi A: 19q13 amplification is associated with high grade and stage in pancreatic cancer. Genes Chromosomes Cancer 2010, 49:569

 –575
- Kim J, Reber HA, Dry SM, Elashoff D, Chen SL, Umetani N, Kitago M, Hines OJ, Kazanjian KK, Hiramatsu S, Bilchik AJ, Yong S, Shoup M, Hoon DS: Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut 2006, 55:1598–1605
- 26. Sharif S, Ramanathan RK, Potter D, Cieply K, Krasinskas AM: HER2 gene amplification and chromosome 17 copy number do not predict survival of patients with resected pancreatic adenocarcinoma. Dig Dis Sci 2008, 53:3026–3032
- Komoto M, Nakata B, Amano R, Yamada N, Yashiro M, Ohira M, Wakasa K, Hirakawa K: HER2 overexpression correlates with survival after curative resection of pancreatic cancer. Cancer Sci 2009, 100:1243–1247
- 28. Salek C, Minarikova P, Benesova L, Nosek V, Strnad R, Zavoral M, Minarik M: Mutation status of K-ras, p53 and allelic losses at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Res 2009, 29:1803–1810
- Schultz NA, Roslind A, Christensen IJ, Horn T, Hogdall E, Pedersen LN, Kruhoffer M, Burcharth F, Wojdemann M, Johansen JS: Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas 2012, 41:759–766

- Winter JM, Yeo CJ, Brody JR: Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. J Surg Oncol 2013, 107:15–22
- Shin SH, Kim SC, Hong SM, Kim YH, Song KB, Park KM, Lee YJ: Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival. Pancreas 2013, 42:216–222
- 32. Rachakonda PS, Bauer AS, Xie H, Campa D, Rizzato C, Canzian F, Beghelli S, Greenhalf W, Costello E, Schanne M, Heller A, Scarpa A, Neoptolemos JP, Werner J, Buchler M, Hoheisel JD, Hemminki K, Giese N, Kumar R: Somatic mutations in exocrine pancreatic tumors: association with patient survival. PLoS One 2013, 8:e60870
- Schleicher C, Poremba C, Wolters H, Schafer KL, Senninger N, Colombo-Benkmann M: Gain of chromosome 8q: a potential prognostic marker in resectable adenocarcinoma of the pancreas? Ann Surg Oncol 2007, 14:1327–1335
- 34. Loukopoulos P, Shibata T, Katoh H, Kokubu A, Sakamoto M, Yamazaki K, Kosuge T, Kanai Y, Hosoda F, Imoto I, Ohki M, Inazawa J, Hirohashi S: Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci 2007. 98:392—400
- Nomoto S, Kinoshita T, Mori T, Kato K, Sugimoto H, Kanazumi N, Takeda S, Nakao A: Adverse prognosis of epigenetic inactivation in RUNX3 gene at 1p36 in human pancreatic cancer. Br J Cancer 2008, 98:1690–1695
- 36. Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM, Morgan RA, Saunders T, Laheru DA, Herman JM, Hruban RH, Klein AP, Jones S, Velculescu V, Wolfgang CL, Iaco-buzio-Donahue CA: Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res 2012, 18:6339—6347
- Schultz NA, Andersen KK, Roslind A, Willenbrock H, Wojdemann M, Johansen JS: Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer—five microRNAs in a prognostic index. World J Surg 2012, 36:2699–2707
- Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Calvopina JH, Patel SG, Wu N, Hindoyan A, Farrell JJ, Li X, Dawson DW, Wu H: Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res 2012, 18:1352

 –1363
- Takikita M, Altekruse S, Lynch CF, Goodman MT, Hernandez BY, Green M, Cozen W, Cockburn M, Sibug SM, Topor M, Zeruto C, Abedi-Ardekani B, Reichman ME, Hewitt SM: Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res 2009, 69:2950–2955
- 40. Winter JM, Tang LH, Klimstra DS, Brennan MF, Brody JR, Rocha FG, Jia X, Qin LX, D'Angelica MI, DeMatteo RP, Fong Y, Jarnagin WR, O'Reilly EM, Allen PJ: A novel survival-based tissue microarray of pancreatic cancer validates MUC1 and mesothelin as biomarkers. PLoS One 2012, 7:e40157
- Ohara Y, Oda T, Sugano M, Hashimoto S, Enomoto T, Yamada K, Akashi Y, Miyamoto R, Kobayashi A, Fukunaga K, Morishita Y, Ohkohchi N: Histological and prognostic importance of CD44/CD24/EpCAM expression in clinical pancreatic cancer. Cancer Sci 2013
- Steele CW, Oien KA, McKay CJ, Jamieson NB: Clinical potential of microRNAs in pancreatic ductal adenocarcinoma. Pancreas 2011, 40: 1165-1171
- Nakata K, Ohuchida K, Mizumoto K, Kayashima T, Ikenaga N, Sakai H, Lin C, Fujita H, Otsuka T, Aishima S, Nagai E, Oda Y, Tanaka M: MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery 2011, 150:916–922
- 44. Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, Sansom OJ, Evans TR, McKay CJ, Oien KA: MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res 2012, 18:534–545

- 45. Harada T, Okita K, Shiraishi K, Kusano N, Furuya T, Oga A, Kawauchi S, Kondoh S, Sasaki K: Detection of genetic alterations in pancreatic cancers by comparative genomic hybridization coupled with tissue microdissection and degenerate oligonucleotide primed polymerase chain reaction. Oncology 2002, 62:251–258
- 46. Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kestler HA, Schwoerer A, Rau B, Radlwimmer B, Dohner H, Lichter P, Gress T, Bentz M: Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res 2004, 64:4428–4433
- 47. Tsiambas E, Karameris A, Lazaris AC, Talieri M, Triantafillidis JK, Cheracakis P, Manaios L, Gerontopoulos K, Patsouris E, Lygidakis NJ: EGFR alterations in pancreatic ductal adenocarcinoma: a chromogenic in situ hybridization analysis based on tissue microarrays. Hepatogastroenterology 2006, 53:452–457
- Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, Baril P, Young BD, Lemoine NR: Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 2008, 27:1951–1960
- Wang L, Wu Y, Lin L, Liu P, Huang H, Liao W, Zheng D, Zuo Q, Sun L, Huang N, Shi M, Liao Y, Liao W: Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion. Int J Cancer 2013, 133:1419–1430
- Nakazawa Y, Arai H, Fujita N: The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis. Cancer Res 2011, 71: 1146–1155
- Liu M, Pan H, Zhang F, Zhang Y, Zhang Y, Xia H, Zhu J, Fu W, Zhang X: Identification of TNM stage-specific genes in lung adenocarcinoma by genome-wide expression profiling. Oncol Lett 2013, 6: 763-768
- 52. Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A: Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer 2009, 48: 330–339
- Hwang CI, Choi J, Zhou Z, Flesken-Nikitin A, Tarakhovsky A, Nikitin AY: MET-dependent cancer invasion may be preprogrammed by early alterations of p53-regulated feedforward loop and triggered by stromal cell-derived HGF. Cell Cycle 2011, 10:3834–3840
- 54. Ohira G, Kimura K, Yamada N, Amano R, Nakata B, Doi Y, Murata A, Yashiro M, Tanaka S, Ohsawa M, Wakasa K, Hirakawa K: MUC1 and HER2 might be associated with invasive phenotype of intraductal papillary mucinous neoplasm. Hepatogastroenterology 2013, 60:1067–1072
- Zhang J, Zhu Z, Sun Z, Sun X, Wang Z, Xu H: Survivin gene expression increases gastric cancer cell lymphatic metastasis by upregulating vascular endothelial growth factor-C expression levels. Mol Med Rep 2014, 9:600-606
- 56. Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, Vincent-Salomon A, Raynal V, Pierron G, Perez F, Camonis J, Del NE, Delattre O, Radvanyi F, Bernard-Pierrot I: A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 2014, 35:670—682
- Su Y, Li J, Witkiewicz AK, Brennan D, Neill T, Talarico J, Radice GL: N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene 2012, 31:4484–4489
- Sher YP, Wang LJ, Chuang LL, Tsai MH, Kuo TT, Huang CC, Chuang EY, Lai LC: ADAM9 up-regulates N-cadherin via miR-218 suppression in lung adenocarcinoma cells. PLoS One 2014, 9:e94065
- Gysin S, Rickert P, Kastury K, McMahon M: Analysis of genomic DNA alterations and mRNA expression patterns in a panel of human

The Journal of Molecular Diagnostics ■ jmd.amjpathol.org

- pancreatic cancer cell lines. Genes Chromosomes Cancer 2005, 44: 37-51
- Zhu J, Abbruzzese JL, Izzo J, Hittelman WN, Li D: AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogenet 2005, 159:10-17
- Giovannetti E, Wang Q, Avan A, Funel N, Lagerweij T, Lee JH, Caretti V, van dV, Boggi U, Wang Y, Vasile E, Peters GJ, Wurdinger T, Giaccone G: Role of CYB5A in pancreatic cancer prognosis and autophagy modulation. J Natl Cancer Inst 2014, 106: dii346
- 62. Rizzato C, Campa D, Giese N, Werner J, Rachakonda PS, Kumar R, Schanne M, Greenhalf W, Costello E, Khaw KT, Key TJ, Siddiq A, Lorenzo-Bermejo J, Burwinkel B, Neoptolemos JP, Buchler MW, Hoheisel JD, Bauer A, Canzian F: Pancreatic cancer susceptibility loci and their role in survival. PLoS One 2011, 6:e27921
- Byeon SJ, Han N, Choi J, Kim MA, Kim WH: Prognostic implication of TSC1 and mTOR expression in gastric carcinoma. J Surg Oncol 2014. 109:812

 –817
- 64. Smith CG, Naven M, Harris R, Colley J, West H, Li N, Liu Y, Adams R, Maughan TS, Nichols L, Kaplan R, Wagner MJ, McLeod HL, Cheadle JP: Exome resequencing identifies potential tumor-suppressor genes that predispose to colorectal cancer. Hum Mutat 2013, 34:1026–1034
- 65. Amira N, Cancel-Tassin G, Bernardini S, Cochand-Priollet B, Bittard H, Mangin P, Fournier G, Latil A, Cussenot O: Expression in bladder transitional cell carcinoma by real-time quantitative reverse transcription polymerase chain reaction array of 65 genes at the tumor suppressor locus 9q34.1-2: identification of 5 candidates tumor suppressor genes. Int J Cancer 2004, 111:539–542
- 66. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, Bosly A, Heimann P, Uyttebroeck A, Mentens N, Somers R, MacLeod RA, Drexler HG, Look AT, Gilliland DG, Michaux L, Vandenberghe P, Wlodarska I, Marynen P, Hagemeijer A: Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004, 36:1084–1089
- 67. Chae H, Lim J, Kim M, Park J, Kim Y, Han K, Lee S, Min WS: Phenotypic and genetic characterization of adult T-cell acute lymphoblastic leukemia with del(9)(q34);SET-NUP214 rearrangement. Ann Hematol 2012, 91:193–201
- 68. Weissmann S, Roller A, Jeromin S, Hernandez M, Abaigar M, Hernandez-Rivas JM, Grossmann V, Haferlach C, Kern W, Haferlach T, Schnittger S, Kohlmann A: Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia 2013, 27:2393–2396
- 69. Joshi D, Chandrakala S, Korgaonkar S, Ghosh K, Vundinti BR: Down-regulation of miR-199b associated with imatinib drug resistance in 9q34.1 deleted BCR/ABL positive CML patients. Gene 2014, 542:109—112
- Sato N, Mizumoto K, Maehara N, Shono M, Nagai E, Tanaka M: Instability of chromosome 8 as an indicator of aggressive tumor phenotype in pancreatic cancer. J Surg Oncol 2001, 76:181–187
- Schleger C, Verbeke C, Hildenbrand R, Zentgraf H, Bleyl U: c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 2002. 15:462

 –469
- Domagk D, Schaefer KL, Eisenacher M, Braun Y, Wai DH, Schleicher C, Diallo-Danebrock R, Bojar H, Roeder G, Gabbert HE, Domschke W, Poremba C: Expression analysis of pancreatic cancer cell lines reveals association of enhanced gene transcription and genomic amplifications at the 8q22.1 and 8q24.22 loci. Oncol Rep 2007, 17:399–407
- He C, Jiang H, Geng S, Sheng H, Shen X, Zhang X, Zhu S, Chen X, Yang C, Gao H: Expression of c-Myc and Fas correlates with perineural invasion of pancreatic cancer. Int J Clin Exp Pathol 2012, 5: 339–346

- 74. Brisbin AG, Asmann YW, Song H, Tsai YY, Aakre JA, Yang P, Jenkins RB, Pharoah P, Schumacher F, Conti DV, Duggan DJ, Jenkins M, Hopper J, Gallinger S, Newcomb P, Casey G, Sellers TA, Fridley BL: Meta-analysis of 8q24 for seven cancers reveals a locus between NOV and ENPP2 associated with cancer development. BMC Med Genet 2011, 12:156
- Huppi K, Pitt JJ, Wahlberg BM, Caplen NJ: The 8q24 gene desert: an oasis of non-coding transcriptional activity. Front Genet 2012, 3:69
- 76. Helms MW, Kemming D, Pospisil H, Vogt U, Buerger H, Korsching E, Liedtke C, Schlotter CM, Wang A, Chan SY, Brandt BH: Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+ breast cancer and indicates poor clinical outcome in stage I and II disease. Br J Cancer 2008, 99:774—780
- 77. Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, Benson H, Tembe W, Braggio E, Kiefer JA, Legendre C, Posner R, Hostetter GH, Baker A, Egan JB, Han H, Lake D, Stites EC, Ramanathan RK, Fonseca R, Stewart AK, Von HD: Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 2012, 7:e43192
- Earl J, Yan L, Vitone LJ, Risk J, Kemp SJ, McFaul C, Neoptolemos JP, Greenhalf W, Kress R, Sina-Frey M, Hahn SA, Rieder H, Bartsch DK: Evaluation of the 4q32-34 locus in European familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2006, 15:1948—1955
- Bell SM, Shaw M, Jou YS, Myers RM, Knowles MA: Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer. Genomics 1997, 44:163–170
- Hwang SK, Piao L, Lim HT, Minai-Tehrani A, Yu KN, Ha YC, Chae CH, Lee KH, Beck GR, Park J, Cho MH: Suppression of lung tumorigenesis by leucine zipper/EF hand-containing transmembrane-1. PLoS One 2010:5
- di ME, Taylor CF, Roulson JA, Knowles MA: An integrated genomic, transcriptional and protein investigation of FGFRL1 as a putative 4p16.3 deletion target in bladder cancer. Genes Chromosomes Cancer 2013, 52:860–871
- Aytes A, Mollevi DG, Martinez-Iniesta M, Nadal M, Vidal A, Morales A, Salazar R, Capella G, Villanueva A: Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol Carcinog 2012, 51:746

 –753
- 83. Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, Yamasaki T, Kawahara K, Nishiyama K, Seki N, Nakagawa M: miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. Int J Oncol 2011, 39:13—21
- 84. Singh RK, Indra D, Mitra S, Mondal RK, Basu PS, Roy A, Roychowdhury S, Panda CK: Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Hum Genet 2007, 122: 71–81
- Narayan G, Scotto L, Neelakantan V, Kottoor SH, Wong AH, Loke SL, Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A, Arias-Pulido H, Tao Q, Murty VV: Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer. Genes Chromosomes Cancer 2009, 48:983—992
- Bacher U, Haferlach C, Schnittger S, Kohlmann A, Kern W, Haferlach T: Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies. Ann Hematol 2010, 89:643

 –652
- Milne AN, Leguit R, Corver WE, Morsink FH, Polak M, de Leng WW, Carvalho R, Offerhaus GJ: Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol 2010, 32:347

 –359
- 88. Huang GL, Li BK, Zhang MY, Wei RR, Yuan YF, Shi M, Chen XQ, Huang L, Zhang HZ, Liu W, Huang BJ, Li H, Zheng XF, Luo XR,

- Wang HY: Allele loss and down-regulation of heparanase gene are associated with the progression and poor prognosis of hepatocellular carcinoma. PLoS One 2012, 7:e44061
- 89. Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S, Eng S, Kannan K, Zou Y, Peng L, Banuchi VE, Paty P, Zeng Z, Vakiani E, Solit D, Singh B, Ganly I, Liau L, Cloughesy TC, Mischel PS, Mellinghoff IK, Chan TA: Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet 2013, 45:253–261
- Tzeng ST, Tsai MH, Chen CL, Lee JX, Jao TM, Yu SL, Yen SJ, Yang YC: NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS One 2013, 8:e67040
- Johansson I, Aaltonen KE, Ebbesson A, Grabau D, Wigerup C, Hedenfalk I, Ryden L: Increased gene copy number of KIT and VEGFR2 at 4q12 in primary breast cancer is related to an aggressive

- phenotype and impaired prognosis. Genes Chromosomes Cancer 2012, 51:375-383
- 92. Knosel T, Chen Y, Altendorf-Hofmann A, Danielczok C, Freesmeyer M, Settmacher U, Wurst C, Schulz S, Yang LL, Petersen I: High KIT and PDGFRA are associated with shorter patients survival in gastroenteropancreatic neuroendocrine tumors, but mutations are a rare event. J Cancer Res Clin Oncol 2012, 138:397–403
- Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, et al: Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 2013, 110: 18250–18255
- 94. Lafitte M, Moranvillier I, Garcia S, Peuchant E, Iovanna J, Rousseau B, Dubus P, Guyonnet-Duperat V, Belleannee G, Ramos J, Bedel A, de VH, Moreau-Gaudry F, Dabernat S: FGFR3 has tumor suppressor properties in cells with epithelial phenotype. Mol Cancer 2013, 12:83

Discusión

En las últimas décadas se ha incrementado de forma notable el número de estudios encaminados al análisis de las características genéticas del ADCP, lo cual ha proporcionado importantes avances en la identificación de las alteraciones citogenéticas más frecuentes en estos tumores[94, 133, 156, 269, 275, 278, 280, 282]. Así mismo, a semejanza de lo que ocurre en otros tumores, se ha sugerido que algunas de las alteraciones genéticas /cromosómicas podrían estar asociadas a la evolución y al comportamiento clínico del ADCP[21, 107, 119, 130, 194, 200, 205, 251-256, 260, 262, 263, 265, 274, 292, 293]. Sin embargo, sique existiendo una gran variabilidad entre los diferentes trabajos publicados, con resultados a veces incluso contradictorios[21, 129, 158, 251-253, 259, 292, 294], en relación con la incidencia de las alteraciones genéticas más frecuentes en el ADCP. A modo de ejemplo, las deleciones a nivel del cromosoma 17p y en 18q, varían en la bibliografía entre 17% y 75%, y entre 33% y 68% de los casos analizados, respectivamente[105, 113, 119]. Esta variabilidad puede ser debida, al menos en parte, a que en algunos de estos trabajos no se toma en consideración la naturaleza heterogénea de estos tumores, caracterizados por la existencia de perfiles genéticos (frecuentemente) complejos, de patrones infiltrativos en los que se entremezclan en diferentes proporciones células pancreáticas normales y células del estroma con las células tumorales dificultando la identificación y caracterización de poblaciones celulares poco representadas en la muestra tumoral, además de la gran diversidad de técnicas empleadas para el estudio genético de estos tumores habitualmente enfocadas a descifrar las alteraciones globales del mismo. Por este motivo, aun cuando se

hayan definido las alteraciones genéticas y moleculares más frecuentes en el ADCP, la información disponible actualmente acerca de las vías de evolución clonal presentes a nivel intratumoral en estos tumores, incluyendo aquellas que involucran las alteraciones genéticas más habituales, sigue siendo muy limitada.

Por otra parte, la gran mayoría de los estudios disponibles hasta la fecha han centrado su objetivo principal en el análisis de los genes que codifican para proteínas, siendo mucho más limitada la información disponible acerca del estado de los genes y secuencias de ADN no codificante en el ADCP y de su relación con las alteraciones genéticas/moleculares que afectan a grandes regiones cromosómicas y a los genes concretos que codifican para proteínas localizados en dichas regiones cromosómicas.

En esta tesis doctoral hemos centrado nuestro objetivo en profundizar en la caracterización genética y genómica del ADCP enfocada, por un lado, al estudio de las alteraciones cromosómicas más frecuentes en estos tumores y los patrones de evolución clonal existentes a nivel intratumoral y, por otra parte, al estudio de los perfiles de expresión génica que afectan tanto a genes codificantes como no codificantes de proteínas, para finalmente determinar el posible impacto de las alteraciones encontradas en el comportamiento histopatológico y la evolución clínica de los pacientes.

1. Alteraciones citogenéticas más frecuentes y patrones de evolución clonal presentes a nivel intratumoral en el ADCP

Estudios recientes[94, 103, 104, 162, 268, 269, 278] indican que el ADCP es un tumor citogenéticamente heterogéneo, que con frecuencia muestra cariotipos complejos. De acuerdo con ello, en este trabajo, basado en la utilización de técnicas de iFISH para la detección a nivel de células tumorales individuales, de múltiples regiones frecuentemente alteradas en el ADCP, observamos patrones complejos de alteraciones cromosómicas en la mayoría de los ADCP estudiados. Dichos patrones se caracterizaron con frecuencia por pérdidas cromosómicas que afectaban a las regiones 9p, 17p y 18q, además de nulisomía Y en varones, y de ganancias de los cromosomas 1q y 8q. En menor medida (~40-55% de los casos) encontramos también deleciones a nivel del cromosoma 8p y ganancias que afectaban a algunas regiones del brazo largo del cromosoma 15. Estos hallazgos apoyan la existencia de un elevado grado de inestabilidad cromosómica en el ADCP y están de acuerdo con resultados previos de otros autores que reflejan la complejidad citogenética del ADCP, obtenida mediante el estudio de muestras de pacientes con ADCP, de líneas

celulares de cáncer de páncreas y de muestras tumorales de xenoinjertos. Tal es el caso de las alteraciones observadas en los cromosomas 8 e Y, incluidas las pérdidas de 8p, la ganancia de 8g y la nulisomía del Y [105, 107, 108, 111, 113, 115-118, 132, 295]. En este sentido, merece destacar que en estas tres regiones cromosómicas, se localizan varios genes con un posible papel relevante en el ADCP, como es el caso de los genes NRG1[116, 296], TNKS, DEFB106 y DEFB105[116], codificados en el brazo corto del cromosoma 8; hasta la fecha, no existen estudios en los que estas alteraciones se hayan descrito como asociadas a eventos tempranos en la ontogenia del ADCP[20, 80, 84, 139], pudiendo por el contrario, estar relacionadas con la invasión tumoral[246]. De manera similar, y en consonancia con nuestras observaciones, la nulisomía Y[103, 105, 111] ha sido considerada como una característica diferencial entre tumores malignos y benignos de páncreas en varones[132]. Por el contrario, varios trabajos describen una posible asociación entre algunos genes codificados en la región cromosómica 8g24 y la carcinogénesis pancreática; de entre estos genes merece destacar CMYC a quien se atribuye un papel clave en las lesiones precursoras del ADCP (i.e. PanIN-3)[186], con un papel destacado en las fases tempranas de la carcinogénesis pancreática.

Por otra parte, el empleo de la técnica de iFISH en este trabajo nos ha permitido profundizar en el conocimiento de la heterogeneidad genética del ADCP a nivel intratumoral. Aunque los ensayos de iFISH multicolor sobre núcleos interfásicos han sido utilizados previamente en un número reducido de trabajos, con frecuencia estos se habían centrado en el estudio de un número relativamente limitado de regiones cromosómicas/sondas fluorescentes[149, 292] o en su utilización con técnicas menos sensibles (como la citogenética convencional)[103, 105]. Así, en nuestro conocimiento, este constituye el primer trabajo en el que se ha llevado a cabo un estudio a nivel de células tumorales individuales empleando de una amplia batería de sondas fluorescentes (n=48) dirigidas frente a distintas regiones de los 24 cromosomas humanos frecuentemente alteradas en estos tumores, habiéndose analizado además, una serie relativamente homogénea de pacientes con ADCP. Con esta aproximación hemos podido caracterizar de forma específica al diagnóstico, los distintos clones de células neoplásicas que coexistían en un mismo tumor, incluyendo aquellos clones presentes en frecuencias relativamente bajas (<10% de la celularidad del tumor) ([137, 138, 286, 287]. Además, con esta aproximación evitamos los posibles efectos de la contaminación por células no-tumorales del estroma que disminuyen la sensibilidad de otros tipos de análisis citogenéticos en el ADCP. Por el contrario, con esta aproximación no pudimos obtener una información global del genoma, al detectarse solo las alteraciones genéticas investigadas de forma dirigida con el panel de sondas empleado [138, 287].

En términos globales, constatamos coexistencia de dos ó más clones tumorales portadores de diferentes alteraciones cromosómicas en prácticamente todos los pacientes (35/36 tumores; 97%) estudiados, lo cual confirmaría la existencia de un alto grado de inestabilidad cromosómica en el ADCP[145, 297-299]. Un análisis más detallado de los clones de células tumorales detectados en cada muestra permitió, por otra parte, establecer una relación ontogénica entre ellos y por otro lado, definir para cada tumor un modelo hipotético de evolución clonal. Para poder identificar la secuencia de alteraciones cromosómicas acumuladas en un tumor con múltiples clones, asumimos que aquellas alteraciones cromosómicas compartidas por todos los sublcones representarían cambios relativamente tempranos; por el contrario, las alteraciones citogenéticas tardías serían aquellas que sólo estaban presentes en algunos de los subclones tumorales[137, 287]. Así, de acuerdo con el modelo hipotético de evolución clonal propuesto, identificamos dos vías principales de evolución clonal en el ADCP: 1) una vía más frecuente estaría constituida por aquellos tumores en los cuales el clon ancestral muestra pérdidas aisladas o combinadas de los cromosomas 9p, 17p y 18q (en asociación o no con pérdidas de 8p, ganancias del cromosoma 8q y/o nulisomía Y en los varones); mientras que, 2) en un subgrupo minoritario de tumores los clones ancestrales carecen de estas alteraciones, presentando la mitad de ellos del(4p) asociada o no a poliploidías del cromosoma 4, como la alteración cromosómica más temprana.

Estos resultados concuerdan con el único modelo de evolución clonal propuesto hasta la fecha y que está basado en análisis citogenéticos de células individuales, conocido como el modelo de Kowalski et al. (2007)[105]. Tanto este modelo de Kowalski et al. [105] como el nuestro, indican que habitualmente en el ADCP, las alteraciones cromosómicas más tempranas corresponderían a aquellas que implican los cromosomas 8p, 17p y 18. Sin embargo, en su modelo, Kowalski et al.[105] sugieren además la posible existencia de otras alteraciones tempranas relativamente frecuentes como las alteraciones de los cromosomas 1p, 5, 7q y 15p, que por el contrario, no pudimos detectar en los clones ancestrales de los tumores estudiados en nuestra serie. En conjunto, estas discrepancias podrían deberse al uso de distintas técnicas y especialmente de la citogenética convencional que, como hemos comentado anteriormente, presenta importantes limitaciones derivadas de la necesidad de obtener metafases de células tumorales, de la selección clonal que puede ocurrir durante los cultivos in vitro de las células del tumor y del análisis de metafases que sólo representan una pequeña fracción de todas las células tumorales (<1% de la celularidad de tumor)[300, 301]; no obstante lo anterior, no podemos descartar de forma definitiva que también puedan estar relacionadas con la batería amplia pero a la vez limitada, de sondas utilizadas en nuestra serie, para poder realizar un barrido detallado del genoma.

En conjunto pues, nuestros resultados confirman y amplían los obtenidos en estudios previos acerca de las vías de progresión tumoral en el ADCP, indicando que las vías de evolución intratumoral más frecuentes implican los cromosomas 17p, 18q y 9p, donde se localizan algunos de los genes más relevantes en la ontogenia del ADCP como TP53, SMAD4 y CDKN2A/p16[246]. Además, nuestros resultados sugieren también que otro tipo de alteraciones cromosómicas, como los cambios estructurales del cromosoma 8 y la nulisomía Y en varones, también podrían ser responsables de la transformación maligna en una proporción significativa de los ADCP, dado que con relativa frecuencia estas alteraciones forman parte del espectro de anomalías cromosómicas detectadas en los clones tumorales ancestrales. Más interesante si cabe, es la asociación encontrada en nuestra serie entre las ganancias del cromosoma 4 (frecuentemente precedidas por deleciones en la región 4p) y características clínicas adversas de la enfermedad, como un estadio histopatológico (TNM) más avanzado, sugiriendo que las vías de evolución clonal asociadas con alteraciones tempranas en esta región cromosómica podrían determinar un comportamiento más agresivo de la enfermedad. En este sentido, merece destacar que, independientemente de los cambios citogenéticos más tempranos identificados, la evolución citogenética de cada tumor con frecuencia fue seguida en clones secundarios, por la adquisición de pérdidas en los cromosomas 9p, 17p y/o 18q. Esto apoyaría la noción de que, a pesar de que el ADCP está caracterizado por una multiplicidad de cambios y perfiles genéticos, la combinación de las pérdidas de los cromosomas 9p, 17p y/o 18q, sería eventos relevantes en la progresión maligna del tumor, a la vez que los otros cambios citogenéticos acompañantes -p.ej. la del(4p), nulisomía Y, y las alteraciones en el cromosoma 8- podrían modular el comportamiento clínico, histológico y pronóstico de la enfermedad.

2. Los perfiles de alteraciones genéticas del ADCP y su asociación con la histopatología del tumor

En términos generales, un análisis más detallado de las regiones cromosómicas del genoma que se encontraban frecuentemente alteradas en nuestra serie de ADCP, empleando técnica de *microarrays* de alta densidad, confirmó la elevada frecuencia de las anomalías detectadas mediante técnica de iFISH. Así, los estudios resultantes de *microarrays* de SNPs pusieron de manifiesto un perfil genético común a la mayoría (>70%) de los ADCP analizados, definido por las pérdidas de las regiones cromosómicas 1p, 9p, 12q, 17p y 18q y ganancias de 1q, 7q, 8q y 20q, junto con amplias regiones de LOH

localizadas en los cromosomas 9p, 17p y 18q. En general, estos resultados confirman nuestro propios resultados cuando empleamos técnica de iFISH, y los de estudios previos en los que se emplearon tanto técnicas clásicas de bandeo cromosómico[103, 106], CGH[104, 112], aCGH[113, 115, 116, 118, 119] y *microarrays* de SNP de baja resolución (100K)[302], como secuenciación masiva del genoma del ADCP [133, 275, 279], sugiriendo que la mayoría de las alteraciones cromosómicas detectadas estarían asociadas con diferentes etapas de la carcinogénesis pancreática; no obstante, existen algunas discrepancias. A modo de ejemplo, mediante *microarrays* de SNP detectamos una mayor frecuencia de pérdidas a nivel de las regiones cromosómicas 1p y 17q y de ganancias de los cromosomas 7q y 20q, respecto a las encontradas con técnica de iFISH (70-75% vs. 5-25%, respectivamente); estas discrepancias podrían ser debidas, al menos en parte, a la mayor sensibilidad de los *microarrays* de SNPs respecto a la de la técnica de iFISH, especialmente a la hora de detectar pequeños cambios cromosómicos en regiones cromosómicas no cubiertas por las sondas de iFISH[290].

El análisis más detallado de las regiones de CNV y LOH presentes de forma recurrente en células tumorales de ADCP nos ha permitido definir con mayor precisión genes potencialmente involucrados en la patogénesis del ADCP. A modo de ejemplo, entre estos genes se incluye el gen PSCA, un posible marcador de ADCP asociado con la progresión tumoral pancreática[154, 303-305] localizado en el cromosoma 8q24. Un grupo de genes codificados a nivel del cromosoma 20g13: el gen TNFRSF6B que se encuentra amplificado en varios tipos de tumores[306-309] y cuya sobreexpresión bloquea las señales de inhibición del crecimiento en el ADCP[310], y; los genes NTSR1 y OGFR implicados en la migración y angiogénesis a nivel tumoral[311], la progresión neoplásica[312-314] y la regulación de la proliferación celular[315]. Otros genes localizados en el brazo corto del cromosoma 17, como el gen RPH3AL (un posible gen supresor de tumor relacionado con la exocitosis de la insulina[316]) y el gen SERPINF1 (gen que se ha relacionado con varios tumores epiteliales[317, 318]), o en el brazo largo del cromosoma 18 como el gen MAPRE2 (frecuentemente descrito como delecionado en células leucémicas[319], cáncer de páncreas[320] y carcinoma esofágico de células escamosas[321]), estaban perdidos frecuentemente también en nuestra serie de ADCP. Además, encontramos pérdidas intersticiales que afectaban a las regiones donde están codificados los genes MYOCD[322, 323], NR2C1 [324] y PTAFR [325] implicados en otros tipos de tumores y que hasta el momento no habían sido descritos como estando asociados a carcinogénesis pancreática; en este sentido, merece la pena destacar que algunos de estos genes se encontraban alterados en frecuencias superiores a la de otros genes recurrentemente alterados en ADCP como CDKN2A, TP53 o SMAD4 [60, 139]. En contrapartida, la amplificación de genes como SACP2, previamente descrita en el 60% de los pacientes con ADCP mediante técnica de

microarrays de SNPs[302], sólo estaba presente en cerca de 40% de los nuestros casos. Este tipo de discrepancias pueden deberse en parte al tamaño muestral y/o a la resolución alcanzada para la detección de alteraciones de tipo CNV, que a su vez está directamente asociada al microarray de SNPs utilizado y al uso de ADN leucocitario del propio paciente como control de células normales. En conjunto, estos resultados ponen de manifiesto el posible papel que podría tener muchos genes supresores de tumor, cuya función y relevancia en la patogénesis del ADCP sigue sin conocerse. No obstante, en la actualidad queda aún por definir el papel específico que jugaría cada uno de ellos en el desarrollo, progresión y transformación maligna de estos tumores, siendo para ello clave la consideración, más que de alteraciones en genes concretos, de perfiles globales de alteración genética.

De acuerdo con lo anteriormente expuesto, en este trabajo describimos por primera vez la existencia de dos grupos de ADCP definidos en base a los perfiles genómicos globales derivados de los estudios de microarrays de SNPs, mostrando dichos grupos una asociación estrecha con la histopatología del tumor. Así, nuestros resultados mostraron que mientras los tumores de uno de los dos grupos definidos por su perfil genético incluían preferentemente tumores bien o moderadamente diferenciados (grado I/II) y de pequeño tamaño (grupo 1), el otro (grupo 2) estaba constituido por tumores de mayor tamaño y menor grado de diferenciación (grado III). Estudios futuros en series más amplias de ADCP, nos permitirán determinar el papel específico que puedan tener aquellos genes asociados al cáncer y que mostraban distintos patrones de alteración en ambos grupos de tumores (INPP5A, CDX1, MB, CAMK2A, APOL6 vs. VPS53, FAM57A, GEMIN4, SFRS13, ELP2P, GLOD4, CSF2RA y IL3RA) y entre los que se incluyen múltiples genes implicados en vías comunes de señalización intracelular como la vía de Jak-STAT (por ejemplo, los genes IL3RA y CSF2RA) y en las vías de procesamiento de ARN (por ejemplo, los genes GEMIN4 y SFRS13A). Independientemente de la asociación encontrada entre estos dos subgrupos genéticos de ADCP y la histopatología del tumor, es posible que además estos perfiles genéticos reflejen distintas vías de evolución citogenética o estadios secuenciales del desarrollo del ADCP. Independientemente de lo anterior la observación de diferentes alteraciones cromosómicas en ambos grupos de tumores sugiere puede tratarse de diferentes subtipos de ADCP con diferentes vías de evolución clonal, quedando en último término por dilucidar esta cuestión en series más amplias de pacientes.

3. Patrones de expresión génica (GEP) en el ADCP

Considerando que los mecanismos celulares implicados en la génesis y la progresión tumoral dependen, no solo de las alteraciones genómicas propiamente dichas sino también, de la expresión de los genes codificantes de proteínas y de sus reguladores post-transcripcionales (como por ej. los miARNs), nos planteamos estudiar los perfiles de expresión génica de los ADCP a nivel de ARNm, miARNs y otros ARN pequeños no codificantes, empleando técnica de *microarrays* de expresión. Con ello perseguimos entender mejor los mecanismos moleculares alterados en estos tumores, y la posible implicación de mecanismos de regulación transcripcional y post-transcripcional.

En globales. nuestros resultados términos mostraron expresión significativamente alterada en el tejido tumoral respecto a los tejidos pancreáticos no tumorales, tanto de genes codificantes de proteínas como de genes que codifican para pequeños ARNs, confirmando además también, a nivel de expresión génica, la gran variabilidad y heterogeneidad del ADCP. Pese a la gran heterogeneidad observada, la combinación de sólo 5 marcadores, sobreexpresados todos ellos en los tejidos tumorales analizados (S100A11, GPR137B, SULF1, POSTN y miR-155), permitía diferenciar con gran precisión entre tejido tumoral y tejido pancreático no tumoral. Estos resultados están de acuerdo con lo recogido en las bases de datos de expresión proteica disponibles para ADCP [326-328], en las que se observa también una expresión proteica elevada y uniforme de los genes S100A11 y GPR137B en el ADCP, siendo en estas bases de datos los patrones de expresión de SULF1 y POSTN en el ADCP más heterogéneos. Dado que las cuatro proteínas referidas son proteínas que pueden encontrarse tanto en muestras de tejido tumoral como en forma soluble secretada en plasma de pacientes con ADCP[326, 327, 329], nuestros resultados sugieren su posible utilidad como biomarcadores plasmáticos en el diagnóstico y la monitorización de los pacientes con ADCP. Estudios futuros en los que se analicen sus niveles plasmáticos en pacientes con ADCP, y otras enfermedades relacionadas, así como en sujetos sanos, son necesarios para confirmar esta posibilidad.

Históricamente, tanto los análisis citogenéticos[330-332] como los estudios de expresión génica[333-335] han demostrado ser útiles a la hora de la identificar distintos subtipos de tumores en diferentes neoplasias (p.ej.: cáncer de mama). En este sentido, recientemente se han publicado varios estudios en los que se emplea los GEP para la definición de firmas moleculares asociadas con la progresión del ADCP[28, 133, 162, 165, 193, 200, 205, 208, 267, 272, 276, 336-347]; sin embargo entre estos estudios, sólo el publicado por Collisson *et al.*[271] logró definir tres subgrupos de ADCP (ADCP clásico,

ADCP cuasi-mesenquimal y ADCP de tipo exocrino) que mostraban asociaciones clínicas relevantes, tanto con la respuesta terapéutica como con el pronóstico de los pacientes con ADCP.

En nuestro trabajo, la evaluación de los perfiles globales de expresión de genes codificantes y no-codificantes de proteínas en el ADCP, permitió detectar un GEP común a todos los tumores estudiados (vs. tejidos pancreáticos no-tumorales) que incluía la sobreexpresión de genes asociados con la proliferación, invasión local y capacidad metastásica de las células tumorales. De acuerdo con este perfil de expresión génica, las vías de señalización más alteradas en el ADCP incluyen vías implicadas en procesos como la adhesión célula-célula y célula-matriz extracelular, la degradación y la remodelación de la matriz extracelular, la angiogénesis, la capacidad de migración e invasión celular[275, 348-350]). Además, incluían también vías relacionadas con la remodelación del citoesqueleto, proceso esencial para el movimiento y el crecimiento de las células tumorales (p.ej.: las vías de dirección axonal, del citoesqueleto de actina, de la entrada de virus mediada por endocitosis y de endocitosis mediada por vesículas de clatrina, de macropinocitosis y de señalización asociada a GTPasas de la familia Rho)[275, 348, 349, 351]. Estos resultados concuerdan además con trabajos previos realizados en este tipo de tumores pancreáticos [275, 349, 352, 353]. Por otra parte, los ADCP estudiados mostraron también en conjunto una alteración significativa de las vías de señalización asociadas a la respuesta inmune innata en su vertiente celular, con alteración de las vías de adhesión celular, diapédesis y extravasación, la señalización mediada por interleucina 8 (IL8) y la presentación de antígenos asociada a macropinocitosis[354]. Aunque en principio estos hallazgos podría sugerir la existencia de una respuesta inmune frente al tumor[355], dado que los tumores analizados representaban estadios relativamente avanzados del ADCP, la alteración de estas podría estar probablemente relacionada con mecanismos de migración celular mediados por inflamación[356], más que con una respuesta inmunológica dirigida frente al tumor. De acuerdo con esta hipótesis, en tejidos frescos fijados en parafina de estos pacientes, observamos áreas amplias del tejido tumoral (vs. tejidos no tumorales) infiltradas por leucocitos CD45+ y CD15+. De forma global, estos resultados parecen enmarcarse más que en el ámbito de una respuesta anti-tumoral, en un escenario pro-tumoral en el que las células del ADCP secretan factores que incrementan activamente el reclutamiento de células inmunes, mientras que estas últimas podrían producir citoquinas y factores de crecimiento que tendrían un efecto directo sobre las células tumorales y el estroma, que facilitarían el crecimiento y diseminación del tumor[235].

Pese a la existencia de un GEP común a todos los ADCP estudiados, nuestros resultados mostraron también la existencia dentro de ellos, de dos GEP bien definidos y claramente diferentes entre sí y del GEP de los tejidos pancreáticos no tumorales; estos

hallazgos estarían de acuerdo también con la heterogeneidad genética observada en este tipo de tumores; a estos perfiles los denominamos GEP-A y GEP-B. Desde el punto de vista funcional, los tumores GEP-A presentan un perfil de expresión génica de tipo epitelial que incluye expresión de marcadores epiteliales, como distintos carcinoembrionarios (CEACAM1, CEACAM6 and CEACAM5) y citoqueratinas (KRT7 y KRT19); además, respecto a los tumores GEP-B, este subgrupo de ADCP de tipo GEP-A mostró también un enriquecimiento preferencial de genes implicados en la respuesta inmune innata y adaptativa, pese a que ambos subgrupos de tumores presentaban niveles similares de infiltración por células inflamatorias en los estudios de inmunohistoquímica realizados sobre las muestras de tejido conservadas en parafina. Estos hallazgos, unidos a la sobreexpresión (exclusiva) de genes relacionados con enfermedad pancreática crónica e inmune, y de genes relacionados con el estrés y el daño/lesión celular, ponen de manifiesto la posible implicación de mecanismos de selección inmune en este subgrupo de ADCP de tipo GEP-A (p.ej.: selección de variantes celulares no inmunogénicas del tumor)[349]. Además, de acuerdo con lo previamente descrito para el ADCP[133, 275, 349], los tumores GEP-A presentaron de forma específica, alteración de la expresión de otros genes implicados en la proliferación, angiogénesis, motilidad celular y de invasión y progresión tumoral, incluyendo genes involucrados entre otras[350, 357, 358], en las vías de señalización MSP-RON, las vías de nucleación de la actina mediada por el complejo AR-WASP y en las vías de señalización mediadas por Rho, Rac, PAK, Cdc42, integrinas, ERK/MAPK, Paxilina, FAK, NF-kB, calpaina y la vía de invasión asociada a gliomas[348, 359-369]. En términos globales, estos hallazgos sugieren que los tumores con patrón de expresión génica de tipo GEP-A tendrían un fenotipo celular altamente agresivo.

Al contrario de lo descrito para los tumores tipo GEP-A, los ADCPs de tipo GEP-B mostraron alteración de un número relativamente pequeño de rutas canónicas pese a que ambos subgrupos de tumores (GEP-A y GEP-B) presentaban un número similar de genes desregulados (1183 vs. 1012 genes alterados en los casos GEP-A vs. GEP-B, respectivamente). De hecho, los tumores GEP-B no mostraron un perfil de expresión génica alterado para genes asociados a proliferación celular. Más aún, mostraron inhibición de las vías canónicas relacionadas con la respuesta inmune, como consecuencia del incremento de la expresión de genes asociados a mecanismos de (auto)protección frente a citotoxicidad mediada por complemento (p.ej.: sobreexpresión de KIT)[370], de un defecto en la expresión de las moléculas del complejo mayor de histocompatibilidad (de sus siglas en inglés, MHC) frecuentemente implicadas en el escape del tumor al control del sistema inmune[371], y/o una mayor inmunosupresión promovida por el tumor como consecuencia de la sobreexpresión de los genes PDCD1LG2[372] y de VGFC[370]. Más interesante aún, nuestros resultados han puesto de manifiesto en este subgrupo de ADCP la activación de

genes del proceso de transición epitelio-mesenquimal (EMT), como reflejo de la sobreexpresión de genes mesenquimales *CDH2*, *SNAI1*, *SNAI2* y *VIM* y de otros genes relacionados con la EMT como *S100A4*, junto con una menor expresión de marcadores epiteliales como CEACAM6, EPCAM, CDH1, KRT8 y KRT18[373-375]. Además los tumores con perfil de tipo GEP-B mostraron también activación preferencial de la vía de señalización de la quinasa ligada a integrinas (ILK)[376], inhibición de genes involucrados en las vías de señalización de las uniones célula-célula y de los genes que codifican para las moléculas de adhesión DSG2, DSC2 y PKP2[377]. En su conjunto, estos resultados sugieren que en los tumores de tipo GEP-B, la inmunosupresión asociada a un fenotipo EMT podría estar implicada en la patogénesis del ADCP, quedando aún por definir la secuencia en la que ocurrirían ambos procesos durante el desarrollo del tumor.

En conjunto nuestros resultados relacionados con los perfiles de expresión génica en el ADCP, confirman y extienden las observaciones descritas por Collisson *et al.* en una serie más amplia de pacientes[271], acerca de la existencia de distintos subgrupos moleculares de ADCP, al identificar en ambas series tumores epiteliales "clásicos" y tumores "(cuasi-)mesenquimales"[271]. Sin embargo, a pesar de esta concordancia, en nuestro estudio no hemos logrado detectar una tercera subclase de ADCP descrita por Collisson *et al.*[271], los tumores con fenotipo exocrino. Estas diferencias podrían deberse al distinto tamaño muestral (27 muestras tumorales en nuestro estudio *vs.* 63 muestras de ADCP en la serie de Collisson *et al.*), a la metodología utilizada (mientras que en nuestro estudio analizamos tejidos de ADCP congelados en fresco y macrodiseccionados, Collisson *et al.* utilizó una mezcla de muestras de ADCP conservadas en parafina y de muestras congeladas en fresco, con o sin microdisección de las glándulas tumorales), y/o al empleo de tejidos de referencia (en nuestra serie utilizamos tejidos pancreáticos no-tumorales como tejido de referencia, mientras que Collisson *et al.* no emplea tejidos de referencia)[271].

A diferencia de lo ocurrido en el trabajo citado[271], en nuestra serie no hemos podido confirmar la existencia de una asociación entre los GEP y las características histopatológicas de la enfermedad (p.ej. la asociación descrita por los otros autores entre la existencia de un fenotipo mesenquimal y características tumorales adversas o un peor pronóstico)[271, 375, 378]. Independientemente del significado de los diferentes GEP encontrados y de los fenotipos tumorales descritos, nuestros resultados apoyan la hipótesis de que los distintos perfiles de alteración genética presentes en el ADCP podrían dar lugar a diferentes GEP, teniendo posiblemente importantes implicaciones terapéuticas, las vías funcionales y de señalización alteradas. Por un lado, el conocimiento de estas vías alteradas, podría contribuir a identificar mejor las posibles estrategias terapéuticas, dirigiéndolas a dianas implicadas en las principales vías de señalización, más que a un único oncogén/gen supresor de tumor; en este sentido, podría contribuir a seleccionar mejor

el tratamiento para cada paciente, según el subtipo tumoral concreto que este presente; a modo de ejemplo, el tratamiento convencional con gemcitabina y/o 5-fluorouracilo debería posiblemente evitarse en pacientes con tumores de tipo GEP-B debido a la gran quimioresistencia que presentan las células de ADCP con fenotipo EMT a estos tratamientos[375, 379]. Por otra parte, dicho conocimiento de las vías de señalización alteradas, permitiría también ampliar el abanico de fármacos eficaces contra este tipo de tumores, al facilitar la identificación de nuevos fármacos potencialmente beneficiosos para el tratamiento del tumor, dirigidos frente a vías de señalización menos conocidas (pero alteradas) en el ADCP, como las vías de las integrinas o de la ILK[380, 381].

Desde el punto de vista práctico, en nuestra serie identificamos un conjunto de 160 ARNm sobreexpresados en los tumores de tipo GEP-A (n=63) y GEP-B (n=97) que permitían una discriminación inequívoca entre los tumores portadores de un perfil molecular de tipo epitelial (GEP-A) y tumores portadores de un fenotipo de tipo mesenquimal (GEP-B); estos genes permitirían dicha discriminación, tanto en los casos de nuestra serie como en los 27 pacientes con ADCP de la serie de Collisson *et al.*[271] analizados en nuestro trabajo. Estos resultados indican que esta firma genética podría servir de base en el futuro, para la identificación de biomarcadores específicos de estos subgrupos de ADCP; en este contexto, merece destacar entre otros candidatos, la expresión de CEACAM5, GPX2, MUC13, S100P y TMEM45B en tumores de tipo GEP-A, y de PAPPA y VGLL3 en los tumores de tipo GEP-B.

Desde su descubrimiento en el año 1993, los pequeños ARNs no codificantes han surgido como un componente relevante y a veces predominante de los circuitos regulatorios implicados en la expresión génica durante el desarrollo embrionario y los procesos fisiológicos de los organismos multicelulares más complejos. Por este motivo, resulta fácil entender que, para conocer con precisión los mecanismos biológicos implicados en la expresión diferencial de genes, se hace necesario complementar los estudios de expresión génica basados en ARNm, con el análisis de este tipo de reguladores génicos, los ARNs no codificantes de proteínas. Hasta la fecha, sólo un pequeño número de estudios, incluidos los trabajos de Donahue *et al.*[274] y Frampton *et al.*[352], han combinado los análisis globales de expresión de ARNm y miARN en muestras tumorales de ADCP. Así, mientras que los primeros autores realizaron un estudio combinado de GEP y CNV en 25 ADCP primarios, con el fin de identificar aquellos perfiles moleculares asociados con la supervivencia de los pacientes, Frampton *et al.* [352] analizaron el impacto de la expresión de los miARN en el patrón de expresión de ARNm en 9 tumores y 2 líneas celulares tumorales de carcinoma de páncreas, con el objetivo de identificar posibles interacciones (funcionales) miARN-ARNm

que contribuyeran a determinar el comportamiento biológico del ADCP; en ninguno de los dos trabajos se logró identificar subgrupos de ADCP con un GEP diferencial.

En nuestra experiencia, existen varios miARNs cuya expresión se encuentra asociada de forma significativa con el nivel de expresión (ARNm) de determinados genes concretos. De entre las interacciones miARN-ARNm identificadas, merece destacar la asociación entre niveles bajos de expresión del miR-30a-star y la sobreexpresión del transcripto del gen SLC7A6, presente en todas las muestras de ADCP analizadas en nuestra serie. SLC7A6 es un transportador de aminoácidos catiónicos con un papel relevante en el transporte de leucina, que se ha demostrado está implicado en el crecimiento celular de varios tipos de tumores[382, 383] y en el desarrollo de los podocitos[384]; a su vez, la familia de miARNs miR-30 se conoce engloba un conjunto de elementos clave para el desarrollo embrionario pancreático, especialmente en el mantenimiento del fenotipo epitelial del tejido pancreático[385], induciendo la inhibición de estos miARNs (en varios tipos de cáncer) un fenotipo EMT [386, 387]. Aunque en nuestro trabajo no hemos podido detectar otra interacción (validada) entre los demás elementos de la familia miR-30 y sus genes diana, encontramos niveles significativamente inferiores de los miARNs miR-30a, miR-30c y miR-30d, tanto en los tumores con fenotipo epitelial (tumores GEP-A) como en los que presentaban un fenotipo EMT (GEP-B), respecto a tejido pancreático no-tumoral. Estos hallazgos sugieren que el fenotipo EMT es un fenotipo potencialmente inducible en los distintos subtipos de ADCP, pero que, sólo aquellos tumores portadores de alteraciones moleculares/genómicas asociadas a inmunosupresión y/o a señalización de la vía de ILK, acaban por tener un fenotipo mesenquimal. Por el contrario, identificamos otros miARNs que mostraban una expresión alterada de forma exclusiva en tumores de tipo GEP-A o GEP-B. Entre los primeros se incluyen: i) el transcripto de la región tallo-lazo del miR-148a (hp miR-148a) que posiblemente regula la sobreexpresión de genes implicados en el crecimiento de células tumorales (acetyl-CoA sintetasa, ACSL5), la migración (la tetraspanina TSPAN15), la modulación de la apoptosis y la respuesta inmune (mediante el receptor del factor de necrosis tumoral TNFRSF21) y, ii) la sobreexpresión de miR-23a que inhibe el efecto antioxidativo del gen homologo A de la coenzima Q10 (COQ10A). Por otra parte, entre los miARNs sobreexpresados en los tumores de tipo GEP-B se incluían los miR-1180, miR-362-5p y miR-423, todos ellos implicados en la promoción de la proliferación celular y la invasión, tumoral, mediada por la sobreexpresión de genes como BMPER (el regulador endotelial de unión a las BMP), FGD1 (gen 1 que contiene el dominio FYVE Rho GEF y PH) y el gen RSPO3 (R-spondina 3).

4. Asociación entre los perfiles genéticos y las características histopatológicas y el comportamiento clínico del ADCP

En la actualidad se reconoce que el conocimiento exhaustivo de los perfiles genéticos y genómicos tumorales, constituye un requisito indispensable para abordar un sistema de clasificación que permita categorizar pacientes con ADCP con impacto clínico/pronóstico y terapéutico. Con esta premisa en mente, el último objetivo del presente trabajo se centró en la búsqueda de las asociaciones existentes entre los perfiles genéticos de los tumores analizados y las características clínicas e histopatológicas de los mismos, aun cuando, en términos globales, el ADCP sigue presentando en la mayoría de los casos un pronóstico nefasto, con una evolución fatal a corto/mediano plazo. En este sentido, aunque es bien conocido que la esperanza de vida de los pacientes con ADCP sigue siendo devastadora, con una mediana de supervivencia inferior a un año tras el diagnóstico, entre 20% y 25% de los pacientes en los que se ha realizado una resección quirúrgica completa del tumor, continúan vivos y libres de enfermedad a los 5 años, tras la intervención quirúrgica. En nuestra serie encontramos una asociación significativa entre la presencia de alteraciones de los cromosomas 7, 17q y 20, junto con la ausencia de cambios en el cromosoma 18q, y rasgos clínico-patológicos que reflejan enfermedad más avanzada al diagnóstico, incluyendo mayor frecuencia de infiltración de los ganglios linfáticos regionales. Estos hallazgos confirman asociaciones descritas previamente por otros autores entre los perfiles de alteración citogenética específicos de estos cromosomas, y características clínicas, histopatológicas y pronósticas de la enfermedad[107, 108, 113, 116, 119, 254, 255, 274, 288, 302, 388], poniendo de manifiesto el posible papel de genes codificados en dichas regiones cromosómicas (por ej., EGFR, MACC1, MERN1/WBSCR22, ZINP, ARPC1A, HGF, MET[302, 388-393], TOP2A, HER2, BIRC5, GRB7/TANC2[394-396], CDH2[397, 398], NCOA3/AIB1,CTSZ, ZNF217 y AURKA [108, 116, 295, 298]) en determinar el comportamiento clínico e histológico del ADCP.

No obstante, en nuestra serie, la presencia de alteraciones en estas regiones cromosómicas (detectadas por iFISH o por *microarrays* de SNPs) no mostró un impacto significativo en la supervivencia global de los pacientes con ADCP, lo cual podría ser debido, al menos en parte, al número relativamente limitado de casos analizados. Por el contrario, las ganancias del cromosoma 8q24 identificadas mediante técnica de iFISH, junto con las alteraciones de los cromosomas 4 y 9q34, mostraron un impacto pronóstico adverso tanto al considerar todos los pacientes como cuando el análisis se restringía únicamente a aquellos sujetos en los que pudo realizarse una resección quirúrgica completa del tumor, sin que se observara infiltración microscópica en los bordes de resección (casos R0). Más aun,

pudimos confirmar el impacto pronóstico adverso de las ganancias de 8q24 y de las anomalías de 9q34, en una serie externa independiente de 43 pacientes con ADCP analizados mediante aCGH[255], lo que reforzaría la relevancia clínica de ambas alteraciones cromosómicas.

En nuestro conocimiento, esta es la primera serie en la que se describe el impacto pronóstico de las alteraciones del cromosoma 9q34 en el ADCP, aunque previamente se había identificado un locus de susceptibilidad para ADCP en el cromosoma 9q34, que implica el gen *ABO*, que se localiza en una región cromosómica distinta a la observada como alterada en nuestros casos[399]. Por otra parte, se conoce que en esta región cromosómica están codificados varios genes supresores de tumor (p. ej. los genes *LAMC3* y *TSC1*)[400, 401], algunos genes potencialmente oncogénicos como los genes *ABL1*, *SET*, *NUP214*, *NOTCH1* y *KIA1857-netrin-G2*[402-405] y los microARNs *hsa-miR-199b* y *hsa-miR-219-2*[406], genes que podrían estar implicados en la asociación encontrada entre las alteraciones del cromosoma 9 y el pronóstico del ADCP.

En contraposición con lo descrito para la región cromosómica 9q34, previamente se ha descrito una posible asociación entre las alteraciones del cromosoma 8 y las ganancias/amplificaciones en la región 8g24, y un comportamiento más agresivo y un peor pronóstico en pacientes con ADCP[107, 119, 407]. Sin embargo, sigue sin conocerse el papel especifico de los genes asociados a cáncer (p.ej.: CMYC)[175, 408-410] codificados en esta región cromosómica, en el comportamiento clínico y pronóstico del ADCP. La sobreexpresión de CMYC representa un evento clínico y biológicamente relevante en distintos tipos de cáncer[411]; sin embargo, resultados de estudios de expresión génica tanto mediante RQ-PCR como con microarrays de expresión, han puesto de manifiesto la ausencia de sobreexpresión de CMYC en la mitad de los casos estudiados, particularmente entre los tumores portadores de ganancias de 8q24. Estos resultados sugieren que el papel oncogénico relevante de CMYC en el desarrollo del ADCP tendría lugar en una etapa temprana del desarrollo tumoral[175]; alternativamente, el peor pronóstico conferido por las ganancias del cromosoma 8q24 podría estar asociado a la alteración de otros genes codificados en esta región cromosómica (p.ej.: SQLE, NOV, ENPP2, PRNCR1 y/o el locus no codificante PVT1 [408, 410-413]). No obstante, no podemos descartar por completo el papel de CMYC dado que los resultados de expresión podrían estar distorsionados por una posible contaminación de las muestras de ARN tumoral, en especial del ARN de tumores portadores de ganancias en 8g24, con ARN derivado de las células estromales. Sin embargo, y de acuerdo la relevancia relativamente limitada del gen CMYC, estudios previos realizados con técnica de secuenciación masiva del genoma del ADCP tampoco han encontrado una correlación significativa entre las ganancias del número de copias del gen CMYC y su sobreexpresión[343]. En esta misma línea nosotros tampoco hemos logrado

encontrar una asociación significativa entre las ganancias de 8q24 y los niveles de expresión de otros genes asociados con cáncer codificados en la región comúnmente implicada en estas ganancias. Sin embargo, la mayoría de los tumores que mostraron ganancia del cromosoma 8q24 presentaban una región de ganancia más extensa cuando esta se estudió mediante *microarrays* de SNPs, lo cual sugiere que podrían ser otros los genes codificados en esta región los que podrían estar implicados en determinar el impacto pronóstico de estas alteraciones cromosómicas.

Aunque no hemos podido confirmar el impacto pronóstico de las alteraciones del cromosoma 4 observado en nuestros pacientes, en una serie externa independiente de pacientes con ADCP, y las alteraciones del cromosoma 4p detectadas en el ADCP no han sido caracterizadas en detalle en estudios previos, en el ADCP se ha descrito la existencia de un locus de susceptibilidad para sufrir ADCP en la región 4g32-34[218, 219], y se ha asociado la presencia de alteraciones en las regiones 4p y 4q con el pronóstico de los pacientes con ADCP[119, 254]. Los genes codificados en esta región que pudieran potencialmente ser genes candidatos a tener un impacto significativo en el comportamiento clínico y pronóstico de la enfermedad incluyen genes supresores de tumor codificados en la región 4p16-p15 (p.ei.: los genes LETM1, FGFR1, STIM2, has-mir-218, SLIT2-ROBO1 y SH3BP2[414-419]), así como aquellos ubicados en el cromosoma 4q (p.ej. los genes PCDH10, TET2, CDC4/FBXW7, HPSE, FAT1 y NDST4 [420-425]), junto con otros descritos como implicados en otras neoplasias como KIT, VEGFR2, PDGFRA, WHSC1 y FGFR3[426-429]. Además, llama la atención, la existencia de un pequeño subgrupo de tumores que presentaba clones ancestrales caracterizados por tener del(4p), estando esta deleción frecuentemente precedida en estos casos por polisomías del cromosoma 4. Estas observaciones sugieren que en el ADCP, las vías intratumorales de evolución clonal que implican cambios tempranos en el cromosoma 4/4p podrían estar asociadas a un comportamiento clínico distinto de la enfermedad, asociado con una mayor frecuencia a muerte temprana.

El análisis multivariante realizado a partir de las variables citogenéticas con valor pronóstico encontradas en nuestro trabajo mostró que, las alteraciones de los cromosomas 4 y 9q34, junto con las ganancias del cromosoma 8q24, tenían un valor independiente a la hora de predecir la supervivencia global de los pacientes con ADCP. Basándonos en estos resultados, construimos un sistema de puntuación de acuerdo con la presencia/ausencia de estas anomalías genéticas en cada tumor. Este sistema de puntuación nos permitió clasificar a los pacientes con ADCP en tres grupos de riesgo con diferente supervivencia, y que incluía un pequeño grupo de pacientes con buen pronóstico (20% de los casos) y una mediana de supervivencia global de >3 años. Este sistema de clasificación pronóstica fue

validado en una serie independiente, confirmándose su utilidad predictiva. En nuestro conocimiento, esta es la primera vez que se propone un sistema de puntuación citogenética para la estratificación pronóstica de pacientes con ADCP; además, de acuerdo con los resultados observados, esta clasificación mejoraría el poder predictivo de otros sistemas moleculares basados en la combinación del estado mutacional y la expresión diferencial de 4 genes (*KRAS*, *CDKN2A*, *TP53* y *SMAD4*) que están frecuentemente alterados en ADCP[256]. Aunque se requieren estudios adicionales en series más amplias de pacientes con ADCP en los que se validen nuestros hallazgos, el sistema de clasificación citogenética propuesto podría contribuir a la identificación y al diagnóstico de aquellos pacientes que por una parte se beneficiarían del tratamiento quirúrgico curativo, frente a la mayoría de los casos, en los que se requeriría tratamiento adyuvante y/o estrategias terapéuticas distintas.

Conclusiones

- En relación con la incidencia de alteraciones cromosómicas de tipo numérico y las vías de evolución clonal presentes nivel intratumoral en el ADCP:
- 1. La presencia de alteraciones cromosómicas de tipo numérico es un hallazgo prácticamente sistemático en el ADCP, siendo las deleciones de las regiones cromosómicas 8p, 9p, 17p y 18q en la serie global y la pérdida del cromosoma Y en varones, junto con las ganancias a nivel de 1q y 8q, las anomalías cromosómicas más frecuentemente detectadas en estos tumores.
- 2. El ADCP es un tumor genéticamente heterogéneo, con perfiles de aberración citogenética altamente complejos, asociados a la presencia de más de un clon tumoral en prácticamente todos los casos.
- 3. El ADCP puede presentar distintas vías de evolución clonal a nivel intratumoral, constituyendo las pérdidas (aisladas o combinadas) de los cromosomas 8p, 9p, 17p y 18q, así como la ganancia de la región cromosómica 8q24 y la nulisomía del Y en varones, los eventos citogenéticos tempranos más frecuentes; otras alteraciones cromosómicas como la pérdida del cromosoma 4p (asociada o no a alteraciones numéricas de este cromosoma), representan también eventos tempranos de vías alternativas de evolución clonal presentes en un subgrupo minoritario de todos los ADCP.

- En relación con la asociación entre los perfiles de alteración genética y la histopatología del ADCP:
- 4. Las regiones cromosómicas del genoma tumoral que habitualmente muestran CNV y LOH, albergan múltiples genes relacionados con cáncer en general y con el ADCP en particular, entre los que se incluyen los genes PSCA, TNFRSF6B, SERPINF1 y MAPRE2, lo cual sugiere la implicación de un amplio número de genes en la patogénesis del ADCP.
- **5.** En conjunto, existen al menos dos subgrupos de ADCP con diferentes perfiles genómicos asociados a distintas características histopatológicas de la enfermedad, y potencialmente también, distintos orígenes evolutivos.

• En relación a los perfiles de expresión génica del ADCP:

- 6. El ADCP presenta un GEP común y distinto del del tejido pancreático no tumoral, caracterizado por la sobreexpresión de genes asociados a proliferación, invasión local y capacidad metastásica, junto con una expresión alterada de genes asociados a la respuesta inmune innata en su vertiente celular, lo cual podría estar relacionado con el grado de infiltración inflamatoria observado en estos tumores.
- 7. De entre los genes sobreexpresados en ADCP existen varias proteínas producidas por las células tumorales, susceptibles de ser secretadas y estar presentes en plasma como S100A11, GPR137B, SULF1 y POSTN; estas proteínas podrían constituir nuevos biomarcadores plasmáticos potencialmente útiles para el diagnóstico precoz y la monitorización de pacientes con ADCP.
- **8.** Pese a tener un perfil de expresión génica común, el ADCP presenta una gran heterogeneidad fenotípica reflejada en dos perfiles tumorales claramente distintos: uno mayoritario asociado a un fenotipo epitelial y otro minoritario de tipo mesenquimal; estos perfiles fenotípicos podrían reflejar diferentes vías ontogénicas y/o de progresión maligna del ADCP, sobre los que podía tener una influencia importante el micromedioambiente tumoral, particularmente en lo que a los elementos del sistema inmune se refiere.

- En relación con el impacto clínico y pronóstico de las alteraciones cromosómicas en el ADCP:
- 9. Las alteraciones de los cromosomas 7, 17q y 20, así como la ausencia de alteraciones del cromosoma 18q, se asocian con características clínicas adversas de la enfermedad como la presencia de invasión ganglionar, aunque ninguna de ellas muestra impacto pronóstico independiente.
- 10. La presencia de ganancias del cromosoma 8q24, junto con las alteraciones del número de copias de los cromosomas 4 y 9q34, constituyen factores pronósticos adversos e independientes en el ADCP; además, la combinación de estas variables citogenéticas permite identificar en el momento del diagnóstico, un subgrupo minoritario de pacientes con ADCP que tras una resección quirúrgica completa del tumor, presentan una mayor supervivencia.

Bibliografía

- 1. Real, X.F., A. Rodolosse, and A. Merlos, *The cell biology of pancreatic cancer*, in *Exocrine pancreas cancer (EPC-RC)*, T.M. Gress, et al., Editors. 2005, Feisenstein CCCP: Hannover. p. 108-117.
- Stanger, B.Z. and Y. Dor, Dissecting the cellular origins of pancreatic cancer. Cell Cycle, 2006. 5(1): p. 43-46.
- 3. Neuzillet, C., A. Sauvanet, and P. Hammel, *Prognostic factors for resectable pancreatic adenocarcinoma.* J.Visc.Surg., 2011. **148**(4): p. e232-e243.
- 4. Saif, M.W., Pancreatic neoplasm in 2011: an update. JOP., 2011. 12(4): p. 316-321.
- 5. Jemal, A., et al., Global cancer statistics. CA Cancer J.Clin., 2011. 61(2): p. 69-90.
- 6. Vincent, A., et al., *Pancreatic cancer.* Lancet, 2011. **378**(9791): p. 607-620.
- 7. Hidalgo, M., et al., Epidemiology and diagnosis of pancreatic cancer. 2003. p. 714-722.
- 8. Torres, M.P., P.J. Trraga, and J.A. Rodriguez, *Incidencia del c ncer de p ncreas en la provincia de Albacete*. 2008. p. 111-116.
- 9. Stoita, A., I.D. Penman, and D.B. Williams, *Review of screening for pancreatic cancer in high risk individuals*. World J.Gastroenterol., 2011. **17**(19): p. 2365-2371.
- 10. Tempero, M.A., et al., Pancreatic adenocarcinoma. J.Natl.Compr.Canc.Netw., 2010. 8(9): p. 972-1017.
- 11. Hong, S.M., et al., *Molecular signatures of pancreatic cancer*. Arch.Pathol.Lab Med., 2011. **135**(6): p. 716-727
- 12. Hruban, R.H. and N. Fukushima, *Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs.* Mod.Pathol., 2007. **20 Suppl 1**: p. S61-S70.
- 13. Krech, R.L. and D. Walsh, *Symptoms of pancreatic cancer*. J.Pain Symptom.Manage., 1991. **6**(6): p. 360-367
- Takhar, A.S., et al., Recent developments in diagnosis of pancreatic cancer. BMJ, 2004. 329(7467): p. 668-673.

