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Abstract

By using a general solution to the problem of extending a preorder conditional
on a list of ex-ante comparisons between pairs, we ellucidate when a finite set of
predetermined comparisons can be incorporated to a multidimensional inequality
measure even if the population size is variable.
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1 Introduction.

The need for measures of multidimensional inequality arises when more than one
criterion has to be applied in order to evaluate for example, welfare attached to different
populations, household income inequality, or goodness for energy populations. A large
number of analytical tools have been designed to compare distributions on this basis.
Several proposals address the question from the viewpoint of attaching numerical values
to each distribution (cf., e.g., Savaglio [20] or Weymark [29] for general surveys). The
most frequently used relative inequality index is the Gini index, a flexible tool for
analysis that is also used e.g., as node splitting measure for decision tree construction
(cf., Chandra and Varghese [8] or Koprinska et al. [13] for recent references) or to
derive welfare functions that can be used to compute energy welfare (cf., Ok et al. [18,
Sect. 4.3]). But univariate inequality indices like the Gini index, the Theil index [24],
or Atkinson’s [6] indices do not give a full picture of the extent of inequality between
groups of agents. This leads to constructions of multi-attribute inequality indices like
the index developed by Maasoumi in [15–17]. It is constructed in two stages. In each
step choices are made based on information theory: General Entropy measures are
selected for both stages. Likewise, multi-attribute versions of e.g., Atkinson’s index
have been proposed in the literature (cf., Tsui [25]). Other methods for comparing pairs
of distributions include dominance principles whose main handicap is incompleteness
(cf., e.g., Atkinson and Bourguignon [7] and Savaglio [19]).

The fact that a method of comparison in terms of inequality performs admittedly
well is not incompatible with some degree of slackness in its prescriptions. For example:
the U.S. Census Bureau historical table for measures of household income inequality in
the country [26] claims that in the period 1988 to 1991, it increased according to the
Gini measure but decreased according to the Theil measure. The same mixed evidence
is observed in the period 1998 to 1999. The set of data that produced the historical
table is the same. Nonetheless, if a researcher wants to use them to support the ex-ante
prescription that household income inequality increased in the 1988-91 and 1998-99
lapses she can do it by means of a measure with good properties (namely, the Gini
index), and similarly she can decide to support the opposite position (by appealing
to the Theil index). In fact she can also use the same data to support the view that
inequality increased in the 1988-91 period but decreased in the 1998-99 period by
appealing to an orthodox procedure like Atkinson’s measure with parameter 0.75.

Obviously, this slackness can not be extended arbitrarily without violating desirable
postulates. We are not aware of any analysis of the degree of slackness that is allowed
when normative properties are imposed on complete methods of comparison. Our con-
tribution intends to put forward this problem and present a first solution by referring
to the recent approach by Savaglio [19], which has the remarkable feature that the
assumption of fixed population size is dropped. Thus, in our proposal we first discuss
properties that are desirable for a criteria in the current context. Then we consider
a finite list of comparisons between distributions of goods or attributes to different
populations (of possibly different sizes). Such list captures a given assessment of the
inequality that those distributions convey to their respective populations. Finally, we
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check if this prescription is compatible with the existence of a criterion with the se-
lected properties. In order to do so we take advantage of the recent Alcantud [2] (v.
Demuynck [9] for a broader discussion), where a general problem relating to extensions
of preorders has been provided.

This paper is organized as follows. Section 2 gives some basic notation. Then in
Section 3 we brief the reader on the conditional extension problem and its solution
(Subsection 3.1), explain some specialized notation (Subsection 3.2), present some nor-
mative postulates (Subsection 3.3), describe the model (Subsection 3.4), and check for
independence of its axiomatics (Subsection 3.5). Subsection 3.6 contains the solution to
our problem directly from the arguments and results of Subsection 3.1. We summarize
and address some related topics in Section 4.

2 Basic notation.

Let X be a non-empty set. A binary relation R on X is a subset of X × X. As
is standard, xR y is shorthand for (x, y) ∈ R . A reflexive and transitive relation is
called a preorder, also called quasiordering. An ordering is a complete preorder.

The asymmetric factor PR and the symmetric factor IR of R are defined by

PR = {(x, y) ∈ X ×X | xRy and not yRx},

IR = {(x, y) ∈ X ×X | xRy and yRx}.

If R is a complete preorder then IR is an equivalence relation. The shorthands P for
PR, P̃ for P

R̃
, P̂ for PR̂, ... or I for IR, Ĩ for I

R̃
, Î for IR̂, ... are common use.

