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ABSTRACT 
 

The objective of this Doctoral Thesis was to shed light on the 

functional mechanisms of stimulus-specific adaptation (SSA), a likely 

neuronal basis for deviance detection in the auditory system. Four 

electrophysiological studies have been performed by extracellularly 

recording isolated neurons during auditory stimulation in subcortical nuclei 

of the anesthetized rat and awake mouse: the inferior colliculus and the 

medial geniculate body of the thalamus. All the experiments has been 

performed using the oddball paradigm, which evaluates the differential 

responsiveness to frequent (standards) and rare sounds (deviants).  

 Study I is a detailed analysis of the neuronal features that are 

affecting SSA sensitivity in the inferior colliculus of the anesthetized rat. I 

show that SSA is frequency and intensity dependent, it is better represented 

in the earliest portions of the response and that the width of the frequency 

response area of the neuron is related to SSA sensitivity.  

Study II used the microiontophoretic technique to show that 

GABAergic inhibition is not generating SSA in rat. I show that Inhibition 

modulates SSA in a gain control manner. This information is reinforced in 

Study III, where I implanted a novel technique in the laboratory to record in 

awake mice. Recordings in unanesthetized animals demonstrate that SSA is a 

genuine phenomenon that seems more active in sleep-like states.  

Last, study IV shows that SSA is sensitive to frequency- but not to 

intensity deviants. It further demonstrates that SSA is dependent on the 

frequency inputs that generate the frequency response area of the neurons. 

Studies I and IV suggest that SSA might be related to an excitatory 

input segregation, while studies II and III show that SSA is modulated by 

inhibition but not generated by an excitatory-inhibitory balance. Therefore, 

we hypothesized that input-specific synaptic depression could be generating 

SSA in subcortical nuclei.  
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PREFACE 
 

One of the main epistemological questions has always been whether 

or not we are able to perceive the True image of the world (‘reality as it is in 

itself’). Since the ancient Greek culture, Western philosophy has been 

divided, grosso modo, between the ‘realism’ from Aristotle and the 

‘epistemological dualism’ from Plato. The famous Plato’s Allegory of the Cave 

set the grounds of the Theory of Forms, which defend that ideas –and not 

the world we perceive through sensation– possess the highest and most 

fundamental kind of reality. Following that perspective, Immanuel Kant 

develop his masterpiece The Critique of Pure Reason (1781) which is the 

basis for ‘transcendental idealism’, later improved by Arthur Schopenhauer 

in his book The World as Will and Representation (1818) and perfectly 

illustrated in the opening sentence of the manuscript: ‘The world is my 

representation’.  

Many other perspectives have been developed since, but the main 

core remains, i.e., reality is not straightforwardly perceivable by our sensory 

systems. Interestingly, it does not seem necessary for the organisms to see 

the ‘real’ world, as only an adequate representation of nearby environment 

is required to provide an optimal response to survive. 

Neural coding of the natural environment  

 During the last decades, a great deal of electrophysiological 

recordings carried out at different levels of the sensory systems have 

reinforced the idea that the brain is not trustworthy reproducing the world 

but simply reconstructing and reinterpreting it in order to provide a reliable 

response to the continuous flow of external inputs. This reliable response 

has only the purpose of survival. For this reason, the brain needs to create 

coherent and meaningful abstract representations from the complexity of 

the ever-changing world with a minimal amount of storage (Miller et al., 

2003). Considering that much of the information received by an organism is 
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highly redundant (Attneave, 1954), the information theory developed by 

Claude E. Shannon (1948) is critical in the signal processing that take place in 

the neurons. Information theory was initially designed for optimizing the 

transmission of messages over a noisy channel at the beginning of the 20th 

century. The simple lineal model proposed by Shannon implies an 

information source that produces a message through a transmitter. The 

transmitter produces a signal suitable for transmission over a channel, which 

may be interfered by some noise. The receiver decodes the signal and 

reconstructs the message, finally received by the destination. 

Shannon’s information theory uses the concept of entropy to 

measure the uncertainty about a source of information, i.e., entropy is the 

average amount of information contained in a message. That is one of the 

fundamental concepts of information theory: the amount of information in a 

message has a defined and measurable value (bits). If a message has low 

probabilities to be received it has high levels of entropy. If we are sure a 

message is going to be received, the amount of information is zero. In 

summary, the less likely an event is, the more information it provides when it 

occurs. 

Efficient coding hypothesis 

A few years after Shannon’s seminal work (1948), two different 

papers adapted information theory ideas to the biological field of sensory 

coding in the brain (Attneave, 1954; Barlow, 1961). Within the framework of 

information theory, Barlow proposed a link between environmental statistics 

and neural responses through the concept of coding efficiency. Barlow’s 

model was based on three essential concepts: 

• Password hypothesis: Sensory relays detect ‘passwords’ with a 

vital significance for the animal. In Barlow’s words (1961): “the 

primary effect of the sensory messages an animal receives is not 
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to enrich its subjective experience of the world but to modify its 

behavior in such a way that it and its species have a greater 

chance of survival. […] The subjective sensations they would 

produce in ourselves may or may not be relevant”. 

• Controlled pass-characteristic hypothesis: Each nucleus in the 

sensory pathway act as a modifiable pass-filter. Sensitivity to one 

type of stimulus may be enhanced or attenuated depending on 

contextual circumstances. The same message in different 

surroundings may imply different responses as the ‘password’ 

significance may be altered. 

• Redundancy-reducing hypothesis: To rebuild the message from 

the signals, the system needs to control the redundancy through 

adaptation. Again, in Barlow’s words (1961): “laws of nature 

serve the purpose of bringing order and simplicity to our 

complex sensory experiences […]; this seems to be the same idea 

as recoding to reduce the redundancy of our internal 

representation of the outer world”. 

Considering Shannon’s model, a biological analogy could be as 

follows: a predator produces a sound and the prey’s sensory pathway acts as 

a communication channel to transmit such signal. The spikes produced by 

the neurons through the sensory pathway efficiently code the signals, 

ultimately processed at high order brain regions that reconstruct the signal 

into a message. Environmental sound could be masking the message 

produced by the predator, but the system is able to extract the signal from 

the external noise (Figure 1). 
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Figure 1. Information theory model adapted to the efficient coding hypothesis. 
Adapted and reinterpreted from Barlow, 1961. 

Barlow’s efficient coding hypothesis suggest that, given a finite 

capacity to transmit information, neural systems employ an optimally 

efficient coding strategy to represent the inputs that they typically process 

(Wark et al, 2007). In order to optimize efficiency the sensory system should 

adjust its outputs to match the relevant inputs that code most of the 

‘passwords’ with key relevance for the animal survival. The optimal coding 

strategy depends on the statistics of the stimulus that the system represents 

(Wark et al., 2007) and the possibility to plastically adjust to them. 

Sensory adaptation 

Redundancy-reducing hypothesis assumes that sensory processing in 

the brain implies some levels of neuronal adaptation. If a neural system can 

change its coding strategy as the distribution of stimuli changes, adaptation 

would help neural systems to efficiently encode natural stimuli (Wark et al., 

2007). The rational should imply integrative neuronal interactions in order to 

enhance determined responses depending on the environmental context. 

According to such idea, a recent paper theorized that the typical heterogenic 

response found in the same cortical region to the same stimulus is beneficial 

for sensory coding when the stimulus is decoded from the population 

response (Chelaru and Dragoi, 2008). 
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During the last decades, several studies provided unquestionable 

evidences that all the sensory systems are able to efficiently code stimulus 

variations. A pioneer study in the insect compound eye demonstrated that 

the response of interneurons code for contrast variations (Laighlin, 1981). 

Years after, some visual researchers demonstrate adaptive rescaling to 

adjust to spatial correlations and image contrast (Smirnakis et al., 1997) and 

to the velocity of the stimulus (Brenner et al., 2000; Fairhall et al., 2001). All 

these adaptive processes begin to occur in the primary sensory receptor 

neurons but can also be observed in higher brain regions, like the cortex.  

Recent experiments demonstrated the presence of adaptive 

processes that allows for efficient coding adjustments in the auditory- 

(Lewicki, 2002; Ulanovsky et al., 2003; Dean et al., 2005; Dahmen et al., 

2010), the somatosensory- (Katz et al., 2006; Maravall et al., 2007) and the 

olfactory system (Assisi et al., 2007; Kostal et al., 2008). All this experiments 

reinforce the idea that adaptation, as a passive process, is old-fashioned. 

Thus, adaptation is a dynamic phenomenon and allows animals to have an 

optimal representation of the world. 
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INTRODUCTION 
 

 Survival depends critically on the ability to perceive relevant signals 

and separate from those unimportant. And neuronal adaptation seems to be 

closely involved in allowing such detection. Detecting strange odors in the 

middle of the night or visualizing a predator in the jungle are essential for 

survival, but the ability to detect novel sounds in the environment is 

fundamental to stay in an ever-changing world. Rare sounds indicate events 

of behavioral importance to which an individual must attend to survive. 

The auditory system 

The auditory system is specialized in processing environmental 

acoustic information. The biological importance of the auditory system of 

vertebrates lies in its ability to decode the temporal and spectral cues of 

sounds and provide animals with information about what the sounds mean 

and locate their origin. In many animals, sounds also serve as a basis for 

communication and in humans in particular is linked to language. 

The extraction of useful information starts in the cochlea, where the 

sound is transduced to electrical signals. Previously, sound waves reach the 

tympanic membrane, where the mechanical energy is amplified and 

transmitted though the ossicles to the basilar membrane, in the cochlea. Due 

to the physical characteristics of the membrane, the pressure waves vibrate 

at different regions of the membrane, which defines the frequency of 

stimulation (Hz, hertzs). The sensory hair cells, placed over the basilar 

membrane of the cochlea, are excited by the movement of the membrane 

and transduce the vibrations to electrical signals. Thus, tonotopy emerges in 

the cochlea (Figure 2), as individual hair cells are excited by different 

frequency ranges depending on the specific region of the basilar membrane 

(von Bèkèsy, 1960). 
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Figure 2. Cochlear transduction and tonotopy. Hair cells in the base of the basilar 
membrane (green) code for high frequencies; hair cells in the apex (violet) code for 
low frequencies. Adapted from Kern et al., 2008. 

In the spiral ganglion, bipolar neurons send their dendrites to the 

base of the hair cells while their axons form the auditory portion of the 8th 

cranial nerve (auditory nerve) and send impulses to the cochlear nucleus, the 

first auditory nucleus. Three different types of fibers are found in the 

auditory nerve, considering their spontaneous activity rates (SR): low, 

medium and high (Liberman, 1978). The spontaneous activity rates are linked 

to the intensity sensitivity: high spontaneous fibers present low thresholds 

(the minimum intensity detected) while low spontaneous activity ones have 

high thresholds (Figure 3).  

 
Figure 3. Intensity coding in the auditory nerve. A. Rate-level functions of three 
different neurons that code for the same frequency. The neuron represented in red 
shows a high spontaneous rate and a high level sensitivity (low threshold). B. 
Frequency response areas for the same neurons plotted in A. Low spontaneous rate 
neurons (blue) present higher thresholds. Adapted from Liberman, 1978. 
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Each auditory nerve fiber bifurcates and connects to all three main 

divisions of the cochlear nuclei, representing the beginning of the parallel 

auditory processing (Figure 4). Once in the cochlear nucleus, the auditory 

information is segregated in a series of ascending parallel channels (Cant and 

Benson, 2003) that reach three main nuclei: the superior olivary complex, 

the nuclei of the lateral lemniscus and the inferior colliculus (IC).  

 

Figure 4. Ascending projections of the auditory pathway. From Malmierca, 2003.  
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At the IC all the inputs that have previously diverged converge again 

(Malmierca, 2003). The IC is the place where new processing takes place and 

the principal source of ascending inputs to the medial geniculate body 

(MGB), in the auditory thalamus. At last, the MGB sends its axons to the 

auditory cortex (AC), the final station of the auditory pathway. Nevertheless, 

both anatomical and physiological studies have proved obsolete a purely 

‘bottom-up’ processing in the auditory system (Schofield, 2010) by revealing 

corticofugal and colliculofugal descending projections as well as two 

olivocochlear systems involved in the control of the cochlea (Figure 5).  

 

Figure 5. Descending projections of the auditory pathway. From Malmierca, 2003. 
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It is still not clear whether the descending auditory pathway should 

be considered a series of regional feedback loops or simply a descending 

chain of neurons (Huffman and Henson, 1990). In either case, the role of 

these loops in audition –and particularly the role of the corticofugal 

pathway– has been recently linked to gain control and signal filtering (Luo et 

al., 2008; Robinson and McAlpine, 2009). 

The inferior colliculus (IC) 

The IC is the principal auditory nucleus in the midbrain, being the 

nucleus where the inputs from the cochlear nucleus, the superior olivary 

complex and the lateral lemniscus converge (Malmierca and Hacket, 2010), 

as well as most of the descending projections from the AC (Lee and Winer, 

2005; Winer 2006). Although direct projections from the cochlear nucleus to 

the MGB have been found (Malmierca et al., 2002; Anderson et al., 2006; 

Schofield et al., 2014), the high degree of convergence of inputs from the 

brainstem nuclei into the IC suggests this is a major place of integration of all 

the brainstem parallel pathways (Malmierca, 2003). The IC is divided into 

four main regions (Loftus et al., 2008): 

• Central nucleus (CNIC): Morphologically, the CNIC is defined by a 

series of parallel tonotopically organized fibrodendritic laminae 

(Malmierca and Hacket, 2010) from low- (in the dorsomedial 

area) to high- (in the ventrolateral area) frequencies (Figure 6A). 

The dendritic arbors of the neurons in the CNIC are 70-100 µm 

thick (Figure 6B; Faye-Lund and Osen, 1985; Malmierca et al., 

1993). CNIC neurons are under a strong inhibitory modulation 

by GABA and glycine (LeBeau et al., 2001) and about a 25% of 

the neurons in this region are GABAergic (Merchán et al., 2005). 

• Dorsal cortex (DCIC): The DCIC is composed by three layers of 

medium-size multipolar neurons (Figure 6C). The main 
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projections to the DCIC arise from lower auditory centers 

(Malmierca et al., 2005) that encroaches the CNIC as well from 

intrinsic projections (Saldaña and Merchán, 1992) and bilaterally 

from the AC (Saldaña et al., 1996). 

• Lateral cortex (LCIC): The LCIC covers the CNIC laterally and is 

mainly composed by medium-sized neurons with large dendritic 

arbors (Figure 6D; Malmierca et al, 2011) typically aggregated in 

clusters rich in GABA and acetylcholine (Willard and Ryugo, 

1983). The LCIC receives important inputs from the AC (Saldaña 

et al., 1996), but also somatosensory inputs (Aitkin et al., 1978, 

1981; Malmierca et al., 2003). The LCIC presents multisensory 

integration and seems to be related to gaze control and with 

olivocochlear systems (Malmierca and Hacket, 2010). 

• Rostral cortex (RCIC): The RCIC is located in the rostral portion of 

the IC and presents both large and medium-sized multipolar 

neurons (Figure 6E; Faye-Lund and Osen, 1985; Malmierca et al., 

1993, 2011). As the DCIC and the LCIC, the RCIC receives massive 

inputs from the AC (Saldaña et al., 1996). 

 

Figure 6. IC morphology and cytoarchitecture. Colored lines in A show the 
maintained tonotopy in the IC. Adapted from Malmierca et al., 2003. 
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 The electrophysiological responses of the IC neurons can be 

described by their spectral (frequency response area, FRA: Figure 7) and 

temporal properties (peri-stimulus histogram, PSTH, Figure 8). A majority of 

the neuronal responses in the CNIC present typical V-shaped FRAs among 

other non V-shaped FRAs, e.g., mosaic, narrow… (LeBeau et al., 2001; 

Hernández et al., 2005; Palmer et al., 2013). On the other hand, the FRAs in 

the cortices of the IC are usually broader (Hernández et al., 2005). 

 

Figure 7. Spectral properties of auditory neurons of the IC. 

With respect to temporal properties, neurons of the CNIC usually 

present sustained, on-sustained, pauser responses (LeBeau et al., 1996; Rees 

et al., 1997) while the neurons from the cortices of the IC are more likely to 

present sparse responses with typical onset responses (Li et al., 1998; 

Lumani and Zhang, 2010). Moreover, neurons in the cortical regions of the IC 

typically present response latencies longer than the ones found in the CNIC 

(Lumani and Zhang, 2010). Such delays could be related to particular intrinsic 

membrane characteristics, due to inhibitory collicular projections or due to 

the massive descending cortical projection.  

 

Figure 8. Temporal properties of auditory neurons of the IC. 
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The medial geniculate body (MGB) 

 The MGB is a nuclear complex in the thalamus that has traditionally 

been considered as a simple relay station for sensory information reaching 

the AC. Nevertheless, growing evidence suggests that the MGB actively 

regulates the flow of sensory information and modulates sensory signals 

(Alitto and Usrey, 2003; Bartlett and Wang, 2007; Sherman, 2007; Yu et al., 

2009). One important feature of the auditory thalamus is that GABA is the 

only neurotransmitter mediating inhibition (Bartlett and Smith, 1999) 

because MGB lacks glycinergic receptors (Aoki et al. 1988; Friauf et al. 1997). 

Moreover, as GABAergic interneurons are virtually absent in the rat MGB 

(only ∼1%; Winer and Larue, 1996; Bartlett and Smith, 1999), the two major 

sources of GABAergic inhibition to the MGB arise from the IC (Winer et al. 

1996; Peruzzi et al. 1997; Ito et al. 2011) and the thalamic reticular nucleus 

(TRN; Rouiller et al. 1985). The MGB is divided in three regions (Winer, 1985): 

• Ventral (MGV): MGV neurons present highly oriented dendritic 

arbors arranged in parallel with the afferent fibers, resulting in 

fibrodendritic laminae similar to the ones found in the CNIC 

(Figure 9A; Winer et al., 1999). It is composed by small bi-tufted 

neurons, i.e., with two polarized dendritic fields (Figure 9D). The 

main source of inputs come from the CNIC (Bartlett and Smith, 

1999), while its axons project to the core (primary area) of the 

AC. 

• Dorsal (MGD): The MGD mainly presents big stellate neurons 

with radiate dendrites (Figure 9C; Bartlett and Smith, 1999). It is 

not tonotopically organized and there is no defined 

cytoarchitecture. Latencies in the MGD are typically longer than 

in the MGV (Calford, 1983). The main sources of input originate 

in the DCIC, the LCIC and the AC, while the outputs of the MGD 
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terminate directly to belt (secondary areas) of the AC 

(Malmierca and Hacket, 2010). 

• Medial (MGM): The MGB is characterized by the presence of 

huge magnocellular neurons (Figure 9B) with broad auditory 

tuning (Aitkin, 1973; Rouiller et al., 1989). The main inputs arise 

from the LCIC, the cochlear nucleus (Malmierca et al., 2002; 

Anderson et al., 2006) and the core of the AC, but also from 

visual and somatosensory structures (Smith and Spirou, 2002). 

The MGM projects both to the core and belt areas of the AC but 

it is well known that it also sends direct inputs to the amygdala 

(Doron and Ledoux, 1999). 

 

Figure 9.  MGB morphology and cytoarchitecture. Colored lines in A show the 
maintained tonotopy in the MGB. Adapted from Bartlett and Smith, 1999. 

The lemniscal and non-lemniscal pathway 

Parallel synaptic signaling is a highly conserved neural computational 

mechanism in the mammalian brain. Across virtually every sensory modality, 

ascending communication is conducted via two largely segregated channels 

known as the lemniscal and the non-lemniscal pathways (Hu et al., 1994; Hu, 

2003). In the auditory system, the lemniscal pathway arises from the CNIC, 

ascends to the MGV and projects to core regions of the AC (Figure 9, blue 
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lines), while the non-lemniscal system presents tectothalamic projections 

from the cortices of the IC (LCIC, DCIC, RCIC) to the dorsal (MGD) and medial 

(MGD) divisions of the MGB, the output of which is relayed to the belt and 

higher order cortical regions (Figure 10, red lines; Hu et al., 1994; Hu, 2003; 

Lee and Sherman, 2010; Lee and Sherman, 2011). Both pathways are 

considered to engage in different aspects of auditory functions. Briefly, the 

lemniscal pathway processes purely auditory information providing a reliable 

representation of sound features (de Ribaupierre, 1997), while the non-

lemniscal pathway provides context-dependent information (Calford and 

Aitkin, 1983), multisensory sensitivity (Hu et al., 1994) and reward behavioral 

conditioning (Komura et al., 2001, 2005). 

 

Figure 10. Scheme of the auditory lemniscal and non-lemniscal pathways. 

The auditory cortex (AC) is located in the temporal region of the 

cortex, where the MGB axons terminate, and possesses a characteristic 

columnar organization, with neurons organized in 6 layers as in other 

neocortical regions (Malmierca and Hacket, 2010). It is typically divided in a 

core (also known as primary area) where the frequency is tonotopically 

represented, surrounded by belt (secondary areas), with a more complex 

frequency representation (de Ribaupierre, 1997; Polley et al., 2007).  

Thalamic projections terminate on layers III and IV of the AC, while 

the corticofugal projections arise from layers V and VI of the AC (Llano and 
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Sherman, 2008) and target the MGB (Winer and Larue, 1987), the IC (Lee and 

Winer, 2005; Winer 2006), the superior olivary complex (Shneiderman and 

Henkel, 1987) and the cochlear nucleus (Luo et al., 2008; Liu et al., 2010). 

Corticofugal projections to the MGB can be direct excitatory synaptic 

contacts (Winer and Larue, 1987) or via the thalamic reticular nucleus (TRN, 

Jones, 1975; Rouiller et al., 1985, Harris, 1987), a small GABAergic nucleus 

that send its axons to the MGB and may be an important site of attentional 

modulation (Crick, 1984). 

Auditory scene analysis and deviance detection  

The main purpose of sensory systems is to aid the survival of their 

owner in a complex world (Klug and Grothe, 2010). In everyday life, animals 

are immersed in a continuous flow of sounds generated by multiple sources 

and the auditory system has to select which acoustic elements are the most 

relevant and create perceptual constructs (Fishman and Steinschneider, 

2010). In order to perform an auditory scene analysis (Bregman, 1990; 

Winkler et al., 2009) and with the idea of focusing on specific acoustic 

objects, animals combine both auditory spatial cues and auditory feature 

cues to separate the sound streams of interest from background 

environmental noise (Fritz et al., 2007), a process perfectly illustrated with 

the ‘cocktail party effect’ (Cherry, 1953).  

One way of organizing the acoustic scene is retaining it in form of 

sound ‘objects’ (Winkler et al., 2009), store the objects regularity in a sensory 

memory trace, generate predictions about the forthcoming events and 

compare the subsequent incoming sounds to these predictions (Bendixen et 

al., 2012). This is the current theoretical approach for deviance detection 

(Näätänen et al., 1978), i.e., the detection of new or deviant contextual 

events in an otherwise monotonous auditory scene. Even though attention 

can modulate deviance detection (Näätänen et al., 1993) and it is implicated 
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in auditory scene analysis (Mesgarani and Chang, 2012), the neuronal basis 

of deviance detection is clearly pre-attentive (Näätänen et al., 1978; Tiitinen 

et al., 1994; Schröger and Wolff, 1998). 

Mismatch negativity (MMN) 

Deviance detection is a phenomenon well known to occur in 

humans, first described by Näätänen and colleagues back in 1978. The 

authors used an auditory event-related potential (Figure 11A) to measure 

and quantify by the mismatch negativity (MMN, Figure 11B) the ability of the 

brain to detect rare sounds within a sequence of repetitive sounds. MMN is 

usually measured with an oddball protocol, where low probability of 

appearance (deviant) sounds are randomly embedded within sequences of 

common (standard) sounds. MMN is defined as the difference between the 

event-related potentials for the deviants (red trace in Figure 11B) and the 

standards (blue trace in Figure 10B), where the potential generated for the 

deviant sound is larger than for the standard sound. MMN is sensitive to the 

stimulus history, its magnitude depends on the probability of the deviant 

stimuli and could be elicited by sounds that violate some aspect in the 

regularity of the sequence (e.g., frequency, amplitude, spatial location…).  

 

Figure 11. Auditory evoked potentials and mismatch negativity. ABR: auditory 
brainstem responses. MLR: middle latency responses. LLR: long latency responses. 
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MMN peaks around 150-250 ms from stimulus onset, somewhere 

between the N1 (100 ms) and the P2 waves (180 ms). MMN can be 

interpreted as an enhancement of the N1 wave or as a phenomenon 

independent of N1. This differentiation is not trivial because the N1 wave is 

attributed to basic auditory perceptions from the AC (Hari et al., 1984; Maess 

et al., 2007) and one of the current interpretations for MMN is that 

adaptation is related with MMN generation (Fishman, 2013). There are two 

hypothesis concerning the neural mechanisms and meaning of the MMN: 

• Predictive coding: In Fishman’s words (2013), “the brain 

generates a prediction concerning what the next sound in the 

sequence should be […] and when properties of the incoming 

sound fail to agree with the prediction, a prediction ‘error’ is 

registered”. Thus, the violation of the regularity would depend 

on sensory memory traces that allow for the generation of 

signal errors (Näätänen et al., 2001; Friston, 2005) and MMN 

would be a post hoc phenomenon independent of the N1 wave. 

• Neural adaptation: MMN is an adaptation process occurring 

along the auditory pathway. Again in Fishman’s words (2013), 

MMN would “not reflect a higher-level comparison process or 

change-detection per se, but rather adaptation to the repeating 

standard sounds. […] As (neurons activated by rare deviant 

sounds) are stimulated less frequently than neurons tuned to 

the standards, neurons tuned to the deviants (‘fresh afferents’) 

are less adapted than those stimulated by the standards”. Thus, 

deviant sounds are going to elicit larger responses because 

MMN would be related to a specific decrease of the signal 

(adaptation) elicited for the standard sound by the N1 wave 

(Jääskeläinen et al., 2004; May and Tiitinen, 2010). 
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Interestingly, recent electrophysiological papers (Simpson et al., 

2014) point out that auditory scene analysis may be driven by two 

phenomena: the adjustment of the functional dynamic range of response to 

the most common stimuli (Dean et al., 2005) and stimulus-specific 

adaptation (SSA), the ability of some auditory neurons to respond to the less 

common and rare stimuli while greatly reducing the response to the 

repeated ones (Ulanovsky et al., 2003).  
 

Stimulus-specific adaptation (SSA) 

At the single neuron level, the detection of rare acoustic events is 

reflected by SSA, whereby neurons adapt to frequently occurring stimuli, but 

resume firing when ‘surprised’ by rare sounds (Figure 12). It is widely 

accepted that SSA lies upstream of MMN generation, regardless of whether 

MMN is actually reflecting a purelly adapting phenomena. SSA was initially 

described in the AC (Ulanovsky et al., 2003), but has been later described in 

the IC (Pérez-González et al., 2005; Malmierca et al., 2009) and the MGB 

(Anderson et al., 2009, Antunes et al., 2010). So far, the IC is the first 

auditory station where SSA is found, as this feature has not been found in 

the cochlear nucleus (Ayala et al., 2013). 

The basic properties of SSA in the auditory system have been studied 

in detail in the AC (Ulanovsky et al., 2003, 2004; Szymanski et al., 2009; von 

der Behrens et al., 2009; Farley et al., 2010; Taaseh et al., 2011; Fishman and 

Steinschneider, 2012; Yaron et al., 2012; Briley and Krumbholz, 2013; Nir et 

al., 2013; Hershenhoren et al., 2014; Klein et al., 2014; Xu et al., 2014)1, the 

auditory thalamus (Anderson et al., 2009; Yu et al., 2009; Antunes et al., 

2010; Antunes and Malmierca, 2011; Bäuerle et al., 2011; Richardson et al., 

1  For a general review of SSA and MMN see Escera and Malmierca, 2013; Nelken, 
2014 or Malmierca et al, 2014. 
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2013; Duque et al., 2014)2 and the IC (Pérez-González et al., 2005, 2012; 

Reches and Gutfreund, 2008; Malmierca et al., 2009; Lumani and Zhang, 

2010; Reches et al, 2010; Zhao et al., 2011; Duque et al., 2012; Patel et al., 

2012; Pérez-González and Malmierca, 2012; Thomas et al., 2012; Ayala et al., 

2013; Ponnath et al., 2013; Duque and Malmierca, 2014)3. 

Interestingly, some differences have been found between cortical 

and subcortical SSA. SSA is strong in the non-lemniscal subcortical regions 

(Figure 12A, red dotted areas) while the levels of SSA in the lemniscal areas 

of the IC (Malmierca et al., 2009) and the MGB (Antunes et al., 2010) are very 

low or negligible. In contrast, SSA in the AC has been found in the lemniscal 

region (Ulanovsky et al., 2003; Figure 12A, red dotted area).  

Moreover, while neurons exhibiting SSA in the IC (Malmierca et al., 

2009) and the MGB (Antunes et al., 2010) tend to be mainly onset 

responders with short latencies (Figure 12B-C), neurons in the AC exhibit SSA 

mainly in the sustained part of the neuronal response (Figure 12B-C; 

Ulanovsky et al., 2003). Nelken and colleagues speculate about the possibility 

that intra-cortical processing contributed to SSA in the AC. Besides, as SSA in 

the AC was observed in the core region of the AC, some authors proposed 

that SSA emerges in the AC as a high order feature that can be inherited by 

the IC and the MGB via the corticofugal pathway (Nelken and Ulanovsky, 

2007; Yu et al., 2009). However, recent studies (Antunes and Malmierca, 

2011; Anderson and Malmierca, 2013) demonstrate that the corticofugal 

projection is modulating, but not generating, subcortical SSA. Currently, it is 

thought that SSA is created de novo at each auditory station or transmitted 

in a cascade process from low to high order nuclei. 

2 For a review of SSA in the MGB see Antunes and Malmierca, 2014. 

3 For a review of SSA in the IC see Ayala and Malmierca, 2013. 
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Figure 12. Comparison of SSA between IC, MGB and AC. A. Red dotted areas indicate 
regions where SSA is strong. Non-lemniscal divisions are highlighted in yellow shaded 
areas. Green arrows: glutamatergic excitatory projections; purple arrows: GABAergic 
inhibitory projections. B. Dot raster plots show adapted responses to the standard 
stimulus (blue dots) while the response to the deviant stimulus (red dots) is not 
adapted. C. PSTH showing the normalized response from B. D. Relation between the 
response difference between the deviant and standard stimuli and the frequency 
contrasts (∆F). E. Effect of stimulus repetition rate on the level of SSA.  
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Cortical and subcortical SSA is similar in several respects: it is a rapid 

phenomenon and highly sensitive to 1) stimulus statistics (the larger the 

probability of occurrence of the deviant sound, the larger the adaptation), 2) 

the frequency contrast (Figure 12D) and 3) the presentation rate (Figure 

12E). Nevertheless, SSA can be observed at time intervals as long as 2000 ms 

(Ulanovsky et al., 2003; Antunes et al., 2010; Ayala and Malmierca, 2013). 

Intriguingly, the neuronal mechanisms that create SSA are still unknown. 

Inhibition can actively modulate SSA (Yu et al., 2009), but does not generate 

SSA (Pérez-González et al., 2012, Duque et al., 2014). At last, whether SSA is 

a mechanism depending on the neuronal inputs or it is operating at the 

output of the neuron is still an open question. 
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The basic properties of SSA have been studies in detail, but 

consensus has not been reached about the neuronal mechanisms that 

encode for SSA and what role, if any, plays inhibition in the generation of 

SSA. Two main theories have risen in the last decade about the possible 

neuronal mechanisms that encodes for SSA. On one hand, SSA could depend 

on intrinsic activity-dependent mechanisms operating at the output of the 

neuron, at the level of the membrane potential (Abolofia et al., 2011).  

On the other hand, SSA could also depend on mechanisms operating 

at the inputs of the neurons (Ulanovsky et al., 2004; Reches et al., 2010), 

probably through cumulative input-specific synaptic depression. Such 

synaptic depression model (Grill-Spector et al., 2006; Briley and Krumbholz, 

2013) has risen as the best explanation for SSA and the frequency-specific 

adaptation channels theory (Eytan et al., 2003; Taaseh et al., 2011) supports 

this model. 

Besides, the role of inhibition in the generation of SSA is still not 

clear. Some authors (Pérez-González et al., 2012) have described a gain 

control role for the GABAergic system in the IC, while others (Yu et al., 2009) 

suggested that the GABA inputs from the TRN to the MGB shape the novelty 

response. Moreover, almost all the experiments have been performed in 

anesthetized preparation and there is little doubt that anesthesia may alter 

some neuronal properties by specifically affecting the inhibitory system, 

hence altering the excitatory/inhibitory ratio (Rudolph and Antkowiak, 2004). 

We therefore hypothesized that: 

1. SSA is a mechanism input dependent defined by the width of 

the frequency channels. 

2. SSA is a genuine mechanism not generated by anesthesia that 

bay be either controlled or generated by inhibition.  
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At the light of the above-mentioned backgrounds, the objectives of 

this Doctoral Thesis were: 

1. To evaluate the frequency and intensity dependence of SSA in 

the IC (Study I).  

2. To observe if SSA is either generated or modulated by the 

GABAergic system in the MGB (Study II). 

3. To test what effect, if any, has anesthesia on SSA (Study III). 

4. To determine if SSA can be elicited by purely intensity deviant 

sounds and to understand the physical properties of the sound 

that can evoke SSA (Study IV).   
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Study I: Frequency and level dependence of SSA 

 

Duque D, Pérez-González D, Ayala YA, Palmer AR, Malmierca MS (2012)  

Topographic distribution, frequency, and intensity dependence of  

stimulus-specific adaptation in the inferior colliculus of the rat.  

Journal of Neuroscience 32:17762-17774.  

doi: 10.1523/JNEUROSCI.3190-12.2012. 
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Topographic Distribution, Frequency, and Intensity
Dependence of Stimulus-Specific Adaptation in the Inferior
Colliculus of the Rat

Daniel Duque,1 David Pérez-González,1 Yaneri A. Ayala,1 Alan R. Palmer,3 and Manuel S. Malmierca1,2

1Auditory Neurophysiology Unit, Laboratory for the Neurobiology of Hearing, Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
2Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain, and 3Institute of Hearing Research,
Medical Research Council, Nottingham NG7 2RD, United Kingdom

The ability to detect unexpected sounds within the environment is an important function of the auditory system, as a rapid response may be
required for the organism to survive. Previous studies found a decreased response to repetitive stimuli (standard), but an increased response to
rare or less frequent sounds (deviant) in individual neurons in the inferior colliculus (IC) and at higher levels. This phenomenon, known as
stimulus-specific adaptation (SSA) has been suggested to underpin change detection. Currently, it is not known how SSA varies within a single
neuron receptive field, i.e., it is unclear whether SSA is a unique property of the neuron or a feature that is frequency and/or intensity dependent.
In the present experiments, we used the common SSA index (CSI) to quantify and compare the degree of SSA under different stimulation
conditions in the IC of the rat. We calculated the CSI at different intensities and frequencies for each individual IC neuron to map the neuronal CSI
within the receptive field. Our data show that high SSA is biased toward the high-frequency and low-intensity regions of the receptive field. We
also find that SSA is better represented in the earliest portions of the response, and there is a positive correlation between the width of the
frequency response area of the neuron and the maximum level of SSA. The present data suggest that SSA in the IC is not mediated by the intrinsic
membrane properties of the neurons and instead might be related to an excitatory and/or inhibitory input segregation.

Introduction
The ability to detect unexpected stimuli within the environment is
an important function of the brain in general, and of the auditory
system in particular, where it mostly depends on some forms of
neuronal adaptation (Ulanovsky et al., 2003; Jääskeläinen et al.,
2007). The adaptation to repeated sounds while maintaining re-
sponsiveness to uncommon ones is known as stimulus-specific ad-
aptation (SSA), and it is thought to be one of the mechanisms that
allows novelty detection (Ulanovsky et al., 2003, 2004). SSA was
initially described in the auditory cortex (Ulanovsky et al., 2003), but
more recently it was found also in the auditory midbrain [inferior
colliculus (IC) (Malmierca et al., 2009)] and the thalamus [medial
geniculate body (MGB) (Anderson et al., 2009; Yu et al., 2009; An-
tunes et al., 2010)].

The basic properties of SSA have been studied in detail in the
auditory cortex (Ulanovsky et al., 2003, 2004; von der Behrens et
al., 2009; Taaseh et al., 2011), MGB (Yu et al., 2009; Antunes et al.,
2010; Antunes and Malmierca, 2011), and IC (Pérez-González et
al., 2005; Malmierca et al., 2009; Lumani and Zhang, 2010; Zhao
et al., 2011), but little is known about how it changes within the
neuronal receptive field. This is an important issue, since the
variation of SSA across the receptive field may shed light on how
the neuron’s inputs contribute to its generation (Ulanovsky et al.,
2004), while a homogeneous SSA would suggest a larger contri-
bution of the intrinsic properties to its origin (Abolafia et al.,
2011), although SSA by definition, as opposed to nonspecific
adaptation, already suggests that these properties are not
involved.