- 15. Kim, C.B., S. Ahmed, and E.C. Hsueh, *Current surgical managment of pancreatic cancer.* J.of Gastrointes.Oncol., 2011. **2**(3): p. 126-135.
- 16. Tummala, P., O. Junaidi, and B. Agarwal, *Imaging of pancreatic cancer: An overview.* J.of Gastrointes.Oncol., 2011. **2**(3): p. 168-174.
- 17. Humphris, J.L., et al., *The prognostic and predictive value of serum CA19.9 in pancreatic cancer.* Ann.Oncol., 2011.
- 18. Egawa, S., et al., Clinicopathological aspects of small pancreatic cancer. Pancreas, 2004. **28**(3): p. 235-240.
- 19. Tempero, M.A., et al., *Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer.* Cancer Res., 1987. **47**(20): p. 5501-5503.
- 20. Talar-Wojnarowska, R. and E. Malecka-Panas, *Molecular pathogenesis of pancreatic adenocarcinoma:* potential clinical implications. Med.Sci.Monit., 2006. **12**(9): p. RA186-RA193.
- 21. Winter, J.M., C.J. Yeo, and J.R. Brody, *Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer.* J.Surg.Oncol., 2013. **107**(1): p. 15-22.
- 22. Chan, A., et al., *Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer.* Clin Cancer Res, 2014. **20**(22): p. 5787-95.
- 23. Simeone, D.M., et al., *CEACAM1*, a novel serum biomarker for pancreatic cancer. Pancreas, 2007. **34**(4): p. 436-43.
- 24. Koopmann, J., et al., Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res, 2004. **10**(7): p. 2386-92.
- 25. Brand, R.E., et al., Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res, 2011. **17**(4): p. 805-16.
- 26. Kang, C.Y., et al., Clinical significance of serum COL6A3 in pancreatic ductal adenocarcinoma. J Gastrointest Surg, 2014. **18**(1): p. 7-15.
- 27. Takayama, R., et al., Serum tumor antigen REG4 as a diagnostic biomarker in pancreatic ductal adenocarcinoma. J Gastroenterol, 2010. **45**(1): p. 52-9.
- 28. Bauer, A.S., et al., Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS One, 2012. **7**(4): p. e34151.
- 29. Kong, X., et al., Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig.Dis.Sci., 2011. **56**(2): p. 602-609.
- 30. Seux, M., et al., *MicroRNAs in pancreatic ductal adenocarcinoma: new diagnostic and therapeutic clues.* Pancreatology., 2009. **9**(1-2): p. 66-72.
- 31. Wang, J., et al., *MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease.* Cancer Prev Res (Phila), 2009. **2**(9): p. 807-13.
- 32. Baraniskin, A., et al., Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int J Cancer, 2013. **132**(2): p. E48-57.
- 33. Cote, G.A., et al., A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am J Gastroenterol, 2014. **109**(12): p. 1942-52.
- 34. Bournet, B., et al., Gene expression signature of advanced pancreatic ductal adenocarcinoma using low density array on endoscopic ultrasound-guided fine needle aspiration samples. Pancreatology, 2012. **12**(1): p. 27-34.

- 35. Chen, Y., et al., Accurate discrimination of pancreatic ductal adenocarcinoma and chronic pancreatitis using multimarker expression data and samples obtained by minimally invasive fine needle aspiration. Int J Cancer, 2007. **120**(7): p. 1511-7.
- 36. Harsha, H.C., et al., A compendium of potential biomarkers of pancreatic cancer. PLoS Med, 2009. **6**(4): p. e1000046.
- 37. Singh, P., R. Srinivasan, and J.D. Wig, *Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment.* Pancreas, 2011. **40**(5): p. 644-652.
- 38. Zhang, P., et al., *Development of serum parameters panels for the early detection of pancreatic cancer.* Int J Cancer, 2014. **134**(11): p. 2646-55.
- 39. Zhang, L., et al., *Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer.* Gastroenterology, 2010. **138**(3): p. 949-57 e1-7.
- 40. Wang, Y., et al., *Detection of p53 gene mutations in the supernatant of pancreatic juice and plasma from patients with pancreatic carcinomas.* Pancreas, 2004. **28**(1): p. 13-9.
- 41. Zeng, L., et al., Perineural Invasion and TAMs in Pancreatic Ductal Adenocarcinomas: Review of the Original Pathology Reports Using Immunohistochemical Enhancement and Relationships with Clinicopathological Features. J Cancer, 2014. **5**(9): p. 754-60.
- 42. Willumsen, N., et al., Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls. BMC Cancer, 2013. **13**: p. 554.
- 43. Willmore-Payne, C., et al., *Molecular diagnostic testing as an adjunct to morphologic evaluation of pancreatic ductal system brushings: potential augmentation for diagnostic sensitivity.* Diagn Cytopathol, 2007. **35**(4): p. 218-24.
- 44. Awadallah, N.S., et al., Detection of B7-H4 and p53 in pancreatic cancer: potential role as a cytological diagnostic adjunct. Pancreas, 2008. **36**(2): p. 200-6.
- 45. Balasenthil, S., et al., *A migration signature and plasma biomarker panel for pancreatic adenocarcinoma.* Cancer Prev Res (Phila), 2011. **4**(1): p. 137-49.
- 46. Chung, H.W. and J.B. Lim, Clinical significance of elevated serum soluble CD40 ligand levels as a diagnostic and prognostic tumor marker for pancreatic ductal adenocarcinoma. J Transl Med, 2014. 12: p. 102.
- 47. Chung, H.W. and J.B. Lim, Clinical significance of serum levels of immune-associated molecules, uric acid and soluble MHC class I chain-related molecules A and B, as diagnostic tumor markers for pancreatic ductal adenocarcinoma. Cancer Sci, 2011. **102**(9): p. 1673-9.
- 48. Mirus, J., et al., Cross-species antibody microarray interrogation identifies a 3-protein panel of plasma biomarkers for the early detection of pancreas cancer. Clin Cancer Res, 2015.
- 49. Gao, H., et al., Evaluation of serum diagnosis of pancreatic cancer by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Int J Mol Med, 2012. **30**(5): p. 1061-8.
- 50. Gao, J., et al., *Identification of pancreatic juice proteins as biomarkers of pancreatic cancer.* Oncol Rep, 2010. **23**(6): p. 1683-92.
- 51. Hoffmann, K., et al., Detection of disseminated pancreatic cells by amplification of cytokeratin-19 with quantitative RT-PCR in blood, bone marrow and peritoneal lavage of pancreatic carcinoma patients. World J Gastroenterol, 2007. **13**(2): p. 257-63.
- 52. Ohuchida, K., et al., *Twist, a novel oncogene, is upregulated in pancreatic cancer: clinical implication of Twist expression in pancreatic juice*. Int J Cancer, 2007. **120**(8): p. 1634-40.
- 53. Xue, A., et al., *Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis.* Br J Cancer, 2010. **103**(3): p. 391-400.

- 54. Shaw, V.E., et al., Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease. Mol Cancer, 2014. **13**: p. 114.
- 55. Tonack, S., et al., *iTRAQ* reveals candidate pancreatic cancer serum biomarkers: influence of obstructive jaundice on their performance. Br J Cancer, 2013. **108**(9): p. 1846-53.
- 56. Uehara, H., et al., *In situ telomerase activity in pancreatic juice may discriminate pancreatic cancer from other pancreatic diseases.* Pancreas, 2008. **36**(3): p. 236-40.
- 57. Kloppel, G., et al., Classification of pancreatic neoplasms and their genetics, in Exocrine pancreas cancer (EPC-RC), T.M. Gress, et al., Editors. 2005, Feisenstein CCCP: Hannover. p. 62-83.
- 58. Kloppel, G. and J. Luttges, *WHO-classification 2000: exocrine pancreatic tumors.* Verh.Dtsch.Ges.Pathol., 2001. **85**: p. 219-228.
- 59. Hruban, R.H., et al., *Ductal adenocarcinoma of the pancreas*, in *WHO classification of tumors of the digestive system*, F.T. Bosman, et al., Editors. 2010, IARC Press: Lyon. p. 279-291.
- 60. Hezel, A.F., et al., *Genetics and biology of pancreatic ductal adenocarcinoma*. Genes Dev., 2006. **20**(10): p. 1218-1249.
- 61. Adsay, N.V., et al., A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. Am.J.Surg.Pathol., 2005. **29**(6): p. 724-733.
- 62. Gleason, D.F. and G.T. Mellinger, *Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging*. J.Urol., 1974. **111**(1): p. 58-64.
- 63. Edge, S.B., et al., *Exocrine Pancreas*, in *American Joint Committe on Cancer: AJCC Cancer Staging Manual.* 2002, Springer: New York, NY. p. 157-164.
- 64. Vogelstein, B., et al., *Genetic alterations during colorectal-tumor development.* N.Engl.J.Med., 1988. **319**(9): p. 525-532.
- 65. Baumgart, M., et al., The genetic basis of sporadic pancreatic cancer. Cell Oncol., 2005. 27(1): p. 3-13.
- 66. Bardeesy, N. and R.A. DePinho, *Pancreatic cancer biology and genetics*. Nat.Rev.Cancer, 2002. **2**(12): p. 897-909.
- 67. Lee, C.J., J. Dosch, and D.M. Simeone, *Pancreatic cancer stem cells.* J Clin Oncol, 2008. **26**(17): p. 2806-12.
- 68. Korc, M., Pancreatic cancer-associated stroma production. Am.J.Surg., 2007. 194(4 Suppl): p. S84-S86.
- 69. Whitcomb, D.C., *Inflammation and Cancer V. Chronic pancreatitis and pancreatic cancer.* Am.J.Physiol Gastrointest.Liver Physiol, 2004. **287**(2): p. G315-G319.
- 70. Rhim, A.D., et al., *EMT and dissemination precede pancreatic tumor formation*. Cell, 2012. **148**(1-2): p. 349-361.
- 71. Balic, A., et al., Stem cells as the root of pancreatic ductal adenocarcinoma. Exp Cell Res, 2012. **318**(6): p. 691-704.
- 72. Guerra, C., et al., Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell, 2007. 11(3): p. 291-302.
- 73. Guerra, C., et al., Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell, 2011. 19(6): p. 728-39.
- 74. Kong, B., et al., From tissue turnover to the cell of origin for pancreatic cancer. Nat.Rev.Gastroenterol.Hepatol., 2011. **8**(8): p. 467-472.
- 75. Dorado, J., et al., *Pancreatic cancer stem cells: new insights and perspectives.* J.Gastroenterol., 2011. **46**(8): p. 966-973.

- 76. Rasheed, Z.A. and W. Matsui, *Biological and clinical relevance of stem cells in pancreatic adenocarcinoma*. J Gastroenterol Hepatol, 2012. **27 Suppl 2**: p. 15-8.
- 77. Penchev, V.R., et al., *Heterogeneity and targeting of pancreatic cancer stem cells.* Clin Cancer Res, 2012. **18**(16): p. 4277-84.
- 78. Mihaljevic, A.L., et al., *Molecular mechanism of pancreatic cancer--understanding proliferation, invasion, and metastasis.* Langenbecks Arch.Surg., 2010. **395**(4): p. 295-308.
- 79. Rhim, A.D. and B.Z. Stanger, *Molecular biology of pancreatic ductal adenocarcinoma progression: aberrant activation of developmental pathways.* Prog Mol Biol Transl Sci, 2010. **97**: p. 41-78.
- 80. Singh, M. and A. Maitra, *Precursor lesions of pancreatic cancer: molecular pathology and clinical implications*. Pancreatology., 2007. **7**(1): p. 9-19.
- 81. Cubilla, A.L. and P.J. Fitzgerald, *Morphological lesions associated with human primary invasive nonendocrine pancreas cancer.* Cancer Res., 1976. **36**(7 PT 2): p. 2690-2698.
- 82. Klimstra, D.S. and D.S. Longnecker, *K-ras mutations in pancreatic ductal proliferative lesions*. Am.J.Pathol., 1994. **145**(6): p. 1547-1550.
- 83. Hruban, R.H., et al., *Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions*. Am.J.Surg.Pathol., 2001. **25**(5): p. 579-586.
- 84. Hruban, R.H., A. Maitra, and M. Goggins, *Update on pancreatic intraepithelial neoplasia*. Int.J.Clin.Exp.Pathol., 2008. **1**(4): p. 306-316.
- 85. Luttges, J., S.A. Hahn, and G. Kloppel, *Preneoplastic pancreatic lesions and their genetic features*, in *Exocrine pancreas cancer (EPC-RC)*, T.M. Gress, et al., Editors. 2005, Feisenstein CCCP: Hannover. p. 84-91.
- 86. Tanaka, M., et al., International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology., 2006. **6**(1-2): p. 17-32.
- 87. Sakorafas, G.H., et al., *Primary pancreatic cystic neoplasms revisited: part II. Mucinous cystic neoplasms.* Surg.Oncol., 2011. **20**(2): p. e93-101.
- 88. de Wilde, R.F., et al., Reporting precursors to invasive pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal neoplasms and mucinous cystic neoplasm. Diagnostic Histopathology, 2012. **18**(1): p. 17-30.
- 89. Hruban, R.H. and N.V. Adsay, *Molecular classification of neoplasms of the pancreas*. Hum.Pathol., 2009. **40**(5): p. 612-623.
- 90. Varadhachary, G.R., *Preoperative therapies for resectable and borderline resectable pancreatic cancer.* J.of Gastrointes.Oncol., 2011. **2**(3): p. 136-142.
- 91. Kneuertz, P.J., et al., *Palliative surgical management of patients with unresectable pancreatic adenocarcinoma: trends and lessons learned from a large, single institution experience.* J.Gastrointest.Surg., 2011. **15**(11): p. 1917-1927.
- 92. Cheng, C., D. Duppler, and B.K. Jaremko, *Can pancreaticoduodenectomy performed at a comprehensive community cancer center have comparable results as major tertiary center?* J.of Gastrointes.Oncol., 2011. **2**(3): p. 143-150.
- 93. Puleo, F., et al., New challenges in perioperative management of pancreatic cancer. World J Gastroenterol, 2015. **21**(8): p. 2281-2293.
- 94. Graham, J.S., et al., Pancreatic cancer genomics: where can the science take us? Clin Genet, 2014.
- 95. Rossi, M.L., A.A. Rehman, and C.S. Gondi, *Therapeutic options for the management of pancreatic cancer.* World J.Gastroenterol., 2014. **20**(32): p. 11142-11159.

- 96. Chehl, N., et al., Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 2009. **11**(5): p. 373-81.
- 97. Wang, F. and P. Kumar, *The role of radiotherapy in management of pancreatic cancer.* J.of Gastrointes.Oncol., 2011. **2**(3): p. 157-167.
- 98. Lillemoe, K.D., Current management of pancreatic carcinoma. Ann.Surg., 1995. 221(2): p. 133-148.
- 99. Parker, S.L., et al., Cancer statistics, 1997. CA Cancer J.Clin., 1997. 47(1): p. 5-27.
- 100. Pawlik, T.M., et al., *Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer.* Surgery, 2007. **141**(5): p. 610-618.
- 101. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-28.
- 102. Nowell, P.C., Mechanisms of tumor progression. Cancer Res., 1986. 46(5): p. 2203-2207.
- 103. Gorunova, L., et al., Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes.Cancer, 1998. **23**(2): p. 81-99.
- 104. Harada, T., et al., Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res., 2002. **62**(3): p. 835-839.
- 105. Kowalski, J., et al., Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes. Cancer Genet.Cytogenet., 2007. **178**(1): p. 26-35.
- Gorunova, L., et al., Massive cytogenetic heterogeneity in a pancreatic carcinoma: fifty-four karyotypically unrelated clones. Genes Chromosomes Cancer, 1995. 14(4): p. 259-266.
- 107. Schleicher, C., et al., *Gain of chromosome 8q: a potential prognostic marker in resectable adenocarcinoma of the pancreas?* Ann.Surg.Oncol., 2007. **14**(4): p. 1327-1335.
- 108. Holzmann, K., et al., Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res., 2004. 64(13): p. 4428-4433.
- 109. Mahlamaki, E.H., et al., Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes.Cancer, 2002. **35**(4): p. 353-358.
- 110. Mahlamaki, E.H., et al., Comparative genomic hybridization reveals frequent gains of 20q, 8q, 11q, 12p, and 17q, and losses of 18q, 9p, and 15q in pancreatic cancer. Genes Chromosomes.Cancer, 1997. 20(4): p. 383-391.
- 111. Tirado, C.A., A.A. Sandberg, and J.F. Stone, *Identification of a novel amplicon at 1q31 in pancreatic cancer cell lines.* Cancer Genet.Cytogenet., 1999. **113**(2): p. 110-114.
- 112. Schleger, C., et al., *Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH)*. J.Pathol., 2000. **191**(1): p. 27-32.
- 113. Harada, T., et al., *Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation.* Br.J.Cancer, 2007. **96**(2): p. 373-382.
- 114. Lin, M., D. Cai, and M. Luo, *Identification of chromosomal imbalances in pancreatic carcinoma using comparative genomic hybridization.* Chin Med.J.(Engl.), 2003. **116**(8): p. 1156-1160.
- 115. Heidenblad, M., et al., Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines. Cancer Res., 2004. **64**(9): p. 3052-3059.
- 116. Nowak, N.J., et al., *Genome-wide aberrations in pancreatic adenocarcinoma*. Cancer Genet.Cytogenet., 2005. **161**(1): p. 36-50.

- 117. Pole, J.C., et al., *High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation.* Oncogene, 2006. **25**(41): p. 5693-5706.
- 118. Aguirre, A.J., et al., *High-resolution characterization of the pancreatic adenocarcinoma genome.* Proc.Natl.Acad.Sci.U.S.A, 2004. **101**(24): p. 9067-9072.
- 119. Loukopoulos, P., et al., Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci., 2007. **98**(3): p. 392-400.
- 120. Cooke, S.L., et al., *High-resolution array CGH clarifies events occurring on 8p in carcinogenesis.* BMC.Cancer, 2008. **8**: p. 288.
- 121. Hilgers, W. and S.E. Kern, *Molecular genetic basis of pancreatic adenocarcinoma*. Genes Chromosomes.Cancer, 1999. **26**(1): p. 1-12.
- 122. Jonson, T., et al., *Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer.* Genes Chromosomes.Cancer, 1999. **24**(1): p. 62-71.
- 123. Tarafa, G., et al., *DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination.* Oncogene, 2000. **19**(4): p. 546-555.
- 124. Sunamura, M., et al., The role of chromosome 18 abnormalities in the progression of pancreatic adenocarcinoma. Pancreas, 2004. **28**(3): p. 311-316.
- 125. Lefter, L.P., et al., Functional analysis of chromosome 18 in pancreatic cancer: strong evidence for new tumour suppressor genes. Asian J.Surg., 2004. **27**(2): p. 85-92.
- 126. Ryschich, E., et al., Loss of heterozygosity in the HLA class I region in human pancreatic cancer. Tissue Antigens, 2004. **64**(6): p. 696-702.
- 127. Luttges, J., et al., Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am.J.Pathol., 2001. **158**(5): p. 1677-1683.
- 128. Calhoun, E.S., et al., *Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays*. Cancer Res., 2006. **66**(16): p. 7920-7928.
- 129. Salek, C., et al., *Mutation Status of K-ras, p53 and Allelic Losses at 9p and 18q Are Not Prognostic Markers in Patients with Pancreatic Cancer.* Anticancer Res., 2009. **29**(5): p. 1803-1810.
- 130. Nomoto, S., et al., Adverse prognosis of epigenetic inactivation in RUNX3 gene at 1p36 in human pancreatic cancer. Br.J.Cancer, 2008. **98**(10): p. 1690-1695.
- 131. Abe, T., et al., *Identification of three commonly deleted regions on chromosome arm 6q in human pancreatic cancer.* Genes Chromosomes Cancer, 1999. **25**(1): p. 60-64.
- 132. Wallrapp, C., et al., Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis. Int.J.Cancer, 2001. **91**(3): p. 340-344.
- 133. Jones, S., et al., Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008. **321**(5897): p. 1801-1806.
- 134. Feldmann, G. and A. Maitra, *Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts.* J.Mol.Diagn., 2008. **10**(2): p. 111-122.
- 135. Sandberg, A.A., Chromosomes as markers in human cancer. Int.Adv.Surg.Oncol., 1981. 4: p. 311-336.
- 136. Sandberg, A.A., Cytogenetics of human neoplasias: advances and perspectives. Prog.Clin.Biol.Res., 1991. **368**: p. 113-144.

- 137. Sayagues, J.M., et al., Intratumoral patterns of clonal evolution in meningiomas as defined by multicolor interphase fluorescence in situ hybridization (FISH): is there a relationship between histopathologically benign and atypical/anaplastic lesions? J.Mol.Diagn., 2004. **6**(4): p. 316-325.
- 138. Sayagues, J.M., et al., Intratumoural cytogenetic heterogeneity of sporadic colorectal carcinomas suggests several pathways to liver metastasis. J.Pathol., 2010. **221**(3): p. 308-319.
- 139. Koorstra, J.B., et al., Pancreatic carcinogenesis. Pancreatology., 2008. 8(2): p. 110-125.
- 140. Ji, Z., et al., Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J.Biol.Chem., 2007. **282**(19): p. 14048-14055.
- 141. Pugliese, V., et al., Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cytologic studies and k-ras-2 codon 12 molecular analysis in 47 cases. Gastrointest.Endosc., 2001. **54**(5): p. 595-599.
- 142. Delpu, Y., et al., Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr.Genomics, 2011. **12**(1): p. 15-24.
- 143. Van Heek, N.T., et al., *Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia.* Am.J.Pathol., 2002. **161**(5): p. 1541-1547.
- 144. Hashimoto, Y., et al., *Telomere shortening and telomerase expression during multistage carcinogenesis of intraductal papillary mucinous neoplasms of the pancreas*. J.Gastrointest.Surg., 2008. **12**(1): p. 17-28.
- 145. Hingorani, S.R., et al., *Trp53R172H* and *KrasG12D* cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 2005. **7**(5): p. 469-483.
- 146. Pryczynicz, A., et al., Expression of epidermal growth factors and apoptosis markers in pancreatic ductal adenocarcinoma. Folia Histochem.Cytobiol., 2009. **47**(4): p. 667-671.
- 147. Dancer, J., et al., Coexpression of EGFR and HER-2 in pancreatic ductal adenocarcinoma: a comparative study using immunohistochemistry correlated with gene amplification by fluorescencent in situ hybridization. Oncol.Rep., 2007. **18**(1): p. 151-155.
- 148. Hruban, R.H., R.E. Wilentz, and S.E. Kern, *Genetic progression in the pancreatic ducts*. Am.J.Pathol., 2000. **156**(6): p. 1821-1825.
- 149. Tsiambas, E., et al., *HER2/neu expression and gene alterations in pancreatic ductal adenocarcinoma: a comparative immunohistochemistry and chromogenic in situ hybridization study based on tissue microarrays and computerized image analysis.* JOP., 2006. **7**(3): p. 283-294.
- 150. Vimalachandran, D., et al., *Genetics and prevention of pancreatic cancer*. Cancer Control, 2004. **11**(1): p. 6-14.
- 151. Kern, S.E. and R.H. Hruban, *Molecular Biology of Pancreas Cancer*, in *Cancer: Principles & Practice of Oncology*, V.J. Devita, et al., Editors. 2008, Lippincott Williams & Wilkins: Hagerstown.
- 152. Maitra, A., S.E. Kern, and R.H. Hruban, *Molecular pathogenesis of pancreatic cancer*. Best.Pract.Res.Clin.Gastroenterol., 2006. **20**(2): p. 211-226.
- 153. Liu, H., et al., Reevaluation and Identification of the Best Immunohistochemical Panel (pVHL, Maspin, S100P, IMP-3) for Ductal Adenocarcinoma of the Pancreas. Arch.Pathol.Lab Med., 2012. 136(6): p. 601-609.
- 154. Adsay, N.V., et al., *Ductal neoplasia of the pancreas: nosologic, clinicopathologic, and biologic aspects.* Semin.Radiat.Oncol., 2005. **15**(4): p. 254-264.
- 155. Huo, Z., et al., Intraductal papillary mucinous neoplasm of pancreas: a clinicopathologic and immunohistochemical study of 19 cases. Zhonghua Bing.Li Xue.Za Zhi., 2008. **37**(10): p. 670-675.
- 156. Chou, A., et al., Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Med, 2013. **5**(8): p. 78.

- 157. Saif, M.W., L. Karapanagiotou, and K. Syrigos, *Genetic alterations in pancreatic cancer.* World J.Gastroenterol., 2007. **13**(33): p. 4423-4430.
- 158. Komoto, M., et al., *HER2 overexpression correlates with survival after curative resection of pancreatic cancer.* Cancer Sci., 2009. **100**(7): p. 1243-1247.
- 159. Feldmann, G., et al., *Molecular genetics of pancreatic intraepithelial neoplasia.* J.Hepatobiliary.Pancreat.Surg., 2007. **14**(3): p. 224-232.
- 160. Ebert, M., et al., Increased mdm2 expression and immunoreactivity in human pancreatic ductal adenocarcinoma. Int.J.Oncol., 1994. **5**(6): p. 1279-1284.
- Bramhall, S.R., et al., Imbalance of expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. J.Pathol., 1997. 182(3): p. 347-355.
- 162. Nakamura, T., et al., Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res., 2007. **67**(16): p. 7597-7604.
- 163. Xu, H., et al., Expression of KL-6/MUC1 in pancreatic cancer tissues and its potential involvement in tumor metastasis. Oncol.Rep., 2011. **26**(2): p. 371-376.
- 164. Terada, T., et al., Expression of MUC apomucins in normal pancreas and pancreatic tumours. J.Pathol., 1996. **180**(2): p. 160-165.
- 165. Prasad, N.B., et al., Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res., 2005. **65**(5): p. 1619-1626.
- 166. Biankin, A.V., et al., Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res., 2001. **61**(24): p. 8830-8837.
- 167. Rosty, C., et al., Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am.J.Pathol., 2002. **160**(1): p. 45-50.
- 168. Shields, M.A., et al., *Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression.* Biochem.J., 2012. **441**(2): p. 541-552.
- 169. Yamamoto, H., et al., Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression. J.Clin.Oncol., 2001. 19(4): p. 1118-1127.
- 170. Xu, Y.F., et al., Fascin promotes the motility and invasiveness of pancreatic cancer cells. World J.Gastroenterol., 2011. **17**(40): p. 4470-4478.
- 171. Furukawa, T. and A. Horii, *Molecular pathology of pancreatic cancer: in quest of tumor suppressor genes.* Pancreas, 2004. **28**(3): p. 253-256.
- 172. Liu, F., SMAD4/DPC4 and pancreatic cancer survival. Commentary re: M. Tascilar et al., The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin. Cancer Res., 7: 4115-4121, 2001. Clin.Cancer Res., 2001. **7**(12): p. 3853-3856.
- 173. Tascilar, M., et al., *The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma*. Clin.Cancer Res., 2001. **7**(12): p. 4115-4121.
- 174. Hua, Z., et al., Loss of DPC4 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. World J.Gastroenterol., 2003. **9**(12): p. 2764-2767.
- 175. Schleger, C., et al., *c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance.* Mod.Pathol., 2002. **15**(4): p. 462-469.
- 176. Handra-Luca, A., et al., *Biological and prognostic relevance of mitogen-activated protein kinases in pancreatic adenocarcinoma*. Pancreas, 2012. **41**(3): p. 416-421.

- 177. Hong, S.N., et al., The effect of aberrant maspin expression on the invasive ability of pancreatic ductal adenocarcinoma cells. Oncol.Rep., 2009. **21**(2): p. 425-430.
- 178. Ohike, N., et al., Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Lett., 2003. **199**(2): p. 193-200.
- 179. Seo, Y., et al., *High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma*. Cancer, 2000. **88**(10): p. 2239-2245.
- 180. Schneider, G. and R.M. Schmid, Genetic alterations in pancreatic carcinoma. Mol.Cancer, 2003. 2: p. 15.
- 181. Beger, C., et al., Down-regulation of BRCA1 in chronic pancreatitis and sporadic pancreatic adenocarcinoma. Clin.Cancer Res., 2004. **10**(11): p. 3780-3787.
- 182. Hong, S.M., et al., Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas. Mod.Pathol., 2011. **24**(9): p. 1237-1247.
- 183. Furukawa, T., et al., Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod.Pathol., 2005. **18**(8): p. 1034-1042.
- 184. Xu, S., et al., *Abrogation of DUSP6 by hypermethylation in human pancreatic cancer.* J.Hum.Genet., 2005. **50**(4): p. 159-167.
- 185. Sato, N., et al., *STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas*. Am.J.Pathol., 2001. **159**(6): p. 2017-2022.
- 186. Pan, S., et al., Quantitative proteomics investigation of pancreatic intraepithelial neoplasia. Electrophoresis, 2009. **30**(7): p. 1132-1144.
- 187. Mardin, W.A., et al., SERPINB5 and AKA. BMC.Cancer, 2010. 10: p. 549.
- Crnogorac-Jurcevic, T., Transcriptomics: expression profiling in pancreatic cancer using microarray technology, in Exocrine pancreas cancer (EPC-RC), T.M. Gress, et al., Editors. 2005, Feisenstein CCCP: Hannover. p. 201-217.
- 189. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-297.
- 190. Esquela-Kerscher, A. and F.J. Slack, *Oncomirs microRNAs with a role in cancer*. Nat.Rev.Cancer, 2006. **6**(4): p. 259-269.
- 191. Wang, J. and S. Sen, *MicroRNA functional network in pancreatic cancer: from biology to biomarkers of disease*. J.Biosci., 2011. **36**(3): p. 481-491.
- 192. Lee, E.J., et al., *Expression profiling identifies microRNA signature in pancreatic cancer.* Int.J.Cancer, 2007. **120**(5): p. 1046-1054.
- 193. Szafranska, A.E., et al., *MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma*. Oncogene, 2007. **26**(30): p. 4442-4452.
- 194. Steele, C.W., et al., Clinical potential of microRNAs in pancreatic ductal adenocarcinoma. Pancreas, 2011. **40**(8): p. 1165-1171.
- 195. Li, W., D.G. Lebrun, and M. Li, *The expression and functions of microRNAs in pancreatic adenocarcinoma and hepatocellular carcinoma*. Chin J.Cancer, 2011. **30**(8): p. 540-550.
- 196. Park, J.Y., et al., *MicroRNAs in pancreatic ductal adenocarcinoma*. World J.Gastroenterol., 2011. **17**(7): p. 817-827.
- 197. Yu, J., et al., *MicroRNA alterations of pancreatic intraepithelial neoplasias*. Clin Cancer Res, 2012. **18**(4): p. 981-92.
- 198. Xue, Y., et al., *MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm.* Cancer Genet, 2013. **206**(6): p. 217-21.

- 199. Frampton, A.E., et al., *microRNAs as markers of survival and chemoresistance in pancreatic ductal adenocarcinoma.* Expert Rev Anticancer Ther, 2011. **11**(12): p. 1837-42.
- 200. Nakata, K., et al., *MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis.* Surgery, 2011. **150**(5): p. 916-922.
- 201. Ma, M.Z., et al., Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: meta-analysis, experimental validation and clinical significance. J Exp Clin Cancer Res, 2013. **32**: p. 71.
- Papaconstantinou, I.G., et al., Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas, 2013. 42(1): p. 67-71.
- 203. Bloomston, M., et al., *MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis*. JAMA, 2007. **297**(17): p. 1901-1908.
- 204. Panarelli, N.C. and R.K. Yantiss, *MicroRNA Expression in Selected Carcinomas of the Gastrointestinal Tract.* Patholog.Res.Int., 2011. **2011**: p. 124608.
- Jamieson, N.B., et al., MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin.Cancer Res., 2012. 18(2): p. 534-545.
- 206. Volinia, S., et al., *A microRNA expression signature of human solid tumors defines cancer gene targets.* Proc Natl Acad Sci U S A, 2006. **103**(7): p. 2257-61.
- 207. Sureban, S.M., et al., *DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism.* Cancer Res., 2011. **71**(6): p. 2328-2338.
- 208. Piepoli, A., et al., *Mirna expression profiles identify drivers in colorectal and pancreatic cancers.* PLoS One, 2012. **7**(3): p. e33663.
- 209. Greither, T., et al., Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int.J.Cancer, 2010. **126**(1): p. 73-80.
- 210. Dweep, H., et al., miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J.Biomed.Inform., 2011. **44**(5): p. 839-847.
- 211. Zhao, G., et al., MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One, 2013. **8**(9): p. e73803.
- 212. Morris, K.V. and J.S. Mattick, The rise of regulatory RNA. Nat Rev Genet, 2014. 15(6): p. 423-37.
- 213. Li, A., et al., Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res., 2010. **70**(13): p. 5226-5237.
- 214. Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-74.
- 215. Su, H., et al., *Elevated snoRNA biogenesis is essential in breast cancer.* Oncogene, 2014. **33**(11): p. 1348-58.
- 216. Mei, Y.P., et al., Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene, 2012. **31**(22): p. 2794-804.
- Lochan, R., et al., Genetic susceptibility in pancreatic ductal adenocarcinoma. Br.J.Surg., 2008. 95(1): p. 22-32.
- 218. Earl, J., et al., Evaluation of the 4q32-34 locus in European familial pancreatic cancer. Cancer Epidemiol.Biomarkers Prev., 2006. **15**(10): p. 1948-1955.
- 219. Eberle, M.A., et al., A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am.J.Hum.Genet., 2002. **70**(4): p. 1044-1048.

- Lowery, M.A., et al., An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist., 2011. 16(10): p. 1397-1402.
- 221. Arnold, M.A. and M. Goggins, *BRCA2 and predisposition to pancreatic and other cancers*. Expert.Rev.Mol.Med., 2001. **2001**: p. 1-10.
- 222. Hidalgo, M. and D.D. Von Hoff, *Translational therapeutic opportunities in ductal adenocarcinoma of the pancreas*. Clin Cancer Res, 2012. **18**(16): p. 4249-56.
- 223. Whipple, C. and M. Korc, *Targeting angiogenesis in pancreatic cancer: rationale and pitfalls*. Langenbecks Arch Surg, 2008. **393**(6): p. 901-10.
- 224. Preis, M. and M. Korc, Signaling pathways in pancreatic cancer. Crit Rev Eukaryot Gene Expr, 2011. **21**(2): p. 115-29.
- 225. Neuzillet, C., et al., *Targeting the Ras-ERK pathway in pancreatic adenocarcinoma*. Cancer Metastasis Rev, 2013. **32**(1-2): p. 147-62.
- 226. Eser, S., et al., Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer, 2014. 111(5): p. 817-22.
- 227. Arlt, A., S.S. Muerkoster, and H. Schafer, *Targeting apoptosis pathways in pancreatic cancer*. Cancer Lett, 2013. **332**(2): p. 346-58.
- 228. Hamacher, R., et al., *Apoptotic pathways in pancreatic ductal adenocarcinoma.* Mol Cancer, 2008. **7**: p. 64.
- Kong, B., et al., A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling. Gut, 2015.
- 230. Huang, X., et al., Chronic alcohol exposure exacerbates inflammation and triggers pancreatic acinar-to-ductal metaplasia through PI3K/Akt/IKK. Int J Mol Med, 2015. **35**(3): p. 653-63.
- 231. Yeh, J.J. and C.J. Der, *Targeting signal transduction in pancreatic cancer treatment*. Expert Opin Ther Targets, 2007. **11**(5): p. 673-94.
- 232. Morton, J.P. and B.C. Lewis, *Shh signaling and pancreatic cancer: implications for therapy?* Cell Cycle, 2007. **6**(13): p. 1553-7.
- 233. Morris, J.P.t., S.C. Wang, and M. Hebrok, KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer, 2010. **10**(10): p. 683-95.
- 234. Feldmann, G., et al., Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut, 2008. **57**(10): p. 1420-1430.
- 235. Luo, G., et al., Stroma and pancreatic ductal adenocarcinoma: an interaction loop. Biochim Biophys Acta, 2012. **1826**(1): p. 170-8.
- 236. Costello, E., W. Greenhalf, and J.P. Neoptolemos, *New biomarkers and targets in pancreatic cancer and their application to treatment.* Nat Rev Gastroenterol Hepatol, 2012. **9**(8): p. 435-44.
- 237. Avila, J.L. and J.L. Kissil, *Notch signaling in pancreatic cancer: oncogene or tumor suppressor?* Trends Mol Med, 2013. **19**(5): p. 320-7.
- 238. Hernandez-Munoz, I., et al., *Pancreatic ductal adenocarcinoma: cellular origin, signaling pathways and stroma contribution.* Pancreatology, 2008. **8**(4-5): p. 462-9.
- 239. Weekes, C.D. and R.A. Winn, *The many faces of wnt and pancreatic ductal adenocarcinoma oncogenesis.* Cancers (Basel), 2011. **3**(3): p. 3676-86.
- 240. Nakamoto, M., et al., *Prognostic significance of WNT signaling in pancreatic ductal adenocarcinoma.* Virchows Arch, 2014. **465**(4): p. 401-8.

- 241. Hausmann, S., et al., *The role of inflammation in pancreatic cancer.* Adv Exp Med Biol, 2014. **816**: p. 129-51
- Zhang, H., et al., TGFbeta signaling in pancreatic ductal adenocarcinoma. Tumour Biol, 2015. 36(3): p. 1613-8.
- 243. Maginn, E.N., et al., *Opportunities for translation: targeting DNA repair pathways in pancreatic cancer.*Biochim Biophys Acta, 2014. **1846**(1): p. 45-54.
- 244. Waddell, N., et al., Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015. **518**(7540): p. 495-501.
- Abaji, C., I. Cousineau, and A. Belmaaza, BRCA2 regulates homologous recombination in response to DNA damage: implications for genome stability and carcinogenesis. Cancer Res, 2005. 65(10): p. 4117-25
- 246. Yamano, M., et al., *Genetic progression and divergence in pancreatic carcinoma*. Am.J.Pathol., 2000. **156**(6): p. 2123-2133.
- 247. Goggins, M., R.H. Hruban, and S.E. Kern, *BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications*. Am.J.Pathol., 2000. **156**(5): p. 1767-1771.
- 248. Nichols, L.S., R. Ashfaq, and C.A. lacobuzio-Donahue, *Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target.* Am J Clin Pathol, 2004. **121**(2): p. 226-30.
- 249. Sanada, Y., et al., *Immunohistochemical study of claudin 18 involvement in intestinal differentiation during the progression of intraductal papillary mucinous neoplasm.* Anticancer Res, 2010. **30**(7): p. 2995-3003.
- 250. Kashima, K., et al., Expression of the tumor suppressor gene maspin and its significance in intraductal papillary mucinous neoplasms of the pancreas. Hepatobiliary.Pancreat.Dis.Int., 2008. **7**(1): p. 86-90.
- 251. Kim, J., et al., *Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins*. Gut, 2006. **55**(11): p. 1598-1605.
- 252. Shin, S.H., et al., Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival. Pancreas, 2013. **42**(2): p. 216-222.
- 253. Rachakonda, P.S., et al., Somatic mutations in exocrine pancreatic tumors: association with patient survival. PLoS.One., 2013. **8**(4): p. e60870.
- 254. Luebke, A.M., et al., Losses at chromosome 4q are associated with poor survival in operable ductal pancreatic adenocarcinoma. Pancreatology., 2012. **12**(1): p. 16-22.
- 255. Lee, J.H., et al., Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin.Cancer Res., 2012. **18**(2): p. 524-533.
- Yachida, S., et al., Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin.Cancer Res., 2012. 18(22): p. 6339-6347.
- 257. Lefter, L.P., et al., *Inserting chromosome 18 into pancreatic cancer cells switches them to a dormant metastatic phenotype*. Clin.Cancer Res., 2003. **9**(13): p. 5044-5052.
- 258. Biankin, A.V., et al., *DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma*. J Clin Oncol, 2002. **20**(23): p. 4531-42.
- 259. Sharif, S., et al., *HER2* gene amplification and chromosome 17 copy number do not predict survival of patients with resected pancreatic adenocarcinoma. Dig.Dis.Sci., 2008. **53**(11): p. 3026-3032.
- 260. Winter, J.M., et al., A novel survival-based tissue microarray of pancreatic cancer validates MUC1 and mesothelin as biomarkers. PLoS.One., 2012. **7**(7): p. e40157.
- 261. Marechal, R., et al., Sonic hedgehog and gli1 expression predict outcome in resected pancreatic adenocarcinoma. Clin Cancer Res, 2015. **21**(5): p. 1215-24.

- 262. Ohara, Y., et al., *Histological and prognostic importance of CD44 /CD24 /EpCAM expression in clinical pancreatic cancer.* Cancer Sci., 2013.
- 263. Takikita, M., et al., Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res., 2009. **69**(7): p. 2950-2955.
- 264. Hirono, S., et al., *Molecular markers associated with lymph node metastasis in pancreatic ductal adenocarcinoma by genome-wide expression profiling.* Cancer Sci., 2010. **101**(1): p. 259-266.
- 265. Schultz, N.A., et al., *Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer-five microRNAs in a prognostic index.* World J.Surg., 2012. **36**(11): p. 2699-2707.
- Song, B. and J. Ju, Impact of miRNAs in gastrointestinal cancer diagnosis and prognosis. Expert Rev Mol Med, 2010. 12: p. e33.
- 267. Giovannetti, E., et al., *High-throughput microRNA (miRNAs) arrays unravel the prognostic role of MiR-211 in pancreatic cancer.* PLoS One, 2012. **7**(11): p. e49145.
- 268. Samuel, N. and T.J. Hudson, *The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma*. Nat Rev Gastroenterol Hepatol, 2012. **9**(2): p. 77-87.
- 269. Cowley, M.J., et al., Understanding pancreatic cancer genomes. J Hepatobiliary Pancreat Sci, 2013.
- 270. Hudson, T.J., et al., International network of cancer genome projects. Nature, 2010. 464(7291): p. 993-8.
- 271. Collisson, E.A., et al., Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med, 2011. **17**(4): p. 500-3.
- 272. Stratford, J.K., et al., A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med, 2010. **7**(7): p. e1000307.
- 273. Haider, S., et al., A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Med, 2014. 6(12): p. 105.
- 274. Donahue, T.R., et al., *Integrative survival-based molecular profiling of human pancreatic cancer.* Clin.Cancer Res., 2012. **18**(5): p. 1352-1363.
- 275. Biankin, A.V., et al., *Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.* Nature, 2012. **491**(7424): p. 399-405.
- 276. Nones, K., et al., Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer, 2014. **135**(5): p. 1110-8.
- 277. Dal Molin, M., et al., Very Long-term Survival Following Resection for Pancreatic Cancer Is Not Explained by Commonly Mutated Genes: Results of Whole-Exome Sequencing Analysis. Clin Cancer Res, 2015.
- 278. Campbell, P.J., et al., *The patterns and dynamics of genomic instability in metastatic pancreatic cancer.* Nature, 2010. **467**(7319): p. 1109-13.
- 279. Yachida, S., et al., *Distant metastasis occurs late during the genetic evolution of pancreatic cancer.* Nature, 2010. **467**(7319): p. 1114-7.
- 280. lacobuzio-Donahue, C.A., Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut, 2012. **61**(7): p. 1085-94.
- 281. Bailey, J.M., et al., *DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer.* Gastroenterology, 2014. **146**(1): p. 245-56.
- 282. lacobuzio-Donahue, C.A., et al., *Genetic basis of pancreas cancer development and progression: insights from whole-exome and whole-genome sequencing.* Clin Cancer Res, 2012. **18**(16): p. 4257-65.
- 283. Mao, X., B.D. Young, and Y.J. Lu, *The application of single nucleotide polymorphism microarrays in cancer research.* Curr.Genomics, 2007. **8**(4): p. 219-228.

- 284. Dougherty, M.J., et al., Clinical utilization of high-resolution single nucleotide polymorphism based oligonucleotide arrays in diagnostic studies of pediatric patients with solid tumors. Cancer Genet., 2012. **205**(1-2): p. 42-54.
- 285. Funel, N., et al., Critical role of laser microdissection for genetic, epigenetic and proteomic analyses in pancreatic cancer. Expert.Rev.Mol.Diagn., 2011. **11**(7): p. 695-701.
- 286. Sayagues, J.M., et al., *Incidence of numerical chromosome aberrations in meningioma tumors as revealed by fluorescence in situ hybridization using 10 chromosome-specific probes.* Cytometry, 2002. **50**(3): p. 153-159.
- 287. Vital, A.L., et al., *Intratumoral patterns of clonal evolution in gliomas*. Neurogenetics., 2010. **11**(2): p. 227-239.
- 288. Harada, T., et al., Detection of genetic alterations in pancreatic cancers by comparative genomic hybridization coupled with tissue microdissection and degenerate oligonucleotide primed polymerase chain reaction. Oncology, 2002. **62**(3): p. 251-258.
- 289. Harada, T., et al., Genome-wide analysis of pancreatic cancer using microarray-based techniques. Pancreatology., 2009. **9**(1-2): p. 13-24.
- Walker, B.A. and G.J. Morgan, Use of single nucleotide polymorphism-based mapping arrays to detect copy number changes and loss of heterozygosity in multiple myeloma. Clin.Lymphoma Myeloma., 2006. 7(3): p. 186-191.
- 291. LaFramboise, T., Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res., 2009. **37**(13): p. 4181-4193.
- 292. Stoecklein, N.H., et al., Copy number of chromosome 17 but not HER2 amplification predicts clinical outcome of patients with pancreatic ductal adenocarcinoma. J.Clin.Oncol., 2004. **22**(23): p. 4737-4745.
- 293. Tsavaris, N., et al., Evaluation of DNA ploidy in relation with established prognostic factors in patients with locally advanced (unresectable) or metastatic pancreatic adenocarcinoma: a retrospective analysis. BMC Cancer, 2009. **9**: p. 264.
- 294. Schultz, N.A., et al., Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas, 2012. **41**(5): p. 759-766.
- 295. Gysin, S., et al., Analysis of genomic DNA alterations and mRNA expression patterns in a panel of human pancreatic cancer cell lines. Genes Chromosomes Cancer, 2005. **44**(1): p. 37-51.
- 296. Birnbaum, D., et al., Chromosome arm 8p and cancer: a fragile hypothesis. Lancet Oncol, 2003. **4**(10): p. 639-42.
- 297. Sato, N., et al., Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet, 2001. **126**(1): p. 13-9.
- 298. Zhu, J., et al., AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogenet, 2005. **159**(1): p. 10-7.
- 299. Moskovitz, A.H., et al., Chromosomal instability in pancreatic ductal cells from patients with chronic pancreatitis and pancreatic adenocarcinoma. Genes Chromosomes Cancer, 2003. **37**(2): p. 201-6.
- 300. Micale, M.A., et al., *Defining the extent and nature of cytogenetic events in prostatic adenocarcinoma:* paraffin FISH vs. metaphase analysis. Cancer Genet Cytogenet, 1993. **69**(1): p. 7-12.
- 301. Rubin, H., The role of selection in progressive neoplastic transformation. Adv Cancer Res, 2001. **83**: p. 159-207.
- 302. Harada, T., et al., *Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays.* Oncogene, 2008. **27**(13): p. 1951-1960.
- 303. Rodriguez, J.A., et al., Gene overexpression in pancreatic adenocarcinoma: diagnostic and therapeutic implications. World J Surg, 2005. **29**(3): p. 297-305.

- 304. Grubbs, E.G., et al., *Utilizing quantitative polymerase chain reaction to evaluate prostate stem cell antigen as a tumor marker in pancreatic cancer.* Ann Surg Oncol, 2006. **13**(12): p. 1645-54.
- 305. Yagn, W.B., et al., [Expression of prostate stem cell antigen and Claudin-4 in human pancreatic carcinoma]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2008. **30**(6): p. 728-31.
- 306. Sung, H.Y., et al., *Dcr3 inhibit p53-dependent apoptosis in gamma-irradiated lung cancer cells.* Int J Radiat Biol, 2010. **86**(9): p. 780-90.
- 307. Chen, G. and D. Luo, Over-expression of decoy receptor 3 in gastric precancerous lesions and carcinoma. Ups J Med Sci, 2008. **113**(3): p. 297-304.
- 308. Ho, C.H., et al., Decoy receptor 3, upregulated by Epstein-Barr virus latent membrane protein 1, enhances nasopharyngeal carcinoma cell migration and invasion. Carcinogenesis, 2009. **30**(8): p. 1443-51.
- 309. Chen, C., et al., Decoy receptor 3 overexpression and immunologic tolerance in hepatocellular carcinoma (HCC) development. Cancer Invest, 2008. **26**(10): p. 965-74.
- 310. Tsuji, S., et al., Endogenous decoy receptor 3 blocks the growth inhibition signals mediated by Fas ligand in human pancreatic adenocarcinoma. Int J Cancer, 2003. **106**(1): p. 17-25.
- 311. Blebea, J., et al., Opioid growth factor modulates angiogenesis. J Vasc Surg, 2000. 32(2): p. 364-73.
- 312. Swift, S.L., J.E. Burns, and N.J. Maitland, *Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer.* Cancer Res, 2010. **70**(1): p. 347-56.
- 313. Dupouy, S., et al., The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression. PLoS One, 2009. **4**(1): p. e4223.
- 314. Gui, X., et al., *Increased neurotensin receptor-1 expression during progression of colonic adenocarcinoma*. Peptides, 2008. **29**(9): p. 1609-15.
- 315. Zagon, I.S., R.N. Donahue, and P.J. McLaughlin, *Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers*. Am J Physiol Regul Integr Comp Physiol, 2009. **297**(4): p. R1154-61.
- 316. Smith, J.S., et al., Cloning of a human ortholog (RPH3AL) of (RNO)Rph3al from a candidate 17p13.3 medulloblastoma tumor suppressor locus. Genomics, 1999. **59**(1): p. 97-101.
- 317. Wagsater, D., et al., *Pigment epithelium-derived factor expression in colorectal cancer patients*. Cancer Invest, 2010. **28**(8): p. 872-7.
- 318. Zhou, D., et al., Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. J Cancer Res Clin Oncol, 2010. **136**(11): p. 1719-27.
- 319. Casagrande, G., G. te Kronnie, and G. Basso, *The effects of siRNA-mediated inhibition of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B leukemia cell line*. Haematologica, 2006. **91**(6): p. 765-71.
- 320. Abiatari, I., et al., The microtubule-associated protein MAPRE2 is involved in perineural invasion of pancreatic cancer cells. Int J Oncol, 2009. **35**(5): p. 1111-6.
- 321. Wang, Y., et al., Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway. Oncogene, 2005. **24**(44): p. 6637-45.
- 322. Kimura, Y., et al., *Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells.* Cancer Res, 2010. **70**(2): p. 501-11.
- 323. Milyavsky, M., et al., *Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect.* Cancer Cell, 2007. **11**(2): p. 133-46.
- 324. Mu, X. and C. Chang, TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3. Prostate, 2003. **57**(2): p. 129-33.

- 325. de Oliveira, S.I., et al., *Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy.* BMC Cancer, 2010. **10**: p. 200.
- 326. Chelala, C., et al., *Pancreatic Expression database: a generic model for the organization, integration and mining of complex cancer datasets.* BMC.Genomics, 2007. **8**: p. 439.
- 327. Thomas, J.K., et al., *Pancreatic Cancer Database: an integrative resource for pancreatic cancer.* Cancer Biol Ther, 2014. **15**(8): p. 963-7.
- 328. Uhlen, M., et al., *Towards a knowledge-based Human Protein Atlas*. Nat Biotechnol, 2010. **28**(12): p. 1248-50.
- 329. Nanjappa, V., et al., *Plasma Proteome Database as a resource for proteomics research: 2014 update.* Nucleic Acids Res, 2014. **42**(Database issue): p. D959-65.
- 330. Domingues, P.H., et al., *Proposal for a new risk stratification classification for meningioma based on patient age, WHO tumor grade, size, localization, and karyotype.* Neuro Oncol, 2014. **16**(5): p. 735-47.
- 331. Gonzalez-Gonzalez, M., et al., Prognostic Impact of del(17p) and del(22q) as assessed by interphase FISH in sporadic colorectal carcinomas. PLoS One, 2012. **7**(8): p. e42683.
- 332. Vardiman, J.W., The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact, 2010. **184**(1-2): p. 16-20.
- 333. Perez-Moreno, P., et al., Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res, 2012. **18**(9): p. 2443-51.
- Bogaert, J. and H. Prenen, Molecular genetics of colorectal cancer. Ann Gastroenterol, 2014. 27(1): p. 9-14.
- 335. Lei, Z., et al., *Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil.* Gastroenterology, 2013. **145**(3): p. 554-565.
- 336. Balagurunathan, Y., et al., Gene expression profiling-based identification of cell-surface targets for developing multimeric ligands in pancreatic cancer. Mol Cancer Ther, 2008. **7**(9): p. 3071-80.
- 337. Lowe, A.W., et al., Gene expression patterns in pancreatic tumors, cells and tissues. PLoS One, 2007. **2**(3): p. e323.
- 338. Munding, J.B., et al., Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Int J Cancer, 2012. **131**(2): p. E86-95.
- 339. Heidenblad, M., et al., *Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.* Oncogene, 2005. **24**(10): p. 1794-801.
- 340. lacobuzio-Donahue, C.A., et al., *Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies*. Cancer Res, 2003. **63**(24): p. 8614-22.
- 341. lacobuzio-Donahue, C.A., et al., *Discovery of novel tumor markers of pancreatic cancer using global gene expression technology.* Am J Pathol, 2002. **160**(4): p. 1239-49.
- 342. Zhang, G., et al., Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res, 2013. **19**(18): p. 4983-93.
- 343. Liang, W.S., et al., Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS.One., 2012. **7**(10): p. e43192.
- 344. Mees, S.T., et al., *Role of tumor microenvironment on gene expression in pancreatic cancer tumor models.* J Surg Res, 2011. **171**(1): p. 136-42.

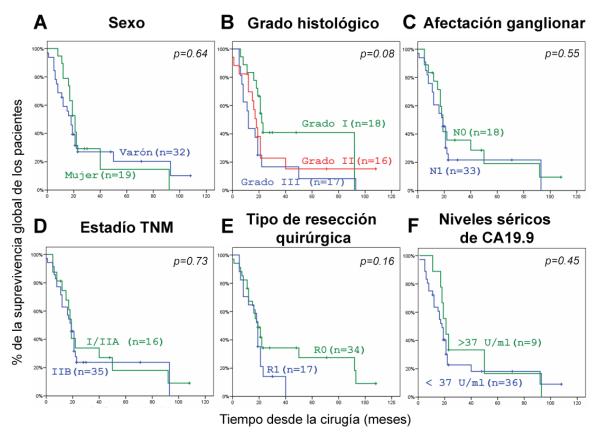
- 345. Zhang, G., et al., *DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma.* PLoS One, 2012. **7**(2): p. e31507.
- 346. Wang, L., et al., Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res, 2012. 22(2): p. 208-19.
- 347. Buchholz, M., et al., *Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions.* Oncogene, 2005. **24**(44): p. 6626-36.
- 348. Heasman, S.J. and A.J. Ridley, *Mammalian Rho GTPases: new insights into their functions from in vivo studies.* Nat Rev Mol Cell Biol, 2008. **9**(9): p. 690-701.
- Schiarea, S., et al., Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. J Proteome Res, 2010. 9(9): p. 4376-92.
- 350. Crivellato, E., *The role of angiogenic growth factors in organogenesis*. Int J Dev Biol, 2011. **55**(4-5): p. 365-75
- 351. Pyrzynska, B., I. Pilecka, and M. Miaczynska, *Endocytic proteins in the regulation of nuclear signaling, transcription and tumorigenesis*. Mol Oncol, 2009. **3**(4): p. 321-38.
- 352. Frampton, A.E., et al., *MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression.* Gastroenterology, 2014. **146**(1): p. 268-77 e18.
- 353. Sousa, C.M. and A.C. Kimmelman, *The complex landscape of pancreatic cancer metabolism.* Carcinogenesis, 2014. **35**(7): p. 1441-50.
- 354. Kerr, M.C. and R.D. Teasdale, Defining macropinocytosis. Traffic, 2009. 10(4): p. 364-71.
- 355. Inman, K.S., A.A. Francis, and N.R. Murray, Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol, 2014. **20**(32): p. 11160-81.
- 356. Reymond, N., B.B. d'Agua, and A.J. Ridley, *Crossing the endothelial barrier during metastasis*. Nat Rev Cancer, 2013. **13**(12): p. 858-70.
- 357. Roh-Johnson, M., et al., *Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation*. Oncogene, 2014. **33**(33): p. 4203-12.
- 358. lozzo, R.V., J.J. Zoeller, and A. Nystrom, *Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis.* Mol Cells, 2009. **27**(5): p. 503-13.
- 359. Yao, H.P., et al., MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer, 2013. **13**(7): p. 466-81.
- 360. Yamaguchi, H., et al., *Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin.* J Cell Biol, 2005. **168**(3): p. 441-52.
- 361. Kwiatkowska, A. and M. Symons, *Signaling determinants of glioma cell invasion*. Adv Exp Med Biol, 2013. **986**: p. 121-41.
- 362. Fang, J.Y. and B.C. Richardson, *The MAPK signalling pathways and colorectal cancer.* Lancet Oncol, 2005. **6**(5): p. 322-7.
- 363. Moreno-Layseca, P. and C.H. Streuli, Signalling pathways linking integrins with cell cycle progression. Matrix Biol, 2014. **34**: p. 144-53.
- 364. Radu, M., et al., *PAK signalling during the development and progression of cancer.* Nat Rev Cancer, 2014. **14**(1): p. 13-25.
- 365. Whale, A., et al., Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed), 2011. **16**: p. 849-64.

- Wells, A., A. Huttenlocher, and D.A. Lauffenburger, Calpain proteases in cell adhesion and motility. Int Rev Cytol, 2005. 245: p. 1-16.
- Tsuda, M. and S. Tanaka, Roles for crk in cancer metastasis and invasion. Genes Cancer, 2012. 3(5-6): p. 334-40.
- 368. Sulzmaier, F.J., C. Jean, and D.D. Schlaepfer, *FAK in cancer: mechanistic findings and clinical applications*. Nat Rev Cancer, 2014. **14**(9): p. 598-610.
- 369. Noort, A.R., et al., *NF-kappaB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis*. J Pathol, 2014. **234**(3): p. 375-85.
- 370. Evans, A. and E. Costello, *The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion.* Front Physiol, 2012. **3**: p. 270.
- 371. Chen, X.H., et al., *TGF-beta and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells.* Mol Immunol, 2015. **65**(1): p. 34-42.
- 372. Messal, N., et al., *PD-L2 is expressed on activated human T cells and regulates their function.* Mol Immunol, 2011. **48**(15-16): p. 2214-9.
- 373. Steinestel, K., et al., Clinical significance of epithelial-mesenchymal transition. Clin Transl Med, 2014. 3: p. 17
- 374. Xu, X., et al., Sonic hedgehog-Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One, 2014. **9**(7): p. e96441.
- 375. Satoh, K., S. Hamada, and T. Shimosegawa, *Involvement of epithelial to mesenchymal transition in the development of pancreatic ductal adenocarcinoma*. J Gastroenterol, 2014.
- 376. Oloumi, A., T. McPhee, and S. Dedhar, *Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase*. Biochim Biophys Acta, 2004. **1691**(1): p. 1-15.
- 377. Franke, W.W. and S. Rickelt, Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures. Int J Cancer, 2011. **129**(11): p. 2588-99.
- 378. Lee, S.H., et al., CD24 and S100A4 expression in resectable pancreatic cancers with earlier disease recurrence and poor survival. Pancreas, 2014. **43**(3): p. 380-8.
- 379. Wang, Z., et al., Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res, 2009. **69**(6): p. 2400-7.
- 380. Hannigan, G., A.A. Troussard, and S. Dedhar, *Integrin-linked kinase: a cancer therapeutic target unique among its ILK*. Nat Rev Cancer, 2005. **5**(1): p. 51-63.
- 381. Esposito, I., et al., *Pathology of pancreatic ductal adenocarcinoma: facts, challenges and future developments.* World J Gastroenterol, 2014. **20**(38): p. 13833-41.
- 382. Wang, Q., et al., Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res, 2011. **71**(24): p. 7525-36.
- Wang, Q., et al., *Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development.* J Natl Cancer Inst, 2013. **105**(19): p. 1463-73.
- 384. Sekine, Y., et al., Amino acid transporter LAT3 is required for podocyte development and function. J Am Soc Nephrol, 2009. **20**(7): p. 1586-96.
- 385. Joglekar, M.V., et al., *The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells.* Islets, 2009. **1**(2): p. 137-47.

- 386. Baraniskin, A., et al., MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis, 2012. **33**(4): p. 732-9.
- 387. Kao, C.J., et al., *miR-30* as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene, 2014. **33**(19): p. 2495-503.
- 388. Tsiambas, E., et al., *EGFR alterations in pancreatic ductal adenocarcinoma: a chromogenic in situ hybridization analysis based on tissue microarrays.* Hepatogastroenterology, 2006. **53**(69): p. 452-7.
- 389. Wang, L., et al., *Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion.* Int.J.Cancer, 2013. **133**(6): p. 1419-1430.
- 390. Nakazawa, Y., H. Arai, and N. Fujita, *The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis.* Cancer Res., 2011. **71**(3): p. 1146-1155.
- 391. Liu, M., et al., *Identification of TNM stage-specific genes in lung adenocarcinoma by genome-wide expression profiling.* Oncol.Lett., 2013. **6**(3): p. 763-768.
- 392. Laurila, E., et al., Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes.Cancer, 2009. **48**(4): p. 330-339.
- 393. Hwang, C.I., et al., *MET-dependent cancer invasion may be preprogrammed by early alterations of p53-regulated feedforward loop and triggered by stromal cell-derived HGF.* Cell Cycle, 2011. **10**(22): p. 3834-3840.
- 394. Ohira, G., et al., *MUC1* and *HER2* might be associated with invasive phenotype of intraductal papillary mucinous neoplasm. Hepatogastroenterology, 2013. **60**(125): p. 1067-1072.
- 395. Zhang, J., et al., Survivin gene expression increases gastric cancer cell lymphatic metastasis by upregulating vascular endothelial growth factor-C expression levels. Mol.Med.Rep., 2014. **9**(2): p. 600-606.
- 396. Mahmood, S.F., et al., A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis, 2014. **35**(3): p. 670-682.
- 397. Su, Y., et al., *N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer.* Oncogene, 2012. **31**(41): p. 4484-4489.
- 398. Sher, Y.P., et al., *ADAM9 up-regulates N-cadherin via miR-218 suppression in lung adenocarcinoma cells.* PLoS.One., 2014. **9**(4): p. e94065.
- 399. Rizzato, C., et al., *Pancreatic cancer susceptibility loci and their role in survival.* PLoS.One., 2011. **6**(11): p. e27921
- 400. Byeon, S.J., et al., *Prognostic implication of TSC1 and mTOR expression in gastric carcinoma.* J.Surg.Oncol., 2014.
- 401. Smith, C.G., et al., Exome resequencing identifies potential tumor-suppressor genes that predispose to colorectal cancer. Hum.Mutat., 2013. **34**(7): p. 1026-1034.
- 402. Amira, N., et al., Expression in bladder transitional cell carcinoma by real-time quantitative reverse transcription polymerase chain reaction array of 65 genes at the tumor suppressor locus 9q34.1-2: identification of 5 candidates tumor suppressor genes. Int.J.Cancer, 2004. 111(4): p. 539-542.
- 403. Graux, C., et al., Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat.Genet., 2004. **36**(10): p. 1084-1089.
- 404. Chae, H., et al., Phenotypic and genetic characterization of adult T-cell acute lymphoblastic leukemia with del(9)(q34);SET-NUP214 rearrangement. Ann.Hematol., 2012. **91**(2): p. 193-201.
- 405. Weissmann, S., et al., *Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients.* Leukemia, 2013. **27**(12): p. 2393-2396.

- 406. Joshi, D., et al., *Down-regulation of miR-199b associated with imatinib drug resistance in 9q34.1 deleted BCR/ABL positive CML patients.* Gene, 2014. **542**(2): p. 109-112.
- 407. Sato, N., et al., *Instability of chromosome 8 as an indicator of aggressive tumor phenotype in pancreatic cancer.* J.Surg.Oncol., 2001. **76**(3): p. 181-187.
- 408. Domagk, D., et al., Expression analysis of pancreatic cancer cell lines reveals association of enhanced gene transcription and genomic amplifications at the 8q22.1 and 8q24.22 loci. Oncol.Rep., 2007. 17(2): p. 399-407.
- 409. He, C., et al., Expression of c-Myc and Fas correlates with perineural invasion of pancreatic cancer. Int.J.Clin.Exp.Pathol., 2012. **5**(4): p. 339-346.
- 410. Brisbin, A.G., et al., *Meta-analysis of 8q24 for seven cancers reveals a locus between NOV and ENPP2 associated with cancer development.* BMC.Med.Genet., 2011. **12**: p. 156.
- 411. Huppi, K., et al., *The 8q24 gene desert: an oasis of non-coding transcriptional activity.* Front Genet., 2012. **3**: p. 69.
- 412. Helms, M.W., et al., Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+ breast cancer and indicates poor clinical outcome in stage I and II disease. Br.J.Cancer, 2008. **99**(5): p. 774-780.
- 413. Guan, Y., et al., Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin.Cancer Res., 2007. **13**(19): p. 5745-5755.
- 414. Bell, S.M., et al., *Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer.* Genomics, 1997. **44**(2): p. 163-170.
- 415. Hwang, S.K., et al., Suppression of lung tumorigenesis by leucine zipper/EF hand-containing transmembrane-1. PLoS.One., 2010. **5**(9).
- 416. di, M.E., et al., An integrated genomic, transcriptional and protein investigation of FGFRL1 as a putative 4p16.3 deletion target in bladder cancer. Genes Chromosomes.Cancer, 2013. **52**(9): p. 860-871.
- 417. Aytes, A., et al., Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol.Carcinog., 2012. **51**(9): p. 746-753.
- 418. Singh, R.K., et al., *Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene.* Hum.Genet., 2007. **122**(1): p. 71-81.
- 419. Tatarano, S., et al., miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. Int.J.Oncol., 2011. **39**(1): p. 13-21.
- 420. Narayan, G., et al., *Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer.* Genes Chromosomes.Cancer, 2009. **48**(11): p. 983-992.
- 421. Bacher, U., et al., *Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies.* Ann.Hematol., 2010. **89**(7): p. 643-652.
- 422. Milne, A.N., et al., Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol., 2010. 32(5-6): p. 347-359.
- 423. Huang, G.L., et al., Allele loss and down-regulation of heparanase gene are associated with the progression and poor prognosis of hepatocellular carcinoma. PLoS.One., 2012. **7**(8): p. e44061.
- 424. Morris, L.G., et al., Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat.Genet., 2013. **45**(3): p. 253-261.
- 425. Tzeng, S.T., et al., NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS.One., 2013. **8**(6): p. e67040.
- 426. Johansson, I., et al., Increased gene copy number of KIT and VEGFR2 at 4q12 in primary breast cancer is related to an aggressive phenotype and impaired prognosis. Genes Chromosomes.Cancer, 2012. 51(4): p. 375-383.

- 427. Knosel, T., et al., *High KIT and PDGFRA are associated with shorter patients survival in gastroenteropancreatic neuroendocrine tumors, but mutations are a rare event.* J.Cancer Res.Clin.Oncol., 2012. **138**(3): p. 397-403.
- 428. Bea, S., et al., *Landscape of somatic mutations and clonal evolution in mantle cell lymphoma*. Proc.Natl.Acad.Sci.U.S.A, 2013. **110**(45): p. 18250-18255.
- 429. Lafitte, M., et al., *FGFR3 has tumor suppressor properties in cells with epithelial phenotype.* Mol.Cancer, 2013. **12**: p. 83.