If R and S are binary relations on X and R ⊆ S then we say that R is contained
or included in S. An extension of R binary relation on X is a binary relation S on X
such that R ⊆ S and PR ⊆ PS. Szpilrajn’s Theorem ([23], also [4, Th. 1.7]) assures
that every preorder can be extended to a complete preorder, i.e., it has an ordering
extension.

3 An axiomatic approach to multidimensional inequality with initial con-
straints.

In this Section we introduce the model that we intend to analyze and then solve
our main question by means of recent advances in the theory of ordering extensions.
Therefore we first brief the reader on the relevant approach to this technical problem
in Subsection 3.1. Then we proceed to state and discuss the axioms under inspection
and to set our model. After checking for independence of the postuates we prove the
main result of the paper.
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3.1 A fundamental result on conditional ordering extensions.

Extending preorders to complete preorders has much appeal because it permits
to work with relations that incorporate enough information as to apply significant
tools of analysis, such as e.g., maximality results or utility assignments. Szpilrajn’s
theorem and its generalizations and variants are very often quoted and applied in
many branches of mathematics and social sciences (for a very detailed description we
refer to Andrikopoulos [5]). However, to the purpose of empirical contrast of the model
we typically perform tests when only a finite amount of information is gathered. For
that reason the applied researcher needs to be able to check when a finite number of
exogenous comparisons can be matched with one such extension. The exact conditions
under which we can extend a given preorder to a complete preorder conditional on
a finite list of predetermined comparisons were given in Alcantud [2]. The following
concept is the key to specify such solution.

Definition 1 Let XI = (a1, ..., an, b1, ...., bn) be an ordered list of possibly repeated
elements of X, and R a preorder on X. The RA relation associated with XI and R is
given by aiR

A aj if and only if ai R bj.

Remark 1 It is worth stating some particular cases of Definition 1. Under its as-
sumptions, RA is irreflexive if and only if aiRbi is false for each i = 1, ..., n, because
aiRbi amounts to ai R

A ai. If n = 1 then RA is acyclic if and only if a1Rb1 is false. And
if n = 2 then RA is acyclic if and only if the assertions a1R b1, a2R b2, and (a1R b2
plus a2R b1) are all false.

The solution to that particular extension of Szpilrajn’s theorem can be stated in the
following terms.

Theorem 1 Let R be a preorder on a set X. Let XI = (a1, ..., an, b1, ...., bn) be an
ordered list of possibly repeated elements of X. The following statements are equivalent:

a) There is R̃ ordering extension of R such that bi P̃ ai for each i = 1, ..., n, where
P̃ denotes the asymmetric part of R̃.

b) RA associated with (a1, ..., an, b1, ..., bn) and R is acyclic.

Besides, implication a)⇒ b) requires that R̃ contains R only.

Theorem 1 transforms the original question into a discrete problem, that is, define
a simple binary relation on a finite set (informally: the collection of elements on which
some conditioning is imposed, named XI) and check if it has cycles. Example 1 below
illustrates this technique (for applications and further examples see Alcantud [2]).

Example 1 For any fixed set U we let R be the preorder on the set of subsets of U
given by inclusion. Suppose U = {0, 1, 2, 3}. Let A1 = {0, 1, 2}, B1 = {0, 1}, A2 = {1},
and B2 = {0, 2, 3}.

(a) Can we produce R̃ complete preorder on U that extends R and satisfies B1 P̃ A1
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and B2 P̃ A2 simultaneously?

According to Theorem 1 and Remark 1, we must examine if A1 ⊆ B1, A2 ⊆ B2,
and (A1 ⊆ B2 plus A2 ⊆ B1) are all false. Because this is the case we conclude that
the answer is in the affirmative.

As a matter of fact, AR̃B if and only if card(A) 6 card(B) solves question (a).

(b) Let B2 = {0, 1, 2, 3}. Can we produce R̃ complete preorder on the set of subsets
of U that extends R and satisfies B1 P̃ A1 and B2 P̃ A2 simultaneously?

Now the statement A1 ⊆ B2 plus A2 ⊆ B1 is true. Therefore, no such construction
can be obtained.