The IC is a key midbrain nucleus that integrates information
from all ascending and descending auditory pathways (Malmierca,
2003), and the lowest auditory station where SSA has been found so
far. Neurons in the IC project to the auditory cortex via the MGB.
Moreover, the IC is the auditory nucleus where the lemniscal and
nonlemniscal pathways emerge (for review, see Malmierca, 2003;
Lee and Sherman, 2011). This division is relevant because the lem-
niscal pathway (associated with the central nucleus of the IC) is
linked to the processing of basic acoustic features, while the nonlem-
niscal (lateral, rostral, and dorsal cortices of the IC) (Malmierca et al.,
2011) is related to the analysis of more complex features of sound
(Hu et al., 1994; Hu, 2003) and multisensory integration (Aitkin et
al., 1981; Malmierca et al., 2002). Previous studies on SSA have dem-
onstrated the prevalence of strong SSA in neurons from the nonlem-
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niscal divisions of the IC and MGB (Malmierca et al., 2009; Antunes
et al., 2010; Lumani and Zhang, 2010).

In the present account, we quantified and compared the de-
gree of SSA in single neurons of the rat IC, at multiple intensities
and frequency combinations, to map the variations of SSA
throughout the neuronal receptive field. Moreover, we investi-
gated whether neurons exhibiting a particular response type are
better able to encode for SSA and if the spectral properties of the
neuronal response affected the level of SSA. Our results demon-
strate that SSA is more strongly expressed in the high-frequency
region of the receptive field, at low firing rates, and in ON re-
sponders. Preliminary reports have been presented previously
(Duque et al., 2010, 2011).

Materials and Methods
Surgical procedures. Experiments were performed on 33 adult, female rats
(Rattus norvergicus, Long Evans) with body weights between 150 and
260 g. All experimental procedures were performed at the University of
Salamanca with the approval of, and using methods conforming to the
standards of, the University of Salamanca Animal Care Committee. An-
esthesia was induced (1.5 g/kg, i.p., 20% solution) and maintained (0.5
g/kg, i.p., given as needed) with urethane. Urethane was chosen as an
anesthetic because its effects on multiple aspects of neural activity, in-
cluding inhibition and spontaneous firing, are known to be less than
those of barbiturates and other anesthetic drugs (Hara and Harris, 2002).
The respiration was maintained artificially (SAR-830/P Ventilator),
monitoring the end-tidal CO2 level (CapStar-100). For this purpose, the
trachea was cannulated and atropine sulfate (0.05 mg/kg, s.c.) was ad-
ministered to reduce bronchial secretions. Details of surgical procedures
have been described previously (Pérez-González et al., 2005; Malmierca
et al., 2009; Antunes et al., 2010). Body temperature was maintained at
38 � 1°C by means of a heating blanket. The animal was placed in a
stereotaxic frame in which the ear bars were replaced by hollow speculae
that accommodated a sound delivery system, inside a sound-sealed room.

Acoustic stimuli and electrophysiological recording. A craniotomy was
performed to expose the cerebral cortex overlying the IC. Extracellular
single-unit responses were recorded using a tungsten electrode (1–2
M�) (Merrill and Ainsworth, 1972) lowered through the cortex by
means of a piezoelectric microdrive (Burleigh 6000 ULN). Neuron loca-
tion in the IC was based on stereotaxic coordinates, physiological criteria
of tonotopicity and response properties (Malmierca et al., 2003; Hernán-
dez et al., 2005; Pérez-González et al., 2005, 2006; Malmierca et al., 2009),
and confirmed histologically afterward.

Acoustic stimuli were delivered through a sealed acoustic system
(Malmierca et al., 2009) using two electrostatic loudspeakers (TDT EC1;

Tucker Davis Technologies) driven by two TDT ED1 modules. The stim-
uli were presented contralaterally to the recording side; search stimuli
were pure tones or noise bursts monaurally delivered under computer
control using TDT System II hardware and custom software (Faure et al.,
2003; Pérez-González et al., 2005, 2006; Malmierca et al., 2008). The
output of the system at each ear was calibrated in situ using a 1⁄4 inch
condenser microphone (model 4136; Brüel and Kjær) and a DI-2200
spectrum analyzer (Diagnostic Instruments). The maximum output of
the TDT system was flat from 0.5 to 4 kHz (�110 � 7 dB SPL), from 4.5
to 14.5 kHz (�90 � 6 dB SPL), and from 15.5 to 40 kHz (�95 � 7 dB
SPL), presenting a notch at 15 kHz. The highest frequency produced by
this system was limited to 40 kHz. The second and third harmonic com-
ponents in the signal were �40 dB below the level of the fundamental at
the highest output level (Malmierca et al., 2008, 2009).

Action potentials were recorded with a BIOAMP amplifier (Tucker
Davis Technologies), the 10� output of which was further amplified and
bandpass filtered (TDT PC1; fc, 500 Hz and 3 kHz) before passing
through a spike discriminator (TDT SD1). Spike times were logged with
a resolution of �150 �s on a computer by feeding the output of the spike
discriminator into an event timer (TDT ET1) synchronized to a timing
generator (TDT TG6). Stimulus generation and on-line data visualiza-
tion were controlled with custom software. Spike times were displayed as
dot rasters sorted by the acoustic parameter varied during testing.

From an isolated neuron, the approximate frequency tuning was au-
diovisually determined by presenting pure tones lasting 75 ms with a 5 ms
rise/fall time (Hernández et al., 2005). We obtained the frequency re-
sponse area (FRA), the combination of frequencies and intensities capa-
ble of evoking a response, as an estimation of the neuronal receptive field.
For that, we presented multiple combinations of frequency and intensity
using an automated procedure with 5–10 stimulus repetitions at each
frequency (from 0.5 to 40 kHz, in 20 –30 logarithmic steps, presented
randomly) and intensity (10 dB steps, presented from lower to higher
intensities). The spike counts evoked at each combination of frequency
and intensity were then plotted using MATLAB. We used this represen-
tation of the FRA to calculate the minimum threshold and best frequency
(BF) of response, i.e., the frequency where the minimum threshold is
found.

Stimulus presentation paradigms. The representation of the FRA al-
lowed us to choose pairs of frequencies ( f1 and f2) within the response
area of the neuron that elicited a similar firing rate at the same intensity
level (Fig. 1 A). Both frequencies in each pair were always presented at the
same sound level. For each pair of frequencies, stimuli were presented in
an oddball paradigm similar to that used to record mismatch negativity
responses in human (Näätänen, 1992) and animal (Ulanovsky et al.,
2003, 2004; Malmierca et al., 2009; Antunes et al., 2010) studies. Briefly,
a train of 400 stimuli containing both frequencies f1 and f2 was presented

Figure 1. Oddball paradigm and stimulation protocol. A, Schematic FRA showing the protocol of the experiments. Different pairs of frequencies ( f1, circle; f2, square) were selected within the FRA
for the oddball paradigm, covering all the range of frequencies and intensities. The frequency contrast (�f ) between the two frequencies remained constant at 0.1 (0.141 octaves). B, Oddball
paradigm. Sequences of 400 pure tones at the two different frequencies were presented, varying the probability of each of the frequencies. In Sequence 1, the f1 (circle) had 90% probability of
occurring, and f2 (square) had 10%. In Sequence 2, the probabilities of f1 and f2 were reversed. After performing the oddball paradigm a CSI value summarizes the SSA seen at that region of the FRA.
C, Schematic representation of the CSI value. On top of each pair of frequencies in the FRA, we draw a circle proportional to the CSI: the bigger the circle is, the higher the SSA.
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under the oddball paradigm: one frequency ( f1) was presented as the
standard (90% occurrence), while, interspersed randomly among
the standards, the deviant stimuli (10% occurrence) were presented at
the second frequency ( f2). After obtaining one data set, the relative prob-
abilities of the two stimuli were reversed, with f2 as the standard and f1 as
the deviant (Fig. 1 B). Dot raster plots (see Fig. 3) are used to illustrate the
responses obtained to the oddball paradigm, plotting individual spikes
(red dots indicate responses to the deviant; blue dots indicate responses
to the standard). Stimulus presentations are marked along the vertical
axis. The responses to the standard and deviant stimuli were expressed as
spikes per stimulus, to account for the different number of presentations
in each condition, due to the different probabilities. The frequency con-
trast remained constant under all the experimental conditions at �f �
0.10, where �f � ( f2 � f1)/( f2 � f1)1/2. (Ulanovsky et al., 2003, 2004;
Malmierca et al., 2009). This value is equivalent to a frequency separation
of 0.141 octaves. The stimuli were presented at a repetition rate of 4 Hz.
These conditions have been shown previously to evoke strong SSA in the
IC (Malmierca et al., 2009).

The degree of SSA was quantified by calculating the common SSA
index (CSI) from the responses (firing rate) elicited in the oddball con-
dition. The CSI has been used in previous studies (Ulanovsky et al., 2003,
2004; Malmierca et al., 2009; Antunes et al., 2010) and is defined as CSI �
[d( f1) 	 d( f2) � s( f1) � s( f2)]/[d( f1) 	 d( f2) 	 s( f1) 	 s( f2)], where

d( f ) and s( f ) are responses to each frequency f1 or f2 when they were the
deviant (d) or standard (s) stimulus, respectively. This index reflects the
extent to which the response to the standard was suppressed or the re-
sponse to the deviant was enhanced (Fig. 1C). The possible range of CSI
values is from �1 to 	1, being positive if the response to the deviant
stimulus is greater. To avoid including the spontaneous activity in the
analysis, we set time windows chosen individually in each case. We had a
default time window that embraced the whole stimulus (10 to 85 ms) for
low spontaneous activity responses (see Fig. 3 B, C) and, in those cases
where the spontaneous rate was higher (see Fig. 3 A, D), it was possible to
set the boundaries based on the shape of the peristimulus time histogram
(PSTH). When probing for SSA at different frequencies and intensities,
we started to collect the data from the lowest intensity at BF and then
gradually chose different pairs of frequencies covering (1) frequencies
lower and higher than the BF and (2) all the possible range of intensity
levels, in 10 dB steps. There is no a priori octave spacing when choosing
the pairs, but we always try to test at both the low- and the high-frequency
edges of the FRA, choosing two stimuli that evoked similar firing rates to
ensure that all differences in response were due to the statistics of the
stimulus ensemble.

Histological verification and recording sites. Each track was marked with
electrolytic lesions (10 –15 �A for 10 –15 s) for subsequent histological
localization of the neurons recorded (Fig. 2 A). At the end of each exper-

Figure 2. Anatomical location of CSI. A, Photomicrography showing a sagittal section of the IC with a typical electrode track (asterisks) and the electrolytic lesion generated (arrowhead). Scale
bar, 500 �m. C, Caudal; D, dorsal. B, Box plot with the median value (red line) of CSI sorted by anatomic regions. The blue box delimits the 25th and 75th percentiles, and dashed lines show the most
extreme data points not considered outliers. Red crosses indicate outliers. Cortical regions (RCIC, DCIC, and LCIC) are significantly different from the CNIC (Kruskal–Wallis test, p 
 0.001). C, Neuronal
CSI variability. Each dot illustrates the level of CSI for a given pair of frequencies. Any single neuron can present levels of CSI close to 1 and below 0, depending on the region of the FRA. Red dots are
values from neurons that present adapting pairs of frequencies, blue dots are values from neurons that only have nonspecifically adapting pairs of frequencies, and empty dots are pairs of frequencies
in identified CNIC neurons. The top dashed line shows the higher cutoff value (0.18), the bottom one shows the lower cutoff value (�0.18), and the vertical dash line illustrates the separation
between adapting and nonspecifically adapting neurons. SC, Superior colliculus; DLL, dorsal lateral lemniscus.
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iment, the animal was given a lethal dose of sodium pentobarbital and
perfused transcardially with PBS (0.5% NaNO3 in PBS) followed by fix-
ative (a mixture of 1% paraformaldehyde and 1% glutaraldehyde in rat
Ringer’s solution). The brain tissue was sectioned in the sagittal plane
into 40-�m-thick sections that were Nissl stained with 0.1% cresyl violet.
Recording sites were marked on standard sections from a rat brain atlas
(Paxinos and Watson, 2005), and units were assigned to one of the four
main divisions of the IC (Malmierca et al., 1993, 1995, 2011; Loftus et al.,
2008): lateral cortex (LC), rostral cortex (RC), dorsal cortex (DC), or
central nucleus (CN). This information was complemented and con-
firmed by the stereotaxic coordinates used during the experiment to
localize the IC.

Results
To study how SSA varies within the receptive field of IC neurons,
we recorded the responses from 124 well-isolated single units
throughout the IC while presenting stimuli in an oddball para-
digm. For all neurons, we determined the FRA and used the
oddball paradigm choosing several pairs of frequencies at differ-
ent intensities within the FRA (Fig. 1A). We used a constant
frequency contrast (�f � 0.1), repetition rate (4 Hz), and prob-
ability of occurrence of the deviant stimuli (10%).

SSA is better encoded in the nonlemniscal pathway
We localized histologically 81 of the 124 recorded neurons
(65.3%) to the different IC subdivisions (Fig. 2). Twenty-five of
them were from the rostral cortex (RCIC, 31%), 21 from the
lateral cortex (LCIC, 26%), and 17 from the dorsal cortex (DCIC,
21%). Eighteen were localized to the central nucleus (CNIC,
22%). The Kruskal–Wallis one-way ANOVA by ranks shows that
the distributions of CSI values obtained in the cortical regions
were similar among them (median � interquartile range, DCIC,
0.367 � 0.629; RCIC, 0.346 � 0.587; LCIC, 0.343 � 0.520), but
significantly different from those of the CNIC (0.012 � 0.116;
p � 1.35 � 10�13; Dunn’s method confirmed differences between
each cortical region and the CNIC, p 
 0.05 in all cases; Fig. 2B).
Although the level of SSA in the CNIC is distinctly low, seven
pairs of frequencies from neurons histologically located in the
edges of the CNIC exhibited significant SSA (CSI, �0.4; Fig. 2B).
Since our sample is consistent and biased to the cortical regions of
the IC (almost the 80% of the neurons were localized in cortical
regions), in the subsequent analysis we have included all the re-
corded neurons instead of only the 81 localized histologically,
and we will no longer consider regional subdivisions.

SSA varies within the FRA
From the 124 recorded neurons, we obtained a total of 1057
different pairs of frequencies. On average, we tested nine pairs of
frequencies per neuron (range, 3–24 pairs per neuron). Pairs of
frequencies that did not respond to both stimuli in the oddball
paradigm (n � 68) were excluded from the analysis. Figure 2C
shows the individual variability of the CSI value for all the neu-
rons in our sample. Since our main goal was a detailed analysis of
neurons that exhibit SSA, we established a cutoff to prevent the
neurons lacking SSA (as those located in the CNIC) from mask-
ing or averaging out the relationship between SSA sensitivity and
other response properties under study. We used a CSI value of
	0.18 as threshold for significant SSA, since the intrinsic vari-
ability of the response could evoke positive values of CSI that are
not related to a specifically stronger response to the deviant stim-
ulus. This cutoff value was established previously by Antunes et
al. (2010) by choosing the most negative CSI value in the data set
(�0.18) to represent the most extreme variance due to random
fluctuations in spike counts. We calculated the cutoff value for

the present data set obtaining a value of �0.21, but we considered
that the different cutoff values obtained are due to the experi-
mental variability rather than a genuine difference. Thus, for con-
sistency we use the same value as used previously. We consider
the range of CSI between �0.18 and 	0.18 as an indication of a
lack of stimulus-specific adaptation. Thus, a CSI value above 0.18
indicates significant SSA. The few values in our data set below
�0.18 (11 of 1057, 1%) are considered outliers. Neurons that
presented all their CSI values below 0.18 are referred to as “non-
specifically adapting” neurons. One-hundred and two neurons
(82.3%; 900 pairs of frequencies) showed high SSA levels (CSI,
�0.18) for at least one of the pairs of frequencies analyzed. The
remaining 22 neurons (17.7%) showed a low SSA (CSI, �0.18)
for all pairs of frequencies analyzed (89 pairs of frequencies).
Interestingly, 12 of the 18 neurons that we localized in the CNIC
presented such low SSA (Fig. 2C, empty dots).

Figure 3 shows four examples of individual neurons with their
corresponding FRA. For each neuron, we display dot raster plots
obtained using the oddball paradigm with a pair of frequencies
that show strong adaptation (left columns) and with a pair that
do not show adaptation (right columns). The corresponding
PSTHs are also shown. To assess the variability of SSA within the
FRA, we plotted the pairs of frequencies tested (represented by
dots in the FRA) and the level of SSA of each pair of frequencies
(represented by a circle, with the diameter proportional to the
CSI value; Fig. 1C). Figure 3A shows a broadly V-shaped FRA
where 13 pairs of frequencies were tested. Figure 3B shows a
multipeaked FRA (18 pairs of frequencies), while Figure 3C
shows a narrow FRA (9 pairs of frequencies), and Figure 3D a
mosaic FRA (8 pairs of frequencies). In all these cases, the PSTHs
exhibit a larger response to the deviant sounds (red line), showing
that the neuron presents SSA to some pairs of frequencies (left
columns) and a similar response for both conditions when it is
not differentially adapted (right columns).

To see how CSI values are distributed throughout the whole
auditory receptive field of the rat, we first merged the firing rates
of all the FRAs to create a cumulative receptive field (Fig. 4A–D).
This cumulative FRA was created over the whole range of fre-
quencies (from 0.5 to 40 kHz) and intensities (between �20 and
80 dB SPL) that we tested. The resulting cumulative receptive
field obtained was a broadly tuned, V-shaped-like FRA that pre-
sented the lowest threshold (�20 dB SPL) at �12 kHz. Then, we
plotted the center frequency [CF � ( f2 � f1)1/2] of each pair of
frequencies on top of the cumulative receptive field, grouped
according to the level of SSA that they elicited, as shown in Fig. 4.
For convenience, we established four different groups: CSI 

0.18 (n � 284; Fig. 4A), 0.18 
 CSI 
 0.5 (n � 277; Fig. 4B),
0.5 
 CSI 
 0.75 (n � 183; Fig. 4C), and CSI � 0.75 (n � 156;
Fig. 4D). The distribution of the frequencies analyzed with low
CSI values (CSI 
 0.18; Fig. 4A) was spread throughout the entire
FRA, covering the whole range of frequencies and intensities
used, but a majority of pairs of frequencies tended to be located at
the high-intensity regions of �10 –12 kHz, which are also the
highest firing rate regions (yellow and red areas). In contrast,
the highest CSI values (�0.75; Fig. 4D) were concentrated in the
lower firing rate areas (dark blue), which are located at low and
medium intensities around the 10 –12 kHz region, and also at
high frequencies. It is important to note that there were no pairs
with CSI values �0.75 found in the low-frequency tail of the
“synthetic” receptive field. Medium CSI values (0.18 
 CSI 
 0.75;
Fig. 4B,C) show an intermediate localization. In this case the
distribution of the pairs was not as homogeneous as the one
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Figure 3. Examples of neurons. A–D, Each panel shows the FRA (broad V-shaped FRA, A; multipeaked FRA, B; narrow FRA, C; mosaic FRA, D) of a neuron and all the pairs of frequencies analyzed
as dots. Each pair of dots is associated to a circle the size of which is proportional to the level of CSI evoked. Examples of an adapting pair of frequencies are marked as 1, (Figure legend continues.)
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observed with low CSI levels, but instead began to show a trend
toward low firing rates.

To further analyze the parameters that could affect the
strength of SSA, we divided our data into different groups accord-
ing to the two main sound parameters (i.e., intensity and fre-
quency). First, we created different groups taking into account
sound level (decibels of SPL; Fig. 4E): the results showed an
emerging trend such that SSA is higher at low sound intensities.
Next, we analyzed how the SSA of the IC neurons varied as a
function of the sound frequency that we used for stimulation
(from 0.5 to 40 kHz). For this purpose, we calculated the center
frequency for each pair of frequencies and arranged them in 0.5-
octave-wide groups. As shown in Figure 4F, high CSI values are
clearly skewed toward high frequencies. We finally merged all the
information relative to CSI and plotted it together, taking into
account the intensity (in decibels of SPL) and the frequency of
each pair of frequencies analyzed (in kilohertz) to understand
how SSA varies as a function of these two parameters (Fig. 4G).
High and low SSA levels are differently distributed. Neurons ex-
hibit the highest CSI values in the regions with frequencies above
10 kHz at low intensities and also at relative high intensities at
high frequencies (Fig. 4G, yellow–red). In contrast, the lowest
values of CSI (Fig. 4G, green– blue) are confined to high intensi-
ties and to low frequencies.

At this juncture, to better visualize where the SSA is strongest
within the FRA, we replotted the graph in Figure 4G, but this time
considering the distances relative to the threshold (reTh) and the
best frequency of each neuron. In Figure 5A, we clearly observe
that the highest CSI values are concentrated at the high-
frequency edge. To check that we do not have any bias due to
high-frequency neurons, we standardized the data to the high-
frequency edge (Fig. 5B). This analysis confirms that the results
are genuine and not due to a data sampling bias. This plot rein-
forces the idea that larger CSI values are found at high frequencies
and low intensities within the FRA of individual neurons, dem-
onstrating that SSA is not a property homogeneously distributed
within the FRA of the neuron.

With the aim of quantifying these effects, we performed a
three-way ANOVA, where the three factors evaluated were the
frequency, the intensity, and the effect of the neuron (as a ran-
dom factor). The results of this analysis showed that intensity
(F � 112.75; p � 7.18 � 10�44), frequency (F � 52.25; p �
4.69 � 10�22), and neuron (F � 9.33; p � 4.01 � 10�79) are major
factors that shape the level of CSI.

SSA as a function of sound intensity
To understand how SSA varies through the intensity range, we
established six different groups in 10 dB steps above each neu-
ron’s minimum threshold, and we calculated the median CSI

value in each group separately (Fig. 6A). The maximum intensity
that we played was 	70 dB reTh. Thus, we pooled together the
	60 and the 	70 dB reTh groups to make the high-intensity
group more reliable. CSI values close to the threshold are signif-
icantly larger than those at higher intensity levels (Kruskal–Wallis
test, p 
 0.001). Post hoc comparisons confirmed that all groups
were significantly different to those at least 20 dB apart (Dunn’s
method, p 
 0.05; Fig. 6A).

In an attempt to understand the correlation between the in-
tensity level and the firing rate, we performed an additional anal-
ysis where we considered that the effect of the intensity might be
due to firing rate dependence. For this reason, we took the fre-
quency pairs above 70 dB SPL and sorted them in three groups
according to the firing rate observed in the region of the FRA
where we choose the pairs: low (
1.5 spikes/stimulation), middle
(1.5 to 4 spikes/stimulation), and high (�4 spikes/stimulation)
firing rates. A Kruskal–Wallis test showed that there are no sig-
nificant differences between the groups (low firing rate, 0.200;
middle firing rate, 0.141; high firing rate, 0.098; p � 0.516). Thus,
lower CSI levels at high intensities are independent of the firing
rate.

To analyze the relationship between sound level and the la-
tency of the neuronal response, we plotted the latency differences
between the standard and the deviant stimuli (defined as the
difference between the median first spike latency to the standard
and the deviant condition for each frequency) as a function of the
different intensity groups that we previously established (Fig.
6B). The results demonstrate that there were no significant dif-
ferences between the intensity groups (Kruskal–Wallis test, p �
0.172; Table 1).

To study the time course of adaptation in the IC population,
we examined how responses changed over the 400 consecutive
trials. Figure 6C shows the average population response as a func-
tion of trial number for both standard (blue trace) and deviant
stimuli (red trace). In the three groups of intensities analyzed
(low intensities, �20 dB reTh, Fig. 6C, left; medium intensities,
30 – 40 dB reTh, middle; high intensities, �50 dB reTh, right), a
reduction of the response to the standard stimulus occurred rap-
idly (blue trace), reaching a minimum within the first 50 –100
trials, while the response to the oddball stimulus (red trace)
showed little adaptation over the course of the train of stimuli. A
power law equation ( y � a * xb 	 c) provided the best fit to the
responses to the standard across trials for all conditions. A high
proportion of the adaptation to the standard stimulus was ex-
plained by this model (low intensities, r 2 � 0.923; medium in-
tensities, r 2 � 0.952; high intensities, r 2 � 0.955; p 
 0.0001 for
all conditions). In contrast, the responses to the deviant stimuli fit
poorly to this regression model (r 2 
 0.1 in all conditions). A
close inspection of the dynamics of adaptation reveals that inten-
sity level affects inversely the rate of adaptation to the standard
stimuli, determined by b (blow � �0.627; bmed � �0.657; bhigh �
�0.577), i.e., at higher intensities the adaptation is slower [95%
confidence interval (CI95) at high intensities, �0.5982 to
�0.5569; CI95 at medium intensities, �0.6791 to �0.6346; CI95

at low intensities, �0.6554 to �0.5993]. This suggests that at high
sound levels this reduction of the firing rate is not enough to
allow an adequate discrimination between the standard and the
deviant stimuli (Fig. 6C, right), a result that reflects the lower
level of adaptation seen at these intensities. It is important to
know that the firing rate does not saturate at high intensities (the
firing rate keeps increasing gradually from 50 to 80 dB reTh in a
monotonic way) (data not shown), so it is unlikely that the firing
rate is putting a ceiling on SSA.

4

(Figure legend continued.) and examples of a nonspecifically adapting pair of frequencies are
marked as 2. Below the FRA we show the dot raster plots obtained in the adapting pair (left) and
in the nonspecifically adapting pair (right). The blue dots represent spikes evoked by the stan-
dard stimulus (90% probability), while the red dots represent those evoked by the deviant
stimulus (10% probability). Stimulus presentations are accumulated in the temporal domain in
the vertical axis. In the adapting examples, red dots are more visible because of the specific
decrease of the response to the standard stimulus. The top panels are the ones obtained after
using Sequence 1 in the oddball paradigm; middle panels are the ones obtained after Sequence
2 under the oddball paradigm. Bottom panels are the PSTHs, averaged for both frequencies
when deviant (red) or standard (blue). CSI values obtained in each pair of frequencies are
showed as insets in the PSTHs. The shaded backgrounds in the dot raster and PSTH plots indicate
the duration of the stimulus.
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SSA as a function of sound frequency
Next, to check whether the trend of high SSA toward high fre-
quencies is related to the absolute sound frequency (i.e., neurons
tuned to high frequencies show stronger SSA) or whether it is
actually integrated across the receptive field of the neurons, we
established five different groups based on the distance to the best
frequency of each neuron: very low frequencies (more than �1

octave of distance from the BF), low frequencies (between �1
and �0.2 octaves of distance from BF), medium frequencies
(�0.2 octaves of distance from BF), high frequencies (between
0.2 and 1 octaves of distance from BF), and very high frequencies
(�1 octave of distance from the BF). The 0.4 octave window
around the BF was set to integrate similar, but not strictly equal
pairs of frequencies. The 2 octave window was set to differentiate

Figure 4. Localization of the frequency pairs in the auditory receptive field sorted by CSI. A–D, Cumulative FRA generated by averaging all the FRAs in our sample. The response was normalized
to the maximum firing rate of each individual neuron before pooling the FRAs. Each white dot represents the center of a pair of frequencies tested. A, Topographic location within the FRA where the
lowest CSI levels (
0.18) were found. B, C, Topographic location for middle levels of CSI (0.18 to 0.5, B; 0.5 to 0.75, C). D, Topographic location of the pairs of frequencies that evoked the highest
CSI levels (�0.75). E, Distribution of the levels of CSI sorted by absolute intensities (decibels of SPL). F, Distribution of the levels of CSI sorted by absolute frequencies (0.5 octaves steps, in kilohertz).
G, Raw distribution of the CSI values considering absolute intensity (decibels of SPL, 10 dB steps) and frequency (in kilohertz, grouped in 0.5 octave steps). Note the different distribution of high CSI
values (warm colors) and low CSI values (cold colors). Error bars indicate SD.
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the most distant parts of the FRA. Figure 7A shows that CSI values
in the high-frequency region are significantly larger than those
values in the low-frequency one (Kruskal–Wallis test, p 
 0.001).
Post hoc comparisons confirmed differences between groups
(Dunn’s method, p 
 0.05 in all comparisons but those between
low and very low, and high and very high frequencies, which were
not significant).

Then, we plotted the latency difference based on the five
groups established previously. Figure 7B shows that the latency
difference tends to be larger for frequencies above BF (Kruskal–
Wallis test, p 
 0.001). Dunn’s post hoc analysis confirmed dif-
ferences between groups (Fig. 7B). In that case, the latency of
both standard and deviant is shorter at the best frequency (Table
2) and then increases when the frequencies are more distant to
the best frequency. Latencies are slightly larger at the high-
frequency region compared to the ones at the low frequency
region.

Last, we analyzed the time course of adaptation, establishing
three groups relative to the BF of each neuron: low frequencies
(less than �0.2 octaves from BF), best frequency (between �0.2
and 0.2 octaves), and high frequencies (�0.2 octaves from BF;
Fig. 7C). As for the intensity analysis described above, a power
law equation was the best fit of the response to the standard tone:
low frequencies, r 2 � 0.933; best frequency, r 2 � 0.952; and high
frequencies, r 2 � 0.951 (p 
 0.0001 for all conditions). Deviant
stimuli responses fit poorly to this regression model (r 2 
 0.1 in
all conditions). These results show that the frequency relative to
the BF affects the dynamics of adaptation by allowing a greater
discrimination between the standard and the deviant sounds at
high frequencies than at low frequencies. Although the speed of
adaptation to the standard stimulus is higher around the BF
(blow � �0.592; bBF � �0.659, bhigh � �0.595; CI95 around BF,
�0.6814 to �0.6370; CI95 at low frequencies, �0.6178 to
�0.5666; CI95 at high frequencies, �0.6167 to �0.5734), the
decrement of the response to the standard stimulus is larger at
high frequencies than at the lower ones, exhibiting a larger
amount of adaptation at this frequency range.

SSA in relation to the temporal pattern of the
neuronal response
An important feature of the neuronal responses is their temporal
pattern. Thus, we also studied whether the type of response could

be related to the level of SSA. We classified
the neuronal responses of our sample
in five different groups: ON, LONG-
LATENCY ON, ON-SUSTAINED, SUS-
TAINED, and ON-OFF (Rees et al., 1997)
(Fig. 8). ON responses showed a robust
response confined to the first 40 ms of the
stimulus. The LONG-LATENCY ON re-
sponse started 50 – 80 ms after the begin-
ning of the tone. ON-SUSTAINED
responses exhibited a clear ON response
followed by a SUSTAINED portion, with
a lower firing rate than the ON portion.
We defined the ON part of the ON-
SUSTAINED response as the early por-
tion with a higher firing rate (at least 50%
more than the sustained portion). SUS-
TAINED responses showed a constant re-
sponse that lasts 50 ms or more. To
further analyze whether there were differ-
ences on SSA between the ON and the

SUSTAINED portion of the SUSTAINED response, we defined
the ON portion as the first 20 ms of response. The ON-OFF
response had two different latency components in the response,
with an ON and OFF portion (after the ending of the stimulus).
In our sample, we did not find any pauser or regular-chopper
responses, which are typical of the CNIC (Rees et al., 1997).

As reported previously (Hind et al., 1963; Rees et al., 1997), IC
neurons can exhibit different patterns of response depending on
the region under examination within the FRA. However, at this
point, we should emphasize that the majority of the neurons in
our sample are from outside the CNIC (Fig. 2). In some cases
analyzing the responses of a pair of frequencies, each frequency
can present a different pattern of response (i.e., one frequency
evokes an ON response and the other one an ON-SUSTAINED
response), and also the same frequency can respond differently
when the sound is frequent or rare. Thirty-four pairs of frequen-
cies were not analyzed for this reason. Our sample includes 679
pairs of frequencies that showed an ON response, 123 that were
ON-SUSTAINED, 16 that were SUSTAINED, 21 that were ON-
OFF, and 27 that were LONG-LATENCY ON. Sometimes (21 of
87 neurons, 24.14%) increasing the sound level caused the re-
sponse of a neuron to change from an ON response to a
SUSTAINED (2 of 87), ON-OFF (4 of 87), or ON-SUSTAINED
response (15 of 87).

As expected from previous work (Pérez-González et al., 2005;
Malmierca et al., 2009), the analysis of the strength of SSA as a
function of the response type (Fig. 8A) shows that the ON re-
sponses evoke the larger CSI. The median SSA in ON types (CSI,
0.401) was significantly different from that in ON-SUSTAINED
(CSI, 0.235) and SUSTAINED (CSI, 0.059) types (Kruskal–Wal-
lis ANOVA on ranks, p 
 0.001; post hoc Dunn’s method analysis
confirmed differences with p 
 0.05). The same analysis also
showed differences between the ON type and the OFF portion of
the ON-OFF response (CSI, 0.153; p values the same for
Kruskall–Wallis and Dunn’s). Additionally, CSI values of the ON
portion in the ON-OFF response are larger than the values of the
OFF portion: these data suggest that the ON portion of the whole
neuronal response is more sensitive to SSA.

To further analyze this effect, we examined whether the ON
portion of the ON-SUSTAINED, SUSTAINED, and ON-OFF
responses better encoded the SSA (Fig. 8B). In the ON-
SUSTAINED and the ON-OFF responses, we observed a signifi-

Figure 5. Summary of the distribution of the levels of CSI in the FRA. Mean CSI values found in the neurons as a function of
intensity and frequency. A, Distribution of the CSI values sorted relatively to the BF and the threshold of the FRA. High CSI values are
concentrated at the high-frequency edge. B, Distribution of the CSI values relative to the high-frequency (HF) edge of the FRA for
each frequency pair. The values are also standardized to the threshold of each FRA. The distribution of high CSI values along a
vertical line demonstrates that there is not a bias due to high-frequency neurons.
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cant difference in the CSI levels between the ON portion and
the SUSTAINED/OFF portion (Wilcoxon signed rank test,
Z � �5.053, p � 0.001; Mann–Whitney rank sum test, t � 344,
p � 0.028, respectively), whereas in the SUSTAINED response
there were no significant differences between the levels founds in
the ON and the SUSTAINED portions (Wilcoxon signed rank
test, Z � �1.099, p � 0.296). As before, these data indicate that a
distinct ON portion of the response better encodes SSA.

To evaluate the relationship between the type of response and
the latency of the response, we considered the latency difference
(Fig. 8C): we observed that the latency difference was signifi-
cantly larger in the ON-SUSTAINED responses than in the ON
and the LONG-LATENCY ON responses (Kruskal–Wallis
ANOVA on ranks, p 
 0.001; post hoc Dunn’s method analysis,
p 
 0.05 in the two cases). This distinction was correlated with a

more prominent effect of inhibition over the ON than the
SUSTAINED region of the response (Pérez-González et al.,
2012), causing the standard response to be reduced or abolished
in the ON and LONG-LATENCY ON cases (short latency differ-
ence), but being unable to do the same in the ON-SUSTAINED
case (longer latency difference).

SSA in relation to spectral properties of the
neuronal response
Last, we studied how the type of FRA is related to the level of SSA.
For this purpose we classified the FRAs into six different groups:
multipeaked/U-shaped (n � 48), V-shaped (n � 20), mosaic
(n � 12), narrow (n � 9), closed (n � 3), and low tilt (n � 3) (Le
Beau et al., 2001; Hernández et al., 2005). There were no high-tilt
FRAs in our sample. For convenience, multipeaked and
U-shaped FRAs were pooled into a single broadly tuned group.
Since our data are biased to the cortical regions of the IC, a
majority of the neurons are multipeaked (Hernández et al.,
2005). To avoid a bias due to low CSI values at high intensities,
we computed only the highest CSI value obtained in each
neuron. The data demonstrate that the level of SSA for all the
neurons was independent of the FRA type and is similar in all
the FRAs analyzed (data not shown; Kruskal–Wallis ANOVA
on ranks, p � 0.185).

To further analyze the variation of the SSA with the shape of
the response area, we evaluated the bandwidth of each FRA re-
lated to (1) the region of the IC (Fig. 9A) and (2) the level of SSA

Figure 6. CSI analysis by intensity. A, Box plots showing the distribution of the levels of CSI sorted by intensities relative to the neuronal threshold. The asterisks indicate significant differences
(Kruskal–Wallis test, p 
 0.001; Dunn’s method, p 
 0.05). B, Box plots of the latency difference (in milliseconds) between deviants and standards, sorted by intensities relatives to threshold. In
both charts (A and B), the middle line represents the median value, the box delimits the 25th and 75th percentiles, whiskers indicate the 10th and 90th percentiles, and the dots indicate the 5th and
95th percentiles. C, Time course of adaptation sorted by intensities relative to the neuronal threshold. Blue lines show the time course of the standard tones, and red lines show the time course of
the deviant tones. Left, Mean time course of the response at low intensities (10 –20 dB reTh). Middle, Middle intensities (30 – 40 dB reTh). Right, High intensities (�50 dB reTh).