Anexo

tablas y figuras suplementarias a los trabajos originales incluidos en la presente tesis doctoral

Grupo GEP§ ⋖ В clasificación Puntuación pronostica S1S1 S1 S1 S1 S1 S1 **S**2 S1 S1 **S**1 20 \$0 \$1 \$2 \$0 Subgrupo genético # 7 7 7 alteradas por iFISH 70 60 85 60 45 64 80 70 90 69 90 62 85 40 70 9 66 37 50 60 60 40 70 65 75 71 77 65 70 75 (meses) 15 21 23 21 20 20 30 28 23 19 7 93 50 112 5 114 119 111 11 22 21 23 TABLA SUPLEMENTARIA 1. Características clínicas y biológicas de los pacientes con ADCP incluidos en el estudio (n=55). paciente Estado Exitus Exitus Exitus Exitus Exitus Exitus Exitus Exitus Exitus Exitus Vivo Vivo Vivo Vivo Vivo Vivo Vivo +Oxiplaplatino Tratamiento Gemcitabina Gemcitabina Semcitabina Gemcitabina Gemcitabina Gemcitabina Gemcitabina Gemcitabina Gemcitabina Gemcitabina +Tegafur No tto No tto No tto No tto No tto No tto No tto No tto No tto RT/QT +RT 9 2 Tipo de resección quirúrgica 80 8 8 8 R1 R1 R3 0/20 2/16 2/29 LR. 3/31 3/31 2/21 g 4/41 2/33 1/27 0/27 <u>B</u> ≝ <u>B</u> ≥ 8 8 8 8 8 8 ≥ 9 8 8 8 9 8 **Estadio TNM** T3N1M0 T2N1M0 T3N1M0 T3N0M0 T3N0M0 T3N1M0 T3N1M0 T3N1M0 T3N1M0 T3N0M0 T2N1M0 T2N1M0 T3N1M0 T2N1M0 T3N1M0 T3N1M0 T3N1M0 T3N0M1 T3N1M0 **TXNOMO** T3N1M0 T2N0M0 T3N1M0 T4NxM1 T3N1M0 = Grado histológico Moderado Moderado Moderado Moderado Moderado Moderado Moderado Moderado Moderado Bien Bien Bien Bien Bien Bien tumor (E) 1,4 7 3 3 7 2 3 7 m Niveles Localización del tumor páncreas cabeza cabeza cabeza cabeza/ cuerpo cabeza cabeza cabeza cabeza cabeza cabeza cabeza cabeza cabeza en el cola cola CA19.9 >500 >500 19 89 399 <2.5 <2.5 <2.5 69 177 377 58 319 177 232 4 150 290 ND 58 192 þ 41 23 9 Edad 75 51 67 74 59 74 62 76 59 62 79 78 78 66 34 78 77 76 52 72 84 73 72 74 65 Sexo Σ Σ Σ a a 10 11 12 13 14 15 ₽NS 10 11 m 4 9 _∞ □ ¥ ¥ ¥ ¥ 10 16 17 18 19 20 20 21 12 13 14 D FISH* 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 27 28 29 29 30 4 ∞ 6

	4	٨		⋖	∢				В	⋖		٨				⋖	∢	⋖	∢	⋖				
51	S2	25	S0	S1	S1	52	S0	S1	22	80	S1	25	S1	52	51	S1	25	51	80	S2	S1	25	S1	\$2
						2	2	1	2	2	2	2	2											
70	09	09	70	82	92	09	09	80	26	63	75	55	43	70	80	63	70	70	09	65	80	70	64	70
22	8	∞	12	17	9	5	108	⊣	12	0	15	16	18	17	71	19	40	21	19	11	21	12	1	31
Exitus	Exitus	Exitus	Exitus	Exitus	Exitus	Exitus	Vivo	Exitus	Exitus	Exitus‡	Exitus	Exitus	Exitus	Exitus	Vivo	Exitus	Exitus	Exitus	Vivo	Vivo	Exitus	Exitus	Exitus	Exitus
ND	ND	Gemcitabina +Erlotinib	Gemcitabina	No tto	No tto	No tto	No tto	No tto	ND	ND	Gemcitabina	ND	Gemcitabina	Gemcitabina +Oxiplaplatino +RT	Gemcitabina	Gemcitabina	Gemcitabina	ND	Gemcitabina +Capecitabina +RT	Gemcitabina	Gemcitabina	Gemcitabina	No tto	ND
RO	RO	R1	RO	RO	R1	RO	R0	RO	8	RO	& 8	RO	8	RO	R0	R1	R1	RO	R1	RO	R1	R0	& 8	X X
2/35		2/15	1/29			0/0	0/38	2/34	9/72	1/47	0/13	1/16	0/18	1/7	5/32	6/34	2/0	2/17	3/31	0/25		3/31	9/33	QN
HB	IA	IIB	HB	Ħ	HB	≝	≝	HB	HB	IIB	¥	IIB	≝	IIB	HB	HB	≝	IIB	E B	8	HB	IIB	IIB	≥
T3N1M0	T3N0M0	T3N1M0	T3N1M0	T3N0M0	T3N1M0	T3N0M0	T3N0M0	T3N1M0	T2N1M0	T2N1M0	T3N0M0	T2N1M0	T3N0M0	T3N1M0	T3N1M0	T3N1M0	T3N0M0	T3N1M0	T3N1M0	T2N0M0	T3N1M0	T3N1M0	T3N1M0	TxNxM1
=	=	=	=	=	=	≡	≡	≡	≡	≡	≡	≡	Ξ	≡	≡	≡	Ξ	≡	≡	≡	≡	≡	≡	zΔ
Moderado	Moderado	Moderado	Moderado	Moderado	Moderado	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	Pobre	ND
2	4,5	ю	9	4	4	N	4	m	3,5	3,5	2,8	2,8	4	3,5	1,5	2,7	72	33	3,5	ĸ	2,5	æ	4	3
cabeza	cola	cabeza	cola	cuerpo/ cola	cabeza	cabeza	cabeza	cabeza	cabeza	cabeza	cabeza	cuerpo/ cola	cnerpo	cabeza	cabeza	cabeza	cuerpo/ cola	cabeza	cabeza	cabeza	cabeza	cabeza	cabeza	cuerpo/ cola
41	ND	29	320	22	52	313	315	>200	>200	176	28	124	<2.5	393	51	150	>200	30	ND	305	146	ND	N N	>500
45	77	79	99	09	71	61	74	22	45	78	62	75	51	70	48	41	57	69	54	74	75	25	70	52
Σ	>	Σ	>	Σ	>	>	>	>	Σ	>	>	Σ	>	Σ	>	Σ	Σ	Σ	>	>	Σ	Σ	>	>
	16	17		18	19				70	21		22				23	24	25	26	27				
						13	14	15	16	17	18	19	20											
22	23	24	25			56	27	28	59	30	31	32	33	34	35	36								
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	25	23	54	55

analizados; R0: márgenes de resección negativos microscópicamente; R1: márgenes de resección positivos RT: radioterapia; QT: quimioterapia; SG: supervivencia global; iFISH: hibridación *in situ* fluorescente en núcleos interfásicos M: mujer; V: varón; No tto.: sin tratamiento radio- y/o quimiterápico; ND: información no disponible; *número de identificación del caso para el estudio de alteraciones citogenéticas y los patrones citogenéticos de evolución intratumoral en el ADCP N=36; # definidos según el análisis no supervisado de agrupación jerárquica de los datos citogenéticos obtenidos mediante estudios de microarray de SNP; §; definidos según los análisis no supervisado de agrupación jerárquica de los datos citogenéticos obtenidos de microarrays de expresión de ARN no codificantes de proteínas. # exitus post-operatorio (SG<1 mes). CA19.9: antígeno carbohidratado 19.9; LNR: tasa de ganglios resecados analizados; R0: microscópicamente; Rx: muestra tumoral obtenida de biopsia intraoperatoria; RT: radioterapia CA19.9: antígeno carbohidratado 19.9; LNR:

FIGURA SUPLEMENTARIA 1. Curvas de suervivencia global de los pacientes con ADCP clasificados según las características clínicas y biológicas más relevantes de la enfermedad: sexo del paciente (panel A), grado histológico tumoral (panel B), infiltración tumoral en ganglios linfáticos (panel C), estadío TNM (panel D), tipo de resección quirúrjica (panel E) y niveles séricos del antígeno CA19.9 (panel F).

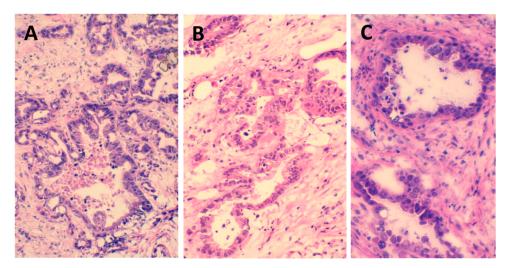


FIGURA SUPLEMENTARIA 2. Micrografías de cortes histológicos de tumores diseccionados en cortes de congelación. Sólo se seleccionaron para los estudios de iFISH y de *microarrays* áreas del tumor que mostraba ≥70% de infiltración por células tumorales. La infiltración por células tumorales de ADCP fue evaluada mediante el cáclulo del porcentage de células neoplásicas portadoras de alteraciones cromosómicas observadas por iFISH que, en los 3 ejemplos recogidos en las imagenes era de 96%, 85% y 64% para los paneles A, B y C, respectivamente. El aumento original de las micrografías es de x200.

TABLA SUPLEMENTARIA 2. Características de las 48 sondas fluorescentes dirigidas frente a diferentes genes, loci y regiones centroméricas del genoma utilizadas en el presente trabajo doctoral. Todas las sondas fueron adquiridas a Vysis Inc. (Downers Grove, IL, USA), excepto en el caso de las sondas ON ATM (11q22) SO /SE 11 SG; ON GLI (12q13) SO /SE 12 SG; ON MM 15q22 SG/ 6q21 SO y SE 20 (D20Z1) que fueron obtenidas de Q-BIOgene Inc. (Amsterdam, Holanda).

Sonda	Región cromosómica	Tamaño (Kb) [◈]	Sonda	Región cromosómica	Tamaño (Kb) [◈]
EGFL3	1p36	400	ATM	11q22	230
ABL2	1q25	620	TEL	12p13	350
NMYC	2p24	200	D12Z3	12p11.1	•
D2Z	2p11.1-q11.1	*	HER3	12q13	270
D3Z1	3p11.1-q11.1	*	RB1	13q14	220
D3S4559	3p25	100-300	LAMP1	13q34	550
WHSC1	4p16.3	90	IGH	14q32	1500
D4Z1	4p11.1-q11	*	D15Z1	15p11.1	t
D5S23	5p15.2	450	DAPK2	15q22	220
EGR1	5q31	200	D16Z3	16q11.2	#
D6Z1	6p11.1-q11	*	TP53	17p13	145
SEC63	6q21	275	D17Z1	17p11.1-q11.1	*
MYB	6q23	740	HER2	17q11	109
D7Z1	7p11.1-q11.1	*	TOP2A	17q21	400
D7S486	7q31	200	D18Z1	18p11.1-q11.1	•
LPL	8p22	170	BCL2	18q21	750
D8Z2	8p11.1-q11.1	*	CRX	19q13	400
CMYC	8q24	600	ZNF44	19p13	500
P16	9p21	190	D20Z1	20p11.1-q11.1	*
D9Z5	9p11.1-q11	•	ZNF217	20q13.2	320
ABL1	9q34	270	AML1	21q22	500
D10Z1	10p11.1-q11.1	•	BCR	22q11	300
PTEN	10q23	368	DXZ1	Xp11.1-q11.1	*
D11Z1	11p11.1	•	DYZ1	Yq12	†

Información obtenida de Vysis Inc.y de Q-BIOgene Inc. Las sondas centroméricas hibridan frente a secuencias repetitivas del ADN de tipo: alfa satelite; *ADN satelite II; *ADN satelite III.

TABLA SUPLEMENTARIA 3. Alteraciones citogenéticas observadas para los cromosomas más frecuentemente alterados en los pacientes con ADCP (n=55).

Alteración cromosómica	N. de casos (%)	Alteración Cromosómica	N. de casos (%)
Cromosoma 1		Cromosoma 9	
Normal	12 (22%)	Normal	16 (29%)
del(1p)	12 (22%)	del(9p)	28 (51%)
1q+	10 (18%)	del(9p)/del(9q)	9 (16%)
1p+	6 (11%)	del(9p)/9q+	2 (4%)
Polisomía	11 (20%)	Cromosoma 17	
Cromosoma 4		Normal	5 (9%)
Normal	37 (67%)	del(17p)	22 (40%)
del(4p)	7 (13%)	del(17p)/del(17q)	5 (9%)
4p+	4 (7%)	17q11+	7 (13%)
Polisomía	7 (13%)	del(17p)/17q11+	3 (5%)
Cromosoma 7		Polisomía /del(17p)	11 (20%)
Normal	26 (47%)	Polisomía	2 (4%)
del(7q)	14 (26%)	Cromosoma 18	
7q+	3 (5%)	Normal	11 (20%)
Polisomía	12 (22%)	del(18q)	43 (78%)
Cromosoma 8		Polisomía	1 (2%)
Normal	13 (24%)	Cromosoma 20	
del(8p)	8 (15%)	Normal	15 (27%)
8q+	7 (12%)	del(20q)	5 (9%)
del(8p)/del(8q)	2 (3%)	20q+	14 (26%)
del(8p)/8q+	13 (26%)	Polisomía	21 (38%)
Polisomía /del(8p)	5 (8%)	Cromosoma Y*	
Polisomía	7 (12%)	Normal	10 (28%)
		Y-	23 (66%)
		Y+	2 (6%)

^{*}Las alteraciones del cromosoma Y fueron analizadas en los 35 pacientes varones estudiados.

TABLA SUPLEMENTARIA 4: Características citogenéticas y distribución de los clones de células tumorales identificados mediante iFISH en los ADCP analizados.

los casos	Clon tumoral	Características citogenéticas*	Cambios citogenéticos estructurales recurrentes	% de células**
н	-	nuc ish (P16 \times 0), (LPL, TEL, D12Z3, HER3, TP53, BCL2) \times 1, (CMYC \times 3), (ABL2, LAMP1 \times 4)	1q+, del(8p), 8q+, del(9p), del(12p), del(17p)	30
ı	:=	idem, ($IGH \times 1$)	Idem	27
	≡	idem, (SEC63, MYB) x 1, (WHSC1 x 3)	idem, del(6q)	12
7		nuc ish (<i>LAMP1</i> x 3)		30
	:=	idem, (NMYC, D3S4559, LPL, P16, TP53, BCL2) x 1, (D3Z1 x 4)	del(3p), del(8p), del(9p), del(17p), del(18q)	20
	Œ	idem, (EGFL3, ABL2, ZNF217) × 3	idem, 20q+	10
ო	-	nuc ish (TEL, TP53, D17Z1 , HER2, TOP2A, ZNF44, CRX, AML1) × 1	del(12p), del(17p)	25
	=	idem, (<i>IGH</i> × 1)	idem	20
	≔	idem, (DYZ1 x 0), (D15Z1 x 4)	٨-	15
	.≥	idem, (LPL x 1), (<i>CRX, AML</i> 1) × 2, (<i>D</i> 15Z1 × 3)	del(8p)	15
4	-	nuc ish (LPL, P16, D9Z5 , ABL1, TP53, BCL2) x 1, (D5S23, EGR1, D11Z1, ATM) x 3	del(8p), del(9p), del(17p), del(18q)	30
	:=	idem, (D10Z1, D15Z1) x 1, (TP53 x 2), (ABL2 , LAMP1, D3S4559) x 3, (WHSC1, D4Z1, D5S23, EGR1, D16Z3, D17Z1 , HER2, TOP2A, CRX : ZNF217 , BCR) x 4	idem, 1q+, 10q+, 15q+, 19q+, 20q+	15
	Œ	idem, (D2021 × 1), (D <i>1</i> 623, ZNF217 , BCR) ×2, (E GFL3, ABL2 , NMYC, D2Z1, D5S23, EGR1, D11Z1, ATM, TEL, D12Z3 , HER3, LAMP1, D17Z1 , HER2, TOP2A, ZNF44, CRX) × 3	idem, 20q+	12
гv		nuc ish (<i>DYZ1</i> × 0), (<i>MYB, SEC63, LPL, D15Z1, TP53, BCL2, ZNF44</i>) × 1, (<i>DAPK2, CRX</i>) × 3, amp <i>CMYC</i>	Y-, del(6q), del(8p), 8q+, 15q+, del(17p), del(18q), 19q+	30
	:= E	idem, (D3S4559, P16, ABL1, ATM, D20Z1)×1, (ABL2 , HER3)×3 idem (D025 ×1) (D1571 DADK2)×2 (HER3×4)	idem, 1q+, del(3p), del(9p), 20q+ idem dinloid 15	20
		(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	ומכווו, מוטוסומ בס	2
9	- :=	nuc ish (<i>DXZ1, LPL, TEL, HER3, IGH, TP53, BCL2) × 1</i> idem, (EGFL3, D621, MYB, LPL, P16, D1021, RB1, LAMP1, D1521 , ZNF44,CRX, ZNF217) × 1, (DXZ1 × 2), (D4Z1 × 3), (CMYC × 4)	del(8p), del(12p), del(17p), del(18q) idem, del(1p), del(6q23), 8q+, del(9p), 10q+, 15q+	25
	Œ	nuc ish (SEC63, LPL, TEL , HER3,IGH, TP53, BCL2, CRX, D20Z1) x 1, (DXZ1 x 2), (CMYC , D11Z1, ATM) x 4	del(6q21), del(8p), 8q+, del(12p), del(17p), del(18q), 20q+	11
7		nuc ish (D6Z1, MYB, LPL, TEL, D15Z1,ZNF44 , AML1) x 1	del(6q23), del(8p), del(12p), 15q+	30
	:=	idem, (DYZ1 x 0), (D3S4559, SEC63, P16, TP53, BC12, BCR) x 1, (LPL, D15Z1 x 2), (D11Z1, ATM, D20Z1, ZNF217) \times 3 (D8Z2, CMYC) \times 4	idem, Y-, del(3p), del(6q21), del(9p), diploid 15, del(17p), del(18q)	15
œ	-	nuc ish (<i>D4Z1</i> x 3)		34
	≔	idem, (DYZ1 x 0), (D3S4559, D15Z1, TP53) x 1 idem, (DYZ1, ABL2, P16, D10Z1, ZNF44) x 1, (ZNF217) x 3	Y-, del(3p), del(17p), 15q+ 1q+, del(9p), 10q+, del(17p), 20q+	16 14
6		nuc ish (<i>D4Z1</i> x 3)		20
10	-	nuc ish (P16 x 0), (EGR1, TEI, D15Z1, D18Z1, BCL2) x 1, (ABL2, DAPK2) x 3	1q+, del(9p), del(12p), 15q+, del(18q)	53
	:=	idem, (DAPK2 x 2)	idem	25
	≔	idem, $(AML1 \times 1)$	idem	12

11		nuc ish (LPL, D15Z1) x 1, (EGFL3, ABL2, D8Z2 , D11Z1, ATM, TEL, D12Z3, HER3, D17Z1 , HER2, TOP2A, D20Z1, ZNF217) x 3, (NMYC, D2Z1, D3S4559, D3Z1, D9Z5 , ABL1) x 4, (CMYC x 7)	del(8p), 8q+, del(9p), 15q+, del(17p),	31
	:=	nuc ish (4n±), (DYZ1 , V), (DXZ1, LPL, D15Z1 × 1), (ABL2 × 2), (D3S4559, D3Z1, WHSC1 D4Z1, D5S23, EGR1, P16 , IGH, DAPK2 , TP53 , D18Z1, BCL2, ZNF44, CRX, AML1) × 2, (EGFL3, SEC63, MYB , D7S486, D8Z2 , D11Z1, ATM, TEL, D12Z3, HER3, D17Z1 ,	idem, Y-, del(6q)	20
	∷	HER2, TOP2A, D20Z1, ZNF217) x 3, (CMYC x 7) idem. (BCL2 x 2). (D10Z1. PTEN. D18Z1) x 3. (IGH x 4)	idem. del(18a)	11
ţ		nuc ish (DYZ1 x 0) (EGFL3, D4Z1, WHSC1, D5S23, SEC63, D8Z2, P16, HER3, IGH, D15Z1, DAPK2, TP53, BCL2) x 1, (ABL2,	Y-, del(1p), 1q+, del(6q21), 8q+, del(9p),	
7	- :	D7Z1, TOP2A, D20Z1) x 3, (CMYC, ZNF217) x 4	18q), 20q+	31
	= ≔	idem, (D2021 x 2), (D35455 <i>9,</i> D3Z1) x 4 idem, (D354559, D3Z1) x 2, (D2021 x 4)	ıdem, idem, 20++	18 16
13		nuc ish (DYZ1 x 0), (EGFL3, LPL, P16, PTEN, TP53, BCL2, AML1) x 1, (ABL2 x 3)	Y-, del(1p), 1q+, 8q+, del(9p), del(17p), del(18q)	37
	:=	idem, (HER3 x 1), (ABL2 , PTEN) x 2, (D3S4559) x 3, (D20Z1, ZNF217) x 4	idem, diploid 1q	17
14		nuc ish (4n±), (DY21, P16) x 0, (BCL2 x1), (NMYC, D2Z1, D334559, D3Z1, WHSC1, WHSC1, D7Z1, D7S486, SEC63, LPL , ABL1, TEL , TP53, D17Z1, HER2, TOP2A, CRX) x 2, (EGFL3, D9Z5, D10Z1, D11Z1, ATM, D12Z3 , HER3, ZNF44) x 3, (CMYC x 6), (PTEN x 7)	<pre>Y-, del(1p), del(6q21), del(8p), 8q+, del(9p), 10q+, del(12p), del(18q), 20q+</pre>	34
	:=	idem, (D3S4559 , D5S23, EGR1, D15Z1, DAPK2) x 3, (NMYC, D2Z1, D3Z1 , D7Z1, 7q) x 4	idem, del(3p)	15
	≣	idem, (WHSC1 x 0), (ABL1, D18Z1, BCL2) x 2, (EGFL3 , NMYC, D3S4559 , WHSC1, D4Z1, SEC63 , D7S486, D11Z1, HER2, TOP2A, AML1) x 3, (D15Z1, DAPK2) x 4, (ABL2, D9Z5) x 5	idem, 1q+, 3+, diploid 18,	12
15		nuc ish, (D10Z1, PTEN, D15Z1, DAPK2) x 3, (RB1, LAMP1, D16Z3, BCR, D17Z1) x 4	del(17p)	31
	:=	nuc ish (4n±), (DYZ1, P16) x 0, (TEL x 1), (D9Z5, TP53 , D18Z1, BCL2, ZNF44, CRX, AML1) x 2, (EGFL3, ABL2, NMYC, D2Z1, D5S23, EGR1, D6Z1, SEC63, MYB, D10Z1, PTEN, D12Z3 , HFR3, D15Z1, DAPK2) x 3	idem, Y., del(9p), del(12p)	30
	≡	idem, (EGFL3, ABL2, TP53, BCL2) x 1, (D3S4559, D3Z1, MYB, AML1) x 3, (D5S23, EGR1, D2Z1, NMYC, AML1) x 4	idem, del(1p), del(17p), del(18q),	25
16	:=	nuc ish (LPL, P16, TP53, BCL2) x 1, (ABL2 x 3) idem (DY21 x 0). (CRX x 1). (CMYC, HER3 x 3)	1q+, del(8p), del(9p), del(17p), del(18q) idem. Y 8a+	27
17	-		1q+, del(18q)	24
	:=	(LPL, D822, CMPC, 1EL, D1223, HEK3, 1GH, D1321, D4PK2, D1023, D2021, ZNF217, BCR) X 4, (ABL2 X 5) idem, (ZNF44, CRX) x 1, (DY21 x 2), (D5S23, D1021, PTEN) x 3, (EGR1, D1521, DAPK2, D1721 , HER2, TOP2A) x 4	idem, del(17p)	13
18			Y-, 8q+, del(9p), del(12p), 15q+, del(17p),	19
	:=	idem. (P16 . IGH. ZNF44) x 1. (ABL2. CRX) x 3	den, 10+, 19a+	16
	≔	idem, (EGFL3, LPL) x 1, (ABL2,CMYC, IGH) x 2	idem, 1p-, del(8p), diploid 1q, diploid 8q	13
19		nuc ish (ZNF44 x 1), (DXZ1, D3S4559, D3Z1, D4Z1, WHSC1, D10Z1, PTEN, D11Z1, D15Z1 , DAPK2) x 3, (EGFL3, ABL2, ATM, TEL) x 4, (NMYC, D2Z1, D2OZ1, ZNF217) x 5		25
	:=	idem, (ABL2, ZNF44) x 2, (MYB, SEC63 , D20Z1, ZNF217) x 3, (EGFL3, NMYC, D2Z, D6Z1 , D7Z1, D7S486, RB1, LAMP1, DAPK2 , CRX) x 4	del(6q), 15q+	15
20		nuc ish (DYZ1 x 0), (DXZ1 x 2), (EGFL3, ABL2 , D7Z1, D15Z1, DAPK2) x 3, (D2Z1, WHSC1, IGH, D16Z3, D20Z1, ZNF217) x 4, (D7S486 x 5), (D4Z1 x 6)	Y	30
	:=	nuc ish (4n±), (DY21 x 0), (NMYC, D354559 , EGR1, LPL , P16, D925, ABL1, D11Z1, ATM, RB1, LAMP1, D15Z1, DAPK2, BCL2, ZNF44 , AML1, BCR) x 2, (EGFL3, ABL2, D321 , EGR1, SEC63 , D7Z1, PTEN, D11Z1, D15Z1, D4PK2) x 3, (D5S23, D7S486) x 5,	idem, del(3p), del(6g21), del(8p), del(18g), 19g+	30
		(D4Z1, TEL, D12Z3, HER3) x 6, (D5S23, D10Z1) x 5, amp MYB		
	: .≥	idem, (EGR1, ATM, TP53, D1821) x 2, (D5S23, D621 , PTEN, D1121) x 3, (D1021, RB1, LAMP1) x 4, (CMYC x 5) idem (RC1 2 x 1) (D35459, PTEN, TEI) x 2 (RB1 (AMP1, D1721, HER2, TOP24, RCR) x 3, (D371, D5523, D1273, HER3) x 4	idem, 8q+, del(17p), 6+, diploid 18 idem del(12p) del(17p) del(18p)	18
21	<u>.</u>	nuc ish (DYZ1, P16 x 0), (D6Z1, SEC63, MYB, ATM, D15Z1, DAPK2, TP53, D17Z1, AML1) x 1, (D4Z1, HER2, TOP2A x 3)	Y., del(6q), del(9p), del(17p)	30

	≔	idem, (<i>PTEN, D2021</i>) x 1 idem, (<i>D3S4559, LPL</i>) x 1	idem, 20q+ idem, del(3p), del(8p)	16 16
22	-	nuc ish (4n±) (PTEN x 0), (D3S4559 , P16, D9Z5, ABL1, D10Z1, ATM, D18Z1, BCL2, D20Z1) x 2, (TP53) x 3, (ZNF217 x 6), amp CMYC	del(3p), amp 8q, del(17p), 20q+,	28
	= ≣	idem, (TEL × 2), (EGFL3, ABL2, BCL2) × 3, (D18Z1, ZNF217) × 4 idem, (EGFL3, ABL2, BCL2) × 4	idem, del(12p), del(18q) idem, 18++	14
23		nuc ish (P16 × 0), (D15Z1 × 1), (EGFL3, ABL2, NMYC, D2Z1, WHSC1, D4Z1, D8Z2, D9Z5, D12Z3 , HER3) × 3, (CRX × 4), (CMYC × 5)	del(8p), 8q+, del(9p), del(12p), 15q+, 19q+	37
	:=	nuc ish (3n±), (P16 , PTEN x 0), (TEL, D15Z1) x 1, (D3S4559, D3Z1, EGR1, LPL , ABL1, D10Z1, D11Z1, ATM, TEL , RB1, LAMP1, IGH, DAPK2, TP53 , D18Z1, BCL2, ZNF44 , D20Z1, ZNF217, AML1, BCR) x 2, (ABL2 , SEC63, MYB, D7Z1, CMYC , CRX)x 4	idem, 1q+, del(17p)	11
	Œ	nuc ish (P16 × 0), (LPL , ABL1, D1521) × 1, (DXZ1 × 2), (EGFL3, ABL2, NMYC, D2Z1, WHSC1, D4Z1, D8Z2) × 3, (D6Z1, SEC63, MYB, TEL, D12Z3, HER3, RB1, LAMP1, D16Z3, TP53, D17Z1, HER2, TOP2A, BCR) × 4, (CMYC, ZNF44) × 5	del(8p), 8q+, del(9p), 15q+, 19q+	11
24	- :	nuc ish (4n±) (P16 x 0), (D1521, D1721, D16 23) x 1, (DX21, EGFL3 , D354559, D321, EGR1, SEC63, MYB, D925 , ABL1, DAPK2, TP53 , HER2, TOP2A, D1821, BCL2, AML1, BCR) x 2, (D5523, ZNF44, CRX) x 3	del(1p), del(6q), del(9p), 15q+, del(17p)	34
	=	nuc ish (4n±) (BCL2 x 1), (WHSC1, D421, SEC63, MYB, LPL , CMYC, P16, D925, ABL1, TP53) x 2, (EGFL3 , NMYC, EGR1, D621 ,	בדדי, מוסוסות ס, ברדי	/1
22		D8ZZ, D12Z3, TEL, D15Z1, DAPK2, D17Z1, HER2, TOP2A, D18Z1, CRX, D20Z1, ZNF217) x 3, (D5S23, D10Z1, HER3, LAMP1) x 5 (ZNE44 x 6)	del(1p), del(6q), del(8p), del(17p), del(18q)	36
	:=	D2Z1, WHSC1, D5S23,IGH, BCR) x 3, (HER3 x	idem	11
	Œ	nuc ish (4n±) (BCLZ × 1), (WHSC1, D4Z1, SEC63, MYB, LP L, CMYC, P16, D9Z5, ABL1, I P53) × 2, (WHSC1, D4Z1, EGR1, D6Z1, D8Z2 , D12Z3, TEL, D15Z1, DAPK2, D17Z1 , HER2, TOP2A, D18Z1 , CRX, D20Z1, ZNF217) × 3, (EGFL3, ABL2, NMYC, D2Z1) × 4, (D5S23, D10Z1, HER3, LAMP1) × 5, (ZNF44 × 6)	del(6q), del(8p), del(17p), del(18q)	10
96		nuc ish (DYZ1 x 0), (LPL, P16, D9Z5, ABL1, TEL, TPS3, BCL2 , AML1) x 1, (D8Z2, CMYC) x 4	Y-, del(8p), del(9p), del(12p), del(17p), del(18q)	47
	:=	idem, (<i>EGFL3, D822, CMYC</i>) x 3	idem	14
27		nuc ish (MYB, TP53) x 1	del(6q23), del(17p)	30
	:=	idem, (D6Z1, SEC63, P16, BCL2 , AML1) x 1, (NMYC) x3	idem, del(6q), del(9p), del(18q)	30
	Œ	idem, (<i>D3Z1, LPL, D8Z2, CMYC, D11Z1, TEL, D12Z3, HER3) x 1, (EGFL3, CRX) x3</i>	idem, del(6q), del(8p), del(9p), del(12p), del(18q), 19q+	11
28	-	nuc ish (DYZ1, P16 \times 0), (BCL2 \times 1), (DXZ1 \times 2), (D3S4559, D3Z1, PTEN, IGH) \times 3, (D6Z1, SEC63 , D10Z1) \times 4, (TEL \times 7), amp CMYC	Y-, del(6q23), del(8p), amp 8q, del(9p), del(18q)	25
	= =	idem, (<i>EGFL3, ABL2, NMYC, D2Z1, WHSC1, DAPK2</i> , D17Z1 , HER2, TOP2A) x 3, (D5S23, D15Z1, CRX) x 4, (TEL x 6) idem, (D6Z1, SEC63 , D16Z3, D15Z1) x 3, (TEL x 4)	idem, del(17p), 19q+ idem	24
29		nuc ish (4n±), (P16 x 0), (DXZ1, D3S4559, D3Z1, EGR1, SEC63, LPL, D9Z5 , ABL1, D10Z1, PTEN, D11Z1, ATM, DAPK2, TP53, BCL2 , ZNF44, BCR) x 2, (D15Z1, D17Z1 , HER2, TOP24, D18Z1) x 3	del(6q21), del(8p), del(9p), del(17p), del(18q)	52
	:=	idem, (<i>D16Z3, DAPK2</i>) × 3, (SEC63, <i>D15Z1</i>) × 4, (CRX × 6)	idem	14
30	- ::	nucish (P16 x 0), (TP53 x 1), (EGFL3, ABL2, D354559, D321, D75486,CRX) x3	del(9p), del(17p), 19q+ ناطبیت عربی:	36
		nuc ish (DYZ1 x 0), (EGF13, SEC63, D75486, P16, TEL, BCL2, TP53, ZNF44) x 1, (DXZ1 x 2), (NMYC, D2Z1, D5S23) x 3, (ABL2,	rdeiii, 204+ Y-, del(1p), 1q+, del(6q21), del(9p), del(12p),	, ,
31	- :		del(17p), del(18q)	33
ć	:= ·	idem (D3S4559 x 1), (NMYC, D7S486, LPL, D8Z2, CMYC, P16, TEL, TP53, BCL2, ZNF44, D20Z1) x 2, (D2Z1 x 3), (CRX x 4)	idem, del(3p), 19q+, diploid 9, 12, 17, 18	15
32	-	nuc ish (4n±) (LPL, BCL2) x 1, (ABL2 , NMYC, D3S4559, D3Z1, WHSC1, D4Z1, D5S23, EGR1, D6Z1, SEC63, MYB, P16, D9Z5 ,	1q+, del(8p), del(18q)	31

		ABL1, D10Z1, PTEN, D12Z3, HER3, RB1, LAMP1, D15Z1, DAPK2, ZNF44, CRX, D20Z1, ZNF217) × 2, (D11Z1, ATM, IGH, TP53, D17Z1, HER2, TOP2A, D18Z1 , BCR) × 3, (TEL × 6)		
	:=	idem, (D15Z1 x 1), (MYB, P16) x 2, (D2Z1, NMYC, PTEN, ABL1, DAPK2) x 3, (WHSC1, D4Z1, D6Z1, D9Z5, D10Z1, ZNF44) x4, (SEC63 x 6), (CRX, D20Z1, ZNF217) x 7	idem, del(6q23), del(9p), 15q+, 19q+	31
	≣	idem, (WHSC1, D4Z1, D7S486, ZNF44) x 3, (D2Z1, D5S23, EGR1, SEC63, ABL1, D12Z3 x 4), (CRX , D20Z1, ZNF217) x 5, (MYB x 8), (TEL x 10)	idem, diploid 6q21	17
	.≥	nuc ish (4n±) (LPL, BCL2) x 1, (NMYC, D3S4559, D3Z1, WHSC1, D4Z1, D5S23, EGR1, P16, D9Z5 , ABL1, D10Z1, PTEN, D12Z3, HER3, RB1, LAMP1, D15Z1, DAPK2, ZNF44, CRX) x 2, (NMYC, D11Z1, ATM, IGH, TP53, D17Z1, HER2, TOP2A, D18Z1 , BCR) x	1q+, del(8p), del(18q)	12
		3,(D2Z1, D7Z1, D7S486, D2OZ1, ZNF217) × 4 (D5S23 × 6)		
33	-	nuc ish (DYZ1, P16 $ imes$ 0), (TEL, BCL2, D15Z1) $ imes$ 1	Y-, del(9p), del(12p), 15q+, del(18q)	20
	:=	idem, (EGFL3, D3S4559, EGR1, LP1, D18Z1) x1, (ABL2, NMYC, CMYC, DAPK2) x3, (TP53, HER2, TOP2A) x 4	idem, del(1p), 1q+, del(3p), del(8p), 8q+	13
	≣	idem, (D18Z1, BCL2) x 2, (NMYC, RB1) x 3, (CRX, BCR) x 4	idem, diploid 18, 19q+	10
34	-	nuc ish (BCL2, D2021) x 1, (D5S23, EGR1, P16, D9Z5, ABL1) x 3, (DXZ1, WHSC1, D4Z1, IGH, ZNF44, CRX, AML1) x 4	del(18q), 20q+	30
	:=	nuc ish (4n±) (HER3, D15Z1, TP53) x 1, (EGFL3, ABL2, NMYC, D2Z1, D3S4559, D3Z1, D6Z1, SEC63, MYB, TEL, D12Z3,13q13, LAMP1, IGH, DAPK2 , D16Z3, BCC12 , CRX, D20Z1 , BCR) x 2, (HER2, TOP2A, D18Z 1) x 3	idem, 15q+, del(17p)	12
Ļ		nucish (4n±) (DYZ1 x 0), (EGFL3, BCL2) x 1, (ABL2 , D334559, D3Z1, WHSC1, D4Z1, P16, D9Z5, ABL1, D10Z1, PTEN, D11Z1,	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ć
32	-	AIM, IEL, D1223, HEKS, IPSS, AML1) X 2, (WMTC, DSS2S, EGK1, KB1, LAMP1, IGH, D1S21, DAPK2, D1721 , HEK2, IOP2A, BCR) x 3,	r-, del(1p), del(1/p), del(18q)	30
	:=	idem, (D3S4559, D3Z1, PTEN, HER3) x 3, (D4Z1, D10Z1, D11Z1, ATM, TEL, D12Z3, ZNF44, CRX) x 4	idem	20
	≡	idem, (ZNF44, CRX, AML1) × 3, (D10Z1, PTEN, HER3) × 4	idem	18
	.≥	idem, (<i>D10Z1, PTEN, D11Z1, ATM, HER3</i>) × 3	idem	10
36	-	nuc ish (SEC63, MYB, LPL, TEL, RB1, LAMP1, BCL2, TP53) x 1, (CMYC x 3)	del(6q), del(8p), 8q+, del(12p), del(17p), del(18q)	53
	:=	idem, (EGR1, D7S486, P16 , ZNF44) x 1, (TP53 x 2), (BCR x 3), (D17Z1 , HER2, TOP2A) x 4	idem, del(9p)	16

muestra. La nomenclatura cytogenética para la iFISH se define de acuerdo a la International System for Human Cytogenetic Nomenclature, 2007 (designación de locus, un simbolo de *Las alteraciones citogenéticas más frecuentes se resaltan en negrita. **Los resultados se expresan en porcentage de células de cada clon tumoral sobre el total de células analizadas en cada multiplicación (x) y número de señales observadas): nuc ish: hibridación in situ interfásica/nuclear (del inglés, interphase/nuclear in situ hybridization); (3n±): casi triploide; (4n±): casi tetraploide; amp: señal amplificadal.

8p22 (LPL x 2), 8cen (D8Z2 x 2), 8q24 (CMYC x 2), 9p21 (P16 x 2), 9cen (D9Z5 x 2), 9q34 (ABL1 x 2), 10cen (D10Z1 x 2), 10q23 (PTEN x 2), 11cen (D11Z1 x 2), 11q22 ATM x 2), 12p13 (TEL x 2), 12cen (D12Z3 x 2), 12q13 (HER3 x 2), 13q14 (RB1 x 2), 13q34 (LAMP1 x 2), 14q32 (IGH x 2), 15cen (D15Z1 x 2), 15q22 (DAPK2 x 2), 16q11 $(D1623 \times 2)$, 17p13 $(TP53 \times 2)$, 17cen $(D1721 \times 2)$, 17q21 $(HER2 \times 2)$, 17q22 $(TOP2A \times 2)$, 18cen $(D18Z1 \times 2)$, 18q21 $(BCL2 \times 2)$, 19p13 $(ZNF44 \times 2)$, 19q13 $(CRX \times 2)$, Cariotipo diploide en mujeres: nuc ish X cen (DXZ1 x 2), 1p36 (EGFL3 x 2), 1q25 (ABL2 x 2), 2p24 (NMYC x 2), 2cen (D2Z1 x 2), Tel3p (D3S4559 x 2), 3cen (D3Z1 x 2), 4p16.3 (WHSC1 x 2), 4cen (D4Z1 x 2), 5p15.2 (D5S23 x 2), 5q31 (EGR1 x 2), 6cen (D6Z1 x 2), 6q21 (SEC63 x 2), 6q23 (MYB x 2), 7cen (D7Z1 x 2), 7q31 (D7S486 x 2), 20cen (D20Z1 x 2), 20q13.2 (ZNF217 x 2), 21q22 (AML1 x 2), 22q11.2 (BCR x 2).

(1922) (1922) (1913) ($(D7S486 \times 2)$, 8p22 $(LPL \times 2)$, 8cen $(D8Z2 \times 2)$, 8q24 $(CMYC \times 2)$, 9p21 $(P16 \times 2)$, 9cen $(D9Z5 \times 2)$, 9q34 $(ABL1 \times 2)$, 10cen $(D10Z1 \times 2)$, 10q23 $(PTEN \times 2)$, 11cen $(D11Z1 \times 2)$ 16q11 (D16Z3 x 2), 17p13 (TP53 x 2), 17cen (D17Z1 x 2), 17q21 (HER2 x 2), 17q22 (TOP2A x 2), 18cen (D18Z1 x 2), 18q21 (BCL2 x 2), 19p13 (ZNF44 x 2), 19q13 (CRX x 3cen (D3Z1 x 2), 4p16.3 (WHSC1 x 2), 4cen (D4Z1 x 2), 5p15.2 (D5S23 x 2), 5q31 (EGR1 x 2), 6cen (D6Z1 x 2), 6q21 (SEC63 x 2), 6q23 (MYB x 2), 7cen (D7Z1 x 2), 7q31 Cariotipo diploide en varones: nuc ish Ycen ($DYZ1 \times 1$), Xcen ($DXZ1 \times 1$), 1p36 ($EGFL3 \times 2$), 1q25 ($ABL2 \times 2$), 2p24 ($NMYC \times 2$), 2cen ($DZZ1 \times 2$), Tel3p ($D3S4559 \times 2$), 2), 20cen (*D20Z1* x 2), 20q13.2 (ZNF217 x 2), 21q22 (AML1 x 2), 22q11.2 (BCR x 2).

TABLA SUPLEMENTARIA 5: Regiones de ganancia, pérdida y LOH frecuentemente detectadas (≤65%) en los ADCP (n=20) mediante el genotipado con *microarrays* de SNPs de alta densidad (*Affymetrix SNP 500K*).

Región cromosómica (Cr) en bp	Banda Cr	Longitud (Kb)	% de casos	Región cromosómica (Cr) en bp	Banda Cr	Longitud (Kb)	% de casos
Pérdida de número de copias normal							
cr1: 28,245,012-28,862,857	p35.3	617.8	50				
cr1: 31,292,882-31,296,438	p35.2	3.6	50				
cr6: 5,347,933-5,473,881	p25.1	125.9	50				
cr6: 114,025,343-114,082,601	q21	57.3	60				
cr8: 7,222,992-7,278,542	p23.1	55.6	55				
cr8: 33,300,800-33,304,753	p12	4	55				
cr8: 33,330,093-33,454,016	p12	123.9	55				
cr9: 74,391,174-74,493,473	q21.1	102.3	50				
cr10: 73,920,768-74,004,764	q22.1	84	50				
cr10: 75,985,568-76,043,117	q22.2	57.6	50				
cr10: 76,068,446-76,108,090	q22.2	39.6	50				
cr11: 50,301,567-50,339,013	p11.1	37.5	50				
cr12: 1,112,075-1,171,662	p13.3	59.6	50				
cr17: 54,264,925-54,463,325	q23.2	198.4	55				
cr17: 54,264,325 54,465,325	q23.2 q23.2	93.6	55				
crX: 1,465,498-1,499,832	p22.3	34.3	50				
Ganancia de número de copias							
cr1: 742,429-789,326	p36.33	46.9	65	cr2: 71,647,874-71,784,206	p13.2	136.3	55
cr1: 2,017,761-2,100,120	p36.33	82.4	50	cr2: 71,815,229-71,860,972	p13.2	45.7	55
cr1: 2,310,562-2,347,670	p36.32	37.1	50	cr2: 73,359,349-73,359,413	p13.2	0.064	55
cr1: 2,408,485-2,543,618	p36.32	135.1	50	cr2: 94,901,299-94,914,685	q11.1	13.4	50
er1: 2,703,187-3,502,376	p36.32	799.2	50	cr2: 95,946,534-96,200,239	q11.2	253.7	50
er1: 4,527,839-4,639,285	p36.32	111.5	50	cr2: 98,562,915-98,742,232	q11.2	179.3	50
cr1: 5,956,787-6,099,789	p36.31	143	50	cr2: 109,395,730-109,452,923	q13	57.2	50
cr1: 41,622,769-41,781,591	p34.2	158.8	50	cr2: 119,616,403-119,748,168	q14.2	131.8	50
cr1: 41,866,299-41,867,246	p34.2	0.95	50	cr2: 120,852,125-121,525,367	q14.2	673.2	50
cr1: 53,670,105-53,737,764	p32.3	67.7	50	cr2: 156,855,395-156,972,295	q24.1	117	50
cr1: 146,183,314-146,292,286	q21.1	109	65	cr2: 218,370,272-218,376,045	q35	5.8	50
cr1: 147,188,028-147,521,567	q21.2	333.5	65	cr2: 218,388,836-218,405,194	q35	16.4	50
cr1: 150,306,335-150,496,340	q21.3	190	65	cr2: 218,415,998-218,552,243	q35	136.3	50
cr1: 159,730,122-159,745,375	q23.3	15.3	65	cr2: 218,572,564-218,604,736	q35	32.2	50
cr2: 186,973-200,076	p25.3	13.1	55	cr2: 237,019,497-237,025,233	q37.2	5.7	55
cr2: 214,086-357,736	p25.3	143.7	55	cr2: 238,189,155-238,312,207	q37.3	123.1	50
cr2: 406,815-671,521	p25.3	264.7	55	cr2: 238,928,000-238,930,959	q37.3	3	50
cr2: 695,636-716,030	p25.3	20.4	60	cr2: 238,953,094-239,180,160	q37.3	227.1	50
cr2: 994,430-1,027,581	p25.3	33.2	55	cr2: 239,506,202-239,846,809	q37.3	340.6	50
cr2: 1,038,118-1,213,866	p25.3	175.8	55	cr2: 239,983,692-240,667,487	q37.3	683.8	50
cr2: 1,257,125-1,484,084	p25.3	227	55	cr2: 240,691,407-240,772,862	q37.3	81.5	50
cr2: 1,536,934-1,972,031	p25.3	435.1	55	cr2: 240,775,988-240,789,869	q37.3	13.9	50
cr2: 2,583,817-2,657,145	p25.3	73.3	55	cr2: 240,799,649-240,975,487	q37.3	175.8	50
cr2: 2,675,835-2,895,962	p25.3	220.1	55	cr2: 240,993,845-241,030,756	q37.3	36.9	50
cr2: 3,206,115-3,259,849	p25.3	53.7	55	cr2: 241,091,399-241,113,588	q37.3	22.2	50
cr2: 3,704,731-3,727,421	p25.3	22.7	55	cr2: 241,276,509-241,545,091	q37.3	268.6	50
cr2: 3,737,705-3,805,968	p25.3-	68.3	55	cr2: 242,567,344-242,663,303	q37.3	96	55
cr2: 3,813,933-3,817,006	p25.2 p25.2	3.1	55	cr3: 10,820,313-10,891,332	p25.3	71.0	50
cr2: 20,669,934-20,704,649	p23.2 p24.1	34.7	55	cr3: 10,897,741-11,061,367	p25.3	163.6	50
cr2: 26,532,000-26,677,750	p24.1 p23.3	145.8	55	cr3: 13,803,222-13,882,158	p25.3 p25.1	78.9	50
cr3: 127,080,119-127,185,609	φ23.3 q21.2	105.5	50	cr7: 127,518,854-127,587,286	q32.1	68.4	50
cr3: 127,080,119-127,183,609 cr3: 127,203,704-127,337,850	q21.2 q21.2	134.2	50	cr7: 142,701,483-142,779,432	q32.1 q34	77.9	50
CI J. 121,20J,104-121,331,030	421.2	134.2	50	C17. 172,701,403-142,773,432	424	11.5	50

cr3: 127,350,140-127,936,525	q21.2	586.4	50	cr7: 142,803,429-142,927,312	q34	123.9	50
cr3: 128,125,240-128,195,448	q21.2	70.2	50	cr7: 154,166,444-154,183,276	q36.2	16.8	50
cr3: 128,226,897-128,240,195	q21.2	13.3	50	cr7: 154,197,342-154,368,113	q36.2	170.8	50
cr3: 128,254,303-128,772,830	q21.2- q21.3	518.5	50	cr7: 154,876,017-155,043,605	q36.3	167.6	50
cr3: 129,469,163-129,673,631	q21.3	204.5	50	cr7: 155,324,299-155,766,005	q36.3	441.7	50
cr3: 130,715,044-130,822,332	q21.3	107.3	50	cr7: 156,946,444-156,953,430	q36.3	7	50
cr3: 135,402,599-135,439,955	q22.1	37.4	50	cr7: 156,970,589-157,987,469	q36.3	1016.9	50
cr3: 135,474,915-135,645,772	q22.1	170.9	50	cr7: 158,520,162-158,582,043	q36.3	61.9	50
cr3: 142,374,603-142,449,139	q23	74.5	50	cr7: 158,601,057-158,606,931	q36.3	5.9	50
cr3: 144,324,720-144,339,430	q23	14.7	50	cr8: 1,037,318-1,059,260	p23.3	21.9	50
cr3: 144,345,081-144,370,150	q23	25.1	50	cr8: 1,091,797-1,095,978	p23.3	4.2	50
cr3: 147,370,449-147,498,076	q24	127.6	50	cr8: 1,278,622-1,281,480	p23.3	2.9	50
cr3: 180,292,559-180,367,031	q26.3	74.5	50	cr8: 1,292,237-1,327,236	p23.3	35	50
cr4: 3,379,157-3,731,921	p16.3	352.8	50	cr8: 41,649,639-41,674,630	p11.2	25	50
cr4: 7,336,346-7,432,332	p16.1	96	50	cr8: 41,682,842-41,687,028	p11.2	4.2	50
cr4: 7,510,244-7,666,095	p16.1	155.9	50	cr8: 140,737,659-140,810,733	q24.3	73.1	65
cr4: 81,368,193-81,471,743	q21.2	103.6	50	cr8: 140,825,354-140,826,636	q24.3	1.3	65
cr4: 148,836,619-148,836,997	q31.2	0.38	50	cr8: 142,069,369-142,086,091	q24.3	16.7	65
cr4: 190,816,289-190,878,050	q35.2	61.8	50	cr8: 142,107,781-142,143,028	q24.3	35.3	65
cr4: 190,915,100-190,945,867	q35.2	30.8	50	cr8: 142,153,403-142,175,410	q24.3	22	65
cr5: 734,302-752,190	p15.3	17.9	55	cr8: 142,194,487-142,257,221	q24.3	62.7	65
cr5: 771,021-797,863	p15.3	26.8	55	cr8: 142,266,863-142,343,836	q24.3	77	65
cr5: 872,671-949,726	p15.3	77.1	55	cr8: 142,371,206-143,999,285	q24.3	1628.1	65
cr5: 971,812-1,630,411	p15.3	658.6	55	cr8: 144,615,338-144,909,318	q24.3	294	65
cr5: 1,661,591-1,997,487	p15.3	335.9	55	cr10: 41,956,473-42,002,139	q11.2	45.7	65
cr5: 2,012,810-2,249,941	p15.3	237.1	55	cr10: 42,673,001-43,015,055	q11.2	342.1	50
cr5: 2,267,721-2,271,094	p15.3	3.4	55	cr10: 43,054,312-43,152,050	q11.2	97.7	50
cr5: 2,544,676-2,904,756	p15.3	360.1	55	cr10: 43,169,364-43,181,930	q11.2	12.6	50
cr5: 2,919,892-2,931,144	p15.3	11.3	55	cr10: 131,448,641-131,563,111	q26.3	114.5	50
cr5: 3,382,278-3,767,522	p15.3	385.2	55	cr10: 132,960,674-133,270,631	q26.3	310	50
cr5: 3,787,365-3,796,669	p15.3	9.3	55	cr10: 133,285,378-133,459,961	q26.3	174.6	50
cr5: 6,443,651-6,558,467	p15.3	114.8	55	cr10: 133,839,108-134,076,623	q26.3	237.5	55
cr5: 6,752,224-6,839,308	p15.3	87.1	55	cr10: 134,316,153-134,354,683	q26.3	38.5	50
cr5: 10,520,257-10,801,683	p15.2	281.4	55	cr10: 134,388,960-134,618,899	q26.3	229.9	50
cr5: 14,544,544-14,588,828	p15.2	44.3	55	cr11: 2,549,107-2,656,737	p15.5	107.6	50
cr5: 16,243,953-16,317,285	p15.1	73.3	55	cr11: 2,667,398-2,717,317	p15.5	49.9	50
cr5: 134,430,895-134,489,380	q31.1	58.5	50	cr11: 2,729,947-2,865,232	p15.5- p15.4	135.3	50
cr5: 149,546,502-149,675,642	q32	129.1	50	cr11: 17,445,237-17,735,082	p15.1	289.9	50
cr5: 175,130,801-175,279,396	q35.2	148.6	55	cr11: 49,816,620-49,909,938	p11.1	93.3	60
cr5: 175,371,041-175,525,010	q35.2	154	50	cr11: 68,536,209-68,857,006	q13.3	320.8	50
cr5: 176,780,625-176,837,482	q35.3	56.9	50	cr11: 69,985,448-70,201,641	q13.3- q13.4	216.2	50
cr5: 178,532,223-178,536,983	q35.3	4.8	50	cr11: 70,886,523-71,007,283	q13.4 q13.4	120.7	50
cr5: 178,552,922-178,784,000	q35.3	231.1	50	cr11: 71,992,542-72,010,579	q13.4	18.	50
cr5: 178,816,693-178,820,503	q35.3	3.8	50	cr11: 72,041,407-72,083,433	q13.4	42.0	50
cr6: 33,148,813-33,285,988	p21.3	137.2	50	cr11: 75,474,467-75,600,560	q13.5	126.1	50
cr6: 168,284,746-168,580,479	q27	295.7	50	cr11: 133,698,952-133,752,397	q25.5	53.5	50
cr6: 169,900,793-170,359,831	q27	459.1	50	cr12: 1,673,782-1,726,085	p13.3	52.3	50
cr7: 1,078,159-1,355,201	p22.3	277	55	cr12: 1,748,415-1,785,820	p13.3	37.4	50
cr7: 1,698,392-1,815,653	p22.3	117.3	55	cr12: 6,864,604-6,955,432	p13.3	90.8	50
cr7: 1,878,748-1,903,205	p22.3	24.5	55	cr12: 6,982,497-6,991,097	p13.3	8.6	50
cr7: 45,518,386-45,521,511	p13	3.1	55	cr12: 91,818,116-91,830,164	q22	12.0	60
cr7: 45,531,364-45,613,377	p13	82.	55	cr12: 95,415,850-95,567,680	q23.1	151.8	60
cr7: 45,645,546-45,761,480	p13	115.9	55	cr13: 19,576,513-19,708,737	q12.1	132.2	50
cr7: 50,320,813-50,335,957	p12.2	15.1	55	cr13: 109,629,535-109,936,256	q34	306.7	50
cr7: 127,482,050-127,498,937	q32.1	16.9	50	cr13: 110,097,814-110,106,226	q34	8.4	50
cr7: 127,621,231-127,660,228	q32.1	39	50	cr13: 110,176,653-110,946,274	q34	769.6	50
	40-1-			1	-1- '		

cr7: 142,176,424-142,390,212	q34	213.8	50	cr13: 110,993,446-111,141,350	q34	147.9	50
cr13: 111,553,756-111,684,549	q34	130.8	50	cr16: 49,132,748-49,323,628	q12.1	190.9	55
cr13: 111,707,578-111,733,403	q34	25.8	50	cr16: 83,622,586-83,724,219	q24.1	101.6	55
cr13: 111,767,403-111,970,835	q34	203.4	55	cr16: 87,434,281-87,465,349	q24.3	31.1	55
cr13: 112,025,929-112,175,472	q34	149.5	50	cr16: 87,480,405-87,591,520	q24.3	111.1	55
cr13: 112,193,014-112,388,718	q34	195.7	50	cr18: 5,461,765-5,612,011	p11.3	150.3	50
cr13: 112,557,920-112,630,442	q34	72.5	50	cr20: 55,474,916-55,503,911	q13.3	29	65
cr13: 112,649,062-112,805,998	q34	156.9	50	cr20: 55,522,822-55,781,996	q13.3	259.2	65
cr13: 112,936,202-113,160,288	q34	224.1	50	cr20: 59,516,281-59,884,538	q13.3	368.3	65
cr13: 113,189,296-113,366,240	q34	176.9	50	cr20: 61,160,156-61,541,410	q13.3	381.3	65
cr13: 113,479,759-113,839,278	q34	359.5	50	cr20: 62,202,436-62,376,958	q13.3	174.5	65
cr13: 113,908,069-113,996,575	q34	88.5	50	cr21: 14,032,696-14,136,067	q11.2	103.4	55
cr14: 100,069,036-100,321,061	q32.2	252	50	cr21: 42,560,211-42,663,562	q22.3	103.4	50
cr14: 103,698,082-104,161,600	q32.3	463.5	50	cr21: 42,677,482-42,771,264	q22.3	93.8	50
cr14: 105,399,872-105,553,453	q32.3	153.6	50	cr21: 43,513,756-43,615,770	q22.3	102	50
cr15: 18,427,103-18,451,755	q32.3 q11.2	24.6	55	cr21: 43,635,184-43,661,787	q22.3	26.6	50
cr15: 75,753,223-75,943,808	q24.3	190.6	50	cr21: 44,703,694-44,722,797	q22.3	19.1	50
cr15: 99,118,340-99,150,496	q24.3 q26.3	32.2	50	cr21: 44,752,483-44,934,972	q22.3	182.5	50
cr15: 99,180,792-99,379,419	q26.3	198.6	50	cr21: 45,592,958-45,789,927	q22.3	197	50
cr15: 99,389,091-99,497,972	q26.3	108.9	50	cr21: 46,109,320-46,375,182	q22.3 q22.3	265.9	50
	•		50		•		
cr15: 99,515,982-99,593,641 cr15: 99,611,174-99,933,168	q26.3	77.7		cr22: 18,579,579-18,703,211	q11.2	123.6	60
	q26.3	322	50	crX: 18,654-20,336	p22.3	1.7	50
cr16: 1,416,466-1,444,150	p13.3	27.7	50	crX: 48,907,626-49,060,243	p11.2	152.6	55
cr16: 2,933,611-3,005,925	p13.3	72.3	50	crX: 67,808,504-68,086,141	q13.1	277.6	50
cr16: 3,041,640-3,105,052	p13.3	63.4	50	crX: 82,683,103-82,778,245	q21.1	95.1	50
cr16: 3,127,734-3,193,162	p13.3	65.4	50	crX: 134,159,698-134,303,928	q26.3	144.2	55
cr16: 48,144,228-48,267,591	q12.1	123.4	55	crX: 152,352,913-152,587,060	q28	234.2	50
cr16: 49,113,279-49,121,148	q12.1	7.9	55	crX: 153,531,195-153,597,424	q28	66.2	55
LOH cr1: 22,186,372-30,082,397	p36.1- p35.2	7896025	50	cr9: 73,079,819-75,969,016	q21.1- q21.1	2889197	50
cr3: 50,261,396-52,039,238	p21.3- p21.1	1777842	50	cr9: 81,294,514-81,907,567	q21.3	613053	50
cr4: 143,182,703-143,191,465	q31.2	8762	50	cr10: 20,654,212-21,362,004	p12.3	707792	50
cr4: 143,568,791-144,582,575	q31.2	1013784	50	cr10: 22,608,463-23,267,669	p12.3- p12.2	659206	50
cr6: 671,977-7,660,631	p25.3- p24.3	6988654	50	cr10: 74,213,061-75,326,562	q22.1- q22.2	1113501	50
cr6: 62,030,184-63,239,636	q11.1	1209452	50	cr10: 101,271,104-101,314,390	q24.2	43286	50
cr6: 63,515,660-64,620,092	q12	1104432	50	cr11: 36,580,175-40,300,342	p12	3720167	50
cr6: 66,553,130-66,709,579	q12	156449	50	cr12: 0-6,497,378	p13.3-	6497378	50
cr6: 67,427,185-83,004,460	q12-	15577275	50	cr12: 6,983,416-24,075,781	p13.3 p13.3-	17092365	50
	q14.1 q22.1-				p12.1 p12.1-		50
cr6: 116,144,440-118,647,304	q22.3	2502864	50	cr12: 24,896,965-28,324,350	p11.2	3427385	50
cr6: 130,006,072-130,024,483	q22.3	18411	50	cr12: 28,628,279-29,012,019	p11.2	383740	50
cr6: 134,261,945-135,638,281	q23.2- q23.3	1376336	50	cr12: 29,527,159-29,569,650	p11.2	42491	50
cr6: 136,277,708-149,465,362	q23.3- q25.1	13187654	50	cr12: 30,074,169-30,247,492	p11.2	173323	50
cr6: 149,712,981-150,196,896	q25.1	483915	50	cr12: 31,881,221-31,976,921	p11.2	95700	50
cr6: 150,594,889-151,753,791	q25.1	1158902	50	cr12: 71,534,606-132,349,534	q21.1- q24.3	60814928	50
cr8: 0-29,308,984	p23.3- p21.1	29308984	50	cr16: 33,847,701-34,996,986	p11.2- p11.1	1149285	50
cr8: 30,236,970-30,896,659	p12	659689	50	cr17: 47,251,746-48,948,508	q21.3- q22	1696762	50
cr8: 31,052,631-35,011,700	p12	3959069	50	cr17: 49,023,077-49,046,279	q22	23202	50
cr8: 35,542,647-40,374,707	p12- p11.2	4832060	50	cr17: 49,548,805-51,007,003	q22	1458198	50
cr8: 50,453,619-51,102,658	q11.22	649039	50	cr17: 67,197,337-69,603,020	q24.3- q25.1	2405683	50

cr8: 51,147,043-51,651,339	q11.22	504296	50	cr18: 16,100,000-16,863,806	q11.1	763806	50	
cr9: 0-35,121,046	p24.3- p13.3	35121046	50	cr18: 20,358,489-76,117,153	q11.2- q23	55758664	50	
cr9: 35,176,767-38,761,831	p13.3- p13.1	3585064	50	cr10: 74,213,061-75,326,562	q22.1- q22.2	1113501	50	
cr9: 67,813,967-69,117,359	q12	1303392	60	cr10: 101,271,104-101,314,390	q24.2	43286	50	

TABLA SUPLEMENTARIA 6. Asociación entre los CNV detectados en los ADCP (n=20) y el tamaño e histopatología tumoral.

						Tamañc	Tamaño del tumor		Grado	Grado Histologico	
Banda cromosómica	Extensión de la región cromosómica (bp)	Alteración	Longitud (Kb)	Genes*	% de casos con la alteración	Tamaño del tumor de los casos alterados [§]	Tamaño del tumor de los casos no alterados [§]	p-valor	% de casos grado I/II	% de casos grado III	p-valor
	126,197,196-										
10q26.13	126,389,556	+	192.4	LHPP, FAM53B	45	2.55±0.53	3.43±1.0	0.04	29	12.5	0.03
10q26.3	134,618,899	+	44.7	NKX6-2, INPP5A	20	2.52±0.51	3.57±1.0	0.007	75	12.5	0.02
11q13.1	63,567,491-63,588,718	+	21.2	C11orf84	45	2.55±0.53	3.43±1.0	0.04	29	12.5	0.03
11q13.3	68,536,209-68,628,024	+	91.8	CPT1A	20	2.65±0.58	3.42 ± 1.1	0.07	75	12.5	0.02
11q13.4	70,886,523-71,007,283	+	120.8	SHANK	20	2.65±0.58	3.42 ± 1.1	0.07	75	12.5	0.02
				MB, APOL6,							
22q13.1	36,004,493-36,195,003	+	190.5	APOL5, RBFOX2	45	2.55 ± 0.53	3.43 ± 1.0	0.04	29	12.5	0.03
22q13.31	43,730,883-43,765,403	+	34.5	SCUBE1	45	2.55 ± 0.53	3.43 ± 1.0	0.04	29	12.5	0.03
22q13.31	43,771,998-43,893,933	+	121.9	MPPED1	45	2.55 ± 0.53	3.43 ± 1.0	0.04	29	12.5	0.03
22q13.32	47,208,708-47,252,209	+	43.5	TBC1D22A	45	2.55 ± 0.53	3.43 ± 1.0	0.04	29	12.5	0.03
22q13.32	47,261,745-47,270,520	+	8.8	TBC1D22A	45	2.55±0.53	3.43 ± 1.0	0.04	29	12.5	0.03
22q13.32	47,288,391-47,401,631	+	113.2	TBC1D22A	45	2.55 ± 0.53	3.43 ± 1.0	0.04	29	12.5	0.03
22q13.32	47,401,631-47,487,214	+	85.6	TBC1D22A	20	2.52 ± 0.51	3.57 ± 1.0	0.007	75	12.5	0.02
Xp22.33	1,465,498-1,499,832	1	34.3	IL3RA	20	3.47 ± 1.01	2.6±0.69	0.03	33	75	0.17
Xp22.33	1,499,832-1,559,835	'	09	IL3RA , SLC25A6	45	3.47 ± 1.01	2.6±0.69	0.03	33	62.5	0.36

+: ganancia; ∹ pérdida. *Los genes relacionados con cáncer se muestran en negrita mientras que aquellos relacionados con páncreas están subrayados. § Resultados expresados como media del tamaño del tumor ± una desviación estándar (SD)

192

TABLA SUPLEMENTARIA 7. Transcriptos de genes diferencialmente expresados de forma diferencial en tejidos tumorales de ADCP (T; n=27), y en los subrupos de ADCP GEP-A (n=24) y GEP-B (n=3) vs. tejidos pancreáticos no-tumorales (No-T; n=5) analizados con el *microarray* de *Affymetrix Human Gene 1.0 ST Expression*.