3.2 Further notation and definitions.

Henceforth all matrices have real values. The rank of a matrix A is represented by
rank(A). A permutation matrix is a matrix such that each row and column has exactly
one non-null cell and its value is 1. Premultiplying (resp., postmultiplying) a matrix
by a permutation matrix results into a permutation of its rows (resp., its columns). A
matrix P = (pij)ij ∈ Mp×m(R) is row-stochastic if pij > 0 for each possible i, j and
pi1 + .... + pim = 1 for each i = 1, ..., p. Any permutation matrix is row-stochastic,
and any row-stochastic matrix is a fuzzy matrix (Lur et al. [14, Sect. 1]). The inverse
of a permutation matrix is its transpose, therefore another permutation matrix. The
product of row-stochastic matrices is row-stochastic.

Mm×n(R) represents the set of all m × n matrices with real values. Henceforth n
is fixed and captures the commodities or goods or attributes that each individual in
the community can possess or enjoy: we label them 1, ...., n. Mn represents the set of
all matrices with n columns and real values. For expository convenience we adopt the
economic terminology, thus each A = (aij)i,j ∈ Mm×n(R) ⊆ Mn is interpreted as an
allocation of goods to a population of m individuals of the society, which assigns aij
units of the j’th good to agent i of that population. We are concerned with orderings
on Mn that meet both rational and external prerequisites with regard to the amount
of inequality that the allocations convey.

3.3 Axioms.

Let R be a preorder on Mn. In our framework we are interested in the following list
of rationality restrictions for R that are in line with its interpretation as “it is at most
as sparse as”. Their implications are examined thereafter.

Axiom A (Attribute-independence). If T is a permutation matrix of size n × n
then AIR (AT ) for each A ∈Mn.

Axiom P (Preference for average allocations). For each A ∈ Mp×n(R) and Q ∈
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Mm×p(R) row-stochatic: (QA)RA.

Axiom C (Compatibility with the rank). For each A,B ∈ Mn: if ARB then
rank(A) 6 rank(B).

Axiom S (Scale Invariance). For each A ∈Mn, AIR (kA) when k > 0.

Attribute-independence means that the level of disparity in the distribution that a
list of attributes produces does not vary if we shuffle the attributes. For example: for
a single agent having (1, 5) is similar to having (5, 1) from the strict point of view of
how spread out is the distribution of goods he is assigned. This postulate is admittedly
controversial in some contexts (e.g., if the first attribute is “health” and the second
is “income”) but important cases speak for its plausibility (e.g., when all personal
attributes are perfect substitutes). Although we do not intend to endorse it, since we
aim at producing a possibility result the more properties we can guarantee the more
relevant it is.

Preference for average allocations says that assigning averages of a list of individual
endowments is at most as spread out as assigning those initial endowments to a collec-
tive of individuals, irrespective of how many individuals are endowed with averages. It
implies the following usual assumption that the name of the agents should not affect
the level of inequality.

Axiom AN (Anonymity). If T is a permutation matrix of size m × m then
AIR (TA) for each A ∈Mm×n(R) ⊆Mn.

Compatibility with the rank is in the spirit of Property C in Savaglio [19]. It means
that a comparison on the basis of disparity can not declare A at most as unequally
distributed as B when B has fewer linearly independent rows, since rows incorporate
each individual’s assignment within the population to which commodities are allocated.

Scale invariance means that changing the unit of measure should not alter the in-
equality assessment. If the attributes are monetary endowments, this means that the
choice of the currency should not affect the comparisons.

Remark 2 It is trivial that if R is a preorder that verifies Axiom A (resp., AN , P ,
or S) then whenever R ⊆ R′ the relation R′ verifies it too.

3.4 The model.

A consistent with inequality ordering –also CWI ordering– on the set of all matrices
with n columns is a complete preorder on that set that agrees with Axioms A, AN , P ,
C, and S 1 . For example, the rank provides one such CWI ordering: define r on Mn by
ArB if and only if rank(A) 6 rank(B).

1 Although AN is redundant in this context we find it instructive to list it along the prop-
erties due to its undeniable appeal.
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In this work we are concerned with the more restrictive problem of finding complete
preorders on Mn that agree with Axioms A, AN , P , C, and S and satisfy a list of
initial constraints. We call them conditional CWI orderings and of course, r is not a
conditional CWI ordering with regard to any possible list of initial constraints.

Remark 3 Savaglio [19] studied a particular majorization concept for matrices rep-
resenting a group of agents endowed with amounts of a fixed number of commodities. It
underlies a procedure for constructing inequality indices associated with sublinear func-
tions, and is called vp-majorization. Such proposal consists of declaring A� B if and
only if there is P row-stochastic with A = PB, whenever A ∈Mp×n(R), B ∈Mm×n(R).
This is a preorder, i.e., a reflexive and transitive (but incomplete) relation.