Table 1. Median values of the latency of the response (in milliseconds) per
intensity

Intensity
(dB reTh)

Median first spike latency (ms)
Latency
difference (ms)Standard Deviant

10 23.84 21.30 0.58
20 20.86 18.82 1.09
30 18.78 17.62 0.70
40 19.49 18.72 0.69
50 17.60 16.62 0.95

60 18.63 18.18 0.53
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(B). The CSI groups we used were the same as we had used before
(Fig. 4). Despite the clear trend, we did not find significant dif-
ferences between the groups in the region analysis either at 10 or
40 dB reTh (Kruskal–Wallis ANOVA on ranks, 10 dB reTh, p �
0.633; 40 dB reTh, p � 0.073). In the CSI groups we did not find
significant differences at 10 dB reTh (Kruskal–Wallis ANOVA on
ranks, p � 0.117), but we found differences at 40 dB reTh (p 

0.024; post hoc Dunn’s method confirmed differences between
CSIs 
0.18 and �0.75). To make the analysis more robust, we
pooled the cortical regions (LCIC, RCIC, and DCIC) into a single
group, and we did the same with the three adapting groups (0.18
to 0.5, 0.5 to 0.75, and �0.75). T tests confirmed that cortical
regions had broader FRA (t test, 40 dB reTh, t � 351; p � 0.014)
and that the broader the FRA is, the higher the CSI levels are (t
test, 40 dB reTh, t � 669; p � 0.005).

Discussion
Our results demonstrate that in the IC, SSA is not constant within
the neuronal receptive field, and therefore is not a characteristic
property of the neuron. In most cases, a single neuron can exhibit
CSI values as high as 1 in some regions of the FRA as well as values
close to 0 in others. Our study further demonstrates that higher levels
of SSA are biased toward low intensity levels and to the high-
frequency edge of the FRA. Furthermore, the type of temporal re-
sponse pattern observed in each particular region of the FRA is also
related to the magnitude of the CSI. Thus, the ON responses exhibit
larger SSA values than other response types. We also demonstrated
that the neurons with broader receptive fields show more SSA, and
most of them are located in the cortical regions of the IC.

Comparison with previous studies and
technical considerations
Previous studies of SSA based on the oddball paradigm consid-
ered only a single pair of frequencies or a very restricted area of
the neurons’ receptive field (Bauerle et al., 2011). In the present
study, we show a robust set of data (recording up to 24 pairs of
frequencies per neuron) that reveals that SSA sensitivity is not
homogeneous, but rather varies across the response area. Thus, a
single CSI value cannot be used to completely define the sensitiv-
ity for neuronal SSA.

Our study confirms that neurons from the nonlemniscal path-
way in IC have higher SSA sensitivity (Malmierca et al., 2009).

Figure 7. CSI analysis by frequency. A, Box plots showing the distribution of the levels of CSI sorted by frequencies relative to the neuronal best frequency (in octaves). The asterisks indicate
significant differences (Kruskal–Wallis test, p 
 0.001; Dunn’s method, p 
 0.05). B, Box plots of the latency difference (in milliseconds) sorted by frequencies relative to the neuronal BF. The
asterisks indicate significant differences with the Kruskal–Wallis test ( p 
 0.001) and Dunn’s method ( p 
 0.05). In both charts (A and B), the middle line represents the median value, the box
delimits the 25th and 75th percentiles, whiskers indicate the 10th and 90th percentiles, and the dots indicate the 5th and 95th percentiles. C, Time course of adaptation sorted by frequencies relative
to the neuronal BF. Blue lines show the time course of the standard tones, and red lines show the time course of the deviant tones. Left, Mean time course of the response at low frequencies (�0.2
octaves lower). Middle, Middle frequencies (�0.2 to 0.2 octaves). Right, High frequencies (�0.2 octaves).

Table 2. Median values of the latency of the response (in milliseconds) per
frequency

Distance to
BF (octaves)

Median first spike latency (ms)
Latency
difference (ms)Standard Deviant

Less than �1 19.82 18.79 0.09
�1 to �0.2 18.66 18.72 0.33
�0.2 to 0.2 17.96 17.23 0.68
0.2 to 1 22.22 19.49 1.58
�1 23.01 19.69 1.57
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Neurons in the LCIC, DCIC, and RCIC
have the largest and less oriented dendritic
arbors in the IC (Malmierca et al., 1993,
1995, 2011), allowing neurons to integrate
inputs over a broader frequency range. As
we show here (Fig. 9A), neurons in the IC
cortex possessed broader FRAs. Although
the data do not show correlations between
the three factors (CSI, bandwidth, and IC
subdivisions), it is likely that the higher
levels of SSA found in the cortical regions
are related to the width of the FRA. Simi-
lar relations between adaptation, anatom-
ical subdivisions, and the shape of the
FRA have been shown previously in the
external cortex of the barn owl (Gut-
freund and Knudsen, 2006), a structure
homologous to the same region in the rat
IC (Knudsen, 1983; Gutfreund and Knudsen, 2006).

Our results support previous studies that reported that SSA is
stronger for the ON responses of the neurons both in the IC
(Pérez-González et al., 2005; Malmierca et al., 2009; Lumani and
Zhang, 2010; Zhao et al., 2011) and the MGB (Antunes et al.,
2010; Antunes and Malmierca, 2011). Moreover, our data dem-
onstrate that the ON portion of other response types with a
well-defined ON region, like ON-OFF and ON-SUSTAINED re-
sponses, show larger SSA as well.

A previous study (Bauerle et al., 2011) concluded that higher
levels of SSA were associated with the outer regions of the FRA at
high intensity levels. This is partially in agreement with our re-
sults. However, we found increased levels of SSA only at the high-
frequency domain, regardless of the intensity of the stimulus.
Since we used a different animal model and anesthesia as well as
different analytical tools and studied different auditory regions, it
is difficult to make comparisons and reconcile the discrepancies
between these studies.

It remains unknown whether or not the frequency and inten-
sity biases that we demonstrate here have behavioral relevance for
rats. Because of the time required to obtain data, we focused on
stimulation parameters (frequency contrast, �f � 0.1; inter-
stimulus interval, 4 Hz) that have been proven previously to elicit
consistent and large SSA (Malmierca et al., 2009; Antunes et al.,

2010). Further experiments are needed to test whether other con-
ditions that have an effect on SSA (i.e., different frequency sepa-
rations or repetition rates) would yield comparable results.

SSA is stronger near the neuron’s threshold and on the
high-frequency side of the response area
The most important finding of this paper is that low sound in-
tensities and high frequencies evoke stronger SSA than other
frequency-level combinations. Because of the adaptation process,
the response to the standard stimulus at low intensities disap-
pears gradually after a few repetitions, resulting in a high CSI.
During this process, the latency of the response to the standard
stimulus increases compared to the latency of the responses to the
deviant (Table 1). At high intensities, the response to the standard
stimulus is more sustained, and the net result is a low CSI value,
because there is no shift in the latency to the standard stimulus
due to adaptation. It has been shown that both GABA and glycine
control the nonmonotonicity (Faingold et al., 1991), the tempo-
ral responses (Le Beau et al., 1996), and the FRA shape of many IC
neurons (Le Beau et al., 2001). Although similar mechanisms
may be involved in producing SSA, it is unlikely that inhibition
alone could explain the differences in CSI values within the in-
tensity domain, because inhibition plays a less prominent role in
controlling these factors, i.e., nonmonotonicity, at low intensities

Figure 8. CSI analysis by pattern of response. A, Box plot showing the CSI values distributed by the type of response: ON, LONG-LATENCY ON (LL-ON), ON-SUSTAINED (ON-S), SUSTAINED (S), and
ON-OFF. The asterisks indicate significant differences (Kruskal–Wallis test, p 
 0.001; Dunn’s method, p 
 0.05). B, Comparison of the CSI values evoked in the ON and SUSTAINED regions of the
ON-S and S responses, and the ON and OFF regions in the ON-OFF response. The asterisks indicate significant differences (Wilcoxon test, p 
 0.001 and Mann–Whitney test, p � 0.028, respectively).
C, Box plots representing the median latency difference (black line) sorted by the type of response. The asterisks indicate significant differences (Kruskal–Wallis test, p 
 0.001; Dunn’s method, p 

0.05). In all cases, the middle line represents the median value, the edges of the box delimit the 25th and 75th percentiles, whiskers indicate the 10th and 90th percentiles, and the dots indicate the
5th and 95th percentiles.

Figure 9. Relationship between bandwidth and CSI. Box plots showing the median value of the bandwidth (in kilohertz) of the
FRA at 10 dB above threshold (10 dB reTh; dark gray boxes) and 40 dB over threshold (40 dB reTh; light gray boxes) are shown. A,
Median values of the bandwidth as a function of anatomical IC location. B, Median values of bandwidth sorted by the maximum
level of CSI evoked in the FRA (0.18 to 0.5, CSI of 
0.5; 0.5 to 0.75, CSI of 
0.75; �0.75, CSI of 
1). In both charts, the middle line
represents the median value, the edges of the box delimit the 25th and 75th percentiles, whiskers indicate the 10th and 90th
percentiles, and the dots illustrate all outliers.
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(Sivaramakrishnan et al., 2004). Indeed, a previous study per-
formed in our laboratory demonstrated that GABAA mediated
inhibition mainly acts by controlling the gain of the responses, so
this type of inhibition plays a minor role in the generation of SSA
(Pérez-González et al., 2012). However, since GABA mainly af-
fects the fast component of adaptation (Pérez-González et al.,
2012) and the adaptation to the standard is faster at low and
middle intensities, it is apparent that multiple mechanisms could
be interacting to generate SSA.

Another important feature that we have revealed here is that
SSA is significantly stronger on the high-frequency edge of the
FRA. Moreover, latency differences at high frequencies show that
the latency of the response to the standard tone is larger than that
to the deviant stimulus (Fig. 5C), implying that there is some
specific effect on the standard tone in the high-frequency range of
responses that is not present in the low-frequency range. Since
inhibition precedes excitation in many IC neurons, (Fubara et al.,
1996) and GABA inhibition affects SSA (Pérez-González et al.,
2012), it is tempting to speculate that the high values of latency
difference at high frequencies might relate to an early inhibi-
tory input that holds back the response to the standard sound
(Table 2), which in turn would create the differences in the
SSA values between the low- and the high-frequency sounds
that we observed.

SSA mechanisms and functional significance
The frequency dependence of SSA may be explained by (1) dif-
ferent inputs to the same neuron, depending mostly on fre-
quency, and the existence of different processes of adaptation
associated with these inputs (Ulanovsky et al., 2004); (2) a lateral
inhibition network (de la Rocha et al., 2008) based on a broader
inhibitory field (Wu et al., 2008); and/or (3) the presence of dual
and differential inhibitory effects that will affect SSA differen-
tially, one acting primarily in the low-frequency range, the other
at high frequency. In bats, Williams and Fuzessery (2011) showed
that there are two non-completely overlapping inhibitory recep-
tive fields that shape FM selectivity. These two inhibitory regions
arise from different neurochemical inputs: the low-frequency re-
gion is mostly under the influence of GABA, whereas the high-
frequency region is under the influence of glycine. Whether or
not similar inhibitory mechanisms based on this differential ef-
fect of GABA and glycine can account for the frequency/intensity
dependence of SSA awaits future studies. Another potential
mechanism that could contribute to SSA in the IC is the intrinsic
membrane properties of the neuron (Abolafia et al., 2011), but
this is unlikely because one would expect individual neurons to
show a unique CSI value for each neuron, and here we have
demonstrated that SSA depends on the specific frequencies that
are tested.

SSA, at least in rat auditory cortex, seems to depend on adap-
tation with a bandwidth of about one-third of an octave (Taaseh
et al., 2011). Since our experiments were performed over a nar-
row frequency range (0.141 octaves), smaller than the suggested
width of the adaptation channels estimated by Taaseh et al.
(2011), it could be that such adaptation channels are narrower at
low intensities. That would explain the differences between low
and high intensities, because narrow channels will allow cross-
frequency adaptation at low intensities, but not at high intensi-
ties, where the channel will be wider than the frequency
separations that we used for this experiment.

SSA lies upstream of the generation of MMN (mismatch neg-
ativity) (Ulanovsky et al., 2003; Nelken and Ulanovsky, 2007;
Taaseh et al., 2011), a late component of auditory ERP (Näätänen

et al., 1978). While a previous study showed that SSA does not
depend on NMDA receptors, whereas MMN does (Farley et al.,
2010), Taaseh et al. (2011) suggested that, at least in auditory
cortex, SSA shows true deviance detection, as does MMN. It is
likely that biasing SSA toward the low-intensity domain of the
FRA, as well as to the highest spectral continuum, might help to
sharpen sound discrimination (hyperacuity), as suggested by Bit-
terman et al. (2008). Future studies should analyze whether IC
neurons are also sensitive to the violation of the regularity of the
tone sequence caused by the presentation of the deviant stimuli
(Jacobsen and Schroger, 2001, 2003), because there is growing
and convincing evidence that the human auditory brainstem is
able to encode regularities in the auditory stimulation history
that serve to detect novel events (Grimm et al., 2011; Slabu et al.,
2010, 2012).

In conclusion, our study demonstrates that SSA is not a char-
acteristic property homogeneously distributed within the neuro-
nal receptive field, and further, it suggests that at the population
level, SSA is a major property of most nonlemniscal IC neurons
well suited to the notion that subcortical neurons exhibiting SSA
may contribute upstream to the generation of MMN.
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Key points

• Neurons in the medial geniculate body (MGB), the auditory thalamus, give stronger responses
to rare sounds than to repetitive sounds, a phenomenon referred to as stimulus-specific
adaptation (SSA).

• The present study sought to elucidate how the inhibitory thalamic circuitry acting at GABAA

receptors affects the generation and/or modulation of SSA from recordings of single unit
responses from MGB. Microiontophoretic application of GABAergic agonists selectively
increased SSA indices, whereas application of antagonists selectively reduced SSA values.

• We found that GABAA-mediated inhibition did not generate the SSA response but regulated
the magnitude of SSA sensitivity in a gain control manner.

• These findings advance our understanding of the role of inhibition in coding deviance detection
in the MGB.

Abstract Stimulus-specific adaptation (SSA), which describes adaptation to repeated sounds
concurrent with the maintenance of responsiveness to uncommon ones, may be an important
neuronal mechanism for the detection of and attendance to rare stimuli or for the detection of
deviance. It is well known that GABAergic neurotransmission regulates several different response
properties in central auditory system neurons and that GABA is the major inhibitory neuro-
transmitter acting in the medial geniculate body (MGB). The mechanisms underlying SSA
are still poorly understood; therefore, the primary aim of the present study was to examine
what role, if any, MGB GABAergic circuits play in the generation and/or modulation of SSA.
Microiontophoretic activation of GABAA receptors (GABAARs) with GABA or with the selective
GABAAR agonist gaboxadol significantly increased SSA (computed with the common SSA index,
CSI) by decreasing responses to common stimuli while having a lesser effect on responses to
novel stimuli. In contrast, GABAAR blockade using gabazine resulted in a significant decrease
in SSA. In all cases, decreases in the CSI during gabazine application were accompanied by an
increase in firing rate to the stimulus paradigm. The present findings, in conjunction with those
of previous studies, suggest that GABAA-mediated inhibition does not generate the SSA response,
but can regulate the level of SSA sensitivity in a gain control manner. The existence of successive
hierarchical levels of processing through the auditory system suggests that the GABAergic circuits
act to enhance mechanisms to reduce redundant information.
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Introduction

An optimal response to new acoustic information
in the presence of continuous sounds is critical for
animal survival. In the central auditory system, many
neurons adapt to repeated sounds while maintaining
responsiveness to uncommon ones, allowing the detection
of rare sounds in an otherwise monotonous auditory
scene. This phenomenon is referred to as stimulus-specific
adaptation (SSA) (Ulanovsky et al. 2003) and has been
found from the inferior colliculus (IC) (for a review see
Ayala & Malmierca, 2013) through to the auditory cortex
(AC) (Ulanovsky et al. 2003, 2004; von der Behrens et al.
2009; Taaseh et al. 2011; Yaron et al. 2012). SSA is also pre-
sent in the anaesthetized (Anderson et al. 2009; Yu et al.
2009; Antunes et al. 2010; Antunes & Malmierca, 2011)
and the unanaesthetized (Richardson et al. 2013a) medial
geniculate body (MGB), and has been confirmed as strong
and widespread in the non-lemniscal pathway (Malmierca
et al. 2009; Antunes et al. 2010; Duque et al. 2012). The
mechanisms underlying SSA are poorly understood and
the role of the inhibitory circuitry in the generation and/or
modulation of SSA in the auditory thalamus remains to
be delineated.

The MGB in the auditory thalamus is essential for
relaying, processing, filtering and attending to acoustic
information. It consists of three main divisions: the ventral
(MGV), dorsal (MGD) and medial (MGM). The MGV
forms the lemniscal division, and the MGD and MGM are
each part of the non-lemniscal pathway, which is related to
the analysis of complex features of sound and multisensory
integration (for reviews, see Winer, 1985; Hu, 2003; Lee &
Sherman, 2011). Synaptic and extrasynaptic inhibition in
the MGB is primarily mediated by GABA acting at both
GABAA and GABAB receptors (Bartlett & Smith, 1999;
Richardson et al. 2011) because MGB lacks glycinergic
receptors (Aoki et al. 1988; Friauf et al. 1997). GABAergic
interneurons are virtually absent in the rat MGB (only
∼1%) (Winer & Larue, 1996; Bartlett & Smith, 1999),
but the MGB receives significant GABAergic projections
from the IC (Winer et al. 1996; Peruzzi et al. 1997; Ito
et al. 2011) and the thalamic reticular nucleus (TRN)
(Rouiller et al. 1985), the two major sources of GABAergic
inhibition to the MGB. The GABAergic inputs to the MGB
are known to shape the frequency response areas (FRAs)
and adjust thresholds of MGB neurons (Suga et al. 1997;
Cotillon-Williams et al. 2008).

As Pérez-González and colleagues (2012) have
described a gain control role for the inhibitory circuitry
of the IC and Yu et al. (2009) have suggested that the
GABA inputs to the MGB shape the novelty response,
the present study was designed to shed light on the
possible role of GABAA receptor (GABAAR)-mediated
inhibition in the generation of SSA in the MGB
of the rat. Microiontophoresis was used to reversibly
block or activate GABAARs during oddball paradigm
stimulation concurrent with recording from well-isolated
single units in the MGB. We recorded before, during
and after application of: (i) the GABAAR endogenous
agonist GABA; (ii) the subunit-selective GABAAR agonist
gaboxadol, and (iii) the GABAAR antagonist gabazine.
Our results demonstrate that gabazine increased firing rate
and decreased the magnitude of SSA, whereas GABA and
gaboxadol produced the opposite effect, such that firing
rates decreased and the degree of SSA increased. These
results support the suggestion that the GABAergic system
in MGB does not shape the SSA response, but exerts a
modulator gain control effect.

Methods

Ethical approval

All experimental procedures were carried out in
accordance with protocols approved by the Laboratory
Animal Care and Use Committee of Southern Illinois
University School of Medicine (SIU Animal Protocol
Number: 41-10-002).

Surgical procedures

Experiments were performed on 23 4-month-old,
male Fischer Brown Norway rats. Rats were initially
anaesthetized with I.M. injection (1.4 ml kg−1) of a
ketamine-HCl (100 mg ml−1) and xylazine (20 mg ml−1)
mixture. Anaesthesia was maintained by I.P. injections of
urethane [initially 1.3 ml kg−1, then one-third of the initial
amount in booster doses; 750 mg kg−1 (Sigma-Aldrich
Corp., St Louis, MO, USA)]. Urethane was chosen as
an anaesthetic agent because it acts on multiple neuro-
transmitter systems rather than simply potentiating the
effects of inhibitory systems, and its effects are thought to
be less problematic than those generated by barbiturates
and/or other anaesthetic agents (Hara & Harris, 2002).

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Body temperature was maintained at 37 ± 0.5◦C by a
thermostatically controlled heating blanket. Rats were
placed in a stereotaxic frame with a customized jaw bar
and head holders inside a double-walled, sound-proofed
booth (Industrial Acoustic Co., Inc., New York, NY, USA).
Prior to surgery, auditory brainstem responses (ABRs) to
click and 4 kHz, 8 kHz, 16 kHz and 32 kHz tones (3 ms
duration, 1 ms ramp, 20 s−1 rate) were obtained to check
that the animal had normal hearing. ABR recordings were
obtained as previously described (Wang et al. 2009) using
a vertex electrode and subcutaneous electrodes in the nose
(reference) and neck (ground). Signals were amplified
500,000 times and averaged over 512 trials with hearing
thresholds determined visually. None of the animals used
in these experiments showed any signs of hearing loss.

Acoustic stimuli and electrophysiological recording

A craniotomy was performed to expose the cerebral
cortex (5.5 mm from the bregma, 3.5 mm laterally from
the midline) over the centre of the MGB (Paxinos &
Watson, 2007). Extracellular single unit responses were
recorded using a six-barrel carbon fibre microelectrode
(carbon fibre: >0.8 M�, Carbostar-6; Kation Scientific,
Minneapolis, MN, USA). Custom software (ANECS,
Ken Hancock; Blue Hills Scientific, Boston, MA, USA)
controlled Tucker-Davis Technologies (TDT) System III
hardware to generate acoustic signals. The signal was
amplified (TDT, ED1), transduced (TDT, EC1) and
delivered to the right ear canal using polypropylene tubing.
The sound system was calibrated offline into a simulated
rat ear (Caspary et al. 2005) using a 1

4
inch microphone

(Bruel & Kjaer, model 4938). Pure tone intensities in dB
SPL (sound pressure level) were accurate to ±2 dB for
frequencies up to 45 kHz (Caspary et al. 2005). Search
stimuli were 70–80 dB broadband noise pips. Spike output
from the carbon fibre was led to a single channel of
a 16-channel unity-gain headstage tethered to a pre-
amplifier [2× gain, 0.15 kHz (high pass), 8 kHz (low pass);
Plexon, Inc., Dallas, TX, USA]. Spikes were digitized and
visualized using Sort Client, with action potentials/spikes
sorted using amplitude threshold and saved as timestamps
(Plexon, Inc.).

Stimulus presentation paradigms

Upon isolating a unit, the approximate frequency response
was manually determined by presenting tone-bursts
(100 ms duration, 5 ms rise/fall time, four bursts/s
rate). Automated FRAs were then obtained using
random combinations of frequencies and intensities
evoking a response resulting in a mapped neuronal
receptive field. Pure tones were presented using an auto-
mated procedure with five stimulus repetitions at each
frequency (0.5–40 kHz, in 20–30 logarithmic steps) and

intensity (10 dB SPL intensity steps, 0–80 dB SPL) point.
Higher-resolution response maps were used to more
accurately determine characteristic frequency (CF) as
needed. A collection window was set to count the spike
number during the response of the neuron (typically
100 ms in duration). Minimum thresholds and best
frequency (BF) (i.e. the frequency that evoked a response
with the lowest intensity) responses were derived from
these maps.

The oddball paradigm was used to evaluate SSA. The
calculation of the FRA allowed selection of frequency pairs
(f1 and f2) that elicited similar firing rates at the same
stimulus level. Each frequency in the pair was always pre-
sented at the same sound level. Stimuli presented in an
oddball paradigm were similar to those used to record
mismatch negativity responses in human (Näätänen,
1992) and SSA responses in animal (Ulanovsky et al. 2003,
2004; Malmierca et al. 2009; Antunes et al. 2010; Duque
et al. 2012; Ayala et al. 2013; Richardson et al. 2013a)
studies. Briefly, 300 stimuli containing both frequencies
were presented in a probabilistic manner: one frequency
(f1) presented as a standard sound (90% of occurrence)
was interspersed randomly with a second deviant (10%
of occurrence) stimulus frequency (f2). After recording
responses, the relative probabilities of the two stimuli were
reversed. Dot raster plots were used to visualize responses
obtained to the oddball paradigm by plotting individual
spikes (each dot is a spike: red dots indicate responses to the
deviant; blue dots indicate responses to the standard). Pre-
sentations were marked along the vertical axis. As the pairs
of frequencies were chosen close to the threshold (where
the FRA is narrower), the frequency contrast was set
at �f ≈ 0.10, where �f = (f2 – f1)/(f2 × f1)1/2 (Ulanovsky
et al. 2003, 2004; Malmierca et al. 2009). The average
stimulus intensity was 17.26 ± 11.97 dB above the CF
threshold. Stimuli were presented at a rate of four per
second, conditions previously shown to evoke strong SSA
in the MGB (Antunes et al. 2010; Antunes & Malmierca,
2011).

SSA responses were quantified by computing the
common SSA index (CSI) (Ulanovsky et al. 2003),
defined as CSI = [d(f1) + d(f2) – s(f1) – s(f2)] / [d(f1) +
d(f2) + s(f1) + s(f2)], where d(f ) and s(f ) are responses
to each frequency f1 or f2 according to whether they
represented a deviant (d) or standard (s) stimulus.
CSI reflects the extent to which the response to the
standard was suppressed. CSI values range between −1
and +1; more positive values reflect a greater response
to the deviant stimulus. We used the CSI value of 0.18,
defined by Antunes et al. (2010), as the threshold for
significant SSA. This cut-off value was established by
choosing the most negative CSI value in the dataset
(−0.18) to represent the most extreme variance due to
random fluctuations in spike counts. For consistency and
to enable comparisons, we applied the same value as

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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used previously. To minimize the effects of spontaneous
activity in the analysis, collection time windows were
chosen individually for each unit. The default time
window embraced the whole stimulus (0–100 ms) for
low spontaneous activity responses (e.g. Fig. 2A). For
cases of high spontaneous activity (e.g. Fig. 2B), time
windows were set based on the shape of the peristimulus
time histogram (PSTH) (i.e. by focusing or narrowing
the window around the peak of the response. SSA was
also quantified by calculating the frequency-specific index
SI(fi), where i = 1 or 2, defined for each frequency fi as
SI(fi) = [d(fi) – s(fi)] / [d(fi) + s(fi)], where d(fi) and s(fi)
are responses to frequency fi when it is deviant or standard,
respectively.

Iontophoresis and pharmacology

When the MGB was located, iontophoretic studies were
performed using the six-barrel Carbostar multibarrel
electrode. A current-balancing barrel was filled with
2 M potassium acetate and the remaining barrels
were filled with drugs purchased from Sigma-Aldrich
Corp. These included the GABAAR endogenous
agonist γ-aminobutyric acid (GABA; 500 mM, pH 4.0),
the GABAAR subunit-selective superagonist gaboxadol
(10 mM) and the GABAAR antagonist gabazine (10 mM).
Iontophoretic current was supplied by a multi-channel
iontophoresis system (BH-2 Neuro-Phore System;
Harvard Apparatus/Medical Systems, Inc., Holliston, MA,
USA) through a silver chloride wire and was generally
kept at 0–100 nA to avoid excessive diffusion (Foeller
et al. 2001). Candy et al. (1974) have shown that certain
small molecules, iontophoretically delivered agents, which
are not rapidly removed, can diffuse up to 600 μm.
In the rat MGB, this range would cover most of the
extent of the dendritic arbours (MGV: ∼280 μm; MGD:
∼400 μm; MGM: ∼750 μm) (Clerici et al. 1990; Bartlett
& Smith, 1999; Smith et al. 2006). However, we cannot
exclude the possibility that agents used here may have
affected GABA receptors located at more distant dendritic
branches. Recording and iontophoretic procedures were
similar to those described elsewhere (e.g. Backoff et al.
1999; Caspary et al. 2002; Pérez-González et al. 2012). A
full return to baseline/pre-drug level was set, regardless of
the time, before additional agents were applied. For each
unit studied, the dose and time of application were varied
(0–100 nA, 1–20 min) with the aim of achieving a steady
state level of drug action.

Data analysis

Statistical tests were performed using the multiple
non-parametric Friedman signed rank test to test
differences between distribution medians of varying

conditions. Post hoc comparisons were performed
following Dunn’s method. Statistical tests were considered
significant when P < 0.05. The S.D. for the CSI and the
firing rate of each individual neuron were calculated
using bootstrapping (1000 repetitions). The limits of 95%
confidence intervals (CIs) were calculated using the 2.5
and 97.5 percentiles of the CSI bootstrap distribution
obtained for each neuron; the 5% confidence level was
used to determine statistically significant differences in the
CSI and firing rate values between conditions. Analyses
and figures were executed using Sigmaplot Version 11
(Systat Software, Inc., Chicago, IL, USA) and Matlab
(MathWorks, Inc., Natick, MA, USA).

Histological verification

At the end of each experiment, the animal was perfused
with buffered saline followed by 4% paraformaldehyde
and decapitated. The brain was removed and placed in
20% sucrose overnight. The brain was blocked and 50 μm
coronal sections were stained with fast thionin. The depth
for recording each unit was carefully recorded. As the
track left by the Carbostar electrode was readily visible,
the need for lesion or dye injection was obviated. Tracks
were localized using a rat brain atlas (Paxinos & Watson,
2007) and previous MGB studies (Bartlett & Smith, 1999;
Antunes & Malmierca, 2011).

Results

To study the impact of GABAergic inhibition on SSA
sensitivity, we recorded responses to an oddball stimulus
paradigm from 52 well-isolated single units throughout
the MGB, before, during and after application of gabazine,
GABA and gaboxadol. Generally, microiontophoretic
application of gabazine increased firing rates and reduced
SSA levels, whereas the application of GABA and
gaboxadol produced an opposite effect. The detailed
effects that GABAAR-related agents produce on firing rate,
SSA indices, dynamics of adaptation and latency were
evaluated separately.

SSA in the MGB

As expected from previous reports (Antunes et al. 2010), a
majority of neurons sampled showed significant SSA [42
of 52 neurons (81%), CSI > 0.18] (i.e. they responded pre-
ferentially to a deviant tone compared with the commonly
occurring standard). Across the population, the full range
of CSI values (−0.001 to 0.897; mean ± S.D. 0.443 ± 0.249;
n = 52) was observed (Fig. 1A). To test the possibility
of a differential drug effect over the two frequencies
analysed, we checked whether there was any preference
for the deviant stimulus according to whether the deviant
was presented as f1 or f2. The analysis of SI values
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confirmed that the majority of values were positive and
located in the upper right quadrant (n = 104; mean ± S.D.
0.403 ± 0.325; one-sample t test, P ≤ 0.001) (Fig. 1B). The
Mann–Whitney rank sum test confirmed there were no
differences in the population between SI1 and SI2 values
(P = 0.241).

Recording sites were localized from histological sections
according to the track marks through the MGB; when
possible, a neuron was assigned a position based on known
depth in one of the three main MGB divisions. Nine
tracks in eight rats were well localized. In five rats, in
which 11 units were recorded, tracks were assigned to
the MGD and MGM. All neurons from the MGD and

Figure 1. Population data from medial geniculate body (MGB)
recordings (n = 52) under control conditions
A, histogram of common stimulus-specific adaptation index (CSI)
values for the MGB population. ∗, median CSI value. B, scatterplot of
frequency-specific index (SI1 vs. SI2) values for the MGB population.
Data lie generally above the diagonal of equal values (black dotted
line). Filled dots show neurons with a CSI value higher than the
cut-off (CSI > 0.18); empty dots show neurons with a CSI lower than
the cut-off (CSI < 0.18).

MGM showed significant SSA. In the other three rats,
tracks were localized in the MGD and MGV and yielded
six units. Of these, three units exhibited significant SSA
and the remaining three lacked SSA. Thus, only 17 of the
52 (33%) recorded units could be accurately localized, but
these data support previous findings that SSA is biased
towards the non-lemniscal regions of the MGB, where
SSA is strong.

Effects of gabazine and GABA on firing rate and SSA

The application of gabazine and GABA resulted in
profound changes in firing rate and SSA in most MGB
neurons. Figure 2 illustrates two examples from individual
neurons with corresponding FRAs. The two black dots in
the FRAs indicate the frequencies used for the oddball
paradigm. Dot raster plots were obtained for four
conditions: (i) control; (ii) during gabazine application;
(iii) during GABA application, and (iv) during recovery
following drug application. The corresponding mean
PSTHs for both oddball paradigms are shown below the
dot raster plots. The PSTHs of adapting frequency pairs
exhibit greater responses to deviant sounds (red line),
whereas non-adapting pairs have similar responses to both
conditions (red and blue lines at the same level). Figure 2A
shows a neuron that lacks SSA (CSIcontrol: 0.159). Gabazine
application produced a 96% increase in firing rate
(Fig. 2A, PSTH second column) while slightly lowering
the CSI (CSIgabazine: 0.123). GABA application produced
the opposite effect, decreasing firing rate (42% decrease
in the control response) (Fig. 2A, PSTH third column)
while significantly increasing the CSI (CSIGABA: 0.412).
Another neuron exhibited a high level of SSA (CSIcontrol:
0.528), with the application of gabazine resulting in
an 80% increase in firing rate (Fig. 2B, PSTH second
column) while significantly decreasing CSI (CSIgabazine:
0.375). Conversely, GABA reduced the discharge rate by
65% (Fig. 2B, PSTH third column) while significantly
increasing the CSI (CSIGABA: 0.815). For both neurons
cited in Fig. 2, GABA application appeared to suppress the
standard relative to the deviant (see also Fig. 3B).

Fifty-two neurons recorded from MGB were evaluated
for drug responses to establish whether: (i) gabazine
application generated a significant increase in firing rate
(n = 40); (ii) GABA application significantly reduced
firing rate (n = 42), or (iii) both. Although the increase or
decrease in the firing rate response between f1 and f2 was
correlated (Spearman’s rank order correlation, P < 0.05
for both standard and deviant responses), the drug effects
on both frequencies were analysed separately because
a change in firing rate response for a frequency does
not necessarily imply the change in the other frequency
(52 neurons, 104 frequencies). Conventional responses
to the application of GABAAR agonists or antagonists
indicated that responses to the standard tended to be
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more affected by GABAAR manipulation than responses
to the deviant. This was the case for gabazine (response
increase, standard: 87.73%; deviant: 41.66%; paired t test,
Z = −3.036, P = 0.002), and was especially evident in

the responses to GABA application in Fig. 3B (response
decrease, standard: 72.09%; deviant: 54.10%; paired t test,
Z = −4.085, P < 0.001). The differential effect of GABA
application on the standard, relative to the deviant, is

Figure 2. Examples of single unit responses in the medial geniculate body (MGB) before, during and
after the application of gabazine and GABA
A, frequency response area (FRA) of a neuron in the MGB that did not show a high common stimulus-specific
adaptation (SSA) index (CSI) value in the control condition. B, FRA of a neuron in the MGB that showed a high CSI
value in the control condition. Black dots over the FRAs represent the pair of frequencies selected for analysing SSA.
Below the FRAs, dot raster plots refer to each of the four conditions [control, gabazine (GBZ), GABA and recovery]
in the first row (f1/f2 as standard/deviant) and the reverse condition (f2/f1 as standard/deviant) in the second row.
Stimulus presentations are accumulated in the temporal domain in the vertical axis. Blue dots represent spikes
evoked by the standard stimulus (90% probability); red dots represent those evoked by the deviant stimulus (10%
probability). The time between trials (250 ms; x-axis) corresponds to the stimulus repetition rate (4 Hz; with 75 ms
stimulus duration). The shadow backgrounds in the dot rasters indicate the duration of the stimulus. Below the
dot rasters (third row), peristimulus time histograms (PSTHs) show averaged responses for both frequencies when
deviant (red) or standard (blue). The dashed horizontal line in the PSTH shows the deviant peak control response.
Lower graphs show the evolution of CSI values during the application of the different drugs. In both examples,
neurons in the recovery condition returned to the CSI level of the control/pre-drug condition.
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shown in Fig. 3B by the cluster of blue dots (standard)
below the diagonal line, relative to the number of red
dots (deviant) below the diagonal line. In a few cases
(n = 9) we noted paradoxical effects that depended on
the frequency used for stimulation (f1 or f2) or the nature
of stimuli (standard or deviant), whereby gabazine slightly
decreased the response to one frequency (five dots under
the diagonal dashed line, Fig. 3A) or GABA increased it
(four dots over the diagonal dashed line, Fig. 3B). These
paradoxical effects may occur through small changes in
the membrane potential that drive the MGB neuron into
burst or tonic mode. In order to evaluate the effects of
gabazine and GABA, we used the bootstrap method over
1000 randomizations to estimate the 95% CI of the firing
rate response for each neuron in the control condition
(data not shown). Then, the firing rates obtained for the
gabazine, GABA and recovery conditions for each neuron
were compared with the 95% CI firing rate generated for
the control condition. We accepted: (i) the finding for
gabazine if it presented a firing rate higher than the 95%
CI in the control condition; (ii) the finding for GABA if it
showed a firing rate lower than the 95% CI in the control
condition, and (iii) the finding for the recovery condition
if the firing rate response in that condition lay within
the 95% CI of the control condition (Fig. 3C). (Note
that charts A–C in Fig. 3 are logarithmic. We used this
rather than a linear representation to stretch the data that
would have been clustered near the origin.) Therefore,
at the population level, the firing rates evoked by both
the standard and the deviant stimuli were significantly
higher when gabazine was applied (Fig. 3D, n = 80) and
lower when GABA was applied (Fig. 3D, n = 84). Findings
in the control condition (n = 104) were also compared
with those in the recovery condition (n = 88). A summary
of firing rates obtained in each condition is shown in
Table 1. Friedman’s repeated-measures ANOVA on ranks
found that median values for the standard stimuli differed

Figure 3. Effects of gabazine and GABA on firing rate in the
medial geniculate body (MGB) population
A–C, scatterplots of the responses (spikes/stimulus) of all neurons to
the deviant (red dots) and standard (blue dots) stimuli in the control
vs. gabazine (A), GABA (B) and recovery (C) conditions. Dots
represent one of each frequency analysed separately in every pair of
stimuli recorded with the oddball paradigm (52 neurons; 104
frequencies). A, gabazine differentially increases the response rate to
common/standard stimuli and has a smaller effect on the response
rate to novel stimuli. B, GABA decreases the response in almost all
neurons, having a greater effect on responses to common than to
novel stimuli. C, the recovery condition shows a return to the
control/pre-drug condition. D, distribution of the mean response
magnitude changes across the population of neurons for the control,
gabazine (GBZ), GABA and recovery conditions, for deviant (red) and
standard (blue) stimuli. ∗, significant differences (Friedman’s test,
P < 0.01).
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Table 1. Firing rates of the standard and deviant stimuli at
different conditions (spikes/stimulus)

Standard stimuli Deviant stimuli

Condition (drug) Median 25% 75% Median 25% 75%

Control (n = 104) 0.32 0.12 0.63 0.88 0.43 1.46
Gabazine (n = 80) 0.50 0.25 1.05 1.13 0.63 1.61
GABA (n = 84) 0.08 0.03 0.16 0.40 0.18 0.69
Recovery (n = 88) 0.28 0.10 0.57 0.80 0.37 1.17

significantly (P < 0.001) between the groups. Dunn’s
method was used to compare all the conditions relative
to the control group and indicated differences in the
control versus gabazine conditions and control versus
GABA conditions (P < 0.05; Q = 5.863 and Q = 4.665,
respectively), but not in the control versus recovery
conditions (P > 0.05; Q = 0.784). The same differences
were observed in median values for the deviant stimuli
(Friedman’s test, P < 0.001) and confirmed with Dunn’s
method for control versus gabazine and control versus
GABA comparisons (P < 0.05; Q = 4.087 and Q = 5.367,
respectively), but not for the control versus recovery
comparison (P > 0.05; Q = 0.284). The Wilcoxon signed
rank test was used to compare the median firing rate for
the standard and deviant conditions. In all conditions
(control, gabazine, GABA and recovery) the firing rate
for the deviant stimulus was significantly larger than
the firing rate for the standard stimulus (P < 0.001 in
all cases; Z = 8.122, Z = 7.311, Z = 7.355 and Z = 7.637,
respectively).