ID del gen	Nombre del gen (según <i>Affymetrix</i>)	Descripción del transcripto	Diferencia de expresión en T vs No-T	Diferencia de expresión en GEP-A vs No-T	Diferencia d expresión e GEP-B vs No
ENSG00000148584	A1CF	protein_coding	-3.9	-3.6	-8.8
NSG00000144959	AADACL1	protein_coding	2.1	2.1	NS
NSG00000008311	AASS	protein_coding	-4.1	-3.9	NS
ENSG000000183044	ABAT	protein_coding	-4.7	-4.7	NS
ENSG00000165029	ABCA1	protein_coding	2.5	2.6	NS
ENSG00000153025	ABCA5	protein_coding	-2.9	-2.8	NS
ENSG00000134203	ABCC5	protein_coding	2.2	2.2	NS
ENSG00000114770	ABCF2	protein_coding	NS	NS	2.8
ENSG00000033030	ABLIM1	protein_coding	NS	NS	-4.7
ENSG00000033204 ENSG00000173210	ABLIM3	protein_coding	2.4	2.3	2.8
ENSG00000173210 ENSG000000002726	ABP1		2.6	2.7	NS
		protein_coding	2.6	2.7	
ENSG00000159842	ABR	protein_coding			NS
ENSG00000240347	AC004862.1	misc_RNA	-2.3	-2.2	NS
ENSG00000183444	AC004967.6	pseudogene	-2.1	-2.2	NS
ENSG00000233404	AC005035.1	protein_coding	2.1	2.1	NS
ENSG00000224287	AC005538.3	pseudogene	3.2	3.1	NS
ENSG00000119686	AC007182.1	protein_coding	2.4	2.6	NS
ENSG00000180672	AC007362.2	pseudogene	8.9	9.3	NS
ENSG00000187534	AC007842.1	pseudogene	2.7	2.7	NS
ENSG00000244080	AC008481.1	misc_RNA	-2	-2	NS
ENSG00000230259	AC008738.1	pseudogene	-2	-2	-2
ENSG00000242113	AC009311.1	misc_RNA	NS	NS	5.8
ENSG00000176824	AC009951.1	pseudogene	2.8	3	NS
ENSG00000197813	AC011450.2	lincRNA	-2.3	-2.3	-2.7
ENSG00000167642	AC011479.2	protein_coding	NS	NS	-6.3
ENSG00000213406	AC013477.3	pseudogene	2	NS	3
ENSG00000159289	AC013486.2	protein_coding	-3.9	-4	NS
ENSG00000163364	AC017048.1	lincRNA	NS	NS	2.9
ENSG00000187812	AC019294.2	pseudogene	-3.3	-3.2	NS
ENSG00000242863	AC020704.1	misc_RNA	-2.1	-2	NS
ENSG00000230551	AC021078.4	processed_transcript	2.8	2.7	NS
ENSG00000206567	AC022007.1	lincRNA	-2.1	-2.1	NS
ENSG00000105520	AC024575.2	protein_coding	NS	NS	3.3
ENSG00000143429	AC027612.7	pseudogene	NS	NS	8.8
ENSG00000091592	AC055839.1	protein_coding	2.1	2.1	NS
ENSG00000244242	AC068580.3	protein_coding	2.3	2.2	3.2
ENSG00000232742	AC073869.12	pseudogene	NS	NS	4.5
ENSG00000225422	AC078889.3	pseudogene	4.1	3.7	7.2
ENSG00000147642	AC079061.1	protein_coding	-6.8	-6.7	NS
ENSG00000235734	AC079337.1	pseudogene	NS	-2.1	NS
ENSG00000236654	AC079780.1	pseudogene	4.6	4	9.8
ENSG00000239776	AC079949.1	novel miRNA	NS	NS	-2.3
ENSG00000241588	AC090825.4	misc RNA	-2.1	-2.1	NS
ENSG00000241300	AC091492.2	pseudogene	-2.1	-2.1	NS
ENSG00000230002	AC091432.2 AC092118.1	protein_coding	-2.1	-2.1	NS
ENSG00000187183	AC092327.1	lincRNA	-2 -2	-2.1 -2	NS
ENSG00000108307	AC093283.3	protein_coding	NS	NS	-2.5
ENSG00000214344 ENSG00000152117	AC093838.4	pseudogene	2	2	NS
ENSG00000132117 ENSG00000183900		, -			
	AC099522.1	pseudogene	NS NS	NS	3.9
ENSG00000153815	AC099524.2	protein_coding	NS	2	NS
ENSG00000105889	AC099759.1	protein_coding	NS	NS	11
ENSG00000213373	AC100793.3	lincRNA	-4.7	-4.8	-4
ENSG00000173517	AC107883.1	protein_coding	2.2	2	4.3
ENSG00000138640	AC108065.1	protein_coding	-2.3	-2.2	-3.8
ENSG00000240545	AC112518.2	misc_RNA	NS	NS	-2.3
ENSG00000123384	AC137834.1	protein_coding	3.6	3.3	5.4
ENSG00000076555	ACACB	protein_coding	-2.4	-2.3	-4.7
ENSG00000115361	ACADL	protein_coding	-8.3	-8	-11.7
ENSG00000075239	ACAT1	protein_coding	NS	-2.9	NS
ENSG00000120437	ACAT2	protein_coding	2.5	2.2	5
ENSG00000107897	ACBD5	protein coding	NS	2	NS
1113000000107037					

ENSG00000102575	ACP5	protein_coding	2.6	2.8	NS
ENSG00000123983	ACSL3	protein coding	2.2	2.2	NS
		. = -			
ENSG00000068366	ACSL4	protein_coding	3	2.9	NS
ENSG00000197142	ACSL5	protein_coding	NS	7	NS
ENSG00000005187	ACSM3	protein_coding	-3	NS	-13.7
ENSG00000154930	ACSS1	protein_coding	-2.2	-2.2	-3.3
ENSG00000107796	ACTA2	protein coding	6	5.9	NS
ENSG00000159251	ACTC1	protein_coding	NS	NS	12.5
ENSG00000072110	ACTN1	protein_coding	3.1	2.9	4.5
ENSG00000138107	ACTR1A	protein coding	NS	NS	2.9
ENSG00000138071	ACTR2	protein_coding	2.2	2.3	NS
ENSG00000115091	ACTR3	protein coding	2.2	2.2	2.2
ENSG00000106526	ACTR3C	protein_coding	NS	NS	-5.8
ENSG00000115170	ACVR1	protein_coding	2.6	2.5	3.5
ENSG00000196839	ADA	protein_coding	NS	NS	4.4
ENSG00000137845	ADAM10	protein_coding	2.2	2.2	NS
ENSG00000148848	ADAM12	protein_coding	8.4	5.9	28.6
ENSG00000151694	ADAM17	protein_coding	2.2	2.2	NS
ENSG00000135074	ADAM19	protein_coding	4.2	4.4	NS
ENSG00000042980	ADAM28	protein_coding	NS	7.2	NS
ENSG00000149451	ADAM33	protein_coding	NS	NS	2
ENSG00000168615	ADAM9	protein_coding	3.6	3.6	3.5
ENSG00000151388	ADAMITC12	protein coding	8	7.8	8.9
	ADAMTS12				
ENSG00000140470	ADAMTS17	protein_coding	-2.3	-2.2	-2.4
ENSG00000087116	ADAMTS2	protein coding	3.4	3.2	4.8
ENSG00000154736	ADAMTS5	protein_coding	NS	NS	9.5
ENSG00000049192	ADAMTS6	protein coding	2.5	NS	2.7
ENSG00000156218	ADAMTSL3	protein_coding	NS	NS	-7.4
ENSG00000143382	ADAMTSL4	protein_coding	NS	NS	3.8
ENSG00000164742	ADCY1	protein_coding	NS	-2	NS
ENSG00000141433	ADCYAP1	protein_coding	NS	NS	-2.4
ENSG00000147872	ADFP	protein coding	NS	NS	4.4
	ADHFE1		-4.1	-4	-5.1
ENSG00000147576		protein_coding			
ENSG00000148926	ADM	protein_coding	NS	NS	10.9
ENSG00000173020	ADRBK1	protein_coding	2.2	2.3	NS
ENSG00000211848	AE000662.33	TR_J_gene	3.1	3.3	NS
ENSG00000106624	AEBP1	protein_coding	4.5	4.4	NS
ENSG00000181026	AEN	protein_coding	NS	NS	2.3
ENSG00000188512	AF279873.1	pseudogene	2	2	NS
ENSG00000196526	AFAP1	protein_coding	2.9	2.8	4
ENSG00000119844	AFTPH	protein_coding	NS	NS	-2.1
ENSG00000204310	AGPAT1	protein_coding	NS	NS	3.2
ENSG00000106541	AGR2	protein_coding	NS	5.3	NS
ENSG00000135744	AGT	protein_coding	4.1	4.3	NS
ENSG00000144891	AGTR1	protein coding	NS	NS	2.9
		. = -			
ENSG00000185567	AHNAK2	protein_coding	12.5	10.8	26.6
ENSG00000106546	AHR	protein coding	3.2	3.4	NS
ENSG00000106305	AIMP2	protein_coding	NS	NS	2.5
ENSG00000106992	AK1	protein_coding	NS	NS	3.1
ENSG00000154027	AK5	protein_coding	NS	NS	48.4
ENSG00000131016	AKAP12	protein_coding	2	2	NS
ENSG00000179841	AKAP5	protein_coding	NS	2	NS
ENSG00000127914	AKAP9	protein_coding	NS	NS	-2.6
ENSG00000135334	AKIRIN2	protein_coding	NS	NS	2.4
ENSG00000187134	AKR1C1	protein coding	NS	NS	7.7
		protein_coding	NS	NS	
ENSG00000151632	AKR1C2				5.4
ENSG00000162482	AKR7A3	protein_coding	-2.1	-2	NS
ENSG00000204673	AKT1S1	protein_coding	NS	NS	2
ENSG00000240625	AL136304.2	misc_RNA	-2	-2	NS
ENSG00000197358	AL139023.1	pseudogene	-5.2	-6.2	NS
ENSG00000241174		misc RNA	-2		
	AL591215.1	_		-2	NS
ENSG00000023330	ALAS1	protein_coding	NS	NS	2.2
ENSG00000163631	ALB	protein_coding	-28.9	-26.6	-90.9
ENSG00000165092	ALDH1A1	protein_coding	NS	NS	-22.5
ENSG00000144908	ALDH1L1	protein_coding	-2.1	-2.1	NS
ENSG00000136010	ALDH1L2	protein_coding	-2.9	-3.4	NS
ENSG00000116127	ALMS1	protein_coding	NS	NS	-2.2
ENSG00000012779	ALOX5	protein_coding	NS	2.5	-6.2
ENSG00000132965	ALOX5AP	protein_coding	NS	4	NS
ENSG00000198796	ALPK2	protein_coding	NS	NS	12
ENSG00000163286	ALPPL2	protein_coding	-2	-2.1	NS
L143G00000103Z00	ALI 1 42	protein_counig	-2	-2.1	INS

ENSG00000155755	ALS2CR4	protein_coding	NS	NS	2.8
ENSG00000106927	AMBP	protein_coding	-3.2	NS	-8.5
ENSG00000135409	AMHR2	protein coding	-2.6	-2.6	NS
ENSG00000139211	AMIGO2	protein coding	3.7	3.9	NS
ENSG00000133211	AMOTL2	protein_coding	NS	NS	3.9
ENSG00000145020	AMT	protein_coding	NS	NS	-3
ENSG00000240038	AMY2B	protein_coding	-3	-2.8	NS
ENSG00000141552	ANAPC11	protein_coding	NS	NS	2.4
ENSG00000013523	ANGEL1	protein_coding	-2.3	-2.3	-2.7
ENSG00000136859	ANGPTL2	protein coding	4.3	3.3	12.7
ENSG00000145362	ANK2	protein_coding	NS	NS	4.2
ENSG00000151150	ANK3	protein_coding	NS	NS	-7.8
ENSG00000154065	ANKRD29	protein_coding	NS	NS	3.6
ENSG00000132623	ANKRD5	protein_coding	-3.9	-3.7	NS
ENSG00000151458	ANKRD50	protein coding	3.4	3.5	2.7
ENSG00000131136	ANKRD62	protein coding	-2.3	-2.3	NS
ENSG00000011426	ANLN	protein_coding	9	9.3	6.7
ENSG00000131620	ANO1	protein_coding	NS	6.8	NS
ENSG00000171714	ANO5	protein_coding	-2.3	-2.1	-5.5
ENSG00000166825	ANPEP	protein_coding	-5.7	-8.3	NS
ENSG00000169604	ANTXR1	protein coding	6.5	6.4	7
			3.5		, NS
ENSG00000163297	ANTXR2	protein_coding		3.4	
ENSG00000182718	ANXA2	protein_coding	2.5	2.4	NS
ENSG00000231991	ANXA2P2	pseudogene	2.2	2.2	NS
ENSG00000196975	ANXA4	protein_coding	NS	NS	-3.2
ENSG00000164111	ANXA5	protein coding	2	NS	3.2
ENSG00000197043	ANXA6	protein coding	NS	NS	3.4
ENSG00000143412	ANXA9	protein_coding	-2.6	NS	-6.4
ENSG00000138356	AOX1	protein_coding	-5.9	-9.2	NS
ENSG00000150687	AP000654.2	protein_coding	3.1	2.4	8.8
ENSG00000165895	AP000872.1	protein_coding	2.8	2.9	NS
ENSG00000166250	AP000926.2	protein coding	NS	NS	9.3
ENSG00000179240	AP002360.3	protein_coding	-2.1	-2.1	NS
ENSG00000072958	AP1M1	protein_coding	NS	NS	3.1
ENSG00000129354	AP1M2	protein_coding	NS	NS	-4.4
ENSG00000106367	AP1S1	protein_coding	NS	NS	2.6
ENSG00000152056	AP1S3	protein_coding	NS	3.4	NS
ENSG00000196961	AP2A1	protein coding	2.1	NS	4
		. = -			2.7
ENSG00000006125	AP2B1	protein_coding	2.2	2.1	
ENSG00000161203	AP2M1	protein_coding	2.5	2.2	4.7
ENSG00000042753	AP2S1	protein_coding	NS	NS	2.7
ENSG00000070718	AP3M2	protein_coding	2.3	2.4	NS
ENSG00000081014	AP4E1	protein_coding	NS	NS	2.2
ENSG00000105290	APLP1	protein_coding	-3.7	-3.7	NS
ENSG00000124701	APOBEC2	protein_coding	-2.6	NS	-5.1
ENSG00000244509	APOBEC3C	protein_coding	2.6	2.2	5.4
ENSG00000243811	APOBEC3D	protein_coding	2.1	2.2	NS
ENSG00000239713	APOBEC3G	protein_coding	3	3.2	NS
ENSG00000130208	APOC1	protein coding	NS	7.1	NS
ENSG00000130200	APOH		-3.6	-3.4	NS
		protein_coding			
ENSG00000100342	APOL1	protein_coding	9.1	10.1	NS
ENSG00000221963	APOL6	protein_coding	2.4	2.4	NS
ENSG00000184945	AQP12A	protein_coding	-3.2	-3.2	-3.1
ENSG00000185176	AQP12B	protein_coding	-4.5	-4.5	-4.6
ENSG00000103375	AQP8	protein coding	-19.1	-17.9	NS
	•				
ENSG00000047365	ARAP2	protein_coding	NS	NS	-7.3
ENSG00000164144	ARFIP1	protein_coding	2	2	NS
ENSG00000175220	ARHGAP1	protein_coding	2.3	2.1	3.5
ENSG00000198826	ARHGAP11A	protein_coding	2.7	2.8	NS
ENSG00000187951	ARHGAP11B	protein_coding	2.3	2.3	NS
ENSG00000107531	ARHGAP15	protein_coding	NS	NS	-3
ENSG00000225485	ARHGAP23	protein_coding	NS	NS	2.2
ENSG00000145819	ARHGAP26	protein_coding	2.5	2.7	NS
ENSG00000111348	ARHGDIB	protein_coding	NS	4.3	NS
ENSG00000242173	ARHGDIG	protein_coding	-5	-5	-5.1
ENSG00000104728	ARHGEF10	protein_coding	NS	NS	2.9
ENSG00000104728	ARHGEF2	protein_coding	2.6	2.5	NS
ENSG00000150347	ARID5B	protein_coding	NS	NS	3.7
ENSG00000213465	ARL2	protein_coding	NS	NS	4.2
ENSG00000188042	ARL4C	protein_coding	3.6	3.4	5.1
ENSG00000175906	ARL4D	protein_coding	NS	NS	4.4
		1		-	*

ENSG00000135931	ARMC9	protein coding	NS	NS	3.7
ENSG00000184867	ARMCX2	protein_coding	NS	NS	2.3
ENSG00000133794	ARNTL	protein_coding	2.5	2.6	NS
ENSG00000029153	ARNTL2	protein_coding	5.9	6.4	NS
ENSG00000241685	ARPC1A	protein_coding	2.2	2.2	NS
		. – -			
ENSG00000130429	ARPC1B	protein_coding	2.5	2.5	NS
ENSG00000111229	ARPC3	protein coding	2	2	NS
ENSG00000157399	ARSE		-4.6	-4.2	-13.2
		protein_coding			
ENSG00000180801	ARSJ	protein_coding	NS	NS	3.6
ENSG00000156219	ART3	protein coding	-2.7	-2.7	NS
ENSG00000214435	AS3MT	protein coding	-2.8	-3	NS
ENSG00000153317	ASAP1	protein_coding	2.3	2.1	NS
ENSG00000151693	ASAP2	protein coding	2.8	2.9	NS
ENSG00000112249	ASCC3	protein_coding	NS	NS	2.2
ENSG00000128203	ASPHD2	protein_coding	2.8	2.9	NS
ENSG00000066279	ASPM	protein coding	4	4.1	NS
ENSG00000106819	ASPN	protein_coding	5.6	6	NS
ENSG00000166669	ATF7IP2	protein_coding	NS	NS	-6
ENSG00000145782	ATG12	protein_coding	NS	NS	2.1
ENSG00000101974	ATP11C	protein_coding	NS	2	NS
ENSG00000127249	ATP13A4	protein_coding	NS	NS	-3.4
ENSG00000143153	ATP1B1	protein_coding	NS	NS	-7
ENSG00000129244	ATP1B2	protein coding	NS	NS	-2
ENSG00000174437	ATP2A2	protein_coding	2.1	2	2.9
ENSG00000074370	ATP2A3	protein_coding	NS	NS	-2.4
ENSG00000058668	ATP2B4	protein_coding	2.4	2.3	NS
		. – -			
ENSG00000017260	ATP2C1	protein_coding	2.1	2.1	NS
ENSG00000105675	ATP4A	protein_coding	-3.5	-3.6	NS
ENSG00000241468	ATP5J2	. – -	2.1	2	NS
		protein_coding			
ENSG00000159720	ATP6V0D1	protein_coding	NS	NS	3.7
ENSG00000131100	ATP6V1E1	protein_coding	NS	NS	2.3
ENSG00000128524	ATP6V1F	. – -			3.7
		protein_coding	NS	NS	
ENSG00000124406	ATP8A1	protein_coding	NS	NS	-11.5
ENSG00000143515	ATP8B2	protein_coding	2.4	2	5.4
ENSG00000104043	ATP8B4	protein_coding	2.5	2.6	NS
ENSG00000134146	ATPBD4	protein_coding	NS	NS	-2.8
ENSG00000167601	AXL	protein_coding	2.6	2.3	5
ENSG00000160862	AZGP1	protein_coding	-8.4	-7.6	-49.1
ENSG00000166710	B2M	protein_coding	3.3	3.4	NS
ENSG00000162885	B3GALNT2	protein_coding	-2.6	-2.6	NS
		. – -			5.5
ENSG00000162630	B3GALT2	protein_coding	NS	NS	
ENSG00000187676	B3GALTL	protein_coding	NS	NS	2.2
ENSG00000179913	B3GNT3	protein_coding	NS	3.5	NS
ENSG00000086062	B4GALT1	protein_coding	2.1	2	2.8
ENSG00000121578	B4GALT4	protein_coding	NS	2.2	NS
ENSG00000186318	BACE1	protein_coding	-4.9	-5.5	NS
ENSG00000112208	BAG2	protein_coding	NS	NS	6.1
ENSG00000156735	BAG4	protein_coding	NS	NS	2.4
ENSG00000030110	BAK1	protein coding	2	2	NS
ENSG00000125888	BANF2	protein_coding	-6.7	-6.7	NS
ENSG00000176788	BASP1	protein_coding	NS	NS	4.8
ENSG00000204469	BAT2	protein_coding	NS	NS	2
ENSG00000087088	BAX	protein_coding	NS	NS	2.6
ENSG00000140463					
	BBS4	protein_coding	NS	NS	2.2
ENSG00000138686	BBS7	protein_coding	NS	NS	2.7
ENSG00000187244	BCAM	protein_coding	NS	NS	-2.4
ENSG00000137936	BCAR3	protein coding	NS	NS	3.1
ENSG00000064787	BCAS1	protein_coding	7.5	8.3	NS
ENSG00000105552	BCAT2	protein_coding	-2.1	-2.2	NS
ENSG00000142867	BCL10	protein_coding	2.2	2.2	2.1
ENSG00000175730	BCL2L7P1	pseudogene	2	2	NS
ENSG00000186174	BCL9L	protein_coding	NS	NS	2.6
ENSG00000151917	BEND6	protein_coding	NS	NS	6
ENSG00000133134	BEX2	protein_coding	-2.6	-2.6	-3
ENSG00000182492	BGN	protein_coding	3.9	4.2	2.2
ENSG00000180535	BHLHA15	protein_coding	-10.5	-10.2	-13.9
ENSG00000151746		protein_coding	2.6	2.7	
	BICD1				NS
ENSG00000023445	BIRC3	protein_coding	NS	4	NS
ENSG00000197299	BLM	protein_coding	2	2.1	NS
ENSG00000095585	BLNK	protein_coding	NS	NS	-4.4
ENSG00000168487	BMP1	protein_coding	NS	NS	2.5

ENSG00000138756	BMP2K	protein coding	2.1	2	NS
ENSG00000158730	BMPER	protein_coding	NS	NS	6.8
ENSG00000204217	BMPR2	protein_coding	2	2.1	NS
ENSG00000169594	BNC1	protein_coding	NS	NS	10.3
ENSG00000173068	BNC2	protein_coding	3.3	3.1	NS
ENSG00000176171	BNIP3	protein_coding	-5.7	-6.5	NS
ENSG00000162813	BPNT1	protein coding	2.3	2.3	NS
ENSG00000139618	BRCA2	protein_coding	2.1	2.2	NS
			NS	NS	2.6
ENSG00000164713	BRI3	protein_coding			
ENSG00000174672	BRSK2	protein_coding	-3.5	-3.6	-3.1
ENSG00000119411	BSPRY	protein_coding	-3.1	-2.9	-5.8
ENSG00000109743	BST1	protein_coding	2.5	2.3	4.1
ENSG00000130303	BST2	protein coding	NS	2.5	NS
ENSG00000169814	BTD	protein coding	NS	-2	NS
ENSG00000159388	BTG2	protein coding	-4.1	-4.1	-5
	BTK				
ENSG00000010671		protein_coding	NS	2.4	NS
ENSG00000026950	BTN3A1	protein_coding	2	2.1	NS
ENSG00000186470	BTN3A2	protein_coding	3.3	3.5	NS
ENSG00000111801	BTN3A3	protein_coding	2.7	2.9	NS
ENSG00000169679	BUB1	protein_coding	3.1	3.2	NS
ENSG00000156970	BUB1B	protein coding	2.4	2.4	NS
ENSG00000154473	BUB3	protein coding	2.2	2.3	NS
	BUD31		NS	NS	2.1
ENSG00000106245		protein_coding			
ENSG00000112276	BVES	protein_coding	NS	NS	8
ENSG00000180525	C10orf108	protein_coding	-2.3	-2.3	NS
ENSG00000165813	C10orf118	protein_coding	NS	NS	-3.5
ENSG00000173124	C10orf129	protein coding	-2.8	-2.8	NS
ENSG00000166272	C10orf26	protein_coding	2.3	2.3	NS
ENSG00000165633	C10orf72	protein_coding	NS	NS	5.1
ENSG00000148735	C10orf81		NS	NS	-10.4
		protein_coding			
ENSG00000171067	C11orf24	protein_coding	2.1	NS	3.6
ENSG00000110427	C11orf41	protein_coding	NS	NS	3.8
ENSG00000182919	C11orf54	protein_coding	-2	NS	-3.6
ENSG00000149357	C11orf59	protein_coding	2.1	NS	4.6
ENSG00000175573	C11orf68	protein coding	NS	NS	2.2
ENSG00000204856	C12orf24	protein_coding	NS	NS	3.1
ENSG00000134548	C12orf39	protein_coding	-23	-23.2	NS
ENSG00000047621	C12orf4	protein_coding	2.1	NS	2.2
ENSG00000151287	C13orf27	protein_coding	NS	NS	2.8
ENSG00000165480	C13orf3	protein_coding	3	3.1	NS
ENSG00000100557	C14orf105	protein_coding	NS	NS	-17.9
ENSG00000179933	C14orf119	protein_coding	NS	NS	2.9
ENSG00000227051	C14orf132	protein_coding	NS	NS	3.5
ENSG00000139971	C14orf37	protein_coding	2.1	NS	3.5
ENSG00000178761	C15orf17	protein_coding	NS	NS	2
ENSG00000166920	C15orf48	protein_coding	6.1	6.6	NS
ENSG00000103148	C16orf35	protein_coding	NS	NS	2.2
ENSG00000124074	C16orf48	protein_coding	-2.1	-2.1	NS
ENSG00000103544	C16orf62	protein coding	NS	NS	2.1
ENSG00000070761	C16orf80	protein_coding	NS	NS	2.8
ENSG00000070701	C17orf28	protein_coding	-2.3	-2.1	-7.5
ENSG00000125319	C17orf53	protein_coding	NS	NS	2.3
ENSG00000166845	C18orf54	protein_coding	NS	NS	2.6
ENSG00000167644	C19orf33	protein_coding	NS	3.2	NS
ENSG00000131944	C19orf40	protein_coding	NS	NS	2
ENSG00000105771	C19orf61	protein_coding	2.1	2.1	2.5
ENSG00000106392	C1GALT1	protein_coding	2.7	2.8	NS
ENSG00000117597	C1orf107	protein_coding	NS	NS NS	2.5
		. = -			
ENSG00000175147	C1orf126	processed_transcript	-2.9	-2.7	-8.3
ENSG00000160767	C1orf2	protein_coding	NS	NS	2.1
ENSG00000118292	C1orf54	protein_coding	NS	2	NS
ENSG00000162819	C1orf58	protein_coding	NS	2	NS
ENSG00000198715	C1orf85	protein_coding	NS	NS	7.9
ENSG00000173947	C1orf88	protein_coding	-2.3	-2.4	NS
ENSG00000173372	C1QA	protein_coding	NS	3.4	NS
ENSG00000173372	C1QB	protein_coding	NS	4	NS NS
ENSG00000159189	C1QC	protein_coding	NS	3.7	NS
ENSG00000159403	C1R	protein_coding	3.3	3.2	NS
ENSG00000182326	C1S	protein_coding	3.7	3.7	NS
ENSG00000125869	C20orf103	protein_coding	7.1	7.9	NS
ENSG00000229230	C20orf127	pseudogene	-2.4	-2.4	NS
		. 5			

ENSG00000188559	C20orf74	protein coding	NS	NS	-4.6
ENSG00000149346	C20orf94	protein_coding	NS	NS	-2.2
ENSG00000235374	C21orf122	pseudogene	-2.3	-2.3	NS
ENSG00000215386	C21orf34	lincRNA	3.2	3.4	NS
ENSG00000205929	C21orf62	protein_coding	-5.3	-5	NS
ENSG00000100364	C22orf9	protein_coding	2.2	2	3.3
ENSG00000205502	C2CD4B	protein coding	-4.4	-4.4	-4.2
ENSG00000213699	C2orf18	protein_coding	NS	NS	2.5
ENSG00000183833	C3orf15	protein_coding	-3.8	-3.6	-7.1
ENSG00000114529	C3orf52	protein coding	-4	-3.7	-12.5
ENSG00000174899	C3orf55	protein_coding	NS	NS	5.6
ENSG00000180611	C3orf59	protein coding	2	2.1	NS
ENSG00000163378	C3orf64	protein_coding	NS	NS	3
ENSG00000164074	C4orf29	protein_coding	-2.4	-2.3	NS
ENSG00000173376	C4orf31	protein coding	4.1	3.9	NS
ENSG00000106804	C5	protein_coding	-6.3	-6	NS
ENSG00000134986	C5orf13	protein_coding	4.8	4.6	6.2
ENSG00000113583	C5orf15			2	2.4
		protein_coding	2		
ENSG00000152620	C5orf33	protein_coding	-2.3	-2.3	-2.9
ENSG00000039537	C6	protein_coding	-3.7	NS	-23.6
ENSG00000146386	C6orf115	protein_coding	3.5	3.4	NS
ENSG00000196748	C6orf126	protein coding	-2	-2	NS
ENSG00000198937	C6orf129	protein coding	NS	NS	3.4
ENSG00000124596	C6orf130	protein_coding	NS	NS	-2.4
ENSG00000164430	C6orf150	protein_coding	2.3	2.4	NS
ENSG00000233237	C6orf155	lincRNA	-2	-2	NS
ENSG00000203760	C6orf173	protein_coding	NS	NS	2.3
					4
ENSG00000203778	C6orf225	protein_coding	NS	NS	
ENSG00000112936	C7	protein_coding	NS	NS	-165.9
ENSG00000188732	C7orf46	protein_coding	NS	NS	-6.5
ENSG00000175854	C9orf119	protein_coding	NS	NS	2.3
ENSG00000066697	C9orf30	protein coding	NS	NS	4
	C9orf72		NS	NS	
ENSG00000147894		protein_coding			-3.6
ENSG00000176058	C9orf75	protein_coding	-2.1	-2.1	NS
ENSG00000185015	CA13	protein_coding	2.9	3.1	NS
ENSG00000104267	CA2	protein_coding	NS	NS	-12.4
ENSG00000167434	CA4	protein_coding	-2.3	-2.4	-2.3
ENSG00000163050	CABC1		-2.8	-2.7	-4
		protein_coding			
ENSG00000134508	CABLES1	protein_coding	NS	NS	3
ENSG00000153956	CACNA2D1	protein_coding	2.5	2.3	NS
ENSG00000167535	CACNB3	protein_coding	2.4	2.3	3.5
ENSG00000084774	CAD	protein_coding	NS	NS	2
ENSG00000105767	CADM4		-2	-2	-2.1
		protein_coding			
ENSG00000081803	CADPS2	protein_coding	NS	NS	-6.3
ENSG00000122786	CALD1	protein coding	3.7	3.5	NS
ENSG00000138172	CALHM2	protein_coding	NS	NS	3.4
ENSG00000143933	CALM2	protein coding	NS	NS	2
ENSG00000128595	CALU	protein_coding	3.1	2.7	6.4
ENSG00000183049	CAMK1D	protein_coding	NS	NS	-2.8
ENSG00000145349	CAMK2D	protein coding	2.6	2.4	3.7
	CAMK2G				
ENSG00000148660		protein_coding	NS	NS	2.4
ENSG00000118200	CAMSAP1L1	protein_coding	2.5	2.4	NS
ENSG00000131236	CAP1	protein_coding	2.9	2.8	3.3
ENSG00000042493	CAPG	protein_coding	4.9	5	4.4
ENSG00000162909	CAPN2	protein_coding	2.1	2.1	2.6
ENSG00000077549	CAPZB	protein_coding	2.3	2.3	3.1
ENSG00000198286	CARD11	protein_coding	3.2	3.5	NS
ENSG00000132357	CARD6	protein_coding	2.3	2.3	NS
ENSG00000142453	CARM1	protein_coding	NS	NS	2.6
ENSG00000137812	CASC5	protein_coding	4.9	5.1	NS
ENSG00000147044	CASK	protein coding	2.1	2.2	NS
ENSG00000164305	CASP3	protein_coding	2.2	2.2	2.5
ENSG00000064012	CASP8	protein_coding	NS	2.1	NS
ENSG00000133962	CATSPERB	protein_coding	NS	NS	-18.5
ENSG00000107745	CBARA1	protein_coding	2.1	2	3
ENSG00000067955	CBFB	protein_coding	2	2.1	NS
ENSG00000110395	CBL	protein_coding	2.5	2.5	NS
ENSG00000114423	CBLB	protein_coding	2	2	NS
ENSG00000160200	CBS	protein_coding		-6.9	NS
			-6.2		
ENSG00000172785	CBWD1	protein_coding	-2.8	-2.6	-8.2
ENSG00000183741	CBX6	protein_coding	NS	NS	2.1
_1,0000000103/41	CDAO	protein_counig	145	145	۷.1

ENSG00000183287 ENSG00000156026 ENSG00000005059 ENSG00000168491	CCBE1				
ENSG00000156026 ENSG0000005059 ENSG00000168491		protein coding	NS	NS	13.6
ENSG00000005059 ENSG00000168491	CCDC109A	protein coding	3	3	NS
ENSG00000168491	CCDC109B	protein_coding	3.2	3.2	NS
				-5.2	
	CCDC110	protein_coding	-5.4		NS 2.2
ENSG00000164366	CCDC127	protein_coding	NS	NS	2.2
ENSG00000163492	CCDC141	protein_coding	-3.1	-2.9	-4.4
ENSG00000183978	CCDC56	protein_coding	-2	-2	NS
ENSG00000162069	CCDC64B	protein_coding	-2.5	-2.5	NS
ENSG00000216937	CCDC7	protein_coding	NS	NS	-2.1
ENSG00000091986	CCDC80	protein coding	NS	NS	4.6
ENSG00000031333	CCDC88C	protein_coding	NS	NS	-2.4
	CCDC92		NS		
ENSG00000119242		protein_coding		NS	2.6
ENSG00000040275	CCDC99	protein_coding	2.7	2.5	NS
ENSG00000185972	CCIN	protein_coding	NS	NS	2
ENSG00000110148	CCKBR	protein_coding	-8	-8.3	NS
ENSG00000137077	CCL21	protein coding	NS	NS	-4.9
ENSG00000145386	CCNA2	protein_coding	2.6	2.6	NS
ENSG00000157456	CCNB2	protein coding	5	5.1	NS
ENSG00000157430	CD109	protein_coding	9.2	7.4	23.4
ENSG00000174807	CD248	protein_coding	NS	2.6	18.3
ENSG00000185275	CD24L4	pseudogene	NS	NS	-136.1
ENSG00000103855	CD276	protein_coding	2.5	2.1	5.8
ENSG00000174059	CD34	protein_coding	NS	NS	-4.6
ENSG00000117091	CD48	protein_coding	NS	NS	-2.2
ENSG00000169442	CD52	protein_coding	NS	4.2	NS
ENSG00000143119	CD53	protein_coding	NS	3.4	-9.3
			2.9	3.4	
ENSG00000196352	CD55	protein_coding			NS
ENSG00000116815	CD58	protein_coding	2.5	2.7	NS
ENSG00000135404	CD63	protein_coding	NS	NS	2.3
ENSG00000129226	CD68	protein_coding	3.6	3.6	4.3
ENSG00000019582	CD74	protein_coding	NS	3.3	NS
ENSG00000121594	CD80	protein coding	NS	2.5	NS
ENSG00000066294	CD84	protein_coding	NS	3	NS
ENSG00000000234	CD9		2.6	2.7	NS
		protein_coding			
ENSG00000125810	CD93	protein_coding	NS	NS	-5.4
ENSG00000123146	CD97	protein_coding	NS	2	NS
ENSG00000101224	CDC25B	protein_coding	2.9	2.5	6.3
ENSG00000149798	CDC42EP2	protein_coding	NS	NS	3.5
ENSG00000163171	CDC42EP3	protein_coding	NS	NS	2.6
ENSG00000158985	CDC42SE2	protein_coding	NS	NS	-3.4
ENSG00000031081	CDGAP	protein_coding	2	2	NS
ENSG00000031081		protein_coding		_	143
	CDH1	protein coains	NC	NC	22.2
	001144		NS	NS	-32.3
ENSG00000140937	CDH11	protein_coding	10.5	10	14.5
	CDH11 CDH13	protein_coding protein_coding	10.5 NS		
ENSG00000140937		protein_coding	10.5	10	14.5
ENSG00000140937 ENSG00000140945	CDH13	protein_coding protein_coding	10.5 NS	10 NS	14.5 14.1
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736	CDH13 CDH2 CDH23	protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2	10 NS NS -3.1	14.5 14.1 5.6 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038	CDH13 CDH2 CDH23 CDH3	protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4	10 NS NS -3.1 8.2	14.5 14.1 5.6 NS NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776	CDH13 CDH2 CDH23 CDH3 CDH5	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS	10 NS NS -3.1 8.2 NS	14.5 14.1 5.6 NS NS -3.5
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9	10 NS NS -3.1 8.2 NS 5.3	14.5 14.1 5.6 NS NS -3.5
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9	10 NS NS -3.1 8.2 NS 5.3	14.5 14.1 5.6 NS NS -3.5 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS	10 NS NS -3.1 8.2 NS 5.3 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9	10 NS NS -3.1 8.2 NS 5.3	14.5 14.1 5.6 NS NS -3.5 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS	10 NS NS -3.1 8.2 NS 5.3 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG00000100526 ENSG00000185267	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS S.9	10 NS NS -3.1 8.2 NS 5.3 NS NS S.9	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG00000100526 ENSG00000185267 ENSG00000064309	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3	10 NS NS -3.1 8.2 NS 5.3 NS NS S.9	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG00000100526 ENSG00000185267 ENSG00000064309 ENSG00000163624	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS NS 3.9 -3 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS NS 3.9 -3 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG00000100526 ENSG00000185267 ENSG00000064309 ENSG00000163624 ENSG00000079385	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS NS 3.9 -3 NS NS	10 NS NS -3.1 8.2 NS 5.3 NS NS NS 3.9 -3 NS NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG00000100526 ENSG00000185267 ENSG00000163624 ENSG00000079385 ENSG00000105388	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS S6.3	10 NS NS -3.1 8.2 NS 5.3 NS NS NS 3.9 -3 NS NS NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000079385 ENSG00000105388 ENSG00000086548	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7	10 NS NS -3.1 8.2 NS 5.3 NS NS NS 3.9 -3 NS NS 7 58.1 23.2	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000105388 ENSG00000105388 ENSG00000086548 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEBPB	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS NS 2.3 NS 1.3 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000079385 ENSG00000105388 ENSG00000086548	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEBPB CEL	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7	10 NS NS -3.1 8.2 NS 5.3 NS NS NS 3.9 -3 NS NS 7 58.1 23.2	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000105388 ENSG00000105388 ENSG00000086548 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEBPB	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS NS 2.3 NS 1.3 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000062038 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG0000015388 ENSG00000105388 ENSG00000172216 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEBPB CEL	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6
ENSG00000140937 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000107776 ENSG0000013361 ENSG00000108465 ENSG00000124762 ENSG00000124762 ENSG00000185267 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000105388 ENSG00000105388 ENSG00000172216 ENSG00000172216 ENSG00000170835 ENSG00000142615 ENSG00000142615	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEBPB CEL CELA2A CELA2B	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS NS -9.9 -11.6 -9.6	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6 -256.5 -128.2
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170758 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000113361 ENSG00000124762 ENSG00000124762 ENSG0000010526 ENSG00000142762 ENSG00000143624 ENSG00000163624 ENSG00000163624 ENSG00000172316 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000142615 ENSG00000142789	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEBPB CEL CELA2A CELA2B CELA3A	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS NS 6.3 -11.6 -9.6 -6.5	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.6 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170758 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000113361 ENSG00000124762 ENSG00000108267 ENSG0000014762 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG00000172388 ENSG00000172316 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2A CELA3A CELA3B	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.6 NS	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG00000179385 ENSG00000170388 ENSG00000170388 ENSG00000170388 ENSG00000170388 ENSG00000170387 ENSG00000170827	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2A CELA3A CELA3B CELP	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -6.5 -13.2	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG0000015388 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2A CELA3A CELA3B CELP CELSR1	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -5.5 -13.2 2.4	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9 NS
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170756 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG0000010526 ENSG00000163624 ENSG00000163624 ENSG00000105388 ENSG0000015388 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000142615 ENSG00000142615 ENSG00000142789 ENSG00000142789 ENSG00000170827 ENSG00000170827 ENSG00000075275 ENSG00000138778	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2A CELA3B CELA3A CELA3B CELP CELSR1 CENPE	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -5.5 -13.2 2.4 2.7	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9 NS 2.2
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170558 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG00000163624 ENSG0000015388 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2A CELA3A CELA3B CELP CELSR1	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -5.5 -13.2 2.4	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9 NS
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170756 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG0000010526 ENSG00000163624 ENSG00000163624 ENSG00000105388 ENSG0000015388 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000172216 ENSG00000142615 ENSG00000142615 ENSG00000142789 ENSG00000142789 ENSG00000170827 ENSG00000170827 ENSG00000075275 ENSG00000138778	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2A CELA3B CELA3A CELA3B CELP CELSR1 CENPE	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -5.5 -13.2 2.4 2.7	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9 NS 2.2
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170756 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000108465 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG0000015388 ENSG0000015388 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2B CELA3A CELA3B CELP CELSR1 CENPE CENPF	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4 NS 2.7 5.9 2.8	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -6.5 -13.2 2.4 2.7 6	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9 NS
ENSG00000140937 ENSG00000140945 ENSG00000140945 ENSG00000170736 ENSG00000107736 ENSG00000179776 ENSG00000113361 ENSG00000124762 ENSG00000124762 ENSG0000010526 ENSG00000185267 ENSG00000163624 ENSG00000163624 ENSG0000015388 ENSG00000179385 ENSG00000172216	CDH13 CDH2 CDH23 CDH3 CDH5 CDH6 CDK5RAP3 CDKN1A CDKN3 CDNF CDON CDS1 CEACAM1 CEACAM5 CEACAM6 CEBPB CEL CELA2A CELA2B CELA3A CELA3B CELP CELSR1 CENPF	protein_coding protein_coding	10.5 NS NS -3.2 7.4 NS 4.9 NS NS 3.9 -3 NS 6.3 51.7 NS NS -9.9 -11.6 -9.6 -6.5 -7.2 -14.4 NS	10 NS NS -3.1 8.2 NS 5.3 NS NS 3.9 -3 NS NS 7 58.1 23.2 NS -8.8 -10.4 -8.6 NS -6.5 -13.2 2.4 2.7 6 2.8	14.5 14.1 5.6 NS NS -3.5 NS -2.9 6.2 NS NS 4.8 -3 NS -4.9 2.4 -239.6 -256.5 -128.2 -161.7 -99.6 -65.9 NS

FNCC00000130003	CENDO		NC	NC	2.5
ENSG00000138092	CENPO	protein_coding	NS	NS	2.5
ENSG00000174799	CEP135	protein_coding	2	2	NS
ENSG00000143702	CEP170	protein_coding	3.3	3.3	3.5
ENSG00000138180	CEP55	protein coding	3.5	3.6	NS
ENSG00000114107	CEP70	protein_coding	-2.1	NS	-5.1
ENSG00000167123	CERCAM	protein_coding	NS	NS	4.6
ENSG00000243649	CFB	protein_coding	3.5	3.8	NS
ENSG00000000971	CFH	protein_coding	3.2	3.5	NS
ENSG00000244414	CFHR1	protein_coding	NS	2	NS
ENSG00000205403	CFI	protein coding	NS	NS	-5.9
ENSG00000203403	CFL1	protein_coding	2.8	2.7	3.8
ENSG00000165410	CFL2	protein_coding	NS	NS	4.8
ENSG00000001626	CFTR	protein_coding	NS	NS	-131
ENSG00000104818	CGB2	protein_coding	-2.4	-2.3	NS
ENSG00000143375	CGN	protein coding	NS	NS	-2.6
ENSG00000128849	CGNL1	protein coding	NS	NS	-4
ENSG000001288435	CH25H		NS	NS	9.7
		protein_coding			
ENSG00000128965	CHAC1	protein_coding	-5.1	-6	NS
ENSG00000136457	CHAD	protein_coding	-5.2	-5.3	-4.8
ENSG00000171316	CHD7	protein_coding	NS	NS	-4.6
ENSG00000016391	CHDH	protein coding	-2	NS	-3.2
ENSG00000149554	CHEK1	protein_coding	2.6	2.4	4.2
ENSG00000110721	СНКА	protein_coding	NS	NS	-3.2
ENSG00000203668	CHML	protein_coding	2.5	2.6	NS
ENSG00000164695	CHMP4C	protein_coding	NS	NS	-6.4
ENSG00000086065	CHMP5	protein_coding	2.7	2.7	2.5
ENSG00000106069	CHN2	protein_coding	-2.6	-2.4	-10.7
ENSG00000133019	CHRM3	protein_coding	-4.3	-4	-8.2
ENSG00000170175	CHRNB1	protein_coding	-2.2	-2.2	NS
ENSG00000171310	CHST11	protein_coding	4	4.3	NS
ENSG00000122863	CHST3	protein_coding	NS	NS	2.2
ENSG00000154080	CHST9	protein coding	-3.6	-3.3	-11.9
ENSG00000179583	CIITA	protein_coding	NS	3	NS
ENSG000000173303	CIRBP		-2.2	-2.1	-3.2
		protein_coding			
ENSG00000179862	CITED4	protein_coding	-2	-2	NS
ENSG00000136108	CKAP2	protein_coding	4.4	4.2	6
ENSG00000175216	CKAP5	protein_coding	2	NS	2.3
ENSG00000217555	CKLF	protein_coding	3.7	4	NS
ENSG00000123975	CKS2	protein_coding	9.5	8.4	18.6
ENSG00000125575					NS
	CLCNKA	protein_coding	-2.1	-2.1	
ENSG00000163347	CLDN1	protein_coding	NS	NS	-10.8
ENSG00000134873	CLDN10	protein_coding	NS	NS	-20.6
ENSG00000013297	CLDN11	protein_coding	NS	NS	21
ENSG00000066405	CLDN18	protein_coding	NS	14.3	NS
ENSG00000165215	CLDN3	protein_coding	-2.2	-2.1	-3.4
					-3. 4 -4
ENSG00000189143	CLDN4	protein_coding	NS	NS	-
ENSG00000181885	CLDN7	protein_coding	NS	NS	-14.2
ENSG00000110852	CLEC2B	protein_coding	2.7	2.5	NS
ENSG00000069493	CLEC2D	protein coding	3	3.3	NS
ENSG00000213719	CLIC1	protein_coding	2.5	2.5	2.5
ENSG00000169504	CLIC4	protein_coding	2	NS	3.1
ENSG00000105270	CLIP3	protein_coding	NS	NS	4.3
ENSG00000115295	CLIP4	protein_coding	2.1	2	NS
ENSG00000113240	CLK4	protein_coding	NS	NS	-3.4
ENSG00000165959	CLMN	protein coding	NS	NS	-19.3
ENSG00000137392	CLPS	protein_coding	-9.1	-8.1	-253.6
				2	
ENSG00000139182	CLSTN3	protein_coding	NS		NS
ENSG00000122705	CLTA	protein_coding	NS	NS	2
ENSG00000175416	CLTB	protein_coding	2.2	2.2	NS
ENSG00000141367	CLTC	protein_coding	NS	NS	2
ENSG00000140931	CMTM3	protein_coding	3.2	3.2	3.5
ENSG00000091317	CMTM6	protein_coding	2.2	2.2	NS
ENSG00000170293	CMTM8	protein_coding	-2.2	-2.1	-4.3
ENSG00000100528	CNIH	protein_coding	2	2	NS
ENSG00000143771	CNIH4	protein_coding	NS	NS	3.5
ENSG00000142675	CNKSR1	protein_coding	NS	NS	-3.7
ENSG00000153721	CNKSR3	protein_coding	-3	-3	-3.3
ENSG00000064666	CNN2	protein_coding	3.3	2.9	6
ENSG000000166997	CNPY4	protein_coding	NS	NS	3.2
	UNF 14	OLOTEIL COURS	CVI	CVI	3.4
ENSG00000119865					
	CNRIP1	protein_coding	NS	NS	2.8
ENSG00000113003					

ENSG00000108797	CNTNAP1	protein coding	NS	NS	2.7
ENSG00000082438	COBLL1	protein coding	-2.2	-2.2	NS
ENSG00000100473	COCH	protein_coding	-3.4	-3.3	NS
ENSG00000123500	COL10A1	protein_coding	6.7	7.3	NS
ENSG00000111799	COL12A1	protein_coding	10.6	9.7	17.9
ENSG00000108821	COL1A1	protein coding	9.3	9.4	8.6
ENSG00000164692	COL1A2	protein coding	9.2	9.3	8.6
		. = -			
ENSG00000168542	COL3A1	protein_coding	8.3	8.9	NS
ENSG00000187498	COL4A1	protein_coding	3.3	3.5	NS
ENSG00000134871	COL4A2	protein coding	2.8	3	NS
ENSG00000130635	COL5A1	protein_coding	3.1	3.2	2.2
ENSG00000204262	COL5A2	protein_coding	7.2	7.4	5.4
ENSG00000142156	COL6A1	protein_coding	NS	NS	5.6
ENSG00000142173	COL6A2	protein_coding	NS	NS	3.3
ENSG00000163359	COL6A3	protein coding	6.3	6.1	NS
ENSG00000144810	COL8A1	protein coding	6.6	6.9	4.5
ENSG00000158270	COLEC12	protein_coding	NS	NS	8.4
ENSG00000105664	COMP	protein_coding	6.2	6.8	NS
ENSG00000198612	COPS8	protein_coding	NS	NS	2.7
ENSG00000005243	COPZ2	protein_coding	NS	NS	5.4
ENSG00000135469	COQ10A	protein coding	-2	-2.1	NS
ENSG00000145244	CORIN	protein_coding	3.6	3.4	NS
ENSG00000110880	CORO1C	protein_coding	2.6	2.4	4.4
ENSG00000106789	CORO2A	protein_coding	4	4.4	NS
ENSG00000103187	COTL1	protein_coding	2.1	2.1	NS
ENSG00000176340	COX8A		NS	NS	3.2
		protein_coding			
ENSG00000047457	СР	protein_coding	NS	18.9	NS
ENSG00000091704	CPA1	protein_coding	-6.7	NS	-253.9
ENSG00000158516	CPA2	protein coding	-7.7	NS	-534.4
ENSG00000128510	CPA4	protein_coding	NS	-2.1	NS
	CPB1		-6	NS	
ENSG00000153002		protein_coding			-333.1
ENSG00000107864	CPEB3	protein_coding	NS	NS	-2.5
ENSG00000103381	CPPED1	protein_coding	2.5	2.3	NS
ENSG00000021826	CPS1	protein_coding	NS	NS	2.6
ENSG00000121898	CPXM2	protein coding	2.9	2.6	5.1
ENSG00000143320	CRABP2	protein_coding	NS	NS	13.5
ENSG00000095321	CRAT	protein_coding	NS	-2.1	NS
ENSG00000213676	CREBL1	protein_coding	NS	NS	2.2
ENSG00000106113	CRHR2	protein_coding	-2.4	-2.4	NS
ENSG00000103196	CRISPLD2	protein_coding	2.2	2.2	NS
ENSG00000176390					
	CRLF3	protein_coding	2.1	2.1	NS
ENSG00000109846	CRYAB	protein_coding	NS	NS	8.1
ENSG00000172346	CSDC2	protein_coding	-2	-2.1	NS
ENSG00000198223	CSF2RA	protein_coding	NS	2.5	NS
ENSG00000169826	CSGALNACT2	protein_coding	2.7	2.7	NS
ENSG00000033100	CSGLCA-T	protein_coding	NS	NS	2.4
ENSG00000213218	CSH2	protein_coding	-2	-2	NS
ENSG00000164796	CSMD3	protein_coding	-4.4	-4.4	NS
ENSG00000173546	CSPG4	protein coding	NS	NS	4.7
ENSG00000170373	CST1	protein_coding	20.8	23.3	NS
ENSG00000170369	CST2	protein_coding	4.3	4.7	NS
ENSG00000160213	CSTB	protein_coding	2.4	2.3	3.2
ENSG00000205644	CTD-2375G15.1	pseudogene	-2	-2	NS
ENSG00000116761	CTH	protein_coding	-5.1	-5.5	NS
ENSG00000164932	CTHRC1	protein coding	2.3	2.3	NS
ENSG00000169862	CTNND2	protein coding	-4.8	-4.6	-8.2
ENSG00000168925	CTRB1	protein_coding	-6.6	-5.9	-62.4
ENSG00000168928	CTRB2	protein_coding	-8.1	-7.3	-61
ENSG00000162438	CTRC	protein_coding	-12.6	-11.4	-121.4
ENSG00000141086	CTRL	protein_coding	-12.6	-11.4	NS
ENSG00000064601	CTSA	protein_coding	2.3	2.1	4
ENSG00000164733	CTSB	protein_coding	3.4	3.2	5
ENSG00000109861	CTSC	protein_coding	2.3	2.5	NS
ENSG00000196188	CTSE	protein_coding	NS	13	NS
ENSG00000143387	CTSK	protein_coding	8.9	6.4	29.5
ENSG00000135047	CTSL1	protein_coding	NS	NS	6.2
ENSG00000163131	CTSS	protein_coding	NS 2.5	3.8	NS
ENSG00000085733	CTTN	protein_coding	2.5	2.5	2.9
ENSG00000077063	CTTNBP2	protein_coding	-2.5	-2.3	-4.9
ENSG00000143079	CTTNBP2NL	protein_coding	2.8	2.7	3.1
ENSG00000142544	CTU1	protein_coding	-2	-2.1	NS
11000000142344	CIOI	protein_counig	-4	-2.1	INO

ENSG00000138161	CUZD1	protein_coding	-10.4	-9.3	-238.1
ENSG00000154639	CXADR	protein_coding	NS	NS	-16.8
ENSG00000169245	CXCL10	protein_coding	NS	9.7	NS
ENSG00000161921	CXCL16	protein_coding	NS	3.3	NS
ENSG00000189377	CXCL17	protein_coding	NS	NS	-7
ENSG00000121966	CXCR4	protein_coding	NS	4.5	NS
ENSG00000185753	CXorf38	protein coding	2	2.1	NS
ENSG00000166347	CYB5A	protein_coding	-2.4	-2.6	NS
ENSG00000166394	CYB5R2	protein_coding	2.2	2	NS
ENSG00000100243	CYB5R3	protein coding	NS	NS	4.5
ENSG00000165168	CYBB	protein_coding	NS	4.5	-7.6
ENSG00000138061	CYP1B1	protein coding	6.4	5.9	10
ENSG00000135929	CYP27A1	protein_coding	2.5	NS	2.8
ENSG00000213908	CYP2A7P1	pseudogene	NS	-2	NS
ENSG00000108242	CYP2C18	protein_coding	NS	5.8	NS
ENSG00000138115	CYP2C8	protein_coding	NS	NS	-2.4
ENSG00000130649	CYP2E1	protein_coding	-2.2	-2.2	NS
				-2.5	
ENSG00000146233	CYP39A1	protein_coding	-2.5		NS
ENSG00000021461	CYP3A43	protein_coding	-2.2	-2.3	NS
ENSG00000106258	CYP3A5	protein_coding	NS	NS	-10.1
ENSG00000145476	CYP4V2	protein_coding	-2	-2	NS
ENSG00000205795	CYS1	protein_coding	-2	-2	-2.1
ENSG00000008256	CYTH3	protein_coding	2.6	2.4	4.4
ENSG00000100055	CYTH4	protein_coding	NS	2.2	NS
ENSG00000128487	CYTSB	protein_coding	NS	2	NS
ENSG00000165617	DACT1	protein_coding	2.7	2.8	NS
ENSG00000164535	DAGLB	protein coding	NS	NS	2.3
ENSG00000070190	DAPP1	protein_coding	5.2	5.8	NS
ENSG00000078725	DBC1	protein_coding	NS	NS	8.8
ENSG00000113758	DBN1	protein_coding	NS	NS	2.6
ENSG00000164465	DCBLD1	protein_coding	2.5	2.6	NS
ENSG00000057019	DCBLD2	protein coding	3.7	NS	4.7
ENSG00000146038	DCDC2	protein_coding	-5.1	-4.7	-15.4
ENSG00000133083	DCLK1	protein_coding	NS	NS	5
ENSG00000118655	DCLRE1B	protein_coding	NS	NS	2
ENSG00000172795	DCP2	protein_coding	2	2.1	NS
ENSG00000204843	DCTN1	protein_coding	NS	NS	2.3
ENSG00000213722	DDAH2	protein_coding	2	NS	2.5
ENSG00000134574	DDB2	protein_coding	NS	NS	2.6
ENSG00000132437	DDC	protein_coding	-2.5	-2.4	NS
				2.2	
ENSG00000162733	DDR2	protein_coding	2.7		NS
ENSG00000137628	DDX60	protein_coding	NS	4.2	NS
ENSG00000181381	DDX60L	protein_coding	2.9	3.1	NS
ENSG00000164825	DEFB1	protein_coding	NS	NS	-17.8
ENSG00000105339	DENND3	protein coding	2	2.1	NS
ENSG00000105928	DFNA5	protein_coding	2.9	NS	5.8
ENSG00000237517	DGCR5	antisense	-2.2	-2.2	NS
ENSG00000102780	DGKH	protein coding	4	4.3	NS
ENSG00000114956	DGUOK	protein_coding	NS	NS	2.4
ENSG00000116133	DHCR24	protein coding	3.2	3	5.6
ENSG00000172893	DHCR7	protein_coding	NS	NS	5.5
ENSG00000228716	DHFR	protein_coding	2.9	2.9	NS
ENSG00000147202	DIAPH2	protein_coding	2	2	NS
			NS	NS	
ENSG00000139734	DIAPH3	protein_coding			2.6
ENSG00000162595	DIRAS3	protein_coding	-2.1	-2.2	NS
ENSG00000107984	DKK1	protein_coding	16.7	11.9	55.5
ENSG00000155011	DKK2	protein_coding	NS	3.1	24.2
ENSG00000050165	DKK3	protein_coding	3.4	3.1	6.1
ENSG00000126787	DLGAP5	protein_coding	3.7	4	NS
ENSG00000185559	DLK1	protein_coding	-3.4	-3.4	NS
ENSG00000137094	DNAJB5	protein_coding	NS	NS	2.7
ENSG00000108176	DNAJC12	protein_coding	-2	NS	-3.8
ENSG00000138246	DNAJC13	protein_coding	2.1	2	2.7
ENSG00000213918	DNASE1	protein_coding	-7	-6.8	-9.4
ENSG00000130816	DNMT1	protein_coding	2	2	2.1
ENSG00000135905	DOCK10	protein_coding	3.5	3.5	NS
ENSG00000147251	DOCK11	protein_coding	4.4	4.4	NS
ENSG00000134516	DOCK2	protein_coding	NS	4.1	NS
ENSG00000147459		protein_coding	2.5	2.5	NS
	DOCK5				
ENSG00000116641	DOCK7	protein_coding	NS	NS	2.3
ENSG00000107099	DOCK8	protein_coding	NS	NS	-5.4
_1,0000001070707	DOCKO	protein_couning	145	145	J. 4

ENSG00000101134 ENSG00000166171					
ENSG00000166171	DOK5	protein coding	3.7	3.3	6.6
	DPCD	protein coding	NS	NS	2.2
ENSG00000015413	DPEP1	protein_coding	-6.6	-6	-29.4
ENSG00000175497	DPP10	protein_coding	-8	-7.9	NS
ENSG00000197635	DPP4	protein coding	NS	NS	15.5
ENSG00000173852	DPY19L1	protein coding	2.5	2.6	NS
ENSG00000113657	DPYSL3	protein_coding	5.2	5.3	4.1
ENSG00000136048	DRAM1	protein_coding	NS	2	12.4
ENSG00000175550	DRAP1	protein_coding	NS	NS	2.3
ENSG00000134755	DSC2	protein_coding	NS	NS	-10.2
ENSG00000111817	DSE	protein_coding	4.2	3.8	7.3
ENSG00000171451	DSEL	protein_coding	NS	NS	9.4
ENSG00000046604	DSG2	protein coding	NS	NS	-15
	DSP		NS		
ENSG00000096696		protein_coding		NS	-6.6
ENSG00000151914	DST	protein_coding	2.3	2.2	NS
ENSG00000143476	DTL	protein coding	3.4	3.4	NS
ENSG00000134769	DTNA	protein_coding	-4.3	-4.3	-4.1
ENSG00000168393	DTYMK	protein_coding	NS	NS	2.6
ENSG00000175826	DULLARD	protein_coding	NS	NS	2.1
ENSG00000140279	DUOX2	protein coding	NS	13.3	NS
ENSG00000161326	DUSP14	protein coding	NS	NS	9
ENSG00000111266	DUSP16	protein_coding	NS	NS	-3.1
ENSG00000167065	DUSP18	protein_coding	2.5	2.5	2.7
ENSG00000141627	DYM	protein_coding	NS	-2	NS
ENSG00000088986	DYNLL1	protein_coding	NS	NS	2.6
ENSG00000125971			NS	NS	
	DYNLRB1	protein_coding			2.8
ENSG00000146425	DYNLT1	protein_coding	2.9	2.8	3.4
ENSG00000165169	DYNLT3	protein_coding	2.2	2.2	NS
ENSG00000143479	DYRK3	protein coding	NS	NS	4.2
ENSG00000165891	E2F7	protein_coding	NS	NS	2.4
ENSG00000147155	EBP	protein_coding	NS	NS	2.3
ENSG00000145194	ECE2	protein_coding	-2	-2.1	NS
ENSG00000134463	ECHDC3	protein_coding	-2.6	-2.6	NS
ENSG00000143369	ECM1	protein_coding	NS	NS	11.6
ENSG00000114346	ECT2	protein_coding	5.5	5.7	4.1
ENSG00000164176	EDIL3	protein_coding	6.1	6.1	NS
ENSG00000151617	EDNRA	protein coding	7.5	8.2	NS
ENSG00000102189	EEA1	protein coding	NS	NS	3
ENSG00000177685	EFCAB4A	protein_coding	-2.2	-2.2	NS
ENSG00000172638	EFEMP2	protein_coding	NS	2	6.7
ENSG00000184349	EFNA5	protein_coding	5.9	6	5.1
ENSG00000125266	EFNB2	protein_coding	3.9	4.2	NS
		protein_coung			
ENISCONONO100942	EEC	protoin coding			
ENSG00000100842	EFS	protein_coding	NS	NS	2.1
ENSG00000138798	EGF	protein_coding	NS -16.3	NS -15.6	2.1 -25.6
			NS	NS	2.1
ENSG00000138798	EGF EGLN3	protein_coding protein_coding	NS -16.3 NS	NS -15.6 5.4	2.1 -25.6 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047	EGF EGLN3 EHD1	protein_coding protein_coding protein_coding	NS -16.3 NS NS	NS -15.6 5.4 NS	2.1 -25.6 NS 2.8
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422	EGF EGLN3 EHD1 EHD2	protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS	NS -15.6 5.4 NS NS	2.1 -25.6 NS 2.8 5.8
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016	EGF EGLN3 EHD1 EHD2 EHD3	protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS	NS -15.6 5.4 NS NS	2.1 -25.6 NS 2.8 5.8 3.7
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422	EGF EGLN3 EHD1 EHD2 EHD3 EHF	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS	NS -15.6 5.4 NS NS	2.1 -25.6 NS 2.8 5.8
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016	EGF EGLN3 EHD1 EHD2 EHD3	protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS	NS -15.6 5.4 NS NS	2.1 -25.6 NS 2.8 5.8 3.7
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS	NS -15.6 5.4 NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS -2.6 NS	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS NS NS NS NS -2.6 NS NS	NS -15.6 5.4 NS NS NS NS NS -2.6 NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000187840	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS NS NS -2.6 NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS -2.6 NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000187840 ENSG00000075151	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4A3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS NS -2.6 NS NS NS -2.1	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000187840 ENSG00000075151 ENSG00000163435	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4A3 EIF4EBP1 EIF4G3 ELF3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS -2.6 NS NS NS -2.1 2 NS	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS NS NS NS NS NS NS NS NS -2.2	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000147840 ENSG00000163435 ENSG00000102034	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4A3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS -2.6 NS NS NS -2.1 2 NS 3.4	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000187840 ENSG00000075151 ENSG00000163435	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4A3 EIF4EBP1 EIF4G3 ELF3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS -2.6 NS NS NS -2.1 2 NS	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS NS NS NS NS NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG000001551 ENSG00000163435 ENSG00000102034 ENSG00000111145	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS -2.6 NS NS S -2.1 2 NS 3.4 2.8	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS NS -2.2 NS NS 3.3	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000163435 ENSG00000163435 ENSG00000102034 ENSG00000111145 ENSG00000066322	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF4A2 EIF4A3 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS NS -2.2 NS NS -2.2 NS NS -2.2 2	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000066322 ENSG00000197977	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF4A2 EIF4A3 EIF4A3 EIF4EBP1 EIF4G3 ELF4 ELK3 ELOVL1 ELOVL2	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S NS -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS -2.2 NS NS -2.2 2 -2.7	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000145435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000102034 ENSG00000111145 ENSG00000066322 ENSG00000197977 ENSG00000012660	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EB91 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8 2.5	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS -2.2 NS NS -2.2 2 -2.7 2.3	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000066322 ENSG00000197977	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF4A2 EIF4A3 EIF4A3 EIF4EBP1 EIF4G3 ELF4 ELK3 ELOVL1 ELOVL2	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S NS -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8	NS -15.6 5.4 NS NS NS NS NS NS NS -2.6 NS NS -2.2 NS NS -2.2 2 -2.7	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000141543 ENSG00000145435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000102034 ENSG00000111145 ENSG00000066322 ENSG00000197977 ENSG00000012660	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EB91 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8 2.5	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS -2.2 NS NS -2.2 2 -2.7 2.3	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG000001156976 ENSG00000141543 ENSG00000141543 ENSG0000014543 ENSG0000014543 ENSG00000111145 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000111145 ENSG00000111145 ENSG00000111145 ENSG00000111145 ENSG00000111145 ENSG00000111145 ENSG00000012660 ENSG00000170522 ENSG000001164181	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL6 ELOVL7	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS -2.6 NS NS -2.7 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS S -2.2 NS NS -2.2 NS NS NS -2.2 NS NS NS NS -2.2	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS -3.2 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000112071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000156976 ENSG00000156976 ENSG00000113840 ENSG00000156976 ENSG00000114144 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000113145 ENSG00000113145 ENSG00000113145 ENSG00000113145 ENSG00000113145 ENSG00000113145 ENSG00000113145	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL6 ELOVL7 EMB	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS -2.6 NS NS -2.7 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS S -2.2 NS NS -2.2 NS NS 3.3 2.6 2 -2.7 2.3 NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000112071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000147543 ENSG00000187840 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000113252 ENSG00000112660 ENSG00000170571 ENSG00000170571 ENSG00000132205	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL6 ELOVL7 EMB EMILIN2	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS S -2.2 NS NS -2.2 NS NS 3.3 2.6 2 -2.7 2.3 NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000187840 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000112034 ENSG00000112034 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000165521	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL5 ELOVL6 ELOVL7 EMB EMILIN2 EML5	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS -2.6 NS NS -2.7 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS S -2.2 NS S S -2.2 NS NS -2.2 NS NS 3.3 2.6 2 -2.7 2.3 NS NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS 3.7 -2.1
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000112071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000147543 ENSG00000187840 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000112034 ENSG00000113252 ENSG00000112660 ENSG00000170571 ENSG00000170571 ENSG00000132205	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL6 ELOVL7 EMB EMILIN2	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS S -2.2 NS NS -2.2 NS NS 3.3 2.6 2 -2.7 2.3 NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000187840 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000111145 ENSG00000112034 ENSG00000112034 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000163435 ENSG00000165521	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL5 ELOVL6 ELOVL7 EMB EMILIN2 EML5 EMP2	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS -2.6 NS NS -2.7 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS NS	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS S -2.2 NS S S -2.2 NS NS -2.2 NS NS 3.3 2.6 2 -2.7 2.3 NS NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS 3.7 -2.1
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000024422 ENSG0000013016 ENSG00000135373 ENSG00000114784 ENSG00000128829 ENSG00000156976 ENSG00000141543 ENSG00000147541 ENSG00000163435 ENSG00000163435 ENSG00000111145 ENSG00000112660 ENSG00000170571 ENSG0000012660 ENSG00000170571 ENSG00000132205 ENSG00000132205 ENSG00000165521 ENSG00000142227	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A3 EIF4EBP1 EIF4G3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL6 ELOVL7 EMB EMILIN2 EML5 EMP2 EMP3	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS S -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS 3.2 NS NS 3.2 NS NS 3.4	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS -2.2 NS S -2.2 NS S S 3.3 2.6 2 -2.7 2.3 NS NS NS 3.5 NS NS S 2.4 2.5	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS 3.7 -2.1 NS
ENSG00000138798 ENSG00000129521 ENSG00000110047 ENSG00000110047 ENSG00000013016 ENSG00000135373 ENSG00000114784 ENSG00000172071 ENSG00000156976 ENSG00000141543 ENSG00000141543 ENSG00000147541 ENSG00000163435 ENSG00000163435 ENSG00000163422 ENSG0000012034 ENSG0000012034 ENSG0000012034 ENSG0000012034 ENSG0000016322 ENSG00000165521 ENSG00000132205 ENSG00000165521 ENSG00000165521	EGF EGLN3 EHD1 EHD2 EHD3 EHF EIF1B EIF2AK3 EIF2AK4 EIF4A2 EIF4A3 EIF4EBP1 EIF4G3 ELF3 ELF4 ELK3 ELOVL1 ELOVL2 ELOVL5 ELOVL5 ELOVL6 ELOVL7 EMB EMILIN2 EML5 EMP2	protein_coding protein_coding	NS -16.3 NS NS NS NS NS NS NS NS -2.6 NS NS S -2.1 2 NS 3.4 2.8 2.2 -2.8 2.5 NS NS NS NS NS NS NS -2.1	NS -15.6 5.4 NS NS NS NS NS NS -2.6 NS NS -2.2 NS S -2.2 NS NS -2.2 NS NS 3.3 2.6 2 -2.7 2.3 NS NS NS NS NS NS NS NS NS NS NS NS NS	2.1 -25.6 NS 2.8 5.8 3.7 -32.9 2.1 NS 2.6 -2.9 2.5 NS 2.5 -9.6 3.9 4.1 NS -3.2 NS 3.1 -8.1 NS 3.7 -2.1 NS