Let us confront this position with the axioms above. For one thing, � agrees with
Axioms AN , C and P (which implies reflexivity by itself). For another, this incomplete
relation verifies neither Axiom S (quite trivially) nor Axiom A, thus it is not CWI. To

prove it, just observe that if we let T0 =

 0 1

1 0

 and A0 =

 2 1

4 2

 then the matrices

A0 and A0T0 =

 1 2

2 4

 are unrelated by �.

In order to solve the issue we have raised we need a preliminary definition.

Definition 2 For any A, B matrices with n columns, let A . B mean that there are
k > 0, some Q row-stochastic matrix and some T permutation matrix with A = kQBT .

It is clear that . is a preorder on Mn that contains � and agrees with Axioms A,
AN , P , C, and S. It is not complete because if we let

F =

 1 1

1 1

 and G =

 2 1

2 1



then neither F . G nor G . F is true. All the binary relations that contain . satisfy
Axioms A, AN , P and S by virtue of Remark 2.

Remark 4 Although �⊆ r, r is not an extension of �. The reason is that for

A′ =

 1 0

1.5 0.5

 , B′ =

 1 0

2 1



we have A′ Ir B
′ but nonetheless A′ P�B′, that is, A′ � B′ holds and B′ � A′ does

not. Indeed, the fact

 1 0

0.5 0.5

B′ = A′ proves A′ � B′. The assertion Q′A′ = B′
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entails Q′ =

 1 0

−1 2

, which is not row-stochastic thus B′ � A′ does not hold.

The same example shows that despite .⊆ r, 2 r is not an extension of .. Now the
fact A′ . B′ derives from A′ � B′, and assuming B′ . A′ produces a contradiction as
follows. We claim the existence of k > 0, Q row-stochastic matrix and T permutation
matrix with A′ = kQB′T . Two cases arise:

either T is the identity matrix or T =

 0 1

1 0


In words: either postmultiplying B′ by T results into B′ or into a permutation of its
columns. Both cases yield trivial contradictions therefore A′ P.B′ in spite of A′ Ir B

′.

Suppose that a social planner assumes that the inequality that assignments convey
must be modelled by means of a CWI ordering. In principle he may want to assume
that F conveys strictly less inequality than G without violating that assumption, not
for normative reasons but e.g., because he feels bound to a political programme or by
agreement with other parties. That produces an initial constraint. Can he reconcile
all these requirements? In order to fully assess our model it is relevant to check that
Axioms A, P , C, and S are independent, which we proceed to prove by producing
suitable examples in Subsection 3.5. Then in Subsection 3.6 we provide an answer to
the question when the number of constraints is arbitrary.

3.5 Independence of the axioms.

Example 2 Axioms P , C, and S together do not imply Axiom A.

We just need to adapt the construction in Remark 3 as follows. Let A �′ B if
and only if there are k > 0 and some P row-stochastic with A = kPB, whenever
A ∈Mp×n(R), B ∈Mm×n(R). Because �⊆�′ and � verifies Axiom P then Remark
2 assures that �′ must verify it too. It is clear that �′ verifies Axioms C and S.
Nonetheless the argument in Remark 3 shows that �′ does not verify Axiom A.

Example 3 Axioms A, P , and C together do not imply Axiom S.

We just need to adapt the construction in Definition 2 as follows. For any A, B
matrices with n columns, let A .′ B mean that there are some Q row-stochastic matrix
and some T permutation matrix with A = QBT . Now Axiom S fails to hold true but
Axioms A, P , and C are verified easily.

2 We use the fact that the rank of a product of matrices is lesser than or equal to the
minimum of the ranks of the factors, by Sylvester’s rank inequality (v., Horn and Johnson,
[11, Sect. 0.4.5]).
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Example 4 Axioms A, C, and S together do not imply Axiom P .

Let A 4 B if and only if there are k > 0 and some T, T ′ row-stochastic with A =
kTBT ′, whenever A ∈ Mp×n(R), B ∈ Mm×n(R). It is clear that 4 verifies Axioms A,
C and S. Nonetheless 4 does not verify Axiom P because if we let

A =

 1 1

0 0

 and Q =

 1
2

1
2

1
2

1
2



then QA = Q =

 1
2

1
2

1
2

1
2

 4 A is impossible.

Example 5 Axioms A, P , and S together do not imply Axiom C.