The CSI value was calculated for each neuron in the
control (n = 52) and recovery (n = 44) conditions, and
for at least one of the two experimental conditions:
(i) after gabazine application (n = 40), and/or (ii)
after GABA application (n = 42). As all neurons were
affected by the drug application, data were pooled
regardless of CSI values. At a population level, Friedman’s
repeated-measures ANOVA on ranks showed significant
differences between the control and both drug groups
(Fig. 4A) (CSI median, control: 0.431; gabazine: 0.345;
GABA: 0.613; recovery: 0.457; P < 0.001), which were
confirmed using Dunn’s method in the control versus
gabazine and control versus GABA comparisons (P < 0.05;
Q = 2.41 and Q = 2.52, respectively). Dunn’s method did
not show differences between the control and recovery
conditions (Fig. 4B) (P > 0.05, Q = 0.11). To determine
whether these significant differences between CSI values
correlated with individual changes in the presence of
the drugs, we used the bootstrap method over 1000
randomizations to estimate the 95% CI of the CSI in
the control condition for each neuron [Fig. 4B (black
whiskers indicate the CI)]. The analysis demonstrated
that, regardless of the level of SSA, 79% of neurons

analysed (n = 41/52) showed significant changes in SSA
sensitivity (i.e. gabazine generally decreased and GABA
increased the degree of SSA). The application of gabazine
decreased CSI levels (Fig. 4B, green triangles) in 18 of 40
neurons (45%), increased CSI levels in two cases (5%),
and did not change them in 20 of 40 neurons (50%).
Similarly, the application of GABA increased the levels
of CSI in 24 of 42 neurons (57%) (Fig. 4B, red circles),
produced a significant decrease in five cases (12%), and
caused no change in 13 cases (31%). There is a direct
correlation between the change in CSI and firing rate such
that the larger the change in firing rate, the larger the
change in CSI, independently of the drug used (Pearson’s
correlation, Q = −0.548, P < 0.05). All but 11 neurons
completely recovered to control values (Fig. 4B, cyan
triangles). Across the population, GABA effects were more
noticeable when the neuron initially showed low CSI levels,
whereas gabazine decreased CSI mainly for neurons with
larger CSI values.

Comparison of GABA and gaboxadol effects on SSA

Seven of the 52 neurons were evaluated using GABA and
gaboxadol applications, making it possible to compare
the effects of each (GABA activates both GABAA and
GABAB receptors, whereas gaboxadol is a GABAA selective
superagonist). Repeated-measures ANOVA indicated that
mean values for both the standard and deviant stimuli
differed significantly (P < 0.001) between the groups
(data not shown). The Holm–Sidak method was used
to make comparisons among all the conditions and
established differences in the control versus GABA and
control versus gaboxadol conditions for both the standard
(P < 0.05; t = 8.105 and t = 6.576, respectively) and
deviant (P < 0.05; t = 5.086 and t = 4.222, respectively)
stimuli, but not in the GABA versus gaboxadol
conditions (P > 0.05 for both standard and deviant
stimuli). Repeated-measures ANOVA showed differences
in CSI between the control group and both drug
groups (mean ± S.D. CSI, control: 0.41 ± 0.15; GABA:
0.59 ± 0.21; gaboxadol: 0.57 ± 0.08; recovery: 0.37 ± 0.14;
P < 0.001). Holm–Sidak post hoc analysis confirmed these
differences but did not show any differences between
the control and recovery conditions (P > 0.05) or the
GABA and gaboxadol conditions (P > 0.05). The lack
of differential gaboxadol action suggests that GABA’s
mechanism for enhancing SSA may not be mediated only
by specific extrasynaptic GABAA or GABAB receptors.

Effects of gabazine and GABA on the time course of
adaptation

The effects of applications of gabazine and GABA on
the temporal dynamics of adaptation during the oddball
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sequence were evaluated before, during and after drug
application (Fig. 5). The time course of adaptation in all
four conditions (control, gabazine, GABA and recovery)
was fitted by a double exponential function defined as
f (t) = A stst + A r · e−t/τ(r) + A s · e−t/τ(s) (r2 = 0.89–0.95).
This function contains a rapid (r) and a slow (s)
component, after which the response reaches a steady
state (Astst ). Because of its subtle adaptation, deviant tones
do not fit this function (Antunes et al. 2010; Antunes
& Malmierca, 2011). We analysed only the responses of
neurons that showed significant SSA (CSI > 0.18) [control
(n = 42), gabazine (n = 32), GABA (n = 32) and recovery
(n = 35)] because the use of all the neurons in the
population would have diluted these dynamics.

The rapid component did not show differences in the
speed/time course of decay [τ(r)] in the control versus
gabazine conditions, but did reveal significant differences
between the control and GABA conditions (Table 2).
Moreover, there were significant differences in the
magnitude of the decay of the rapid component (Ar)
between the control and GABA conditions (Table 2,
second column). For the slow component, the speed of
decay [τ(s)] in the control condition differed significantly
with that in the GABA condition, but not with that
in the gabazine condition (Table 2, third column).
Additionally, the magnitude of decay of the slow
component (As) was significantly lower in both the

GABA and gabazine conditions (Table 2, fourth column).
Interestingly, in the GABA condition, As was more
pronounced (but the decrease smaller) than in the control
condition. This correlated with the larger decrease in the
response observed within the rapid component. Finally,
the magnitude of the steady-state component (Astst )
confirmed that the response was greatly reduced in the

Figure 5. Time course of adaptation in medial geniculate body
(MGB) neurons before, during and after the application of
gabazine and GABA
Averaged population firing rate responses (spikes/stimulus) to the
standard stimulus of neurons with adaptation [common specific
index (CSI) > 0.18] in the control (dark blue), gabazine (green),
GABA (red) and recovery (light blue) conditions.

Figure 4. Stimulus-specific adaptation (SSA) quantification in medial geniculate body (MGB) neurons
before, during and after the application of gabazine and GABA
A, distribution of common stimulus-specific adaptation index (CSI) values in the control (dark blue), gabazine (GBZ;
green), GABA (red) and recovery (light blue) conditions for the population of neurons that responded properly
considering our criteria (control: n = 52; gabazine: n = 40; GABA: n = 42; recovery: n = 44). Continuous lines
across the plots represent median values. ∗, significant differences (between drug conditions: Friedman’s test,
P < 0.01; between standard and deviant stimuli: Wilcoxon’s test, P < 0.01). B, CSI values for individual neurons
in the control (dark blue circles), gabazine (green triangles), GABA (red circles) and recovery (light blue triangles)
conditions. Error bars indicate the 95% confidence intervals of the control responses of each neuron calculated
using bootstrapping. All dots outside error bars represent CSI values that are statistically different from those of
the control condition.
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Table 2. Double exponential coefficients in different conditions. Superimposition with the 95% confidence interval in the control
condition indicates there are no significant differences between the groups

Fast component Slow component

Condition (r2) Speed:τ(r) (ms) Decay:Ar Speed:τ(s) (ms) Decay:As Steady-state value (Astst)

Control (0.95) 0.96 (0.67 − 1.25) 3.02 (2.00 − 4.04) 22.38 (20.79 − 23.96) 1.37 (1.29 − 1.44) 0.28 (0.27 − 0.29)
Gabazine (0.89) 1.13 (0.71 − 1.55) 2.85 (1.80 − 3.89) 23.83 (20.98 − 26.69) 1.16∗ (1.05 − 1.27) 0.48∗ (0.47 − 0.49)
GABA (0.95) 0.54∗ (0.42 − 0.66) 8.14∗ (4.89 − 11.40) 15.69∗ (14.42 − 16.96) 0.83∗ (0.78 − 0.88) 0.06∗ (0.06 − 0.07)

Values are means (95% confidence intervals). ∗, statistical differences.

GABA condition in comparison with the control condition
(in some cases GABA application completely suppressed
responses to the standard tone) (Table 2, last column).

Effects of gabazine and GABA on the latency of MGB
neurons

The impacts of gabazine and GABA application on first
spike latency (FSL) in response to the standard and
deviant stimuli were evaluated (control: 104; gabazine:
84; GABA: 80; recovery: 88). Both gabazine and GABA
had a greater effect on the temporal response to deviant
stimuli relative to the standard (Fig. 6; Table 3). However,
no significant differences emerged between the control and
drug conditions for either the standard or deviant stimuli
(Friedman’s test, P = 0.169 and P = 0.083, respectively).
Generally, gabazine resulted in a small non-significant
reduction in FSL in response to deviant stimuli (Fig. 6A,
red dots; Table 3, fourth column), whereas GABA
application increased FSL (Fig. 6B, red dots; Table 3,
fourth column). Both gabazine and GABA minimally
affected responses to the standard stimuli. Latency to
deviant stimuli was significantly shorter than to standard
stimuli in all but the GABA condition, in which response
latencies to both stimuli were equalized (Wilcoxon signed
rank test: control: Z = −5.197, P < 0.001; gabazine:
Z = −6.058, P < 0.001; GABA: Z = −1.936, P = 0.053;
recovery: Z = −3.72, P < 0.001).

Discussion

The present study finds that activation of GABAA receptors
with GABA or the selective agonist gaboxadol results in a
significant increase in the level of SSA by differentially
decreasing the response rate to common stimuli and
having a lesser effect on the response rate to novel stimuli.
Conversely, gabazine application results in a significant
decrease in SSA but increases the firing rate. In general,
the increase in firing rate was larger for the standard
than for the deviant stimulus. The similar effects of
GABA and the GABAAR superagonist gaboxadol support
the suggestion that GABA inhibition enhances SSA by

acting preferentially at synaptic and to a lesser extent at
extrasynaptic GABAA and GABAB receptors.

Previously, SSA has been studied using the oddball
paradigm and the CSI in the MGB (Yu et al. 2009;
Antunes et al. 2010; Antunes & Malmierca, 2011).
For consistency, the present stimulus set was chosen
to facilitate comparisons with the findings of previous
studies. The present work selected pairs of frequencies
close to threshold and near the high-frequency edge in
order to evoke the highest possible degree of SSA (Duque
et al. 2012). The levels of CSI found for the neurons in our
dataset (n = 52, mean ± S.E.M. CSI: 0.443 ± 0.035; median
CSI: 0.431) were similar to those in other recent MGB
studies using comparable conditions (frequency contrast:
�f ∼ 0.1; repetition rate: 4 Hz; deviant appearance: 10%).
Yu et al. (2009) demonstrated weaker SSA in MGB (n = 41,
mean ± S.E.M. CSI: 0.154 ± 0.020), but used a slower
repetition rate (1 Hz) and higher intensity (70 dB SPL),
which generally evokes lower SSA levels (Duque et al.
2012). Antunes and colleagues (2010), using conditions
identical to those in the present study, found degrees of
SSA that were larger in the non-lemniscal regions of the
MGB (median CSI, MGV: 0.08; MGD: 0.37; MGM: 0.76).

In the present study, the increase in SSA level produced
by the activation of GABAARs reflected a larger impact
than that of gabazine GABAAR blockade. Even considering
that these larger changes of the CSI in response to GABA,
in comparison with gabazine, may be an outcome of
the equation for CSI (as the spike rates to the standards
approach 0 in the presence of GABA, CSI will approach 1),
the observed differences are large enough to indicate
that additional factors are necessary to explain this
finding. These may include: (i) the presence of both
synaptic and extrasynaptic GABAAR constructs; (ii) a
near-threshold basal GABAAR activation state, and/or
(iii) an additional effect of GABAB receptors (Luo et al.
2011). Findings from the present and previous studies
suggest that GABA’s ability to modulate SSA is likely to
be mediated by GABAA rather than GABAB receptors.
Gaboxadol effects no action and does not bind to GABAB

receptors (Bowery et al. 1983). As the present results
show similar effects in SSA gain after gaboxadol and
GABA application, it is unlikely that these actions are
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Table 3. Latencies of standard and deviant stimuli at different
conditions (first spike latency)

Standard stimuli Deviant stimuli

Condition (drug) Median 25% 75% Median 25% 75%

Control (n = 104) 47.3 26.0 65.8 35.8 20.9 51.9
Gabazine (n = 80) 49.5 29.0 65.8 29.5 21.0 51.1
GABA (n = 84) 43.5 25.6 65.0 40.0 21.5 62.8
Recovery (n = 88) 44.8 28.0 62.8 38.3 19.5 59.0

mediated through GABABRs. In addition, the fact that
gabazine does not block GABAB receptors, and exerts a
qualitatively smaller reduction in SSA than does GABA,
reinforces the suggestion that GABAB receptors are not
prominently involved in SSA coding. A previous study
demonstrated that GABAB receptor blockade significantly
reduced response habituation in the superior colliculus
(Binns & Salt, 1997). However, at least in rat, highest CSI
values were found in MGM (Antunes et al. 2010), an area
thought to lack GABAB receptors (Smith et al. 2007). With
reference to (i) and (ii) above, when would an agonist
be more effective than an antagonist? Relatively low end-
ogenous levels of GABA will only activate extrasynaptic
GABAARs and, although not fully established, gabazine
may require higher iontophoretic concentrations to block
extrasynaptic GABAARs relative to synaptic GABAARs
(Farrant & Nusser, 2005; Glykys & Mody, 2007). Thus, an
agonist such as GABA or the selective agonist gaboxadol,
acting at both synaptic and extrasynaptic GABAARs, may
be more efficacious than the less selective antagonist
gabazine.

The GABAergic projection of the TRN has been
proposed as important in shaping novelty detection
and/or controlling gain in MGB (Yu et al. 2009).
Cortical deactivation did not significantly impact SSA
in MGB (Antunes & Malmierca, 2011), and although
this manipulation does not alter the MGB–TRN–MGB
inhibitory loop, it may presumably reduce the impact
of the AC–TRN GABAergic input to the MGB pathway.

Figure 6. Effects of gabazine and GABA on latency responses
in medial geniculate body (MGB) neurons
A–C, scatterplots showing the mean first spike latencies (latency, in
milliseconds) of neurons to deviant (red dots) and standard (blue
dots) stimuli in the control vs. gabazine (A), GABA (B) and recovery
(C) conditions. Dots represent one of each frequency analysed
separately in each pair of stimuli recorded with the oddball paradigm
(52 neurons; 104 frequencies). D, distribution of latency values in
response to standard (blue plots) and deviant (red plots) stimuli in
the control, gabazine (GBZ), GABA and recovery conditions.
∗, significant differences (Wilcoxon’s test, P < 0.01) for all groups
except GABA, in which latency responses to both standard and
deviant stimuli were equalized.
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As only 1% of neurons within MGB are thought to
be GABAergic (Winer & Larue, 1996), it is likely that
the primary inhibitory projection impacting SSA derives
from the ascending GABAergic projections from the IC
(Winer et al. 1996) and the MGB–TRN–MGB circuits
(Rouiller et al. 1985; Cotillon-Williams et al. 2008; Yu
et al. 2009). The present data, in conjunction with those
from the cortical deactivation study cited earlier (Antunes
& Malmierca, 2011), support the contention that GABAAR
manipulation using GABA- or gaboxadol-activated
GABAARs may mimic ascending inhibition from IC
and/or the MGB–TRN–MGB inhibitory loop.

GABAAR blockade increased MGB neurons’ firing rate
under all conditions while decreasing CSI levels, but the
temporal dynamics of adaptation were minimally affected;
i.e. the adaptation function (Fig. 5) was shifted because of
a general increase in firing rate. With respect to the relative
impact of synaptic versus extrasynaptic GABAARs on SSA,
exogenous application of GABA or gaboxadol similarly
decreased the firing rate under all conditions, increasing
the CSI levels of the MGB. If the extrasynaptic selective
GABAAR superagonist gaboxadol had shown a greater
effect than GABA, this might have been speculated to be a
primarily extrasynaptic GABAAR effect (Richardson et al.
2013b).

Alteration of the SSA response by GABAAR
manipulation was not frequency-specific: similar effects
on the SSA response were apparent over a range of
frequencies. Previous studies have found that GABAergic
inputs impact frequency tuning through GABAA receptors
(Suga et al. 1997) and alter neuronal thresholds
(Cotillon-Williams et al. 2008) of MGB neurons. In the
IC, Pérez-González et al. (2012) observed that GABAAR
manipulation altered CSI levels in a manner similar to
the present MGB findings. In the present study, the
GABAergic system did not generate or create SSA de novo
in the MGB, but analogously to the effects observed in
the IC (Ingham & McAlpine, 2005; Pérez-González et al.
2012; Pérez-González & Malmierca, 2012) and the visual
cortex (Katzner et al. 2011), GABAergic inputs serve a
significant gain control function (Robinson & McAlpine,
2009; Isaacson & Scanziani, 2011).

We found no differences in response latencies between
the control condition and the gabazine and GABA
conditions. Although somewhat unexpected, these results
are in agreement with those of previous studies
demonstrating that GABA inhibition has little effect on
response latencies in the IC (LeBeau et al. 1996; Fuzessery
et al. 2003; Sivaramakrishnan et al. 2004) and AC (Kaur
et al. 2004). To the best of our knowledge, no latency
analysis in the MGB in the presence of GABA receptor
agonists or blockers has been performed previously. Inter-
estingly, the changes in latency in those responses with
control latencies lower than 30 ms appear to be much
smaller than those at longer latencies. Although a detailed

latency analysis of the >30 ms group does not show
differences between the control and the drug groups
(Friedman’s test, standard stimulus: P = 0.264; deviant
stimulus: P = 0.035), it is tempting to speculate about a
differential GABAergic effect concerning the region of the
MGB: whereas MGV has short latencies, those of the MGD
and MGM are longer (Calford 1983; Calford & Aitkin
1983; Anderson et al. 2006; Anderson & Linden, 2011). As
MGB neurons maintained a shorter latency to the deviant
than to the standard stimulus (Antunes et al. 2010), even
during cortical deactivation (Antunes & Malmierca, 2011),
it is safe to conclude that the latency phenomenon is not of
direct cortical origin nor directly related to GABA circuits.
Moreover, as glycine is absent from the MGB (Aoki et al.
1988; Friauf et al. 1997), differential excitatory neuronal
integration is the more likely candidate for regulating the
latency of the response.

Taken together, these results suggest that in the MGB,
GABAA-mediated inhibition regulates SSA sensitivity in
a gain control manner (i.e. by decreasing excitation to
common stimuli while having a smaller effect on the
response rate to novel stimuli and thus sharpening the
contrast between them), thus demonstrating an ‘iceberg
effect’ (Rose & Blakemore, 1974; Isaacson & Scanziani,
2011). This inhibitory effect tends to maximize the deviant
to standard ratio. Assuming that excitatory inputs remain
constant under the drug injections, these results may
be explained by small changes that either hyperpolarize
the membrane potential or increase the membrane
conductance, both of which are enabled by the activation
of GABAARs. As tonic hyperpolarization of the resting
membrane potential is mediated through extrasynaptic
GABAA receptors (Richardson et al. 2011, 2013b) and we
have shown that gaboxadol (the extrasynaptic selective
GABAAR superagonist) does not exert a larger effect
than GABA, tonic hyperpolarization alone is not likely to
explain the iceberg effect. By contrast, as GABA may also
produce a non-linear effect through shunting inhibition
(i.e. by altering membrane conductance) (Borg-Graham
et al. 1998; Vida et al. 2006; Mann & Paulsen, 2007), this
shunting inhibition may account for the iceberg effect.
Similar results have been shown in the IC (Pérez-González
et al. 2012; Pérez-González & Malmierca, 2012). The
existence of consecutive gain controls over SSA in diverse
auditory nuclei (IC and MGB, so far) suggests the existence
of successive hierarchical levels of processing through
the auditory system that would allow the reduction of
redundant information. If SSA is generated in the IC
(Malmierca et al. 2009; Ayala & Malmierca, 2013; Ayala
et al. 2013), the first important GABAergic modulation
will occur at this lowest level and will require additional
adjustments as SSA is propagated up the auditory pathway
through the MGB. The rat MGB contains one-fifth of the
number of neurons present in the IC (Kulesza et al. 2002).
Therefore, the role of MGB neurons may be to combine
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and integrate the adaptive properties over more inputs
received than do individual IC neurons. Similar ideas have
been proposed (Anderson & Malmierca, 2013) for the role
of the corticofugal modulation of SSA.
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Abstract Rapid behavioral responses to unexpected

events in the acoustic environment are critical for survival.

Stimulus-specific adaptation (SSA) is the process whereby

some auditory neurons respond better to rare stimuli than to

repetitive stimuli. Most experiments on SSA have been

performed under anesthesia, and it is unknown if SSA

sensitivity is altered by the anesthetic agent. Only a direct

comparison can answer this question. Here, we recorded

extracellular single units in the inferior colliculus of awake

and anesthetized mice under an oddball paradigm that

elicits SSA. Our results demonstrate that SSA is similar,

but not identical, in the awake and anesthetized prepara-

tions. The differences are mostly due to the higher spon-

taneous activity observed in the awake animals, which also

revealed a high incidence of inhibitory receptive fields. We

conclude that SSA is not an artifact of anesthesia and that

spontaneous activity modulates neuronal SSA differen-

tially, depending on the state of arousal. Our results suggest

that SSA may be especially important when nervous sys-

tem activity is suppressed during sleep-like states. This

may be a useful survival mechanism that allows the

organism to respond to danger when sleeping.

Keywords Auditory � SSA � Anesthesia � Awake animal �
Inferior colliculus � Change detection � Spontaneous

activity

Introduction

The inferior colliculus (IC) is important for integrating all

information arising from the auditory brainstem (Malmi-

erca 2003; Malmierca and Ryugo 2011), but it may also

play a previously unknown role in gating thalamic activity,

and hence controlling cortical activation (Winer et al.

1996; Peruzzi et al. 1997; Ito et al. 2009). In recent years,

significant progress has been made in the understanding of

auditory subcortical plasticity (Chandrasekaran and Kraus

2010), and evidence against a strict and simple input–

output role for the IC is abundant (Skoe et al. 2013a, b;

Skoe and Kraus 2010; Malmierca et al. 2014). Some

authors even suggest that the IC is analogous to the main

visual cortical region in processing complexity (King and

Nelken 2009).

How anesthesia may alter plasticity in the IC is an

important issue since there is little doubt that anesthesia may

alter some neuronal properties. For example, degradation of

temporal coding (Tollin et al. 2004; Song et al. 2011) and

ITD sensitivity (Fitzpatrick et al. 1995) by anesthesia has

been reported in the IC. Likewise, a much higher level of

spontaneous activity has been reported in the IC of awake

rabbits compared with anesthetized cats (Kuwada et al.

1989) and, recently, Chung and colleagues (2014) observed

that unmasking of spontaneous activity in the awake state

revealed suppressive responses to electric stimulation that

were rarely observed in anesthetized animals. Moreover, a

reduction in response adaptation kinetics has been shown in

the IC of the awake gerbil (Ter-Mikaelian et al. 2007).
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Stimulus-specific adaptation (SSA; Ulanovsky et al.

2003), the decrease that some auditory neurons show in

response to repetitive sounds while maintaining respon-

siveness to uncommon sounds, has been extensively stud-

ied in anesthetized preparations. While SSA was originally

described in the auditory cortex (AC; Ulanovsky et al.

2003), it has been shown to also occur at the levels of the

midbrain and thalamus (for a review see Ayala and

Malmierca 2013; Antunes and Malmierca 2014). However,

most SSA experiments have been performed under anes-

thesia. Interestingly, the levels of SSA reported in the few

experiments on awake animals (von der Behrens et al.

2009; Fishman and Steinschneider 2012; Thomas et al.

2012; Nir et al. 2013; Richardson et al. 2013) are consid-

erably lower than those found in anesthetized animals

(Malmierca et al. 2009; Antunes et al. 2010; Antunes and

Malmierca 2011; Zhao et al. 2011; Duque et al. 2012,

2014; Pérez-González et al. 2012; Ayala et al. 2013). Thus,

one might argue that SSA may be profoundly affected by

anesthetic state or even represent an artifact due to anes-

thesia (Jones et al. 2012). But studies comparing SSA in

awake and anesthetized using the same preparation are

missing. Here we investigate what effect, if any, urethane

anesthesia has on SSA in the IC of the mouse.

In the present account, we compared single-unit IC

responses in awake and anesthetized mice. Our results

demonstrate that SSA in the two conditions is qualitatively

similar. The only significant difference between the two

preparations was a much higher rate of spontaneous

activity in the awake animals. Therefore, we conclude that

SSA is a genuine property of some IC neurons and not

simply the result of anesthesia.

Materials and methods

Animals

Experiments were performed on 28 animals, 16 awake and

12 anesthetized young-adult, male CBA/J mice (Mus mus-

culus) aged between 2 and 6 months. The CBA/J strain

exhibits normal hearing sensitivity during the first 2 years of

life (Willott et al. 1988). All experimental procedures were

carried out at the University of Salamanca with the approval

of, and using methods conforming to the standards of, the

University of Salamanca Animal Care Committee.

Surgical procedures: anesthetized preparation

Anesthesia was induced (1.5 g/kg, i.p., 20 % solution) and

maintained (0.5 g/kg, i.p. given as needed) with ure-

thane as routinely done in our lab (e.g., Malmierca et al.

2005, 2008, 2009; Hernández et al. 2005, 2006; Pérez-

González et al. 2005, 2012; Izquierdo et al. 2008; Duque

et al. 2012; Ayala et al. 2013). The animal was placed in a

stereotaxic frame inside a sound-attenuated room and body

temperature was maintained at 38 ± 1 �C by a heating

blanket. The head was stabilized and leveled with ear bars;

care was taken not to damage the eardrums. An incision

was made in the scalp along the midline, and the skin was

reflected laterally. A duralumin headpost (1 g) was glued to

the skull with a one-component self-etching light-cured

adhesive (G-BondTM, GC Corporation, Tokyo, Japan) and

secured using a light-curing hybrid composite (Charisma�,

Heraeus Kulzer, Hanau, Germany). A silver ground wire

was glued onto the skull over the left cerebral cortex and a

craniotomy was performed to expose the right IC. After the

craniotomy, the ear bars were removed and sound was

delivered to the left ear canal via polypropylene tubing.

Surgical procedures: awake preparation

Awake surgical procedures followed those of Bryant and

colleagues (2009) and Portfors and collaborators (Portfors

et al. 2009, 2011; Holmstrom et al. 2010; Muniak et al.

2012). Animals were anesthetized with isoflurane inhala-

tion and placed in a stereotaxic frame. The surgical pro-

cedure was the same as described above: the head was

stabilized and a headpost was cemented on the skull with

the same light-cured adhesives. The analgesic buprenor-

phine (Buprex�, RB Pharmaceuticals, Berkshire, UK) was

injected ip (0.03 mg/kg) and topical triple antibiotic

(Dermisone�, Novartis, Barcelona, Spain) was applied to

the wound. The animal was returned to its cage to recover

from surgery for 2 days prior to starting electrophysio-

logical recordings. Before the recording sessions began, the

animals were acclimated to the recording chamber and

were given a food reward (sweetened full cream condensed

milk diluted 50:50 with water) at the end of every habit-

uation session. During recordings, the head was immobi-

lized by fixing the headpost to a custom-made clamp. In

order to limit body movements the body was inserted in a

loose fitting plastic tube. The mild sedative acepromazine

(Equipromacina, Fatro Ibérica, Barcelona, Spain) was

given if the mouse struggled excessively during the

recording sessions (2 mg/kg, ip). If the animal continued

struggling, we terminated the daily recording session.

Electrophysiological recording

Extracellular single unit responses were recorded using a

tungsten electrode (1–2 MX, Merrill and Ainsworth 1972)

lowered by means of a piezoelectric microdrive (Burleigh

6000 ULN). Acoustic stimuli were delivered through a

sealed acoustic system (Malmierca et al. 2009) using two

electrostatic loudspeakers (TDT-EC1: Tucker Davis
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Technologies) driven by two TDT-ED1 modules. Search

stimuli were pure tones (75 ms with a 5 ms rise/fall time)

monaurally delivered under computer control using TDT

System II hardware and custom software (Faure et al. 2003;

Malmierca et al. 2009). The output of the system at the left

ear was calibrated in situ using a free-field �00 condenser

microphone (model 4133, Brüel & Kjær) and a dynamic

signal analyzer (Photon?, Brüel & Kjær). The maximum

output of the TDT system was flat from 1 to 40 kHz

(*89 ± 4.3 dB SPL). The highest frequency produced by

this system was limited to 40 kHz. The proportion of

neurons responding to frequencies above this range is rel-

atively low (*15 %, Ehret 1979; Stiebler and Ehret 1985;

cf. Figure 3B in Portfors et al. 2011). The second and third

harmonic components in the signal were at least 40 dB

lower than the level of the fundamental at the highest

output level (Malmierca et al. 2009). Action potentials

were recorded with a BIOAMP amplifier (TDT), the 109

output of which was further amplified and bandpass-filtered

(TDT PC1; fc, 500 Hz and 3 kHz) before passing through a

spike discriminator (TDT SD1). Spike times were logged

with a resolution of &150 ls on a computer by feeding the

output of the spike discriminator into an event timer (TDT

ET1) synchronized to a timing generator (TDT TG6).

Generation of acoustic stimuli was exactly as described by

Malmierca et al. (2009). From each isolated neuron, we

measure the frequency response area (FRA) by presenting

pure tones using an automated procedure with 5 stimulus

repetitions at each frequency (from 1 to 40 kHz, in 25

logarithmic steps, presented randomly) and intensity

(10 dB steps, presented from lower to higher intensities).

The spike counts evoked at each combination of frequency

and intensity were then plotted using MATLAB�. We used

the FRA to calculate the minimum threshold and the best

frequency of response, i.e., the sound frequency that can

elicit a response at the minimum intensity.

Data analysis

For the acoustic stimuli, we chose pairs of frequencies (f1
and f2) that were 10–20 dB above the best frequency

threshold for evaluating SSA using an oddball paradigm

(Näätänen et al. 1978; Ulanovsky et al. 2003). Briefly, a

train of 400 stimuli containing both frequencies f1 and f2
was presented under the oddball paradigm: one frequency

(f1) was presented as the standard (90 % occurrence) while,

interspersed randomly among the standards, the deviant

stimuli (10 % occurrence) were presented at the second

frequency (f2). After obtaining one data set, the relative

probabilities of the two stimuli were reversed, with f2 as the

standard and f1 as the deviant. Dot raster plots are used to

illustrate the responses obtained to the oddball paradigm,

plotting individual spikes (e.g., Fig. 1; red dots indicate

responses to the deviant; blue dots indicate responses to the

standard). Stimulus presentations are marked along the

vertical axis. The responses to the standard and deviant

stimuli were also expressed as spikes per stimulus in the

peri-stimulus histogram (PSTH), to account for the differ-

ent number of presentations in each condition, due to the

different probabilities.

The amount of SSA was quantified by two indices: (1) the

frequency-specific index SI(fi), where i = 1 or 2, defined for

each frequency as SI(fi) = [d(fi) - s(fi)]/[d(fi) ? s(fi)] and

(2) the common-SSA index (CSI) defined as

CSI = [d(f1) ? d(f2) - s(f1) - s(f2)]/[d(f1) ? d(f2) ?

s(f1) ? s(f2)], where d(f) and s(f) are responses to each fre-

quency f1 or f2 when they were the deviant (d) or standard

(s) stimulus (Ulanovsky et al. 2003; Malmierca et al. 2009).

The SI reflects the extent to which the response to a given

frequency as standard is suppressed respect to the same

frequency as deviant, i.e. is a frequency-specific index for

SSA. CSI reflects the same effect but for a pair of frequen-

cies, demonstrating that the SSA levels observed in the SI are

extensible to other frequencies of the neuron, i.e. provides an

approximate neuronal level of SSA. The values of both

indices range from -1 to ?1, being positive if the response to

the deviant stimulus is greater. The same paradigm was

repeated varying the interstimulus interval [ISI = 125 ms

(8 Hz), 250 ms (4 Hz) and 1000 ms (1 Hz)] and the fre-

quency contrast (Df) between the standard and deviant

stimulus [Df = 0.04 (0.057 octaves), 0.10 (0.141 octaves)

and 0.37 (0.526 octaves)]; where Df = (f2 - f1)/(f2 9 f1)1/2.

Since the levels of spontaneous activity (SR) in the

awake animal are notably high, we considered two differ-

ent approaches for evaluating SSA. At first, we analyzed

the response, adjusting the limits of the response analysis

window based on the shape of the PSTH—considering only

the evoked response to the sound—and trying to avoid the

inclusion of the SR in the response window used for the

analysis of the SSA. In the second approach, considering

that the SR was constant even during the presentation of

the tones, we computed the SSA indices, but directly

subtracting the SR. To do so, SR was estimated with a fixed

window established 50 ms before the presentation of the

stimuli while we presented the oddball paradigm

(50 ms 9 400 trials = 20 s sample window). Then, a dri-

ven rate was obtained by subtracting the averaged SR from

the evoked firing rate in the same time windows used

before to evaluate SSA (driven rate = firing rate - SR).

The subtraction of the SR was directly done bin by bin

(evoked responses in spikes/s minus spontaneous activity

in spikes/s). The obtained driven rate was then used to

calculate again the levels of SSA in each condition. It

should be noticed that because the calculation of SR is not

intended to include evoked activity (especially at repetition

rates of 8 Hz), cases that showed a likely rebound-off
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activity (i.e., post-stimulus suppression or forward mask-

ing) were not included in the analysis.

Classification of the type of response was based on

previous reports (Rees et al. 1997; Duque et al. 2012): on,

long-latency on, on-sustained, sustained, pauser and on–

off. On responses show a robust response confined to the

first 40 ms of the stimulus. Long-latency on responses

started 50–80 ms after the beginning of the tone. On-sus-

tained responses exhibit a clear on response followed by a

sustained portion, with at least a 50 % decrease of firing

rate compared with the on portion. Sustained responses

show a constant response that lasts 50 ms or more. Pauser

responses show a cessation of firing rate between a clear on

and a sustained portion. On–off responses had two different

components, with an on and off portion (after the end of the

stimulus).