ENSG00000171617	ENC1	protein_coding	NS	2	NS
ENSG00000149218	ENDOD1	protein_coding	2.6	2.7	NS
ENSG00000106991	ENG	protein_coding	2.2	NS	3
ENSG0000074800		protein_coding	2.8	2.7	NS
	ENO1				
ENSG00000136960	ENPP2	protein_coding	NS	NS	11
ENSG00000138185	ENTPD1	protein_coding	NS	3.9	NS
ENSG00000168032	ENTPD3	protein coding	-3.4	-3.2	NS
ENSG00000100032				-4.3	
	EPB41L4B	protein_coding	-4.5		-7.8
ENSG00000115109	EPB41L5	protein_coding	-2.1	-2	-3.6
ENSG00000158856	EPB49	protein coding	NS	NS	-2.3
ENSG00000119888	EPCAM	protein_coding	NS	NS	-60.8
ENSG00000044524	EPHA3	protein_coding	NS	3.4	NS
ENSG00000116106	EPHA4	protein_coding	3.4	3.6	2
ENSG00000143819	EPHX1	protein_coding	-3.1	-3.4	NS
ENSG00000120915	EPHX2	protein_coding	-4.2	-4	-6.9
ENSG00000151491	EPS8	protein_coding	2.4	2.4	NS
ENSG00000133106	EPSTI1	protein_coding	3.9	4.3	NS
ENSG00000164307	ERAP1	protein_coding	2.1	2.2	NS
ENSG00000065361	ERBB3	protein_coding	NS	NS	-5
ENSG00000178568	ERBB4	protein_coding	-2.7	-2.6	-3
ENSG00000178607	ERN1	protein_coding	-3.4	-3.3	NS
ENSG00000197930	ERO1L	protein_coding	2.7	2.8	NS
ENSG00000086619	ERO1LB	protein_coding	-8.9	-8.1	-31.9
ENSG00000139055	ERP27	protein_coding	-15	-13.5	-166.5
ENSG00000116285	ERRFI1	protein_coding	-2.9	-2.7	NS
ENSG00000104413	ESRP1	protein_coding	NS	NS	-22.8
ENSG00000103067	ESRP2	protein_coding	NS	NS	-5.2
ENSG00000196482	ESRRG	protein_coding	-4.3	-4.1	-6.1
ENSG00000120705	ETF1	protein_coding	NS	NS	2.1
ENSG00000105755	ETHE1	protein_coding	NS	NS	2.9
ENSG00000139163	ETNK1	protein_coding	NS	2.1	NS
ENSG00000134954	ETS1	protein_coding	2.2	2.2	NS
ENSG00000157557	ETS2	protein_coding	NS	2	NS
ENSG00000006468	ETV1	protein_coding	3.4	3.5	NS
ENSG00000126860	EVI2A	protein_coding	2.5	2.5	NS
ENSG00000185862	EVI2B	protein_coding	2.6	2.7	NS
ENSG00000070367	EXOC5	protein_coding	NS	NS	2
ENSG00000138190	EXOC6	protein_coding	NS	NS	-5.2
ENSG00000182197	EXT1	protein_coding	NS	NS	4.1
ENSG00000012232	EXTL3	protein_coding	NS	NS	2.5
ENSG00000104313	EYA1	protein_coding	NS	NS	4.4
ENSG00000088926	F11	protein_coding	-11.3	-10.5	-29.2
ENSG00000158769	F11R	protein_coding	NS	NS	-11.3
					-10.4
ENSG00000124491	F13A1	protein_coding	NS	NS	
ENSG00000181104	F2R	protein_coding	6.1	6.6	NS
ENSG00000164220	F2RL2	protein_coding	8.4	8.9	4.5
ENSG00000185010	F8	protein_coding	-8.7	-8.8	NS
ENSG00000117480	FAAH	protein_coding	NS	NS	-2.2
ENSG00000121769	FABP3	protein_coding	NS	4.4	46.4
ENSG00000149485	FADS1	protein_coding	NS	NS	10.4
ENSG00000134824	FADS2	protein_coding	4.5	3.1	15.9
ENSG00000221968	FADS3	protein_coding	NS	NS	3.5
ENSG00000162636	FAM102B	protein_coding	2.7	2.9	NS
ENSG00000145569	FAM105A	protein_coding	NS	NS	-12
ENSG00000168309	FAM107A	protein_coding	-2.3	-2.3	NS
ENSG00000129968	FAM108A1	protein_coding	-2	-2	NS
ENSG00000169122	FAM110B	protein_coding	NS	NS	2.9
ENSG00000184731	FAM110C	protein_coding	-2.4	-2.3	-2.9
ENSG00000189057	FAM111B	protein_coding	3.3	3.5	NS
ENSG00000197712	FAM114A1	protein_coding	2.1	2	3.1
ENSG00000197712	FAM118B	protein_coding	2.1	2	NS
ENSG00000134590	FAM127A	protein_coding	2.2	NS	4.8
ENSG00000203950	FAM127B	protein_coding	NS	NS	3.1
ENSG00000135842	FAM129A	protein_coding	-3.6	-3.7	NS
ENSG00000109794	FAM149A	protein_coding	-2	-2	-2.5
ENSG00000189292	FAM150B	protein_coding	-3.3	-3.1	-4.5
ENSG00000164142	FAM160A1	protein_coding	-3.3	-3	-17
ENSG00000104427	FAM164A	protein_coding	2.1	2	2.3
ENSG00000144369	FAM171B	protein_coding	NS	NS	3.9
				-2.7	
ENSG00000185442	FAM174B	protein_coding	-2.8		-4
ENSG00000189320	FAM180A	protein_coding	NS	NS	13.2

ENSG00000222011	FAM185A	protein_coding	NS	NS	-2.1
ENSG00000184305	FAM190A	protein coding	NS	NS	-3.9
ENSG00000164125	FAM198B	protein coding	3.4	3.4	NS
ENSG00000104125			2.9	2.5	
	FAM20A	protein_coding			NS
ENSG00000178033	FAM26E	protein_coding	3.8	3.4	7.1
ENSG00000154864	FAM38B	protein_coding	3.3	3.3	NS
ENSG00000183844	FAM3B	protein coding	NS	NS	-47.8
ENSG00000119979	FAM45A	protein_coding	NS	NS	5.2
ENSG00000183508	FAM46C	protein_coding	-3	-2.7	-13
ENSG00000189157	FAM47E	protein_coding	-2.6	-2.5	-3.9
ENSG00000153310	FAM49B	protein_coding	2.4	2.6	NS
ENSG00000071859	FAM50A	protein_coding	NS	NS	2.2
ENSG00000144815	FAM55C	protein coding	NS	NS	3.4
ENSG00000167695	FAM57A	protein_coding	NS	NS	3.4
ENSG00000128923	FAM63B	protein_coding	2.3	2.4	NS
ENSG00000039523	FAM65A	protein coding	NS	NS	2.8
ENSG00000154511	FAM69A	protein_coding	4	3.2	10.7
ENSG00000133477	FAM83F	protein_coding	NS	NS	-2
ENSG00000166595	FAM96B	protein_coding	NS	NS	2.3
ENSG00000144554	FANCD2	protein_coding	2.2	2.4	NS
ENSG00000140525	FANCI	protein coding	2.7	2.8	NS
ENSG00000115392	FANCL	protein coding	NS	NS	-3.2
ENSG00000078098	FAP	protein_coding	9	7.6	NS
ENSG00000064763	FAR2	protein_coding	4.8	4.9	3.7
ENSG00000026103	FAS	protein_coding	3.1	2.9	5.1
ENSG00000169710	FASN	protein_coding	NS	NS	3.7
	FAT1		2.7	2.6	3.1
ENSG00000083857		protein_coding			
ENSG00000196159	FAT4	protein_coding	2.6	2.3	5.8
ENSG00000077942	FBLN1	protein_coding	NS	NS	5.9
ENSG00000163520	FBLN2	protein_coding	NS	NS	8.2
ENSG00000140092	FBLN5	protein_coding	NS	NS	3.5
ENSG00000166147	FBN1	protein_coding	9.2	8.6	13.8
ENSG00000138829	FBN2	protein_coding	NS	NS	16
ENSG00000165140	FBP1	protein_coding	NS	NS	-6.3
ENSG00000183580	FBXL7	protein coding	NS	NS	5.4
ENSG00000214050	FBXO16	protein coding	-2.3	-2.2	NS
ENSG00000116661	FBXO2	protein_coding	-2.1	-2	NS
ENSG00000156804	FBXO32	protein_coding	6.4	6	10
ENSG00000178974	FBXO34	protein_coding	2	2.1	NS
ENSG00000164049	FBXW12	protein_coding	-3.8	-3.8	NS
ENSG00000158869	FCER1G	protein_coding	NS	4	NS
ENSG00000119616	FCF1	protein_coding	2.1	2	NS
ENSG00000143226	FCGR2A	protein_coding	NS	3.1	NS
ENSG00000072694	FCGR2B	protein_coding	NS	3.1	NS
ENSG00000066926	FECH	protein_coding	NS	NS	2.2
ENSG00000101311	FERMT1	protein_coding	NS	6.7	NS
ENSG00000149781	FERMT3	protein_coding	NS	2.2	NS
ENSG00000149557	FEZ1	protein_coding	NS	NS	6.2
ENSG00000102302	FGD1	protein coding	NS	NS	2.4
ENSG00000139132	FGD4	protein coding	NS	NS	-3.4
ENSG00000153132	FGD5	protein_coding	NS	2.3	
					NS
ENSG00000180263	FGD6	protein_coding	NS	2.8	NS
ENSG00000113578	FGF1	protein_coding	NS	NS	5.2
ENSG00000138675	FGF5	protein_coding	NS	NS	13.9
ENSG00000140285	FGF7	protein_coding	NS	NS	13.5
ENSG00000140203	FGF7P2	pseudogene	NS	NS	4.4
		, -			
ENSG00000077782	FGFR1	protein_coding	NS	-2.2	NS
ENSG00000066468	FGFR2	protein_coding	NS	NS	-6.6
ENSG00000068078	FGFR3	protein coding	-3.2	-3.1	NS
ENSG00000127418	FGFRL1	protein_coding	NS	-2	NS
ENSG00000104760	FGL1	protein_coding	-14.2	-13.1	NS 2.0
ENSG00000115641	FHL2	protein_coding	3.5	3.5	3.8
ENSG00000183386	FHL3	protein_coding	NS	NS	2.1
ENSG00000172500	FIBP	protein_coding	NS	NS	2.6
ENSG00000198855	FICD	protein_coding	-2.3	-2.5	NS
ENSG00000141756	FKBP10	protein_coding	3	2.7	5.5
ENSG00000134285	FKBP11	protein_coding	-3.1	-3.2	NS
ENSG00000106080	FKBP14	protein_coding	NS	NS	3.5
ENSG00000088832	FKBP1A	protein_coding	NS	NS	2.2
ENSG00000096060	FKBP5	protein_coding	NS	NS	-14.4
ENSG00000196924	FLNA	protein_coding	3.7	3.4	NS

ENSG00000128591	FLNC	protein_coding	NS	NS	6.7
ENSG00000161791	FMNL3	protein coding	3.3	3.5	NS
ENSG00000122176	FMOD	protein_coding	2.2	2.1	NS
ENSG00000115414	FN1	protein coding	12.9	12.5	16.8
				-2	
ENSG00000167363	FN3K	protein_coding	NS		NS
ENSG00000187239	FNBP1	protein_coding	2.2	2.2	NS
ENSG00000164694	FNDC1	protein coding	6.1	6.4	NS
ENSG00000175592	FOSL1	protein_coding	NS	NS	4.1
ENSG00000125798	FOXA2	protein_coding	-2.2	-2.1	-2.7
ENSG00000111206	FOXM1	protein_coding	NS	NS	3.4
ENSG00000128573	FOXP2	protein_coding	NS	-2.2	NS
ENSG00000164946	FREM1	protein coding	NS	NS	-5
ENSG00000107130	FREQ	protein_coding	NS	NS	5
ENSG00000225899	FRG2B	protein_coding	-2.3	-2.2	NS
ENSG00000111816	FRK	protein_coding	NS	NS	-3.3
ENSG00000139926	FRMD6	protein_coding	4.4	3.3	13.1
ENSG00000156869	FRRS1	protein_coding	3.3	3.4	NS
ENSG00000075618	FSCN1	protein_coding	2.6	2.3	5.7
ENSG00000134363	FST	protein_coding	NS	NS	15.5
ENSG00000163430	FSTL1	protein_coding	4.3	4	6.5
ENSG00000165775	FUNDC2	protein_coding	NS	-2	NS
ENSG00000174951	FUT1	protein_coding	-2.3	-2.3	NS
ENSG00000196968	FUT11	protein_coding	2.3	2.3	2.9
ENSG00000176920	FUT2	protein_coding	4.2	4.6	NS
ENSG00000137731	FXYD2	protein_coding	-3	NS	-7.7
ENSG00000089356	FXYD3	protein coding	NS	4.6	NS
ENSG00000089327					
	FXYD5	protein_coding	3.1	2.9	NS
ENSG00000137726	FXYD6	protein_coding	NS	NS	-3.7
ENSG00000082074	FYB	protein_coding	NS	4.9	NS
ENSG00000010810	FYN	protein_coding	2.1	2	NS
ENSG00000163251	FZD5	protein_coding	NS	NS	-3.7
ENSG00000160211	G6PD	protein_coding	NS	NS	5.1
ENSG00000033327	GAB2	protein_coding	NS	NS	2
ENSG00000136928	GABBR2	protein_coding	NS	NS	2.4
ENSG00000116717	GADD45A	protein_coding	2.3	2.1	3.5
ENSG00000197093	GAL3ST4	protein_coding	NS	NS	2.3
ENSG00000054983	GALC	protein_coding	2	2.2	NS
ENSG00000141012	GALNS	protein_coding	NS	NS	2.1
ENSG00000164574	GALNT10	protein_coding	2.5	2.5	NS
ENSG00000115339	GALNT3	protein_coding	NS	NS	-8.6
ENSG00000136542	GALNT5	protein_coding	11.7	11.5	13.7
			NS		
ENSG00000131386	GALNTL2	protein_coding		NS	4.3
ENSG00000130005	GAMT	protein_coding	-3.3	-3.5	NS
ENSG00000127688	GAN	protein_coding	NS	2	NS
ENSG00000111640	GAPDH	protein_coding	2.3	2.2	2.8
ENSG00000148935	GAS2	protein_coding	-5.1	-4.8	NS
			2		
ENSG00000139354	GAS2L3	protein_coding		2	NS
ENSG00000136574	GATA4	protein_coding	-2.8	-2.7	NS
ENSG00000141448	GATA6	protein coding	NS	NS	-2.2
ENSG00000171766	GATM	protein_coding	-5.6	-5	-181.4
ENSG00000160844	GATS	protein_coding	-2.3	-2.2	NS
ENSG00000177628	GBA	protein_coding	NS	NS	5.9
ENSG00000160766	GBAP	pseudogene	NS	NS	4
ENSG00000114480	GBE1	protein coding	NS	NS	5.5
		. = -			
ENSG00000117228	GBP1	protein_coding	3.8	3.8	NS
ENSG00000162645	GBP2	protein_coding	5.5	6	NS
ENSG00000117226	GBP3	protein_coding	3.8	4	NC
					NS
ENSG00000162654	GBP4	protein_coding	NS	4.5	NS
ENSG00000145321	GC	protein_coding	NS	NS	-20.1
ENSG00000115271	GCA	protein_coding	NS	NS	-6.7
ENSG00000100116	GCAT	protein_coding	-2.8	-2.9	NS
ENSG00000115263	GCG	protein_coding	NS	NS	-146.6
ENSG00000187210	GCNT1	protein_coding	2.8	2.9	NS
ENSG00000176928	GCNT4	protein_coding	-2.4	-2.7	NS
ENSG00000104381	GDAP1	protein_coding	-2.2	-2.2	-3.4
ENSG00000107623	GDF10	protein_coding	-2	-2.1	NS
ENSG00000125965		protein_coding	NS	NS	2.7
	GDF5				
ENSG00000102886	GDPD3	protein_coding	2.7	2.9	NS
ENSG00000164949	GEM	protein_coding	3.8	3.9	NS
ENSG00000152147	GEMIN6	protein_coding	NS	NS	2.5
ENSG00000142252	GEMIN7	protein_coding	NS	NS	2
		0			

ENSG00000103365	GGA2	protein coding	NS	NS	-2.1
ENSG00000099998	GGT5	protein coding	NS	2.1	NS
ENSG00000167741	GGT6	protein_coding	-2.3	-2.3	NS
ENSG00000106560	GIMAP2	protein_coding	NS	2.7	NS
ENSG00000101003	GINS1	protein coding	NS	NS	2.1
ENSG00000137960	GIPC2		NS	NS	-7.2
		protein_coding			
ENSG00000152661	GJA1	protein_coding	NS	NS	8.4
ENSG00000165474	GJB2	protein_coding	3.9	4.2	NS
ENSG00000182963	GJC1	protein_coding	2.6	2.3	4.9
ENSG00000176402	GJC3	protein_coding	-2.3	-2.3	NS
ENSG00000165113	GKAP1	protein_coding	-2	-2	NS
ENSG00000149328	GLB1L2	protein_coding	NS	NS	-3.1
ENSG00000138604	GLCE	protein coding	2	2	NS
ENSG00000074047	GLI2	protein_coding	2.5	2.5	NS
ENSG00000106571	GLI3	protein_coding	3.8	3	11
ENSG00000139278	GLIPR1	protein coding	3.3	3	NS
	GLIPR2		2.7	NS	5
ENSG00000122694		protein_coding			
ENSG00000112164	GLP1R	protein_coding	-2.6	-2.6	-2.8
ENSG00000173221	GLRX	protein_coding	3.9	3.8	NS
ENSG00000118990	GLRXP3	pseudogene	NS	NS	2
ENSG00000135423	GLS2	protein_coding	-3.9	-3.9	-4
ENSG00000130309	GLT25D1	protein_coding	2.6	2.4	3.8
ENSG00000120820	GLT8D2	protein_coding	3.1	NS	6.1
ENSG00000112312	GMNN	protein coding	-4.7	-4.7	NS
ENSG00000137198	GMPR	protein_coding	-2.7	-3	NS
ENSG00000120063	GNA13	protein_coding	2	2	NS
ENSG00000060558	GNA15	protein_coding	NS	2.8	NS
ENSG00000114353	GNAI2	protein_coding	NS	NS	2
ENSG00000114450	GNB4	protein_coding	5	4.8	6.5
ENSG00000127920	GNG11	protein_coding	NS	NS	2.3
ENSG00000172380	GNG12	protein_coding	NS	NS	2.2
ENSG00000133136	GNG5P2	protein_coding	2.2	2.1	NS
ENSG00000124713	GNMT	protein_coding	-19.5	-19.7	-17.6
ENSG00000113552	GNPDA1	protein_coding	2	NS	4.5
ENSG00000111670	GNPTAB	protein coding	2.1	NS	3.8
ENSG00000135677	GNS	protein_coding	2.3	2.2	3.3
ENSG00000215252	GOLGA8B	protein_coding	-5.1	-4.7	-23.9
ENSG00000173905	GOLIM4	protein_coding	2.4	2.5	NS
ENSG00000135052	GOLM1	protein_coding	NS	2.6	NS
ENSG00000174567	GOLT1A	protein_coding	NS	NS	-2.2
ENSG00000047932	GOPC	protein_coding	NS	NS	2.1
ENSG00000169347	GP2	protein_coding	-10	-8.9	-232.7
ENSG00000183098	GPC6	protein_coding	3.3	3.2	NS
ENSG00000115159	GPD2	protein_coding	2.3	2.4	NS
ENSG00000164850	GPER	protein_coding	NS	NS	2.5
ENSG00000149735	GPHA2	protein coding	-9.1	-8.7	NS
ENSG00000105220					
	GPI	protein_coding	2.1	2.1	NS
ENSG00000136235	GPNMB	protein_coding	4.9	4.1	11.5
ENSG00000183671	GPR1	protein coding	NS	NS	5.1
ENSG00000153292	GPR110	protein_coding	NS	7.4	NS
ENSG00000069122	GPR116	protein_coding	NS	NS	-5.1
ENSG00000020181	GPR124	protein_coding	2.4	2.1	4.7
ENSG00000077585	GPR137B	protein_coding	4.5	4.5	4.8
ENSG00000166073	GPR176	protein_coding	NS	NS	8.3
ENSG00000169508	GPR183	protein_coding	NS	3.5	NS
ENSG00000013588	GPRC5A	protein_coding	12.6	13.9	NS
ENSG00000170412	GPRC5C	protein_coding	-2.1	-2	NS
ENSG00000185477	GPRIN3	protein_coding	NS	NS	-6.7
ENSG00000121957	GPSM2	protein_coding	4.4	3.8	8.5
ENSG00000166123	GPT2	protein_coding	-10.6	-10.5	-11.4
ENSG00000176153	GPX2	protein_coding	NS	13.8	NS
ENSG00000176133	GPX8	protein_coding	5.7	4.9	11.7
ENSG00000023171	GRAMD1B	protein_coding	3.5	3.6	2.7
ENSG00000178075	GRAMD1C	protein_coding	-2.7	-2.5	-7.1
ENSG00000155324	GRAMD3	protein_coding	2.3	2	5.1
ENSG00000106070	GRB10		-2.6	-2.6	NS
		protein_coding			
ENSG00000115290	GRB14	protein_coding	-4.5	-4.2	-8.7
ENSG00000166923	GREM1	protein_coding	17.5	13.3	50.9
ENSG00000180875	GREM2	protein_coding	NS	NS	5.2
ENSG00000083307	GRHL2	protein_coding	NS	NS	-7.1
ENSG00000178719	GRINA	protein_coding	NS	NS	3.2

ENSG00000137878	GRINL1A	protein_coding	NS	NS	-3.9
ENSG00000160007	GRLF1	protein_coding	NS	NS	2.1
ENSG00000030582	GRN	protein_coding	2.3	2.1	3.9
ENSG00000126010	GRPR	protein_coding	-11.8	-12.3	NS
ENSG00000082701	GSK3B	protein_coding	NS	NS	2.9
ENSG00000100983	GSS	protein_coding	2.1	2	NS
ENSG00000244067	GSTA2	protein coding	-19.3	-18.7	NS
ENSG00000174156	GSTA3	protein_coding	-2.5	-2.6	NS
ENSG00000084207	GSTP1	protein_coding	2	2	2
ENSG00000185068	GTF2H5	protein coding	NS	NS	3.6
ENSG00000138472	GUCA1C	protein_coding	-16.6	-16.3	NS
ENSG00000164116	GUCY1A3	protein_coding	NS	NS	-8.1
ENSG00000165905	GYLTL1B	protein coding	NS	NS	-2.2
ENSG00000136732	GYPC	protein_coding	NS	NS	2.7
ENSG00000162882	HAAO	protein_coding	NS	NS	-2.1
ENSG00000130956	HABP4	protein coding	NS	NS	2.7
ENSG00000140511	HAPLN3	protein_coding	2.1	2	NS
ENSG00000135077	HAVCR2	protein_coding	NS	2.9	NS
ENSG00000172534	HCFC1	protein_coding	NS	NS	2.4
ENSG00000180353	HCLS1	protein_coding	NS	2.5	NS
ENSG00000164588	HCN1	protein_coding	-2.3	-2.4	NS
ENSG00000206337	HCP5	processed_transcript	NS	3.2	NS
ENSG00000116478	HDAC1	protein_coding	NS	2	NS
ENSG00000129493	HEATR5A	protein_coding	NS	NS	2.4
ENSG00000089472	HEPH	protein_coding	4.5	4.4	4.8
ENSG00000138646	HERC5	protein_coding	NS	NS	-2.5
ENSG00000213614	HEXA	protein_coding	2.2	NS	4
ENSG00000113924	HGD	protein_coding	NS	NS	-18.8
ENSG00000152804	HHEX	protein_coding	NS	NS	-3
ENSG00000148110	HIATL1	protein_coding	NS	NS	2.4
ENSG00000100644	HIF1A	protein_coding	2.5	2.4	3.6
ENSG00000127946	HIP1	protein_coding	2	2.1	NS
ENSG00000184357	HIST1H1B	protein_coding	3.5	3.6	NS
ENSG00000180573	HIST1H2AC	protein_coding	2.1	2.1	NS
ENSG00000168274	HIST1H2AE	protein_coding	3.3	3.4	2.8
ENSG00000196747	HIST1H2AI	protein_coding	2.1	2.1	NS
ENSG00000158373	HIST1H2BD	protein_coding	2.4	2.5	NS
ENSG00000197846		protein_coding	4.3	4.5	NS
	HIST1H2BF				
ENSG00000187990	HIST1H2BG	protein_coding	5.7	6.1	NS
ENSG00000197459	HIST1H2BH	protein_coding	3	3.1	NS
ENSG00000196374	HIST1H2BM		7.9	8.3	NS
		protein_coding			
ENSG00000124693	HIST1H3B	protein_coding	10.7	11.4	NS
ENSG00000197409	HIST1H3D	protein_coding	7.9	8.1	NS
ENSG00000196966	HIST1H3E	protein_coding	NS	NS	2.7
ENSG00000178458	HIST1H3G	pseudogene	6.9	7.1	NS
ENSG00000203813	HIST1H3H	protein_coding	8.5	8.9	NS
ENSG00000182572	HIST1H3I	protein_coding	6.3	6.4	NS
ENSG00000197153	HIST1H3J	protein_coding	2.9	3	NS
ENSG00000124529	HIST1H4B	protein coding	-2.2	-2.2	NS
ENSG00000158406	HIST1H4H	protein_coding	3.2	3	NS
				2.2	
ENSG00000198558	HIST1H4L	protein_coding	2.2		NS
ENSG00000203812	HIST2H2AA4	protein_coding	4.7	4.6	NS
ENSG00000184270	HIST2H2AB	protein_coding	3	3.1	NS
ENSG00000184678	HIST2H2BE	protein_coding	2.8	2.8	NS
ENSG00000156515	HK1	protein_coding	2.5	2.3	3.4
ENSG00000206503	HLA-A	protein_coding	3.1	3.2	NS
ENSG00000234745	HLA-B	protein coding	2.5	2.7	NS
ENSG00000204525	HLA-C	protein_coding	NS	2	NS
ENSG00000204257	HLA-DMA	protein_coding	NS	3	NS
ENSG00000242574	HLA-DMB	protein_coding	NS	3.8	NS
ENSG00000231389	HLA-DPA1	protein_coding	NS	3.1	NS
ENSG00000179344	HLA-DQB1	protein_coding	NS	3.8	NS
ENSG00000204287	HLA-DRA	protein_coding	NS	3.5	NS
ENSG00000204592	HLA-E	protein_coding	2	2.1	NS
ENSG00000204642	HLA-F	protein_coding	2.6	2.9	NS
ENSG00000206341	HLA-H	pseudogene	NS	2	NS
ENSG00000108924	HLF	protein_coding	NS	NS	-4.6
ENSG00000143341	HMCN1	protein_coding	5.7	5.4	7.9
ENSG00000164104	HMGB2	protein_coding	2.5	2.6	NS
ENSG000001112972		protein_coding	2.4	2.3	
	HMGCS1				NS
ENSG00000100292	HMOX1	protein_coding	NS	NS	11

ENSG00000189159	HN1	protein_coding	4.9	5	3.9
ENSG00000108753	HNF1B	protein coding	NS	NS	-8.7
ENSG00000101076	HNF4A	protein coding	NS	NS	-2.8
ENSG00000161779	HNF4G	protein_coding	NS	NS	-3.6
ENSG00000103942	HOMER2	protein_coding	-5.9	-5.5	-14
ENSG00000134709	HOOK1	protein_coding	-2.5	-2.3	-12.4
ENSG00000095066	HOOK2	protein_coding	NS	NS	-2.7
ENSG00000105996	HOXA2	protein_coding	NS	2.5	NS
ENSG00000122592	HOXA7	protein_coding	NS	NS	4.1
ENSG00000078399	HOXA9	protein_coding	NS	NS	3.5
ENSG00000120093	HOXB3	protein_coding	2.5	2.7	NS
ENSG00000198353	HOXC4	protein_coding	NS	NS	2.3
ENSG00000172789	HOXC5	protein_coding	NS	NS	2.5
ENSG00000197757	HOXC6	protein_coding	NS	NS	8.6
ENSG00000037965	HOXC8	protein coding	NS	NS	5.4
ENSG00000037303	HPGD	protein_coding	NS	7.1	NS
ENSG00000105707	HPN	protein_coding	-4.2	-4.1	-4.6
ENSG00000168004	HRASLS5	protein_coding	-3.6	-3.6	NS
ENSG00000125430	HS3ST3B1	protein_coding	NS	NS	4.3
ENSG00000171004	HS6ST2	protein_coding	-2	-2	NS
ENSG00000087076	HSD17B14	protein coding	NS	NS	3.8
ENSG00000007070	HSD17B14	protein_coding	-2.1	-2	NS
ENSG00000164070	HSPA4L	protein_coding	-2.1	-2.3	NS
ENSG00000169271	HSPB3	protein_coding	NS	NS	2.6
ENSG00000142798	HSPG2	protein_coding	2.7	2.8	NS
ENSG00000120694	HSPH1	protein_coding	2.1	2.1	NS
ENSG00000109854	HTATIP2	protein coding	2.6	2.6	NS
	HTR2A	. = -			
ENSG00000102468		protein_coding	NS	NS	4.4
ENSG00000166033	HTRA1	protein_coding	2.9	2.5	6.1
ENSG00000170801	HTRA3	protein_coding	NS	2.2	NS
ENSG00000142149	HUNK	protein_coding	-2.1	-2.2	NS
ENSG00000122986	HVCN1	protein coding	NS	2.4	NS
ENSG00000121351	IAPP	protein_coding	-9.4	-8.5	NS
ENSG00000003147	ICA1	protein_coding	NS	NS	-8.7
ENSG00000090339	ICAM1	protein_coding	3	2.8	NS
ENSG00000108622	ICAM2	protein_coding	NS	NS	-2.5
ENSG00000117318	ID3	protein_coding	NS	NS	12.5
ENSG00000172201	ID4	protein coding	NS	-2	NS
ENSG00000138413	IDH1	protein_coding	NS	2	NS
ENSG00000163565	IFI16	protein_coding	3	3	NS
ENSG00000165949	IFI27	protein_coding	NS	7.3	NS
ENSG00000216490	IFI30	protein_coding	NS	3.6	NS
ENSG00000185201	IFITM2	protein_coding	2.5	2.2	NS
ENSG00000142089	IFITM3	protein_coding	2.5	2.3	4.4
ENSG00000159110	IFNAR2	protein_coding	2.3	2.5	NS
ENSG00000159128	IFNGR2	protein_coding	2.1	2.1	NS
ENSG00000006652	IFRD1	protein_coding	-3.2	-3.2	NS
ENSG00000109083	IFT20	protein_coding	-2.3	-2.3	NS
ENSG00000136231	IGF2BP3	protein coding	NS	NS	3.3
ENSG00000197081	IGF2R	protein_coding	NS	NS	2.3
ENSG00000146674	IGFBP3	protein_coding	4.7	4.2	8.3
		protein_coding			
ENSG00000115461	IGFBP5	. = -	6.4	6.7	NS
ENSG00000167779	IGFBP6	protein_coding	NS	NS	2.9
ENSG00000163395	IGFN1	protein_coding	-2.3	-2.3	NS
ENSG00000211895	IGHA1	IG_C_gene	NS	NS	-15.1
ENSG00000211892	IGHG4	IG_C_gene	NS	7.7	NS
ENSG00000152580	IGSF10	protein_coding	NS	-2.2	NS
ENSG00000144847	IGSF11	protein_coding	NS	NS	-2.1
ENSG00000183067	IGSF5	protein_coding	-2.2	-2.2	NS
ENSG00000166130	IKBIP	protein_coding	2.4	NS	5.9
ENSG00000030419	IKZF2	protein_coding	2.1	2.2	NS
ENSG00000110324	IL10RA	protein_coding	NS	2.3	NS
ENSG00000131724	IL13RA1	protein_coding	2.1	2.2	NS
ENSG00000123496	IL13RA2	protein_coding	NS	NS 2.4	21.9
ENSG00000172349	IL16	protein_coding	NS	2.1	NS
ENSG00000056736	IL17RB	protein_coding	NS	NS	-2.8
ENSG00000150782	IL18	protein_coding	NS	3.2	NS
ENSG00000196083	IL1RAP	protein_coding	3.9	4.2	NS
ENSG00000136689	IL1RN	protein_coding	NS	4.7	NS
ENSG00000142677	IL22RA1	protein_coding	-4.4	-4.1	-7.9
ENSG00000134460	IL2RA	protein_coding	NS	2.6	NS

ENSG00000147168	IL2RG	protein_coding	NS	8.2	NS
ENSG00000008517	IL32	protein_coding	NS	NS	-4.9
ENSG00000104432	IL7	protein_coding	2.3	2.4	NS
ENSG00000166333	ILK	protein_coding	NS	NS	2
ENSG00000141401	IMPA2	protein_coding	-4	-3.8	NS
ENSG00000132849	INADL	protein_coding	NS	NS	-5.4
ENSG00000203485	INF2	protein coding	NS	NS	2.4
ENSG00000122641	INHBA	protein_coding	14.5	14.1	17.2
ENSG00000109452	INPP4B	protein_coding	3.7	4	NS
ENSG00000168918	INPP5D	protein coding	NS	3.3	NS
ENSG00000198825	INPP5F	protein_coding	2	2.1	NS
ENSG00000129965	INS	protein_coding	NS	NS	-13
ENSG00000171105	INSR	protein_coding	NS	NS	-5.9
ENSG00000108506	INTS2	protein_coding	NS	2	NS
ENSG00000102786	INTS6	protein coding	NS	NS	-2.1
		0			
ENSG00000117408	IPO13	protein_coding	NS	NS	3.5
ENSG00000127080	IPPK	protein_coding	NS	NS	2
ENSG00000140575	IQGAP1	protein_coding	2	2	NS
ENSG00000145703	IQGAP2	protein_coding	NS	NS	-40.4
ENSG00000146243	IRAK1BP1	protein_coding	-2	-2.1	NS
ENSG00000134070	IRAK2	protein_coding	2.1	2.2	NS
ENSG00000090376	IRAK3	protein_coding	3	3.2	NS
ENSG00000125347	IRF1	protein_coding	2.4	2.3	NS
ENSG00000117595	IRF6	protein_coding	NS	NS	-6.6
ENSG00000140968	IRF8	protein_coding	NS	3.2	NS
ENSG00000169047	IRS1	protein coding	2	NS	2.9
ENSG00000129009	ISLR	protein_coding	4.7	4.5	NS
ENSG00000105655	ISYNA1	protein_coding	-2.1	-2	-3.1
ENSG00000213949	ITGA1	protein_coding	4.1	4.4	NS
ENSG00000137809	ITGA11	protein_coding	7.6	5.8	21.9
ENSG00000164171	ITGA2	protein_coding	12.5	13.9	NS
ENSG00000005884	ITGA3	protein_coding	5.4	5.5	NS
ENSG00000115232	ITGA4	protein_coding	2.9	2.9	NS
ENSG00000161638	ITGA5	protein_coding	2.9	2.4	6.4
ENSG00000169896	ITGAM	protein_coding	NS	2.3	NS
ENSG00000138448	ITGAV	protein_coding	2.4	2.4	NS
ENSG00000140678	ITGAX	protein_coding	NS	2.6	NS
ENSG00000150093	ITGB1	protein_coding	2.4	2.3	2.6
ENSG00000160255	ITGB2	protein_coding	NS	2.9	NS
ENSG00000132470	ITGB4	protein_coding	NS	4.8	-3
ENSG00000082781	ITGB5	protein_coding	3.9	3.6	6.6
ENSG00000115221	ITGB6	protein_coding	NS	9.7	-6.6
ENSG00000198542	ITGBL1	protein_coding	4.6	NS	7
ENSG00000123104	ITPR2	protein_coding	NS	NS	-3.7
ENSG00000096433	ITPR3	protein_coding	3.2	3.2	NS
ENSG00000148841	ITPRIP	protein_coding	NS	NS	3.7
					2
ENSG00000205730	ITPRIPL2	protein_coding	NS	NS	
ENSG00000198399	ITSN2	protein_coding	NS	NS	-3.5
ENSG00000182264	IZUM01	protein coding	-2.2	-2.2	NS
		. = 0			
ENSG00000210144	J01415.10	Mt_tRNA	-3.3	-3.1	-4.7
ENSG00000210176	J01415.15	Mt_tRNA	-2.2	-2.4	NS
ENSG00000210184	J01415.19	Mt_tRNA	-2.3	-2.4	NS
ENSG00000210191	J01415.23	Mt_tRNA	NS	-4	NS
ENSG00000210140	J01415.28	Mt_tRNA	-2.6	-2.6	NS
ENSG00000210112	J01415.29	_	NS	NS	-2.5
		Mt_tRNA			
ENSG00000209082	J01415.7	Mt_tRNA	-2.1	-2.2	NS
ENSG00000096968	JAK2	protein_coding	NS	2.1	NS
ENSG00000105639		protein_coding	NS	2	
	JAK3				NS
ENSG00000166086	JAM3	protein_coding	2.5	2.3	4.3
ENSG00000155666	JMJD5	protein_coding	-2.1	-2.1	-2
ENSG00000070495	JMJD6	protein_coding	NS	NS	2.2
ENSG00000104369	JPH1	protein_coding	NS	NS	-3.1
ENSG00000011201	KAL1	protein_coding	NS	4	NS
ENSG00000197256	KANK2	protein_coding	NS	NS	2.5
ENSG00000069424	KCNAB2	protein_coding	2	2.1	NS
ENSG00000184408	KCND2	protein_coding	2.7	2.7	NS
ENSG00000171126	KCNG3	protein_coding	-2.1	-2.1	NS
ENSG00000153822	KCNJ16	protein_coding	-6.6	-6	-31.1
ENSG00000123700	KCNJ2	protein_coding	NS	NS	2.4
ENSG00000120457	KCNJ5	protein_coding	-4.3	-4.1	NS
ENSG00000121361	KCNJ8	protein_coding	-3.1	-3	-3.9

ENSG00000082482	KCNK2	protein coding	NS	NS	33.4
ENSG00000171303	KCNK3	protein coding	-3.6	-3.5	NS
ENSG00000053918	KCNQ1	protein_coding	NS	NS	-2.8
ENSG00000162687	KCNT2	protein_coding	NS	2	NS
ENSG00000110906	KCTD10	protein_coding	2.1	NS	3.7
ENSG00000183775	KCTD16	protein coding	-2.2	-2.2	NS
ENSG00000112078					
	KCTD20	protein_coding	2.1	2.1	NS
ENSG00000134901	KDELC1	protein_coding	3.7	3.4	5.7
ENSG00000178202	KDELC2	protein_coding	2.4	2.3	NS
ENSG00000105438	KDELR1	protein coding	NS	NS	2.7
ENSG00000100196	KDELR3	protein_coding	2.4	2.2	NS
ENSG00000128052	KDR	protein_coding	NS	NS	-8.6
ENSG00000119537	KDSR	protein coding	NS	NS	3.1
ENSG00000127463	KIAA0090	protein coding	NS	NS	2.4
ENSG00000166803	KIAA0101	protein_coding	2.9	2.9	NS
ENSG00000164542	KIAA0895	protein_coding	NS	NS	-2.7
ENSG00000121210	KIAA0922	protein_coding	-2.7	-2.6	NS
					64.3
ENSG00000103888	KIAA1199	protein_coding	12.5	6.1	
ENSG00000112379	KIAA1244	protein_coding	NS	NS	-6.2
ENSG00000116299	KIAA1324	protein_coding	-4.7	-4.2	-45.5
ENSG00000133958	KIAA1409	protein coding	-3.1	-3	-4.6
ENSG00000153550					
	KIAA1524	protein_coding	2.9	2.9	NS
ENSG00000005238	KIAA1539	protein_coding	NS	NS	2.9
ENSG00000144320	KIAA1715	protein_coding	2.7	2.6	NS
ENSG00000146112	KIAA1949	protein_coding	2.4	2.1	4.1
ENSG00000138160	KIF11	protein_coding	2.9	3	NS
ENSG00000136883	KIF12	protein_coding	-2.2	-2.1	-3.6
ENSG00000121621	KIF18A	protein_coding	2.8	NS	4.2
ENSG00000130294	KIF1A	protein coding	-4.5	-4.4	-6
ENSG00000112984	KIF20A	protein_coding	2.9	2.9	NS
ENSG00000138182	KIF20B	protein_coding	2.1	2.1	NS
ENSG00000139116	KIF21A	protein coding	NS	NS	-3.3
ENSG00000162849	KIF26B	protein_coding	2.2	2.3	NS
ENSG00000084731	KIF3C	protein_coding	NS	NS	2.5
ENSG00000183853	KIRREL	protein_coding	3	2.6	5.7
ENSG00000126259	KIRREL2	protein_coding	-3.2	-3.2	-2.8
ENSG00000157404	KIT	protein_coding	NS	NS	3.2
			3.3		
ENSG00000049130	KITLG	protein_coding		3.2	3.7
ENSG00000134962	KLB	protein_coding	-3.6	-3.7	NS
ENSG00000118922	KLF12	protein_coding	2.5	2.5	NS
ENSG00000163884	KLF15	protein_coding	-6.4	-6.4	-6.2
ENSG00000172578	KLHL6		NS	3	NS
		protein_coding			
ENSG00000167748	KLK1	protein_coding	-10.8	-9.8	-54.1
ENSG00000167759	KLK13	protein_coding	-2.3	-2.3	NS
ENSG00000164344	KLKB1	protein_coding	-3.1	-3	-4.6
ENSG00000182481	KPNA2	protein_coding	4.1	3.6	8.5
ENSG00000133703	KRAS	protein_coding	2.6	2.8	NS
ENSG00000183762	KREMEN1	protein_coding	NS	NS	2.3
ENSG00000111057	KRT18	protein coding	NS	NS	-16.2
ENSG00000171345	KRT19	protein_coding	8.4	9.4	NS
ENSG00000135480	KRT7	protein_coding	4.7	5.1	NS
ENSG00000170421	KRT8	protein_coding	NS	NS	-25.9
ENSG00000189169	KRTAP10-12	protein_coding	-2	-2	NS
ENSG00000205445	KRTAP10-2	protein coding	-2	-2	NS
ENSG00000157992	KRTCAP3	protein_coding	NS	NS	-2.4
ENSG00000141068	KSR1	protein_coding	-3.2	-3.1	NS
ENSG00000115919	KYNU	protein_coding	NS	6.1	NS
ENSG00000198945	L3MBTL3	protein coding	2.3	2.4	NS
ENSG00000154655			NS	NS	-3.4
	L3MBTL4	protein_coding			
ENSG00000159166	LAD1	protein_coding	NS	NS	-3.3
ENSG00000167613	LAIR1	protein_coding	NS	2.3	NS
ENSG00000101680	LAMA1	protein_coding	NS	NS	2.8
ENSG00000053747	LAMA3	protein_coding	3.3	3.5	NS
ENSG00000112769	LAMA4	protein_coding	4.5	3.9	8.7
ENSG00000091136	LAMB1	protein_coding	2	2.1	NS
ENSG00000196878	LAMB3	protein_coding	9.1	10.1	NS
ENSG00000135862	LAMC1	protein_coding	2.4	2.1	5.1
				21	
ENSG00000058085	LAMC2	protein_coding	18.8		NS
ENSG00000185896	LAMP1	protein_coding	NS	NS	2.4
ENSG00000162511	LAPTM5	protein_coding	NS	3.3	-8.5
ENSG00000138709	LARP1B	protein_coding	-2.8	-2.6	-4.6
		F 10 00 dill B			1.0

ENSG00000166173	LARP6	protein_coding	NS	NS	3.1
ENSG00000002834	LASP1	protein coding	2.1	NS	3.5
ENSG00000090661	LASS4	protein_coding	-3	-2.9	-3.7
ENSG00000172292	LASS6	protein_coding	NS	2.1	NS
ENSG00000204381	LAYN	protein_coding	5.4	3.8	18.7
ENSG00000168016	LBA1	protein coding	3.2	3.3	NS
ENSG00000213626	LBH	protein_coding	3.2	3.2	NS
ENSG00000148346	LCN2	protein_coding	NS	14.3	NS
ENSG00000136167	LCP1	protein_coding	NS	3.5	-8.5
ENSG00000043462	LCP2	protein coding	NS	3.1	NS
ENSG00000182195	LDOC1	protein_coding	NS	NS	4.1
ENSG00000138795	LEF1	protein_coding	10.1	10.9	NS
ENSG00000125505	LENG4	protein coding	NS	NS	2.5
ENSG00000117385		0		NS	
	LEPRE1	protein_coding	NS		2.2
ENSG00000100097	LGALS1	protein_coding	4	3.6	6.9
ENSG00000131981	LGALS3	protein_coding	3	3	2.9
ENSG00000108679	LGALS3BP	protein_coding	2.6	2.8	NS
ENSG00000171747	LGALS4	protein_coding	NS	NS	-7.3
ENSG00000168961	LGALS9	protein_coding	2.6	2.7	NS
ENSG00000170298	LGALS9B	protein_coding	NS	2.4	NS
ENSG00000171916	LGALS9C	protein_coding	-2.8	-2.6	NS
ENSG00000100600	LGMN	protein_coding	2	2	NS
ENSG00000145685	LHFPL2	protein_coding	2	NS	3.4
ENSG00000197753	LHFPL5	protein_coding	-2.7	-2.7	NS
ENSG00000113594	LIFR	protein_coding	-4.7	-4.6	NS
ENSG00000204577	LILRB3	protein_coding	NS	2	NS
ENSG00000050405	LIMA1	protein_coding	2.4	2.2	3.7
ENSG00000106683	LIMK1	protein_coding	2.3	2.1	4
ENSG00000107798	LIPA	protein_coding	2.4	2.4	NS
ENSG00000101670	LIPG	protein_coding	NS	3.2	NS
ENSG00000163898	LIPH	protein_coding	NS	2.6	-14.4
ENSG00000131899	LLGL1	protein_coding	NS	NS	2.1
ENSG00000073350	LLGL2	protein_coding	NS	NS	-3.2
ENSG00000100258	LMF2	protein_coding	-2.3	-2.5	NS
ENSG00000176619	LMNB2	protein coding	NS	NS	2.1
ENSG00000048540	LMO3	protein_coding	-5.4	-5	NS
ENSG00000143013	LMO4	protein_coding	2.5	2.5	NS
ENSG00000136153	LMO7	protein_coding	3.1	3	4
ENSG00000072201	LNX1	protein_coding	-2.1	-2.1	NS
ENSG00000139517	LNX2	protein_coding	NS	NS	-3.6
ENSG00000170500	LONRF2	protein_coding	-2.4	-2.3	-3.8
ENSG00000113083	LOX	protein_coding	10.8	7.1	40.1
ENSG00000129038	LOXL1	protein_coding	NS	NS	3.2
ENSG00000134013	LOXL2	protein coding	4.1	NS	8.8
		0			
ENSG00000198121	LPAR1	protein_coding	NS	NS	3.3
ENSG00000171517	LPAR3	protein_coding	-5.4	-5.3	NS
ENSG00000139679	LPAR6	protein coding	NS	2.9	NS
ENSG00000087253	LPCAT2	protein_coding	2.7	2.8	NS
ENSG00000176454	LPCAT4	protein_coding	3.1	3.2	2.1
ENSG00000110031	LPXN	protein_coding	2.3	NS	4.1
ENSG00000198589	LRBA	protein_coding	NS	NS	-2.4
ENSG00000136141	LRCH1	protein_coding	2.2	2.3	NS
ENSG00000130224	LRCH2	protein_coding	2	2	NS
ENSG00000144749	LRIG1	protein_coding	-3.1	-3	NS
ENSG00000197324	LRP10	protein_coding	2.6	2.3	5.1
ENSG00000147650	LRP12	protein_coding	NS	NS	4.7
ENSG00000137269	LRRC1	protein coding	NS	NS	-2.8
ENSG00000172061	LRRC15	protein_coding	NS	NS	6.5
ENSG00000137507	LRRC32	protein_coding	3.3	2.9	6.7
ENSG00000033122	LRRC7	protein_coding	-2	-2	NS
ENSG00000136802	LRRC8A	protein coding	NS	NS	2.1
ENSG00000197147	LRRC8B	protein_coding	NS	NS	-5.2
ENSG00000177363	LRRN4CL	protein_coding	NS	NS	5.4
ENSG00000160285	LSS	protein_coding	NS	NS	4.2
ENSG00000049323	LTBP1	protein_coding	4.7	4.8	NS
ENSG00000119681	LTBP2	protein_coding	3.5	3.3	5.5
ENSG00000113001	LUM	protein_coding	2.9	3	NS
ENSG00000169641	LUZP1	protein_coding	2.2	2.1	3
ENSG00000079257	LXN	protein_coding	NS	4.5	NS
ENSG00000160932	LY6E	protein_coding	3.4	3.3	NS
ENSG00000054219	LY75	protein_coding	5.7	6.3	NS
2.10000000007217	21/3	protein_counig	5.7	0.5	145

ENSG00000154589	LY96	protein_coding	3.4	NS	7.9
ENSG00000133800	LYVE1	protein coding	NS	NS	-7.1
ENSG00000090382	LYZ	protein coding	NS	2.5	-108.1
ENSG00000197063	MAFG	protein coding	NS	NS	2.3
ENSG00000102316	MAGED2	protein coding	NS	NS	2.3
ENSG00000102310	MAGI2	protein_coding	NS	NS	2.1
ENSG00000081026	MAGI3	protein_coding	NS	NS	-2.6
ENSG00000147676	MAL2	processed_transcript	NS	NS	-26.4
ENSG00000144063	MALL	protein_coding	NS	4.6	NS
ENSG00000177239	MAN1B1	protein_coding	NS	NS	2.2
ENSG00000117643	MAN1C1	protein_coding	NS	NS	2.8
ENSG00000166963	MAP1A	protein_coding	4.1	2.8	14.5
ENSG00000131711	MAP1B	protein coding	2.9	2.5	5.9
ENSG00000131711 ENSG00000171471	MAP1LC3B2		NS	NS	2.8
		protein_coding			
ENSG00000034152	MAP2K3	protein_coding	NS	NS	3.4
ENSG00000095015	MAP3K1	protein_coding	NS	NS	-4.9
ENSG00000073803	MAP3K13	protein_coding	NS	NS	-5.2
ENSG00000143674	MAP3K19	protein coding	-2.8	-2.7	-4.7
ENSG00000197442	MAP3K5	protein coding	NS	NS	-4.8
ENSG00000157625	MAP3K7IP3	protein coding	NS	NS	-2.1
ENSG00000137023	MAP4K4	protein_coding	3.4	3.3	4.8
ENSG00000135525	MAP7	protein_coding	NS	NS	-3
ENSG00000129680	MAP7D3	protein_coding	NS	NS	4.1
ENSG00000156711	MAPK13	protein_coding	NS	NS	-2.6
ENSG00000069956	MAPK6	protein_coding	NS	NS	2.2
ENSG00000121653	MAPK8IP1	protein_coding	-2.3	-2.3	-2.1
ENSG00000155130	MARCKS	protein coding	NS	NS	2
ENSG00000155150	MARVELD1	protein_coding	2.6	2.4	4.4
ENSG00000140832	MARVELD3	protein_coding	NS	NS	-2.6
ENSG00000127241	MASP1	protein_coding	NS	NS	4.1
ENSG00000086015	MAST2	protein_coding	2.3	2.2	2.7
ENSG00000151224	MAT1A	protein_coding	-5	-5	NS
ENSG00000132031	MATN3	protein_coding	6	6.5	NS
ENSG00000143797	MBOAT2	protein_coding	4.2	4.4	NS
ENSG00000078070	MCCC1	protein coding	-2.2	-2.1	-2.7
		protein_coding	2.1	2.2	
ENSG00000112118	MCM3				NS
ENSG00000076003	MCM6	protein_coding	2.4	2.4	NS
ENSG00000090674	MCOLN1	protein_coding	NS	NS	3.5
ENSG00000055732	MCOLN3	protein_coding	-5	-5.1	NS
ENSG00000140563	MCTP2	protein_coding	NS	NS	-3.6
ENSG00000112139	MDGA1	protein_coding	NS	NS	2.5
ENSG00000085276	MDS1	protein_coding	NS	NS	-8.4
ENSG00000108590	MED31	protein_coding	NS	NS	2.5
ENSG00000108990	MEIS1		NS	NS	-3.9
		protein_coding			
ENSG00000165304	MELK	protein_coding	3.1	NS	4.1
ENSG00000112818	MEP1A	protein_coding	-3.9	-3.9	NS
ENSG00000153208	MERTK	protein_coding	NS	NS	-7.2
ENSG00000105976	MET	protein_coding	4.7	5.1	NS
ENSG00000176845	METRNL	protein coding	NS	NS	2.1
ENSG00000117122	MFAP2	protein_coding	3.8	3.4	7.4
ENSG00000197614	MFAP5	protein_coding	NS	NS	33
ENSG00000137611	MFGE8	protein_coding	3.5	2.8	
					8.9
ENSG00000147324	MFHAS1	protein_coding	2	2	NS
ENSG00000168389	MFSD2	protein_coding	2.3	NS	2.3
ENSG00000182544	MFSD5	protein_coding	NS	NS	5.7
ENSG00000071073	MGAT4A	protein_coding	NS	NS	-26.8
ENSG00000161013	MGAT4B	protein_coding	2.4	2.2	4.2
ENSG00000074416	MGLL	protein coding	4.1	4.1	3.6
ENSG00000071118	MGST3	protein coding	2.6	2.3	4.8
ENSG00000135596	MICAL1	protein_coding	2.3	2.2	3.5
ENSG00000133816	MICAL2	protein_coding	5	5.2	NS
ENSG00000204516	MICB	protein_coding	NS	NS	3.2
ENSG00000101871	MID1	protein_coding	2	NS	3.2
ENSG00000215417	MIRHG1	processed_transcript	-3.6	-3.4	NS
ENSG00000148773	MKI67	protein_coding	4.1	4.4	NS
ENSG00000079277	MKNK1	protein_coding	-3.4	-3.3	-3.8
ENSG00000073277	MKNK2	protein_coding	NS	NS	-3.6
ENSG00000150051	MKX	protein_coding	NS	NS	7.9
ENSG00000130382	MLLT1	protein_coding	NS	NS	2.1
ENSG00000171843	MLLT3	protein_coding	2.3	2.4	NS
ENSG00000103150	MLYCD	protein_coding	-2.1	-2	-2.5

ENSG00000196549	MME	protein_coding	NS	NS	65.9
ENSG00000196611	MMP1	protein_coding	NS	NS	42.9
ENSG00000099953	MMP11	protein_coding	14.7	15.7	6.2
ENSG00000157227	MMP14	protein_coding	6.6	6	11.8
ENSG00000087245	MMP2	protein_coding	7.5	6.1	18.2
ENSG00000149968	MMP3	protein_coding	NS	NS	66.3
ENSG00000137673	MMP7	protein coding	NS	3	-37.3
		0			
ENSG00000138722	MMRN1	protein_coding	NS	NS	-2.5
ENSG00000114978	MOBKL1B	protein_coding	2.6	2.7	NS
ENSG00000172081	MOBKL2A	protein coding	NS	NS	2.2
ENSG00000101928	MOSPD1	protein_coding	NS	NS	3.1
ENSG00000079931	MOXD1	protein_coding	8	8.1	7.3
		. – -			
ENSG00000135698	MPHOSPH6	protein_coding	2.1	2.1	NS
ENSG00000105926	MPP6	protein_coding	-2.2	-2.1	NS
ENSG00000150054	MPP7	protein_coding	-2.3	-2.2	-7.2
		. – -			
ENSG00000115204	MPV17	protein_coding	NS	NS	3.7
ENSG00000156968	MPV17L	protein_coding	-4.4	-4.3	NS
		. – -			
ENSG00000197965	MPZL1	protein_coding	2.6	2.5	3.7
ENSG00000149573	MPZL2	protein_coding	NS	NS	-18.3
ENSG00000160588	MPZL3	protein_coding	NS	NS	-4.2
ENSG00000153029	MR1	protein_coding	2.7	2.6	3.6
ENSG00000011028	MRC2	protein_coding	2.9	2.6	5.8
ENSG00000172935	MRGPRF	protein coding	NS	NS	4.5
		. = -			
ENSG00000172172	MRPL13	protein_coding	NS	NS	2
ENSG00000180992	MRPL14	protein_coding	NS	NS	2
ENSG00000137547	MRPL15	protein_coding	NS	NS	2.6
ENSG00000128626	MRPS12	protein_coding	NS	NS	2.4
ENSG00000072952	MRVI1	protein_coding	2.5	2.5	NS
ENSG00000110077	MS4A6A	protein_coding	NS	2.9	NS
ENSG00000166927	MS4A7	protein_coding	NS	NS	-6.8
		. – -			
ENSG00000178860	MSC	protein_coding	NS	2	5.9
ENSG00000147065	MSN	protein coding	3.4	3.4	3.6
	MSRB2		NS	NS	2.5
ENSG00000148450		protein_coding			
ENSG00000174099	MSRB3	protein_coding	2.7	2.5	4.3
ENSG00000173531	MST1	protein_coding	-2.1	-2.1	NS
ENSG00000186715	MST1P9	pseudogene	-2.2	-2.1	NS
ENSG00000198417	MT1F	protein_coding	-2.9	-2.7	-12.7
ENSG00000125144	MT1G	protein_coding	-3	-3	-3.8
ENSG00000205358	MT1H	protein_coding	-8.9	-8.6	-12.3
ENSG00000205364	MT1M	protein_coding	-4	-3.8	-8.6
		. – -			
ENSG00000187193	MT1X	protein_coding	-2.2	-2.2	NS
ENSG00000014914	MTMR11	protein_coding	4.4	4.7	NS
ENSG00000150712	MTMR12	. – -	-2.2	-2.1	NS
		protein_coding			
ENSG00000132613	MTSS1L	protein_coding	NS	NS	6.8
ENSG00000129422	MTUS1	protein coding	NS	NS	-4.9
ENSG00000173702	MUC13	protein_coding	NS	13.4	NS
ENSG00000169550	MUC15	protein coding	-4.9	-4.6	NS
ENSG00000169894	MUC3A	protein_coding	NS	9.5	NS
		. – -			
ENSG00000184956	MUC6	protein_coding	NS	NS	-19.1
ENSG00000157502	MUM1L1	protein_coding	-4.7	-4.5	NS
ENSG00000013364	MVP	protein_coding	2.3	2.3	NS
ENSG00000183486	MX2	protein_coding	NS	3.1	NS
ENSG00000059728	MXD1	protein_coding	NS	2.7	NS
		. – -			
ENSG00000101825	MXRA5	protein_coding	3.8	3.8	NS
ENSG00000118513	MYB	protein_coding	NS	2.3	NS
ENSG00000136997	MYC	protein_coding	NS	-2	NS
		. – -			
ENSG00000116990	MYCL1	protein_coding	-2.5	-2.6	NS
ENSG00000172936	MYD88	protein_coding	2	2	NS
ENSG00000104177	MYEF2	protein_coding	-2.4	-2.3	-4.9
ENSG00000100345	MYH9	protein_coding	2	2	NS
ENSG00000196465	MYL6B	protein_coding	NS	NS	2.2
ENSG00000229596	MYL8P	pseudogene	NS	NS	2.2
ENSG00000101335	MYL9	protein_coding	3	2.7	6
ENSG00000065534	MYLK	protein_coding	3.3	2.9	NS
ENSG00000176658	MYO1D	protein_coding	2.5	2.4	4.1
ENSG00000157483	MYO1E	protein_coding	3.7	3.7	3.8
ENSG00000142347	MYO1F	protein_coding	NS	2.3	NS
ENSG00000167306	MYO5B	protein_coding	NS	NS	-5.4
ENSG00000128833		protein_coding	NS	NS	-21.6
	MYO5C				
ENSG00000099331	MYO9B	protein_coding	2.1	2.1	NS
ENSG00000138119	MYOF	protein_coding	4.8	4.6	NS
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IVITOI	protein_counig	7.0	7.0	INS

ENSG00000101605	MYOM1	protein_coding	NS	NS	-7.6
ENSG00000170011	MYRIP	protein coding	-2.9	-3	NS
ENSG00000160877	NACC1	protein_coding	NS	NS	2.1
ENSG00000198951	NAGA	protein_coding	2.3	2.3	2.4
ENSG00000172766	NARG1L	protein_coding	-3	-2.8	-5.8
ENSG00000067798	NAV3	protein_coding	NS	NS	7.9
ENSG00000158747	NBL1	protein coding	2	2	NS
ENSG00000136717	NCAPG2	. – -	2.1	2.1	NS
		protein_coding			
ENSG00000020129	NCDN	protein_coding	NS	NS	2.3
ENSG00000116701	NCF2	protein_coding	NS	2.9	-3.2
ENSG00000100365	NCF4	protein coding	NS	2.4	NS
ENSG00000123338	NCKAP1L	protein_coding	NS	4.3	NS
ENSG00000080986	NDC80	protein_coding	2.2	2.3	NS
ENSG00000072864	NDE1	protein_coding	2.1	2.1	NS
ENSG00000182636	NDN	protein_coding	NS	NS	2
ENSG00000165795	NDRG2	protein coding	NS	NS	-7.4
ENSG00000070614	NDST1	. – -	NS	NS	2.7
		protein_coding			
ENSG00000174886	NDUFA11	protein_coding	NS	NS	2
ENSG00000164258	NDUFS4	protein_coding	NS	NS	2.9
ENSG00000078114	NEBL	protein coding	NS	NS	-5.4
ENSG00000157191	NECAP2	protein coding	2.6	2.5	3.2
ENSG00000069869	NEDD4	protein_coding	2.2	2.1	3.4
ENSG00000049759	NEDD4L	protein_coding	-2.6	-2.6	NS
ENSG00000129559	NEDD8	protein_coding	NS	NS	3.5
ENSG00000163491	NEK10	protein_coding	NS	NS	4.1
ENSG00000173848	NET1	protein_coding	NS	2.1	NS
ENSG00000107954	NEURL	protein_coding	-2.4	-2.4	NS
ENSG00000186575	NF2	protein_coding	NS	NS	2.6
ENSG00000100968	NFATC4	protein_coding	NS	NS	3.1
ENSG00000050344	NFE2L3		NS	3.1	
		protein_coding			NS
ENSG00000008441	NFIX	protein_coding	NS	NS	4.3
ENSG00000188158	NHS	protein_coding	2	2	NS
ENSG00000116962	NID1	protein_coding	2.8	2.5	5.1
ENSG00000087303	NID2	protein_coding	3.4	3.1	6
ENSG00000197885	NKIRAS1	protein_coding	NS	NS	4.8
ENSG00000169992	NLGN2	protein_coding	NS	NS	2.2
ENSG00000140853	NLRC5	protein_coding	2	2	NS
ENSG00000123609	NMI	protein_coding	3.5	3.6	NS
ENSG00000163864	NMNAT3		-2.1	-2	-3.1
		protein_coding			
ENSG00000166741	NNMT	protein_coding	3.5	3.1	6.6
ENSG00000106100	NOD1	protein_coding	2.5	2.6	NS
ENSG00000182117	NOP10	protein_coding	2.4	2.1	4.2
ENSG00000089250	NOS1	protein_coding	-2.5	-2.5	NS
ENSG00000063230		protein_coding			
	NOSTRIN		NS	NS	-15.7
ENSG00000074181	NOTCH3	protein_coding	NS	2	NS
ENSG00000136999	NOV	protein_coding	NS	NS	5.4
ENSG00000086991	NOX4	protein_coding	8.8	9.5	NS
ENSG00000198805	NP	protein_coding	2.2	2.3	NS
ENSG00000141458	NPC1	protein_coding	NS	NS	5.3
ENSG00000119655	NPC2	protein_coding	2.5	2.3	3.8
ENSG00000135838	NPL	protein_coding	NS	2.7	NS
ENSG00000241935	NPL2	protein coding	-2.6	-2.7	-2.2
ENSG00000168743	NPNT	protein_coding	NS	NS	-6.4
ENSG00000159899	NPR2	protein_coding	NS	NS	3.9
ENSG00000164128	NPY1R	protein_coding	-3.7	NS	-12.2
ENSG00000181019	NQO1	protein_coding	8.1	7.8	NS
ENSG00000151623	NR3C2	protein_coding	NS	NS	-3.7
ENSG00000116833	NR5A2	protein coding	-7.4	-6.6	-98.2
		. – -			
ENSG00000148572	NRBF2	protein_coding	2	NS	3
ENSG00000091129	NRCAM	protein_coding	-4.3	-4.1	-8.7
ENSG00000169752	NRG4	protein_coding	-10.7	-10	NS
ENSG00000175352	NRIP3	protein_coding	NS	NS	2.5
ENSG00000173332 ENSG00000124785		protein_coding	NS	NS	
	NRN1				13.2
ENSG00000118257	NRP2	protein_coding	5.1	5.2	4.5
ENSG00000147383	NSDHL	protein_coding	NS	NS	3.5
ENSG00000241058	NSUN6	protein_coding	-2	NS	-3.7
ENSG00000179299	NSUN7	protein_coding	-2.5	-2.4	-5.5
ENSG00000116981	NT5C1A	protein_coding	-2	-2.1	NS
ENSG00000168268	NT5DC2	protein_coding	2.4	2.2	4.1
ENSG00000135318	NT5E	protein_coding	6.7	5.6	15.7
ENSG00000157045	NTAN1	protein_coding	NS	NS	4.7
			-	-	

ENSG00000185652	NTF3	protein_coding	NS	NS	2.9
ENSG00000074527	NTN4	protein_coding	-2.1	-2	NS
ENSG00000074590	NUAK1	protein_coding	3.5	3.5	NS
ENSG00000163545	NUAK2	protein_coding	-2	-2.1	NS
ENSG00000070081	NUCB2	protein_coding	-4.3	-4.3	NS
ENSG00000132182	NUP210	protein_coding	NS	NS	-3
ENSG00000213024	NUP62	protein coding	2.4	2.4	NS
				3	
ENSG00000137804	NUSAP1	protein_coding	2.9		NS
ENSG00000111335	OAS2	protein_coding	2.9	3.1	NS
ENSG00000173559	OBFC2A	protein coding	2.2	2	NS
ENSG00000145247	OCIAD2	protein_coding	NS	2.9	NS
ENSG00000197822	OCLN	protein coding	NS	NS	-21.7
ENSG00000122417	ODF2L	protein coding	2.2	2.2	NS
ENSG00000145934	ODZ2	protein_coding	NS	NS	28.9
ENSG00000087263	OGFOD1	protein coding	NS	NS	2.9
ENSG00000162745	OLFML2B	protein_coding	10.1	10	11.5
ENSG00000169856	ONECUT1	protein_coding	-3.1	-3	-4.2
ENSG00000182667	OPCML	protein_coding	3.1	3.3	NS
ENSG00000123240	OPTN	protein_coding	NS	NS	2.6
ENSG00000234560	OR10G4	protein_coding	-2.1	-2.1	NS
ENSG00000236981	OR10G9	protein_coding	-2	-2	NS
ENSG00000171014	OR4D5	protein_coding	-4.8	-4.8	NS
ENSG00000181518	OR8D4	protein_coding	-5.1	-5.1	NS
ENSG00000160991	ORAI2	protein_coding	NS	NS	2.8
ENSG00000123353	ORMDL2	protein coding	2.2	2	NS
ENSG00000144645	OSBPL10	protein_coding	5.1	5.5	NS
ENSG00000070882	OSBPL3	protein_coding	5.3	5.2	6.2
ENSG00000091039	OSBPL8	protein_coding	2	NS	2.8
ENSG00000145623					
	OSMR	protein_coding	2.3	2.3	NS
ENSG00000143867	OSR1	protein_coding	NS	NS	8.3
ENSG00000164920	OSR2	protein_coding	NS	NS	8.2
ENSG00000134996	OSTF1	protein_coding	2.2	2.3	NS
ENSG00000036473	OTC	protein_coding	-2.8	-2.8	NS
ENSG00000083720	OXCT1	protein_coding	2.5	2.5	2.7
ENSG00000164830	OXR1	protein_coding	NS	2	NS
ENSG00000108405	P2RX1	protein_coding	-7.1	-6.8	-10.1
ENSG00000122884	P4HA1	protein_coding	3.7	3.6	4.6
ENSG00000149380	P4HA3	protein_coding	NS	NS	2.8
ENSG00000090621	PABPC4	protein_coding	NS	-2	NS
ENSG00000175115	PACS1	protein_coding	NS	NS	2.4
ENSG00000100266	PACSIN2	protein coding	-2	NS	-3.3
ENSG00000124374	PAIP2B	protein_coding	-12.7	-11.7	-35.3
ENSG00000149269	PAK1	protein_coding	2.5	2.6	NS
ENSG00000180370	PAK2	protein coding	2	2	NS
ENSG00000077264	PAK3	protein_coding	-5.4	-5	-15.3
ENSG00000129116	PALLD	protein_coding	3.5	3.6	NS
ENSG00000135473	PAN2	protein_coding	NS	NS	-3
ENSG00000182752	PAPPA	protein_coding	NS	NS	18.1
ENSG00000170915	PAQR8	protein coding	2.4	2.6	NS
ENSG00000102981	PARD6A	protein coding	-2.3	-2.2	NS
ENSG00000124171	PARD6B	protein_coding	NS	NS	-2.9
ENSG00000169116	PARM1	protein_coding	NS	NS	-13.2
ENSG00000173193	PARP14	protein_coding	2.6	2.8	NS
ENSG00000173200	PARP15	protein_coding	4.1	4.5	NS
ENSG00000041880	PARP3	protein coding	3.1	2.8	4.9
ENSG00000102699	PARP4	protein_coding	2.1	2.2	NS
ENSG00000151883	PARP8	protein_coding	NS	2	NS
ENSG00000138496	PARP9	protein_coding	2.2	2.4	NS
ENSG00000138964	PARVG	protein_coding	NS	2.4	NS
ENSG00000108187	PBLD	protein_coding	-3.5	-3.3	-6
ENSG00000183570	PCBP3	protein_coding	NS	NS	2.3
ENSG00000090097	PCBP4	protein_coding	NS	NS	2
ENSG00000118946	PCDH17	protein_coding	NS	NS	-3.2
ENSG00000189184	PCDH18	protein_coding	4.8	3.4	15.5
ENSG00000169851	PCDH7	protein_coding	2.7	2.9	NS
ENSG00000239389	PCDHA13	protein_coding	-2	-2.1	NS
ENSG00000204965	PCDHA5	protein_coding	-2.2	-2.2	NS
ENSG00000146001	PCDHB18	pseudogene	NS	NS	-3.8
ENSG00000081818	PCDHB4	protein_coding	NS	NS	-3.5
ENSG00000240184	PCDHGC3	protein_coding	NS	NS	3.8
ENSG00000115289	PCGF1	protein_coding	NS	NS	2.2