We modify the construction in Definition 2 as follows. There exist M1, M2 matrices
with 2 columns, such that rank(M1) < rank(M2) and both M1 . M2 and M2 . M1

are false. For example,

M1 =
(

1 1

)
and M2 =

−1 −1

0 −1


For each A,B ∈ M2, let A .

′′
B mean either A . B or (A . M2 and M1 . B). It

is trivial to check that this is a preorder on M2 that extends . (v., proof of Theorem 1
in Alcantud [2]). It verifies Axioms A, P , and S (v., Remark 2). But it that does not
verify Axiom C, since M2 .

′′
M1 but rank(M1) < rank(M2).

3.6 Main result.

Now we are ready to solve the problem we have posed ourselves.

Theorem 2 Let {Ai}i=1,...,m and {Bi}i=1,...,m be two ordered lists of matrices with
n columns. The following statements are equivalent:

a) There exists R complete preorder on Mn that satisfies Attribute-independence,
Anonymity, Preference for average allocations, Compatibility with the rank and Scale
invariance, and declares Bi PR Ai for each i = 1, ...,m.

b) .A associated with (A1, ..., Am, B1, ..., Bm) and . is acyclic, and rank(Bi) 6
rank(Ai) for each i = 1, ...,m.

Proof:

In order to check a)⇒ b) we prove .⊆ R and then we use the fact that implication
a)⇒ b) in Theorem 1 only required inclusion instead of extension.
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Select A, B matrices with n columns, and suppose that there are k > 0, Q row-
stochastic matrix and T permutation matrix with A = kQBT . By Scale invariance
and Attribute-independence, (kBT ) IR BT IR B. Now the fact A = Q(kBT ) plus Pref-
erence for average allocations entail AR (kBT ) . Because R is a complete preorder
and AR (kBT ) IR B we conclude ARB. This completes the argument. Furthermore,
rank(Bi) > rank(Ai) and Bi RAi are incompatible because R satisfies Compatibility
with the rank.

Let us now prove b) ⇒ a). By Theorem 1 we can assure that there is a complete
preorder R̃ on Mn that extends . and satisfies Bi P̃ Ai for each i = 1, ...,m.

Now let R be the lexicographic relation defined by: ARB if and only if either
rank(A) < rank(B) or (rank(A) = rank(B) and A R̃B). It is a complete preorder that
includes . and thus it agrees with Attribute-independence, Anonymity, Preference for
average allocations, and Scale invariance. Obviously it satisfies Compatibility with the
rank. In order to check that R fulfils the initial constraints, we only need to observe
that R’s asymmetric part P is given by: AP B if and only if either rank(A) < rank(B)
or (rank(A) = rank(B) and A P̃ B). Coupled with Bi P̃ Ai and rank(Bi) 6 rank(Ai)
for each i = 1, ...,m, this entails Bi P Ai for each i = 1, ...,m. 2

4 Conclusions and final remarks.

A conceptual problem that appears in different contexts of inequality analysis con-
sists of measuring the degree of inequality in the data. This problem can be addressed
by means of numerical indices or other methods. The lack of agreement on a procedure
for measuring multidimensional inequality poses difficulties for checking if a given pre-
scription is in accordance with theoretical predictions or not. Here we circunvent that
handicap by appealing to the approach by Savaglio [19]. Our approach is novel in that
we are interested in testing if complete methods of comparison that perform well exist,
which do not contradict a finite list of ex-ante prescriptions. Formally, we state our
problem in terms of the compatibility of a set of m primitive inequality assessments
with a comparison of multidimensional inequality by a model that fits into the main-
stream of the field. By virtue of Theorem 2, a solution can be implemented in two parts.
Firstly we must compute 2m ranks of matrices with n columns, and check if certain
inequalities hold true. Suppose that this is the case (otherwise the initial constraints
are incompatible with a measure of multidimensional inequality in the model). Then
we must check if a binary relation that is trivially defined from raw data has cycles,
or equivalently, if its transitive closure is irreflexive. For the case of few restrictions
this can be performed by simple computations. But when the number of conditions
increases we need to be assisted by algorithms. The literature abounds with proposals
for computing the transitive closure of a binary relation efficiently. Varian [27, Ap-
pendix II] popularized the Floyd-Warshall algorithm (cf., [10], [28]) in the economic
literature. The computer science literature offers further algorithms that are computa-
tionally more efficient (cf., e.g., Agrawal and Jagadish [1], Ioannidis and Ramakrishnan
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[12], Schmitz [22], or Schnorr [21]).
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