Histology

Neuron location was assigned to each of the main IC

subdivisions based on stereotaxic coordinates (Franklin and

Paxinos 2007), response properties (Egorova et al. 2001;

Portfors et al. 2011; Malmierca and Ryugo 2011) and by

reconstruction of the electrode tracks from the position of

electrolytic lesions (14 lA for 10 s) in Nissl-stained brain

sections. Histological procedures were as described by

Duque et al. (2012).

Results

To characterize SSA in the mouse, we recorded responses

from 93 well-isolated single neurons in the IC under an

Fig. 1 Single-unit responses in the IC of the awake (a) and the

anesthetized (b) mouse. Top panels show FRAs of neurons in the IC

that exhibited high CSI values. Black dots over the FRAs indicate the

pair of frequencies selected for analyzing SSA (Df = 0.37). Insets in

the FRAs show waveforms of the spikes recorded from these single

units. Below the FRAs, dot raster plots are illustrated for the oddball

paradigm under three different repetition rates: 1 Hz (left column),

4 Hz (middle column) and 8 Hz (right column). In the top row f1 and

f2 are the standard and deviant stimuli, respectively (awake: 18.86 and

27.28 kHz; anesthetized: 15.80 and 22.87 kHz). In the middle row, in

the reverse condition, f2 and f1 are the standard and deviant stimuli,

respectively (awake: 27.28/18.86 kHz; anesthetized: 22.87/

15.80 kHz). In the bottom row, PSTHs show averaged responses

for both conditions: deviant (red) and standard (blue). CSI values

obtained in each condition are shown as insets in the PSTHs. Shaded

backgrounds indicate the duration of the stimulus
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oddball paradigm. Fifty-four units were recorded from 16

awake mice and 39 units from 12 anesthetized mice. For

both populations, we determined the basic temporal and

spectral response properties of each neuron and chose a

pair of frequencies within the FRA to evaluate SSA under

different conditions (i.e., variations in frequency contrast

and repetition rate). Our major goal was to study the effect

of anesthesia on SSA sensitivity in the IC of the mice. In

the following, we will compare the levels of SSA, the

neuronal response properties and the levels of spontaneous

activity of IC neurons in the awake and the urethane-

anesthetized mouse.

SSA and response properties in the awake

and anesthetized preparation

Since there were no available SSA data for the IC in

mouse, and for purposes of comparison, we performed the

same experiments and analysis in two different prepara-

tions: awake and anesthetized. Figure 1a shows a FRA of

an individual neuron in the awake preparation while

Fig. 1b shows a FRA of an individual neuron in the

anesthetized preparation. The black dots over the FRAs

indicate the frequencies and the intensity chosen for the

oddball paradigm (Fig. 1a: 18.86 and 27.28 kHz at 20 dB

SPL; Fig. 1b: 15.80 and 22.87 kHz at 30 dB SPL). The

neurons illustrated exhibit significant SSA, showing a

cessation of the responses to the repetitive stimuli (Fig. 1a,

b: blue dots in the dot rasters, especially at 4 and 8 Hz)

while the responses to the deviant stimuli are maintained

(Fig. 1a, b: red dots in the dot rasters). The normalized

response in each condition is depicted by the corresponding

PSTHs (Fig. 1a, b, bottom row); the average response to

the deviant stimuli (red traces) is higher than the average

response to the standard stimuli (blue traces) in all condi-

tions. The only readily visible difference in the dot rasters

(and also in the FRAs) between the awake and anesthetized

preparation is the great amount of spontaneous activity

(SR) observed in the awake preparation (Fig. 1a). Despite

the SR, the levels of SSA depicted by the common SSA

index (CSI, insets in the PSTHs) are comparable between

the awake and the anesthetized preparation.

We quantified and compared the degree of neuronal

adaptation in the awake and the anesthetized preparation by

computing the CSI and the frequency-specific SSA index

(SI, Fig. 2) under several experimental conditions. The

overall degree of SSA was characterized at a standard

condition with a frequency contrast (Df) of 0.37 and a

repetition rate of 4 Hz (awake: n = 31; anesthetized:

n = 29). Under this condition, CSI levels in the awake

preparation range from -0.017 to 0.854 with an average of

0.43 ± 0.24 (mean ± SD). In the anesthetized preparation

the levels show a comparable range from -0.043 to 0.985

with a similar average level (Table 1, mean ± SD

0.48 ± 0.33). A CSI cut-off value of ?0.18 was defined as

significant SSA based on previous data (Antunes et al.

2010; Duque et al. 2012, 2014). Using this criterion, in the

awake preparation 25 neurons (81 %) showed significant

SSA, while the remaining 6 (19 %) did not. In the anes-

thetized preparation, 21 neurons (73 %) showed significant

SSA, while the remaining 8 (27 %) lacked significant SSA

(Table 1). Twenty-nine of the 39 neurons recorded in the

anesthetized preparation were histologically localized.

Anatomical analysis revealed that 6 neurons were located

in the central nucleus of the IC (lemniscal), while 23 were

located in the collicular cortices (non-leminscal): 4 in the

dorsal, 5 in the rostral and 14 in the lateral cortex (data not

shown). Neurons located in the collicular cortices showed

the largest degree of SSA (mean CSInon-lemniscal:

0.70 ± 0.24; mean CSIlemniscal: 0.36 ± 0.27). Four of the

seven neurons that lacked SSA were from the central

nucleus, supporting previous findings that SSA is biased

towards the non-lemniscal IC regions. On the other hand,

recordings from awake animals limit the ability to localize

individual recorded neurons. However, we recovered

lesions from 7 of the 16 mice at the end of the last

recording session, which allowed us to confirm that we

were also biased towards the non-lemniscal regions of the

IC.

To quantify the adaptation at the population level we

compared the SSA indices across different conditions and

between the two preparations. The SI is depicted in Fig. 2

for different conditions (awake: burgundy dots and crosses;

anesthetized: green dots and crosses). These scatter plots

show the individual SI values for each frequency pair and

demonstrate significant SSA when the values are located in

the upper right quadrant. Crosses represent the median CSI

values while the mean CSI values are also indicated as

insets in each condition. As expected from previous studies

(Ulanovsky et al. 2003; Malmierca et al. 2009; Antunes

et al. 2010), SSA values are positively correlated with the

frequency contrast and the repetition rate in both prepara-

tions (two-way ANOVA; awake: FDf = 6.62, p = 0.002

FHz = 14.85, p \ 0.001; no interaction effect: F = 0.72,

p = 0.58; post hoc Tukey test confirmed differences

between Df = 0.37 and Df = 0.04 - 0.1 and between 1

and 4–8 Hz; p \ 0.05; anesthetized: FDf = 9.37,

p \ 0.001; FHz = 11.32, p \ 0.001; no interaction effect:

F = 0.30, p = 0.88; post hoc Tukey test confirmed dif-

ferences between Df = 0.37 and Df = 0.04 - 0.1 and

between 1 and 4–8 Hz; p \ 0.05). However, at both

preparations, SSA is still present at a small frequency

contrast (Df = 0.04) and at a repetition rate as low as 1 Hz.

No differences in CSI were found at any condition between

the awake and the anesthetized preparation (Mann–Whit-

ney rank sum test, p [ 0.05 for all conditions). Despite not
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Fig. 2 Population SSA

comparison between awake and

anesthetized mouse. Scatter

plots of the SI(f1) versus SI(f2),

for the different Df (top row:

0.04; middle row, 0.1; bottom

row: 0.37) and ISIs (left column:

1 Hz; middle column: 4 Hz;

right column: 8 Hz). Pairs of

frequencies obtained in the

awake (burgundy dots) and

anesthetized (green dots)

preparations are shown. [For

comparison, we also show SSA

data values from previous

experiments in the anesthetized

rat (light violet crosses) from

Malmierca et al. 2009, and Zhao

et al. 2011]. The burgundy

(awake) and green

(anesthetized) crosses indicate

the median and the 25th–75th

interquartile range for each axis.

As each neuron was tested using

different combinations of

parameters, individual neurons

may be represented in more than

one panel. Median CSI values

for each condition are shown as

insets in each scatter plot

Table 1 Neuronal responses in

the awake and the anesthetized

preparations

a Average firing rate response

20 dB above the best frequency

threshold
b Data from Duque et al. (2012)
c Data from Malmierca et al.

(2009)
d Data from Perez-Gonzalez

et al. (2012)

Preparation Mice Rat

Awake Anesthetized Anesthetized

n (all neurons) 79 46 95b

Type of FRA

V-shaped (%) 12 (15) 13 (28) 20 (21)b

Non-V-shaped (%) 50 (63) 33 (72) 75 (79)b

‘Inhibitory’ (%) 17 (22) 0 (0) 0 (0)b

Mean firing rate (spk/s)a 94.27 ± 71.19 70.12 ± 43.6 69.22 ± 52.72b

Mean spontaneous activity (spk/s) 7.16 ± 9.29 0.98 ± 1.86 1.47 ± 5.01b

n (Df = 0.37 at 4 Hz) 31 29 69c

SSA (CSI C0.18) (%) 25 (81) 21 (73) 52 (75)c

Non-SSA (CSI \0.18) (%) 6 (19) 8 (27) 17 (25)c

Mean CSI ± SD 0.43 ± 0.24 0.48 ± 0.33 0.46 ± 0.32c

Median CSI (25th–75th percentile) 0.40 (0.27–0.61) 0.49 (0.14–0.77) 0.47 (0.17–0.80)c

Mean latency difference (ms) 4.34 ± 6.59 9.04 ± 10.34 7.54 ± 14.44c

Adaptation values (mean ± 95 % c.i.)

s(r) (trial) 0.86 ± 0.38 0.58 ± 0.33 0.92 ± 0.13d

Ar (spk/trial) 5.00 ± 2.77 7.68 ± 7.47 9.48 ± 1.56d

s(s) (trial) 34.27 ± 8.58 34.71 ± 14.23 44.54 ± 6.26d

As (spk/trial) 0.64 ± 0.11 0.34 ± 0.10 0.68 ± 0.07d

Astst (spk/trial) 1.13 ± 0.02 1.04 ± 0.02 0.36 ± 0.01d
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being statistically different, we found slightly different

values at Df = 0.1 at 8 Hz; Df = 0.37 at 4 Hz and

Df = 0.37 at 8 Hz (Fig. 2).

To better understand the dynamics of adaptation over

time, we plotted the responses to the standard tone in the

condition with Df = 0.37 at 4 Hz over the consecutive

trials (Fig. 3, awake preparation in burgundy trace:

n = 62; anesthetized preparation in green trace: n = 58).

We fitted the responses with a double exponential func-

tion defined as f ðtÞ ¼ Astst þ Ar � e�t=sðrÞ þ As � e �t=sðsÞ

(Perez-Gonzalez and Malmierca 2012; Perez-Gonzalez

et al. 2012; Duque et al. 2014). The responses to the

deviant tones, because of minimal adaptation, do not fit

this function and for this reason they were not depicted in

the figure. The response to the standard stimulus is

reduced immediately after the first stimulus trials in both

preparations (Fig. 3). This double exponential function

contains both a rapid (r) and a slow (s) component, after

which the response reaches a steady state (Astst). In terms

of magnitude, the fast component, which occurs during

the first trials, presents the largest degree of adaptation.

The slow component defines the final steady-state

response. Comparing the time course of adaptation to the

standard stimuli between the awake and the anesthetized

preparation, only the magnitude of the slow component

(As) and the asymptote of the curve (Astst) were statisti-

cally different (Table 1).

Since these higher time course of adaptation indices

could imply that the firing rate was different in the awake

and the anesthetized preparation, we compared the basic

temporal and spectral responses of the recorded units in

both conditions. We found that the firing rate, the PSTH

response type and the response latencies were similar to

those recorded in the awake preparation. No differences in

firing rate at a common point in the FRA (we calculate the

average firing rate response 20 dB above the best fre-

quency threshold) were found between the awake and the

anesthetized preparation (Table 1; Mann–Whitney rank

sum test, T = 2151, p = 0.13). Next, we characterized the

basic temporal and spectral responses of the recorded units

in an attempt to determine whether there is a correlation

between SSA and any of these features, including PSTH

response type and response latency. We classified the

response types of the units according to the PSTH shape in

response to the standard condition Df = 0.37 at 4 Hz as:

on, long-latency on, on-sustained, sustained, pauser and

on–off responses (see ‘‘Materials and methods’’). In the

awake preparation, the most common type found in our

sample was the on response (15 units, 48 %), followed by

the on-sustained (9 units, 29 %) and the pauser (5 units,

16 %) types. One sustained unit (3 %) and one on–off

response (3 %) completed our data set. The highest levels

of SSA were seen in the on and on-sustained units, while

pauser and sustained units showed the weakest levels of

SSA (one-way ANOVA; p = 0.031). In the anesthetized

preparation, on responses (16 units, 55 %) were also the

most common type of response, followed by the on-sus-

tained (7 units, 24 %), sustained (3 units, 10 %), pauser (2

unit, 7 %), and long-latency on responses (1 units, 4 %).

No on–off responses were found in our anesthetized data

set. Thus, the proportion of response types do not vary

between the awake and the anesthetized preparation (Chi

square test for sampling distributions, v2 = 4.5,

p = 0.479), although it is difficult to make definitive

conclusions due to the small number of neurons in our

sample. Finally, we also evaluated the effects on spike

latency by computing the latency difference, defined as the

difference between the median first spike latency to the

standard and the deviant condition for each frequency.

Across the population, a high SSA level is correlated with a

large latency difference (Spearman rank order correlation

coefficient: 0.36, p \ 0.001). Interestingly, no differences

in latency difference were found as a function of repetition

rate or frequency contrasts in the awake preparation (two-

way ANOVA; FDf = 0.82, p = 0.44; FHz = 2.09,

p = 0.13; no interaction effect: F = 1.09, p = 0.36) while

they were evident in the anesthetized preparation (two-way

ANOVA; FDf = 10.42, p \ 0.001; FHz = 3.01, p = 0.05;

no interaction effect: F = 0.93, p = 0.45; Tukey test

confirmed differences between Df = 0.37 and

Df = 0.04 - 0.1 and between 1 and 8 Hz; p \ 0.05). At

some conditions, latency difference was larger in the

anesthetized mice compared with the awake ones (e.g.

Table 1; Mann–Whitney rank sum test for Df = 0.37 at 1

and 4 Hz, p = 0.001), but those differences did not gen-

eralize to all the conditions (Mann–Whitney rank sum test,

Fig. 3 Time course of adaptation in the awake and the anesthetized

mouse. Averaged population firing rate responses (spikes/stimulus) to

the standard stimulus at the condition with a Df = 0.37 at 4 Hz for the

awake (burgundy, n = 62) and the anesthetized (green, n = 58)

preparations. The upper right inset shows the first 50 trials extended
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p [ 0.05). Such small latency difference in the awake

animal is likely due to the random integration of sponta-

neous spikes into the analysis window.

Urethane anesthesia decreases spontaneous activity

Even simple visual inspection suggested a high SR for the

majority of units during the recording sessions in the awake

mouse (68 % of the neurons recorded showed a SR larger

than 2 spikes/s, Fig. 4, burgundy histogram). At a popu-

lation level, the range of SR was from 0.11 to 28.31 spikes/

s and the mean SR was 7.16 ± 9.29 spikes/s (Table 1). On

the other hand, the mean SR in the anesthetized preparation

was very low or negligible: 0.98 ± 1.86 spikes/s (Fig. 4,

green histogram; SR range from 0 to 2.51 spikes/s). Only

16 % of the neurons recorded showed a SR larger than 2

spikes/s and 46 % of the neurons showed no SR at all.

Thus, median SR in the awake preparation was signifi-

cantly higher than that seen in the anesthetized mouse

(Anesthetized: 0.222 spikes/s; Awake: 3.8 spikes/s; Mann–

Whitney rank sum test, p \ 0.001). Moreover, for some

units in the awake preparation the SR was so high that no

sound-evoked response could be distinguished out of the

SR. In those cases, which account for almost a quarter of

our sample (Table 1, 17/79; 22 %), the SR allowed us to

detect suppression of responses to different combinations

of frequencies and intensities, resulting in a distinct and

Fig. 4 Histogram of the SR in the awake and the anesthetized mouse.

Note that the x-axis is logarithmic to account for the great difference

in SR between the anesthetized (green histogram) and the awake

preparation (burgundy histogram)

Fig. 5 Examples of iFRAs in

the IC of the awake mouse.

Three examples of inhibitory

frequency response areas

(iFRA) are shown in the left

panel. Averaged PSTHs

obtained for each neuronal

example are shown in the right

panel next to each iFRA to

show that no excitatory

response was elicited before the

suppression of the SR. Dotted

lines indicate the mean averaged

SR for each neuronal example.

Firing rate values for each iFRA

shared the y-axis of the

averaged neuronal PSTH
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unambiguous ‘inhibitory’ FRA (iFRA: Fig. 5). Unfortu-

nately, due to the lack of driven activity, we could not test

those neurons showing iFRAs with the oddball paradigm,

nor they did show any sign of SSA in the SR region. The

significant difference in SR may explain why we did not

find iFRAs in the anesthetized preparation (Table 1, 0/45).

Since the high SR rates in the awake preparation might

have affected the levels of SSA in some conditions (Fig. 2,

e.g. Df = 0.37 at 4 Hz), we next proceeded to extract the

SR and reevaluate the levels of CSI of the neurons recorded

for the awake preparation. To do that, we subtracted the SR

(see ‘‘Materials and methods’’), in an attempt to mimic the

anesthetized preparation. Figure 6a shows the same fre-

quency pair example as in Fig. 1a, with a Df = 0.37 at

4 Hz. The depicted PSTHs are shown in Fig. 6b, c, with

and without SR, respectively. Interestingly, the subtraction

of the SR demonstrates a distinct increase in the CSI level.

In order to shed light on the role, if any, of the SR in the

modulation of SSA, we plotted the CSI values of each

neuron as a function of its SR and found that they were

inversely correlated (Fig. 6d, Df = 0.37 at 4 Hz, Spearman

rank order correlation coefficient: -0.58, p \ 0.001). The

same analysis was performed to the neurons in the anes-

thetized preparation, and a similar trend occurred. How-

ever, here the correlation was not significant, most

probably because many neurons in this group totally lacked

of SR and the sample of neurons with SR turned very

small (n = 9; Spearman rank order correlation coefficient:

-0.45, p = 0.204, data not shown). Moreover, despite the

large variability in SR across the population, the compu-

tation of the PSTH grand average showed a clear increase

of the deviant to standard response ratio after the SR

subtraction (Fig. 6e, Df = 0.37 at 4 Hz). At a population

level, this trend is maintained. Figure 7a shows the scatter

plots for the same pairs of neurons recorded in the awake

preparation, before and after the SR subtraction (burgundy

and orange, respectively). The neurons that showed low

levels of SSA (CSI \0.4) remain mostly unaltered when

the SR was subtracted, while the neurons with higher levels

(CSI C0.4) showed an increase of SSA (data not shown).

That happened regardless of the condition, but was most

clearly noticeable when the levels of CSI were consistently

high (for that reason in Fig. 7 we only show 4 of the 9

conditions shown in Fig. 2; i.e., Df = 0.1 and Df = 0.37 at

4 and 8 Hz). Interestingly, the qualitative non-significant

differences found between the awake and the anesthetized

preparation (Fig. 2) seem to disappear when the SR is

subtracted (Fig. 7b).

Discussion

The present study demonstrates high levels of SSA in the

mouse IC and, more importantly, it shows that SSA in the

awake mouse is comparable to that seen in the urethane-

anesthetized preparation. The SSA observed in mice is

equivalent in most respects to that seen in the rat IC

(Malmierca et al. 2009; Duque et al. 2012; Ayala and

Malmierca 2013). Our results further reveal that urethane

anesthesia does affect other response properties in the

mouse IC, most notably the SR. Although previous studies

have shown SSA in awake preparations in different species

or brain regions, our study is the first to directly compare

the effect of anesthesia in the IC. Overall, the results

demonstrate that SSA is a genuine property of some IC

neurons and not an artifact attributable to anesthesia, but

that it is dynamically modulated by the animal’s state

through the neuronal SR.

A detailed examination of SSA at the population level

revealed no major differences between the anesthetized

and the awake conditions in the proportion of neurons

showing SSA and in the overall level of SSA that the

Fig. 6 Relation between spontaneous activity and SSA. a Dot raster

plots for the same frequency pair illustrated in Fig. 1a, with a

Df = 0.37 at 4 Hz. b PSTHs for the averaged responses for the

frequency pair before subtracting the spontaneous rate (SR). c PSTHs

for the averaged responses for the frequency pair after subtracting the

SR. d Correlation between the SR and the level of CSI in the standard

condition, at Df = 0.37 and 4 Hz (n = 31). e Grand average for the

standard condition, with a Df = 0.37 at 4 Hz (n = 31). Deviant and

standard responses for the neurons before the subtraction of the SR

are shown as burgundy and blue lines, respectively. Deviant (orange)

and standard (light blue) responses after the subtraction of the SR are

also shown
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neurons exhibited (Table 1). However, we did find some

differences in other properties, including a much larger

mean SR in the awake preparation (Table 1) as well as an

increase in the slow component (As) and the steady-state

(Astst) indices in the dynamics of adaptation (Fig. 3;

Table 1). Urethane anesthesia produces a decrease of

spontaneous glutamate output in rat cerebral cortex

(Moroni et al. 1981) and could have a similar effect on the

IC. The high rates of SR allowed us to uncover a high

incidence of inhibition in the IC and revealed a large

proportion of purely inhibitory response maps (iFRAs). To

the best of our knowledge, iFRAs have not been previ-

ously documented in the mouse IC, either in the anes-

thetized or the awake preparation. Similar inhibitory

receptive fields have been described in the dorsal cochlear

nucleus of the unanesthetized decerebrate cat (Young and

Brownell 1976), the anesthetized guinea pig (Stabler et al.

1996), the awake mouse (Roberts and Portfors 2008) and,

very rarely, in the IC of the anesthetized rat (Hernandez

et al. 2005). Previous studies have shown higher evoked

and spontaneous firing rates in the awake rabbit IC

(Kuwada et al. 1989; Chung et al. 2014). We did not find

higher evoked firing rates in the awake mice, but higher

SR does seem to slightly decrease the levels of SSA

(Figs. 6, 7). Although, theoretically, subtraction of SR will

necessarily increase SSA based on the equation for CSI

(i.e., without SR numerator will remain constant while

denominator will become smaller by 4 times the SR), in

practice, we observed a full range of changes. As a rule,

neurons showing low levels of SSA also had the lowest

variations of CSI levels (median variation: 0.02) while

neurons with higher levels of SSA presented higher vari-

ations (median variation: 0.10; Mann–Whitney rank sum

test, p = 0.027). These results are in accordance with our

theoretical approximation, as we subtracted the SR

according to the evaluation of the difference in the

response with respect to a basal level. A recent study

(Klein et al. 2014) discussed the possibility that sponta-

neous activity might be responsible for the low levels of

SSA in the auditory cortex. The present data show that in

the IC the SR has some effect on SSA sensitivity. Our

data are in accord with previous elegant work that sug-

gests a basal adaptive state due to high spontaneous

activity rates (Abolafia et al. 2011). However, these

potassium currents suggested by Abolafia and colleagues

do not completely explain SSA (because they would affect

all inputs and thus, will not be stimulus-specific). Such

pre-adaptive situation will produce less adaptation to both

the standard and deviant stimuli, decreasing the ratio

between the deviant and the standard response, therefore

reducing the levels of SSA. Indeed, since high SR in the

awake behaving animals are related to a reduction of

adaptation (Chung et al. 2002; Castro-Alamancos 2004), it

is likely that attention during task engagement modulates

both the evoked and the spontaneous firing rate (Buran

et al. 2014). In this respect, we found a clear correlation

between the CSI levels and the SR such that the higher the

CSI level, the lower the SR (Fig. 6d). Thus, it is tempting

to speculate that the attentional state might be dynamically

Fig. 7 Population comparison between the awake neurons before and

after the subtraction of the spontaneous activity. a Scatter plots of the

SI(f1) versus SI(f2), for different Df (top row 0.1; bottom row 0.37)

and ISIs (left column 4 Hz; right column: 8 Hz). Pairs of frequencies

obtained in the awake mouse before (burgundy dots; median value

showed as a burgundy cross) and after (orange dots; median value

showed as an orange cross) the subtraction of the spontaneous

activity. Median CSI values for each condition are shown as insets in

each scatter plot. b Box plots showing the median value of CSI

(straight line) for the anesthetized (green), awake (burgundy) and

awake without spontaneous activity (orange) neurons of the mice IC.

Mean values are showed as a dashed line. The box plots are for the

same conditions showed in Fig. 7a. The box delimits the 25th and the

75th percentiles, whiskers indicate the 10th and 90th percentiles, and

dots indicate the 5th and 95th percentiles
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increasing the SR and, consequently, affecting the levels

of SSA. One plausible mechanism would be through

GABAergic inhibition. We have previously demonstrated

that GABAA mediated inhibition acts as a gain control

system that sharpens and enhances SSA (Perez-Gonzalez

et al. 2012; Duque et al. 2014) and thus, might suppress

the SR to increase SSA.

Since most reports on SSA from IC neurons have been

in the anesthetized rat (Pérez-González et al. 2005, 2012;

Malmierca et al. 2009, Lumani and Zhang 2010; Zhao et al.

2011; Duque et al. 2012; Perez-Gonzalez and Malmierca

2012; Ayala et al. 2013), it is pertinent to compare our

current results with those in the rat. Table 1 and Fig. 2 not

only compare the anesthetized and the awake mouse

recordings, but they also include previous data from the

anesthetized rat IC. All but one of these experiments

employed urethane anesthesia (Lumani and Zhang 2010,

used ketamine-xylazine). Urethane has been the anesthetic

agent of choice in many electrophysiological recordings,

since it produces (1) minimal disruption of breathing, heart

rate and reflexes (Maggi and Meli 1986), (2) small changes

in the receptor system by non-selectively affecting both the

excitatory and inhibitory currents (Hara and Harris 2002)

and (3) little effect on the time-course and amplitude of

inhibitory and excitatory responses (Sceniak and MacIver

2006). As stated before, the greater amount of inhibition

observed in the awake preparation allowed us to confirm

the presence of iFRAs compared with the absence of these

type of response areas in anesthetized preparations (Chi

square test for sampling distributions, v2 = 34.271,

p \ 0.001). No significant differences were found between

previous data obtained in rat IC and the current work in the

awake and the anesthetized mouse in the level of SSA

(Table 1, Kruskal–Wallis ANOVA on ranks test:

p = 0.895) or in the proportion of neurons showing SSA

(Chi square test for sampling distributions, v2 = 0.586,

p = 0.746). In fact, the levels of SSA in the awake mice

are unexpectedly similar to the ones in the anesthetized

animals considering that anesthetic and inter-specific dif-

ferences affect other features such as latency difference,

firing rate and, particularly, spontaneous activity (Table 1,

Kruskal–Wallis test: p = 0.012, p = 0.042, p \ 0.001,

respectively). For example, the latency difference is

smaller for some conditions in the awake preparation

compared with the anesthetized ones. We usually inter-

preted the delay in the response latency to the standard

stimuli as a consequence of an independent input pro-

cessing of the deviant and the standard frequencies. In such

scenario, the latency of the response to the standard sound

will be progressively delayed up to a point where the

response to the repeated sound is no longer strong enough

to evoke a response. Such a latency difference reduction in

the awake preparation could be the result of a decrease in

the general level of adaptation due to the pre-adaptive state

(Abolafia et al. 2011). Moreover, the time course of

adaptation shows slightly higher values in rat, but probably

because the population used in that experiment presented

an intentional bias towards highly adapting neurons (Perez-

Gonzalez et al. 2012: median CSI: 0.78).

Our study is the first to compare the effect and influence

of anesthesia on SSA by directly comparing awake and

anesthetized responses in the IC in the same preparation.

We were initially surprised by the similarity of the results

we obtained in the awake and anesthetized preparations, as

previous studies found SSA levels in awake experiments

considerably lower than those found in anesthetized prep-

arations. Several differences in the experimental paradigms

may help to explain the discrepancies. First, some experi-

ments were carried out at relatively high intensities (Von

der Behrens et al. 2009) or employed fixed tones to assess

SSA (Nir et al. 2013). Both of these factors may have

influenced the level of SSA, as we have previously dem-

onstrated that SSA is both level and frequency dependent

(Duque et al. 2012). Further, the anatomical location of the

recording sites may also have significantly influenced the

reported values of SSA. For example, it is likely that the

majority of the recordings in the IC of a recent study in an

awake bat preparation (Thomas et al. 2012) were from the

central nucleus, as bats possess a hypertrophied central

nucleus and very small cortical regions compared to rats

and mice (Zook et al. 1985). Similarly, studies in the

medial geniculate body in the awake rat included a large

number of units from ventral and dorsomedial geniculate

neurons (Richardson et al. 2013) where SSA is weak

(Antunes et al. 2010; Antunes and Malmierca 2011). Fur-

ther, while the use of multi electrodes allowed for a large-

scale examination of SSA in monkey A1 (Fishman and

Steinschneider 2012), they might also result in averaging

out high SSA values. Interestingly, the current IC data from

mice contrasts with a previous report on the medial

geniculate body in mice (Anderson et al. 2009), as the

levels of SSA found in the IC are markedly higher. Most

likely, the different anesthesia regime (ketamine-medeto-

mine), anatomical sampling and stimulation protocols used

in the medial geniculate body study may explain the low

levels of SSA reported there, since a degradation of the

SSA sensitivity along the auditory pathway is unlikely

(Perez-Gonzalez et al. 2012; Dhruv and Carandini 2014;

Duque et al. 2014; Escera and Malmierca 2014). Moreover,

it is generally accepted that anesthesia can have a more

pronounced effect on the auditory cortex than on the IC

(Maggi and Meli 1986; Sloan 1998; laboratory unpublished

observations), since more indirect input pathways—as the

auditory cortex—are more likely to be affected by anes-

thesia (Goldstein and Abeles 1975). Therefore, it would be

very interesting to directly compare how SSA is in the
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auditory cortex in awake and anesthetized animals as we

have done here in the IC in further experiments. Finally, it

should be emphasized that the current experiments only

provide an unequivocal demonstration that SSA is not

generated by urethane anesthesia; the effect of other

anesthetic agents remains unknown.

SSA has been associated with important sensory tasks,

namely novelty detection or change detection (Pérez-Gon-

zález and Malmierca 2014) and its electrophysiological

correlates, i.e. the mismatch negativity auditory evoked

potential or the middle-latency response studied in detail in

both humans (Näätänen et al. 1978; Slabu et al. 2010; Grimm

et al. 2011) and small rodents using both the anesthetized

(Tikhonravov et al. 2008; Astikainen et al. 2011; Shiramatsu

et al. 2013) and awake (Nakamura et al. 2011; Jung et al.

2013) preparations. Recent studies have shown that the

moderate urethane effects on neurotransmission seem to

perfectly mimic natural sleep (Clement et al. 2008; Pag-

liardini et al. 2012, 2013), a state that implies a reduction of

behavioral responsiveness (Rechtschaffen et al. 1966).

While mismatch negativity shows some attenuation during

natural sleep (Loewy et al. 1996; Ruby et al. 2008), our study

is in agreement with a recent account (Nir et al. 2013) that

showed that natural sleep does not affect the generation of

SSA in the auditory cortex. Nevertheless, while urethane

anesthesia closely mimics the alternations of forebrain

rhythms found in the EEG components during sleep

(Clement et al. 2008), the overall SR is dramatically affected

by urethane, at least in the IC. Such a reduction of the SR

could be related to a general tendency for high levels of SSA

during sleep-like states. As we demonstrate, SSA is similar

but certainly not identical, in the awake and anesthetized

preparations. This suggests that during sleep we may need

more robust resources to react to danger than in an awake

state in which attention is already preactivated. Attenuation

of SR during sleep could improve this essential response.

In conclusion, our study shows that while SSA is not due

to urethane anesthesia, the awake preparation is different in

that neurons show a much higher SR. These findings,

neglected so far for technical reasons, should be considered

in future studies, especially in view of recent work (Buran

et al. 2014) demonstrating the importance of modulating

the SR in attention and behavior. Our results also confirm

the validity and the importance of studying SSA in the IC

of the mouse because these results provide the baseline for

future studies and open new avenues to the study genetic

modifications affecting the auditory brain in transgenic

mice. Moreover, because the IC acts as a computational

center in the auditory midbrain that may gate thalamic

activity (Winer et al. 1996; Peruzzi et al. 1997; Ito et al.