ENSG00000106333	PCOLCE	protein coding	NS	NS	5.4
ENSG00000102225	PCTK1	protein coding	NS	NS	2.3
ENSG00000161217	PCYT1A	protein coding	NS	NS	2.5
ENSG00000102230	PCYT1B	protein_coding	-2.1	-2.1	-2.1
ENSG00000197646	PDCD1LG2	protein_coding	NS	NS	8.6
ENSG00000150593	PDCD4	protein_coding	-4.3	-4	-9
ENSG00000115252	PDE1A	protein coding	NS	2.5	NS
ENSG00000152270	PDE3B	protein_coding	NS	NS	-5.6
ENSG00000113231	PDE8B	protein_coding	-3.1	-2.9	NS
ENSG00000145431	PDGFC	protein_coding	2.6	2.7	NS
ENSG00000113721	PDGFRB	protein_coding	4.3	4	NS
ENSG00000185615	PDIA2	protein_coding	-23.4	-22.1	-43.3
ENSG00000005882	PDK2	protein coding	NS	-2	NS
ENSG00000004799	PDK4	protein_coding	-6.3	-5.7	-50.8
ENSG00000131435	PDLIM4	protein_coding	NS	NS	3
ENSG00000163110	PDLIM5	protein coding	NS	2	NS
ENSG00000196923	PDLIM7	protein_coding	3.5	3.4	4.5
ENSG00000162493	PDPN	protein coding	4.3	4	6.8
ENSG00000174827	PDZK1	protein_coding	-4.6	-4.4	NS
ENSG00000162366	PDZK1IP1	protein_coding	NS	NS	-5
ENSG00000162734	PEA15	protein_coding	2.3	2	4.8
ENSG00000134020	PEBP4	protein_coding	-3	-3.1	NS
ENSG00000198721	PECI	protein coding	-2.5	-2.7	NS
ENSG00000197329	PELI1	protein_coding	NS	2.4	NS
ENSG00000139946	PELI2	protein_coding	-2.3	-2.2	-3.8
ENSG00000179094	PER1	protein_coding	-2.3	-2.3	NS
ENSG00000049246	PER3	protein_coding	NS	NS	-3
ENSG00000114757	PEX5L	protein_coding	-5.1	-5.2	NS
ENSG00000067057	PFKP	protein_coding	2.6	2.6	NS
ENSG00000229183	PGA4	protein_coding	-2.2	-2.3	NS
ENSG00000171314	PGAM1	protein_coding	NS	NS	2.8
ENSG00000177614	PGBD5	protein coding	-2.4	-2.3	-3.2
ENSG00000177011	PGK1	protein_coding	2.1	2.1	NS
		. – -			
ENSG00000130313	PGLS	protein_coding	NS	NS	2.2
ENSG00000169299	PGM2	protein_coding	2.6	2.7	NS
ENSG00000165434	PGM2L1	protein_coding	NS	2.2	NS
ENSG00000112419	PHACTR2	protein_coding	2.5	2.5	NS
ENSG00000077684	PHF17	protein_coding	-3.7	-3.6	NS
ENSG00000040633	PHF23	protein_coding	NS	NS	2.7
ENSG00000118482	PHF3	protein_coding	NS	NS	-2
ENSG00000092621	PHGDH	protein_coding	-3.6	-4.4	NS
ENSG00000044446	PHKA2	protein_coding	NS	NS	-3.1
ENSG00000006576	PHTF2	protein_coding	2	2	NS
ENSG00000175287	PHYHD1	protein coding	-2.3	-2.4	NS
ENSG00000165443	PHYHIP	protein_coding	-6.3	-6.1	NS
ENSG00000131788	PIAS3	protein_coding	NS	NS	2.4
ENSG00000162896	PIGR	protein_coding	NS	NS	-7.1
ENSG00000119227	PIGZ	protein_coding	NS	NS	2.3
ENSG00000155629	PIK3AP1	protein coding	NS	NS	-5.4
				2.1	
ENSG00000133056	PIK3C2B	protein_coding	NS		NS
ENSG00000105851	PIK3CG	protein_coding	NS	3.1	NS
ENSG00000100100	PIK3IP1	protein_coding	2.8	2.9	NS
ENSG00000105647	PIK3R2	protein_coding	NS	NS	2.7
ENSG00000137193	PIM1	protein_coding	NS	NS	2.8
ENSG00000137133					
	PIP5K1C	protein_coding	NS	NS	2.4
ENSG00000150867	PIP5K2A	protein_coding	2.7	2.8	NS
ENSG00000170927	PKHD1	protein_coding	-4.6	-4.2	-23.5
ENSG00000067225	PKM2	protein_coding	4.3	4	6.1
ENSG00000057294	PKP2	protein_coding	NS	NS	-6.9
ENSG00000069764	PLA2G10	protein_coding	NS	7.8	NS
		. – -			
ENSG00000103066	PLA2G15	protein_coding	NS	NS	5
ENSG00000176485	PLA2G16	protein_coding	NS	2.6	NS
ENSG00000170890	PLA2G1B	protein_coding	-7.2	-6.4	-132
ENSG00000146070	PLA2G7	protein_coding	NS	5.8	NS
ENSG00000153246	PLA2R1	protein_coding	5.6	5.5	6.3
		. – -			
ENSG00000145287	PLAC8	protein_coding	15.7	17.6	NS
ENSG00000181690	PLAG1	protein_coding	NS	NS	2.8
ENSG00000104368	PLAT	protein_coding	5.1	5.6	NS
ENSG00000122861	PLAU	protein_coding	5.9	6.3	NS
ENSG00000011422	PLAUR	protein_coding	4.2	4.1	4.6
ENSG00000011422	PLBD2	protein_coding	NS	NS	3.2
FM30000001311/0	FLDUZ	protein_counig	CVI	CNI	3.2

ENSG00000182621	PLCB1	protein_coding	-2.6	-2.4	-7.5
ENSG00000137841	PLCB2	protein_coding	NS	2.4	NS
ENSG00000149782	PLCB3	protein_coding	NS	NS	2.3
ENSG00000187091	PLCD1	protein_coding	NS	NS	2.4
ENSG00000161714	PLCD3	protein_coding	2.7	2.4	5.4
ENSG00000180287	PLD5	protein_coding	-2	-2	NS
ENSG00000178209	PLEC1	protein coding	2.4	2.5	NS
ENSG00000100558	PLEK2	protein_coding	NS	4.4	NS
ENSG00000143850	PLEKHA6	protein_coding	NS	NS	-2
ENSG00000166689	PLEKHA7	protein coding	NS	NS	-3.9
ENSG00000073712	PLEKHC1	protein_coding	NS	NS	2.7
ENSG00000120278	PLEKHG1	protein coding	3.2	3.4	NS
ENSG00000090924	PLEKHG2	protein_coding	NS	NS	2.2
ENSG00000054690	PLEKHH1	protein_coding	-2.2	-2.1	-4.3
ENSG00000068137	PLEKHH3	protein_coding	-2.2	-2.3	NS
ENSG00000225190	PLEKHM1	protein_coding	NS	NS	3.6
ENSG00000116786	PLEKHM2	protein_coding	NS	NS	2.8
		· — -			
ENSG00000023902	PLEKHO1	protein_coding	NS	NS	2.3
ENSG00000105355	PLIN3	protein_coding	2	NS	4.4
ENSG00000102934	PLLP	protein_coding	NS	NS	-7.8
ENSG00000083444	PLOD1	protein_coding	NS	NS	4
ENSG00000152952	PLOD2	protein coding	3.1	3.1	NS
ENSG00000106397	PLOD3	protein_coding	NS	NS	3.2
ENSG00000120756	PLS1	protein_coding	NS	3.4	-4.6
ENSG00000102024	PLS3	protein_coding	2.7	2.6	3.4
ENSG00000187838	PLSCR3	protein_coding	2	NS	4
ENSG00000130300	PLVAP	protein_coding	NS	NS	-3.6
ENSG00000161381	PLXDC1	protein_coding	2.3	2.4	NS
ENSG00000120594	PLXDC2	protein_coding	3.2	3.4	NS
ENSG00000114554	PLXNA1	protein_coding	NS	NS	3.8
ENSG00000076356	PLXNA2	protein_coding	-3.1	-2.9	-7.5
ENSG00000130827	PLXNA3	protein_coding	NS	NS	2.6
ENSG00000136040	PLXNC1	protein_coding	4.3	4.4	NS
ENSG00000004399	PLXND1	protein_coding	2.3	2.1	4
ENSG00000162877	PM20D1	protein_coding	-18.6	-17.8	NS
ENSG00000146281	PM20D2	protein_coding	NS	NS	-2.5
ENSG00000118557	PMFBP1	protein_coding	-2.3	-2.2	NS
ENSG00000140464	PML	protein_coding	2.2	2.2	NS
ENSG00000109099	PMP22	protein_coding	3.3	2.8	7.1
ENSG00000175535	PNLIP	protein coding	-10.4	-9.2	-527.8
ENSG00000187021	PNLIPRP1	protein_coding	-16.8	-15.1	-236.4
ENSG00000165862	PNLIPRP2	polymorphic_pseudogene	-11.4	-10.2	-230.5
ENSG00000032444	PNPLA6	protein_coding	NS	NS	2.2
ENSG00000174348	PODN	protein_coding	NS	NS	5.9
ENSG00000132000	PODNL1	protein_coding	2.7	2.3	6.2
ENSG00000124429	POF1B	protein_coding	NS	3.4	-4.9
ENSG00000099817	POLR2E	protein_coding	NS	NS	2.7
ENSG00000105854	PON2	protein_coding	2.2	2.3	NS
			NS	NS	
ENSG00000132429	POPDC3	protein_coding			14.8
ENSG00000133110	POSTN	protein_coding	46.8	48.7	31.6
ENSG00000106536	POU6F2	protein_coding	-2.1	-2.1	NS
ENSG00000162407	PPAP2B	protein_coding	NS	NS	3.1
ENSG00000203805	PPAPDC1A	protein_coding	5	5.2	3.7
ENSG00000147535	PPAPDC1B	protein_coding	-2.5	-2.4	NS
ENSG00000112033	PPARD	protein_coding	NS	NS	2.3
ENSG00000132170	PPARG	protein_coding	3	3.1	NS
ENSG00000139220	PPFIA2	protein_coding	NS	2.6	NS
ENSG00000196262	PPIA	protein_coding	NS	NS	2.2
ENSG00000168938	PPIC	protein_coding	2.6	2.6	NS
ENSG00000088808	PPP1R13B	protein_coding	NS	NS	-2.8
ENSG00000087074	PPP1R15A	protein_coding	NS	NS	3.6
ENSG00000173281	PPP1R3B	protein_coding	NS	NS	2.1
ENSG00000158528	PPP1R9A	protein_coding	NS	NS	-5.5
ENSG00000137713	PPP2R1B	protein_coding	-2.2	-2.1	NS
ENSG00000175470	PPP2R2D	protein_coding	-3.9	-3.8	NS
ENSG00000198901	PRC1	protein_coding	2.5	2.5	NS
ENSG00000057657		protein_coding	4	4.2	NS
	PRDM1				
ENSG00000138738	PRDM5	protein_coding	-2.1	-2.1	NS
ENSG00000117450	PRDX1	protein_coding	2.1	2.1	NS
ENSG00000123131	PRDX4	protein_coding	-3.5	-3.7	NS
ENSG00000124126	PREX1	protein_coding	NS	2	NS
ENSG00000124126					

					_
ENSG00000005249	PRKAR2B	protein_coding	-2.9	-2.7	-8
ENSG00000170955	PRKCDBP	protein_coding	2.4	2.2	NS
ENSG00000027075	PRKCH	protein_coding	NS	NS	-4
ENSG00000065675	PRKCQ	protein_coding	NS	NS	-2.5
ENSG00000067606	PRKCZ	protein_coding	NS	NS	-2.3
				-5.3	
ENSG00000113494	PRLR	protein_coding	-4.2		NS
ENSG00000171867	PRNP	protein_coding	NS	NS	2.9
ENSG00000007062	PROM1	protein_coding	NS	NS	-13.6
ENSG00000184500	PROS1	protein_coding	2.6	2.6	NS
ENSG00000117707	PROX1	protein_coding	-4.8	-4.5	-11.3
ENSG00000101911	PRPS2	protein coding	-2	NS	-3.8
ENSG00000068489	PRR11	protein_coding	2.8	2.8	NS
ENSG00000167183	PRR15L	protein_coding	NS	NS	-12.8
ENSG00000184838	PRR16	protein_coding	NS	NS	6.3
ENSG00000135362	PRR5L	protein_coding	2.4	2.5	NS
ENSG00000130962	PRRG1	protein_coding	3.4	3.3	4.4
ENSG00000116132	PRRX1	protein_coding	5.3	3.9	16.1
ENSG00000204983	PRSS1	protein_coding	-6.4	NS	-241.8
ENSG00000010438	PRSS3	protein_coding	-7.9	-7.3	-24.3
ENSG00000052344	PRSS8	protein_coding	NS	NS	-5.7
ENSG00000106772	PRUNE2	protein_coding	NS	NS	6.7
ENSG00000135069	PSAT1	protein_coding	NS	-6.7	NS
ENSG00000221826	PSG3	protein_coding	NS	NS	28.5
ENSG00000204941	PSG5	protein_coding	NS	NS	62.6
ENSG00000170848	PSG6	protein_coding	NS	NS	2.7
ENSG00000108294	PSMB3	protein_coding	2.3	2.2	3
ENSG00000204264	PSMB8	protein_coding	2.5	2.6	NS
ENSG00000240065	PSMB9	protein_coding	2.5	2.6	NS
ENSG00000173692	PSMD1	protein coding	2.2	2.2	2.4
ENSG00000175166	PSMD2	protein_coding	NS	NS	2.6
ENSG00000163636	PSMD6	protein_coding	-3	-3.2	NS
ENSG00000110801	PSMD9	protein_coding	NS	NS	2
ENSG00000152229	PSTPIP2	protein_coding	2.6	2.6	NS
ENSG00000185920	PTCH1	protein_coding	NS	NS	-2.5
ENSG00000168267	PTF1A	protein_coding	-2.9	-2.9	-2.8
ENSG00000171522	PTGER4		-3.2	-3	NS
		protein_coding			
ENSG00000148344	PTGES	protein_coding	NS	NS	7.2
ENSG00000134247	PTGFRN	protein_coding	NS	2	NS
ENSG00000124212	PTGIS	protein_coding	7.1	6.8	NS
ENSG00000095303	PTGS1	protein_coding	2.7	2.7	2.7
ENSG00000073756	PTGS2	protein_coding	NS	NS	10.7
ENSG000000112655	PTK7	protein_coding	2.4	2.2	3.5
ENSG00000159335	PTMS	protein_coding	NS	NS	3.4
ENSG00000165996	PTPLA	protein_coding	NS	NS	4.2
ENSG00000188921	PTPLAD2	protein_coding	3.6	3.3	6.2
ENSG00000127947	PTPN12	protein_coding	2.5	2.6	NS
ENSG00000163629	PTPN13	protein_coding	NS	NS	2.6
ENSG00000152104	PTPN14	protein_coding	NS	NS	3.5
ENSG00000134242	PTPN22	protein_coding	NS	2.9	NS
ENSG00000070159	PTPN3	protein_coding	NS	NS	-9.4
ENSG00000111679	PTPN6	protein_coding	NS	2.2	NS
ENSG00000127329	PTPRB	protein_coding	NS	NS	-3.2
ENSG00000081237	PTPRC	protein_coding	NS	4.1	NS
ENSG00000132334	PTPRE	protein_coding	NS	2.3	NS
ENSG00000152554	PTPRN2	protein_coding	-3	-2.8	-5.8
ENSG00000177469	PTRF	protein_coding	NS	NS	5.3
ENSG00000183255	PTTG1IP	protein_coding	2	2	NS
ENSG00000163661	PTX3	protein_coding	NS	NS	12.3
ENSG00000130508	PXDN	protein_coding	5.9	5	12.9
ENSG00000168297	PXK	protein_coding	NS	NS	4.6
ENSG00000100994	PYGB	protein_coding	2.5	2.5	NS
ENSG00000100504	PYGL	protein_coding	2.6	NS	5.2
ENSG00000171016	PYGO1	protein_coding	NS	NS	2.6
ENSG00000213339	QTRT1	protein_coding	NS	NS	-2.1
ENSG00000156675	RAB11FIP1	protein_coding	NS	NS	-5.5
ENSG00000131242	RAB11FIP4	protein_coding	NS	NS	-2
ENSG00000135631	RAB11FIP5	protein_coding	NS	NS	2.3
ENSG00000124839	RAB17	protein_coding	-2.3	-2.2	-3.9
ENSG00000112210	RAB23	protein_coding	5.5	4.6	13.4
ENSG00000132698	RAB25	protein_coding	NS	NS	-5.5
ENSG00000167964	RAB26	protein_coding	-2.8	-2.7	-3.3
		=			

ENSG00000168461 ENSG00000118508 ENSG00000134594					
ENSG00000118508	RAB31	protein coding	4.1	4.1	4.1
FNSG00000134594	RAB32	protein_coding	NS	NS	4.3
	RAB33A	protein_coding	NS	NS	2.7
ENSG00000109113	RAB34	protein_coding	2.9	2.6	5
ENSG00000169213	RAB3B	protein_coding	NS	NS	8.8
ENSG00000105514	RAB3D	protein_coding	-2.6	-2.6	NS
ENSG00000167994	RAB3IL1	protein_coding	NS	NS	2.7
ENSG00000111540	RAB5B	protein_coding	NS	NS	2.3
ENSG00000117280	RAB7L1	protein_coding	2	NS	3.3
ENSG00000166128	RAB8B	protein coding	2.4	2.3	2.9
ENSG00000183155	RABIF	protein_coding	NS	NS	2.5
ENSG00000136238	RAC1	protein_coding	2.3	2.3	2
ENSG00000161800	RACGAP1	protein_coding	3.6	3.5	3.8
ENSG00000164754	RAD21	protein coding	2	2	NS
ENSG00000179262					
ENSG00000179262	RAD23A	protein_coding	NS	NS	2.1
ENSG00000051180	RAD51	protein_coding	NS	NS	2
ENSG00000039560	RAI14		3.2	3.1	NS
		protein_coding			
ENSG00000017797	RALBP1	protein_coding	2.2	2.1	NS
ENSG00000132329	RAMP1		-2.1	-2.1	NS
		protein_coding			
ENSG00000076864	RAP1GAP	protein_coding	-2	NS	-4.2
ENSG00000132359	RAP1GAP2	protein_coding	-2.5	-2.3	-6
ENSG00000181467	RAP2B	protein_coding	2.7	2.8	NS
ENSG00000136237	RAPGEF5	protein_coding	NS	NS	-8.7
ENSG00000173166	RAPH1	protein_coding	2.1	2.2	NS
ENSG00000077092	RARB	protein_coding	NS	2.5	NS
ENSG00000172819	RARG	protein_coding	NS	NS	3.7
ENSG00000118849	RARRES1	protein coding	4.3	4.7	NS
ENSG00000106538	RARRES2	protein_coding	-3.5	-3.4	NS
ENSG00000133321	RARRES3	protein_coding	4.7	5.1	NS
ENSG00000185989	RASA3	protein_coding	2	NS	2.2
ENSG00000075391	RASAL2	protein_coding	2.4	2.4	NS
ENSG00000152689	RASGRP3	protein_coding	NS	2.2	NS
ENSG00000105538	RASIP1	protein_coding	-2.1	-2.1	NS
ENSG00000101265	RASSF2		2.9	3	NS
		protein_coding			
ENSG00000153179	RASSF3	protein_coding	2.2	2.2	NS
ENSG00000123094	RASSF8	protein_coding	NS	NS	3.2
ENSG00000112183	RBM24	protein_coding	NS	NS	5.1
ENSG00000163694	RBM47	protein_coding	NS	NS	-7.7
ENSG00000153250	RBMS1	protein_coding	2.7	2.5	3.8
ENSG00000114115	RBP1	protein_coding	-3.7	-3.4	-12.5
ENSG00000124232	RBPJL	protein_coding	-21	-20.2	-31
ENSG00000049449	RCN1	protein_coding	3	2.5	6.6
ENSG00000142552	RCN3	protein_coding	2.9	2.4	6.8
ENSG00000122707	RECK	protein_coding	NS	NS	11.9
ENSG00000004700			2.7		2.3
	RECQL	protein_coding		2.8	
ENSG00000165476	REEP3	protein_coding	2.4	2.4	2.7
ENSG00000115386	REG1A				
LN300000113300	MEGIA		NS	NS	
		protein_coding	NS	NS	-187.4
ENSG00000172023	REG1B	protein_coding protein_coding	NS NS	NS NS	
		protein_coding	NS	NS	-187.4 -131.1
ENSG00000172016	REG3A	protein_coding protein_coding	NS NS	NS NS	-187.4 -131.1 -59.5
ENSG00000172016 ENSG00000169891	REG3A REPS2	protein_coding protein_coding protein_coding	NS NS NS	NS NS NS	-187.4 -131.1 -59.5 -5.6
ENSG00000172016	REG3A REPS2	protein_coding protein_coding protein_coding	NS NS NS	NS NS	-187.4 -131.1 -59.5
ENSG00000172016 ENSG00000169891 ENSG00000134533	REG3A REPS2 RERG	protein_coding protein_coding protein_coding protein_coding	NS NS NS NS	NS NS NS NS	-187.4 -131.1 -59.5 -5.6 -6.4
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043	REG3A REPS2 RERG REXO2	protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS	NS NS NS NS	-187.4 -131.1 -59.5 -5.6 -6.4 5
ENSG00000172016 ENSG00000169891 ENSG00000134533	REG3A REPS2 RERG	protein_coding protein_coding protein_coding protein_coding	NS NS NS NS	NS NS NS NS	-187.4 -131.1 -59.5 -5.6 -6.4
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378	REG3A REPS2 RERG REXO2 RFTN1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S3.2	NS NS NS NS S3.1	-187.4 -131.1 -59.5 -5.6 -6.4 5
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732	REG3A REPS2 RERG REXO2 RFTN1 RGAG4	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS S3.2	NS NS NS NS NS NS 3.1	-187.4 -131.1 -59.5 -5.6 -6.4 5 4
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378	REG3A REPS2 RERG REXO2 RFTN1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S3.2	NS NS NS NS S3.1	-187.4 -131.1 -59.5 -5.6 -6.4 5
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S S 3.2 NS	NS NS NS NS S 3.1 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S S 3.2 NS NS NS	NS NS NS NS S 3.1 NS NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988 ENSG00000090104	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S S 3.2 NS	NS NS NS NS S 3.1 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1	NS NS NS NS S 3.1 NS NS -5.2 4.3	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988 ENSG00000090104 ENSG00000116741	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS	NS NS NS NS S 3.1 NS NS -5.2 4.3 -3.4	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988 ENSG000000104 ENSG00000116741 ENSG00000143248	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6	NS NS NS NS S 3.1 NS NS -5.2 4.3 -3.4 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988 ENSG00000090104 ENSG00000116741	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS	NS NS NS NS S 3.1 NS NS -5.2 4.3 -3.4	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988 ENSG000000104 ENSG00000116741 ENSG000001143248 ENSG00000164292	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS	NS NS NS NS S 3.1 NS NS -5.2 4.3 -3.4 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000104 ENSG00000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000242732 ENSG00000174136 ENSG00000130988 ENSG000000104 ENSG00000116741 ENSG000001143248 ENSG00000164292	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS	NS NS NS NS S 3.1 NS NS -5.2 4.3 -3.4 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000104 ENSG00000116741 ENSG00000143248 ENSG00000164292 ENSG00000155366 ENSG00000139725	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S.2 NS NS -5.1 NS -3.6 NS -2.9 2.2	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366 ENSG00000139725 ENSG00000177105	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000104 ENSG00000116741 ENSG00000143248 ENSG00000164292 ENSG00000155366 ENSG00000139725	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	NS NS NS NS S.2 NS NS -5.1 NS -3.6 NS -2.9 2.2	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366 ENSG00000139725 ENSG00000177105 ENSG00000116574	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.8 -5.3
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366 ENSG00000139725 ENSG00000177105 ENSG00000116574 ENSG00000116574	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS NS	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.8 -5.3 -5.1
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366 ENSG00000139725 ENSG00000177105 ENSG00000116574	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS	NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.8 -5.3
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366 ENSG00000139725 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000116574	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC8A	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS NS	NS NS NS NS S.1 NS S.1 NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000116741 ENSG00000116741 ENSG00000143248 ENSG00000143248 ENSG00000155366 ENSG00000155366 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000116745 ENSG00000177963 ENSG00000178026	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC8A RILPL1	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS NS -3.7 NS	NS NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7 2.5
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG00000174136 ENSG00000174136 ENSG00000116741 ENSG00000116741 ENSG00000164292 ENSG00000155366 ENSG00000139725 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000116574	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC8A	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS NS	NS NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS -2.9 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7
ENSG00000172016 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG000001242732 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000143248 ENSG00000155366 ENSG00000155366 ENSG00000177105 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000177963 ENSG000001188026 ENSG00000129538	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC8A RILPL1 RNASE1	protein_coding protein_coding	NS NS NS NS NS 3.2 NS NS -5.1 NS -3.6 NS -2.9 2.2 NS NS -3.8 NS	NS NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS -2.9 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7 2.5 -60.5
ENSG00000172016 ENSG00000169891 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG000001242732 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000116741 ENSG00000155366 ENSG00000155366 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000177963 ENSG0000017963 ENSG00000129538 ENSG00000129538	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC8A RILPL1 RNASE1 RNASE1	protein_coding protein_coding	NS NS NS NS NS NS S S S S S S S S S S S	NS NS NS NS NS S 1.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS NS -2.9 NS NS NS -2.3 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7 2.5 -60.5 3.4
ENSG00000172016 ENSG00000169891 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG000001242732 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000116741 ENSG000001155366 ENSG00000155366 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000177963 ENSG00000177963 ENSG00000129538 ENSG00000129538 ENSG00000129538	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC3 RIC8A RILPL1 RNASE1 RNASEL	protein_coding protein_coding	NS NS NS NS NS NS S S S S S S S S S S S	NS NS NS NS NS 3.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS -2.9 NS NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7 2.5 -60.5 3.4 NS
ENSG00000172016 ENSG00000169891 ENSG00000169891 ENSG00000134533 ENSG00000076043 ENSG00000131378 ENSG000001242732 ENSG00000174136 ENSG00000130988 ENSG000000116741 ENSG00000116741 ENSG00000116741 ENSG00000155366 ENSG00000155366 ENSG00000177105 ENSG00000116574 ENSG00000116574 ENSG00000116574 ENSG00000177963 ENSG0000017963 ENSG00000129538 ENSG00000129538	REG3A REPS2 RERG REXO2 RFTN1 RGAG4 RGMB RGN RGS1 RGS2 RGS5 RHOBTB3 RHOC RHOF RHOG RHOU RIC3 RIC8A RILPL1 RNASE1 RNASE1	protein_coding protein_coding	NS NS NS NS NS NS S S S S S S S S S S S	NS NS NS NS NS S 1.1 NS NS -5.2 4.3 -3.4 NS -3 2.1 3.3 NS NS NS -2.9 NS NS NS -2.3 NS	-187.4 -131.1 -59.5 -5.6 -6.4 5 4 3 5.3 -4.7 NS -8 -30.9 NS 2.9 NS 2.9 NS 2.8 -5.3 -5.1 2.7 2.5 -60.5 3.4

ENSG00000123091	RNF11	protein_coding	NS	NS	2.9
ENSG00000121848	RNF115	protein_coding	NS	NS	2.3
ENSG00000145860	RNF145	protein_coding	2.1	2.1	NS
ENSG00000116514	RNF19B	protein coding	2.3	2.4	NS
ENSG00000178222	RNF212	protein coding	-2.7	-2.8	NS
ENSG00000173821	RNF213	. = -			
		protein_coding	2.3	2.4	NS
ENSG00000163481	RNF25	protein_coding	NS	NS	2.6
ENSG00000173456	RNF26	protein_coding	NS	NS	3.3
ENSG00000108375	RNF43	protein_coding	NS	NS	-2.9
ENSG00000023191	RNH1	protein_coding	NS	NS	3.4
ENSG00000169855	ROBO1	protein_coding	2.7	2.5	3.7
ENSG00000119314	ROD1	protein coding	2.1	2.3	NS
ENSG00000145491	ROPN1L	protein coding	NS	-2	NS
ENSG00000169071	ROR2	protein_coding	2.3	2.3	NS
ENSG00000143365	RORC	protein_coding	-3.1	-3	-4.1
ENSG00000229939	RP11-111F16.1	pseudogene	-2.2	-2.3	NS
ENSG00000197067	RP11-132G10.1	pseudogene	-2.1	-2.1	NS
ENSG00000232527	RP11-14N7.2	lincRNA	5	3.3	18.1
ENSG00000230358	RP11-166O4.2	pseudogene	-2.3	-2.4	NS
ENSG00000229932	RP11-215C7.2	pseudogene	2.2	2.2	NS
ENSG00000236444	RP11-223E19.2	pseudogene	NS	NS	2.3
ENSG00000235060	RP11-254N18.1	pseudogene	2	2	NS
ENSG00000228547	RP11-271M1.2	pseudogene	-2.3	-2.5	NS
ENSG00000171889	RP11-354P17.1	processed transcript	NS	NS	12.3
ENSG00000185074	RP11-389K14.2	pseudogene	NS	-2.2	NS
		, •			
ENSG00000234790	RP11-426L16.2	pseudogene	NS	NS	2
ENSG00000205861	RP11-45B20.2	antisense	NS	NS	4.4
ENSG00000241627	RP11-464E15.3	pseudogene	-2.1	-2	NS
ENSG00000232203	RP11-572H4.1	pseudogene	NS	-2	NS
ENSG00000236316	RP11-61N16.1	pseudogene	-2	-2.1	NS
ENSG00000232699	RP11-758C21.1	pseudogene	NS	NS	2.2
ENSG00000230655	RP11-803B1.4	pseudogene	NS	-2	NS
ENSG00000226970	RP11-82H13.1	pseudogene	NS	NS	2.4
ENSG00000218510	RP1-224A6.2	lincRNA	-2.8	-2.9	NS
ENSG00000102218	RP2	protein_coding	2.5	2.4	3.1
ENSG00000216853	RP3-399J4.1	pseudogene	-2.3	-2.3	NS
ENSG00000226084	RP4-706A16.1		-2	-2.1	NS
		pseudogene			
ENSG00000226415	RP5-1102E8.1	pseudogene	NS	NS	2.9
ENSG00000189372	RP6-149D17.1	pseudogene	-3.2	-3.2	NS
ENSG00000205763	RP9P	pseudogene	NS	NS	2.5
ENSG00000103494	RPGRIP1L	protein coding	2.1	2	2.7
		. = -			
ENSG00000181031	RPH3AL	protein_coding	-2.7	-2.7	NS
ENSG00000108107	RPL28	protein_coding	NS	NS	2.2
ENSG00000100316	RPL3	protein coding	-2	-2	NS
ENSG00000145425	RPS3A	protein_coding	-2.9	-3	NS
		0			
ENSG00000117676	RPS6KA1	protein_coding	NS	NS	-2.4
ENSG00000166592	RRAD	protein_coding	NS	NS	3.8
ENSG00000116954	RRAGC	protein_coding	2.2	NS	3.9
ENSG00000126458	RRAS	protein coding	2.7	2.4	5.3
ENSG00000125844	RRBP1	protein_coding	-2.5	-2.5	-2.9
ENSG00000081019	RSBN1	protein_coding	NS	NS	-2.3
ENSG00000146374	RSPO3	protein coding	NS	NS	6.7
ENSG00000136514	RTP4	protein coding	NS	2.1	NS
ENSG00000159216	RUNX1	protein_coding	4.2	4.3	NS
ENSG00000079102	RUNX1T1	protein_coding	2.8	NS	4.7
ENSG00000124813	RUNX2	protein_coding	6.5	6.7	4.9
ENSG00000175792	RUVBL1	protein_coding	2.6	2.5	3
ENSG00000171509	RXFP1	protein_coding	NS	NS	13.2
ENSG00000163602	RYBP	protein_coding	NS	NS	2.8
ENSG00000198626	RYR2	protein_coding	-3.9	-3.6	-8.2
ENSG00000163191	S100A11	protein_coding	4.3	4.1	5.5
ENSG00000163221	S100A12	protein_coding	-2.6	-2.6	NS
ENSG00000189171	S100A13	protein_coding	NS	NS	2.9
ENSG00000188643	S100A16	protein_coding	4.2	3.9	6
ENSG00000188015	S100A3	protein_coding	NS	NS	4.3
				NS	
ENSG00000196154	S100A4	protein_coding	NS		12
ENSG00000197956	S100A6	protein_coding	3.1	3.1	2.8
ENSG00000163993	S100P	protein_coding	7	7.8	NS
ENSG00000151835	SACS	protein_coding	NS	NS	2.8
ENSG00000177570			NS	NS	-3.1
	SAMD12	protein_coding			
ENSG00000205413	SAMD9	protein_coding	4.8	5.2	NS

ENSG00000177409	SAMD9L	protein_coding	3.4	3.6	NS
ENSG00000155307	SAMSN1	protein_coding	NS	3.2	NS
ENSG00000079332	SAR1A	protein_coding	NS	NS	2.2
ENSG00000123453	SARDH	protein_coding	-2.1	-2.1	NS
			2		NS
ENSG00000130066	SAT1	protein_coding		2.1	
ENSG00000052802	SC4MOL	protein_coding	2.9	2.6	NS
ENSG00000227500	SCAMP4	protein coding	NS	NS	2.3
ENSG00000140386	SCAPER	protein_coding	NS	NS	-2.3
ENSG00000145284	SCD5	protein_coding	-2.3	-2.4	NS
			NS		
ENSG00000184178	SCFD2	protein_coding		NS	2.5
ENSG00000205209	SCGBL	protein_coding	-2.4	-2.4	NS
ENSG00000079689	SCGN	protein coding	-4.8	-4.4	-16.8
ENSG00000006747	SCIN	protein_coding	NS	NS	4.1
ENSG00000136546	SCN7A	protein_coding	NS	NS	-6.1
ENSG00000196876	SCN8A	protein_coding	NS	NS	2.5
ENSG00000163156	SCNM1	protein coding	NS	NS	3.7
ENSG00000111319	SCNN1A	protein_coding	NS	NS	-6.9
ENSG00000121064	SCPEP1	protein_coding	2.6	2.4	4.4
ENSG00000080293	SCTR	protein_coding	-3.4	-3.2	-6.9
ENSG00000162512	SDC3	protein_coding	NS	NS	4.3
ENSG00000132581	SDF2	protein_coding	NS	NS	2.2
ENSG00000146555	SDK1	protein_coding	-2.8	-2.8	NS
ENSG00000184860	SDR42E1	protein_coding	NS	NS	-2.5
ENSG00000166562	SEC11C	protein_coding	-3.5	-3.2	NS
ENSG00000120341	SEC16B	protein_coding	NS	NS	-2.3
ENSG00000100934	SEC23A	protein_coding	2.6	2.4	3.7
ENSG00000187742	SECISBP2	protein_coding	NS	NS	-2.2
ENSG00000141574	SECTM1	protein_coding	NS	NS	3.4
ENSG00000071537	SEL1L	protein coding	-4.3	-4.2	NS
ENSG00000110876	SELPLG	protein_coding	3.1	3.3	NS
ENSG00000075213	SEMA3A	protein_coding	5.2	4.4	11.1
ENSG00000075223	SEMA3C	protein_coding	12.2	11.1	21.4
ENSG00000153993	SEMA3D	protein_coding	NS	NS	11.2
ENSG00000095539	SEMA4G	protein_coding	NS	NS	-2.2
ENSG00000112902	SEMA5A	protein_coding	NS	NS	3.4
ENSG00000137872	SEMA6D	protein_coding	-2.5	-2.5	NS
ENSG00000138623	SEMA7A	protein_coding	3.6	3.6	4.1
ENSG00000162430	SEPN1	protein_coding	NS	NS	2.2
ENSG00000125354	SEPT06	protein_coding	2.6	2.7	NS
ENSG00000184640	SEPT09	protein_coding	2.5	2.3	3.5
ENSG00000186522	SEPT10	protein coding	2.2	2.1	NS
ENSG00000138758	SEPT11	protein_coding	2.5	2.2	4.3
ENSG00000168528	SERINC2	protein coding	2.5	2.5	NS
ENSG00000197249	SERPINA1	protein coding	NS	2.6	-13.6
ENSG00000196136	SERPINA3	protein_coding	NS	NS	-59.9
ENSG00000188488	SERPINA5	protein_coding	-3.5	NS	-17.4
ENSG00000170099	SERPINA6	protein_coding	NS	NS	-3.6
ENSG00000206075	SERPINB5	protein_coding	9.1	10.2	NS
ENSG00000170542	SERPINB9	protein coding	NS	2.6	NS
ENSG00000135919	SERPINE2	protein_coding	NS	NS	39.1
ENSG00000149257	SERPINH1	protein_coding	5.1	4.6	9.6
ENSG00000163536	SERPINI1	protein_coding	-4.2	-4.2	NS
ENSG00000114204	SERPINI2	protein_coding	-16.2	-14.8	-72
ENSG00000179833	SERTAD2	protein coding	NS	NS	4.3
ENSG00000082497	SERTAD4	protein_coding	2.8	NS	4
ENSG00000130766	SESN2	protein_coding	NS	NS	2.4
ENSG00000149212	SESN3	protein_coding	NS	2.7	NS
ENSG00000187231	SESTD1	protein_coding	NS	2	NS
ENSG00000198879	SFMBT2	protein coding	NS	2.5	NS
ENSG00000175793	SFN	protein_coding	5	5.5	NS
ENSG00000106483	SFRP4	protein coding	NS	12.7	NS
ENSG00000120057		protein_coding	-3.5	-3.3	
	SFRP5				-5.8
ENSG00000107819	SFXN3	protein_coding	2.1	2	2.7
ENSG00000183605	SFXN4	protein_coding	NS	NS	-2.3
ENSG00000163069	SGCB	protein_coding	2	NS	4.2
ENSG00000170624	SGCD	protein_coding	NS	NS	7.8
ENSG00000118473	SGIP1	protein_coding	4.5	4.2	6.9
ENSG00000118515	SGK1	protein_coding	NS	-2	NS
ENSG00000162878	SGK493	protein_coding	NS	2.3	NS
ENSG00000163082	SGPP2	protein_coding	NS	3.5	NS
ENSG00000197860	SGTB	protein_coding	2	NS	3.6
		1	_		5.5

SH3BGRL2	protein_coding	NS	NS	-9
SH3GL1	protein coding	NS	NS	2.3
SH3KBP1		2.9	2.8	NS
				3.2
	. = -			
				3.8
SH3YL1	protein_coding	-2.3	-2.1	-4.9
SHANK2	protein_coding	-2.3	-2.2	-5
SHC1	protein coding	NS	NS	2.4
SHC3		NS	-3	NS
				3
				NS
SHOX2	protein_coding	NS	NS	4.6
SIDT2	protein_coding	-2.6	-2.7	NS
SIK1	protein coding	-2.7	-2.7	NS
				NS
				2.6
				NS
SKIL	protein_coding	2.7	2.9	NS
SLAIN1	protein coding	NS	NS	-7.4
SLAME8	protein coding	NS	3.4	NS
				NS
				NS
SLC15A1	protein_coding	NS	NS	-3.7
SLC15A3	protein_coding	2.6	2.7	NS
SLC16A1	protein coding	4.6	4.6	5
SIC16A10				-26.8
				-20.8
	. = -			
				2.6
SLC16A4	. = -	4	4.3	NS
SLC17A4	protein_coding	-5.6	-5.1	-19.5
SLC17A5		NS	NS	3
				NS
				NS
SLC25A12	protein_coding			2.5
SLC25A15	protein_coding	-7.5	-7.7	NS
SLC25A22	protein coding	NS	-2	NS
SLC25A24		2.4	2.4	NS
				NS
	. = -			
				2.1
SLC25A45		-2.8	-2.9	NS
SLC29A4	protein_coding	-2.2	-2.2	NS
SLC2A1	protein coding	6.4	6.7	NS
	. = -			-5.4
				2.7
SLC35C1	protein_coding	NS	NS	2.4
SLC36A1	protein_coding	2.1	2	NS
SLC37A1	protein_coding	NS	2.4	NS
SLC37A4	processed transcript	-2.7	-2.5	NS
				NS
	protein_coding	-4.2	-4.4	NS
		_		
SLC38A5	protein_coding	-4	-3.8	NS
SLC38A5 SLC38A6	protein_coding protein_coding	-4 2.1	-3.8 NS	NS 3.7
SLC38A6 SLC38A7	protein_coding protein_coding	2.1 NS	NS NS	3.7 3
SLC38A6 SLC38A7 SLC39A10	protein_coding protein_coding protein_coding	2.1 NS 2.9	NS NS 3	3.7 3 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13	protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS	NS NS 3 NS	3.7 3 NS 3.4
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14	protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3	NS NS 3 NS -2.3	3.7 3 NS 3.4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13	protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS	NS NS 3 NS -2.3 -12.9	3.7 3 NS 3.4
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14	protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3	NS NS 3 NS -2.3	3.7 3 NS 3.4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3	NS NS 3 NS -2.3 -12.9	3.7 3 NS 3.4 NS -20.3
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS	NS NS 3 NS -2.3 -12.9 NS -2.8	3.7 3 NS 3.4 NS -20.3 2.2 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6	NS NS 3 NS -2.3 -12.9 NS -2.8	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS	NS NS 3 NS -2.3 -12.9 NS -2.8 NS	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2	NS NS 3 NS -2.3 -12.9 NS -2.8 NS	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC43A1 SLC43A3 SLC44A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC43A1 SLC43A3 SLC44A1	protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3 NS	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4 NS	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC43A1 SLC43A3 SLC44A1 SLC44A3	protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3 NS	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4 NS	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS NS 4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC41A1 SLC43A3 SLC44A1 SLC44A3 SLC44A3	protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3 NS 2.3	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4 NS 2.4	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS NS NS -5.3
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC43A1 SLC43A3 SLC44A1 SLC44A3	protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3 NS 2.3 NS	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4 NS 7.2 3 NS	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS NS 4 NS
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC41A1 SLC43A3 SLC44A1 SLC44A3 SLC44A3	protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3 NS 2.3	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4 NS 2.4	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS NS 4 NS -5.3
SLC38A6 SLC38A7 SLC39A10 SLC39A13 SLC39A14 SLC39A5 SLC39A6 SLC39A8 SLC3A1 SLC40A1 SLC41A1 SLC41A1 SLC43A3 SLC44A1 SLC44A3 SLC44A3 SLC44A4 SLC46A3 SLC46A3	protein_coding protein_coding	2.1 NS 2.9 NS -2.3 -13.4 NS -2.6 -3.6 NS -3.2 -5.5 NS 2.3 NS 2.3 NS	NS NS 3 NS -2.3 -12.9 NS -2.8 NS 2.5 -3.5 -5.7 NS 2.4 NS 7.2 3 NS	3.7 3 NS 3.4 NS -20.3 2.2 NS -13.4 NS NS NS 4 NS -5.3 -4.3 NS
	SH3GL1 SH3KBP1 SH3KBP1 SH3PXD2A SH3PXD2B SH3YL1 SHANK2 SHC1 SHC3 SHISA4 SHISA5 SHOX2 SIDT2 SIK1 SIM1 SIRPA SKAP2 SKIL SLAIN1 SLAMF8 SLC12A2 SLC12A6 SLC15A1 SLC15A3 SLC16A1 SLC16A10 SLC16A12 SLC16A13 SLC16A12 SLC16A13 SLC16A13 SLC16A2 SLC17A4 SLC17A4 SLC17A5 SLC17A4 SLC17A5 SLC1A2 SLC25A12 SLC25A12 SLC25A12 SLC25A12 SLC25A12 SLC25A12 SLC25A12 SLC25A15 SLC25A24 SLC25A15 SLC25A24 SLC25A44 SLC25A45 SLC25A44 SLC25A45 SLC25A45 SLC25A44 SLC25A45 SLC25A45 SLC25A45 SLC25A45 SLC25A45 SLC25A45 SLC25A45 SLC25A45 SLC25A55 SLC25A44 SLC25A15 SLC25A45	SH3GL1 protein_coding SH3KBP1 protein_coding SH3PXD2B protein_coding SH3YL1 protein_coding SH3YL1 protein_coding SHC1 protein_coding SHC3 protein_coding SHC3 protein_coding SHC3 protein_coding SHSA4 protein_coding SHOX2 protein_coding SIDT2 protein_coding SIM1 protein_coding SIRPA protein_coding SIRPA protein_coding SIAIN1 protein_coding SIAIN1 protein_coding SIAIN1 protein_coding SIAIN1 protein_coding SLAIN1 protein_coding SLAIN1 protein_coding SLC12A2 protein_coding SLC12A3 protein_coding SLC12A4 protein_coding SLC12A6 protein_coding SLC15A1 protein_coding SLC15A1 protein_coding SLC16A1 protein_coding SLC16A1 protein_coding SLC16A1 protein_coding SLC16A1 protein_coding SLC16A2 protein_coding SLC16A3 protein_coding SLC16A4 protein_coding SLC17A4 protein_coding SLC17A5 protein_coding SLC17A5 protein_coding SLC25A12 protein_coding SLC25A12 protein_coding SLC25A12 protein_coding SLC25A12 protein_coding SLC25A12 protein_coding SLC25A12 protein_coding SLC25A24 protein_coding SLC25A25 protein_coding SLC25A26 protein_coding SLC25A27 protein_coding SLC25A28 protein_coding SLC25A29 protein_coding SLC25A49 protein_coding SLC25A40 protein_coding SLC25A41 protein_coding SLC25A42 protein_coding SLC25A43 protein_coding SLC25A44 protein_coding SLC25A45 protein_coding SLC25A46 protein_coding SLC25A47 protein_coding SLC25A48 protein_coding SLC25A49 protein_coding SLC25A40 protein_coding SLC25A40 protein_coding SLC25A41 protein_coding SLC25A42 protein_coding SLC25A44 protein_coding SLC25A45 protein_coding SLC25A46 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding SLC35A4 protein_coding	SH3GL1 protein_coding	SH3GL1 protein_coding NS NS SH3RBP1 protein_coding 2.9 2.8 SH3PXD2A protein_coding 2.5 2.4 SH3PXD2B protein_coding 2.5 2.3 SH3PXL1 protein_coding -2.3 -2.1 SHANK2 protein_coding NS NS SHC1 protein_coding NS NS SHC3 protein_coding NS NS SHISA4 protein_coding NS NS SHISA5 protein_coding NS NS SHISA5 protein_coding NS NS SIDT2 protein_coding 2.6 -2.7 SIK1 protein_coding NS NS SIM1 protein_coding NS NS SIRPA protein_coding NS NS SKIL protein_coding NS NS SLAMP8 protein_coding NS NS SLC12A6 protein_coding NS </td

ENSG00000198743	SLC5A3	protein_coding	3	2.8	5.2
ENSG00000117834	SLC5A9	protein_coding	NS	NS	-2
ENSG00000087916	SLC6A14	protein coding	30.9	34.6	NS
ENSG00000063127	SLC6A16	protein_coding	-2.3	-2.3	NS
ENSG00000131389	SLC6A6	protein_coding	5.6	5.9	3.7
ENSG00000003989	SLC7A2	protein_coding	-6.9	-6.2	-48.8
ENSG00000103064	SLC7A6	protein_coding	2.4	2.4	2.7
ENSG00000155465	SLC7A7	protein_coding	4	4.2	NS
ENSG00000183023	SLC8A1	protein_coding	2.2	2.3	NS
ENSG00000090020	SLC9A1	protein coding	2.7	2.7	2.7
ENSG00000030020					
	SLCO2B1	protein_coding	NS	2.1	-3.9
ENSG00000172716	SLFN11	protein_coding	2.6	2.7	NS
ENSG00000154760	SLFN13	protein_coding	NS	2.8	NS
ENSG00000166750	SLFN5	protein_coding	2.6	2.6	NS
ENSG00000184347	SLIT3	protein_coding	NS	NS	12.3
ENSG00000124107				10.3	
	SLPI	protein_coding	NS		NS
ENSG00000136824	SMC2	protein_coding	2.3	2.3	NS
ENSG00000113810	SMC4	protein_coding	2	2.1	NS
ENSG00000163029	SMC6	protein_coding	2.4	2.5	NS
ENSG00000166311	SMPD1	protein_coding	NS	NS	4.9
ENSG00000130768	SMPDL3B		-2.6	-2.4	NS
		protein_coding			
ENSG00000185420	SMYD3	protein_coding	NS	NS	3.1
ENSG00000124216	SNAI1	protein_coding	NS	NS	9.9
ENSG00000019549	SNAI2	protein_coding	NS	NS	11.2
ENSG00000023608	SNAPC1	protein_coding	NS	NS	2.6
ENSG00000143553	SNAPIN		NS	NS	2.4
		protein_coding			
ENSG00000159210	SNF8	protein_coding	NS	NS	2.2
ENSG00000163788	SNRK	protein_coding	NS	NS	-2.5
ENSG00000125870	SNRPB2	protein_coding	NS	NS	2
ENSG00000227624	SNRPEL1	pseudogene	NS	NS	2
ENSG00000172554	SNTG2	protein_coding	-2.2	-2.2	NS
ENSG00000104497	SNX16	protein_coding	NS	NS	2.3
ENSG00000064652	SNX24	protein_coding	NS	NS	2.3
ENSG00000048471	SNX29	protein_coding	NS	NS	3
ENSG00000173548	SNX33	protein_coding	NS	NS	2.1
ENSG00000130340	SNX9	protein_coding	NS	NS	3.3
ENSG00000171150	SOCS5	protein_coding	NS	NS	2.3
ENSG00000171130			2.1	2.1	NS
	SOD1	protein_coding			
ENSG00000154556	SORBS2	protein_coding	-3.5	-3.2	NS
ENSG00000120896	SORBS3	protein_coding	NS	NS	2.2
ENSG00000137642	SORL1	protein_coding	NS	NS	-9.3
ENSG00000135899	SP110	protein coding	2.5	2.7	NS
ENSG00000079263	SP140	protein coding	NS	2.4	NS
ENSG00000185404	SP140L	protein_coding	2.6	2.7	NS
ENSG00000061656	SPAG4	protein_coding	-2.5	-2.4	NS
ENSG00000076382	SPAG5	protein_coding	2.2	2.2	NS
ENSG00000113140	SPARC	protein_coding	3.9	3.9	3.9
ENSG00000152583	SPARCL1	protein_coding	NS	NS	-36
ENSG00000163071	SPATA18	protein coding	NS	NS	4
		. = 0			
ENSG00000133104	SPG20	protein_coding	NS	NS	3
ENSG00000164266	SPINK1	protein_coding	NS	NS	-312
ENSG00000166145	SPINT1	protein_coding	NS	NS	-4.6
ENSG00000169682	SPNS1	protein_coding	NS	NS	2.4
ENSG00000152377	SPOCK1	protein coding	4	3.1	10.9
		. = 0			
ENSG00000107742	SPOCK2	protein_coding	NS	2.1	NS
ENSG00000152268	SPON1	processed_transcript	4.2	4.3	NS
ENSG00000159674	SPON2	protein_coding	4.1	3.4	10
ENSG00000118785	SPP1	protein_coding	NS	NS	-28.6
ENSG00000166068	SPRED1	protein_coding	2.6	2.7	NS
ENSG00000229035	SPRR2C	pseudogene	-2	-2.1	NS
ENSG00000187678	SPRY4	protein_coding	2	2	NS
ENSG00000100596	SPTLC2	protein_coding	2.7	2.9	NS
ENSG00000104549	SQLE	protein_coding	4.9	4.7	6.3
ENSG00000137767	SQRDL	protein_coding	2.1	2	2.5
ENSG00000213523	SRA1	protein_coding	NS	NS	2.3
ENSG00000213323	SREBF2	protein_coding	NS	NS	2.2
ENSG00000196935	SRGAP1	protein_coding	NS	NS	2.4
ENSG00000163486	SRGAP2	protein_coding	2.4	2.3	NS
ENSG00000149418	ST14	protein_coding	NS	NS	-8.3
ENSG00000157350	ST3GAL2	protein_coding	NS	NS	2.2
ENSG00000110080	ST3GAL4	protein_coding	2	2	NS
	· · · ·	F - 2	=	=	

ENSG00000166444	ST5	protein_coding	NS	NS	2.1
ENSG00000073849	ST6GAL1	protein coding	NS	3.2	NS
ENSG00000070526	ST6GALNAC1	protein coding	NS	4.4	NS
ENSG00000140557	ST8SIA2	protein_coding	NS	NS	2.2
		. = 0			
ENSG00000113532	ST8SIA4	protein_coding	NS	3.1	NS
ENSG00000144681	STAC	protein_coding	NS	NS	5.8
ENSG00000138134	STAMBPL1	protein_coding	2.3	2.3	NS
ENSG00000214530	STARD10	protein_coding	NS	NS	-3.6
ENSG00000164211	STARD4	protein_coding	2.3	2.1	NS
ENSG00000171211	STARD5	protein_coding	NS NS	NS	3.9
ENSG00000115415	STAT1	protein_coding	2.2	2.1	NS
ENSG00000170581	STAT2	protein_coding	2.4	2.2	NS
ENSG00000113739	STC2	protein_coding	NS	-3.2	NS
ENSG00000164647	STEAP1	protein coding	5.1	4.5	9.7
ENSG00000157214	STEAP2	protein coding	2	2.1	NS
ENSG00000137211	STIL	protein_coding	3.3	3.3	3.2
ENSG00000072786	STK10	protein_coding	2.1	2.1	NS
ENSG00000134602	STK3	protein_coding	2.3	2.5	NS
ENSG00000130413	STK33	protein_coding	NS	NS	-3.4
ENSG00000112079	STK38	protein_coding	3	2.9	3.6
ENSG00000211455	STK38L	protein_coding	NS	2.2	NS
ENSG00000101109	STK4	protein_coding	2.1	2.2	NS
ENSG00000117632	STMN1	protein_coding	2.4	2.4	NS
ENSG00000243244	STON1	protein_coding	2.3	2.4	NS
ENSG00000140022	STON2	protein_coding	NS	NS	3.7
ENSG00000173320	STOX2	protein_coding	NS	NS	-2.6
ENSG00000101846	STS	protein coding	2.6	NS	4.2
ENSG00000135823	STX6	protein_coding	2.4	2.4	NS
				2.4	
ENSG00000079950	STX7	protein_coding	NS		NS
ENSG00000060140	STYK1	protein_coding	NS	2.7	NS
ENSG00000137573	SULF1	protein_coding	20.5	20.9	17.3
ENSG00000196562	SULF2	protein coding	5.5	5.6	NS
ENSG00000106868	SUSD1	protein_coding	2.2	2.2	NS
ENSG00000143502	SUSD4	protein_coding	NS	NS	-2.3
ENSG00000185518	SV2B	protein_coding	-3.3	NS	-9.6
ENSG00000133789	SWAP70	protein_coding	NS	NS	2.4
ENSG00000179751	SYCN	protein_coding	-23	-21.1	-84.6
ENSG00000162520	SYNC	protein_coding	NS	NS	7.7
ENSG00000054654	SYNE2	protein_coding	NS	NS	-6.9
ENSG00000132718	SYT11	protein_coding	2.5	2.3	NS
ENSG00000132710	SYTL2	protein_coding	5	5.4	NS
ENSG00000171148	TADA3L	protein_coding	NS	NS	2.1
ENSG00000197780	TAF13	protein_coding	NS	NS	5.9
ENSG00000106290	TAF6	protein_coding	NS	NS	2.1
ENSG00000149591	TAGLN	protein_coding	4.1	3.7	NS
ENSG00000170921	TANC2	protein_coding	2.1	2.2	NS
ENSG00000168394	TAP1	protein_coding	3.7	3.9	NS
ENSG00000204267	TAP2	protein_coding	2.1	2.3	NS
ENSG00000213977	TAX1BP3	protein_coding	NS	NS	3.2
ENSG00000095383	TBC1D2	protein_coding	3.3	3.1	NS
ENSG00000214946	TBC1D26	protein_coding	-2	-2.1	NS
ENSG00000111490	TBC1D30	protein_coding	-3.4	-3.2	-7.8
ENSG00000105254	TBCB	protein_coding	NS	NS	3.1
ENSG00000183735	TBK1	protein_coding	2.3	2.3	2.4
ENSG00000092607	TBX15	protein_coding	NS	NS	11.8
ENSG00000112837	TBX18	protein_coding	NS	NS	11
ENSG00000135111	TBX3	protein_coding	NS	NS	3.7
ENSG00000059377	TBXAS1	protein_coding	NS	2.4	-2.7
ENSG00000165929	TC2N	protein_coding	NS	-2.7	-121.6
ENSG00000204219	TCEA3	protein_coding	-3.8	-3.7	-5.3
ENSG00000204213	TCEB1	protein_coding	2.1	NS	3.7
ENSG00000196628	TCF4	protein_coding	2	2	NS
ENSG00000148737	TCF7L2	protein_coding	NS	NS	2.1
ENSG00000154316	TDH	pseudogene	-4.4	-4.6	NS
ENSG00000151790	TDO2	protein_coding	5.9	6.1	NS
ENSG00000129566	TEP1	protein_coding	2.3	2.4	NS
ENSG00000125369	TES	protein_coding	NS	2	NS
ENSG00000088992	TESC	protein_coding	NS	NS	-9.7
ENSG00000087510	TFAP2C	protein_coding	NS	NS	7
ENSG00000115112	TFCP2L1	protein_coding	NS	NS	-5.1
ENSG00000198176	TFDP1	protein_coding	NS	NS	2.5
		= ~			

ENSG00000068323	TFE3	protein_coding	NS	NS	2.7
ENSG00000105967	TFEC	protein_coding	NS	3.7	NS
ENSG00000003436	TFPI	protein coding	2.4	2.5	NS
ENSG00000105329	TGFB1	protein_coding	3.3	3.2	4.5
ENSG00000140682	TGFB1I1	protein_coding	NS	NS	3.3
ENSG00000120708	TGFBI	protein_coding	5.3	4.8	9.1
ENSG00000106799	TGFBR1	protein coding	3.1	3.1	3
ENSG00000198959	TGM2	protein_coding	5.3	5.8	NS
ENSG00000186340	THBS2	protein_coding	12.3	12.1	13.6
ENSG00000154096	THY1	protein_coding	7.7	6.3	18.9
ENSG00000145365	TIFA	protein_coding	-2.5	-2.4	NS
ENSG00000134375	TIMM17A	protein coding	NS	NS	2.8
ENSG00000102265	TIMP1	protein coding	4.8	4.6	NS
ENSG00000035862	TIMP2	protein_coding	3.1	2.7	6.4
ENSG00000106829	TLE4	protein_coding	NS	NS	2.9
ENSG00000038295	TLL1	protein_coding	NS	NS	-2.4
ENSG00000137076	TLN1	protein_coding	2.4	2.3	NS
ENSG00000136869	TLR4	protein_coding	2.5	2.6	NS
ENSG00000174130	TLR6	protein_coding	2.9	3.1	NS
ENSG00000169903	TM4SF4	protein_coding	NS	NS	-33.9
ENSG00000136404	TM6SF1	protein_coding	NS	2.6	NS
ENSG00000149809	TM7SF2	protein_coding	-2.7	-2.8	NS
ENSG00000103534	TMC5	protein_coding	NS	10.5	NS
ENSG00000170537			5.2	5.5	
	TMC7	protein_coding			NS
ENSG00000057704	TMCC3	protein_coding	NS	NS	-2.8
ENSG00000157315	TMED6	protein_coding	-15.9	-14.8	NS
ENSG00000241697	TMEFF1	protein_coding	NS	NS	5.4
ENSG00000109066	TMEM104	protein coding	NS	NS	3.2
			NS		3.4
ENSG00000178307	TMEM11	protein_coding		NS	
ENSG00000183160	TMEM119	protein_coding	NS	NS	8.2
ENSG00000179178	TMEM125	protein_coding	-2.4	-2.3	NS
ENSG00000170647	TMEM133	protein coding	3.8	4	NS
ENSG00000149483	TMEM138	protein_coding	NS	NS	3.7
ENSG00000170006	TMEM154		5.1	5.4	NS
		protein_coding			
ENSG00000152128	TMEM163	protein_coding	NS	NS	-4.7
ENSG00000174695	TMEM167A	protein_coding	2.7	2.6	NS
ENSG00000157111	TMEM171	protein_coding	NS	NS	4.3
ENSG00000184584	TMEM173	protein_coding	2	NS	2.6
ENSG00000002933	TMEM176A	protein_coding	2.7	2.8	NS
ENSG00000198792	TMEM184B	protein_coding	2.4	2.1	4.3
ENSG00000240849	TMEM189	protein_coding	2.9	2.6	5.3
ENSG00000139291	TMEM19	protein_coding	2.1	2.1	NS
ENSG00000176273	TMEM20	protein_coding	-2.3	-2.4	NS
ENSG00000164484	TMEM200A	protein_coding	2.1	2	2.7
ENSG00000186501	TMEM222	protein coding	NS	NS	2.3
ENSG00000182107	TMEM30B	protein_coding	NS	NS	-4.6
ENSG00000121775	TMEM39B	protein_coding	NS	NS	2.3
ENSG00000151715	TMEM45B	protein_coding	NS	7.2	NS
ENSG00000147027	TMEM47	protein coding	NS	NS	6.1
ENSG00000058804	TMEM48	protein_coding	NS	2	NS
ENSG00000171729	TMEM51	protein_coding	NS	NS	-3.7
ENSG00000178821	TMEM52	protein_coding	-2.1	-2.2	NS
ENSG00000121900	TMEM54	protein_coding	2	2.1	NS
ENSG00000155099	TMEM55A	protein_coding	2.1	NS	3.8
ENSG00000152078	TMEM56	protein_coding	-2.4	NS	-6.8
ENSG00000137216	TMEM63B	protein_coding	2.1	2	3.1
ENSG00000187783	TMEM72	protein_coding	-2.3	-2.4	NS
ENSG00000153214	TMEM87B	protein_coding	2.5	2.6	NS
ENSG00000136842	TMOD1	protein_coding	NS	NS	-9.9
ENSG00000138594	TMOD3	protein_coding	2	2	NS
ENSG00000184012	TMPRSS2	protein_coding	NS	NS	-21.2
ENSG00000137648	TMPRSS4	protein_coding	18.7	20.9	NS
ENSG00000034510	TMSB10	protein_coding	2.3	2.3	2.5
ENSG00000179104	TMTC2	protein_coding	2	2	NS
ENSG00000139324	TMTC3	protein_coding	2.2	2	3.6
ENSG00000166479	TMX3	protein_coding	NS	NS	2.6
ENSG00000041982	TNC	protein_coding	7	4.8	25
ENSG00000185215	TNFAIP2	protein_coding	2.4	2.6	NS
ENSG00000123610	TNFAIP6	protein_coding	7.4	6.3	NS
ENSG00000173530	TNFRSF10D	protein_coding	NS	NS	3.6
ENSG00000164761	TNFRSF11B	protein_coding	NS	NS	31.8
		-			

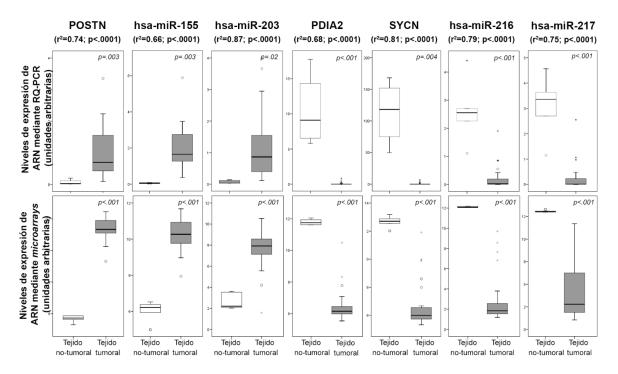
ENSG00000028137	TNFRSF1B	protein coding	NS	2	NS
ENSG00000146072	TNFRSF21	protein coding	2.9	3.1	NS
			NS	2.3	
ENSG00000102524	TNFSF13B	protein_coding			NS
ENSG00000181634	TNFSF15	protein_coding	2.7	2.9	NS
ENSG00000125657	TNFSF9	protein_coding	NS	NS	2.5
ENSG00000154310	TNIK	protein coding	2.4	2.6	NS
ENSG00000131746	TNS4	protein_coding	NS	10.7	NS
ENSG00000100284	TOM1	protein_coding	NS	NS	2.6
ENSG00000131747	TOP2A	protein_coding	5.1	5.4	NS
ENSG00000136827	TOR1A	protein_coding	NS	NS	2.2
ENSG00000136816	TOR1B	protein_coding	NS	NS	2.8
ENSG00000141510	TP53	protein_coding	NS	NS	2.8
ENSG00000164938	TP53INP1	protein coding	NS	-2	NS
ENSG00000076554	TPD52	protein_coding	NS	NS	-5.6
ENSG00000111669	TPI1	protein_coding	2.3	2.3	NS
ENSG00000198467	TPM2	protein coding	5	4.3	10.5
ENSG00000167460	TPM4	protein_coding	3.3	3.2	4.2
ENSG00000166340	TPP1	protein_coding	NS	NS	3.5
ENSG00000169902	TPST1	protein coding	NS	NS	2.5
ENSG00000128294	TPST2	protein_coding	-4.5	-4.7	NS
ENSG00000128251	TPX2	protein_coding	4.9	4.9	4.6
ENSG00000056972	TRAF3IP2	protein_coding	NS	NS	2.6
ENSG00000131653	TRAF7	protein coding	NS	NS	2.3
ENSG00000182606	TRAK1	protein_coding	2.3	2.3	NS
ENSG00000065308	TRAM2	protein_coding	3	2.3	8.8
ENSG00000170043	TRAPPC1	protein_coding	NS	NS	3.5
ENSG00000095970	TREM2	protein coding	NS	3.4	NS
ENSG00000072657	TRHDE	protein_coding	-16.7	-16.5	-18.1
ENSG00000071575	TRIB2	protein_coding	2.8	2.9	NS
ENSG00000106785	TRIM14	protein_coding	NS	2	NS
ENSG00000221926	TRIM16	protein_coding	3.6	3.6	3.8
ENSG00000132274	TRIM22	protein coding	2.3	2.2	NS
ENSG00000204616	TRIM31	protein_coding	NS	6.1	NS
ENSG00000108395	TRIM37	protein_coding	NS	NS	2.2
ENSG00000112343	TRIM38	protein coding	2.3	2.3	NS
ENSG00000213186	TRIM59	protein_coding	4	4	4.2
ENSG00000038382	TRIO	protein_coding	2	2	NS
ENSG00000071539	TRIP13	protein_coding	NS	NS	2
ENSG00000104447	TRPS1	protein_coding	3.8	3.7	4.8
ENSG00000165125	TRPV6	protein_coding	-4.4	-4.1	NS
ENSG00000182463	TSHZ2	protein_coding	3	3.2	NS
ENSG00000121297	TSHZ3	protein_coding	3.3	3	5.7
ENSG00000182704	TSKU	protein coding	2.9	2.8	NS
ENSG00000206549	TSP50	protein_coding	-2	-2.1	NS
ENSG00000117472	TSPAN1	protein_coding	20.1	22.5	NS
ENSG00000106537	TSPAN13	protein_coding	NS	NS	-6.5
ENSG00000099282	TSPAN15	protein_coding	NS	2.6	-3.8
ENSG00000214063	TSPAN4	protein_coding	NS	NS	2.7
ENSG00000168785	TSPAN5	protein_coding	4	3.1	11
ENSG00000156298	TSPAN7	protein_coding	NS	NS	-12.2
ENSG00000127324	TSPAN8	protein_coding	NS	4.8	-19
ENSG00000100300	TSPO	protein_coding	2.2	2	3.9
ENSG00000100300					
	TTC17	protein_coding	NS	NS	-2.2
ENSG00000155158	TTC39B	protein_coding	2.1	2.2	NS
ENSG00000114999	TTL	protein_coding	NS	NS	2.9
ENSG00000100271	TTLL1	protein_coding	NS	NS	3.1
ENSG00000137941	TTLL7	protein_coding	-2.5	-2.6	NS
ENSG00000155657	TTN	protein_coding	-3.6	-3.4	-6.5
ENSG00000124120	TTPAL	protein_coding	NS	NS	3.4
ENSG00000118271	TTR	protein_coding	NS	NS	-77.2
ENSG00000167614	TTYH1	protein_coding	-2.4	-2.4	-2.5
ENSG00000136295	TTYH3	protein_coding	2.7	2.5	4
ENSG00000127824	TUBA1	protein_coding	NS	2	NS
ENSG00000167552	TUBA1A	protein_coding	2.7	2.4	NS
ENSG00000123416	TUBA1B	protein_coding	NS	NS	2
ENSG00000167553	TUBA1C	protein_coding	4.2	3.7	7.7
ENSG00000196230	TUBB	protein_coding	NS	NS	2.6
ENSG00000137267	TUBB2A	protein_coding	NS	NS	6.1
ENSG00000176014	TUBB6	protein_coding	NS	NS	2.6
ENSG00000037042	TUBG2	protein_coding	-2	-2.3	NS
ENSG00000078246	TULP3	protein_coding	NS	NS	2.3

ENSG00000173366	TWF2	protein_coding	2.3	2.2	2.8
ENSG00000122691	TWIST1	protein_coding	NS	NS	5.9
ENSG00000128791	TWSG1	protein_coding	2.7	2.3	6.1
	TXN		3.1	2.9	4.5
ENSG00000136810		protein_coding			
ENSG00000115514	TXNDC9	protein_coding	2	2	NS
ENSG00000117289	TXNIP	protein_coding	NS	NS	-3.3
ENSG00000198431	TXNRD1	protein coding	3	2.7	5.7
ENSG00000136131	TYMS	0			
		protein_coding	2.8	NS	4.3
ENSG00000137831	UACA	protein_coding	2.1	2.2	NS
ENSG00000134882	UBAC2	protein coding	NS	NS	2.1
ENSG00000143569	UBAP2L	protein coding	NS	NS	2.1
			2.3	2.2	NS
ENSG00000154127	UBASH3B	protein_coding			
ENSG00000077721	UBE2A	protein_coding	NS	NS	2.7
ENSG00000072401	UBE2D1	protein_coding	3	2.8	4.6
ENSG00000182247	UBE2E2	protein_coding	NS	NS	4.4
ENSG00000185651	UBE2L3	protein coding	NS	NS	2.5
ENSG00000156587	UBE2L6	protein_coding	2	2	NS
ENSG00000077152	UBE2T	protein_coding	4.9	4.7	6.9
ENSG00000177414	UBE2U	protein_coding	-2.1	-2.1	NS
ENSG00000175567	UCP2	protein_coding	NS	2.6	NS
ENSG00000148154	UGCG	protein_coding	2.1	2	NS
ENSG00000242515	UGT1A10	protein_coding	43.6	48.9	NS
ENSG00000135220	UGT2A3	protein coding	NS	NS	-8.1
ENSG00000196620	UGT2B15	protein coding	NS	NS	-4.3
ENSG00000174607	UGT8	protein_coding	NS	NS	-2.5
ENSG00000152332	UHMK1	protein_coding	2.2	2.3	NS
ENSG00000169344	UMOD	protein_coding	NS	-2	NS
ENSG00000107731	UNC5B	protein_coding	2	2.1	NS
ENSG00000036672	USP2	protein_coding	-2.8	-3.4	NS
ENSG00000136014	USP44	protein_coding	-2	-2	NS
ENSG00000111962	UST	protein_coding	NS	-2	NS
ENSG00000103043	VAC14	protein coding	NS	NS	2.2
ENSG00000139190	VAMP1	protein_coding	2.1	NS	3.7
ENSG00000118640	VAMP8	protein_coding	NS	NS	-14.6
ENSG00000168140	VASN	protein_coding	NS	NS	4.3
ENSG00000108828	VAT1	protein_coding	NS	NS	5.4
ENSG00000141968	VAV1	protein_coding	NS	2	NS
ENSG00000160293	VAV2	protein_coding	NS	NS	-2.5
ENSG00000038427	VCAN	protein_coding	11.7	12.3	NS
ENSG00000035403	VCL	protein_coding	2.5	2.3	3.5
					7.4
ENSG00000111424	VDR	protein_coding	4.1	3.7	
ENSG00000150630	VEGFC	protein_coding	NS	NS	5.1
ENSG00000197415	VEPH1	protein_coding	-5	-5.3	-3.6
ENSG00000206538	VGLL3	protein coding	NS	NS	10.8
ENSG00000127831	VIL1	protein coding	NS	NS	-3.4
ENSG00000026025	VIM	protein_coding	NS	NS	2.9
ENSG00000106018	VIPR2	protein_coding	-4.7	-4.8	-4.3
ENSG00000205221	VIT	protein_coding	NS	NS	5.3
ENSG00000147852	VLDLR	protein coding	-3.7	-4	NS
		. = 0			
ENSG00000104142	VPS18	protein_coding	NS	NS	2.3
ENSG00000122958	VPS26A	protein_coding	NS	NS	2
ENSG00000139719	VPS33A	protein_coding	NS	NS	2
ENSG00000101842	VSIG1	protein_coding	NS	13.5	NS
ENSG00000134258		protein_coding	-3.6	-3.3	-13.4
	VTCN1				
ENSG00000112290	WASF1	protein_coding	NS	NS	4.1
ENSG00000132970	WASF3	protein_coding	NS	NS	2.5
ENSG00000132471	WBP2	protein coding	NS	NS	2.2
ENSG00000132171	WBP5	protein_coding	2.1	2	3.7
ENSG00000185274	WBSCR17	protein_coding	-2.1	-2.1	-2.5
ENSG00000139668	WDFY2	protein_coding	-2.2	-2.1	-2.7
ENSG00000198554	WDHD1	protein coding	2.3	2.2	NS
ENSG00000071127	WDR1	protein_coding	2.4	2.3	3.4
ENSG00000139323	WDR51B	protein_coding	NS	2.2	NS
ENSG00000162643	WDR63	protein_coding	NS	NS	3.7
ENSG00000115935	WIPF1	protein_coding	3.7	3.8	NS
ENSG00000104415	WISP1	protein_coding	3.1	3.2	NS
ENSG00000165238		protein_coding	-3.1	-3.1	
	WNK2				-3.3
ENSG00000114251	WNT5A	protein_coding	4.2	3.1	NS
ENSG00000132530	XAF1	protein_coding	3	3.3	NS
ENSG00000100219	XBP1	protein_coding	-2.2	-2.1	NS
ENSG00000124343	XG	protein_coding	NS	NS	13.4
L143000000124343	٨٥	protein_couning	INS	INO	13.4

ENSG00000169180	XPO6	protein_coding	NS	NS	2.7
ENSG00000152422	XRCC4	protein_coding	3.4	3.5	NS
ENSG00000163872	YEATS2	protein_coding	2	2	NS
ENSG00000091436	ZAK	protein_coding	NS	NS	2.8
ENSG00000126804	ZBTB1	protein_coding	2	2	NS
ENSG00000109906	ZBTB16	protein_coding	-4.5	-4.2	-11.1
ENSG00000174282	ZBTB4	protein_coding	NS	NS	2.3
ENSG00000165424	ZCCHC24	protein_coding	NS	NS	2.6
ENSG00000204186	ZDBF2	protein_coding	-2.5	-2.6	NS
ENSG00000188818	ZDHHC11	protein_coding	-2	-2	NS
ENSG00000204160	ZDHHC18	protein_coding	NS	NS	2
ENSG00000180776	ZDHHC20	protein_coding	2.1	2.2	NS
ENSG00000163812	ZDHHC3	protein_coding	2	2	NS
ENSG00000153786	ZDHHC7	protein_coding	2.5	2.4	3
ENSG00000148516	ZEB1	protein_coding	2.8	2.6	NS
ENSG00000169554	ZEB2	protein_coding	2.4	2.4	NS
ENSG00000091656	ZFHX4	protein_coding	3.2	3	4.8
ENSG00000103994	ZFP106	protein_coding	NS	NS	3
ENSG00000185650	ZFP36L1	protein_coding	NS	NS	2.1
ENSG00000165861	ZFYVE1	protein_coding	NS	NS	2.6
ENSG00000039319	ZFYVE16	protein_coding	2	2	NS
ENSG00000166432	ZMAT1	protein_coding	NS	NS	-7.2
ENSG00000172667	ZMAT3	protein_coding	2.4	2	5.5
ENSG00000136870	ZNF189	protein_coding	-2.3	-2.3	-3.1
ENSG00000204789	ZNF204P	pseudogene	NS	NS	-7.4
ENSG00000165512	ZNF22	protein_coding	NS	NS	-2.1
ENSG00000185947	ZNF267	protein_coding	2.4	2.5	NS
ENSG00000189180	ZNF33A	protein_coding	NS	NS	-3.4
ENSG00000196693	ZNF33B	protein_coding	-2.1	NS	-5.8
ENSG00000148143	ZNF462	protein_coding	2.2	2.3	NS
ENSG00000196268	ZNF493	protein_coding	NS	NS	-2.5
ENSG00000165655	ZNF503	protein_coding	-2	-2.2	NS
ENSG00000177853	ZNF518A	processed_transcript	NS	NS	-3.3
ENSG00000198795	ZNF521	protein_coding	4	3.6	6.5
ENSG00000074657	ZNF532	protein_coding	3.1	3.1	NS
ENSG00000120963	ZNF706	protein_coding	NS	NS	-2
ENSG00000140548	ZNF710	protein_coding	-3.1	-3.1	NS
ENSG00000147180	ZNF711	protein_coding	NS	NS	-2.1
ENSG00000196597	ZNF782	protein_coding	-2.1	-2	NS
ENSG00000151612	ZNF827	protein_coding	NS	NS	2
ENSG00000198824	ZNF828	protein_coding	NS	NS	2.1
ENSG00000178917	ZNF852	protein_coding	NS	NS	-2.1
ENSG00000197385	ZNF860	protein_coding	3.4	3.7	NS
ENSG00000167232	ZNF91	protein_coding	NS	NS	-3.3
ENSG00000124201	ZNFX1	protein_coding	2.3	2.2	NS
ENSG00000174442	ZWILCH	protein_coding	2.2	2.2	NS
ENSG00000159840	ZYX	protein_coding	2.2	2	4.4
VOULOCKU IIIII - NC.	actaglicticamonto no cia	DIRECTIVE: I. MUNCETOR TUR	nordioc: (-LD /	VE: CHRAITINGS /	, , , , , , , , , , , , , , , , , , ,

q-values<0.001; NS: estadísticamente no significativo; T: muestras tumorales; GEP-A/B: subgrupos A y B de ADCP definidos por su perfil de expresión génica según los resultados derivados de los análisis no supervisados de componentes principales (PCA) y de agrupaciones jerárquicas (HCA); No-T: muestras no tumorales.