2009), the simple and old-fashioned IC as a relay center

can be ruled out (Skoe et al. 2013a, b; Skoe and Kraus

2010; Malmierca et al. 2014), hence supporting the idea of

the IC is a key controller of cortical activation, including

cortical SSA.
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ABSTRACT 1 

 For years, electrophysiological, psychophysical and electroencephalographic 2 
studies have tried to disentangle the neuronal basis for intensity coding and intensity 3 
deviant detection. Psychophysical forward masking experiments have repeatedly 4 
shown how a higher intensity sound masks the subsequent low intensity sound, but 5 
electroencephalographic mismatch negativity experiments have proved that pre-6 
attentive deviant detection can be elicited with low intensity deviants sounds. Here we 7 
did extracellular single-unit recording in the inferior colliculus (IC) of the anesthetized 8 
rat to test if there is stimulus-specific adaptation (SSA) for intensity deviants. We used 9 
the oddball paradigm to evaluate SSA for frequency, intensity and double deviants for 10 
frequency and intensity. Thus, if we considered two sounds of the same frequency 11 
where the low intensity sound presented a low probability of appearance, two scenarios 12 
could arise: 1) neurons adjust to stimulus statistics by changing the dynamic range to 13 
the high intensity sound or 2) SSA exists for intensity sounds and the neuron presents 14 
an enhanced response for the low intensity deviant sound. Our results demonstrate that 15 
there is no SSA for purely intensity deviant sounds in the IC, but the across-adaptation 16 
data analysis show that SSA can be found for double deviants whenever the high 17 
intensity standard present a frequency that is outside the frequency channels that code 18 
for the deviant sound. Moreover, those frequency channels broaden at higher intensities 19 
and are clearly narrower for neurons that show high levels of SSA, strongly suggesting 20 
that the frequency-channel theory is explaining SSA in the IC.   21 
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INTRODUCTION 22 

While neuronal systems seem to follow an efficient coding strategy to properly 23 
respond the most common inputs (Wark et al., 2007), repetition in the brain usually 24 
implies adaptive processes (Grill-Spector et al., 2006). The range of intensities and 25 
frequencies that an animal can perceive is enormous and environmental changes need 26 
to be assessed rapidly and accurately. The auditory system needs to adjust its response 27 
to the stimulus statistics (Dean et al., 2005; Watkins and Barbour 2008; Wen et al., 28 
2009; Dahmen et al., 2010; Rabinowitz et al., 2011), while the response to the less 29 
common sounds (deviants) cannot be neglected and usually present an enriched 30 
response (stimulus-specific adaptation; SSA: Ulanovsky et al., 2003; Malmierca et al., 31 
2009). This issue has been recently discussed by two recent studies (Herrmann et al., 32 
2014; Simpson et al., 2014).  33 

 Most studies on SSA have been realized with frequency deviant sounds 34 
(Nelken 2014), while the investigation about dynamic range adaptation has been 35 
basically performed with intensity distributions (Dean et al., 2005; 2008; Watkins and 36 
Barbour 2008; 2011; Wen et al., 2009; 2012). Beyond the frequency SSA, some 37 
investigators try to evoke such process by a plethora of features including intensity 38 
(Ulanovsky et al., 2003; Reches and Gutfreund, 2008; Farley et al., 2010), interaural 39 
differences (Reches and Gutfreund, 2008; Xu et al., 2014) and duration (Farley et al., 40 
2010), but the existing data for intensity SSA is controversial and inconclusive. Those 41 
studies disagree regarding the response to a low intensity deviant sound embedded in a 42 
background of loud sounds. This issue is important for two reasons. It is well known 43 
that 1) a high intensity sound mask the subsequent low intensity sound (forward 44 
masking/suppression; Calford and Sample, 1995; Brosch and Schreiner, 1997) and 2) 45 
SSA is assumed to lie upstream the generation of mismatch negativity (MMN; Escera 46 
and Malmierca, 2013) and such auditory evoked potential can be elicited with low 47 
intensity deviants sounds (Jacobsen et al., 2003; Althen et al., 2011). Intriguingly, the 48 
adjustment of the neuronal response to sound intensity statistics will reduce the 49 
response to low intensity sounds if the most common sound has a higher intensity (Dean 50 
et al., 2005). But, at least in the auditory cortex, some neurons are able to preserve a 51 
delicate sensitivity to low intensity sounds (Watkins and Barbour, 2008). Therefore, 52 
SSA for low intensity deviant sounds could be evoked, even when the high intensity 53 
sound had the same frequency than the low intensity one.  54 
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We recorded extracellular single-unit IC responses in the anesthetized rat to 55 
test if there is SSA for intensity deviants. We calculate the frequency response area 56 
(FRA) for each neuron and tested the oddball paradigm for a fixed low intensity deviant 57 
sound but repeatedly varying both the frequency and the intensity of the high intensity 58 
standard sound. We also used the novel rapid adaptation paradigm to characterize the 59 
shape and width of the frequency channels that code for the low intensity deviant sound. 60 
Our results demonstrate that there is no SSA for purely intensity deviant sounds in the 61 
IC, and the analysis of the across-adaptation elicited by the double deviants for 62 
frequency and intensity show that SSA can be generated if and when the high intensity 63 
standard is outside the frequency channels that code for the low intensity deviant sound. 64 
This experiments reinforced the idea that SSA is a feature dependent on input-specific 65 
adaptation mechanisms.  66 

109 
 



METHODS 67 

Surgical procedures. Experiments were performed on 37 adult pigmented female rats 68 
(Rattus norvergicus, Long-Evans) with body weights between 150 and 260 g. All 69 
experimental procedures were carried out at the University of Salamanca with the 70 
approval of, and using methods conforming to the standards of, the University of 71 
Salamanca Animal Care Committee. Anesthesia was induced (1.5 g/kg, i.p., 20% 72 
solution) and maintained (0.5 g/kg, i.p. given as needed) with urethane. Urethane was 73 
chosen as an anesthetic because its effects on multiple aspects of neural activity, 74 
including inhibition and spontaneous firing, are known to be less than those of 75 
barbiturates and other anesthetic drugs (Hara and Harris, 2002). The respiration was 76 
maintained artificially (SAR-830/P Ventilator) monitoring the end-tidal CO2 level 77 
(CapStar-100). For this purpose, the trachea was cannulated and atropine sulfate (0.05 78 
mg/kg, s.c.) was administered to reduce bronchial secretions. Details of surgical 79 
procedures have been described previously (Pérez-González et al., 2005; Malmierca et 80 
al., 2009). Body temperature was maintained at 38±1°C by means of a heating blanket. 81 
The animal was placed in a stereotaxic frame in which the ear bars were replaced by 82 
hollow speculae that accommodated a sound delivery system, inside a sound-sealed 83 
room. An incision was made in the scalp along the midline, and the skin was reflected 84 
laterally before a craniotomy was performed to expose the cerebral cortex overlaying 85 
the left IC. 86 

Electrophysiological recording. Extracellular single unit responses were recorded 87 
using a tungsten electrode (1–2 MΩ, Merrill and Ainsworth, 1972) lowered through the 88 
cortex by means of a piezoelectric microdrive (Burleigh 6000 ULN). Neuron location 89 
in the IC was based on stereotaxic coordinates, physiological criteria of tonotopicity 90 
and response properties (Malmierca et al., 2003; Hernandez et al., 2005) and confirmed 91 
histologically afterwards. Acoustic stimuli were delivered through a sealed acoustic 92 
system using two electrostatic loudspeakers (TDT-EC1: Tucker Davis Technologies) 93 
driven by two TDT-ED1 modules. The stimuli were presented contralaterally to the 94 
recording side; search stimuli were pure tones or noise bursts monaurally delivered 95 
under computer control using TDT System II hardware and custom software (Faure et 96 
al., 2003; Pérez-González et al., 2005; Malmierca et al., 2009). The output of the system 97 
at each ear was calibrated in situ using a ¼” condenser microphone (model 4136, Brüel 98 
& Kjær) and a dynamic signal analyzer (Photon+, Brüel & Kjær). The maximum output 99 
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of the TDT system was flat from 0.3 to 5 kHz (~100±7 dB SPL) and from 5 to 40 kHz 100 
(~90±5 dB SPL). The highest frequency produced by this system was limited to 40 101 
kHz. The second and third harmonic components in the signal were ≥40 dB below the 102 
level of the fundamental frequency at the highest output level (Malmierca et al., 2009). 103 
Action potentials were recorded with a BIOAMP amplifier (TDT), the 10x output of 104 
which was further amplified and bandpass-filtered (TDT PC1; fc, 500 Hz and 3 kHz) 105 
before passing through a spike discriminator (TDT SD1). Spike times were logged with 106 
a resolution of ≈150 µs on a computer by feeding the output of the spike discriminator 107 
into an event timer (TDT ET1) synchronized to a timing generator (TDT TG6). 108 
Stimulus generation and on-line data visualization were controlled with custom 109 
software. Spike times were displayed as dot rasters sorted by the acoustic parameter 110 
varied during testing.  111 

From each isolated neuron, the approximate frequency tuning was audiovisually 112 
determined by presenting pure tones lasting 75 ms with a 5 ms rise/fall time (Hernandez 113 
et al., 2005). We obtained the monaural frequency response area (FRA), the 114 
combination of frequencies and intensities capable of evoking a response, as an 115 
estimation of the neuronal receptive field. For that, we presented multiple combinations 116 
of frequency and intensity using an automated procedure with 5 stimulus repetitions at 117 
each frequency (from 0.5 to 40 kHz, in 25 logarithmic steps, presented randomly) and 118 
intensity (10 dB steps, presented from lower to higher intensities). The spike counts 119 
evoked at each combination of frequency and intensity were plotted using MATLAB®.  120 

Stimulus presentation paradigms. The representation of the FRA allowed us to choose 121 
different pairs of tones within the auditory field of the neuron. First of all, we set a pair 122 
of frequencies (f1 and f2) that elicited a similar firing rate at 10-20 dB above the best 123 
frequency threshold. Then, stimuli were presented in an oddball paradigm similar to 124 
that used to record mismatch negativity responses in human (Näätänen, 1992) and 125 
animal studies (e.g., Ulanovsky et al., 2003; Malmierca et al., 2009). Briefly, a train of 126 
400 stimuli containing both frequencies f1 and f2 was presented under the oddball 127 
paradigm: one frequency (f1) was presented as the standard stimuli while, interspersed 128 
randomly among the standards, the deviant stimuli were presented at the second 129 
frequency (f2). After obtaining one data set, the relative probabilities of the two stimuli 130 
were reversed, with f2 as the standard and f1 as the deviant. At the regular frequency 131 
deviant oddball paradigm used in this manuscript, the frequency contrast remained 132 
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constant at Δf=0.10 (0.141 octaves); where Δf = (f2 - f1) / (f2 x f1)1/2. The stimuli were 133 
always presented at a repetition rate of 4 Hz (inter-stimulus interval, ISI=250 ms) and 134 
the probability of appearance of the deviant stimulus was fixed at 10%. This condition 135 
has previously shown to evoke high neuronal levels of SSA in the IC (Malmierca et al., 136 
2009; Duque et al., 2012). Thus, we used it to calculate an overall level of frequency-137 
deviant SSA of each neuron. In order to have a more reliable analysis of the adaptation 138 
phenomenon, we fixed one of the frequencies used before (generally f1) and calculated 139 
the response of that frequency in a deviant alone protocol, where we tested an oddball 140 
paradigm but the standard stimuli is replaced by silence. Under that circumstance, the 141 
response to the deviant stimuli is the maximum possible for a given frequency because 142 
it is not affected by any kind of adaptation. 143 

Besides the calculation of the level of SSA for frequency deviants, we used the oddball 144 
paradigm to characterize how different frequencies at different intensities could affect 145 
the response to a low intensity deviant sound (Figure 1A). For this reason, keeping the 146 
deviant frequency fixed, we repeated the oddball paradigm but varied the intensity 147 
contrast (Δi=10 dB, Δi=20-30 dB and Δi=40-50 dB), the frequency contrast (Δf=0, 148 
Δf=0.04 [0.057 octaves], Δf=0.10 [0.141 octaves] and Δf=0.37 [0.526 octaves]) or both. 149 
As before, after obtaining each data set the relative probabilities of the two stimuli were 150 
reversed. The analysis of the response to the deviant sound allowed us to obtain a map 151 
of the different standard sounds that affect the low intensity deviant sound. Figure 1B 152 
shows three different examples of the usage of the oddball paradigm to this purpose: 1) 153 
pure frequency deviant oddball paradigm (Δf=0.1, orange hexagon), 2) pure intensity 154 
deviant oddball paradigm (Δi=10, violet square) and 3) double deviant oddball 155 
paradigm (Δf=0.1 and Δi=10, black diamond). Hereinafter, when we speak of intensity 156 
and double deviant protocols, deviant and probe (p) will refer to the frequency fixed at 157 
the low intensity, while standard and conditioner (c) will refer to the frequency used at 158 
high intensities. When probing for SSA at different frequency- and intensity contrasts, 159 
we started to collect the data from the smaller intensity contrast (Δi=10) and we used, 160 
at least, two different frequency contrasts. Then, we tried to cover all the possible range 161 
of intensity contrasts at the same frequency contrasts used before. A complete protocol 162 

in a neuron lasted for ∼90 min and allowed us to see the effect of 13 different 163 

frequencies /intensities over the probe sound (Figure 1A). In order to simplify the 164 
analysis of the data and to reduce the time of the experimental protocol, we decided to 165 
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always pick conditioner frequencies higher than the probe sound. This decision was 166 
taken because SSA levels are more evident at the high frequency range (Duque et al., 167 
2012).  168 

 

arise considering the standard sound used: frequency deviant (orange hexagon); 
intensity deviant (violet square); double deviant (black diamond)… Low intensity 
deviant sound responses are analyzed to check for across adaptation. C. Rapid 
adaptation paradigm (RAP). Two thousand ms sequences with 4 tones (3 repeated high 
intensity standard sounds and the low intensity deviant sound; ISI=250 ms) and 1000 
ms silence period (recovery gap) were presented. The whole range of frequencies and 
intensities used for computing the FRA is used in the RAP protocol. Reduced low 
intensity deviant sound responses after a determined high intensity standard sound are 
assumed to be due across adaptation. 

Subsequently, with the aim of complete the previous oddball paradigm data with the 169 
effect of low frequency conditioners over the probe sound, we established a novel rapid 170 
adaptation paradigm (RAP, Figure 1C). The RAP merged the concepts of two tones 171 
suppression experiments (e.g., Nelson et al., 2009) with the protocol to generate a FRA 172 
(see above). A sequence is generated with 1) a random tone at a determined frequency 173 
and intensity (conditioner, c) repeated three times before 2) a fixed sound (probe, p) is 174 

Figure 1. Experimental 
design. A. Schematic FRA 
showing the stimulation 
protocol of the experiments. A 
low intensity deviant pure tone 
(white circle) is fixed at the 
neuronal best frequency 10-20 
dB over threshold. Different 
conditioner sounds (squares, 
diamonds, hexagons and 
triangles) at different 
frequency- (∆f) and intensity 
contrasts (∆i) are used to check 
the across adaptation to the low 
intensity sound. B. Oddball 
paradigm. Four hundred pure 
tone sequences with a deviant 
(10% prob.) and a standard 
sound (90% prob.) were 
presented. The ISI was kept 
constant al 250 ms. Several 
different pairs of frequencies 
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presented. The stimuli were presented at a rate of 4 Hz (ISI=250 ms) and a recovery 175 
gap of 1000 ms is established after the probe sound, generating a 2000 ms sequence 176 
with 4 sounds and a 1000 ms silence period (Figure 1C. c c c p). If the conditioner 177 
frequency were related to the probe sound, the adaptation observed during the three-178 
conditioner repeated tones would also adapt the probe sound. If both tones are 179 
unrelated, the response to the probe sound will be as is obtained when the probe is 180 
presented alone, unaffected by the adaptation observed during the repetition of the 181 
three-conditioner tones. Similar to the FRA, we presented 4 sequence repetitions at 182 
multiple frequencies (25 logarithmic steps, presented randomly) and intensities (10 dB 183 
steps, presented from lower to higher intensities), covering the previously generated 184 
FRA. The firing rate of the probe sound–related to the conditioner sound– was then 185 
plotted in MATLAB®. The graph obtained showed an area of frequencies and 186 
intensities within the FRA with suppressed responses. The bandwidth of the frequency 187 
channel was taken to be the frequencies where the response to the probe sound was less 188 

than (1-criterion) * baseline response. The baseline response was the mean response to 189 

the probe tone when it was preceded by conditioner tones at the lowest intensity; the 190 
criterion values was 0.4 (Scholes et al, 2011). Bandwidths at 10 and 30 dB relative to 191 
the best frequency threshold (reTh) were calculated. The ratio between the bandwidths 192 
of the frequency channel and the FRA was also computed to extract the relative width 193 
of the frequency channel. 194 

Data analysis. Dot raster plots are used to illustrate the responses obtained to the 195 
oddball paradigm, plotting individual spikes (red dots indicate responses to the deviant; 196 
blue dots to the standard, and green to the deviant in a deviant alone protocol). Stimulus 197 
presentations are marked along the vertical axis. The responses to the standard and 198 
deviant stimuli were expressed as spikes per stimulus in a peri-stimulus time histogram 199 
(PSTH), to account for the different number of presentations in each condition. The 200 
amount of SSA was quantified in different ways. First, we calculated the common SSA 201 
index (CSI) and the frequency-specific index (SIf1) from the firing rate elicited in the 202 
oddball paradigm. They were defined as CSI = [d(f1) + d(f2) - s(f1) - s(f2)] / [d(f1) + d(f2) 203 
+ s(f1) + s(f2)], where d(f) and s(f) are responses to each frequency f1 or f2 when they 204 
were the deviant (d) or standard (s) stimulus and as SIf1 = [d(f1) - s(f1)] / [d(f1) + s(f1)], 205 
defined for the fixed frequency (f1). The values of these indices range from –1 to +1, 206 
being positive if the response to the deviant stimulus is greater. Both indexes are well 207 
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defined and have been used in previous studies, proving to be useful when the firing 208 
rate of the both frequencies is similar and when used for computing SSA for frequency 209 
deviants (e.g., Ulanovsky et al., 2003; Malmierca et al., 2009). We also used the 210 
normalized index of adaptation (NIA) defined for deviant as NIAdev= d(f1)/ d(f1-alone) 211 
and for standard as NIAstd= s(f1)/ d(f1-alone). We do not use a correction for spontaneous 212 
rate because the values are usually negligible in the urethane-anesthetized rat and mice 213 
(Duque et al., 2012; Duque and Malmierca, 2014). The NIA works with the assumption 214 
that the response to the sound in the deviant alone protocol is the maximum possible 215 
for a given frequency because is not affected by any kind of adaptation. In the NIA, 216 
responses to the standard or deviant sound are divided by the response in the deviant 217 
alone protocol, reflecting the extent to which the response to the standard or the deviant 218 
is reduced compared to the computed maximum response. NIA range from 0 to 1, being 219 
1 if the response to the sound is maximal (i.e., not adapted) and 0 if the response to the 220 
sound is totally suppressed. A Wilcoxon rank paired t-test comparing the NIA values 221 
for the standard (NIAstd) and the deviant (NIAdev) at the same condition allows for 222 
computing SSA. 223 

Statistical tests were performed using non-parametric tests. For comparing data from 224 
different groups, we used Mann-Whitney rank tests. For comparisons between the same 225 
data at different conditions, we used Wilcoxon rank paired t-tests. Multiple 226 
comparisons were realized with the Kruskal-Wallis test and the differences were 227 
confirmed with the Dunn’s post-hoc analysis. All the statistical tests were considered 228 
significant when p≤0.05. Different statistical tests were noted in the paper. The analysis 229 
and figures were done using Sigmaplot 11 (Systat Software) and MATLAB® 230 
(MathWorks).  231 
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RESULTS 232 

We recorded single unit responses from 132 well-isolated neurons in the IC of 233 
the rat, determined the basic temporal and spectral response properties of each neuron 234 
and chose a pair of frequencies within the FRA to evaluate SSA for frequency deviants 235 
under an oddball paradigm. Then, in order to test whether or not genuine SSA exists 236 
for intensity deviants, we fixed one of the frequencies used for the frequency deviant 237 
protocol and tested again the oddball paradigm but in this case for sounds that only 238 
differed by intensity. Finally, we also checked how responses to high intensity sounds 239 
affect the level of SSA of a low intensity tone. In the following, first we describe SSA 240 
responses of IC neurons for frequency and intensity deviants and then we will detail 241 
how the responses to low intensity sounds are modified by high intensity sounds. 242 

SSA for frequency deviants 243 

The common SSA index (CSI) was used to quantify the degree of neuronal 244 
adaptation in an oddball paradigm with a frequency contrast (Δf) of 0.1 and a repetition 245 
rate of 4 Hz (n=117), a condition that previous studies demonstrated to evoke high 246 
levels of SSA (Malmierca et al., 2009). CSI levels in this condition range from -0.09 to 247 
0.99 with an average of 0.49±0.34 (mean±S.D.) and confirm our previous data 248 
(Malmierca et al., 2009, Duque et al., 2012; Ayala et al., 2013). A CSI cut-off value of 249 
+0.18 was defined as significant SSA based on previous data (e.g. Antunes et al., 2010). 250 
Using this criterion, 81 neurons (69%) in our sample showed significant SSA, while 251 
the remaining 36 (31%) did not. We also quantified the degree of SSA using the 252 
frequency-specific SSA index (SI). The scatter plot in figure 2A shows the SI values 253 
for each frequency used in the oddball paradigm (SIf1 vs. SIf2). As expected (Malmierca 254 
et al., 2009; Duque et al., 2012, 2014; Ayala et al., 2013), the majority of values are 255 
located in the upper ‘right’ quadrant, and therefore they show significant SSA. 256 

SSA for intensity deviants  257 

 Next, we fixed one of the two frequencies used before (generally f1) and tested 258 
the neuron again using the oddball paradigm. In this case the second sound had the 259 
same frequency (Δf=0) but different intensity (Δi=10 dB). As a control, we also tested 260 
the oddball paradigm while varying both the frequency and the intensity, establishing 261 
a double deviant protocol (Δf=0.1; Δi=10 dB, Figure 1A). Hereinafter, when we speak 262 
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of intensity and double deviant protocols, f1 and probe (p) will refer the frequency fixed 263 
at the low intensity. To facilitate comparisons, the colors of the conditions in the scatter 264 
plots shown in Figure 2 are the same as in Figure 1: the open white circle is the fixed 265 
probe frequency (f1, p) and the 3 different colors represent the 3 different standard 266 
frequencies (conditioner, c) at the 3 different oddball paradigm protocols. Figure 2B 267 
shows the scatter plot for the SI values in the double deviant condition, i.e., when we 268 
varied frequency and intensity in concert (n=97; the low intensity probe sound [f1] is 269 
presented in the x-axis). The levels of CSI recorded in this condition range from -0.04 270 
to 0.99, with a mean value of 0.51±0.33 (mean±S.D.). The distribution of the dots in 271 
Figure 2A and 2B is almost identical, as the majority of values are located in the upper 272 
‘right’ quadrant, demonstrating unambiguously the presence of genuine SSA, meaning 273 
adaptation for both frequencies as standards. Nevertheless, a few SI values for the low 274 
intensity sound (SIf1: 6 cases, 6%) lie at SI = -1, meaning that there is no response at all 275 
for the low intensity deviant sound. 276 

By contrast, Figure 2C shows the scatter plot for the SI values when we tested 277 
an oddball paradigm with two sounds of the same frequency that differed in intensity 278 
only (Δi=10 dB, n=117; the low intensity sound [f1] is presented in the x-axis). The CSI 279 
values range from -0.04 to 0.92 with a mean CSI value of 0.35±0.29 (mean±S.D.). 280 
Since the CSI values for the intensity deviant condition were lower than the values 281 
obtained before for the frequency deviant and the control condition, we run a Kruskall-282 
Wallis ANOVA on Ranks test to check if there were some differences between the 283 
conditions (H=16.70; p<0.001). Dunn’s method post hoc test confirmed that the CSI 284 
values in the intensity deviant condition were smaller than in the frequency and the 285 
double deviant condition (Q=3.72 and Q=3.26, respectively; p<0.01 in both cases). 286 
Furthermore, a simple visual inspection of the values in Figure 2A and 2B show a 287 
different distribution to that at Figure 2C, because of the SI values obtained in the 288 
oddball paradigm for the low intensity sounds (SIf1). Indeed, a majority of the values 289 
(95 out of 117 neurons analyzed; 81.2%) were found in the upper ‘left’ quadrant and 290 
had a negative SIf1 value. Moreover, 44 values (37.8%) are unresponsive to low 291 
intensity sounds, show a -1 SIf1 and lay on the left y-axis. Only 4 neurons (3.4%) 292 
presented a SIf1 value larger than 0.18 (the cut-off value used for significant SSA), 293 
although a detailed analysis of the SIf1 values show that they were not different from 0 294 
and, therefore, we considered the values outliers (bootstrap over 1000 randomizations).   295 
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Figure 2. IC neurons do not show pure intensity deviant SSA. A. Scatter plot of the 
SI(f1) versus SI(f2) for the frequency deviant pairs of frequencies analyzed at a Δf=0.1. 
The cross indicates the median and the 25th-75th interquartile range for each axis. Each 
neuron was tested using different combinations of parameters and may be represented 
in additional panels. Median CSI value is shown at the bottom of the plot. B. Scatter 
plot of the SI(f1) versus SI(f2) for the double deviant condition (mixed frequency and 
intensity deviant pairs of frequencies) analyzed at a Δf=0.1 and Δi=10. SI(f1): Low 
intensity probe SI. SI(f2): High intensity conditioner SI.C. Scatter plot of the SI(f1) 
versus SI(f2) for the intensity deviant pairs of frequencies analyzed at a Δi=10. SI(f1): 
Low intensity probe SI. SI(f2): High intensity conditioner SI. D. Changes in SI(f1) 
values for each neuron at the three previous conditions: pure frequency deviant (left 
column), double deviant (middle column) and pure intensity deviant (right column). 
The values are sorted for neurons with low- (blue lines) and high SSA (red lines) for 
frequency deviants. Note the drop in intensity SSA levels for neurons with good 
sensitivity for frequency SSA. Neurons with low frequency SSA sensitivity present also 
low levels for intensity SSA.   
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Responses to the high intensity tones adapt the responses to low intensity sounds 296 

 If we only analyze the SI values for the frequency fixed (SIf1, Figure 2D) rather 297 
than the CSI, the results indicate in reality an apparent SSA for intensity deviant sounds. 298 
At first sight, we can observe two clearly differentiated populations. The first one, 299 
which showed SIf1 values for frequency deviants larger than +0.18 (red lines, significant 300 
SSA levels), generally presented similar values in the frequency deviant condition 301 
(Figure 2D, left column) and the double deviant condition (Figure 2D, middle column), 302 
but a big SIf1 drop when we test the oddball paradigm for the intensity deviant condition 303 
(Figure 2D, right column). As before, in several cases the SIf1 values are -1, indicating 304 
that there is no response to the low intensity sound. The second population showed SIf1 305 
values smaller than +0.18 (Figure 2D, blue lines) and had neither SSA for frequency 306 
nor for intensity deviants, with SIf1 values generally close to 0 in the three different 307 
conditions. The above indicates that the ‘classic CSI’ metric is not appropriate to 308 
evaluate intensity deviants because it is clearly biased by the reverse condition in the 309 
oddball paradigm, where the deviant sound presents a consistent response when it has 310 
a higher intensity than the standard sound. Figure 3 shows a typical example illustrating 311 
this effect. For the dot rasters (Figure 3B-E) we only highlight the responses to the low 312 
intensity sound colored (Figure 3A, f1, white empty circle) in the three different 313 
conditions shown before: frequency-, double- and intensity deviant. Figure 3B shows 314 
the response to f1 in a deviant alone protocol (green dots and lines), where the response 315 
should not be affected by adaptation and, therefore, to be maximum (see Methods).  316 

The evaluation of the CSI for the frequency- (Figure 3C) and the double 317 
deviant condition (Figure 3D) undoubtedly embodies genuine SSA, as compared to the 318 
SIf1 values. But when evaluating purely intensity deviants (Figure 3E) CSI fails to 319 
represent SSA, giving values comparable to the other conditions because of the bias 320 
due to the SIf2 value obtained in the reverse high intensity deviant condition (grey dots). 321 
A closer inspection to the dot rasters in Figure 3E allows to see the vanishing of the 322 
response to the low intensity deviant (Figure 3E, no red dots in the bottom scatter plot) 323 
when the standard sound is louder, while the response to the high intensity deviant 324 
sound is extremely reliable because the standard has a lower intensity and it is not 325 
affecting the response to the high intensity deviant (Figure 3E, grey dots). 326 
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Figure 3. CSI misrepresent intensity SSA. A. FRA of an IC neuron. A low intensity 
sound (f1, white circle) and three different frequencies (Δf=0.1: orange hexagon; Δf=0.1 
at Δi=10: green hexagon; Δi=10: violet square) are represented over the FRA. B. Dot 
raster plot illustrating responses of the low intensity sound in the deviant alone protocol. 
C-E. Below the FRA, dot raster plots are illustrated for the oddball paradigm with 3 
three different frequencies establishing: C. a frequency deviant oddball paradigm, 
Δf=0.1: orange hexagon in 3A. D. a double deviant oddball paradigm, Δf=0.1 at Δi=10: 
green hexagon in 3A and E. a intensity deviant oddball paradigm, Δi=10: violet square 
in 3A. In the top row the response to the low intensity sound as standard (90%) are 
represented in blue. In the bottom row –the reverse condition– responses to the low 
intensity sound as deviant (10%) are represented in red. Insets represent the PSTHs for 
the low intensity sound as deviant (red) or standard (blue). Responses to the other 
frequencies are plotted in grey but are not analyzed. Shaded backgrounds indicate the 
duration of the stimulus. CSI, SI(f1) and NIA values obtained in each condition are 
shown as insets in the bottom row. Observe that the CSI value obtained do not reflect 
the response observed in the intensity deviant condition (red responses in E). 

Next, we wonder if the frequency specific SI is a better index for studying SSA 327 
at the intensity domain. In some cases, when no response is present for the low intensity 328 
deviant (Figure 3E), SIf1 works properly to evaluate intensity SSA. In other cases, a 329 
minimal response also biased the SSA levels observed by SIf1. Figure 4 illustrates an 330 
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example where the CSI fails to reflect the neural SSA in the intensity deviant case and 331 
SIf1 also fails to do it in this case (Figure 4E). The consistent, although minimal, 332 
response to the low intensity deviant sound (red dots in the bottom Figure 4E) results 333 
in an exceptionally high level of SIf1 that reflect the responses observed in the dot rasters 334 
for the frequency- and the double deviant condition inaccurately (Figure 4C-D). Thus, 335 
in order to define and use an indicator that represents more objectively the adaptation 336 
in the intensity domain, we defined the normalized index of adaptation (NIA, see 337 
Methods). A simple comparison between the NIA values for the standard (NIAstd) and 338 
the deviant sounds (NIAdev) at the same condition not only allows for a consistent SSA 339 
index, but also highlight the effect of high intensity sounds on the adaptation of the low 340 
intensity ones (Figure 3E and 4E). 341 

 

Figure 4. SI(f1) misrepresent intensity SSA. Same conventions as in Figure 3. A. FRA 
of an IC neuron. B. Deviant alone responses for low intensity sound (f1, white circle). 
C. Frequency deviant responses for the low intensity sound (Δf=0.1: orange hexagon 
in 4A). D.  Double deviant responses for the low intensity sound (Δf=0.1 at Δi=10: 
green hexagon in 4A). E. Intensity deviant responses for the low intensity sound 
(Δi=10: violet square in 4A). Note that the SI(f1) value obtained do not reflect the 
response observed in the intensity deviant condition (red responses in E). 
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Frequency channels broaden at high intensities and determines SSA 342 

Next, we aimed to gain an understanding on how different frequencies (for 343 
now on: conditioners, c) at different intensities affect the adaptation of the low intensity 344 
sound. We used the oddball paradigm fixing one frequency (f1, for now on: probe, p) 345 
and varying the frequency contrast (Δf=0, Δf=0.04, Δf=0.10 and Δf=0.37) and the 346 
intensity contrasts (Δi=10, Δi=20-30 and Δi=40-50 dB).  347 

 

Figure 5. Two neuronal 
examples of intensity deviant 
SSA. A. FRA of an IC neuron. 
Probe sound (white circle, p) and 
nine different conditioner sounds 
covering the high frequency range 
of the FRA are represented over 
the FRA. The conditioner sounds 
were used at 3 frequency contrasts 
(Δf=0, Δf=0.04 and Δf=0.10) with 
3 intensity contrasts: b. Δi=50 dB. 
c. Δi=30 dB. d. Δi=10 dB. b-d. 
Below the FRA, PSTHs are 
illustrated for the probe response 
in the oddball paradigm with the 
nine different conditioner sounds. 
E. FRA of another IC neuron. 
Same conventions as in A. 
Oddball paradigm was performed 
at 3 frequency contrasts (Δf=0, 
Δf=0.1 and Δf=0.37) with 3 
different intensity contrasts: f. 
Δi=50 dB. g. Δi=30 dB. h. Δi=10 
dB. f-h. PSTHs show the probe 
responses with the different 
conditioner sounds. Intensity 
deviant SSA can only be evoked if 
the high intensity conditioner 
sound differs in frequency from 
the probe sound. 
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Figure 5 shows examples of two typical neurons. In both cases we observed 348 
the lack of response to the low intensity sound as deviant when the conditioner sound 349 
is the same frequency at a higher intensity (Figure 5b-d and 5f-h, left column, NIA≈0). 350 
In general, at low frequency contrasts we observed the same trend (Figure 5b-d, 351 
Δf=0.04: middle column, NIA≈0), but the responses to the low intensity deviant sounds 352 
usually resulted in larger NIA values at higher frequency contrasts (Figure 5f-h, middle 353 
and right column, Δf=0.1 and Δf=0.37 respectively). When the intensity contrast is 354 
larger (Δi=40-50 dB, Figure 5b and 5f), the NIA levels usually decreased compared 355 
with the NIA levels observed at low intensity contrasts. This findings suggests that the 356 
frequency channel that codes the response for the low intensity sound gets broader as 357 
sounds are louder, giving the possibility to high intensity sounds at large frequency 358 
contrasts to affect the adaptation of the low intensity sound. 359 

In order to check if this notion is true, we divided the data in two groups: 360 
neurons with significant SSA at the regular frequency-deviant oddball condition 361 
(Figure 6A and 6B; CSI≥0.18) and neurons that lack SSA at the same condition (Figure 362 
6C and 6D; CSI<0.18). For both populations we analyzed 1) the SSA levels by 363 
comparing the NIA values for the standard and the deviant sounds (Figure 6A and 6C) 364 
and 2) the latency difference between the response to the standard and that of the 365 
deviant sound (Figure 6B and 6D). When we analyzed the neurons with high frequency-366 
SSA levels, we observed –as expected– that the NIAdev value in that condition was 367 
significantly higher level than the NIAstd (Figure 6A, first column; NIAstd: blue median, 368 
NIAdev: red median; Wilcoxon paired t-test, Z=7.9, p<0.001, to simplify the chart NIAstd 369 
levels at other conditions are not shown). When we analyzed the NIAdev at a Δf=0, the 370 
levels are statistically different than the NIAstd at the three Δi, but in this condition the 371 
response to the standard is always larger than the response to the deviant (Wilcoxon 372 
paired t-test, low Δi Z=-5.2, mid Δi Z=-5.0 and large Δi Z=-2.7, p<0.001 in the three 373 
cases). This result implies that the response to a high intensity tone clearly adapts (and 374 
sometimes totally suppresses) the response to the same tone at a low intensity. If we 375 
slightly change the frequency of the high intensity conditioner (Δf=0.04), the responses 376 
to the low intensity deviant sound were greatly reduced, but they did not present 377 
significant differences with the response to the low intensity standard response 378 
(Wilcoxon paired t-test, p>0.1 in the three cases). By contrast, at a Δf=0.1 the neurons 379 
recovered the differential responsiveness observed in the frequency deviant oddball 380 
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condition (NIAdev>NIAstd: Wilcoxon paired t-test, low Δi Z=7.1, mid Δi Z=5.8 and large 381 
Δi Z=4.9, p<0.001 in the three cases). This trend was maintained and even enhanced at 382 
a Δf=0.37 (Wilcoxon paired t-test, low Δi Z=4.6, mid Δi Z=4.1 and large Δi Z=2.9, 383 
p<0.001 in the three conditions).  384 

 

Figure 6. Frequency channels are narrow in neurons with frequency deviant SSA. 
A. Box plot illustrating the average NIAdev values of the probe sound for neurons with 
frequency deviant SSA. Different conditioners are presented at different frequency 
(Δf=0, Δf=0.04, Δf=0.1 and Δf=0.37) and intensity contrasts (Δi=10, Δi=20-30 and 
Δi=40-50). NIAstd values are not plotted to simplify the plot. Asterisks (*) show 
statistical differences (NIAdev > NIAstd). Crosses (†) show significant differences in the 
other direction (NIAdev < NIAstd). Higher responses to the low intensity deviant probe 
sound can be obtained when Δf≥0.1. B. Box plot illustrating the latency difference of 
the probe sound (standard – deviant) at the same conditions presented in A. The changes 
in latency to the probe sound mimic the changes in the NIAdev level.  C. Box plot 
illustrating the average NIAdev values of the probe sound for neurons without frequency 
deviant SSA. Same conventions as in A. D. Box plot illustrating the latency difference 
of the probe sound (standard – deviant) at the same conditions presented in C. Note that 
higher responses to the low intensity deviant probe sound can only be obtained when 
Δf≥0.37. The frequency channel that codes for the probe sounds seem to be wider in 
the neurons without frequency deviant SSA. 
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Next, we analyzed the latency difference (Figure 6B), as a difference in latency 385 
between the standard and the deviant responses is a sign of a differential input 386 
processing of the sounds. As usual, the latency difference for the frequency deviant 387 
oddball paradigm was positive, being the latency for the standard response larger than 388 
the latency for the same sound as deviant (one sample Wilcoxon test, t=3.3, p=0.001). 389 
When we analyzed the latency data at a Δf=0 the resultant latency difference is negative 390 
regardless of the Δi, being the latency for the deviant response larger than the latency 391 
for the standard sound (one sample Wilcoxon test; low Δi t=-2.3, mid Δi Z=-2.1 and 392 
large Δi Z=-1.9; p=0.02, p=0.04 and p=0.06, respectively). Note that, to avoid data bias 393 
the latency difference was not calculated if the neuron showed no response to the low 394 
intensity deviant sound, but the data shows that the processing of the high intensity 395 
sound is producing a delay in the response to the low intensity sound. A similar trend 396 
was observed again at a Δf=0.04 but, similarly to what we saw with the firing rate 397 
adaptation, if the high intensity sound was placed outside the theoretical frequency 398 
channel (Δf=0.1 or Δf=0.37), the processing of both sounds was again independent, and 399 
the latency difference recovered the positive values observed in the frequency deviant 400 
oddball paradigm (e.g. at Δf=0.37: one sample Wilcoxon test; low Δi t=2.6, mid Δi 401 
Z=2.1 and large Δi Z=3.4; p=0.01, p=0.05 and p=0.003, respectively). 402 

When we analyzed the data for the neurons with non-significant SSA 403 
(CSI<0.18) the trend noted for the SSA neurons was preserved, although some 404 
important differences emerged. First of all, as expected, the overall adaptation is greatly 405 
reduced compared with the neurons with significant SSA (Figure 6A-C). But, as for the 406 
neurons with significant SSA, the NIAdev and NIAstd levels at a Δf=0 are different at the 407 
three Δi, presenting always a response to the standard tone higher than the response to 408 
the deviant tone (Wilcoxon paired t-test, low Δi Z=-3.9, mid Δi Z=-4.3 and large Δi Z=-409 
3.2, p≤0.001 in the three cases). However, the main difference was related to the 410 
frequency contrast and the recovery of the deviant response to the levels observed in 411 
the frequency deviant oddball paradigm: non-significant SSA neurons did not show 412 
differences in the NIA levels between the responses to the same tone as deviant or 413 
standard at either Δf=0.04 or Δf=0.1 (Wilcoxon paired t-test; p>0.2 in all the cases, data 414 
not shown) and the response to the deviant sound was only higher than the response to 415 
the standard tone at a Δf=0.37 (Wilcoxon paired t-test, low Δi Z=3.0, mid Δi Z=2.0 and 416 
large Δi Z=2.0, p<0.05 in the three conditions). The above implies that the neurons 417 
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lacking SSA possess: 1) a broader frequency channel than SSA neurons and 2) less 418 
ability to adapt to sounds in general. This notion is supported by the latency data 419 
analysis. As for the SSA neurons, the analysis of the latency data at a Δf=0 resulted in 420 
a negative latency difference regardless of the Δi, being the latency for the deviant 421 
response larger than the latency for the standard sound (one sample Wilcoxon test; low 422 
Δi t=-3.7, mid Δi Z=-4.4 and large Δi Z=-4.7; p<0.05 in the three cases). Again, the 423 
processing of the high intensity sound affects the processing of the low intensity sound. 424 
Surprisingly, the latency difference never recovered the positive values observed in the 425 
regular frequency deviant oddball paradigm (one sample Wilcoxon test; p>0.1 in all the 426 
cases at Δf=0.04, Δf=0.1 and Δf=0.37). Thus, although the response to the high 427 
intensity sound at a large frequency contrast (Δf=0.37) did not adapt the low intensity 428 
sound (Figure 6C), the lack of latency difference between the standard and the deviant 429 
sounds imply a certain degree of across-frequency adaptation (Figure 6D).  430 

To evaluate the across-frequency adaptation from high- to low intensities, we 431 
analyzed the temporal dynamics of adaptation of the standard sound at three different 432 
conditions (Figure 7A): with frequency- (Δf=0.1; orange), double- (Δf=0.1, Δi=10; 433 
green) and intensity deviant sounds (Δi =10; burgundy). Then, we fitted the responses 434 
with a double exponential function (Figure 7B) defined as 𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  𝐴𝐴𝑟𝑟 ∙435 

𝑒𝑒−𝑠𝑠/𝜏𝜏(𝑟𝑟) +  𝐴𝐴𝑠𝑠 ∙ 𝑒𝑒−𝑠𝑠/𝜏𝜏(𝑠𝑠) (e.g. Pérez-González et al., 2012). The response probability to 436 
the standard stimulus is rapidly reduced after the first stimulus trials in the three cases, 437 
but the speed of the decay is faster if the deviant sound is presented at higher intensities 438 
(Figure 7A and Table 1, τ(r)freq. dev.= 7.86; τ(r)double dev.= 0.85; τ(r)int. dev.= 0.78). If a high 439 
intensity sound is embedded within a stream of low intensity sounds, the neuron favors 440 
the response of the high intensity sound and adapt the low intensity sound, if and when 441 
the high intensity conditioner is within the frequency channel of the probe sound. Note 442 
that the asymptote of the curve (Astst) is similar in the three cases (Table 1), 443 
demonstrating a common plateau at the end of the adaptation process. In other words, 444 
high intensity sounds increase the speed of adaptation, but do not alter the degree of 445 
adaptation. 446 
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Figure 7. Frequency channel properties. A. Schematic FRA showing a probe sound 
(white circle) and the three conditioner sounds (orange hexagon: Δf=0.1, green 
hexagon: Δf=0.1 at Δi=30 and violet square: Δi=30) used to compute the time course 
of adaptation at different conditions. B. Probability of response to the standard stimulus 
at the three conditions stated in A. The higher intensity conditioner allows for a rapid 
adaptation regardless of the frequency of the conditioner. C. Dispersion chart of the 
NIAdev values against the probe frequency. The higher the frequency, the narrower the 
frequency channel. C. Dispersion chart of the NIAdev values versus the probe intensity. 
The higher the intensity, the wider the frequency channel.  
 

Table 1. Double exponential coefficients at different conditions (mean ± 95% c.i.). 
Superimposition with the 95% c.i. in the control condition indicates that there are no 
significant differences between the groups. Asterisk (*) shows statistical differences. 

Condition (r2) Fast component Slow component Std-state 
(Astst) Speed τ(r) Decay Ar Speed τ(s) Decay As 

Frequency dev. 
(0.84)  

7.8  
(3.9-12.2) 

0.3 
(0.2-0.4) 

74.0  
(59.4-88.5) 

0.4  
(0.3-0.4) 

0.14  
(0.13-0.15) 

Double dev. 
(0.58)  

0.9 * 
(0.5-1.2) 

1.4 * 
(0.7-2.2) 

80.9 
(58.1-103) 

0.1 * 
(0.2-0.3) 

0.09 * 
(0.08-0.10) 

Intensity dev. 
(0.66) 

0.8 * 
(0.5-1.1) 

2.0 * 
(1.0-3.0) 

45.6 
(33.1-58.1) 

0.2 * 
(0.1-0.2) 

0.10 * 
(0.09-0.11) 

 
Non-monotonic neurons also produce adaptation through high intensity sounds 447 

 Next, we also tested if non-monotonic IC neurons with SSA are able to 448 
maintain their responsiveness to low intensity sounds regardless of the intensity of the 449 
conditioner tone. In order to do that, SSA neurons were classified using the 450 
monotonicity index (MI: de la Rocha et al., 2008) and divided into monotonic 451 
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(MI≥0.75) and non-monotonic neurons (MI<0.75). If non-monotonic IC neurons 452 
maintain responsiveness to low intensity sounds, the overall NIA level for the responses 453 
to the low intensity deviant in the non-monotonic neurons would be larger than the NIA 454 
for the same condition in the monotonic ones. We tested this possibility at all the 455 
frequency (Δf=0, Δf=0.04, Δf=0.10 and Δf=0.37) and intensity contrasts (Δi=10, 456 
Δi=20-30 and Δi=40-50 dB) used before. Neither of the conditions showed any 457 
differences in the NIA of the responses to the deviant between the monotonic and the 458 
non-monotonic neurons (Mann-Whitney rank sum test, p>0.1 in all the cases but 459 
Δf=0.37 at Δi=30, where p=0.016).  460 

The width of the frequency channel is frequency and intensity dependent 461 

Considering that SSA is frequency and intensity dependent (Duque et al., 462 
2012), we also wished to check if this dependence affects the width of the frequency 463 
channel. We analyzed if the frequency channels were wider at low- than at high 464 
frequencies and if the frequency channels that code for higher intensities presented also 465 
wider bandwidths than the ones than also code for lower intensities. To do so, we only 466 
considered the neurons with significant SSA (CSI≥0.18) and looked for any correlation 467 
between the frequency and/or the intensity of the probe sound with the NIA values for 468 
the deviant response when the conditioner was presented at a fixed intensity contrast 469 
(Δi=30) at different frequency contrasts (Δf=0.04, 0.1 and 0.37, Figure 7A). The results 470 
demonstrate that the NIA values for the deviant response when the conditioner was at 471 
a Δi=30 with a Δf=0.04 did not present a significant correlation with the frequency or 472 
the intensity of the probe sound (Spearman rank order correlation, p=0.38 and p=0.89, 473 
respectively). The same was observed when the conditioner was at a Δi=30 with a 474 
Δf=0.37 (Spearman rank order correlation, p=0.77 and p=0.22, respectively). As 475 
expected, at a Δf=0.04 the NIA values were close to 0 regardless of the frequency and 476 
the intensity of the probe sound, while at a Δf=0.37 the values were high regardless of 477 
the frequency and the intensity of the probe. Interestingly, the trend disappeared when 478 
we analyzed the data at Δf=0.1: the width of the frequency channels had a clear 479 
dependence on the frequency and the intensity of the probe sound (Spearman rank order 480 

correlation, rfreq=0.239 rint=-0.26; p≤0.05 in both cases; Figure 7C-D, respectively). 481 

Thus, while the frequency channel seems to generally cover the 0.057 octaves range 482 
implicit in the 0.04 frequency contrast (regardless of the frequency and the intensity of 483 
the probe sound), the 0.141 octaves range embedded in the Δf=0.1 can lie either inside 484 

128 
 



(at low frequencies and higher intensities) or outside the frequency channel (at high 485 
frequencies and lower intensities, Figure 7A). On the other hand, the 0.526 octaves 486 
range related with a Δf=0.37 usually falls out the frequency channel, no matter what 487 
the frequency or the intensity of the probe sound is.  488 

Neurons with high SSA levels have narrow frequency channels 489 

 In order to understand the shape of those frequency channels, we establish a 490 
rapid adaptation paradigm (RAP; see Methods and Figure 1C), that allows to compare 491 
the FRA and the area of frequencies and intensities capable of generating adaptation to 492 
the low intensity probe sound. Figure 8A shows an example of the FRA (left chart) and 493 
the area of suppression obtained with the RAP (upper right chart), where the probe 494 
sound is represented by a black dot over the charts. To confirm that the adaptation 495 
observed in the RAP is unrelated to forward suppression (Nelson et al., 2009), a two-496 
tone protocol was also tested in 7 of these neurons (in such protocol 2 sounds were 497 
presented and the probe sound was immediately presented after the conditioner, with a 498 
conditioner-probe delay of 0 ms). The area of suppression of the two-tone protocol 499 
usually covered the whole FRA (Figure 8A, bottom right chart) and even a low intensity 500 
conditioner produced suppression of the probe sound. Thus, the areas of suppression 501 
were different between the RAP and the two-tone protocol, proving to be independent 502 
processes. 503 

Thirty-three neurons were recorded with the RAP. Neurons with high levels 504 
of SSA (Figure 8B-C) showed a narrow frequency channel, while neurons with lower 505 
levels presented a broad frequency channel (Figure 8D-E). In order to quantify such 506 
differences, we calculated ratio between the bandwidth of the frequency channel and 507 
the FRA (Figure 8F-G). A simple regression of the bandwidth at 10 and 30 dB above 508 
the probe sound show that the neurons with high frequency SSA sensitivity have 509 
narrower frequency channels (Figure 8F). With the aim of quantify this trend, we 510 
divided the neurons evaluated with the RAP in two groups, regarding its SSA 511 
sensitivity. Thus, when we compared both populations we found that the frequency 512 
channel in the neurons with high frequency SSA sensitivity (n=21) barely covered a 513 
quarter of the FRA at 10 and 30 dB reTh, while the frequency channels found in the 514 
neurons with low frequency SSA sensitivity were broader (Figure 8G Mann-Whitney 515 
rank sum test, p<0.05 at both 10 and 30 dB reTh). Last, the bandwidth ratio 516 
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demonstrated a narrow frequency channel in the high SSA neurons compared with the 517 
neurons that showed low SSA. 518 

 

Figure 8. Rapid adaptation paradigm. A. A FRA of an IC neuron is shown in the left 
panel. The probe sound used in the RAP protocol is represented as a black dot over the 
FRA. In the right panels, responses to the probe sound are shown at a conditioner-probe 
delay of 1) 175 ms (RAP protocol; upper right, adaptive processes) and 2) 0 ms (2-
tones suppression; bottom right, forward suppression). The area of suppression 
obtained in the RAP protocol is defined as frequency channel. B-C. FRAs of two 
neurons with high frequency-deviant SSA with its corresponding frequency channels. 
D-E. FRAs of two neurons with low frequency deviant SSA and its corresponding 
frequency channels. Note that the width of the frequency channels is larger in D-E than 
in B-C. F. Correlation between the proportion of the FRA covered by the frequency 
channels against the CSI at 10- (red lines and dots) and 30 dB (blue lines and dots) over 
threshold. G. Proportion of the FRA covered by the frequency channels computed in 
the neurons with high- and low frequency deviant SSA. The bandwidth of the frequency 
channels at both 10 and 30 dB over threshold cover less frequency range of the FRA in 
the neurons with high frequency deviant SSA.  
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DISCUSSION 519 

 Our results demonstrate that neither monotonic nor non-monotonic IC neurons 520 
show SSA for purely intensity deviant sounds, as they are not able to detect low 521 
intensity tones embedded within a sequence of the same tone at higher intensities. 522 
Nevertheless, the analysis of the double deviant data shed light on the across-adaptation 523 
caused from the high- to the low intensity sounds. Thus, SSA can be elicited if and 524 
when the high intensity conditioner sound is outside the frequency channels that code 525 
for the probe sound. The width of the channels is frequency- and intensity dependent, 526 
and neurons with high frequency SSA sensitivity present narrow frequency channels. 527 

Comparison with previous studies 528 

In the present account we demonstrate that neurons of the IC are sensitive to 529 
SSA for high intensity deviant sounds, as in the auditory cortex (Ulanovsky et al., 2003; 530 
Farley, 2010) but not to low intensity deviants.  In the cortex however, and despite the 531 
pattern of neuronal responses reported in these two studies being similar, one study 532 
interprets as SSA for low intensity deviants (Ulanovsky et al., 2003) while another did 533 
not (Farley et al., 2010). The first claimed that the results were inconsistent with a 534 
purely adaptive phenomenon (SIlow + SIhigh > 0) while the latter reported gain changes. 535 
Our results conform to the gain changes explanation (Sign test for SIlow + SIhigh = 0; 536 
p=0.392), demonstrating the absence of SSA for low intensity deviant sounds.  537 

Näätänen’s seminal paper (1978) demonstrated that MMN could be elicited 538 
by intensity increments and posterior works showed it also with intensity decrements 539 
(Näätänen et al., 1987, 1989a, 1989b; Paavilainen et al., 1991, 1993). An elegant paper 540 
(Jacobsen et al., 2003) demonstrated stimulus-specific MMN responses for both 541 
intensity increments and decrements, but they show that the P1-N1 component to the 542 
low intensity deviant was similar (or even smaller) to the same tone as standard. P1 and 543 
N1 components are attributed to basic auditory perception from the auditory cortex 544 
(Hari et al., 1984; Maess et al., 2007) and such reduced response conform to the data 545 
presented here. Middle latency responses (Althen et al., 2011) also showed MMN-like 546 
responses to intensity decrements between the Na and the Pa components, although the 547 
negative deflection observed by these authors (Figure 6C from Althen et al., 2011) 548 
could also be reflecting across-adaptation from high to low intensity sounds.  549 
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If that is so, intensity coding would be dominated by across-adaptation from 550 
high- to low intensities and genuine intensity discrimination (Jacobsen et al., 2003) 551 
would be generated only at high order cortical areas. Considering that 1) true intensity 552 
SSA neurons should respond better to both low- and high-intensity deviant sounds and 553 
that 2) only 4 out of 117 neurons analyzed (3.4%) showed a slightly larger sensitivity 554 
to low intensity deviant sounds, we conclude that IC neurons do not present purely 555 
intensity SSA. 556 

Frequency channel model in the inferior colliculus 557 

 Since inhibition is only playing a key role in modulating SSA but not in its 558 
generation (Pérez-González et al., 2012; Duque et al., 2014), a synaptic depression 559 
fatigue model (Grill-Spector et al., 2006; Briley and Krumbholz, 2013) has been 560 
proposed as the most likely explanation for SSA (Eytan et al., 2003; Mill et al., 2011a, 561 
2011b), although more complex mechanisms may explain it at the cortical level (Taaseh 562 
et al., 2011; Hershenhoren et al., 2014). However, the data shown in the present account 563 
from the IC perfectly fits this model (Figure 9A). In the frequency domain, as long as 564 
the repeated frequency is outside the frequency channel (Figure 9A, diamond) SSA 565 
would be present (Figure 9B). In the intensity domain, regardless the intensity of the 566 
repeated frequency (Figure 9A, square) across-adaptation from high- to low intensities 567 
will always be present (Figure 9C). If we present a high intensity sound with a different 568 
frequency (Figure 9A, triangle), SSA would depend on the width of the frequency 569 
channel. If the repeated frequency is outside the frequency channel there will be no 570 
across-adaptation; but if it is inside the resulting probe response will be reduced (Figure 571 
9D). Interestingly, MMN responses to double deviants did not show additivity 572 
(Paavilainen et al., 2001; Wolff and Schröger, 2001) which implies that MMN, as well 573 
as SSA, do not process frequency and intensity information independently. Moreover, 574 
the analysis of the N1 component provided a similar frequency channel model 575 
(Näätänen et al., 1988; Herrmann et al., 2013, 2014), pointing out the similarities 576 
between the adaptive processes in SSA and MMN. 577 
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Figure 9. Model of the frequency and intensity dependence of SSA in an IC 
neuron. A. Schematic FRA showing the response of an IC neuron. The probe sound is 
represented as a white circle and three different conditioner sounds are also drawn as 
black figures. The theoretical area of the frequency channel coding for the probe sound 
is represented as a region with diagonal lines. B. Response to the probe sound when the 
conditioner sound is in B. No cross adaptation is observed. C. Response to the probe 
sound when the conditioner sound is in C. Cross adaptation suppress the response to 
the probe sound. D. Response to the probe sound when the conditioner sound is in D. 
Cross adaptation could be observed depending on the width of the frequency channel. 
E-F. The reduced SSA observed at high intensities could be due to additional frequency 
channel that expanded at high intensities (E) or to specific high-intensity channels that 
do not usually show adaptation (F). 
 

Neurons with high frequency SSA show narrow frequency channels (Figures 578 
6 and 8). As we have previously demonstrated that frequency SSA neurons present 579 
broad FRAs (Duque et al., 2012), it is tempting to speculate that such neurons can 580 
integrate more frequency inputs. Moreover, the low levels of frequency SSA observed 581 
at high intensities (Duque et al., 2012) may be explained because the frequency 582 
channels broaden monotonically with intensity. We also showed that frequency 583 
channels are narrower at high frequencies, consequently increasing adaptation at high 584 
frequencies (Figure 7C-D), a phenomenon that has been previously observed in the 585 
auditory nerve fibers (Westerman and Smith, 1985) and the IC (Figure 5 from Dean et 586 
al., 2008; Figure 7C from Duque et al., 2012) and may be related with the great amount 587 
of high frequency behaviorally relevant sounds rat usually process. 588 

133 
 



Forward suppression, SSA and adjustment to sound intensity statistics 589 

The current data support the idea that there is no SSA for intensity deviant 590 
sounds because of forward suppression-like phenomena. If that is so, adjustments to 591 
sound intensity statistics (Dean et al., 2005) could only be produced from low- to high 592 
intensity sounds. At first sight, this does not fit with the data presented by Dean and 593 
colleagues (2005) where, at a population level, bimodal stimuli adjust responses to 594 
incorporate both low- and high-intensity regions (Dean et al., 2005). Nevertheless, 595 
these authors commented that individual neurons did not show any obvious trend to 596 
adjust to both low- and high-intensity regions (Figure 4C from Dean et al., 2005). 597 

SSA at the intensity domain greatly resembles forward suppression in the IC 598 
(Nelson et al., 2009), but some differences arise when comparing both studies. First, 599 
forward suppression would involve inhibitory mechanisms (Nelson et al., 2009), but 600 
we have previously demonstrated that SSA is not generated by GABAergic inhibition 601 
in both the IC (Pérez-González et al., 2012) and the thalamus (Duque et al., 2014). In 602 
fact, as non-monotonic SSA neurons in the IC –generated by GABAergic inhibition 603 
(Sivaramakrishnan, et al., 2004; Grimsley et al., 2013)– do not maintain responsiveness 604 
to low intensity sounds embedded in a background of loud sounds, inhibitory 605 
generation of non-monotonicity in the IC would be a post hoc phenomenon independent 606 
of the excitatory inputs that generate SSA. Nevertheless, such non-monotonicity could 607 
eventually lead to deviant detection at more high-level relay stations of the auditory 608 
system, like the auditory cortex (Watkins and Barbour, 2008; 2011a; 2011b). Secondly, 609 

forward suppression in the IC is evident up to ∼70 ms conditioner-probe delays (Nelson 610 

et al., 2009). In the present account, delays of 175 ms were used between the sounds, a 611 

condition that in the IC only showed a ∼5 dB residual masking (Nelson et al., 2009). 612 

Finally, forward suppression experiment were conducted in central nucleus IC-like 613 
neurons (Nelson et al., 2009), while our SSA data population is biased to non-lemniscal 614 
regions of the IC (Malmierca et al., 2009; Duque et al., 2012; Pérez-González et al., 615 
2012; Ayala et al., 2013).  616 

In contrast, experiments performed in the auditory cortex (Calford and 617 
Semple, 1995; Brosch and Schreiner, 1997; Scholl et al., 2008; Scholes et al., 2011) 618 
suggest that forward suppression effects with conditioner-probe intervals higher than 619 
100-150 ms are attributable to SSA, probably through synaptic depression (Wehr and 620 
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Zador, 2005; Scholes et al., 2011). If forward suppression is a merely adaptive process, 621 
the absence of intensity SSA would be determined by the overlap in the synapses 622 
activated by high- and low intensity sounds (Scholl et al., 2008). Indeed, the dynamics 623 
of adaptation for forward suppression, intensity SSA and dynamic range adjustments 624 
are virtually identical. The three phenomena seem to all share dual adaptations that 625 
comprise 1) an input related mechanism (i.e., synaptic depression) and 2) a gain control 626 
mechanism (i.e., inhibition), where the input related component is generally more 627 
relevant (SSA: Ulanovsky et al., 2003; Pérez-González et al., 2012; forward 628 
suppression: Scholl et al., 2008; dynamic range adjustment: Wen et al., 2009). Such 629 
dual adaptation is also reflected in the similar time constants obtained when evaluating 630 
the time course of adaptation (Ulanovsky et al., 2004; Dean et al., 2008).  631 

In summary, our data indicates that a dynamic range adjustment to intensity 632 
(Dean et al., 2005) is passively due to SSA (Condon and Weinberger, 1991; Malone 633 
and Semple, 2001; Ulanovsky et al., 2003; Malmierca et al., 2009), a phenomenon 634 
present for frequency- but not for intensity-deviant tones and that may provide a likely 635 
explanation for central forward suppression in the IC.   636 
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DISCUSSION 
 

The present PhD thesis summarizes the results of 4 different 

electrophysiological studies performed in rats or mice at two different 

subcortical nuclei: the IC and the MGB.  

In the first study (Duque et al., 2012) I demonstrate that, in the IC, 

SSA is not constant within the FRA, and therefore it is not an intrinsic 

property of the neuron. I further demonstrate that higher levels of SSA are 

biased towards low intensity levels and to the high-frequency edge of the 

FRA, and that ON responses exhibit larger SSA values than other response 

types. I also demonstrate that neurons with broader FRAs show more SSA, 

and most of them are located in the cortical regions of the IC.  

The second study (Duque et al., 2014) shows that the activation of 

GABAA receptors with GABA or gaboxadol (GABAA receptor agonist) increases 

the level of SSA in the MGB by decreasing the neuronal firing rate. 

Conversely, gabazine application (GABAA receptor antagonist) decreases the 

SSA and increases the firing rate. I conclude that the GABAergic system is 

exerting a gain control effect over the SSA sensitivity. 

Study II (Duque and Malmierca, 2014) reveals SSA levels in the IC of 

the awake mouse equivalent to those seen in the anesthetized mouse and 

rat. I also show that urethane anesthesia does affect the spontaneous rate 

(SR), which is dynamically modulating SSA by the animal’s state. 

Last, study IV (Wang et al., 2014, under review) shows that IC 

neurons do not present SSA for purely intensity deviant sounds, as they are 

not able to detect low intensity tones embedded within a sequence of the 

same tone at higher intensities. Nevertheless, SSA can be elicited if and when 

the high intensity conditioner sound is outside the frequency channels that 

code for the low intensity sound. I also show that the width of the channels 

is frequency- and intensity dependent, and that neurons with high frequency 

SSA sensitivity present narrow frequency channels. 
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Neuronal properties of SSA 

In the first study (Duque et al., 2012) I confirm that neurons from the 

non-lemniscal pathway in the IC have higher frequency SSA sensitivity 

(Malmierca et al., 2009). Interestingly, the last study of this PhD thesis (Wang 

et al., 2014, under review) shows that neurons with high frequency SSA 

sensitivity present narrow frequency channels. As neurons in the LCIC, DCIC 

and RCIC have the largest and less oriented dendritic arbors in the IC 

(Malmierca et al., 1993; 1995; 2011), it is tempting to speculate that such 

‘disorientation’ allows the neurons to integrate more (Duque et al., 2012) 

and thinner (Wang et al., 2014, under review) frequency inputs and thus, that 

the higher levels of SSA found in the cortical regions of the IC are accordingly 

related to the width of the FRA. 

The first study also shows that low sound levels present the higher 

SSA sensitivity (Duque et al., 2012). At low intensities, the response to the 

standard stimulus disappears gradually because of the adaptation process, 

resulting in high CSI. At high intensities the response to the standard stimulus 

is more sustained over time and the net result is a low CSI value. The study 

also confirms that SSA is not only stronger for the ON responses of the 

neurons (Duque et al., 2012) but that the ON portion of other response types 

with a well-defined ON region, like ON-OFF and ON-SUSTAINED responses 

show larger SSA as well. Nevertheless, such firing rate dependence of SSA is 

independent of the intensity of the sound (Duque et al., 2012). In the last 

study (Wang et al., 2014, under review) I further demonstrate that frequency 

channels broaden monotonically with intensity. Thus, a likely explanation for 

the differences in frequency SSA sensitivity between low and high intensities 

is that frequency channels allow across-frequency adaptation at low intensity 

levels, but not at high intensities, where the channel will be wider than the 

frequency contrasts used in the first study (Duque et al., 2012). 
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I also demonstrate that IC neurons are sensitive to SSA for high 

intensity deviant sounds, as in the auditory cortex (Ulanovsky et al., 2003; 

Farley, 2010) but not to low intensity deviants (Wang et al., 2014, under 

review). The data suggests that there is no SSA for intensity deviant sounds 

because of forward suppression-like phenomena, where the absence of 

intensity SSA would be determined by the overlap in the synapses activated 

by high- and low intensity sounds (Scholl et al., 2008). Thus, intensity coding 

seems to be dominated by across-adaptation from high- to low intensities 

and genuine intensity discrimination (Jacobsen et al., 2003) would only be 

generated at high order cortical areas.  

To further understand the physical characteristics of the sound that 

defines SSA, I also tried to evoke SSA responses with double deviants for 

both frequency and intensity (Wang et al., 2014, under review). The analysis 

of the double-deviant data shed light on the across-adaptation caused from 

the high- to the low intensity sounds. Thus, I found that some double-

deviants at particular combinations of frequency and intensity can evoke SSA 

(Wang et al., 2014, under review). Interestingly, the synaptic depression 

model (Grill-Spector et al., 2006; Briley and Krumbholz, 2013) and the 

frequency-specific adaptation channels theory (Eytan et al., 2003; Mill et al., 

2011a, 2011b; Taaseh et al., 2011; Hershenhoren et al., 2014) perfectly 

explain all the data commented above from studies I and IV. In the frequency 

domain, as long as the repeated frequency is outside the frequency channel 

(Figure 13A, diamond) there will be no across-adaptation, the probe sound 

would show a high response rate and SSA would be present (Figure 13B). In 

the intensity domain, regardless of the intensity of the repeated frequency 

(Figure 13A, square), across-adaptation from high to low intensities will 

always be present (Figure 13C). On the other hand, if we present a high 

intensity tone with a different frequency (Figure 13A, triangle), SSA would 

depend on the width of the frequency channel. If the repeated frequency is 
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outside the frequency channel, there will be no across-adaptation; if it is 

inside, the resulting probe response will be reduced (Figure 13D). 

 
Figure 13. Frequency channel model of SSA. A. Schematic FRA showing the response 
of an IC neuron. The probe sound is represented as a white circle and three different 
conditioner sounds are drawn as black figures. The frequency channel for the probe 
tone is represented as a region with diagonal lines. B. Normal response to the probe 
sound when the conditioner sound is in B.C. Response to the probe sound when the 
conditioner tone is in C. Cross adaptation suppress the response. D. Response to the 
probe sound when the conditioner sound is in D. Cross adaptation could be observed 
depending on the width of the frequency channel. 

I further demonstrated that frequency SSA sensitivity is stronger on 

the high-frequency edge of the FRA (Duque et al., 2012), possibly because 

the frequency channels are narrower at high frequencies (Wang et al., 2014, 

under review). Such phenomenon has been also observed in the auditory 

nerve fibers (Westerman and Smith, 1985) and the IC (Dean et al., 2008). 

High frequencies are behaviorally relevant sounds for the rats and may 

require a better response, hence increasing the sensitivity to high frequency 

sounds and developing hyperacuity and higher levels of frequency SSA.  

Although it seemed clear that synaptic depression mechanisms are 

generating SSA at subcortical levels, we wanted to understand the actual role 

of inhibition in the modulation or generation of SSA. Thus, in order to check 

that possibility I used the microiontophoretic technique to record neurons 

while activating or blocking GABAA receptors (Duque et al., 2014). 
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GABAergic modulation of SSA 

In the second study, I found that both GABA and gaboxadol increase 

the level of SSA in the MGB. On the other hand, the application of gabazine 

increased the neuronal firing rate and decreased the levels of SSA. As I show 

similar effects on SSA after GABA and gaboxadol (GABAA selective agonist) 

application, it is unlikely that these actions are mediated through GABAB 

receptors. In addition, as gabazine (GABAA antagonist) does not block GABAB 

receptors, it reinforces the idea that GABAB receptors are not prominently 

involved in SSA coding.  

In study II the change in SSA sensitivity by the manipulation of the 

GABAA receptor was not frequency specific: similar effects on the SSA 

sensitivity were apparent over the whole range of frequencies of the neuron 

(Duque et al., 2014), suggesting that GABAergic inhibition is a phenomenon 

independent of the excitatory inputs that generate SSA. In concord with this 

data, I also show that non-monotonic SSA neurons in the IC –generated by 

GABAergic inhibition (Sivaramakrishnan, et al., 2004; Grimsley et al., 2013)– 

do not maintain responsiveness to low intensity sounds when embedded in a 

high intensity background (Wang et al., 2014, under review). Altogether, it is 

tempting to speculate that inhibition in the IC is happening a posteriori of the 

excitatory inputs that generate SSA.  

In conclusion, the GABA effects shown in the MGB study (Duque et 

al., 2012) are similar to the ones observed in the IC (Pérez-González et al., 

2012). The data from the second study –in conform with the IC data– show 

that the GABAergic system does not generate or create SSA de novo, but 

exerts a gain control function (Robinson and McAlpine, 2009; Isaacson and 

Scanziani, 2011). Such gain control decreases the responses to both common 

and novel stimuli (Figure 14), increasing the ratio between the responses, as 

explained by the ‘iceberg effect’ (Rose and Blakemore, 1974). 

149 
 



Daniel Duque 
 

 

Figure 14. SSA modulation by inhibition. (A) In the absence of inhibition, responses 
to deviant (orange) and standard sounds (light blue). (B) Inhibition reduces the 
responses to both deviants (red) and standards (dark blue) increasing the deviant to 
standard ratio and thus enhancing SSA. From Pérez-González et al., 2012. 

The effects of anesthesia on SSA 

As anesthesia may be also altering the balance between excitation 

and inhibition, I implemented a system to record in awake animals to check if 

SSA was affected by anesthesia (Study III; Duque and Malmierca, 2014). This 

study shows that the high levels of SSA found in the mouse IC are similar to 

the ones seen in the urethane-anesthetized mouse and rat. It further reveals 

that urethane anesthesia does affect other response properties, as the SR. 

Our data is in accord with previous work that suggests a basal adaptive state 

due to high SR (Abolafia et al., 2011). This pre-adaptive situation will produce 

less adaptation to both the standard and deviant stimuli, decreasing the 

deviant-standard ratio, therefore reducing the levels of SSA. 

Since high SR in the awake behaving animals are related to a decline 

in adaptation (Chung et al., 2002; Castro-Alamancos, 2004), attention during 

task engagement may modulate the neuronal responses (Buran et al., 2014). 

In this respect, I found a clear correlation between the CSI levels and the SR 

such that the higher the CSI level, the lower the SR (Duque and Malmierca, 

2014). Thus, I speculate that attention might be dynamically increasing the 

SR, consequently reducing the levels of SSA. One plausible mechanism would 

be through GABAergic inhibition. As I demonstrate in the second study that 

150 
 



DISCUSSION 
 

GABAA mediated inhibition acts as a gain control system that enhances SSA 

(Pérez-Gonzalez et al., 2012; Duque et al., 2014), it could increase SSA by 

suppressing the SR. Moreover, recent studies have shown that the moderate 

urethane effects on neurotransmission seem to perfectly mimic natural sleep 

(Clement et al., 2008; Pagliardini et al., 2012; 2013), a state that implies a 

reduction of behavioral responsiveness (Rechtschaffen et al., 1966). Thus, I 

hypothesized that during sleep we may need more robust resources to react 

to danger (Duque and Malmierca, 2014) and attenuation of SR during sleep 

could improve this essential response. 

Synaptic mechanisms underlying SSA and future experiments  

 In future research it would be interesting to understand the synaptic 

mechanisms underlying SSA. Synaptic depression could explain SSA (Chung et 

al., 2002; Rothman et al., 2009) as it is an input-specific mechanism and 

neural responses depend on the previous history of afferent firing (Abbott et 

al., 1997; Rothman et al., 2009). Synaptic depression scales neuronal 

sensitivity to all of its driving inputs (Abbott et al., 1997; Rothman et al., 

2009), explaining a variety of time scales of adaptation (Varela et al., 1997).  

Nevertheless, synaptic depression does not necessary have to be a 

passive phenomenon, as several different retrograde signaling pathways can 

act at the synaptic level. Gases (nitric oxide), peptides (dynorphin), growth 

factors (brain-derived neurotrophic factor), or conventional amino acid 

transmitters (glutamate or GABA) are released by postsynaptic neurons and 

then act on the axon terminals of presynaptic neurons (Regehr et al. 2009). 

In the mammalian brain, endocannabinoid (eCB) signaling enables neurons 

to regulate the strength of their inputs in a retrograde manner (Wilson and 

Nicoll, 2002; Freund et al., 2003; Kano et al., 2009).  

The presynaptic localization of CB1 receptors and its inhibitory effect 

on neurotransmitter release have proved to be a general feature of most 
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axon terminals in the central system (Kano et al. 2009), suppressing synaptic 

strength for tens of seconds (Wilson and Nicoll, 2001). Such ecB are released 

from the somatodendritic domain of neurons and then modify release 

properties of afferent axon terminals or regulate activity in nearby glial 

processes (Figure 15). Sustained firing of sodium spikes or burst firing can 

evoke eCB release and may contribute to short-term synaptic plasticity 

(Castillo et al., 2012).  

 
Figure 15. Endocannabinoid Signaling. A. Retrograde endocannabinoid (eCB) 
signaling. eCBs are mobilized from postsynaptic neurons and target presynaptic 
cannabinoid type 1 receptors (CB1Rs) to suppress neurotransmitter release. B. 
Neuron-astrocyte signaling. eCBs released from postsynaptic neurons stimulates 
astrocytic CB1Rs, thereby triggering gliotransmission. Glu, glutamate. C. Short-term 
depression. Postsynaptic activity triggers Ca2+ influx via voltage-gated Ca2+ channels. 
Other Ca2+ sources, like NMDARs and internal stores, may contribute. Ca2+ promotes 
eCB production. Presynaptic activity can also lead to eCB mobilization by activating 
postsynaptic glutamate receptors (mGluRs). Arachidonoylglycerol (2-AG) is released 
and retrogradely targets presynaptic CB1Rs. Adapted from Castillo et al., 2012. 

 Future research is needed to understand if retrograde transmission, 

as the one mediated by the eCB system, is generating SSA at subcortical 

levels. Interestingly, eCB signaling have been proved to act in the auditory 

pathway at the level of the cochlear nucleus (Zhao et al., 2009; Zhao and 

Tzounopoulos, 2011), the superior olivary complex (Trattner et al., 2013) and 

the external cortex of the IC of the barn owl (Penzo and Peña, 2009). 
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Final remarks  

In conclusion, this Doctoral Thesis demonstrates that SSA is a 

genuine phenomenon from the mammalian brain (rat, mouse…) that it is not 

artifact of anesthesia and that it is modulated by the GABAergic system. This 

work further demonstrates that SSA is likely explained at the level of the IC 

and the MGB by the frequency channel model. It also suggests that SSA could 

be generated in a bottom-up fashion throughout the auditory pathway, as it 

seems to be an input related phenomenon. The existence of consecutive gain 

controls over SSA in the IC and the MGB suggests the existence of successive 

hierarchical levels of processing through the auditory system that would 

allow reduction of redundant information. Therefore, SSA would act as a pre-

attentive gating involved in reducing sensory input to behaviorally relevant 

sound for the animals, helping to provide adequate responses for survival.  
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1. SSA is not constant within the FRA, and therefore is not a 

characteristic property of the neuron. SSA is stronger at low 

intensity sounds and biased towards high frequencies. 

2. Neurons located in the non-lemniscal regions of the IC show the 

highest levels of SSA, an area characterized by discrete onset 

neuronal temporal responses and broad FRAs. 

3. The GABAergic system modulates SSA at the level of the MGB in 

a gain control manner. Thus, GABA decreases the neuronal firing 

rate and increase the level of SSA, but do not generate it. 

4. GABA produces its modulation mainly through GABAA receptors. 

5. SSA is a genuine phenomenon and not an artifact attributable to 

anesthesia. SSA levels in the awake mice and the anesthetized 

mice and rat are comparable. 

6. SSA is dynamically modulated by the animal’s state through the 

neuronal SR. 

7. IC neurons do not show SSA for purely intensity deviant sounds, 

but SSA can be elicited if and when the standard sound is 

outside the frequency channels that code for the deviant sound.  

8. Neurons with high frequency SSA sensitivity present narrow 

frequency channels. Frequency channels broaden monotonically 

with intensity and are narrower at high frequencies. 
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Introducción 

El mundo que nos rodea es una realidad que no puede ser percibida 

en su totalidad, aunque para los seres vivos esa realidad es irrelevante: los 

sistemas sensoriales simplemente tienen que ofrecer una representación 

mínima del medio ambiente, para así proveer a los organismos de estímulos 

lo suficientemente simples para que éstos generen respuestas óptimas para 

la supervivencia (Klug y Grothe, 2010). 