TABLA SUPLEMENTARIA 8. Transcriptos de genes expresados de forma diferencial en los tejidos tumorales de ADCP (T; n=27), y en los subgrupos de ADCP GEP-A (n=24) y GEP-B (n=3) vs. tejidos pancreáticos no-tumorales (No-T; n=5) analizados con el *microarray* de *Affymetrix miRNA 2.0 Expression*


15.1.1	Nombre del gen	Descripión del	Diferencia de	Diferencia de	Diferencia de
ID del gen	(según Affymetrix)	transcripto	expresión en T <i>vs</i> No-T	expreión en GEP-A <i>vs</i> No-T	expreión en GEP-B <i>vs</i> No-T
ENSG00000254279	14qII-1	CDBox	-8.8	-7.8	-127.0
ENSG00000202270	14qII-12	CDBox	-3.8	-3.5	NS
ENSG00000199593	14qII-14	CDBox	NS	NS	-16.5
ENSG00000200406	14qII-23	CDBox	-2.4	-2.3	NS
ENSG00000206811	ACA10	HAcaBox	-4.3	-4.1	-9.4
NSG00000207168	ACA15	HAcaBox	-2.4	-2.3	NS
ENSG00000199293	ACA21	HAcaBox	-3.4	-3.1	-12.1
ENSG00000269893	ACA24	HAcaBox	-13.1	-11.9	-58.2
ENSG00000252808	ACA26	HAcaBox	-2.5	-2.4	-4.4
ENSG00000206799	ACA32	HAcaBox	-2.1	-2.1	NS
ENSG00000200816	ACA38	HAcaBox	-2.4	-2.5	NS
ENSG00000207406	ACA41	HAcaBox	-2.8	-2.7	-3.7
ENSG00000207475	ACA42	HAcaBox	-2.1	-2.1	NS
ENSG00000207473	ACA46	HAcaBox	-3.5	-3.4	NS
ENSG00000271798	ACA51	HAcaBox	-3.0	-2.9	NS
ENSG00000271738	ACA51 ACA52	HAcaBox	-2.5	-2.4	NS
ENSG00000199783 ENSG00000207008	ACA54	НАсавох	NS	-2.4 NS	-5.9
ENSG00000201457	ACA55	HAcaBox	-3.3	-3.2	NS 26 F
ENSG00000251898	ACA57	HAcaBox	-9.0	-8.3	-26.5
ENSG00000197989	ACA61	HAcaBox	NS	NS	-3.7
ENSG00000266402	ACA62	HAcaBox	-2.3	-2.1	NS
NSG00000207496	ACA7	HAcaBox	NS	NS	-11.8
ENSG00000207088	ACA7B	HAcaBox	-2.7	NS	-5.7
ENSG00000207304	ACA8	HAcaBox	NS	NS	-4.1
ND	E3	NA	-3.5	-3.4	-4.9
NSG00000212588	HBI-6	CDBox	NS	NS	-3.7
NSG00000221803	HBII-115	CDBox	-3.7	-3.4	-10.0
NSG00000270704	HBII-13	CDBox	-3.6	-3.3	-8.9
NSG00000212158	HBII-142	CDBox	-5.7	-5.3	-17.3
NSG00000221241	HBII-180A	CDBox	-4.9	-4.7	-7.8
NSG00000220988	HBII-180C	CDBox	-3.1	-3.1	NS
NSG00000212452	HBII-210	CDBox	-7.7	-7.2	-15.1
NSG00000200181	HBII-251	CDBox	-3.5	-3.4	-4.2
NSG00000212283	HBII-289	CDBox	NS	NS	-3.5
NSG00000212552	HBII-296B	snoRNA	-2.2	-2.1	NS
ENSG00000264994	HBII-316	CDBox	-2.7	-2.6	NS
NSG00000221740	HBII-336	CDBox	-5.9	-5.5	-15.8
NSG00000221500	HBII-429	CDBox	-4.4	-4.4	-4.5
ENSG00000207001	HBII-85-2	CDBox	-4.2	-4.0	-7.9
ENSG00000207279	HBII-85-24	CDBox	-3.4	-3.3	NS
NSG00000252326	HBII-85-25	CDBox	-2.6	-2.5	-3.4
NSG00000251815	HBII-85-26	CDBox	-5.0	-5.3	NS
ENSG00000207245	HBII-85-29	CDBox	-5.9	-6.1	NS
ENSG00000207442	HBII-85-6	CDBox	-3.8	-3.6	NS
ENSG00000207133	HBII-85-7	CDBox	-2.6	-2.6	NS
ENSG00000207093	HBII-85-8	CDBox	-3.2	-3.0	NS
ENSG00000206727	HBII-85-9	CDBox	-3.7	-3.4	-7.9
MI0000253	hp hsa-miR-148a	miRNA	-2.5	-2.8	NS
MI0000290	hp hsa-miR-214	miRNA	2.1	2.1	NS
MI0000254	hp hsa-miR-30c-2	miRNA	-2.5	-2.4	NS
MI0000254	hp_hsa-miR-423	miRNA	NS	NS	-3.3
MI0001443	hp_nsa-miR-941-2	miRNA	2.9	3.1	NS
	· -				
MI0000066	hsa-let-7e	miRNA miRNA	2.6	2.6	NS NS
MI0000434	hsa-let-7i	miRNA	2.8	2.8	NS
MI0000102	hsa-miR-100	miRNA	3.3	3.4	NS 12.7
MI0000266	hsa-miR-10a	miRNA	10.8	10.5	12.7
MI0000267	hsa-miR-10b	miRNA	NS	3.7	NS
MI0006273	hsa-miR-1180	miRNA	NS	NS	-7.3
MI0006334	hsa-miR-1202	miRNA	-2.7	-2.7	NS
*	hsa-miR-1244	miRNA	NS	NS	47.5
MI0000469	hsa-miR-125a-5p	miRNA	4.4	4.5	NS

MI0006405	hsa-miR-1268	miRNA	-2.3	-2.5	NS
MI0006415	hsa-miR-1275	miRNA	NS	NS	-11.0
MI0000748	hsa-miR-130b	miRNA	-13.0	-12.2	-31.1
MI0000748	hsa-miR-130b-star	miRNA	NS	-2.1	NS
MI0000449	hsa-miR-132	miRNA	NS	3.6	NS
MI0003786	hsa-miR-1323	miRNA	-2.7	-2.7	NS
MI0000459	hsa-miR-143	miRNA	3.5	3.5	NS
MI0000461	hsa-miR-145	miRNA	2.1	2.2	NS
MI0007074	hsa-miR-1469	miRNA	-2.7	-2.6	NS
MI0000477	hsa-miR-146a	miRNA	5.6	5.8	NS
MI0000253	hsa-miR-148a	miRNA	-15.3	-13.7	-189.4
MI0000253	hsa-miR-148a-star	miRNA	-10.0	-10.0	-9.9
MI0000478	hsa-miR-149	miRNA	NS	NS	-11.3
MI0000478	hsa-miR-149-star	miRNA	-2.6	-2.7	NS
MI0000479	hsa-miR-150	miRNA	5.3	5.3	NS
MI0000681	hsa-miR-155	miRNA	21.2	21.3	20.5
MI0000438	hsa-miR-15b	miRNA	6.2	6.0	NS
*	hsa-miR-181a	miRNA	2.9	3.0	NS
MI0000271	hsa-miR-181c	miRNA	NS	7.2	NS
MI0000271	hsa-miR-18a	miRNA	7.8	7.7	NS
MI0003137	hsa-miR-193b	miRNA	NS	NS	-22.7
MI0003137	hsa-miR-193b-star	miRNA	NS	NS NS	-13.0
MI0003137	hsa-miR-1973	miRNA	5.6	5.0	-13.0 NS
*		miRNA		5.0 4.2	
*	hsa-miR-199a-3p		4.1		3.5
MI0000282	hsa-miR-199a-5p	miRNA miRNA	NS 3.9	2.4 4.0	NS 2.2
*	hsa-miR-199b-3p				3.2
	hsa-miR-19b hsa-miR-203	miRNA miRNA	-4.1 43.0	-4.2	NS 75.0
MI0000283			43.0	39.0	
MI0000076	hsa-miR-20a hsa-miR-20b	miRNA miRNA	2.2	2.1 2.9	NS NS
MI0001519			2.8		
MI0000077	hsa-miR-21	miRNA	13.1	12.9	NS
MI0000290	hsa-miR-214	miRNA	2.2	2.3	NS 1250.2
MI0000292	hsa-miR-216a	miRNA	-68.1	-60.9	-1250.2
MI0005569	hsa-miR-216b	miRNA	-25.9	-23.2	-664.4
MI0000293	hsa-miR-217	miRNA	-31.1	-27.7	-1834.4
MI0000078	hsa-miR-22	miRNA	NS 2.5	NS	-3.1
MI0000298	hsa-miR-221	miRNA	2.5	2.6	NS
MI0000299	hsa-miR-222	miRNA	3.0	3.1	NS
MI0000079	hsa-miR-23a	miRNA	2.5	2.5	NS
MI0000439	hsa-miR-23b-star	miRNA	NS	NS	-5.7
MI0000085	hsa-miR-27a	miRNA	4.9	5.0	NS
MI0000086	hsa-miR-28-5p	miRNA	2.4	2.5	NS
MI0000107	hsa-miR-29b-2-star	miRNA	NS	NS	-8.0
MI0000735	hsa-miR-29c	miRNA	-3.1	-2.8	-14.8
MI0000088	hsa-miR-30a	miRNA	-3.1	-3.0	-3.8
MI0000088	hsa-miR-30a-star	miRNA	-5.2	-4.8	-14.9
*	hsa-miR-30c	miRNA	-2.7	-2.6	-4.1
MI0000254	hsa-miR-30c-2-star	miRNA	-2.5	-3.5	-21.6
MI0000255	hsa-miR-30d	miRNA	-2.4	-2.4	NS
MI0000089	hsa-miR-31	miRNA	23.4	25.9	NS
*	hsa-miR-3156	miRNA	-3.1	-3.4	NS
MI0014210	hsa-miR-3176	miRNA	-3.7	-3.6	NS
MI0014232	hsa-miR-3188	miRNA	NS	NS	-6.4
MI0014240	hsa-miR-3195	miRNA	NS	NS	-11.2
MI0000813	hsa-miR-324-3p	miRNA	NS	NS	-8.5
MI0000803	hsa-miR-330-3p	miRNA	NS	NS	-5.1
MI0000806	hsa-miR-337-5p	miRNA	NS	3.4	NS
MI0000815	hsa-miR-339-3p	miRNA	NS	NS	-46.3
MI0000805	hsa-miR-342-3p	miRNA	2.0	2.0	NS
MI0000826	hsa-miR-346	miRNA	NS	2.3	NS
MI0000268	hsa-miR-34a	miRNA	2.9	3.0	NS
MI0000762	hsa-miR-362-5p	miRNA	NS	NS	-13.3
MI0000783	hsa-miR-375	miRNA	-4.7	-4.5	-7.8
MI0001446	hsa-miR-424-star	miRNA	9.0	9.7	NS
MI0015885	hsa-miR-4281	miRNA	-3.0	-3.3	NS
MI0015893	hsa-miR-4284	miRNA	NS	-2.3	NS
MI0015894	hsa-miR-4286	miRNA	-13.7	-12.7	-38.5
MI0015830	hsa-miR-4298	miRNA	21.4	14.1	80.3
MI0015850	hsa-miR-4317	miRNA	NS	2.6	NS
MI0001729	hsa-miR-451	miRNA	-3.2	-2.9	-16.9
MI0003126	hsa-miR-491-5p	miRNA	NS	NS	-7.6
	•				

MI0003134	hsa-miR-494	miRNA	-2.6	-2.8	NS
MI0003188	hsa-miR-503	miRNA	11.6	12.4	NS
*	hsa-miR-513a-5p	miRNA	-4.5	-4.4	NS
MI0005539	hsa-miR-541-star	miRNA	-2.0	-2.0	NS
MI0003581	hsa-miR-574-3p	miRNA	3.4	3.5	NS
MI0003653	hsa-miR-638	miRNA	-2.3	-2.2	NS
MI0006442	hsa-miR-664-star	miRNA	NS	NS	-11.5
MI0005543	hsa-miR-708	miRNA	25.3	26.7	NS
MI0003343	hsa-miR-762	miRNA	-2.9	-2.9	NS
MI0005761	hsa-miR-939	miRNA	-3.1	-2.9	NS
ENSG00000238578	mgh18S-121	snoRNA	-3.7	-3.4	-12.9
ENSG00000270066	mgU2-25-61	lincRNA	-5.6	-5.3	NS
ENSG00000207062	SNORA15	snoRNA	-3.5	-3.3	-5.7
ENSG00000206785	SNORA15	snoRNA	-3.3	-3.2	NS
ENSG00000206903	SNORA24	snoRNA	-11.7	-10.7	-48.2
ENSG00000207130	SNORA24	snoRNA	-13.5	-12.6	-32.6
ENSG00000201042	SNORA38	snoRNA	-5.4	-5.0	NS
ENSG00000201042	SNORA38B	snoRNA	-8.5	-8.1	-13.0
ENSG00000207187	SNORA64	snoRNA	-3.2	-3.1	-4.4
ENSG00000206958	SNORA70	snoRNA	NS	-2.0	NS
ENSG00000252853	SNORD112	snoRNA	NS	NS	2.3
ENSG00000202498	SNORD116	snoRNA	-4.8	-4.5	NS
ENSG00000252277	SNORD116-30	snoRNA	-2.9	-2.8	NS
ENSG00000239112	SNORD123	snoRNA	-4.1	-3.9	-6.2
ENSG00000202252	SNORD14C	snoRNA	-5.5	-5.3	NS
ENSG00000202232	SNORD14C SNORD14D	snoRNA	-3.1	-2.9	NS
ENSG00000201009	SNORD46	snoRNA	NS	NS	-11.7
ENSG00000199411	SNORD62	snoRNA	-4.8	-4.5	NS
ENSG00000238936	SNORD65	snoRNA	-2.4	-2.4	NS
ENSG00000212532	SNORD66	snoRNA	-3.7	-3.7	NS
ENSG00000238807	snoU3	snoRNA	NS	NS	3.7
ENSG00000238581	snoU3	snoRNA	NS	-2.0	NS
ENSG00000163597	snR38C	processed transcript	-3.5	-3.3	-5.3
ENSG00000207500	U102	CDBox	-2.2	-2.3	NS
ENSG00000199753	U104	CDBox	-8.1	-7.5	-20.6
ENSG00000201348	U105B	CDBox	-3.3	-3.0	-8.4
ENSG00000221716	U107	CDBox	-3.1	-3.0	NS
ENSG00000238294	U13	CDBox	-3.0	-2.9	NS
ENSG00000199673	U16	CDBox	-2.9	-3.0	NS
ENSG00000206780	U23	CDBox	-3.6	-3.5	NS
ENSG00000206611	U24	CDBox	-4.3	-4.1	-5.8
ENSG00000255717	U26	CDBox	-3.6	-3.5	-4.9
ENSG00000255717	U27	CDBox	NS	NS	-2.3
ENSG00000255717	U29	CDBox	-3.3	-3.2	NS
ND	U3	CDBox	-3.3	-3.2	NS
ENSG00000207119	U3	snoRNA	-2.1	-2.2	NS
ENSG00000201847	U31	CDBox	-6.9	-6.4	-18.2
*	U3-2B	CDBox	-2.8	-2.8	NS
ENSG00000199631	U33	CDBox	-3.1	-2.9	-5.0
ENSG00000202503	U34	CDBox	-3.8	-3.6	NS
ENSG00000262202	U3-4	CDBox	-2.6	-2.7	NS
ND	U35A	CDBox	-4.2	-4.0	-8.6
ENSG00000200530	U35B	CDBox	-2.2	-2.2	NS
ENSG00000200831	U36B	CDBox	-3.8	-3.6	-8.8
ENSG00000252542	U36C	CDBox	-6.4	-6.2	-8.8
ENSG00000206775	U37	CDBox	NS	NS	-2.4
ENSG00000202031	U38A	CDBox	-3.6	-3.3	-13.5
ENSG00000207421	U38B	CDBox	-6.2	-5.7	-25.0
ENSG00000263764	U43	CDBox	-2.9	-2.8	-5.2
ENSG00000201823	U48	CDBox	-5.4	-5.4	NS
ENSG00000175061	U49A	CDBox	-2.7	-2.6	NS
ENSG00000173001	U50B	CDBox	-9.0	-8.5	-15.8
ENSG00000207047	U51	CDBox	-4.7	-4.5	-8.9
ENSG00000265145	U53	CDBox	NS	NS	-7.0
ENSG00000264294	U55	CDBox	NS	NS	-4.6
ENSG00000229686	U56	CDBox	-3.3	-3.3	NS
ENSG00000226572	U57	CDBox	-2.8	-2.7	-3.7
ENSG00000206989	U63	CDBox	-4.7	-4.5	-6.9
ENSG00000207166	U68	CDBox	-4.3	-4.1	-6.4
ENSG00000208797	U73a	CDBox	-2.3	-2.2	-4.3
ENSG00000234741	U74	CDBox	-4.4	-2.2 -4.1	-10.5
1.10000000204741	074	CDDOX	7.7	→.1	-10.5

ENSG00000234741	U76	CDBox	-3.3	-3.2	-4.7
ENSG00000234741	U79	CDBox	-2.5	-2.6	NS
*	U8	CDBox	-2.6	-2.4	NS
ENSG00000202400	U82	CDBox	-3.9	-3.9	NS
ENSG00000209482	U83A	CDBox	-2.9	-2.8	-4.3
ENSG00000252945	U83B	CDBox	-8.3	-8.5	-6.9
ENSG00000265236	U84	CDBox	-4.8	-4.9	NS
ENSG00000264549	U95	CDBox	-2.6	-2.6	-2.8
ENSG00000272296	U96a	CDBox	-2.9	-2.8	NS
ENSG00000238622	U97	CDBox	-2.4	-2.3	NS

q-values <0.001; *transcriptos de miRNA con varias secuencias stem-loop u otros nombres de ARN pequeños con varios ID de ENSEMBLE asociados; ND: información no disponible; NS: estadísticamente no significativo; T: muestras tumorales; GEP-A/B: subgrupos A y B de ADCP definidos por su perfil de expresión génica según los resultados derivados de los análisis no supervisados de componentes principales (PCA) y de agrupaciones jerárquicas (HCA); No-T: muestras no tumorales. snoRNA: ARNs pequeños nucleolares; HAcaBox: ARNs pequeños nucleolares de tipo caja H/ACA.

FIGURA SUPLEMENTARIA 3. Niveles de expresión de ARNm de los genes *PDIA2*, *SYCN* y *POSTN* y de los miARN hsa-mir-217, hsa-mir-216, hsa-mir-155 y hsa-mir-203 en tejidos de ADCP (n=27) vs. tejidos pancreáticos no tumorales (n=5) evaluados mediante RQ-PCR con el fin de validar los resultados de los GEP derivados de los *microarrays* de expresión. Las cajas representan los valores de los percentiles 25 y 75. La línea del medio de las cajas y las líneas verticales corresponden a la media y a los intervalos de confianza de 95%, respectivamente. Los valores fuera de rango (valores que están entre 1.5 y 3 veces el rango intercuartil) están marcados con circulos y los casos extremos (valores que están más allá de 3 veces el rango intercuartil) están marcados con un asterisco. Los resultados del análisis de correlación realizado entre los niveles de expresión obtenidos mediante los datos de RQ-PCR y los *microarrays* se muestran entre paréntesis.

TABLA SUPLEMENTARIA 9. Vías de señalización celular más representativas del ADCP identificadas mediante el análisis de los GEP de los ARN de genes codificantes de proteínas y de genes no codificantes de proteínas y que eran comunes a los subrgrupos de ADCP GEP-A y GEP-B (n=27).

Vía	a de señalización canónica	N. de genes	% de genes*	Valor de p [‡]	ID del gen
	Señalización de la guía axonal	66	13.8	<.001	PLCB2, GLI2, UNC5B, KRAS, ADAMTS2, LIMK1, GNB4, PLCD3, MICAL1, PAK1, ITGA3, SEMA6D, GNA15, ECE2, ADAM28, PIK3CG, ABLIM3, PLCB1, TUBA1C, SRGAP2, GNA13, ITGA4, PIK3C2B, ACTR2, CFL1, RRAS, RAC1, ITGA5, MMP2, MYL9, ARPC1A, ADAM12, FYN, ADAM17, MMP7, ARPC1B, EGF, EPHA4, PLXNA2, PDGFC, ROBO1, EFNB2, ACTR3, GLI3, EFNA5, MKNK1, ADAM19, MMP11, SHANK2, ITGB1, PLXNC1, NRP2, CXCR4, ITGA2, EPHA3, PLXND1, SEMA3A, WIPF1, PRKAR2B, TUBA1A, PAK3, ADAM10, SEMA3C, ADAM9, SEMA7A, WNT5A
	Señalización de la guía axonal	67	14	<.001	SLIT3, TUBB, ADAMTS2, LIMK1, GNB4, PLCD3, MICAL1, SEMA3D, CFL2, ABLIM3, PLCB1, TUBA1C, GSK3B, ADAMTS5, GNG12, PAPPA, PRKCQ, CFL1, RRAS, SEMA5A, PTCH1, TUBB2A, RAC1, ITGA5, VEGFC, MMP2, TUBA1B, MYL9, ADAMTS6, ADAM12, PLCB3, PRKCH, FZD5, NTF3, MMP7, PLXNA3, MYL6B, EGF, PLXNA2, ABLIM1, ROBO1, PRKCZ, PLCD1, SHC1, GNG11, ACTR3, GLI3, SRGAP1, EFNA5, MKNK1, MMP11, PIK3R2, SHANK2, BMP1, ITGB1, PLXNA1, NRP2, NFATC4, PLXND1, SEMA3A, PRKAR2B, TUBB6, PAK3, SEMA4G, SEMA3C, ADAM9, SEMA7A
.ganismo	Señalización del citoesqueleto de actina	39	16.4	<.001	FN1, ARPC1B, F2R, ACTA2, EGF, KRAS, TLN1, MYLK, SLC9A1, PDGFC, LIMK1, PAK1, ITGA3, ACTR3, FLNA, PIK3CG, DIAPH2, GNA13, VCL, TMSB10/TMSB4X, ACTN1, ITGA4, ITGB1, PIK3C2B, ACTR2, CFL1, RRAS, ITGA2, RAC1, ITGA5, TTN, MYL9, ARPC1A, PAK3, MYH9, VAV1, NCKAP1L, PIP4K2A, MSN
Desarrollo y Crecimiento del Organismo	Señalización del citoesqueleto de actina	33	13.9	.003	FN1, MYL6B, DIAPH3, EGF, SLC9A1, LIMK1, SHC1, IQGAP2, ACTR3, CFL2, PIK3R2, VCL, TMSB10/TMSB4X, FGF7, ACTC1, GNG12, ACTN1, VAV2, ITGB1, CFL1, RRAS, RAC1, ITGA5, FGD1, WASF1, TTN, FGF1, MYL9, PAK3, PIP5K1C, ARHGAP35, MSN, FGF5
rollo y Crec	Entrada de virus por via endocítica	25	24.8	<.001	ITGB1, B2M, PIK3C2B, AP2B1, FYN, AP2M1, RRAS, HLA-A, HLA-B, ITGA2, CLTB, ACTA2, RAC1, ITGA5, KRAS, ITGB2, CD55, ITGA3, FLNA, PIK3CG, ITGA1, ITGB4, ITGB6, ITGB5, ITGA4
Desar	Entrada de virus por via endocítica	20	19.8	.001	ITGB1, AP2B1, AP2A1, AP2M1, PRKCQ, RRAS, CLTC, RAC1, ITGA5, AP2S1, PRKCZ, FLNC, CLTA, PRKCH, PIK3R2, ITGB4, ITGB6, CXADR, ACTC1, ITGB5
	Señalización asociada a endocitosis mediada por Clatrina	31	15.8	<.001	ARPC1B, F2R, CLTB, ACTA2, EGF, PDGFC, LYZ, ACTR3, PIK3CG, SERPINA1, ITGB4, SH3KBP1, ITGB5, ITGB1, ACTR2, AP2B1, PIK3C2B, AP2M1, RAC1, ITGA5, HIP1, APOC1, APOL1, MET, ITGB2, ALB, ARPC1A, CBL, ITGB6, CTTN, MYO1E
	Señalización asociada a endocitosis mediada por Clatrina	29	14.8	.004	AP2A1, STON2, EGF, RAB5B, LYZ, ACTR3, SNX9, SERPINA1, ITGB4, PIK3R2, FGF7, ACTC1, ITGB5, ITGB1, AP2B1, AP2M1, CLTC, RAC1, ITGA5, VEGFC, AP2S1, FGF1, ALB, PIP5K1C, CLTA, ITGB6, CTTN, MYO1E, FGF5
	Señalización asociada a macropinocitosis	16	2.8	<.001	ITGB1, PIK3C2B, RRAS, RAC1, EGF, ITGA5, KRAS, RAB34, PDGFC, MET, ITGB2, PAK1, PIK3CG, ITGB4, ITGB6, ITGB5
	Señalización asociada a macropinocitosis	13	16.9	.025	ITGB1, PRKCQ, RRAS, RAC1, ITGA5, EGF, RAB34, PRKCZ, PRKCH, PIK3R2, ITGB4, ITGB6, ITGB5
	Inhibición de las metaloproteasas de la matriz extracelular	12	3.8	<.001	HSPG2, ADAM17, MMP7, ADAM12, TIMP1, MMP14, THBS2, ADAM10, MMP2, MMP11, LRP1, TIMP2

	Inhibición de las metaloproteasas de la matriz extracelular	11	28.2	.003	MMP7, ADAM12, MMP3, MMP14, RECK, THBS2, MMP2, MMP11, LRP1, MMP1, TIMP2
	Señalización asociada a extravasación de leucocitos	37	18	<.001	MMP7, ICAM1, MMP14, ACTA2, ITGA3, TIMP1, PIK3CG, CYBB, MMP11, VCL, ACTN1, ITGA4, TIMP2, ITGB1, PIK3C2B, CXCR4, CLDN18, ITGA2, RAC1, THY1, ITGA5, MMP2, NCF4, SELPLG, BTK, ITGB2, WIPF1, ITGAM, EDIL3, JAM3, NCF2, ITGA1, VAV1, ARHGAP1, CTTN, CLDN3, MSN
_	Señalización asociada a extravasación de leucocitos	36	17.6	<.001	MMP7, CLDN11, MMP3, MMP14, CLDN7, MAPK13, PRKCZ, CLDN4, CYBB, MMP11, PIK3R2, VCL, ACTC1, MMP1, ACTN1, TIMP2, VAV2, ITGB1, CLDN10, PRKCQ, RAC1, THY1, ITGA5, MMP2, F11R, CDH5, JAM3, RAP1GAP, CLDN1, NCF2, ARHGAP35, PRKCH, ARHGAP1, CTTN, CLDN3, MSN
/o Humora	Señalización asociada a la IL-8	31	14	<.001	PLCB2, ICAM1, DIRAS3, EGF, KRAS, PDGFC, EIF4EBP1, LIMK1, GNB4, PIK3CG, CYBB, ITGAV, GNA13, RHOF, ITGB5, PIK3C2B, NOX4, RHOC, RRAS, RAC1, MMP2, IRAK3, CSTB, MYL9, ITGB2, ITGAM, NCF2, MAP4K4, FNBP1, IRAK2, ITGAX
ne Celular y	Señalización asociada a la IL-8	29	13.1	.005	EGF, PRKCZ, LIMK1, HMOX1, GNB4, GNG11, RHOG, RHOU, CYBB, PIK3R2, ITGB5, GNG12, LASP1, PRKCQ, RHOC, RRAS, RAC1, VEGFC, MMP2, BAX, CSTB, MYL9, CDH1, RND3, NCF2, PRKCH, PTGS2, KDR, MAP4K4
Respuesta Inmune Celular y/o Humoral	Adhesión granulocítica y diapedesis	28	15.5	.002	MMP7, ICAM1, FN1, MMP14, ACTA2, CXCL10, ITGA3, MMP11, ITGA4, ITGB1, CXCR4, CLDN18, ITGA2, CKLF, ITGA5, C5, MMP2, SELPLG, MYL9, CXCL16, ITGB2, IL18, JAM3, IL1RN, MYH9, ITGA1, CLDN3, MSN
Respi	Adhesión granulocítica y diapedesis	25	13.8	.025	ITGB1, CLDN10, MMP7, CLDN11, FN1, MMP3, MYL6B, MMP14, ITGA5, MMP2, CLDN7, MYL9, ICAM2, CDH5, CLDN4, JAM3, CLDN1, CCL21, MMP11, CXCL17, CD34, ACTC1, CLDN3, MMP1, MSN
	Adhesión granulocítica y diapedesis	27	15.7	.002	MMP7, ICAM1, MMP14, CXCL10, ITGA3, MMP11, IL1RAP, ITGA4, ITGB1, CXCR4, ITGA2, CLDN18, CKLF, ITGA5, THY1, C5, MMP2, SELPLG, ITGB2, CXCL16, IL18, ITGAM, JAM3, IL1RN, ITGA1, CLDN3, MSN
	Adhesión granulocítica y diapedesis	23	13.4	.043	ITGB1, CLDN10, CLDN11, MMP7, MMP3, MMP14, THY1, ITGA5, MMP2, SDC3, CLDN7, ICAM2, CLDN4, CDH5, CLDN1, JAM3, CCL21, MMP11, CXCL17, MMP1, CLDN3, TNFRSF11B, MSN
cundarios	Señalización asociada a la familia de GTPasas Rho	45	17	<.001	ARPC1B, SEPT9, DIRAS3, ACTA2, MYLK, SEPT11, SLC9A1, PARD6A, CDH11, LIMK1, GNB4, PAK1, ITGA3, STMN1, ACTR3, GNA15, CDH3, PIK3CG, CYBB, ARHGEF2, GNA13, RHOF, ITGA4, ITGB1, PIK3C2B, ACTR2, NOX4, CFL1, RHOC, ITGA2, RAC1, CDH6, ITGA5, KIAA1804, MYL9, WIPF1, NEDD4, ARPC1A, PAK3, SEPT10, NCF2, PIP4K2A, SEPT6, FNBP1, MSN
Señalización Intracelular y de mensajeros secundar	Señalización asociada a la familia de GTPasas Rho	41	15.5	<.001	SEPT9, MYL6B, DIAPH3, WASF3, CDC42EP2, SEPT11, SLC9A1, CDH11, PRKCZ, LIMK1, GNB4, GNG11, ACTR3, RHOG, CFL2, RHOU, CYBB, PIK3R2, CDH13, ACTC1, GNG12, ITGB1, CFL1, RHOC, RAC1, VIM, ITGA5, CDC42EP3, WASF1, KIAA1804, MYL9, CDH1, CDH2, NEDD4, CDH5, RND3, PAK3, PIP5K1C, NCF2, ARHGEF10, MSN
Intracelular y	Señalización asociada a RhoGDI	32	16	<.001	ARPC1B, ARHGDIG, DIRAS3, ACTA2, CDH11, LIMK1, GNB4, ITGA3, PAK1, ACTR3, GNA15, CDH3, ARHGEF2, GNA13, RHOF, ITGA4, ITGB1, ACTR2, CFL1, RHOC, ITGA2, RAC1, CDH6, ITGA5, ARHGDIB, MYL9, ARPC1A, PAK3, PIP4K2A, ARHGAP1, FNBP1, MSN
Señalización	Señalización asociada a RhoGDI	30	15	.001	MYL6B, ARHGDIG, CDH11, LIMK1, GNB4, RHOG, ACTR3, GNG11, CFL2, RHOU, ACTC1, CDH13, GNG12, ITGB1, CFL1, RHOC, RAC1, ITGA5, WASF1, MYL9, CDH2, CDH1, RND3, PAK3, CDH5, PIP5K1C, ARHGAP35, ARHGEF10, ARHGAP1, MSN
	Señalización asociada a RhoA	23	18.4	<.001	ACTR2, CFL1, SEPT9, NRP2, ARPC1B, ANLN, ACTA2, MYLK, SEPT11, LPAR3, TTN, LIMK1, MYL9, NEDD4, LPAR6, ACTR3, ARPC1A, SEPT10, GNA13, ARHGAP1, PIP4K2A, SEPT6, MSN

	Señalización asociada a RhoA	23	18.4	.002	PLXNA1, CFL1, SEPT9, NRP2, ANLN, MYL6B, CDC42EP3, WASF1, SEPT11, CDC42EP2, TTN, LIMK1, MYL9, NEDD4, ACTR3, LPAR1, CFL2, RND3, PIP5K1C, ARHGAP35, ARHGAP1, ACTC1, MSN
ción Celular	Señalización asociada a uniones epiteliales adherentes	22	14.5	.016	ACTR2, TGFBR1, LMO7, ARPC1B, RRAS, FGFR1, ACTA2, ACVR1, RAC1, EGF, BMPR2, KRAS, MET, MYL9, ACTR3, ARPC1A, TUBA1A, MYH9, LEF1, TUBA1C, VCL, ACTN1
Desarrollo, Crecimiento y Proliferación Celular	Señalización asociada a uniones epiteliales adherentes	27	17.8	<.001	SNAI2, TGFBR1, MYL6B, EGF, TUBB, ACTR3, TUBA1C, VCL, ACTC1, ACTN1, VAV2, LMO7, RRAS, SNAI1, TUBB2A, RAC1, ACVR1, WASF1, TUBA1B, FGF1, MYL9, CDH1, CDH2, TUBB6, ZYX, MAGI2, TCF7L2
llo, Crecimie	Señalización asociada a semaforinas en neuronas	16	29.6	<.001	ITGB1, FYN, CFL1, RHOC, DPYSL3, DIRAS3, RAC1, LIMK1, MET, SEMA3A, PAK1, PAK3, RHOF, ARHGAP1, FNBP1, SEMA7A
Desarrol	Señalización asociada a semaforinas en neuronas	15	27.8	<.001	ITGB1, PLXNA1, CFL1, RHOC, DPYSL3, RAC1, LIMK1, SEMA3A, RHOG, PAK3, CFL2, RND3, RHOU, ARHGAP1, SEMA7A
Cáncer	Papel de los factores tisulares en el cáncer	20	15.9	.003	ITGB1, PDIA2, PIK3C2B, FYN, CFL1, CASP3, RRAS, RAC1, PLAUR, KRAS, JAK2, LIMK1, ITGA3, PAK1, GNA15, PIK3CG, ITGAV, PLCB1, GNA13, ITGB5
Cár	Papel de los factores tisulares en el cáncer	19	15.1	.011	TP53, ITGB1, PDIA2, CFL1, CASP3, RRAS, RAC1, PLAUR, VEGFC, MAPK13, FRK, LIMK1, CFL2, PLCB1, PIK3R2, RPS6KA1, ITGB5, MMP1, FGF5
Apoptosis, cáncer	Señalización asociada a PTEN	20	14.4	.008	MAST2, ITGB1, TGFBR1, CASP3, RRAS, FGFR1, ITGA2, RAC1, BMPR2, ITGA5, KRAS, CNKSR3, INPP5D, FGFR3, ITGA3, CBL, INPP5F, PIK3CG, ITGA4, PDGFRB
Apop cán	Señalización asociada a PTEN	20	14.4	.013	MAST2 ITGB1, TGFBR1, CASP3, RRAS, ILK, RAC1, ITGA5, FGFR2, CNKSR3, IGF2R, PRKCZ, SHC1, CDKN1A, PIK3R2, INSR, GSK3B, KDR, MAGI2, MAGI3

^{*}Los porcentages de los genes incluidos dentro de una categoría funcional están representados como el cociente entre el número de genes diferencialmente expresados en el GEP asignado a una vía canónica y el número total de genes que están anotados en la misma vía. *Valores de p corregidos para un test de hipótesis múltiple usando el método de *false discovery rate* de Benjamini y Hochberg. La información respecto a las vías canónicas implicadas en el subgrupo de tumores GEP-A está sombreada en gris.

TABLA SUPLEMENTARIA 10. Vías de señalización celular más representativas del subgrupo GEP-A de ADCP (n=24) identificadas mediante el análisis de los GEP de los ARN de genes codificantes de proteínas y de genes no codificantes.

	Vía de señalización canónica	N. of genes	% de genes*	Valor de p [‡]	ID del gen
	Maduración de célula dendrítica	34	16.9	<.001	B2M, PLCB2, ICAM1, HLA-A, HLA-DMB, JAK2, HLA-DQB1, TREM2, FCGR2B, COL1A2, PLCD3, PIK3CG, HLA-DRA, COL10A1, PLCB1, LY75, STAT1, HLA-DMA, PIK3C2B, FCGR2A, HLA-B, CD58, TLR9, COL1A1, TLR4, IL18, CD80, IL1RN, FSCN1, IGHG4, FCER1G, STAT2, IRF8, COL3A1
	Señalización asociada a NF-kB	25	14.1	.011	PIK3C2B, TGFBR1, RRAS, FGFR1, HDAC1, BMPR2, EGF, TBK1, KRAS, IRAK3, TLR9, FGFR3, TLR4, IL18, BCL10, CARD11, IL1RN, PIK3CG, TLR6, PELI1, FCER1G, CASP8, MAP4K4, TNFSF13B, PDGFRB
	Señalización asociada a CD28 en células T helper	22	16.5	.001	HLA-DMA, ACTR2, FYN, PIK3C2B, PTPN6, ARPC1B, RAC1, HLA-DMB, HLA-DQB1, PTPRC, PAK1, ACTR3, ARPC1A, CD80, CARD11, BCL10, PIK3CG, HLA-DRA, ITPR3, FCER1G, VAV1, LCP2
_	Señalización asociada a CTLA4 linfocitos T citotóxicos	17	17.9	.003	B2M, AP2B1, FYN, PIK3C2B, PTPN6, AP2M1, HLA-A, HLA-B, CLTB, JAK2, CD80, PIK3CG, FCER1G, AP1S3, PPP2R1B, LCP2, PTPN22
Humoral	Vía de la presentación de antígenos	17	4.5	<.001	B2M, HLA-DMA, PSMB9, HLA-A, HLA-B, CIITA, HLA- DMB, PSMB8, CD74, TAP1, HLA-DPA1, MR1, NLRC5, HLA-DRA, HLA-F, TAP2, HLA-E
ılar y/o	Comunicación entre células inmunes	16	15.7	.005	B2M, HLA-A, HLA-B, TLR9, CXCL10, TLR4, IL18, CD80, IL1RN, TLR6, HLA-DRA, IGHG4, FCER1G, HLA-F, HLA-E, TNFSF13B
Respuesta Inmune Celular y/o Humoral	Comunicación entre células dendríticas y células <i>natural killer</i>	16	15.2	.012	IL2RG, HLA-A, ACTA2, HLA-B, TLN1, TLR9, TREM2, FAS, TLR4, IL18, CAMK2D, CD80, FSCN1, HLA-DRA, HLA-F, HLA-E
esta Inn	Diferenciación de célula T <i>helper</i>	15	21.4	.002	HLA-DMA, IL2RG, TGFBR1, IFNGR2, HLA-DMB, HLA-DQB1, RORC, IL18, CD80, TGFB1, HLA-DRA, IL10RA, FCER1G, IL2RA, STAT1
Respu	Señalización asociada a rechazo de aloinjertos	14	23	<.001	B2M, HLA-DMA, HLA-A, HLA-B, HLA-DMB, HLA-DQB1, HLA-DPA1, FAS, CD80, HLA-DRA, IGHG4, FCER1G, HLA-F, HLA-E
	Señalización asociada a TREM1	14	16.1	.011	ITGB1, ICAM1, NLRP1, CIITA, ITGA5, JAK2, FCGR2B, TLR9, TLR4, NLRC5, IL18, TLR6, NOD1, ITGAX
	Señalización asociada a enfermedad injerto contra huesped	13	26.5	<.001	HLA-DMA, HLA-A, HLA-B, HLA-DMB, HLA-DQB1, FAS, IL18, CD80, IL1RN, HLA-DRA, FCER1G, HLA-F, HLA-E
	Señalización asociada a enfermedad autoinmune de tiroides	12	21.4	.001	HLA-DMA, CD80, HLA-A, HLA-DRA, HLA-B, IGHG4, FCER1G, HLA-DMB, HLA-DQB1, HLA-F, FAS, HLA-E
	Señalización asociada a la vía de MSP-RON	11	21.6	.006	F11, ITGB2, TLR4, PIK3C2B, KLKB1, KLK1, ITGAM, PIK3CG, ACTA2, MST1, JAK2
	Sistema del complemento	9	26.5	.007	C1R, CD55, C1S, CFB, C1QC, C1QA, C5, C1QB, CFH
	Señalización asociada a interferon	9	25	.008	IFNGR2, STAT2, PSMB8, JAK2, STAT1, IFNAR2, TAP1, BAK1, IRF1
elular y de ndarios	Señalización asociada a ERK/MAPK	28	13.5	.006	FYN, PLA2G10, KRAS, TLN1, KSR1, EIF4EBP1, MYC, ELF4, PAK1, ITGA3, ETS2, PIK3CG, MKNK1, STAT1, ITGA4, ITGB1, PPARG, ETS1, PIK3C2B, RRAS, ITGA2, PLA2G1B, RAC1, ITGA5, PRKAR2B, PAK3, PPP2R1B, ELK3
Señalización Intracelular y de mensajeros secundarios	Señalización asociada a la quinasa Tec	27	14.8	<.001	FYN, DIRAS3, ACTA2, JAK2, FAS, GNB4, PAK1, ITGA3, GNA15, PIK3CG, GNA13, STAT1, RHOF, ITGA4, ITGB1, TNFRSF21, PIK3C2B, RHOC, ITGA2, ITGA5, BTK, TLR4, PAK3, FCER1G, STAT2, VAV1, FNBP1
Señali: mer	Señalización asociada a Rac	23	18.1	<.001	ITGB1, ACTR2, PIK3C2B, NOX4, CFL1, ARPC1B, RRAS, ITGA2, RAC1, ITGA5, KRAS, PARD6A, LIMK1, ITGA3, PAK1, ACTR3, ARPC1A, PAK3, PIK3CG, NCF2, CYBB, PIP4K2A, ITGA4

	Señalización asociada a PAK	20	18.2	<.001	ITGB1, PIK3C2B, CFL1, CASP3, RRAS, ITGA2, RAC1, ITGA5, MYLK, KRAS, EPHA3, PDGFC, LIMK1, MYL9, ITGA3, PAK1, PAK3, PIK3CG, ITGA4, PDGFRB
	Regulación de la motilidad celular mediada por actina través de Rho	18	19.8	<.001	ACTR2, CFL1, ARPC1B, RHOC, DIRAS3, ACTA2, RAC1, MYLK, LIMK1, MYL9, PAK1, WIPF1, ARPC1A, ACTR3, PAK3, RHOF, PIP4K2A, FNBP1
	Nucleación de la actina mediada por el complejo ARP-WASP	17	25.4	<.001	ITGB1, ACTR2, ARPC1B, RHOC, RRAS, DIRAS3, ITGA2, RAC1, ITGA5, KRAS, ITGA3, WIPF1, ACTR3, ARPC1A, RHOF, FNBP1, ITGA4
Crecimiento isores y I SN	Señalización asociada a receptores de efrina	32	15.5	<.001	FYN, ARPC1B, EGF, EPHA4, KRAS, JAK2, PDGFC, LIMK1, EFNB2, GNB4, ITGA3, PAK1, ACTR3, GNA15, PIK3CG, EFNA5, GNA13, ITGA4, ITGB1, ACTR2, CFL1, CXCR4, RRAS, ITGA2, RAC1, ITGA5, EPHA3, WIPF1, ARPC1A, PAK3, ADAM10, MAP4K4
Señalización asociada al Desarrollo y Crecimiento del Organismo y/o a neurotrasmisores y otras vías de señalización del SN	Señalización asociada a la paxillina	26	22.6	<.001	ACTA2, KRAS, TLN1, PTPN12, PAK1, ITGA3, ITGA11, PIK3CG, ITGAV, ITGB4, VCL, ITGB5, ACTN1, ITGA4, ITGB1, PIK3C2B, RRAS, ITGA2, RAC1, ITGA5, ITGB2, ITGAM, PAK3, ITGA1, ITGB6, ITGAX
ción asociada al E Organismo y/o a otras vías de señ	Señalización asociada a endocitosis mediada por caveolas	23	27.7	<.001	B2M, ITGB1, FYN, HLA-A, HLA-B, ITGA2, ACTA2, EGF, ITGA5, ITGB2, CD55, ITGA3, ALB, ITGAM, FLNA, ITGA11, ITGAV, ITGA1, ITGB4, ITGB6, ITGB5, ITGA4, ITGAX
lización as del Organ otras y	Interacciones de la agrina en las uniones neuromusculares	18	26.1	<.001	ITGB1, RRAS, ACTA2, ITGA2, RAC1, ITGA5, NRG4, KRAS, LAMC1, ITGB2, PAK1, ITGA3, PAK3, ERBB4, LAMB1, ITGA1, CTTN, ITGA4
Seña	Señalización asociada a la efrina A	12	22.2	.004	FYN, PIK3C2B, PAK1, CFL1, EFNA5, PIK3CG, ADAM10, RAC1, VAV1, EPHA4, EPHA3, LIMK1
Crecimiento y Proliferación Celular	Señalización asociada a la Integrina	45	22	<.001	RAP2B, FYN, ARHGAP26, ARPC1B, DIRAS3, ACTA2, KRAS, TLN1, MYLK, ITGA3, PAK1, ACTR3, ITGA11, PIK3CG, ITGAV, VCL, ITGB4, RHOF, ACTN1, ITGB5, ITGA4, ITGB1, ACTR2, PIK3C2B, TSPAN5, ASAP1, RRAS, RHOC, ITGA2, RAC1, ITGA5, TTN, MYL9, ITGB2, WIPF1, ITGAM, ARPC1A, PAK3, TSPAN1, ITGA1, CAPN2, ITGB6, CTTN, FNBP1, ITGAX
imiento y Pro	Señalización asociada a Cdc42	29	18.8	<.001	B2M, ARPC1B, HLA-A, HLA-DMB, MYLK, HLA-DQB1, PARD6A, HLA-DPA1, LIMK1, PAK1, ITGA3, ACTR3, HLA-DRA, HLA-F, ITGA4, ITGB1, HLA-DMA, ACTR2, CFL1, ITGA2, HLA-B, ITGA5, MYL9, WIPF1, ARPC1A, PAK3, FCER1G, VAV1, HLA-E
ollo, Creci	Señalización asociada a FAK	20	19	<.001	ITGB1, PIK3C2B, FYN, ARHGAP26, ASAP1, RRAS, ACTA2, ITGA2, RAC1, EGF, ITGA5, KRAS, TLN1, ITGA3, PAK1, PAK3, PIK3CG, CAPN2, VCL, ITGA4
Desarrollo,	Regulación de funciones celulares por calpaína	13	18.3	.003	ITGB1, CCNA2, ITGA3, RRAS, ITGA2, EGF, ITGA5, CAPN2, KRAS, TLN1, VCL, ACTN1, ITGA4
ular	Fibrosis hepática/ Activación de las células estrelladas hepáticas	30	19.6	<.001	TGFBR1, ICAM1, FN1, ACTA2, EGF, PDGFC, FAS, COL1A2, TGFB1, CYP2E1, TIMP1, STAT1, IL1RAP, TIMP2, AGT, PDGFRB, FGFR1, IFNGR2, IGFBP5, MMP2, IFNAR2, MET, MYL9, COL1A1, TLR4, IGFBP3, IL10RA, MYH9, EDNRA, COL3A1
Estrés y Daño Celular	Señalización asociada a aterosclerosis	25	18.4	<.001	ICAM1, PLA2G10, PLA2R1, PDGFC, PLA2G7, COL1A2, LYZ, TGFB1, COL10A1, SERPINA1, ITGA4, PLA2G16, CXCR4, PLA2G1B, SELPLG, APOL1, APOC1, ITGB2, COL1A1, ALB, IL18, IL1RN, RARRES3, ALOX5, COL3A1
Estré	Sistema de coagulación	10	26.3	.003	F11, KLKB1, F2R, F8, PROS1, PLAUR, SERPINA1, PLAU, TFPI, PLAT
	Vía de activación intrínseca de la protrombina	9	25	.003	F11, COL1A2, COL1A1, KLKB1, KLK1, F8, PROS1, COL1OA1, COL3A1
Cáncer	Señalización asociada a invasión en gliomas	16	24.6	<.001	PIK3C2B, F2R, RHOC, RRAS, DIRAS3, PLAUR, KRAS, MMP2, TIMP1, PIK3CG, ITGAV, PLAU, RHOF, FNBP1, ITGB5, TIMP2

Las vías específicas asociadas a tumores con GEP-A están definidas como aquellas vías asociadas de forma significativa con los tumores de tipo GEP-A pero no con los tumores GEP-B, y/o aquellas que mostraron una expresión significativa ≥2 veces superior en la comparación entre GEP-A y GEP-B; *Los porcentages de los genes includos dentro de una categoría funcional. están representados como el cociente entre el número de genes diferencialmente expresados en el GEP asignado a una vía canónica y el número total de genes que están anotados en la misma vía. *Valores de p corregidos para un test de hipótesis múltiple usando el método de *false discovery rate* de Benjamini y Hochberg; SN: Sistema Nervioso; † se refiere a células inmunes innatas y adaptativas.

TABLA SUPLEMENTARIA 11. Vías de señalización celular más representativas del subgrupo GEP-B de ADCP (n=3) identificadas mediante el análisis de GEP de ARN de genes codificantes de proteínas y de genes que no codifican para proteínas.

	Vía de señalización canónica	N. de genes	% de gene s*	Valor de p [‡]	ID del gen
feración Celular	Señalización asociada a uniones entre células de Sertoli	36	18.6	<.001	CLDN11, ILK, MAP3K5, MAPK13, CLDN7, TUBB, OCLN, CLDN4, PPAP2B, CGN, TUBA1C, GSK3B, ACTC1, RAB8B, ACTN1, ITGB1, PLS1, CLDN10, GUCY1A3, RRAS, MAP3K13, TUBB2A, MAP3K1, RAC1, ITGA5, TUBA1B, F11R, CDH1, PRKAR2B, TUBB6, JAM3, CLDN1, ZAK, MAP2K3, MAGI2, CLDN3
niento y Prolií	Señalización asociada a Interleucinas	34	17.1	<.001	FN1, SNAI2, MYL6B, ILK, HIF1A, TGFB1I1, RHOG, CFL2, PPAP2B, RHOU, PIK3R2, GSK3B, ITGB4, TMSB10/TMSB4X, ACTC1, DSP, ITGB5, ACTN1, ITGB1, CFL1, CASP3, RHOC, SNAI1, FERMT2, VIM, VEGFC, MYL9, CDH1, RND3, FLNC, IRS1, KRT18, PTGS2, ITGB6
Desarrollo, Crecimiento y Proliferación Celular	Señalización asociada a uniones entre células germinales y células de Sertoli	30	18	<.001	TGFBR1, ILK, MAP3K5, TUBB, LIMK1, RHOG, TGFB1, PPAP2B, RHOU, TUBA1C, PIK3R2, ACTC1, RAB8B, ACTN1, ITGB1, PLS1, RHOC, RRAS, MAP3K13, TUBB2A, MAP3K1, RAC1, TUBA1B, CDH2, CDH1, RND3, TUBB6, PAK3, ZYX, MAP2K3
Apoptosis, cáncer	Señalización asociada a "tight junctions"	25	15.1	.005	CLDN10, F2RL2, CLDN11, TGFBR1, MYL6B, RAC1, CLDN7 CNKSR3, PRKCZ, OCLN, MYL9, F11R, PRKAR2B, CLDN4, JAM3, CLDN1, LLGL1, TGFB1, CGN, VCL, MAGI2, INADL, ACTC1, CLDN3, TNFRSF11B
Cáncer	Señalización asociada a HER-2 en cáncer de mama	17	2.7	.002	TP53, ITGB1, PRKCQ, RRAS, EGF, PARD6B, ERBB3, MMP2, MAP3K5, PRKCZ, CDKN1A, PRKCH, ITGB4, PIK3R2, GSK3B, ITGB6, ITGB5
ິວ	Señalización asociada a cáncer de vejiga	16	17	.013	TP53, MMP7, TFDP1, MMP3, RRAS, MMP14, EGF, VEGFC MMP2, FGF1, CDH1, CDKN1A, MMP11, FGF7, MMP1, FGF5

Las vías específicas de tumores de tipo GEP-B se definieron como aquellas vías que se asociaban de forma significativa con tumores de tipo GEP-B pero no con tumores de tipo GEP-A, y/o aquellas que mostraron una asociación significativa al menos 2 veces superior en la comparación entre GEP-B y GEP-A; *Los porcentages de los genes incluidos dentro de una categoría funcional están representados como el cociente entre el número de genes diferencialmente expresados en el GEP asignado a una vía canónica y el número total de genes que están anotados en la misma vía. *Valores de p corregidos para un test de hipótesis múltiple usando el método de *false discovery rate* de Benjamini y Hochberg.

TABLA SUPLEMENTARIA 12: Análisis de curvas ROC realizado específicamente para aquellos genes seleccionados de los subgrupos de ADCP GEP-A (24 tumores vs. 3 tumores y 5 tejidos no tumorales) y GEP- B (3 tumores vs. 24 tumores y 5 previamente en base a los resultados de los algoritmos de predicción y que contribuyen en mayor medida a la discriminación tejidos no tumorales).