Codificación de las señales por el cerebro 

La rápida adopción de la teoría de la información (Shannon, 1948) al 

campo de la neurobiología teórica y experimental (Attneave, 1954; Barlow, 

1961) implicó un brusco cambio de paradigma a la hora de plantearse de qué 

manera el cerebro está codificando el mundo que nos rodea. La hipótesis de 

la codificación eficiente planteada por Barlow (1961) implicaba tres principios 

básicos: 1) los sistemas sensoriales son capaces de detectar patrones 

relevantes de entre el continuo flujo de señales que reciben, 2) los diferentes 

núcleos sensoriales actúan como filtros modificables y 3) para percibir 

adecuadamente los mensajes del mundo exterior es necesario eliminar toda 

la información redundante. La reducción de toda la información reiterativa 

puede llevarse a cabo mediante la adaptación: si un sistema sensorial es 

capaz de ajustar su estrategia de codificación de señales, la adaptación 

ayudaría a dicho sistema a codificar eficientemente los estímulos naturales 

(Wark y col., 2007). 

 Durante las últimas décadas varios artículos han aportado pruebas 

irrefutables de que los sistemas visual (Laighlin, 1981; Smirnakis y col., 1997; 

Fairhall y col., 2001), auditivo (Lewicki, 2002; Ulanovsky y col., 2003; Dean y 

col., 2005; Dahmen y col., 2010), somatosensorial (Katz y col., 2006; Maravall 

y col., 2007) y olfativo (Assisi y col., 2007; Kostal y col., 2008) son capaces de 
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codificar eficientemente las variaciones de estímulos que se encuentran en la 

naturaleza. Todos estos experimentos refuerzan la idea de que la adaptación 

es un proceso activo que permite a los animales tener una óptima 

representación del mundo que los rodea. De entre todos los sistemas 

sensoriales, el auditivo es particularmente interesante. El ambiente auditivo 

natural está lleno de sonidos, muchos de los cuales pueden tener un 

significado evolutivo, entendiéndose como esencial para la supervivencia, y 

muchos otros que no tienen por qué afectar la propia integridad. 

El sistema auditivo 

El sistema auditivo central consiste en una sucesión de núcleos 

auditivos interconectados entre ellos, a través de los cuales es trasmitida 

toda la información auditiva recibida por el sistema periférico (Malmierca y 

Hacket, 2010). La información que proviene de la cóclea llega a los núcleos 

cocleares a través del nervio auditivo manteniendo la tonotopía que se ha 

formado en la cóclea (von Bèkèsy, 1960), es decir, conservando una 

organización segregada de bajas a altas frecuencias. Los núcleos cocleares 

distribuyen toda la información a núcleos posteriores mediante tres vías 

paralelas de procesamiento que convergen finalmente en el colículo inferior 

(Malmierca, 2003).  

El colículo inferior (IC según las siglas de la nomenclatura 

anglosajona, inferior colliculus) es de los centros más importantes de la vía 

auditiva ya que reconstruye toda la información descendente proveniente de 

los núcleos cocleares, el complejo olivar superior y los núcleos del lemnisco 

lateral (Malmierca y Hacket, 2010). Anatómicamente se divide en cuatro 

regiones: un núcleo central y tres cortezas: lateral, rostral y dorsal (Loftus y 

col., 2008). El núcleo central recolecta todas las fibras aferentes derivadas 

del tronco cerebral y está organizado en láminas fibrodendríticas que 

mantienen la tonotopía, procesando las frecuencias altas en la región 
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ventrolateral y las frecuencias bajas en la dorsomedial (Faye-Lund y Osen, 

1985; Malmierca y col., 1993). Por otro lado, las cortezas lateral, rostral y 

dorsal del IC parecen tener una función diferente, siendo de gran interés de 

estudio debido a que estas regiones reciben masivas proyecciones 

corticofugas (Saldaña y col., 1996) y presentan interesantes respuestas 

multisensoriales (Aitlkin y col., 1978, 1981). Las neuronas localizadas en la 

cortezas del IC presentan un alto grado de desorganización dendrítica 

(Malmierca, 1991), al contrario de los árboles dendríticos de las neuronas del 

núcleo central. Esta teórica desorganización permitiría un gran nivel de 

integración, facilitando la adquisición de la información proveniente de la 

integración de distintas frecuencias (Loftus y col., 2008).  

El cuerpo geniculado medial (MGB según las siglas de la 

nomenclatura anglosajona, medial geniculate body), en el tálamo auditivo, es 

la siguiente estación de la vía auditiva. Es un centro esencial de modulación 

de las señales auditivas (Sherman, 2007) y tiene importantes implicaciones 

en el procesamiento emocional de los sonidos (Doron y Leroux, 1999). 

Anatómicamente presenta tres divisiones (Winer, 1985). La división ventral 

está organizada tonotópicamente y sus neuronas responden eficientemente 

a los estímulos acústicos. Ambas divisiones medial y dorsal presentan una 

importante respuesta multisensorial (Smith y Spirou, 2002).  

La distribución anatómica del IC y del MGB no es baladí y de ella 

surgen dos vías paralelas de procesamiento auditivo: la vía lemniscal y la no-

lemniscal (Hu y col., 1994; Hu, 2003). La vía lemniscal comienza en el núcleo 

central del IC y proyecta al núcleo ventral del MGB, que a su vez proyecta a la 

corteza auditiva primaria. La vía no-lemniscal comienza en las regiones 

corticales del IC, proyecta a las divisiones mediales y dorsales del MGB y este 

a su vez a la corteza auditiva secundaria (Hu y col., 1994; Hu, 2003; Lee y 

Sherman, 2010, 2011). La vía lemniscal provee a los organismos de una 
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representación fiable de las características del sonido (de Ribaupierre, 1997), 

mientras que la no-lemniscal lleva básicamente información contextual 

(Calford y Aitkin, 1983), multisensorial (Hu y col, 1994) y emocional (Komura 

y col., 2001, 2005). 

Detección de la novedad auditiva 

De entre todos los sonidos generados continua y simultáneamente 

por diversas fuentes en un ambiente natural normal, el sistema auditivo 

tiene que seleccionar qué elementos acústicos son verdaderamente 

relevantes y crear constructos perceptuales (Fishman y Steinschneider, 2010) 

con el propósito de realizar adecuadamente un análisis de la escena auditiva 

(Bregman, 1990; Winkler y col., 2009). Una manera de organizar dicha 

escena acústica implica la retención de los objetos sonoros (Winkler y col., 

2009), el almacenamiento de los objetos regulares en una huella mnemónica 

y la generación de predicciones sobre posibles futuros eventos al 

compararlos con esa huella retenida en la memoria (Bendixen y col., 2012). 

Este análisis de la escena auditiva es la aproximación teórica actual a la 

detección de la novedad auditiva (Näätänen y col., 1978). Para entenderlo se 

tiene que tener en cuenta que dentro de cualquier escena auditiva coexisten 

sonidos repetitivos, generalmente irrelevantes, con otros sonidos novedosos, 

raros, que pueden precisar de una respuesta inmediata de los animales. 

Como asimilar y responder a tal cantidad de información es una tarea 

imposible para el sistema nervioso, el procesamiento de todos estos sonidos 

tiene que ser compensado de alguna manera en función de su importancia 

relativa. En 1978, Näätänen y colaboradores, usando potenciales evocados 

auditivos, encontraron un componente cerebral que parecía reflejar la 

capacidad para detectar sonidos raros: el potencial de disparidad. 

Los potenciales evocados auditivos son un conjunto de señales 

bioeléctricas generadas por el cerebro ante una estimulación auditiva. Esta 
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estimulación provoca la activación de determinados conjuntos neuronales 

que, a su vez, originan una secuencia de ondas cerebrales. El potencial de 

disparidad (MMN según las siglas de la nomenclatura anglosajona, mismatch 

negativity) es uno de estos componentes (Näätänen y col., 1978; Tiitinen y 

col., 1994). El MMN es una onda con el pico de latencia entre los 150 y los 

200 ms (Nelken, 2014) que se puede obtener mediante una multitud de 

protocolos experimentales, aunque el más común y usado históricamente es 

el paradigma oddball. Dicho paradigma consiste en la presentación de una 

secuencia de estímulos repetitivos (sonidos estándar) entre los cuales se 

intercala ocasionalmente un estímulo diferente (sonido raro). El MMN es la 

diferencia de señal entre las ondas obtenidas por el estímulo estándar y el 

raro. Aunque la atención puede modular la detección de la novedad 

(Näätänen y col., 1993), las bases fisiológicas de dicho proceso son 

claramente preatentivas (Tiitinen y col., 1994; Schröger, 1998). Actualmente 

existen dos teorías diferentes acerca de cuáles son los orígenes 

fenomenológicos del MMN (Fishman, 2013): 1) la codificación predictiva 

(Näätänen y col., 2001; Friston, 2005), dónde el MMN sería una señal de 

error y 2) la adaptación neuronal, en la cual el MMN sería solamente el 

reflejo de los procesos adaptativos que se suceden a lo largo de la vía 

auditiva, es decir, un artefacto de la sustracción (May y Tiitinen, 2010). 

Adaptación específica a estímulos 

De manera paralela a la que se sucedía este debate, se encontró un 

fenómeno neuronal interesante: la adaptación específica a estímulos (SSA 

según las siglas de la nomenclatura anglosajona, stimulus-specific 

adaptation), es decir, la habilidad de algunas neuronas auditivas de 

mantener una respuesta estable y continua a los sonidos raros mientras la 

respuesta a los sonidos repetidos se encuentra muy adaptada, hasta llegar el 

punto de poder desaparecer (Ulanovsky y col., 2003; Malmierca y col., 2009). 
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La SSA fue inicialmente descrita en la corteza auditiva (Ulanovsky y 

col., 2003), aunque posteriormente también fue encontrada en el IC (Pérez-

González y col., 2005) y el MGB (Anderson y col., 2009). Hasta este 

momento, el IC es la primera estación de la vía auditiva donde se ha 

encontrado SSA, ya que experimentos en los núcleos cocleares se han 

mostrado infructuosos (Ayala y col., 2013). Las propiedades básicas de la SSA 

en el sistema auditivo se han estudiado en detalle tanto en el IC (para una 

revisión exhaustiva ver Ayala y Malmierca, 2013), el MGB (para una revisión 

exhaustiva ver Antunes y Malmierca, 2014) y la corteza auditiva (para una 

revisión exhaustiva ver Escera y Malmierca, 2013 o Nelken, 2014). 

Se sabe que la SSA depende de algunos factores tales como el 

contraste de frecuencia (en octavas) entre el estímulo estándar y el raro, la 

probabilidad de ocurrencia del estímulo raro o el intervalo de tiempo entre 

estímulos consecutivos (Ulanovsky y col., 2003, Malmierca y col., 2009). 

También se sabe que las regiones no-lemniscales del IC y el MGB son las que 

presentan mayores niveles de SSA (Malmierca y col., 2009; Antunes y col., 

2010), aunque los niveles de SSA encontrados en la región lemniscal de la 

corteza auditiva rompen con esta distribución (Ulanovsky y col., 2003). 

Teniendo en cuenta la masiva proyección descendente de la corteza auditiva 

a las regiones no-lemniscales de IC y de MGB, Nelken y colaboradores (2003) 

consideraron que la SSA se generaba en la corteza y se transmitía 

posteriormente a núcleos inferiores. Recientes experimentos han 

demostrado que la desactivación cortical no afecta a la SSA de las regiones 

no-lemniscales del MGB (Antunes y Malmierca, 2011) y del IC (Anderson y 

Malmierca, 2013). De esta manera, la SSA podría tratarse de un fenómeno 

que se origina en núcleos inferiores y se transmite posteriormente hasta la 

corteza auditiva, refinándose en cada estación intermedia. 
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Hipótesis 

Hasta ahora, los mecanismos neuronales que generan la SSA en el 

sistema auditivo siguen sin conocerse. Dos teorías diferentes se han 

desarrollado en los últimos años para intentar explicarlos. Por un lado, la SSA 

podría ser un mecanismo que operara en la salida de la neurona, al nivel del 

potencial de membrana (Abolafia y col., 2011), alterando la sensibilidad 

general de la neurona. Por otro lado, la SSA también podría ser un 

mecanismo que actuara a nivel de las aferentes neuronales (Ulanovsky y col., 

2004), antes de que la neurona integrara las respuestas. Dicho modelo, que 

implica mecanismos como la depresión sináptica (Grill-Spector y col., 2006; 

Briley y Krumbholz, 2013), se ha destacado como la mejor explicación para la 

SSA (teoría de los canales de adaptación específicos de frecuencia: Eytan y 

col., 2003; Taaseh y col., 2011). 

Además, el rol de la inhibición en la generación de la SSA no está 

claro. Según unos autores la inhibición puede modular activamente la SSA 

(Yu y col., 2009), mientras otros dicen que la inhibición por sí sola no la está 

generando (Pérez-González y col., 2012). Finalmente, cabe resaltar que la 

mayoría de los experimentos sobre la SSA se han realizado bajo anestesia, 

aún a sabiendas de que ésta modifica muchas propiedades neuronales al 

alterar el sensible equilibrio entre la inhibición y la excitación neuronal 

(Rudolph y Antkowiak, 2004). Sabiendo todo esto, nuestras hipótesis son: 

1. La SSA es un mecanismo dependiente de las aferentes neuronales y 

definido por el rango de frecuencias que abarca cada aferente. 

2. La SSA es un mecanismo auténtico y no un artefacto de la anestesia, 

aunque puede estar controlado por el sistema inhibitorio.  
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Objetivos 

Considerando 1) que la mayoría de los experimentos sobre la SSA 

consistían en una evaluación general de su sensibilidad sin tener en cuenta 

las regiones específicas de los campos neuronales, 2) que la sensibilidad a 

sonidos que sólo difieren en intensidad casi no está estudiada, 3) que las 

implicaciones de la inhibición en la SSA son confusas y 4) que la mayoría de 

los experimentos se han realizado en animales anestesiados, los objetivos de 

esta Tesis Doctoral son: 

1. Evaluar si la SSA es un proceso dependiente de frecuencia e 

intensidad o si, por el contrario, presenta un valor único para 

cada neurona (Estudio I). 

2. Comprobar si la SSA está generada o modulada por el sistema 

GABAérgico en el MGB, donde GABA es el único 

neurotransmisor inhibitorio (Estudio II). 

3. Demostrar que la SSA no está afectada por la anestesia y 

entender si el estado de alerta de los animales puede modificar 

su sensibilidad (Estudio III). 

4. Determinar si la SSA puede ser evocada por sonidos raros que 

difieren en intensidad (Estudio IV). 
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Resumen artículo I: SSA depende de frecuencia e intensidad 

Objetivos 

Hasta la fecha, la mayoría de estudios sobre la SSA se habían 

centrado en el análisis de su respuesta teniendo en cuenta factores 

contextuales como la probabilidad de ocurrencia del estímulo raro o la 

frecuencia de repetición de los sonidos. Aun así, nadie se había planteado si 

la SSA variaba dentro del campo receptivo neuronal (FRA según las siglas de 

la nomenclatura anglosajona, frequency response area), es decir, se ignoraba 

si la SSA era una propiedad única de la neurona o, por el contrario, una 

característica dependiente de la intensidad, la frecuencia del sonido o el 

patrón de disparo de la neurona en esa zona determinada del FRA.  

Metodología 

De este modo, se usó el paradigma oddball para evaluar la SSA en 

900 pares de frecuencias de 115 neuronas del IC de la rata (unas 8 parejas 

por neurona). La SSA fue cuantificada y comparada entre los diferentes pares 

de frecuencias dentro de cada FRA, teniendo en cuenta las intensidades y las 

frecuencias usadas en cada caso. También se evaluó si el tipo de FRA de la 

neurona o el patrón de disparo en esa región del FRA afectaban a la 

sensibilidad de la neurona para mostrar altos niveles de SSA. Para finalizar, 

se realizó un análisis exhaustivo de los niveles de SSA considerando las 

regiones que constituyen el IC. 

Resultados 

Nuestros resultados mostraron que la SSA es manifiestamente 

dependiente tanto de frecuencia como de intensidad, mostrando los niveles 

más elevados a altas frecuencias, a bajas intensidades y cuando las neuronas 

presentan un tipo de respuesta onset. La tendencia que mostraba altos 

niveles de SSA a altas frecuencias no estaba sesgada debido a una mayor 
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cantidad de neuronas con buena respuesta a altas frecuencias, pues dicha 

tendencia también se mantenía dentro de cada neurona: los pares de 

frecuencias en la región de altas frecuencias de la neurona también 

mostraban mayores niveles de SSA. Además, confirmamos que la SSA es 

mucho más robusta en las regiones corticales (no-lemniscales) del IC y que 

hay una correlación positiva entre la SSA y el ancho de banda de los FRAs. 

Conclusiones 

Todo esto sugiere que las neuronas del IC de la rata muestran una 

mayor sensibilidad para discernir sonidos discretos y sutiles, sugiriendo que 

la respuesta a un sonido de alta intensidad siempre es relevante para el 

organismo. Estas neuronas también muestran mayores niveles de SSA para 

los sonidos de altas frecuencias, un rango de frecuencias que incluye una 

gran cantidad de sonidos relevantes para la supervivencia de estos animales. 

Además, la mayor capacidad integrativa de las neuronas de las regiones 

corticales del IC también se refleja en su sensibilidad para discernir sonidos: 

cuanto mayor es el rango de frecuencias que puede integrar una neurona, 

mayor es la capacidad para discriminar entre las frecuencias. Así pues, como 

la SSA en el IC no muestra un valor único neuronal no está mediada por 

propiedades intrínsecas de la membrana. Valorando todos estos datos, las 

explicaciones más plausibles para este fenómeno son 1) el equilibrio entre la 

excitación y la inhibición o 2) una posible segregación de las aferentes 

neuronales.  
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Resumen artículo II: El sistema GABAérgico modula la SSA 

Objetivos 

Teniendo en cuenta los datos obtenidos en el artículo anterior, nos 

planteamos si realmente la relación que se establece en cada neurona entre 

la excitación y la inhibición era la desencadenante de la SSA. Así pues, como 

el sistema GABAérgico es conocido por regular diversas propiedades 

neuronales en el sistema auditivo, bloqueamos y/o activamos los receptores 

de GABA con el fin de observar qué efectos tiene dicho sistema sobre la 

sensibilidad neuronal a SSA. Los experimentos fueron realizados en el MGB 

porque en este núcleo GABA es el principal neurotransmisor inhibitorio, pues 

la glicina está prácticamente ausente. 

Metodología 

Registramos 52 neuronas extracelularmente con electrodos que 

tenían adheridos pipetas de vidrio rellenas de agonistas (GABA y gaboxadol) 

y/o antagonistas (gabazina) de los receptores de GABAA. Al encontrar una 

neurona, evaluábamos sus niveles de SSA y luego eyectábamos las diferentes 

drogas para ver 1) qué efectos tenían sobre las propiedades básicas de la 

neurona y 2) si afectaban a la sensibilidad de la neurona para la SSA. Dicha 

eyección se realizaba mediante la técnica de la microiontoforesis, que 

consiste en retener las drogas manteniendo una corriente con polaridad 

inversa y eyectarlas por repulsión al poner una corriente con la misma 

polaridad. Al finalizar las evaluaciones con las drogas, siempre tratábamos de 

recuperar los valores obtenidos al principio como control de la integridad de 

la neurona. 

Resultados 

Nuestros resultados demostraron que tanto GABA (activador natural 

de los receptores de GABAA y GABAB) como gaboxadol (agonista de GABAA) 
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provocaban efectos similares a las neuronas, disminuyendo drásticamente su 

tasa de disparo, pero sin afectar en demasía el nivel de SSA. Como el efecto 

de las dos drogas era parejo, concluimos que la mayor parte del efecto que 

veíamos se mediaba por los receptores GABAA. Por el contrario, el bloqueo 

de los receptores GABAA al usar la gabazina aumentaba la tasa de disparo a 

nivel general, tanto al estímulo estándar como al raro, haciendo disminuir el 

nivel de SSA.  

Conclusiones 

Junto a datos de estudios previos realizados en el IC (Pérez-González 

y col., 2012), estos experimentos apuntan a que la inhibición mediada por 

GABAA no genera la SSA, aunque el sistema GABAérgico parece estar 

ejerciendo un control de ganancia sobre dicho fenómeno. La presencia de un 

mismo fenómeno en dos núcleos distintos de la vía auditiva parece reflejar la 

existencia de sucesivos niveles de procesamiento jerárquico, sugiriendo que 

el sistema GABAérgico actúa a lo largo del sistema auditivo reduciendo la 

información redundante. 
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Resumen artículo III: SSA en animal despierto y anestesiado 

Objetivos 

En el artículo anterior demostramos como el sistema GABAérgico 

ejercía un control de ganancia en la SSA. Curiosamente, la gran mayoría de 

anestesias usadas para la experimentación animal actúan sobre receptores 

GABAérgicos, alterando el equilibrio entre la excitación y la inhibición. Como 

la práctica totalidad de los experimentos se habían realizado bajo los efectos 

de la anestesia procedimos a realizar un análisis comparativo de los niveles 

de SSA entre animales despiertos y anestesiados. 

Metodología 

Implantamos en el laboratorio un sistema de registro de neuronas 

usado durante muchos años en murciélagos, la técnica de fijación de cabeza, 

adaptándolo para el registro de ratones despiertos (Bryant y col., 2009; 

Muniak y col., 2012). Por otro lado, los registros en animales anestesiados se 

hicieron con uretano, el anestésico cotidiano en el laboratorio y el usado en 

los dos estudios comentados anteriormente. Registramos 93 neuronas, 54 en 

animales despiertos y 39 en animales anestesiados, evaluando factores como 

la actividad espontánea o la tasa de disparo neuronal. Posteriormente, 

comparamos los niveles de SSA entre animales despiertos y anestesiados, 

comprobando factores como la tasa de repetición y el contraste entre las 

frecuencias usadas en el paradigma oddball. 

Resultados 

Nuestros datos demostraron que la anestesia no está afectando ni a 

las propiedades generales de respuesta –como la tasa de disparo o la 

latencia de las respuestas–  ni a los niveles de SSA en el IC. No obstante, el 

grado general de inhibición se muestra muy afectado por la anestesia, 

reflejándose en los registros en animales despiertos con unos altos niveles de 
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actividad espontánea (SR, por su nomenclatura anglosajona, spontaneous 

activity) y la aparición de unas neuronas ‘inhibidas’ que reducen (o paran 

completamente) su actividad espontánea al presentar un sonido. Además, 

los altos niveles de SR encontrados en el animal despierto parecen estar 

relacionados con unos niveles de SSA ligeramente más bajos. 

Conclusiones 

Este trabajo demuestra la validez de los estudios previos realizados 

en animales bajo los efectos de la anestesia, al demostrar niveles de SSA muy 

similar tanto en animal despierto como anestesiado. Además, el estudio 

también sugiere que la SSA pueda estar particularmente activa en estados 

similares al sueño –donde la actividad espontánea está muy reducida–, ya 

que el uretano parece mimetizar de manera fehaciente el estado de sueño 

profundo (Pagliardini y col., 2012, 2013). 
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Resumen artículo IV: Los canales de frecuencia determinan la SSA 

Objetivos 

Considerando los datos obtenidos de los tres artículos anteriores y 

habiendo descartado como mecanismo generador de SSA el balance entre 

excitación e inhibición, retomamos la teoría acerca de la segregación de las 

aferentes para entender cuáles son las propiedades físicas del sonido que 

generan la SSA. Así pues, nos propusimos descubrir si existe SSA para sonidos 

que divergen en intensidad.  

Metodología 

En el último estudio, se registraron 132 neuronas en el IC de la rata 

para estimar qué sensibilidad presentan las neuronas a la SSA para sonidos 

que difieren tanto en frecuencia como en intensidad. Así pues, evaluamos la 

adaptación cruzada fijando un tono de bajas intensidades dentro del FRA 

(sonido prueba) y usando el paradigma oddball con un tono estándar 

repetitivo de mayor intensidad que el sonido prueba (sonido condicionante) 

y que va variando tanto en frecuencia como en intensidad. La evaluación de 

la adaptación cruzada con este método se realizó con el objetivo de 

establecer el área de frecuencias e intensidades dentro del FRA que 

condicionan la respuesta al sonido prueba de baja intensidad. Además, 30 

neuronas fueron evaluadas con un nuevo paradigma de adaptación rápida,  

para corroborar los datos obtenidos con el paradigma oddball. 

Resultados 

Nuestros datos demuestran que el IC puede distinguir perfectamente 

sonidos que difieren en frecuencia, pero que no pueden discernir sonidos 

que únicamente difieren en intensidad, sugiriendo que la SSA puede estar 

estrechamente relacionada con mecanismos parecidos al enmascaramiento 

posterior (Nelson y col., 2009). Además, el análisis de la adaptación cruzada 
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por medio del paradigma oddball y del de adaptación rápida permitió dibujar 

unos canales de frecuencia que se ensanchan al aumentar la intensidad y 

que son más estrechos en las altas frecuencias y en neuronas con altos 

niveles de SSA para frecuencia.  

Conclusiones 

Así pues, este último estudio muestra que la SSA puede ser evocada 

siempre y cuando el sonido condicionante de alta intensidad se encuentre 

fuera del canal de frecuencia que codifica para el sonido de baja intensidad. 

De esta manera, los resultados obtenidos en este estudio sugieren que la 

amplitud de los canales aferentes de frecuencia que llegan a la neurona son 

los que finalmente determinan la sensibilidad de la SSA para características 

físicas del sonido como la frecuencia y la intensidad. 
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Discusión 

 En esta Tesis Doctoral se han realizado 4 estudios electrofisiológicos 

en la rata o el ratón en dos núcleos subcorticales: el IC y el MGB. Dichos 

estudios han revelado importantes características acerca de la SSA en el 

sistema auditivo de los mamíferos. 

 En el estudio I (Duque y col., 2012), se confirmó que las neuronas de 

las regiones no lemniscales del IC presentan altos niveles de SSA para 

frecuencia (Malmierca y col., 2009). Además, en el último estudio (Wang y 

col., 2014, en revisión) mostramos como las neuronas con estos altos niveles 

de SSA para frecuencia poseen unos canales de frecuencia más estrechos. 

Teniendo en cuenta que los árboles dendríticos de las neuronas de las 

regiones no lemniscales del IC son muy grandes y caóticos (Malmierca y col., 

1993, 1995, 2011), podemos especular que esta desorganización dendrítica 

permite la integración de más (Duque y col., 2012) y más estrechos (Wang y 

col., 2014, en revisión) canales de frecuencia. Si así fuera, los altos niveles de 

SSA encontrados en las regiones corticales del IC estarían relacionados con el 

ancho de banda neuronal. 

 El primer estudio muestra también como las neuronas del IC tienen 

mayores niveles de SSA para sonidos de baja intensidad (Duque y col., 2012), 

mientras que el último demuestra que los canales de frecuencia se 

ensanchan a medida que se aumenta la intensidad del sonido (Wang y col., 

2014, en revisión). Analizando conjuntamente dichos resultados, los bajos 

niveles de SSA a altas intensidades podrían ser fácilmente explicables debido 

a dicho ensanchamiento: a bajas intensidades el contraste de frecuencias no 

permite adaptación cruzada, pues las dos frecuencias estarían en dos canales 

de frecuencia diferentes. A altas intensidades, el canal sería más ancho que 

ese mismo contraste de frecuencia y la adaptación cruzada haría que los 

niveles de SSA a esa alta intensidad fueran prácticamente insignificantes. 
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 Además, las neuronas del IC son capaces de detectar sonidos de alta 

intensidad que se encuentran en un ambiente de bajas intensidades, pero no 

al revés (Wang y col., 2014, en revisión). Estos resultados sugieren que no 

existe sensibilidad de la SSA para sonidos que difieren en intensidad, ya que 

la codificación de la intensidad se encuentra dominada por fenómenos como 

el enmascaramiento posterior. Si así fuera, la falta de SSA para intensidad 

sería fácilmente explicable por el solapamiento de la actividad de las sinapsis 

para los sonidos de altas y bajas intensidades (Scholl y col., 2008), es decir, 

las sinapsis activadas por un sonido de alta intensidad estarían usando –y 

consiguientemente adaptando– las sinapsis activadas para un sonido de baja 

intensidad. Así pues, la codificación de la intensidad estaría dominada por la 

adaptación cruzada de altas a bajas intensidades y la auténtica 

discriminación entre intensidades (Jacobsen y col., 2003) sólo podría llevarse 

a cabo en regiones corticales superiores. Para desentrañar cuales son las 

características físicas del sonido que definen la SSA, también se trató de 

evocarla con sonidos raros que diferían tanto en frecuencia como en 

intensidad (Wang y col., 2014, en revisión). El análisis de estos datos permitió 

entender las bases de la adaptación cruzada: la SSA puede ser evocada 

siempre y cuando el sonido condicionante de alta intensidad se encuentre 

fuera del canal de frecuencia que codifica para el sonido de baja intensidad 

(Wang y col., 2014, en revisión). Estos datos encajan a la perfección con el 

modelo de SSA definido por depresión sináptica (Grill-Spector y col., 2006; 

Briley y Krumbholz, 2013). Dicho modelo está apoyado en la teoría de los 

canales de adaptación específicos para frecuencia (Eytan y col., 2003; Taaseh 

y col., 2011; Hershenhoren y col., 2014) y explica tanto los datos obtenidos 

en el estudio I para sonidos que defieren en frecuencia (Duque y col., 2012) 

como los que difieren en intensidad (Wang y col., 2014, en revisión). 

 Finalmente, el estudio I también demostró que los niveles de SSA 

para frecuencia eran mayores si los sonidos presentados estaban en el rango 
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de altas frecuencias (Duque y col., 2012), posiblemente debido a que a altas 

frecuencias los canales de frecuencia son más estrechos (Wang y col., 2014, 

en revisión). Este fenómeno ha sido previamente observado tanto en las 

fibras del nervio auditivo (Westerman y Smith, 1985) como en el IC (Dean y 

col., 2008). El desarrollo de esta gran agudeza auditiva a altas frecuencias 

puede ser debido a la ingente cantidad de sonidos relevantes para la 

supervivencia de ratas y ratones en este espectro de sonidos. 

 Aunque parece claro que la SSA a niveles subcorticales está generada 

por mecanismos como la depresión sináptica, en el estudio II se usó la 

microiontoforesis para elucidar qué rol tiene el sistema inhibitorio 

GABAérgico en la generación o modulación de la SSA (Duque et al., 2014). La 

aplicación tanto de GABA como del agonista específico de GABAA gaboxadol 

aumentan la sensibilidad de la neurona a SSA al disminuir de forma 

generalizada la tasa de disparo neuronal. Por el contrario, el uso de la 

gabazina (antagonista específico de los receptores GABAA) aumenta la tasa 

de disparo neurona y disminuye la sensibilidad de la SSA. El efecto de GABA 

sobre la neurona es similar en todo el rango de frecuencias de cada neurona, 

lo que hace sospechar que la inhibición es un fenómeno independiente de 

las aferentes que generan la SSA. De hecho, en el estudio IV (Wang y col., 

2014, en revisión) se muestra que la generación GABAérgica de la no-

monotonicidad en el IC (Sivaramakrishnan y col., 2004; Grimsley y col., 2013) 

no permite mantener la sensibilidad a los sonidos de baja intensidad si el 

ambiente auditivo presenta sonidos de alta intensidad. Así pues, los datos 

apuntan a que la inhibición en el IC es un mecanismo que ocurre a posteriori 

de la generación de la SSA y que sirve para modular la sensibilidad neuronal 

al ejercer un control de ganancia (Robinson y McAlpine 2009; Isaacson y 

Scanziani 2011), tal y como se explica en el efecto iceberg (Rose y Blakemore 

1974). 
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 Aun así, como la anestesia puede estar alterando el equilibrio entre 

la excitación y la inhibición, en el estudio III se implantó un método para 

registrar las neuronas del IC del ratón mientras el animal estuviera despierto 

(Duque y Malmierca, 2014). Dicho estudio muestra claramente como los 

niveles de SSA obtenidos en el procedimiento con el animal despierto son 

equiparables en magnitud a los niveles obtenidos en los procedimientos con 

animales anestesiados. Los datos también revelan que el animal despierto 

puede encontrarse en una situación pre-adaptativa (Abolafia y col., 2011), 

debido a que los niveles de actividad espontánea (SR, spontaneous rate) sí se 

muestran claramente alterados por la anestesia. Así pues, como los altos 

niveles de SR en animales despiertos están relacionados con un descenso de 

la adaptación (Chung y col., 2002; Castro-Alamancos, 2004), la SR podría 

estar modulando las respuestas neuronales (Buran y col., 2014). Como los 

niveles más altos de SSA se corresponden con los niveles más bajos de SR 

(Duque y Malmierca, 2014), los datos sugieren que la inhibición GABAérgica 

mostrada anteriormente (Pérez-González y col., 2012; Duque y col., 2014) 

podría estar modulando activamente los niveles de SR. Además, como 

estudios recientes muestran que el uretano produce una réplica casi exacta 

del estado de reposo que existe durante el sueño profundo (Clement y col., 

2008; Pagliardini y col., 2012, 2013), en este trabajo especulamos que 

durante dicho estado se pueda requerir una respuesta acentuada a las 

señales de peligro y que, por lo tanto, la atenuación de la SR por el sistema 

GABAáergico esté acentuando la sensibilidad de la SSA mientras los animales 

están durmiendo (Duque y Malmierca, 2014). 

 En el futuro, sería interesante entender cuáles son los mecanismos 

sinápticos que llevan a la generación de la SSA. La depresión sináptica es un 

buen candidato, pues que se trata de un mecanismo específico de las 

aferentes neuronales y dependiente de las respuestas previas de dichas 

aferentes (Abbot y col., 1997; Rothman y col., 2009). No obstante, la 
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depresión sináptica no tiene por qué ser un mecanismo pasivo, ya que 

actualmente se conocen multitud de vías de señalización retrógradas 

formadas por gases (óxido nítrico), péptidos (dinorfinas), factores de 

crecimiento (BDNF) e incluso aminoácidos convencionales (GABA, 

glutamato). En el cerebro de los mamíferos el sistema de los 

endocanabinoides (eCB) podría perfectamente ejercer dicha función (Castillo 

et al., 2012) pues regula la fuerza de las aferentes al secretarse a nivel 

sináptico retrógradamente. Curiosamente, el sistema de eCB ha demostrado 

mediar mecanismos como la depresión a corto término en núcleos cocleares 

(Zhao y col., 2009; Zhao y Tzounopoulos 2011), el complejo olivar superior 

(Trattner y col., 2013) e incluso en la corteza lateral del IC (Penzo and Peña, 

2009). 

 En resumen, esta Tesis Doctoral demuestra que la SSA es un 

mecanismo presente en el cerebro del mamífero y que no se trata de un 

artefacto generado por la anestesia. Muestra además que la SSA es un 

mecanismo que puede explicarse perfectamente, a nivel subcortical, por el 

modelo de los canales de frecuencia. La existencia de controles de ganancia 

consecutivos ejercidos por el sistema GABAérgico sugiere también la 

presencia de varios niveles jerárquicos de procesamiento que ayudan a 

refinar y reducir la información redundante. En conjunto, la SSA parece ser 

un mecanismo que actúa como filtro preatentivo reduciendo las señales 

sensoriales irrelevantes, ayudando a los animales a presentar respuestas 

adecuadas para facilitar su supervivencia.  
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Conclusiones 

1. La SSA no es constante dentro del FRA y, por consiguiente, no es 

una propiedad característica de la neurona. La SSA es más fuerte 

a bajas intensidades y está sesgada hacia altas frecuencias. 

2. Las neuronas localizadas en las regiones no lemniscales del IC 

presentan los niveles de SSA más altos. Dichas regiones se 

caracterizan por tener discretas respuestas neuronales tipo on y 

amplios FRAs que integran grandes rangos de frecuencia. 

3. El sistema GABAérgico modula la SSA en el MGB ejerciendo un 

control de ganancia. Así pues, GABA hace disminuir la tasa de 

respuesta neuronal e incrementar el nivel de SSA, pero no lo 

está generando. 

4. La modulación GABAérgica de la SSA se realiza básicamente a 

través de los receptores GABAA. 

5. SSA es un fenómeno no atribuible a la anestesia y los niveles 

observados en animal despierto y anestesiado son comparables. 

6. La SSA está dinámicamente modulada por el estado del animal a 

través del control de la actividad espontánea. 

7. Las neuronas del IC no muestran SSA para sonidos que sólo 

difieren en intensidad, pero ésta puede obtenerse siempre y 

cuando el sonido condicionante de alta intensidad se encuentre 

fuera del canal de frecuencia que codifica para el sonido de baja 

intensidad. 

8. Las neuronas con altos niveles de SSA para diferencias de 

frecuencia tienen canales de frecuencia más estrechos. Dichos 

canales se ensanchan al aumentar la intensidad del sonido y son 

más estrechos a altas frecuencias.  
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