			Diforoncia	Diforoncia								
			a b	e e								
Nombre del gen	ID del gen	Subgrupo GEP*	expresión en GEP-A	expresión en GEP-B	AUC (GEP-A)	Valor de p	CI (95%)	2%)	AUC (GEP-B)	Valor de p	CI (95%)	(%
			vs No-T	vs No-T								
ABCF2	ENSG00000033050		1.4	2.8	0.63	0.294	0.290	0.960	1.00	0.005	1.000	1.000
ABR	ENSG00000159842		2.1	NS	0.64	0.240	0.316	0.964	0.97	0.009	0.902	1.031
AC0071821	ENSG00000119686		2.6	NS	1.00	0.000	0.999	1.000	0.10	0.024	-0.013	0.213
AC0093111	ENSG00000242113	8	NS	5.8	0.31	0.110	0.100	0.520	1.00	0.005	1.000	1.000
AC0114792	ENSG00000167642		NS	-6.3	0.93	0.000	0.845	1.015	1.00	0.005	0.000	0.000
AC0245752	ENSG00000105520		NS	3.3	0.47	0.801	0.192	0.748	1.00	0.005	1.000	1.000
AC0788893	ENSG00000225422		3.7	7.2	0.62	0.313	0.290	0.953	1.00	0.005	1.000	1.000
AC0793371	ENSG00000235734		-2.1	NS	1,00	0.000	-0.019	0.049	0.87	0.039	0.742	0.992
AC0797801	ENSG00000236654		4.0	8.6	0.63	0.294	0.308	0.942	0.97	0.009	0.902	1.031
AC0995221	ENSG00000183900		NS	3.9	0.21	0.015	0.026	0.394	1.00	0.005	1.000	1.000
AC0997591	ENSG00000105889	В	NS	11.0	0.59	0.450	0.269	0.911	1.00	0.005	1.000	1.000
AC1078831	ENSG00000173517		2.0	4.3	0.62	0.334	0.284	0.946	1.00	0.005	1.000	1.000
AC1080651	ENSG00000138640		-2.2	-3.8	0.63	0.240	0.036	0.684	1.00	0.009	-0.031	0.098
AC1151021	ENSG00000247116		NS	-2.7	0.52	0.900	0.226	0.804	1.00	0.005	0.000	0.000
ACP5	ENSG00000102575		2.8	NS	1.00	0.000	0.979	1.011	0.12	0.033	-0.017	0.262
ACSL5	ENSG00000197142	۷	7.0	NS	0.97	0.000	0.897	1.033	0.02	0.007	-0.027	0.072
ACTC1	ENSG00000159251	8	NS	12.5	0.31	0.110	0.094	0.526	0.97	0.00	0.902	1.031
ACTR1A	ENSG00000138107		1.6	2.9	0.61	0.355	0.281	0.939	1.00	0.005	1.000	1.000
ADAM12	ENSG00000148848		5.9	28.6	0.58	0.529	0.259	0.891	1.00	0.005	1.000	1.000
ADAM28	ENSG00000042980	4	7.2	NS	0.98	0.000	0.923	1.027	0.00	0.005	0.000	0.000
ADAMTS5	ENSG00000154736	8	NS	9.5	0.48	0.834	0.197	0.753	1.00	0.005	1.000	1.000
ADRBK1	ENSG00000173020		2.3	NS	1.00	0.000	0.999	1.000	0.11	0.028	-0.002	0.225
AEN	ENSG00000181026		NS	2.3	0.15	0.003	0.016	0.284	0.97	0.009	0.902	1.031
AGPAT1	ENSG00000204310		1.7	3.2	0.62	0.313	0.293	0.947	0.99	9000	0.956	1.022
AGR2	ENSG00000106541		5.3	NS	0.95	0.000	0.875	1.025	0.02	0.007	-0.027	0.072
AHR	ENSG00000106546		3.4	NS	96.0	0.000	0.883	1.037	0.18	0.069	0.041	0.314
AK1	ENSG00000106992		NS	3.1	0.56	0.614	0.248	0.872	1.00	0.005	1.000	1.000
AK5	ENSG00000154027	8	NS	48.4	0.43	0.529	0.161	0.689	1.00	0.005	1.000	1.000
AKAP9	ENSG00000127914		NS	-2.6	0.50	1.000	0.223	0.777	1.00	0.009	-0.031	0.098
ALDH1L2	ENSG00000136010		-3.4	NS	0.98	0.000	-0.020	090.0	0.91	0.021	0.811	1.011
ALOX5	ENSG00000012779		2.5	-6.2	0.98	0.000	0.923	1.027	1.00	0.005	0.000	0.000
ALOX5AP	ENSG00000132965		4.0	NS	0.97	0.000	0.907	1.023	0.00	0.005	0.000	0.000
ALPK2	ENSG00000198796	8	NS	12.0	0.56	0.614	0.251	0.869	1.00	0.005	1.000	1.000
ALS2CR4	ENSG00000155755		NS	2.8	0.55	0.674	0.250	0.850	0.98	0.007	0.928	1.027

0.0000 0.0000	1.000 1.000 0.098 1.000
0.000 0.056 0.000 0.000 1.	1.000 1.000 1.000 -0.031 1.000
0.005 0.005	0.005 0.005 0.009 0.009
1.00 0.99 1.00 0.087 1.00 0.087 1.00 0.10 0.10 0.10 0.10 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01 1.00 0.11 0.01	1.00 1.00 1.00 1.00
0.722 0.940 0.940 0.946 0.0946 0.0946 0.909 0.909 0.946 1.011 1.030 0.946 0.946 0.946 0.933 0.95	0.953 0.698 0.849 0.855 0.933
0.068 0.290 0.319 0.031 0.032 0.026 0.026 0.029 0.029 0.029 0.029 0.039 0.032 0.032 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.036 0.037 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.039	0.290 0.162 0.241 0.415 0.278
0.378 0.334 0.450 0.000 0.334 0.000 0.425 0.475 0.334 0.000 0.294 0.294 0.000	0.313 0.556 0.705 0.257 0.378
0.62 0.62 0.63 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	0.62 0.55 0.64 0.61
.3.0 .4.7 .4.7 .8.8 .8.8 .8.8 .9.9 .9.3 .9.0	8.0 5.1 -10.4 3.6
1.7.7 N S N S S S S S S S S S S S S S S S S	NS NS NS 1.9
< a < a a a a a a a a a a a a a a a a a	
0 7 0 0 1 9 7 0 8 9 1 8 8 0 7 4 5 0 8 9 7 8 0 7 8 0 7 9 5 1 0 8 9 7 5 5 6 7	7 2 3 6 7
ENS GOODO 0145020 ENS GOODO 0141552 ENS GOODO 0141552 ENS GOODO 0151150 ENS GOODO 0151151 ENS GOODO 0151610 ENS GOODO 0150687 ENS GOODO 0150687 ENS GOODO 0150695 ENS GOODO 0150695 ENS GOODO 0150696 ENS GOODO 0150696 ENS GOODO 0150696 ENS GOODO 0150696 ENS GOODO 0150696 ENS GOODO 0150696 ENS GOODO 0150696 ENS GOODO 016069696 ENS GOODO 013796 ENS GOODO 013796 ENS GOODO 0143515	ENSG0000106245 ENSG0000112276 ENSG0000165633 ENSG0000148735 ENSG0000171067
ENSO ENSO ENSO ENSO ENSO ENSO ENSO ENSO	ENSG ENSG ENSG ENSG(
AMT ANK3 ANK3 ANK3 ANO1 ANXA5 AOO09262 AP0009262 AP1M1 AP1M1 AP2M1 ARHGAP2 ARHGAP2 ARHGAP2 ARHGAP2 ARHGAP2 ARHGAP1 ARHGAP3 ARHGAP3 ARHGAP1 ARHGAP1 ARHGAP1 ARHGAP1 ARHGAP1 ARHGAP1 ARHGAP1 ARHGAP3 ARHGAP1 ARHGA	BUD31 BVES C10orf72 C10orf81 C11orf24

1.000 1.000 1.031 1.022 0.000 1.000	0.000 1.000 0.000 0.072 0.072	0.000 1.000 0.000 1.000 0.116	0.000 0.000 1.000 0.000 0.000 1.000 1.000	1.000 0.120 1.031 0.161 0.300 1.000	0.000 1.000 0.000 1.000 0.343 1.000
1.000 1.000 0.902 0.956 0.000 1.000	0.000 1.000 0.000 -0.027 -0.027 0.000	0.000 1.000 0.000 1.000 -0.027	0.000 0.000 1.000 0.000 0.000 1.000 1.000	1.000 -0.031 0.902 -0.027 0.033 1.000	0.000 1.000 1.000 0.000 0.000 1.000
0.005 0.005 0.009 0.006 0.005 0.005	0.005 0.005 0.007 0.007 0.005	0.005 0.005 0.005 0.005 0.010	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.010 0.009 0.015 0.060 0.005	0.005 0.005 0.005 0.005 0.005 0.091
1.00 1.00 0.97 0.99 1.00 1.00	1.00 1.00 0.02 0.02	1.00 1.00 1.00 1.00 0.97	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 0.04 0.97 0.07 0.17 1.00	1.00 1.00 1.00 1.00 0.20 1.00
0.946 0.709 0.876 0.871 0.731 0.939	0.725 0.771 0.710 1.026 1.028	1.027 0.967 0.865 0.716 0.533	0.820 0.817 0.740 0.668 0.804 0.960 0.757 0.953	0.926 1.000 0.901 1.030 1.030 0.111	0.943 0.898 0.778 0.960 1.023 0.926
0.284 0.171 0.274 0.259 0.089 0.281 0.181	0.075 0.179 0.040 0.874 0.882 0.889	0.903 0.493 0.0245 0.054 0.111	0.260 0.273 0.110 0.162 0.246 0.290 0.122 0.193	0.274 0.999 0.290 0.910 0.910 -0.021	0.597 0.262 0.192 0.290 0.897 0.883
0.334 0.614 0.529 0.585 0.450 0.355	0.401 0.834 0.294 0.000 0.000	0.053 0.053 0.034 0.093 0.450	0.737 0.705 0.529 0.475 0.193 0.294 0.585 0.834	0.401 0.000 0.425 0.000 0.000 0.000	0.023 0.501 0.900 0.294 0.000 0.000
0.62 0.44 0.58 0.57 0.41 0.61	0.59 0.48 0.63 0.95 0.96	0.37 0.73 0.56 0.61 0.30	0.54 0.55 0.43 0.42 0.53 0.66 0.63 0.44 0.48	0.60 1.00 0.60 0.97 0.05	0.77 0.58 0.49 0.63 0.96 0.96
4.6 2.2 3.1 2.8 -17.9 3.5	-7.5 2.0 -8.3 NS NS NS	4.6 2.5 -12.5 5.6 -23.6	-2.4 -165.9 -6.5 2.3 -3.6 -12.4 3.5 -6.3	3.7 NS 2.6 NS NS 13.6	-4.9 18.3 -136.1 5.8 -9.3 NS
1.8 N N S N N S N S N S N S N S	-2.1 NS -2.7 3.4 4.0 3.7	8.4 NS NS 7.8- NS	NS NS NS NS NS NS NS	2.4 3.5 N S 2.1 2.1 N S N S	N S N S S S S S S S S S S S S S S S S S
	•	د م		ω	
357 573 856 287 557 148	861 147 372 369 189	559 599 899 537	596 336 732 732 854 894 803 803 535 803	349 286 453 312 955 937	277 807 275 855 119 404
ENSG00000149357 ENSG00000175573 ENSG00000171287 ENSG00000151287 ENSG00000139971 ENSG0000013448	ENSG00000167861 ENSG00000131944 ENSG00000175147 ENSG00000173372 ENSG00000173369 ENSG00000159189	ENSG0000123899 ENSG00000188559 ENSG00000114529 ENSG00000174899	ENS G00000124596 ENS G00000112936 ENS G00000188732 ENS G00000175854 ENS G00000147894 ENS G00000167535 ENS G0000018172 ENS G00000138172 ENS G00000128595	ENS G00000145349 ENS G00000198286 ENS G00000142453 ENS G00000064012 ENS G00000067955 ENS G00000183287	ENS G00000137077 ENS G00000174807 ENS G00000185275 ENS G00000103855 ENS G00000143119 ENS G00000116815
		•		Ω	CCL21 E CD248 E CD24L4 E CD276 E CD53 E CD53 E CD58 E CD58 E

0.000 1.000 0.000 1.000	0.104 0.190 0.161	1.000 0.270 0.299	0.044 0.000 0.328	0.156	0.098	0.000	1.000	0.000	0.313	1.031	1.000	1.000	1.000 1.000	1.000	0.136 1.027	0.994	0.000	1.000 0.156	1.000	0.072 1.000
0.000 1.000 0.000 1.000	-0.037 -0.057 -0.027	1.000 0.019	-0.022 0.000 0.050	0.023	-0.031 1.000	0.000	1.000	0.000	0.042	0.902	1.000	1.000	1.000 1.000	1.000	-0.024	0.762	0.000	1.000 -0.023	1.000	-0.027 1.000
0.005 0.005 0.005	0.009 0.015 0.015	0.005 0.045	0.006 0.005 0.080	0.015	0.009	0.005	0.005	0.005	0.069	0.009	0.005	0.005	0.005 0.005	0.005	0.012 0.007	0.033	0.005	0.005	0.005	0.007
0.00 1.00 1.00	0.03 0.07	1.00 0.14 0.17	1.00 1.00 0.19	0.07	0.97	1.00	1.00 1.00	1.00	0.18 1.00	0.97	1.00	1.00	1.00 1.00	1.00	9.00	0.88	0.00	0.07 0.07	1.00	0.02 1.00
1.027 0.960 0.990 0.877	1.000 1.030 1.028	0.884 1.037	0.713 0.713 1.016	1.033 1.030 0.946	0.715	0.949	096.0 092.0	0.763	1.030 0.710	0.956	0.869	0.932	0.856	0.960	1.000 0.047	0.097	1.021	0.905	0.946	1.033 0.919
0.923 0.290 0.720 0.253	0.999 0.910 0.882	0.256 0.883 0.883	0.067 0.047 0.965	0.896 0.910 0.574	0.105	0.581	0.290 0.191	0.147	0.910 0.040	0.314	0.251	0.278	0.244 0.219	0.290	0.999 -0.017	-0.027	0.910	0.265	0.284	0.897 0.272
0.000 0.294 0.003 0.585	0.000 0.000 0.000	0.556 0.000	0.355 0.313 0.000	0.000	0.450	0.026	0.294 0.867	0.705	0.000	0.257	0.614	0.378	0.933	0.294	0.000	0.000	0.000	0.475	0.334	0.000 0.425
0.98 0.63 0.86 0.57	1.00 0.97 0.96 0.41	0.57	0.39 0.62 0.99	0.97	0.41	0.77	0.63	0.46	0.97 0.63	0.64	0.56	0.61	0.51	0.63	1.00	96.0	0.97	0.59	0.62	0.97
NS 6.3 -32.3	NS NS L ² -	4.6 NS NS	-131.0 -3.2 NS	NS NS	-20.6 21.0	-14.2 NS	3.1 4.3	-19.3	NS -4.3	3.5	2.8	5.6	8. 8. 7. 8	4.4	S S	NS	NS	7.4 NS	4.0	NS 29.5
3.3 2.5 NS	8.2 7.0 58.1	3.5 3.5	NS -1.7 4.3	3.0 8.0 8.0	. S S	NS 3.3	1.9 NS	NS	2.2 -2.1	1.8 NS	S S S	SN	≙ S	2.4	4.4 -2.1	-2.1	2.5	NS 23.3	2.1	13.0 6.4
<u>ω</u>	4 4 4	8	⋖		æ		2	ı				В	8		۷			4	:	4
582 224 068 945	038 385 388	123 971 114	526 721 310	583 555 347	373 297	385 193	504 270	959	317 293	771 575	365 797	156	1/3 270	380	789	321	223	100 373	501	188 387
ENSG0000019582 ENSG0000101224 ENSG0000039068 ENSG0000140945	ENSG00000062038 ENSG00000079385 ENSG0000105388 ENSG0000114107	ENSG00000167123 ENSG00000000971 ENSG00000000971	ENSG00000110721 ENSG00000110721 ENSG0000171310	ENSG00000179583 ENSG0000217555 ENSG0000163347	ENSG00000134873 ENSG0000013297	ENSG00000181885 ENSG0000069493	ENSG00000169504 ENSG00000105270	NSG00000165959	ENSG00000091317 ENSG00000170293	ENSG00000143771 ENSG00000142675	ENSG00000119865 ENSG00000108797	ENSG00000142156	ENSG00000142173 ENSG00000158270	ENSG00000110880	ENSG00000106789 ENSG00000128510	ENSG00000095321	ENSG00000198223	ENSG00000033100 ENSG0000170373	ENSG0000064601	ENSG00000196188 ENSG00000143387
	CEACAM1 E CEACAM5 E CEACAM5 E					CLDN7 E	CLIC4 E		CMTM6 CMTM8	CNIH4 E	CNRIP1 E		COLEC12 F	_	CORO2A E	_		CST1 I	_	CTSE E

1.000 0.098 0.000 0.000 0.000	0.000 0.287 1.000 0.044 1.000	0.000 0.095 1.031 0.146 1.000 0.175	0.343 1.000 1.022 1.000 0.000	1.031 1.000 0.000 0.000 0.000 1.000 1.000	1,002 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,000	1.000
1.000 -0.031 0.000 0.000 0.000	0.000 0.002 1.000 -0.022 1.000	0.000 -0.028 0.902 -0.035 1.000 -0.019	0.057 1.000 0.956 1.000 0.000	0.902 1.000 0.000 1.000 0.000 1.000 1.000	0.956 1.000 0.902 1.000 1.000 1.000 1.000 0.000 0.000	1.000
0.005 0.005 0.005 0.005	0.005 0.005 0.006 0.005	0.005 0.009 0.012 0.005 0.017	0.091 0.005 0.006 0.005	0.009 0.005 0.005 0.005 0.005 0.005	0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005
1.00 0.03 1.00 1.00 0.00	0.00 0.14 1.00 1.00	0.00 0.03 0.97 0.06 1.00	0.20 1.00 0.99 1.00	0.97 1.00 1.00 1.00 1.00 1.00	0.99 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00
0.898 1.033 0.716 0.927 1.023	1.023 1.023 0.946 1.025 0.939	1.019 1.000 0.949 1.000 0.946	1.037 0.960 0.933 0.953 1.011	0.922 0.926 1.009 0.662 1.024 0.725 0.953	0.376 0.376 0.932 0.932 0.869 1.000 0.960 0.953 0.990 0.880	0.907
0.262 0.877 0.054 0.543 0.907	0.923 0.937 0.284 0.875 0.281	0.941 0.999 0.311 0.999 0.284 0.843	0.883 0.290 0.290 0.290 0.979	0.300 0.274 0.801 0.128 0.847 0.075 0.109	0.250 0.044 0.308 0.278 0.251 0.290 0.290 0.720 0.281	0.263
0.501 0.000 0.334 0.048 0.000	0.000 0.000 0.334 0.000 0.355	0.000 0.000 0.275 0.000 0.334	0.000 0.294 0.355 0.313	0.355 0.401 0.001 0.378 0.000 0.401 0.313 0.275	0.0334 0.0334 0.000 0.014 0.0294 0.0313 0.003 0.501	0.475
0.58 0.96 0.63 0.74 0.97	0.98 0.98 0.62 0.95	0.98 1.00 0.63 0.62 0.94	0.96 0.63 0.61 0.62	0.61 0.60 0.91 0.40 0.94 0.62 0.37	0.62 0.63 0.63 0.63 0.63 0.63 0.63 0.85 0.85	0.59
6.2 NS -4.9 -16.8 NS	NS NS 4.5 -7.6 4.4	NS 2.6 NS NS NS	NS 24.2 6.1 2.7 NS	2.3 12.4 10.2 9.4 -15.0 -6.6 2.1 9.0	2.1 4.2 11.6 6.7 6.7 2.1 7.8 5.8 5.8 5.8 -32.9 -2.9	NS
3.8 -2.3 NS 9.7	2.4. 1.7. 2.4. 2.5. 4.5. 4.5.	2.2 v. N.S. 1.3 1.3 4.2	4.3 3.1 2.0 2.0 4.1	2	N N N N N N N N N N N N N N N N N N N	2.0
в 4	∢	⋖	4 4	ω ω	88	
ENSG00000135047 ENSG00000163131 2 ENSG0000077063 ENSG0000154639 ENSG0000169245 ENSG0000161921		ENSG0000100055 ENSG0000070190 ENSG0000113758 ENSG0000172795 ENSG0000204843 ENSG0000137628		ENSG0000116641 ENSG0000136048 ENSG0000134755 ENSG0000171451 ENSG00000046604 ENSG00000175826 CNSG0000111766 ENSG0000111766		ENSG00000066322
CTSL1 CTSS CTTNBP2 CXADR CXAL10 CXCL16	CXCR4 CXorf38 CYB5R3 CYB5R3 CYTH3	DAPP1 DBN1 DCP2 DCTN1 DDX60	DGKH DKK2 DKK3 DNAJC13	DOCK7 DRAM1 DSC2 DSEL DSEL DSG2 DSP DULLARD DUSP14	DYNL1 DYNL3 DYNL1 DYNR3 ECM1 EFEMP2 EFE ES EGLN3 EHD1 EHD2 EHF EIF1B	ELOVL1

1.0000 1.0000 1.0000 0.0444 0.0938 0.0938 0.0938 0.0000	1.000 0.044 1.000 1.008 1.022 0.988
0.000 1.000 1.000 1.000 -0.022 -0.033 0.000	1.000 -0.022 1.000 0.770 0.956 0.745
0.000	0.005 0.006 0.008 0.006 0.006 0.0039
1.00 1.00 1.00 0.01 1.00 0.01 1.00 0.16 0.16	1.00 0.01 1.00 0.89 0.99 0.87
0.771 0.869 0.960 0.960 0.175 1.030 0.695 0.710 0.983 1.021 1.037 1.021 0.946 0.939 0.946 0.948 0.918	0.926 0.519 0.081 0.034 0.021 0.783
0.179 0.251 0.251 0.250 -0.015 0.0165 0.010 0.040 0.040 0.040 0.040 0.040 0.051 0.052 0.054 0.054 0.054 0.054 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0554 0.0556	0.274 0.999 0.041 -0.021 0.290 -0.011 0.207
0.834 0.0294 0.0294 0.0313 0.0313 0.0313 0.0324 0.0325 0.0326 0.0326 0.0327 0.0326 0.0328	0.401 0.000 0.000 0.000 0.355 0.000
0.48 0.63 0.63 0.60 0.60 0.60 0.60 0.60 0.60	0.60 1.00 0.28 0.99 0.61 0.50
8.1 9.3.7 10.4 4.8 N S N S -5.0 -22.8 -1.4 -1.1.3 46.4 10.4 10.4 11.3 46.4 11.3 46.4 11.3 46.4 11.3 46.4 11.3 11.3 46.4 11.3	6.2 NS 13.9 NS 2.6 NS -14.4
N N N N N N N N N N N N N N N N N N N	2.8 2.8 -2.2 1.5 -2.5 NS
	ш ш
(64181 42227 70370 338185 (68032 995203 33106 (64307 (.49557 .80263 .38675 .77782 .72500 .98855
ENSGODOOO164181 ENSGODOOO142220 ENSGODOOO170370 ENSGODOOO170370 ENSGODOOO1883106 ENSGODOOO1313088 ENSGODOOO134306 ENSGOOOO0121769 ENSGOOOO01244824 ENSGOOOO0124769 ENSGOOOO0124769 ENSGOOOO0134590 ENSGOOOO0134590 ENSGOOOO0134590 ENSGOOOOO134590 ENSGOOOOO134590 ENSGOOOOO134590 ENSGOOOOO134590 ENSGOOOOO134591 ENSGOOOOO153310 ENSGOOOOO153310 ENSGOOOOO153310 ENSGOOOOO154511 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO154811 ENSGOOOOO158866 ENSGOOOOO158866 ENSGOOOOO158866 ENSGOOOOO1345731	ENSG0000149557 ENSG0000180263 ENSG00000138675 ENSG00000172500 ENSG00000198855
ELOVL7 EMILIN2 EMP3 EMX2 ENTPD1 ENTPD1 ENTPD3 EP841L4B EPCAM EPST11 ERBB3 ESRP1 ERBB3 ESRP1 ERBB3 ESRP1 ERBB3 ESRP1 ERBB3 EAM105A FADS1 FADS2 FAM105A FAM114A1 FAM115AB FAM1105A FAM110	FEZI FGD6 FGFS FGFR1 FIBP FICD

FLNC	ENSG0000128591	ø	SN	6.7	0.61	0.378	0.278	0.932	1.00	0.005	1.000	1.000
FIMINES	ENSGUOUOUTBI/91		5.5 PIS	2 5	0.99	0.000	0.964	1.016	0.19	0.080	0.030	0.328
FRK FRK	ENSG0000111816	۵	SN S	3.3	0.88	0.001	0.765	0.995	1.00	0.007	1.000 -0.027	0.072
FRMD6	ENSG00000139926		3.3	13.1	0.62	0.334	0.284	0.946	1.00	0.005	1.000	1.000
FST	ENSG00000134363	B	NS	15.5	0.37	0.257	0.123	0.607	1.00	0.005	1.000	1.000
FUNDC2	ENSG00000165775		-2.0	NS	0.97	0.000	-0.022	0.082	06.0	0.024	0.793	1.007
FXYD3	ENSG00000089356	⋖	4.6	NS	96.0	0.000	0.897	1.023	0.00	0.005	0.000	0.000
FXYD6	ENSG00000137726		NS	-3.7	0.78	0.019	0.583	0.977	1.00	0.005	0.000	0.000
FYB	ENSG00000082074	⋖	4.9	NS	96.0	0.000	0.883	1.037	0.03	0.009	-0.031	0.098
G6PD	ENSG0000160211		1.8	5.1	0.63	0.294	0.290	096.0	1.00	0.005	1.000	1.000
GADD45A	ENSG0000116717		2.1	3.5	0.61	0.378	0.278	0.932	1.00	0.005	1.000	1.000
GALC	ENSG00000054983		2.2	NS	0.93	0.000	0.823	1.027	0.13	0.039	0.012	0.255
GALNT3	ENSG0000115339		NS	-8.6	0.92	0.000	0.828	1.012	1.00	0.005	0.000	0.000
GALNTL2	ENSG00000131386	В	NS	4.3	0.40	0.401	0.137	0.663	1.00	0.005	1.000	1.000
GATM	ENSG0000171766		-5.0	-181.4	09.0	0.378	0.068	0.722	1.00	0.005	0.000	0.000
GBAP	ENSG00000160766	В	NS	4.0	0.62	0.334	0.284	0.946	1.00	0.005	1.000	1.000
GBE1	ENSG00000114480	В	NS	5.5	0.37	0.275	0.120	0.620	1.00	0.005	1.000	1.000
GBP4	ENSG00000162654	⋖	4.5	NS	0.98	0.000	0.923	1.027	0.00	0.005	0.000	0.000
GDAP1	ENSG00000104381		-2.2	-3.4	0.62	0.294	0.052	0.698	0.98	0.007	-0.027	0.072
GDPD3	ENSG00000102886		2.9	NS	1.00	0.000	0.999	1.000	0.14	0.045	0.019	0.270
GEMIN6	ENSG00000152147		1.5	2.5	0.64	0.257	0.314	0.956	0.97	0.009	0.902	1.031
GGT5	ENSG0000009998		2.1	NS	96.0	0.000	0.895	1.025	0.01	9000	-0.022	0.044
GIMAP2	ENSG00000106560		2.7	NS	0.94	0.000	0.843	1.027	0.10	0.024	-0.006	0.206
GJC1	ENSG00000182963		2.3	4.9	0.63	0.275	0.311	0.949	0.97	0.009	0.902	1.031
GLI3	ENSG00000106571		3.0	11.0	09.0	0.425	0.272	0.918	1.00	0.005	1.000	1.000
GMPR	ENSG00000137198		-3.0	NS	0.99	0.000	-0.011	0.021	06.0	0.024	0.793	1.007
GNA15	ENSG00000060558		2.8	NS	96.0	0.000	0.883	1.037	0.04	0.010	-0.027	0.116
GNG5P2	ENSG00000133136		2.1	NS	0.63	0.275	0.305	0.955	0.98	0.007	0.928	1.027
GNPDA1	ENSG0000113552		1.7	4.5	09.0	0.425	0.270	0.920	1.00	0.005	1.000	1.000
GNPTAB	ENSG0000111670		1.9	3.8	0.61	0.355	0.281	0.939	1.00	0.005	1.000	1.000
GOLGA8B	ENSG00000215252		-4.7	-23.9	0.63	0.294	0.040	0.710	1.00	0.005	0.000	0.000
GOLM1	ENSG00000135052		2.6	NS	0.97	0.000	0.910	1.030	0.11	0.028	-0.008	0.230
GPR1	ENSG00000183671	В	NS	5.1	0.27	0.048	0.051	0.479	1.00	0.005	1.000	1.000
GPR124	ENSG00000020181		2.1	4.7	0.57	0.556	0.257	0.883	1.00	0.005	1.000	1.000
GPR176	ENSG00000166073		1.6	8.3	0.64	0.257	0.308	0.962	0.98	0.007	0.928	1.027
GPX2	ENSG00000176153	⋖	13.8	NS	0.98	0.000	0.923	1.027	0.00	0.005	0.000	0.000
GPX8	ENSG00000164294		4.9	11.7	0.63	0.294	0.290	0.960	1.00	0.005	1.000	1.000
GRAMD3	ENSG00000155324		2.0	5.1	0.59	0.475	0.265	0.905	1.00	0.005	1.000	1.000
GREM1	ENSG00000166923		13.3	50.9	0.63	0.294	0.290	0.960	1.00	0.005	1.000	1.000
GRHL2	ENSG00000083307		NS	-7.1	0.47	0.769	0.165	0.765	1.00	0.005	0.000	0.000
GRINA	ENSG00000178719		1.5	3.2	0.62	0.334	0.284	0.946	1.00	0.005	1.000	1.000
GRLF1	ENSG0000160007		NS	2.1	0.51	0.933	0.214	908.0	1.00	0.005	1.000	1.000

1.000 1.000 1.000 1.000 1.031 0.000 1.000 1.000 0.098	0.173 0.000 0.044 0.044 0.211 0.116	0.000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000	0.104 0.104 0.000 0.000 0.005 0.000 0.000 0.000 0.000
1.000 1.000 -0.031 1.000 0.902 -0.022 0.000 1.000 1.000 -0.031	-0.018 0.000 -0.022 -0.021 -0.011 -0.027	-0.027 0.000 -0.022 0.000 1.000 1.000 1.000 1.000 0.000	0.0337 1.000 0.000 1.000 1.000 0.028 0.000 0.000 0.000 0.000
0.005 0.005 0.009 0.005 0.005 0.005 0.005 0.005	0.017 0.005 0.006 0.006 0.024 0.010	0.007 0.005 0.005 0.005 0.005 0.005 0.005	0,015 0,009 0,005 0,005 0,005 0,005 0,005 0,005 0,005
1.00 1.00 1.00 0.97 0.01 1.00 1.00 0.19	0.08 0.00 0.01 0.10 0.97	7	0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00
0.946 0.960 0.922 0.762 0.943 1.030 1.024 0.960 0.926 0.714	1.028 1.024 1.025 1.030 1.037 0.699	0.754 0.974 0.701 0.703 0.709 0.828 0.829 0.891	1.026 0.939 1.021 0.953 0.714 1.023 1.023 1.019 0.933 0.933
0.284 0.290 0.528 0.188 0.307 0.916 0.290 0.274 0.106	0.862 0.916 0.895 0.910 0.883 0.091	0.156 0.686 0.039 0.047 0.204 0.141 0.026 0.259	0.874 0.950 0.281 0.290 0.165 0.867 0.841 0.341 0.951 0.053
0.334 0.294 0.059 0.834 0.000 0.000 0.294 0.401 0.450	0.000 0.000 0.000 0.000 0.378 0.378	0.705 0.006 0.275 0.313 0.078 0.933 0.334 0.008 0.737	0.000 0.000 0.355 0.000 0.313 0.614 0.000 0.000 0.000 0.378 0.769
0.62 0.63 0.73 0.48 0.63 0.97 0.60 0.41 0.96	0.95 0.97 0.96 0.97 0.96 0.40	0.46 0.63 0.29 0.29 0.39 0.19	0.95 0.99 0.96 0.62 0.95 0.97 0.99 0.99
3.9 2.9 -8.1 2.7 2.4 NS NS 2.4 4.0 -18.8 NS	NS NS NS NS -4.6	-8.7 -3.6 -14.0 -12.4 3.5 8.6 8.7 -8.7	NS NS NS S.9 21.9 NS NS NS NS -40.4 -6.6
2.1 N N S 2.5 1.8 1.8 2.5 1.9 2.5 1.9	3.3.3.8.0 8.3.1.8.8.0 8.0.5.5.0 8.0 8	N N N N N N N N N N N N N N N N N N N	7 2 3 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	۵	ω	4 B 4
ENSG00000303682 ENSG0000082701 ENSG0000164116 ENSG0000130956 ENSG0000172534 ENSG0000172534 ENSG0000125337 ENSG0000129493 ENSG0000123924 ENSG000013324 ENSG000013324	ENSG0000204257 ENSG0000242574 ENSG0000231389 ENSG0000204287 ENSG0000204642 ENSG0000108924 ENSG0000100292	ENSG0000108753 ENSG0000164749 ENSG0000103942 ENSG0000134709 ENSG0000172789 ENSG0000197757 ENSG0000197757 ENSG0000169271 ENSG0000166033 ENSG00000166033	ENSGODO0116999 ENSGOD001142089 ENSGOD00111892 ENSGOD00166130 ENSGOD00150782 ENSGOD00147168 ENSGOD00147168 ENSGOD00117168 ENSGOD00117408 ENSGOD00117408 ENSGOD00117408 ENSGOD00117408 ENSGOD00117595
GRN GSK3B GUCY1A3 HABP4 HCFC1 HCLS1 HCP5 HEATR5A HGD	HLADMA HLADPA1 HLADRA HLAF HLAF HLAF	HNF1B HNF4G HOMER2 HOOK1 HOXA9 HOXC5 HSD17B14 HSPB3 HTRA1	IF127 IF130 IF130 IGHG4 IKBIP IL13RA2 IL18 IL18 INADL INADL INP5D IP013 IQGAP2 IRF6

0.303 0.294 1.000 0.098 0.000 0.000 1.000 0.044	0.000 1.000 0.098 1.000 1.000 0.000	1.000 1.000 0.072 1.000 1.000 0.162	0.000 0.000 0.000 0.000 0.000 1.031 0.249	0.313 0.072 0.000 1.000 0.133 1.000	0.098 1.000 1.000 0.276
0.030 0.017 1.000 -0.031 0.000 1.000	0.000 1.000 -0.031 1.000 1.000 0.000	1.000 1.000 -0.027 1.000 1.000 -0.029	0.902 0.000 0.000 0.000 -0.031 0.000 0.902 -0.005	0.042 -0.027 0.000 1.000 -0.044 1.000	-0.031 1.000 1.000 1.000 0.013
0.060 0.052 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.007 0.005 0.005 0.005	0.009 0.005 0.005 0.005 0.009 0.009 0.003	0.069 0.007 0.005 0.005 0.010 0.005	0.009 0.005 0.005 0.045
0.17 0.16 1.00 0.03 0.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	0.97 1.00 0.03 0.03 1.00 0.97 0.12	0.18 1.00 1.00 1.00 0.04 0.00	0.03 1.00 1.00 0.14
1.037 1.023 0.932 1.028 1.024 1.027 0.960	0.876 0.822 0.692 0.946 0.835 0.786	0.960 0.960 0.698 0.960 0.960 0.946	0.956 0.932 1.000 0.970 1.024 0.768 0.960	1.011 1.028 0.710 0.960 1.000 0.960	1.033 0.410 0.813 0.960 1.037
0.883 0.937 0.281 0.862 0.916 0.923 0.290	0.364 0.228 0.058 0.284 0.235 0.089	0.290 0.290 0.052 0.290 0.284 0.895	0.558 0.999 0.670 0.883 0.876 0.222 0.951	0.979 0.882 0.040 0.290 0.290 0.916	0.877 0.040 0.217 0.290 0.883
0.000 0.000 0.378 0.000 0.000 0.294 0.000	0.313 0.834 0.294 0.334 0.769 1.000 0.450	0.294 0.294 0.294 0.294 0.334 0.000	0.257 0.040 0.000 0.000 0.000 0.966 0.000 0.294	0.000 0.000 0.294 0.000 0.294 0.000	0.000 0.021 0.900 0.294 0.000
0.96 0.98 0.61 0.95 0.97 0.63	0.62 0.53 0.61 0.62 0.54 0.50	0.63 0.63 0.63 0.63 0.63 0.63	0.55 0.95 0.95 0.95 0.99 0.63	1.00 0.96 0.63 0.63 1.00 0.63	0.96 0.23 0.52 0.63 0.96
NS 6.4 NS NS -3.0 6.6	-3.7 3.7 -3.5 -3.5 -2.5 33.4 -2.8	3.7 64.3 -45.5 2.9 4.1 5.7 NS	8.5 -16.2 NS -25.9 NS -3.3 -3.3 -8.3 -8.5 -8.5 -8.5 -8.5 -8.5	-8.5 -8.5 -4.6 3.5 NS NS 18.7	NS 4.1 2.5 6.9 NS
4.4 13.9 2.4 2.6 2.9 4.8 3.6	NS NS -1.6 2.3 NS NS	1.9 6.1 -4.2 1.6 2.1 3.0	3.6 3.6 9.4 0.4 0.1 0.1 0.1	21.0 3.3 -2.6 1.9 2.1 3.8	3.1 NS 3.6 2.8
বব ব	ω		4 4 4	د د	۵
ENSG00000213949 ENSG00000164171 ENSG00000161638 ENSG00000140678 ENSG00000160255 ENSG00000132470 ENSG0000082781 ENSG00000115221	ENSG00000123104 ENSG0000148841 ENSG0000198399 ENSG000016086 ENSG0000197256 ENSG0000082482 ENSG0000053918	ENSG00000110906 ENSG00000103888 ENSG00000116299 ENSG0000005238 ENSG0000146112 ENSG0000183853 ENSG0000172578	ENSGO000182481 ENSGO0000111057 ENSGO0000171345 ENSGO0000170421 ENSGO0000115919 ENSGO0000159166 ENSGO0000101680 ENSGO0000196878 ENSGO0000135862	ENSG0000058085 ENSG00000162511 ENSG00000138709 ENSG0000002834 ENSG00000172292 ENSG00000172831 ENSG00000148346	ENSG00000043462 ENSG00000182195 ENSG00000125505 ENSG00000100097 ENSG00000108679
TGA1 TGA2 TGA5 TGAX TGB2 TGB4 TGB5	ITPRIP ITSN2 JAM3 KANK2 KCNK2	KCTD10 KIAA1199 KIAA1324 KIAA1539 KIRA1949 KIRREL KLHL6	KR118 KR119 KR119 KR18 KYNU LAD1 LAMB3 LAMB3	LAMC2 LAPTM5 LARP1B LASP1 LASS6 LAYN	LCP2 LDOC1 LENG4 LGALS1 LGALS3BP

0.098 0.156 0.000 0.137 0.098	0.000 0.988 0.000 1.000 0.098	0.337 0.000 1.000 0.000 1.000	1.000 0.000 0.095 0.072 1.000 0.000	0.044 1.000 1.000 0.000 0.009 0.098 0.098 1.000	1.000 1.000 1.000 1.000 0.000	1.000 1.000 1.000
-0.031 -0.023 0.000 -0.026 -0.031	0.000 0.745 0.000 1.000 1.000	0.041 0.000 1.000 0.000 1.000	1.000 0.000 -0.028 -0.027 1.000 0.000	-0.022 1.000 1.000 0.000 -0.031 1.000 1.000	1.000 1.000 1.000 1.000 0.000 1.000	1.000 1.000 1.000
0.009 0.015 0.005 0.012 0.009	0.005 0.003 0.005 0.005 0.009	0.080 0.005 0.005 0.005 0.005	0.005 0.009 0.007 0.005 0.005	0.005 0.005 0.005 0.009 0.009 0.009	0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005
1.00 0.07 0.00 0.06 1.00	1.00 0.87 1.00 1.00 0.03	0.19 1.00 1.00 1.00	0.00 0.03 0.03 1.00 1.00	0.01	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00
1.013 1.000 0.748 1.011	0.889 0.036 0.713 0.918 0.394 1.033	1.030 0.982 0.926 1.011 0.926	0.390 1.027 1.023 1.022 0.862 1.021	1.030 0.725 0.939 0.651 0.927 0.711 0.715 0.891 0.960	0.578 0.757 0.960 0.814 0.918 0.781 0.846	0.342 0.790 0.960
0.818 0.999 0.112 0.979 0.838	0.431 -0.016 0.047 0.272 0.046	0.870 0.710 0.274 0.819 0.274	0.040 0.923 0.897 0.248 0.248	0.910 0.185 0.281 0.139 0.483 0.099 0.105 0.259 0.290	0.092 0.193 0.290 0.226 0.272 0.199	0.018 0.200 0.290
0.000	0.179 0.000 0.313 0.425 0.019	0.000 0.004 0.401 0.000 0.401	0.000 0.000 0.000 0.000 0.644	0.000 0.705 0.355 0.378 0.085 0.425 0.450 0.529	0.166 0.834 0.294 0.867 0.425 0.933	0.007 0.966 0.294
0.92 1.00 0.57 1.00 0.93	0.66 0.99 0.38 0.60 0.22 0.96	0.95 0.85 0.60 0.92 0.60	0.22 0.28 0.97 0.94 0.56	0.97 0.46 0.61 0.71 0.71 0.58 0.58	0.34 0.48 0.63 0.52 0.60 0.49	0.18 0.50 0.63
-7.3 NS NS NS -14.4	-3.2 NS -3.6 40.1 3.3 NS	NS -2.4 5.1 -2.8 6.7	4.2 NS NS -108.1 2.3 -26.4	2.2 14.5 2.8 2.8 4.9 4.1 4.1 4.1	2.5 -3.9 7.4 33.0 5.7 -26.8 3.2	2.1 65.9 11.8
NS 2.4 -2.6 3.2 2.6	NS -2.5 NS 7.1 NS	2.8 N.S N.S 2.9 7	6.3 7 7 7 8 6.3 9 7 7 9 9 9 9 9 9 9 9 9 9	4.6 N N S N N N N N N N N N N N N N N N N	. S S S S S S S S S S S S S S S S S S S	NS NS 6.0
		α	n a < <	۵ م	ω	а
98 16 70 98	50 17 21 79	53 24 69 07	885 119 82 76	63 39 37 17 17 17 17 17 17 17 17 17 17 17 17 17	22 22 4 4 73 16	82 49 27
ENSG0000171747 ENSG00000170298 ENSG00000171916 ENSG00000101670	ENS G0000073350 ENS G0000100258 ENS G0000139517 ENS G0000113083 ENS G0000139679	ENSG0000087253 ENSG0000198589 ENSG0000197324 ENSG0000137269 ENSG0000137507	ENS G00000167350 ENS G00000016285 ENS G00000054219 ENS G00000197063 ENS G00000147676	ENS G00000144063 ENS G0000017239 ENS G00000166963 ENS G00000171471 ENS G0000005015 ENS G0000013803 ENS G0000197442 ENS G00001197439 ENS G0000119680	ENS G0000018590 ENS G00000117122 ENS G00000117122 ENS G00000182544 ENS G0000071073 ENS G0000071073	ENSG00000130382 ENSG00000196549 ENSG00000157227
 ∞ ∪	LLGL2 EP LMF2 EP LNX2 EP LOX EP LPAR1 EP LPAR6 EP	LPCAT2 EP LRBA EP LRP10 EP LRRC1 EP LRRC32 EP		MALL EP MAN1B1 EP MAP1LC3B2 EP MAP3K13 EP MAP3K13 EP MAP3K5 EP MAP3K5 EP MARYELD1 EP MARVE		MLLT1 EP MME EN MMP14 EP

1.000 0.044 1.000 0.000 1.000 0.000 0.0328 0.0328 0.0328 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000	1.031 0.000 1.022 1.027 0.000 1.000 0.173
1.000 -0.022 1.000 0.000 1.000 1.000 0.0000 0.000	0.902 0.000 0.956 0.928 0.000 1.000 -0.018
0.005 0.005	0.009 0.005 0.006 0.007 0.005 0.005 0.005
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.97 1.00 0.99 0.98 1.00 0.08
0.946 1.020 0.885 0.716 0.960 1.015 0.540 0.898 0.946 0.713 1.023 1.020 0.728 0.728 0.728 0.720 0.804 0.804 0.805 0.940 0.805 0.940 0.805 0.940 0.805 0.940 0.732 1.000 0.732 1.000	0.614 0.710 0.912 0.962 0.731 0.932 1.028 0.919
0.284 0.255 0.055 0.055 0.056 0.260 0.262 0.262 0.383 0.393 0.399 0.315 0.200 0.000	0.156 0.040 0.278 0.308 0.089 0.281 0.862
0.334 0.000 0.556 0.334 0.093 0.093 0.093 0.000	0.334 0.294 0.425 0.257 0.450 0.378 0.000
0.62 0.95 0.63 0.63 0.93 0.05 0.62 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.39 0.63 0.64 0.41 0.61 0.60
18.2 -37.3 -27.3 -7.2 -7.2 -18.3 -18	2.2 -3.1 6.6 4.2 -15.7 -15.7 3.8 3.9
6.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	NS -2.0 3.1 2.1 NS 2.3 2.7 NS
<u> </u>	
ENSGO000087245 ENSGO0000137673 ENSGO0000137673 ENSGO0000172081 ENSGO0000172081 ENSGO000149573 ENSGO000148450 ENSGO0000172935 ENSGO0000172935 ENSGO0000172942 ENSGO0000173860 ENSGO0000173702 ENSGO0000173702 ENSGO0000173702 ENSGO0000173702 ENSGO0000173702 ENSGO0000173706 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000172766 ENSGO0000173888 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848 ENSGO0000173848	ENSG00000169992 ENSG0000163864 ENSG0000166741 ENSG0000182117 ENSG0000119655 ENSG0000135838 ENSG0000135838
MMP2 MMP7 MDBKL2A MP2L1 MP2L1 MP2L2 MRGPRF MSC MSC MSRB2 MT1F MTS1L MTS1L MTOS2 MTOS1 MUC3A MYO5E MYO5E MYO5E NAC4 NCF2 NCF4 NCF4 NCF4 NCF4 NCF4 NCF4 NCF4 NCF4	NLGNZ NMNAT3 NNMT NOP10 NOSTRIN NPC2 NPC2

0.000 1.000 1.031 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000	1.000 0.000 0.000 0.000 1.000 0.223 0.271	0.000 0.098 1.000 1.000 1.000 0.098 0.000	1.000 0.000 1.000 0.000 1.000 0.004 1.000 0.000
0.000 1.000 0.000 0.902 1.000 0.000 0.000 0.956 1.000 1.000 1.000	1.000 0.000 0.000 1.000 0.000 -0.001 0.018	0.000 -0.031 1.000 1.000 1.000 1.000 -0.031 0.000	1.000 0.000 1.000 0.000 1.000 0.000 0.000 1.000
0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.028 0.045	0.009 0.005 0.005 0.005 0.009 0.009	0.005 0.005 0.005 0.005 0.005 0.005 0.005
1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.17	1.00 1.00 1.00 1.00 1.00 0.11 0.14	0.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.710 0.304 0.710 0.935 0.777 0.974 0.797 0.961 0.890 0.953 1.000	0.590 0.719 0.710 0.730 0.736 0.740 1.033 1.023	1.023 1.028 0.939 0.698 0.911 0.684 0.792 0.723	0.953 0.0953 0.0733 0.723 0.231 0.817 1.030 0.805 0.725 0.848
0.040 0.040 0.040 0.305 0.193 0.686 0.223 0.300 0.260 0.290 0.290	0.120 0.061 0.040 0.080 0.234 0.110 0.877 0.937	0.862 0.862 0.052 0.195 0.270 0.270 0.036 0.018	0.250 0.290 0.941 0.187 0.067 0.293 0.910 0.215 0.075
0.294 0.004 0.294 0.313 0.900 0.006 0.933 0.275 0.529 0.313 0.000	0.223 0.355 0.294 0.425 0.769 0.000 0.000 0.000	0.000 0.000 0.355 0.294 0.933 0.450 0.240 0.366 0.378	0.313 0.000 0.737 0.378 0.001 0.644 0.000 0.933 0.401
0.63 0.16 0.63 0.63 0.62 0.83 0.51 0.63 0.63 0.63	0.36 0.61 0.63 0.59 0.54 0.96 0.98	0.97 0.95 0.61 0.51 0.59 0.63 0.60	0.60 0.60 0.12 0.12 0.56 0.51 0.60 0.60
-98.2 13.2 -5.5 -5.5 -2.9 -3.0 -21.7 2.9 2.6 2.8 NS	8.2 -3.3 -3.0 -3.0 18.1 -13.2 NS NS	NS NS 15.5 -3.8 2.2 2.3 8.6 -9.0 -5.6 NS	4.8 A.8 A.3.1 2.3 2.3 -5.4 -5.4 -23.5 -6.9
6.6 7 2 2 2 2 2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	NS -11.7 -11.7 -11.5 NS NS NS 2.8 2.8 2.8 2.8 2.8 2.8	2.5 2.4 3.4 3.4 3.4 5.0 7.5 7.5	2.5 2.0 2.4 1.5 1.5 N S N S N S N S N S N S N S N S N S N S
a < a :	യ യ ∢	ω	œ
ENSG00000116833 ENSG00000124785 ENSG0000179299 ENSG0000168268 ENSG0000185652 ENSG0000132182 ENSG0000197822 ENSG0000197822 ENSG00001017822 ENSG00001017822 ENSG00001017822	ENSG00000164920 ENSG00000100266 ENSG00000124374 ENSG00000135473 ENSG00000182752 ENSG00000169116 ENSG00000173193 ENSG00000173200 ENSG00000173200	ENSG0000131883 ENSG0000138964 ENSG0000138964 ENSG0000115289 ENSG00000115289 ENSG00000197646 ENSG0000015225 ENSG0000013231 ENSG0000013231	ENSG0000024733 ENSG00000162734 ENSG00000130313 ENSG00000130313 ENSG0000119227 ENSG00001155629 ENSG0000155629 ENSG0000105851 ENSG0000170927 ENSG0000170927 ENSG00000170927
NRSA2 NRN1 NSUN7 NTSDC2 NTF3 NUP210 OCLN OGFOD1 OPTN ORAI2	OSR2 PACSIN2 PAIP2B PAN2 PARM1 PARM1 PARM1 PARP14 PARP15	PARP8 PARVG PCDH18 PCGF1 PCTK1 PCTK1 PDCD4 PDCD4 PDE38 PDE88	PEA15 PEA15 PEL11 PGLS PHKA2 PIGZ PIK3AP1 PIK3AP1 PIK3CG PIPSK1C PKHD1 PKP2

0.120 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.000 0.000 0.004 0.004 0.004 0.004 0.004 0.004 0.009 0.000	0.000 1.000 1.000 0.010 0.000 0.154 1.000 0.000 0.000
-0.031 -0.013 -0.013 -0.013 -0.000 -0.000 -0.000 -0.000 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.000 -0.022 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.000 1.000 1.000 1.000 0.000 0.000 1.000 0.000
0.000 0.0021 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
0.04 0.09 0.00 0.00 0.00 0.00 0.097 1.00 0.100 0.	1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.033 1.033 1.034 0.713 1.019 0.960 0.935 0.935 0.734 1.011 0.918 0.704 0.918 0.918 0.918 0.918 0.856 0.856 0.856 0.816 0.816 0.918 0.816 0.918 0.816 0.918	1.023 0.926 0.926 0.939 1.030 1.020 1.033 0.876 0.898
0.897 0.083 0.047 0.041 0.290 0.305 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.204 0.244 0.269 0.272 0.348 0.094	0.554 0.290 0.281 0.870 0.089 0.930 0.877 0.254 0.452 0.290
0.000 0.313 0.000 0.294 0.294 0.294 0.294 0.294 0.475 0.000 0.294 0.450 0.425 0.000 0.425 0.000 0.294 0.425 0.000 0.294 0.425 0.000 0.294 0.425 0.000 0.294 0.425 0.000 0.294 0.425 0.000 0.294 0.425 0.000 0.294	0.000 0.044 0.294 0.355 0.000 0.000 0.000 0.141 0.294
0.97 0.96 0.08 0.08 0.08 0.06 0.06 0.06 0.06 0.0	0.54 0.63 0.63 0.95 0.98 0.98 0.57 0.68 0.63
NS NS NS NS S.4 4.4 4.4 4.0 4.0 4.0 4.0 4.0 4.0 7.1 6.2 8.6 6.2 6.3 16.1 16.1 16.1 16.1 16.1 16.1 16.1	2.5 3.4 3.5 8.5 8.7 8.7 13.4 5.5 5.5
17.6 5.6 5.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6	7
<< < < < < < < < < < < < < < < < < < <	ω.
ENSGO0000145287 ENSGO000104368 ENSGO00001082621 ENSGO0000137841 ENSGO0000137841 ENSGO0000137841 ENSGO000010558 ENSGO0000100558 ENSGO0000120756 ENSGO0000120756 ENSGO0000120756 ENSGO0000120756 ENSGO0000120799 ENSGO0000132000 ENSGO0000132429 ENSGO0000101011 ENSGO0000167183 ENSGO0000167183 ENSGO0000135069 ENSGO0000221826 ENSGO0000221826	ENSGO000185920 ENSGO000185920 ENSGO000152104 ENSGO0000131242 ENSGO0000111679 ENSGO000111679 ENSGO000177469 ENSGO000112210 ENSGO000112210 ENSGO000112210
PLAC8 PLAT PLCB1 PLCB2 PLCB2 PLCB2 PLCB2 PLEKHO1 PLIN3 PLSCR3 PLXNA2 PLXNA2 PLXNA2 PLXNA2 PLXNA2 PLXNA2 PLXNA2 PRXCBP POPD RAP POPP1R15A PRKCGBP PRKCG	PTCH1 PTCH1 PTMS PTPN14 PTPN22 PTPN3 PTPN6 PTPRE PTRE PTRE RAB11FIP1 RAB23 RAB25

1.000 1.031 1.031 1.002 1.000 0.000 0.000 1.000	0.000 1.000 0.000 1.000 0.000 0.238 0.300 1.000
1.000 0.902 0.902 0.902 1.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000	0.000 1.000 0.000 1.000 0.000 0.006 0.006 0.033
0.009 0.009 0.009 0.009 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
1.00 0.97 0.997 1.00 0.10 0.10 0.10 0.10 0.10 0.10 0.1	1.00 1.00 1.00 1.00 1.00 1.00 0.12 0.17
0.848 0.964 0.851 0.802 0.746 0.710 0.777 0.960 1.030 0.953 0.953 0.953 0.954 0.956 0.966 0.966 0.966 0.966 0.967 0.966 0.967 0.968	1.021 0.782 0.780 0.316 0.960 0.710 0.794 1.037 0.208 0.961
0.242 0.316 0.249 0.218 0.194 0.040 0.1983 0.090 0.290	0.899 0.188 0.180 -0.006 0.290 0.040 0.216 0.883 0.883
0.705 0.240 0.0240 0.933 0.933 0.867 0.294 0.003 0.003 0.003 0.004 0.005	0.000 0.900 0.867 0.004 0.294 0.294 0.000 0.000 0.001
0.55 0.64 0.55 0.63 0.48 0.63 0.63 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	0.96 0.48 0.16 0.63 0.63 0.51 0.96 0.96 0.06
4.3 8.8 8.8 8.8 8.8 9. 1.2 9. 1.7 9. 1.7 9. 9. 9. 9. 9. 9. 9. 9.	2.4 3.8 2.3 13.2 2.8 8.2 4.3 NS NS
8	NS NS NS 1.7 1.7 7.8 7.8 7.8 1.6
о о о о о о о о о о о о о о о о о о о	ш м ∢∢
ENSGOOOO118508 ENSGOOOO109113 ENSGOOOO109113 ENSGOOOO1167994 ENSGOOOO1167994 ENSGOOOO1179262 ENSGOOOO1123239 ENSGOOOO1123239 ENSGOOOO112183 ENSGOOOO112183 ENSGOOOO112183 ENSGOOOO112183 ENSGOOOO112183 ENSGOOOO112183 ENSGOOOO1122707 ENSGOOOO1127105 ENSGOOOO1127105 ENSGOOOO116574 ENSGOOOO1177105 ENSGOOOO116574 ENSGOOOO116574 ENSGOOOO1177963 ENSGOOOO1177963 ENSGOOOO1129538 ENSGOOOO1123091 ENSGOOOO1123091 ENSGOOOO123091 ENSGOOOO123091 ENSGOOOO123091 ENSGOOOO123481 ENSGOOOO123481 ENSGOOOO123481 ENSGOOOO123481 ENSGOOOO023444	ENSG0000117676 ENSG0000166592 ENSG00000171509 ENSG0000171509 ENSG0000118626 ENSG00001188015 ENSG00000163993 ENSG0000196876 ENSG00001196876 ENSG00001196876
RAB32 RAB34 RAB3811 RAB38 RAB311 RAD23A RAD23A RAPIGAP2 RAPGEF5 RAPGEF5 RARG RARG RARG RARG RARG RARG RARG RAR	RPS6KA1 RRAD RSBN1 RXFP1 RYBP RYRZ S100P S100P SAMD9 SCNRA

1.000 1.000 1.000 1.000 1.000 0.044 0.072	1.000 1.000 0.000 0.222	1.000 0.098 1.000 1.000 1.022 1.000	1.000 1.000 0.118 0.000 0.000 1.000 1.000	0.000 1.022 0.095 0.044 0.044 1.000 1.000	1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 -0.022 -0.027	1.000 1.000 0.000 0.000	1.000 1.000 1.000 1.000 1.000 0.956 1.000	1.000 1.000 1.000 0.000 0.000 1.000 1.000	0.000 0.956 -0.028 0.000 -0.022 -0.022 1.000 1.000	1.000 1.000 0.000 0.000
0.005 0.005 0.005 0.005 0.005 0.006 0.007	0.005 0.005 0.005 0.005	0.005 0.009 0.005 0.007 0.005 0.006	0.005 0.005 0.005 0.010 0.005 0.005 0.005	0.005 0.006 0.005 0.005 0.006 0.005 0.005	0.005 0.005 0.005 0.005
1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 0.00 0.11	1.00 0.03 1.00 1.00 0.99	1.00 0.01 1.00 0.00 1.00 0.01 1.00 1.00	1.00 0.99 0.03 1.00 0.01 1.00 1.00	1.00
0.918 0.790 0.604 0.640 0.960 0.939 1.024 0.811	0.932 0.960 0.072 1.020 1.000	0.863 1.030 0.960 0.960 0.960 0.036	0.350 0.375 0.375 1.030 0.716 1.000 0.919 0.835	1.027 0.819 1.019 0.710 1.000 1.030 0.734 0.816	0.897 0.926 1.032 1.016
0.272 0.210 0.136 0.140 0.290 0.281 0.886 0.259	0.278 0.290 -0.022 0.930 0.999	0.270 0.247 0.870 0.290 0.038 0.290 -0.016	0.235 0.290 0.290 0.910 0.054 0.299 0.272 0.207	0.231 0.231 0.040 0.999 0.910 0.166 0.224	0.263 0.274 0.910 0.854
0.425 1.000 0.275 0.355 0.294 0.355 0.000 0.769	0.378 0.294 0.000 0.000 0.000	0.53.0 0.000 0.294 0.257 0.294 0.000	0.294 0.012 0.000 0.000 0.000 0.425 0.966 0.769	0.000 0.834 0.000 0.294 0.000 0.674 0.867 0.705	0.501 0.401 0.000 0.000
0.60 0.50 0.37 0.39 0.63 0.61 0.96 0.54	0.61 0.63 0.98 0.98 1.00	0.56 0.95 0.63 0.63 0.99	0.53 0.63 0.20 0.97 0.61 0.60 0.51	0.98 0.53 0.99 0.63 1.00 0.97 0.45 0.52	0.58 0.60 0.97 0.94
4.3 11.2 3.4 2.2 3.5 4.3 -13.6 -59.9 NS	39.1 9.6 2.4 NS NS	7. 7. N. S. S. S. S. S. S. S. S. S. S. S. S. S.	9.50 4.6 NS NS -26.8 NS NS 3.7	3.6 NS 48.8 NS NS NS 9.9	2.4 3.3 -9.3 -36.0
NS NS NS 2.3 2.2 2.6 NS	NS 4.6 -1.6 2.5 5.5	1.0 3.5 1.8 2.1 2.1 NS NS NS	2 . 2 2 . 3 3 . 4 . 5 5 . 2 7 . 5 . 2 N S N S N S N S N S N S N S N S N S N S	7.2 NS 34.6 -6.2 2.8 10.3 NS	NS 1.6 NS
∞ ∞ •	в 4	ω	ω.	< < < < < < < < < < < < < < < < < < <	
ENSG00000162512 ENSG00000153993 ENSG0000112902 ENSG0000162430 ENSG0000184640 ENSG0000138758 ENSG0000197249 ENSG0000196136 ENSG0000196136	ENSG0000135919 ENSG0000149257 ENSG0000130766 ENSG0000198879 ENSG0000175793 ENSG000017509	ENSGO000120309 ENSG0000163082 ENSG0000197860 ENSG0000035115 ENSG0000160691 ENSG0000148082 ENSG0000198892	ENSG0000164054 ENSG0000164054 ENSG0000168779 ENSG0000112394 ENSG0000160190 ENSG00001030974 ENSG00001030974 ENSG0000103042	ENSG0000204385 ENSG0000142494 ENSG00000087916 ENSG0000003989 ENSG0000154760 ENSG0000124107 ENSG000016311 ENSG0000124216 ENSG00000124216	ENSG00000143553 ENSG00000130340 ENSG00000137642 ENSG00000152583
SEMA3D SEMA3D SEMA5A SEP11 SEP111 SERPINA1 SERPINA3	SERPINE2 SERPINH1 SESN2 SFMBT2 SFN	SGCD SGPP2 SGTB SH3YL1 SHC1 SHC3 SHSA4	SHISAS SHOXZ SLAMF8 SLC16A10 SLC37A1 SLC38A6 SLC38A7 SLC39A13	SLC44A4 SLC47A1 SLC6A14 SLC7A2 SLFN13 SLP1 SMPD1 SNA11 SNA12	SNAPIN SNX9 SORL1 SPARCL1

1.000	1.000 1.027 1.000	0.146 1.000 0.000	1.000 1.000 0.172 0.328	1.000 1.000 1.000	1.000 1.031 0.343	0.313 0.967 0.000	1.027 1.000 1.000	0.044 0.000 0.000 1.000	1.000 0.000 0.314	1.000 1.000 0.287 0.044 0.000
1.000	1.000	-0.035 1.000 0.000	1.000 1.000 -0.016	1.000 1.000 1.000	1.000 0.902 0.057	0.042	0.928 1.000 1.000	-0.022 0.000 0.000 0.000 1.000	1.000 0.000 0.041	1.000 1.000 0.002 -0.022 0.000
0.005 0.005 0.005 0.005	0.005	0.012 0.005 0.005	0.005 0.005 0.017 0.080	0.005 0.005 0.005	0.005 0.009 0.091	0.069	0.007 0.005 0.005	0.006 0.005 0.005 0.005	0.005 0.005 0.069	0.005 0.005 0.005 0.006 0.006
1.00	1.00 0.98 1.00	0.06 1.00 0.00	1.00 1.00 0.08 0.19	1.00 1.00 1.00	1.00 0.97 0.20	0.18 0.83 1.00	0.98 1.00 1.00	1.00 1.00 1.00 1.00	1.00 0.00 0.18	1.00 1.00 0.14 1.00 0.00
0.739 0.713 1.016 0.855	0.926 0.845 0.793 1.005	1.011 0.713 1.027	0.863 0.082 1.011	0.851 0.856 0.891	0.939 0.928 1.037	1.021 0.000 0.710	0.955 0.760 0.822	1.025 0.713 0.849 0.852 0.932	0.953 1.020 1.037	0.919 0.801 1.037 0.878 1.027
0.191 0.047 0.834 0.235	0.274 0.255 0.217 0.795	0.979 0.167 0.923	0.247 -0.022 0.979	0.239 0.244 0.259	0.281 0.302 0.883	0.889 0.000 0.040	0.305 0.120 0.228	0.895 0.047 0.361 0.368 0.281	0.290 0.941 0.883	0.272 0.272 0.219 0.883 0.432 0.923
0.769 0.313 0.000 0.705	0.401 0.674 0.966 0.001	0.000 0.614 0.000	0.644 0.000 0.000	0.705 0.674 0.529	0.355 0.334 0.000	0.000 0.000 0.294	0.275 0.867 0.834	0.000 0.313 0.378 0.355 0.378	0.313 0.000 0.000	0.425 0.933 0.000 0.193 0.000
0.47 0.38 0.93 0.55	0.60 0.55 0.51	1.00 0.44 0.98	0.56 0.97 1.00 0.99	0.55 0.55 0.58	0.54 0.61 0.62 0.96	0.96 1,00 0.63	0.63 0.48 0.53	0.96 0.62 0.61 0.61	0.62 0.98 0.96	0.60 0.51 0.96 0.96 0.98
4.0 -312.0 -4.6 2.4	2.2 2.4 -8.3	NS 2.2 NS	5.8 NS NS	3.7 2.4 4.1	7.7 NS 2.1 NS	NS NS -7.8	3.1 11.8 11.0	-2.7 -121.6 -9.7 -5.1	2.7 NS NS	6.4 2.9 NS -33.9 NS
NS NS NS	3.4 NS NS NS	4.4 NS 3.1	NS -3.2 2.5	NS NS NS	2.3 NS 3.9	2.3 -2.1 -3.2	1.8 NS 2	2.4 -2.7 NS NS	1.5 3.7 8.8	2.7 NS 3.1 NS 10.5 NS
		∢	œ	a a	n		& &		∢	₹ 80
163071 164266 166145 169682	1596 / 4 198911 196935 49418)70526 140557 13532	144681 113739 134602 01109	140022 133789 105137	162520 132718 106290 68394	204267 214946 111490	105254 392607 112837)593 <i>77</i> 165929)88992 (15112)68323 105967 198959 54096	335862 106829 174130 (69903 03534 41697
ENSG00000163071 ENSG0000164266 ENSG0000166145 ENSG0000169682	ENSG00000159674 ENSG00000198911 ENSG00000196935 FNSG0000149418	ENSG00000070526 ENSG00000140557 ENSG00000113532	ENSG00000144681 ENSG00000113739 ENSG00000134602 ENSG0000101109	ENSG00000140022 ENSG00000133789 ENSG00000105137	ENSG00000162520 ENSG00000132718 ENSG00000106290 ENSG0000168394	ENSG00000204267 ENSG00000214946 ENSG00000111490	ENSG00000105254 ENSG00000092607 ENSG0000112837	ENSG00000059377 ENSG00000165929 ENSG0000088992 ENSG0000115112 ENSG0000198176	ENSG00000068323 ENSG00000105967 ENSG0000198959	ENSGO000035862 ENSGO0000174130 ENSGO000174130 ENSGO000169903 ENSGO000103534 ENSGO000241697
SPATA18 SPINK1 SPINT1 SPNS1	SPONZ SREBF2 SRGAP1 ST14	ST6GALNAC1 ST8SIA2 ST8SIA4	STC2 STK3 STK4	STON2 SWAP70 SYDE1	SYNC SYT11 TAF6 TAP1	TAP2 TBC1D26 TBC1D30	TBCB TBX15 TBX18	TBXAS1 TC2N TESC TFCP2L1 TFDP1	TFE3 TFEC TGM2	TIMP2 TLE4 TLR6 TMASF4 TMC5 TMC5

1.000 1.000 1.000 1.000 1.000 0.000	1.000 1.000 1.031 1.023 1.033 1.031
1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.000	1.000 1.000 0.902 1.000 0.844 0.902 1.000
0.005 0.005	0.005 0.005 0.009 0.015 0.009 0.005
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 0.97 1.00 0.93 0.97
0.863 0.883 0.914 0.960 0.960 0.960 0.833 0.732 1.024 1.000 1.000 0.925 0.926 0.928	0.960 0.946 0.964 0.441 0.000 0.547 0.939
0.217 0.240 0.256 0.290 0.290 0.317 0.198 0.288 0.082 0.082 0.082 0.082 0.083 0.083 0.099 0.	0.290 0.284 0.316 0.069 0.000 0.123 0.281
0.737 0.7494 0.294 0.294 0.294 0.933 0.000 0.900 0.355 0.425 0.355 0.275 0.0000	0.294 0.334 0.240 0.000 0.166 0.355
0.54 0.54 0.63 0.63 0.63 0.63 0.64 0.61 0.61 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	0.63 0.62 0.64 0.26 1,00 0.34
8.2 8.7 8.7 9.7 4.6 4.6 4.6 4.6 7.3 8.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9	4.0 NS 7.7 6.1 NS 2.3
N N S S N N S S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N	2.5 2.4 3.7 NS -2.3 NS
ω ∢ ∢ ω ∢	ω.
ENSG00000109066 ENSG00000183160 ENSG0000149483 ENSG0000149483 ENSG0000149483 ENSG00001240849 ENSG0000121775 ENSG0000121775 ENSG0000121775 ENSG0000121775 ENSG0000121775 ENSG0000121775 ENSG0000125078 ENSG0000152078 ENSG0000138324 ENSG0000139324 ENSG0000146072 ENSG0000146072 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012557 ENSG000012554 ENSG0000015529 ENSG00000156298 ENSG00000156298 ENSG00000157324 ENSG00000114999 ENSG00000114999 ENSG00000114999	ENSG00000136295 ENSG00000167552 ENSG00000167553 ENSG00000137267 ENSG00000037042 ENSG0000078246 ENSG00000128791
TMEM104 TMEM119 TMEM138 TMEM184B TMEM189 TMEM30B TMEM30B TMEM30B TMEM30B TMEM30B TMEM30B TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM51 TMEM14 TMEM14 TMEM14 TMEM14 TMEM14 TMEM14 TMEM14 TMEM17 TMEM	TTYH3 TUBA1A TUBA1C TUBB2A TUBG2 TULP3 TWSG1

0.098	1.000	1.000	1.031	1.022	1.027	0.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.027	1.000	1.000	0.300	1.000	1.027	1.000	1.000	0.269	1.000	1.000	0.000	0.000	0.000	1.031	0.189	1.000
-0.031	1.000	1.000	0.902	0.956	0.928	0.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.928	1.000	1.000	0.033	1.000	0.928	1.000	1.000	0.020	1.000	1.000	0.000	0.000	0.000	0.902	-0.011	1.000
0.009	0.005	0.005	600.0	9000	0.007	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.007	0.005	0.005	0.060	0.005	0.007	0.005	0.005	0.045	0.005	0.005	0.005	0.005	0.005	600.0	0.021	0.005
1.00	1.00	1.00	0.97	0.99	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	96.0	1.00	1.00	0.17	1.00	0.98	1.00	1.00	0.14	1.00	1.00	1.00	1.00	1.00	0.97	60.0	1.00
0.993	0.960	0.960	0.876	0.884	0.927	0.961	1.037	0.758	0.919	0.939	0.817	0.828	0.891	0.224	0.719	0.875	0.119	0.856	1.030	0.261	0.934	0.795	0.911	1.000	0.890	0.904	0.746	0.716	0.934	0.214	1.000	0.953
0.757	0.290	0.290	0.274	0.266	0.293	0.649	0.713	0.202	0.272	0.281	0.213	0.232	0.259	-0.004	0.061	0.265	-0.019	0.244	0.800	0.009	0.300	0.215	0.269	0.999	0.250	0.266	0.124	0.054	0.526	-0.004	0.999	0.290
0.002	0.294	0.294	0.529	0.529	0.355	0.010	0.002	0.867	0.425	0.355	0.900	0.801	0.529	0.001	0.355	0.556	0.000	0.674	0.000	0.002	0.334	996.0	0.450	0.000	0.556	0.475	0.585	0.334	0.053	0.001	0.000	0.313
0.88	0.63	0.63	0.58	0.58	0.61	0.81	0.88	0.48	09.0	0.61	0.52	0.53	0.58	0.11	0.61	0.57	0.05	0.55	0.92	0.14	0.62	0.51	0.59	1.00	0.57	0.59	0.44	0.61	0.73	0.11	1.00	0.62
-3.3	5.7	2.1	2.1	4.4	2.5	-2.5	-14.6	4.3	5.4	7.4	5.1	10.8	2.9	5.3	-13.4	4.1	2.5	2.2	NS	13.4	2.7	2.3	2.6	NS	2.6	5.5	-7.4	-5.8	-3.3	2.1	NS	4.4
NS	2.7	1.5	NS	NS	1.5	NS	NS	NS	1.5	3.7	NS	NS	NS	NS	-3.3	NS	NS	NS	3.3	NS	1.6	NS	NS	2.2	NS	2.0	NS	-1.9	NS	NS	3.7	2.0
				В				В			В	В		В		В				В												
•	_	01	•	_	_		_	0	~	_	_	~		_	~	_	_	_	_	~	0	~ !	_	10	_	_	•	~	~	_		0
ENSG00000117289	ENSG00000198431	ENSG00000134882	:NSG00000143569	:NSG00000182247	ENSG00000185651	ENSG00000174607	ENSG00000118640	:NSG00000168140	ENSG00000108828	ENSG00000111424	ENSG00000150630	:NSG00000206538	ENSG00000026025	ENSG00000205221	ENSG00000134258	ENSG00000112290	ENSG00000132970	ENSG00000132471	ENSG00000132530	ENSG00000124343	:NSG00000169180	ENSG00000174282	ENSG00000165424	ENSG00000180776	ENSG00000165861	ENSG00000172667	ENSG00000204789	ENSG00000196693	ENSG00000177853	NSG00000198824	ENSG00000197385	ENSG00000159840
TXNIP	TXNRD1 E	UBAC2 E	UBAP2L E	UBE2E2 E	UBE2L3 E	UGT8 E	VAMP8 E	VASN	_	VDR	_	VGLL3 E	VIM	VIT	VTCN1 E	WASF1 E	_	WBP2 E	XAF1 E	XG E	XPO6 E	ZBTB4 E	ZCCHC24 E	ZDHHC20 E	ZFYVE1 E	ZMAT3 E	ZNF204P E	ZNF33B E	ZNF518A E	ZNF828 E	ZNF860 E	ZYX E

q-values<0.001; AUC: área debajo de la curva; Cl: intervalo de confianza; * en negrita se muestran los trascriptos más sobrexpresados (diferencia de expresión ≥4) cuya expresión discrimina entre los tumores de los subgrupos de ADCP GEP-A y GEP-B vs. tejidos pancreáticos no tumorales.